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Abstract 

 A biological aerated filter (BAF) pilot plant consisting in two reactors (aerobic and 

anoxic one) was used to determine a strategy to remove nitrogen via nitrite. RNA/DNA analysis 

was performed to assess microbial activity and support chemical results. In less than 13 days 

the pilot plant was able to remove COD and suspended solids. Nitrogen removal via nitrite 

pathway could not be observed until day 130th when the empty bed contact time (EBCT) was 

set at 0.71h. Nitrite was detected in the aerated BAF effluent but never nitrate. qPCR of amoA 

gene from RNA and DNA extracts of the aerobic biofilm confirmed that ammonia oxidizing 

bacteria (AOB) were present from the beginning of the operation but not active. AOB activity 

increased by time reaching stability from operational day 124th. The combination of both, low 

EBCT together with high OLR, has been demonstrated to be a feasible strategy to startup a 

BAF to achieve nitrogen removal via nitrite. 
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Introduction 

Conventional activated sludge (CAS) is the most spread secondary treatment for urban 

wastewater to remove organic matter (COD), suspended solids (SS) and nitrogen [1]. However, 

CAS systems have a high footprint as well as a high energy demand due to aeration and high 

hydraulic retention times (HRT). Several alternative designs and systems have been 

investigated and implemented in order to reduce energy requirements and footprint. One of 

these alternatives that has been successfully applied as secondary treatment at lab and full scale 

to treat urban wastewater is the biological aerated filter (BAF) technology [2-5]. 

BAF systems consist of two main phases: a solid phase that acts as the support media 

for microbial biofilm growth as well as physical filtration and a liquid phase in which the solid 

phase is submerged [6]. It has a small footprint compared with CAS since BAF can be operated 

at high organic loading rates (OLR) as biomass is well retained by biofilm formation and do 

not require further downstream separation units [3, 7]. Thus, BAF system allows the operation 

at short HRT which reduces the requirement for space. Nevertheless, energy consumption is 

similar or even higher to CAS as the same amount of air must be injected into the system to 

fully oxidize ammonium and COD as well as for backwash purposes. 

Nitrogen removal from ammonia via nitrite instate of nitrate is a pathway that reduces 

aeration requirements by 25%, saves the carbon-source requirement during the denitrification 

phase by 40% [8] and contributes to lower sludge production. This pathway has been 

successfully applied to rich ammonium streams such as landfill leachate or anaerobic digesters 

supernatants [9, 10] as well as to urban wastewater with an imbalanced COD/N ratio [11, 12]. 

Nitrite accumulation (also known as nitritation or partial nitrification) is achieved during 

startup when nitrite oxidizing bacteria (NOB) are out-competed from the system and ammonia 

oxidizing bacteria (AOB) are enriched. In urban wastewater treatment two main parameters are 

used during the startup phase to achieve nitritation: low sludge retention time (SRT) [10] and 
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low dissolved oxygen (DO) concentration (<1 mg O2 L-1) [11, 13]. Denitrification must be 

accomplished in anoxic conditions. Thus, it is necessary to have a specific anoxic reactor or to 

obtain denitrification inside of the biofilm where oxygen is not diffused but nitrite and COD. 

On one hand, SRT can be estimated in BAF systems [14]. However, SRT is a parameter 

that can be hardly controlled in a BAF as it is a biofilm based system. On the other hand, BAF 

is a plug flow reactor and DO concentration also results hard to control as it varies throughout 

all the column although a study has been directed on that with ambiguous results [13]. Lately, 

Ryu et al.[7] determined that a short HRT (1 h) combined with a high organic loading rate 

(OLR) resulted on nitrite accumulation in a lab-scale BAF. Thus, a main hypothesis can be 

developed. A short contact between biofilm and wastewater known as empty bed contact time 

(EBCT) together with the regulation of the OLR could be a suitable tool to obtain nitrogen 

removal via nitrite in a BAF system. Moreover, the startup phase is a key period to inhibit NOB 

growth or achieve its washout [15].  

Besides, molecular techniques have been applied to follow up the acclimation and 

enrichment of the biomass such as fluorescence in-situ hybridization (FISH), polymerase chain 

reaction denaturing gradient gel electrophoresis (PCR-DGGE), quantitative PCR (qPCR) and 

next generation sequencing (NGS) of the present DNA [16-20]. Nevertheless, DNA analysis 

does not show the activity of the biofilm but only its genetic potential. Thus, RNA analysis 

would increase the knowledge of biomass activity regarding biological wastewater treatment 

in BAF systems, and could be a good tool for monitoring the startup of the system. 

Therefore, the main objective of this study was to obtain a strategy to startup a BAF to 

remove COD, SS and nitrogen via nitrite with the shortest HRT without inoculation. Molecular 

tools based on RNA and DNA analysis were used in order to assess biofilm enrichment during 

the startup and confirm chemical analysis. 

Materials and Methods 
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BAF pilot plant setup 

 The BAF pilot plant (Figure 1) was located on-site in the wastewater treatment plant 

(WWTP) of Caldes de Montbui (Catalonia, Spain) and had a total reaction volume including 

anoxic, aerobic, sand filter and water cleaning tank of about 10 m3. Influent wastewater (Table 

1) was collected after the pretreatment section of the full scale urban WWTP and was fed into 

a lamellar settler of 1m3 where system purge was applied when necessary (timed 2 min per 

hour). Afterwards, settled water flowed into a mixing basin where recirculation was also 

pumped. This mix was pumped into the downflow anoxic BAF (BAF1) which had a working 

volume of 2.5 m3 and was filled with 1.2m3 of expanded clay as filtering and support material 

(Filtralite® HR 3-6 mm; Norway). Water was then pumped into the upflow aerobic biofilter 

(BAF2) which had equal physical characteristics as BAF1 but with smaller diameter of the 

support material (Filtralite® HR 2.5-5 mm; Norway). DO concentration was controlled 

between 4-5 mg O2 L-1 to ensure full aerobic conditions in the water column by means of a PID 

control system and a DO probe (E+H COS61D; Germany) installed at the top of the reactor 

with contact with the surface water. BAF2 effluent was equipped with a digital sensor of 

ammonium and nitrates calibrated with samples analysed off-line (ISEmax CAS40D; 

Germany) and was pumped into a water cleaning tank with a volume of 4 m3. Water cleaning 

tank was also equipped with a spectro::lyser™ UV sensor (SCAN; Austria) which allowed 

monitoring NO2
-, NO3

-, SS and COD concentrations also calibrated by mean of treated 

wastewater analyzed in the laboratory. From this tank, treated water was pumped into a sand 

filter (same characteristics as BAF1 and BAF2 having a mix of media Filtralite® HR 0.8-1.6 

mm and Filtralite® HR 1.5-2.5 mm) to remove the remaining SS as final treatment before 

discharging. Besides water from water cleaning tank was recirculated into the initial mixing 

basin to denitrify the accumulated nitrite and it was also used as backwashing water when 

necessary. Backwash cleanings by air and water were applied when necessary based on head 
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pressure loss signal controlled by on-line pressure device located at the bottom of the reactors. 

Aeration was carried out by a blower injecting air into the system at the bottom of BAF1, BAF2 

and sand filter. Sludge water obtained after backwashes was driven into a sludge water tank 

which was later pumped again into the lamellar settler. 

The pilot plant was provided with a programmable logic controller (PLC) and 

supervisory control and data acquisition (SCADA) system that allowed digital and analogical 

data purchase with own-developed software. PLC controlled all the automatic devices and 

control loops of the plant: aeration, backwashes, pumping, levels, alarms, etc. 

Analytical methods and calculations 

The determination of influent and effluent ammonium (NH4
+), nitrite (NO2

-; by 

colorimetric analysis), total Kjeldahl nitrogen (TKN), chemical oxygen demand (COD), five-

days biochemical oxygen demand (BOD5), total suspended solids (TSS) and volatile suspended 

solids (VSS) concentrations was carried out according to standard methods [21]. Nitrate (NO3
-) 

concentration was analyzed by ion chromatography (Metrohm 861 Advanced Compact IC), 

using a Metrohm Metrosep A Supp 4 column and pre-column, a metrosep A Supp 4/5 Guard.  

Empty bed contact time (EBCT), the key parameter to control the system was calculated 

according to equation 1 

ܶܥܤܧ = 	 ௏೘೐೏೔ೌಳಲಷమ
ொ೔೙೑

× 24      (equation 1) 

where: 
Vmedia BAF2 is the media volume of BAF 2 (m3 aerobic media) 
Qinf is the influent flow (m3 d-1) 
 

Organic loading rate (OLR), specific organic loading rate (sOLR), Nitrogen Loading 

Rate (NLR), ammonium loading rate (ALR), specific ammonium loading rate (sALR), nitrite 

production rate (NPR), hydraulic retention time (HRT) and empty bed contact time (EBCT) 

were calculated according to formulas added in the SM section. 
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Molecular techniques 

RNA and DNA extracts were obtained by independent triplicates from biofilm samples 

collected on days 18th, 82nd, 103rd, 124th and 145th. 16S rRNA genes and transcripts from 

bacterial population were measured by the couple of primers F519 / R907 as previously 

reported in Prenafeta-Boldú et al.[22]. Ammonia oxidizing bacteria (AOB) were studied by 

ammonia monooxygenase α-subunit encoding gene (amoA genes/amoA transcripts) as 

previously reported by Rotthauwe et al. [23]. qPCR assays are detailed in supplemental 

material. The present and metabolically active bacterial diversity was also assessed by 16S 

rRNA-based Miseq Illumina platform by targeting  V1-V3 region of 16S rRNA as previously 

described in Pelissari et al. 2017. In the present study NGS results were from days 124th and 

145th. Data from MiSeq assessment were submitted to the Sequence Read Archive (SRA) of 

the National Center for Biotechnology Information (NCBI) with the accession number 

PRJNA320476. Further detailed information can be found in methodology section of 

supplementary information document. 

 

Results  

BAF pilot plant performance 

The BAF pilot plant was designed to remove COD, SS and nitrogen via nitrite. It has 

been operated over a period of 160 days without inoculation to ensure similar conditions during 

real scale startup and was fed from the first day with urban wastewater collected after the 

pretreatment section of the full scale urban WWTP of Caldes de Montbui (Catalonia, Spain). 

The initial influent flow was set at 18 m3 d-1 and the HRT of the whole pilot plant was about 

13h. Recirculation from the water cleaning tank was fixed at 2.5 times influent flow and the 

dissolved oxygen concentration in the BAF2 was set at 4 mg O2·L-1 by PID control to ensure 
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full aerobic conditions. SRT was not controlled. The first objective of the operation was to 

remove COD and SS at very short HRT.  

Figure 2 depicts temporal evolution of influent and effluent concentrations of total COD 

as well as the organic loading rate (OLR; Fig.2.A) and TSS (Fig.2.B). Total COD influent 

concentration fluctuated between 222 and 1040 mg COD L-1 indicating typical variation of the 

urban wastewater COD due to sampling time as well as the high daily variability of influent 

COD 1. Influent TSS concentration also had a great variation between 95 and 692 mg SS L-1 

according to fluctuations of influent COD concentration (Fig. 2). The high variability of 

influent COD concentrations and the daily flow changed during the startup in order to increase 

EBCT and obtain nitritation (Fig.2) resulted in also varying OLR between 1 and 5 kg COD m-

3 media d-1 during all the experimental period. However, despite these fluctuations in influent 

characteristics, the pilot plant effluent remained stable and below the discharge legal limits of 

the European Union (EU) standards for both COD (125 mgCOD L-1) and TSS (35 mg SS L-1) 

from day 13th of the process. It is also remarkable that effluent BOD5 remained always below 

the legal limit of 25 mg BOD L-1 (data not shown). From day 13th to the end of the experimental 

period, the BOD5, COD and TSS removal efficiencies were 94.3±4.6%, 79.6±8.7% and 

92.1±7.3%, respectively. Nevertheless, ammonium oxidation, thus nitrogen removal could not 

be achieved until day 130th approximately. 

Nitrogen removal  

Once the desired COD and TSS removal was achieved, the main goal was to achieve 

nitritation by favoring conditions of AOB in front of NOB. Influent total nitrogen (TNinf) 

concentration varied in a range of 40 to 80 mg N-TN L-1 during all the experimental period 

(Fig.3.A). On the other hand, effluent TN concentration remained stable in a range between 20 

and 40 mg N L-1 during the first 60 days. These concentrations were much higher than the EU 

legal threshold value of 15 mg N-TN L-1. The removal of part of the TN could have been 
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achieved by nitrification-denitrification, removal of the organic nitrogen contained in the 

influent TSS, volatilization and assimilation by the growth of biomass. In this sense, Figure 

3.B shows the temporal evolution of the ammonium concentration in the influent and effluent 

of the pilot plant to verify the existence of ammonium oxidation. It can be observed that during 

the first 60 days of operation, ammonium concentration was similar in the influent and effluent 

being about 30 mg N-NH4
+ L-1 and the nitrogen loading rate (NLR; Eq.S3) and the ammonium 

loading rate (ALR; Eq.S4) were 0.4 kg N m3media d-1 and 0.5 kg N m3aerobic media d-1, 

respectively. On day 60th, daily influent flow was decreased from 18 to 12 m3 d-1 in order to 

reduce both NLR and ALR. Then, the pilot plant was operated during 70 days more with this 

operational conditions.  

The effluent TN concentration remained stable as before approximately at 30 mg N-TN 

L-1 (Fig.3.A) as well as the ammonium effluent concentration being about 30 mg N-NH4
+ L-1 

(Fig.3.B) despite the ALR and the NLR were decreased approximately to 0.3 kg N m3media d-

1 and 0.4 kg N m3aerobic media d-1, respectively. Flow decrease results in less volatilization 

and less biomass growth, thus less N assimilation. Those facts could explain the behavior of 

the reactor.  On day 130th, the daily influent flow rate was again decreased to 6-8 m3 d-1 

resulting in a NLR and ALR of about 0.2 kg N m3media d-1 and 0.2 kg N m3aerobic media d-1, 

respectively. Since that day, effluent TN concentration decreased below the legal limit of 15 

mg N-TN L-1 at the same time that ammonium was being oxidized (Fig.3.B). When decreasing 

HRT, EBCT increased and resulted in a higher contact between present ammonia and nitrifiers, 

thus nitrification started to take place. Nevertheless, no nitrate neither nitrite was observed in 

the pilot plant effluent (data not shown). In this sense, BAF2 operation was followed by 

analyzing its influent and effluent characteristics in order to reveal if nitrification was taking 

place and to identify if other phenomena are occurring (volatilization, assimilation, etc.). 

Aerated BAF operation 
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On days 103rd, 124th and 145th, influent samples and effluent samples taken after the 

corresponding HRT from BAF2 were analyzed to characterize its COD and nitrogen removal. 

Table 2 shows main chemical analyzed parameters as well as operational parameters. For days 

103rd and 124th, the influent flow rate, the HRT and the EBCT were equal corresponding at the 

second period when the daily flow was set at 12 m3d-1 (Fig.2). COD removal was observed at 

both runs despite VSS increased in the BAF2 effluent due to sludge wash and variations on the 

OLR due to differences on COD concentration. On the other hand, ammonium concentration 

remained stable on day 103rd but slightly decreased 1 mg N-NH4
+ L-1 on day 124th. These 

coincided with the detection of 1 mg N-NO2
- L-1 in the effluent on day 124th. Nitrate was never 

detected by ion selective probe neither chemical analysis.  

On the contrary, on day 145th, many parameters were changed as the pilot plant influent 

daily flow was set at 6-8 m3d-1. The BAF2 HRT and the EBCT increased significantly 

compared to previous analyzed days from 0.83 to 1.43 h and 0.41 to 0.71 h, respectively. 

Consequently, the specific OLR (sOLR; Eq.S2) as well as the specific ALR (sALR; Eq.S5) 

decreased to 1.60 kg COD kgVS-1 d-1 and 0.14 kg N-NH4
+ kgVS-1 d-1, respectively. These new 

operational condition could have provoked a higher SRT, so a minimum SRT for nitritation 

was achieved. COD removal and ammonium removal was observed in BAF2. Ammonium 

concentration decreased by about 4 mg N-NH4
+ L-1 when comparing influent and effluent 

samples. This indicated a 50% ammonium removal. Nitrate was not detected and nitrite was 

only 1.3 mg N-NO2
- L-1. Thus, nitrogen was imbalanced hypothetically due to denitrification 

in the biofilm. In order to figure out the feature of the active biomass, molecular tools were 

used to study the biofilm community on the aerobic media from the beginning of the 

operational period. 
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Nitritation microbial activity 

Total and metabolically active population of bacteria and AOB from BAF2 were 

assessed by qPCR DNA/RNA-based assays of 16S rRNA and amoA genes, respectively. 

Independent triplicates were collected on punctual samples for days 18th, 82nd, 103rd, 124th and 

145th. Figure 4 depicts the average of qPCR results obtained during the punctual sampling as 

well as the calculated ratios for amoA genes vs 16S rRNA genes and amoA transcripts vs 16S 

rRNA transcripts. Total bacterial population at all periods were between 109 and 1010 16S 

rRNA gene copy numbers · g-1 of support material. Active bacterial population increased from 

over 104 to 1012 16S rRNA transcripts · g-1 of support material from day 18th to day 145th, 

respectively (Figure 4). 

On days 18th, 82nd and 103rd, total AOB population was present being around 103 amoA 

gene copies · g-1 of support material. Afterwards, the abundance of amoA increased 4 orders of 

magnitude being about 108 copies g-1media on days 124th and 145th. When looking at the active 

AOB population, amoA transcripts considerably increased from day 18th to 124th. On day 18th, 

amoA expression was not detected while on day 124th and 145th all the present AOB population 

was active (107 amoA gene copies and transcripts · g-1 of support material). 

With respect to the calculated ratios, it was observed that amoA genes vs 16S rRNA 

genes as well as amoA transcripts vs 16S rRNA represented a maximum of 0.3 and 0.002 %, 

respectively, showing that the eubacterial population has been enriched in AOB. The amoA 

genes vs 16S rRNA genes ratio was always higher than the transcript ratio except on the day 

82nd. It is remarkable that the transcript ratio was lower on day 145th respect the previous 

analyzed day (124th) as 16S rRNA copies was higher (Figure 4). 

BAF2 biofilm microbial community during nitritation 

 Illumina MiSeq 16S ribosomal RNA profiles were performed to compare the 

bacterial community structure of the support material from BAF2 when nitritation was 
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observed by chemical analysis (days 124th and 145th). In order to depict the establishment of 

the biofilm and the active bacteria, 16S rRNA libraries were generated. A total of 150.000 high-

quality sequences were obtained ranging 27.748 to 46.211 per profile; a total of 2.344 different 

operational taxomic units (OTUs) were detected (sharing 97-99% nucleotide identities).  

MiSeq datasets from both days revealed that predominant bacterial populations in the 

support material were represented by phylotypes belonging to β, α and δ-proteobacteria class 

(data not shown). In Figure 5 it is showed the relative abundance in the taxonomic rank of 

family. Commamonadaceae (β-proteobacteria class) was the predominant family in the 

biofilm, representing about 12% of each datasets. The representative OTUs of that family 

belonged to the genera Hydrogenophaga and Acidovorax. Another important family related to 

denitrification process was Rhodobacteraceae (3.5-4.5%) where the predominant OTUs 

belonged to Rhodobacter genus. Also, β-proteobacteria family found was Rhodocyclaceae 

where the predominant OTUs belonged to Zoogloea, Dechloromonas and Thauera genera. 

Other actively enriched family (10% and 6%, day 124th and 145th respectively) related with 

carbon and nitrogen cycle was Planctomycetaceae, an environmental group typically present 

in biofilms. 

Regarding nitrification bacteria, on one hand, AOB population was detected at both 

operational dates that were enriched in phylotypes of Nitrosomonadaceae family, the relative 

abundance increased from 1% to 4.5% (DNA and cDNA datasets from both days, respectively). 

On the other hand, NOB population was almost inexistent in the biofilm. Nitrobacter, as the 

most representative NOB, was at 0.01% (data not shown) although its family 

(Bradyrhizobiaceae) was present and active (≈ 2%) at both days. 
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Discussion 

Overall BAF pilot plant performance 

The BAF pilot plant accomplished EU discharge limits for both COD and SS after only 

13 days of operation without inoculation differently from other related studies that inoculated 

active biomass into the system [7, 24, 25]. On one hand, SS removal is carried out by settling 

as well as the physical action of filtration. It is mostly linked with the good performance of 

solid liquid separator units of the BAF pilot plant consisting of primary lamellar settler, BAF1 

and BAF2 and, as final treatment, the sand filter. In this sense, a suitable operation of the sand 

filter is crucial to remove the remaining and generated SS in BAF2 (Table 2). Thus, in this 

study SS removal was also achieved as elsewhere described [3, 6] during the startup period 

enforcing the idea that BAF can be a good solution from the first operational day when dealing 

with possible settling problems in CAS due to wastewater characteristics such as low COD/N 

ratio or undesirable growth of filamentous bacteria causing bulking [26].  

On the other hand, biological COD removal was rapidly achieved after 13 days of 

operation and was kept during all the experimental period of 160 days. Moreover, COD 

removal was accomplished despite variations of OLR ranging from 1 to 5 kg COD m-3media 

d-1. Chang et al. [2] also reported high COD removal of textile wastewater (86-92% COD 

removal at OLR up to 3.3 kg COD m-3 d-1) using sand and zeolite as media. Thus, the use of 

expanded clay in this study did not affect the COD removal performance of urban wastewater.  

The 16S rRNA gene transcript which indicates general microbial activity was already 

detected on day 18th in the BAF2 biofilm as well as its presence in form of 16S rRNA gene. 

This transcript was smoothly increased by time as amoA transcript was gaining weight in the 

biofilm (Figure 4). Thus, initial active total eubacteria activity (16S rRNA gene transcript) can 

be linked to aerobic heterotrophic bacteria which were the responsible for COD removal in 

BAF 2when nitritation was not yet active. HRT and EBCT were equal for BAF1 and BAF2 
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and, thus, aerobic yield for COD removal is 10 times faster than anaerobic removal [27, 28]. 

In this sense, most COD removal must be pointed that took place in BAF 2 in aerobic conditions 

rather in BAF1 with anaerobic conditions. However, low COD removal was also plausible in 

BAF1 despite no oxygen neither NOx
- were present before day 124th when nitritation was first 

detected (Table 2).  Biological COD removal would be mainly attributed to BAF2 until 

nitrification started to be present. At the same time, these heterotrophic bacteria could make 

the function of denitrifiers on BAF1 or in the inner part of the biofilm in BAF2 when nitrite 

started to be present,  

Nitrogen removal via nitrite 

Large lack before nitrification detection can be attributed to several factors such as SRT, 

EBCT, sALR or sOLR among others. Effluent TN remained below the maximum EU discharge 

legal concentration of 15 mg N-TN L-1 from day 140th (Figure 3). Nitrate, contrarily to nitrite, 

was never detected on both the specific probe neither analytical analysis in the laboratory 

(Table 2). Thus, nitrogen removal was achieved via nitrite. Main described parameters that 

affect nitrite accumulation and NOB activity suppression, among others was DO concentration, 

free ammonia (FA) inhibition [13, 29, 30] free nitrous acid, pH [15] and lately the HRT [7]. In 

this case, free nitrous acid concentration in a pH of 7,5 and temperature of 20oC was 0.0001 

which corresponds to a concentration lower than the inhibition limits. On the other side, 

Garrido et al. [31] observed that ammonium was completely oxidized to nitrate when DO was 

above 2.5 mg O2 L-1 in a biofilm airlift suspension reactor while the maximum nitrite 

accumulation was found when DO concentration was around 1.5 mg O2 L-1. However, DO 

concentration in the BAF2 remained above 4 mg O2 L-1 in all cases.   

On the other hand, FA was about 0.32 mg N-NH3 L-1  taking into account a working 

mean temperature of 20 ºC and a pH of about 7.5 and could cause the inhibition of nitratation 

[30]. Thus, only NOB could be partially inhibited at these conditions since acclimated AOB 
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can tolerate concentrations of FA up to 150 mg N-NH3 L-1 [15]. In this study, the absence of 

significant nitrification was likely to be caused by the oxygen competence between nitrifiers 

and heterotrophic bacteria during COD aerobic oxidation together with the high applied OLR 

and low EBCT [24, 32]. In reference to that, when nitrite was firstly detected in BAF2 effluent 

on day 124th, the specific OLR (sOLR; Eq. S2) was lower than that found on day 103rd having 

the same EBCT (0.41h). Ryu et al.[7] demonstrated that COD was a principle cause of nitrite 

accumulation in a lab-scale BAF at low HRT (1h) confirming that sOLR could be a main cause 

the lack of nitrification as nitrite concentration was higher on day 124th than on the 103rd  

The reduction of the influent pilot plant flow rate from 12 to 6-8 m3 d-1 on day 130th 

resulted in a decrease of the sOLR (Table 2) as well as an increase of the EBCT from 0.41 to 

0.71 h in BAF2, thus less oxygen competition. These two factors together let to a higher 

ammonium oxidation as ammonium had longer contact with AOB. However, the increase of 

EBCT did not correspond to a higher activity of the AOB (Figure 4). Thus, it was suspected 

that the AOB maximum concentration was reached in the biofilm. This can be demonstrated 

by Figure 6 which depicts the good exponential rise to maximum correlation between the nitrite 

production rate (NPR; Eq.S6) and the amoA gene transcripts concentration. Thus, from these 

results it can be stated that the maximum sALR and ALR to achieve nitrogen removal via nitrite 

and a suitable effluent in terms of effluent TN concentration in expanded clay media is about 

0.14 kgN-NH4
+ kgVS-1 d-1 or 0.23 kgN-NH4

+ m-3aerobic media d-1, respectively.  

The biofilm enrichment of active AOB has been demonstrated by qPCR (Figure 4) and 

also by Illumina MiSeq analysis (Figure 5). AOB population was detected at both operational 

dates that were enriched in phylotypes of Nitrosomonadaceae family, the relative abundance 

increased from 1% to 4.5% (DNA and DNA transcripts datasets from both periods). Regarding 

to other genera of AOB from Chromatiaceae family, Nitrosococcus genera was not present. 

The competence between COD and ammonia oxidation has been pointed to be a key point 
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together with the EBCT to achieve nitrification. However, there is still a blank regarding the 

microbial structure of both autotrophic and heterotrophic bacteria in the BAF2 biofilm since 

nitrogen was imbalanced for day 145th and nitrate was never detected. 

Microbial assessment 

The most predominant and active family for days 124th and 145th was 

Commamonadaceae (~12%; Figure 5). Although Commamonadaceae family is usually related 

to denitrification,18 this family has also been found in nitrifying aerobic environments together 

with AOB [19, 20]. The representative OTUs belong to the genera Hydrogenophaga and 

Acidovorax, typical denitrifyers from municipal or industrial treatment plants [17]. Other 

important family related to denitrification process was Rhodobacteraceae (3.5-4.5%) where 

the predominant OTUs were related to Rhodobacter. This genera is related to aerobic 

denitrification where it was found a correlation between depletion of N2O in an aerated reactor 

feed with synthetic wastewater containing glycerol and ammonium [33].  

Other important family from β-proteobacteria class was Rhodocyclaceae where the 

predominant OTUs belongs to Zoogloea, Dechloromonas and Thauera genera: these aerobic 

denitrifyers were jointly found in other studies related to nitrogen and phosphorus removal in 

an hybrid biofilm-activated sludge reactor [34] and an early stage aerobic granules in a CAS 

wastewater treatment process [35]. Thus, these results, together with the decrease of the amoA 

vs 16S rRNA transcripts ratio (Fig. 4), strengthen the hypothesis that the increase of the EBCT 

not only enforced partial nitrification.Denitrification could be carried out in the inner part of 

the biofilm where biofilm was thick enough to avoid oxygen difucion. Nevertheless, part of 

nitrogen removal could have been originated by AOB during ammonia oxidation generating 

the undesirable greenhouse gas N2O during wastewater treatment [9, 36]. N2O could also be 

generated by heterotrophic denitrifying organisms included in alpha and betaproteobacteria 
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phyla such as Rhodocyclaceae and Rhodobacteraceae due to a lack of COD/N ratio or electron 

competence between nitrogen oxide reductase [9, 37].  

With regards to nitrifiers population, mainly, AOB found in the present work belongs 

to Nitrosomonadaceae family and its main OTUs were related to Nitrosomonas similar to those 

found in comparable conditions [2].2 AOB seemed to play a minor role when looking at the 

DNA-bases sequencing for days 124th and 145th since they were accounted to be only the 0.8 

and 1%, respectively. Nevertheless, this is refuted when looking at cDNA relative abundance 

which grew up to 4.3 and 4.5%, respectively (Fig.5). This is especially important as the RNA 

analysis tool allowed to have a realistic view on what bacteria was playing an important role 

in the biofilm. On the other hand, NOB were almost inexistent when looking at both, DNA and 

cDNA extracts. The most abundant NOB population was related to Nitrobacter genus but being 

0.01% Bradyrhizobiaceae family (data not shown). Thus, NOB were not significantly active 

neither present in the biofilm. Stress conditions in terms of high OLR together with extremely 

low EBCT granted the partial nitrification and, thus, the nitrogen removal via nitrite even in 

BAF2. 

Conclusions 

SS and COD removal was achieved in only 13 days of operation of the BAF pilot plant despite 

high OLR (up to 5 kg COD m-3media d-1) and low overall HRT (10 h). Nevertheless, a high 

OLR as well as extremely low EBCT (<0.5 h) in the aerobic BAF during the startup blocked 

the ammonium oxidation. Nitrogen removal via nitrite was observed at very low EBCT (0.71 

hours) accomplishing the EU standards for treated wastewater although no full ammonium 

oxidation was achieved. DNA/cDNA analysis demonstrated that AOB played an important role 

when nitritation was achieved and NOB were not active neither present. This study revealed a 

new strategy to obtain partial nitrification in a BAF system by having a startup with extremely 
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low general HRT and low EBCT in the aerobic BAF together with the application of a high 

OLR. 
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Table 1. Influent wastewater characteristics (n=41) 
Parameter Units mean SD Max Min 
COD mg COD L-1 395 253 1040 222 
BOD5 mg BOD L-1 312 183 850 124 
TSS mg SS L-1 240 125 692 95 
TKN 

mg N L-1 
55.4 13.4 76.0 26.0 

NH4
+ 39.3 9.0 57.6 19.0 

NOx
- 0.2 0.7 4.0 0.0 

COD/N mg COD mg-1N 7.1 
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Table 2. Influent and effluent characterization and parameters of BAF2 for days 103rd 124th 
and 145th. 

 Experimental days  
Compound 103th  124th 145th Units inf eff inf eff inf eff 
Ammonium 24.1 24.1 27.2 26.2 7.8 3.9 

mg N L-1 Nitrite 0.0 0.2 0.0 1.0 0.0 1.3 
Nitrate 0.0 0.0 0.0 0.0 0.0 0.0 
VSS 19.0 29.0 13.0 16.0 8.0 9.0 mgSS L-1 
COD 127.0 106.0 109.0 104.0 85.0 71.0 mg COD L-1 
influent flow rate 2.7 2.7 1.5 m3 m-2 h-1 
HRT 0.83 0.83 1.43 h 
EBCT 0.41 0.41 0.71 h 
Specific Organic Loading 
Rate (sOLR) 3.25 1.86 1.60 Kg COD kgVS-1 d-1 

Specific ammonium loading 
rate (sALR) 0.60 0.45 0.14 kgN-NH4

+ kgVS-1 d-1 
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Legend of Figures 

Figure 1. Schematic view of the BAF pilot plant. Black solid line depicts wastewater flow, 

blue solid lines are backwash water flows, brown solid lines are sludge water flows and 

dotted lines depict air flows.  

Figure 2. Temporal evolution of influent and effluent concentrations of COD and organic 

loading rate (A) and total suspended solids (B). Dotted lines depict maximum effluent legal 

concentration for COD (125 mg COD L-1) and TSS (35 mg SS L-1). 

Figure 3. Temporal evolution of influent and effluent concentrations of total nitrogen (TN) 

and nitrogen loading rate (A) and ammonium togeteher with the ammonium loading rate (B). 

Dotted line depict maximum effluent legal concentration for TN (15 mg N L-1). 

Figure 4. Time-course quantitative PCR (qPCR) results of DNA (genes) and cDNA 

(transcripts) from BAF2 biofilm samples. The average of independent triplicates (bars chards) 

and standard deviations (bars) have been depicted for each target gene. Ratios between 

bacterial population (16S rRNA) and AOB population (amoA) are showed by squares and 

triangles. 

Figure 5. Relative abundance of bacterial 16S rRNA genes (DNA) and transcripts (cDNA), 

expressed respectively at the family phylogenetic level, in the biofilm samples for days 124th 

and 145th. 

Figure 6.  Correlation between the nitrite production rate (NPR) and the transcripts of amoA 

transcripts in the biofilm of the aerated BAF. 
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Figure 2 

 

  

Time (days)

0 20 40 60 80 100 120 140 160

TS
S  

(m
g 

S
S

 L
-1

)

0

100

200

300

400

500

600

700

800 TSSinf
TSSeff

O
LR

 (k
g 

C
O

D
 m

-3
 m

ed
ia

 d
-1

)

0

1

2

3

4

5

6

C
O

D
 (m

g 
C

O
D

 L
-1

)

0

200

400

600

800

1000

1200

1400
OLR
CODinf
CODeff

18 12 6-8 
Daily flow (m3 d-1)

A

B



29 
 

 

 

 

Figure 3 

 

Time (days)

0 20 40 60 80 100 120 140 160

AL
R

 (k
g 

N
 m

-3
 a

er
ob

ic
 m

ed
ia

 d
-1

)

0,0

0,2

0,4

0,6

0,8

1,0

Am
m

on
iu

m
 (m

g 
N

-N
H

4+  L
-1

)

0

20

40

60

80

100 ALR

NH4
+

inf

NH4
+

eff

N
LR

 (k
g 

N
 m

-3
 m

ed
ia

 d
-1

)

0,0

0,2

0,4

0,6

0,8

1,0

To
ta

l n
itr

og
en

 (m
g 

N
 L

-1
)

0

20

40

60

80

100

120

140 NLR
TNinf
TNeff

18 12 6-8 
Daily flow (m3 d-1)

A

B



30 
 

  



31 
 

 

 

 

Figure 4 
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Figure 6 
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