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Abstract 14 

The predatory mite Amblydromalus limonicus, non-native in Europe, can be used 15 
legally in several European countries as greenhouse biocontrol agent against thrips 16 

species, although this species is also able to feed on whiteflies and gall mites. The first 17 
record of the unintended occurrence of A. limonicus in apple orchards in Europe comes 18 
from Catalonia (Spain), where A. limonicus is well established in the native predatory 19 
mite community since 2011.  The dominant species in this community is Amblyseius 20 
andersoni, which has a similar life-style as A. limonicus (large, aggressive predator with 21 

broad diet range) making intraguild (IG) interactions between the two predators likely.  22 
Thus, we tested the IG aggressiveness of native and alien female predators, when 23 
provided with IG prey (larvae). Alien females of A. limonicus proved to be highly 24 
aggressive IG predators against native larvae of A. andersoni, which were attacked 25 
earlier and more frequently than alien larvae by the native predator. Nearly all attacks 26 

by the alien predator resulted in the death of native IG prey, whereas about 10% of the 27 
alien intraguild prey escaped the attacks of the native predator. Additionally, native IG 28 

prey is smaller than alien prey, which should facilitate the overwhelming by the alien 29 
predator. We argue that the strong aggressive intraguild behavior of A. limonicus is 30 
contributing to its establishment success in the native predatory mite community. 31 
 32 

Keywords: Biological control, Amblydromalus limonicus, Amblyseius andersoni, 33 
intraguild predation, invasive species, Phytoseiidae34 
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Introduction 35 

 36 
Life-history traits, habitat and diet range of alien species are commonly used to predict 37 

their establishment opportunities in novel environments (Kolar and Lodge 2001; 38 
Colautti et al. 2006; Hayes and Barry 2008), whereas behavioral traits have been 39 
seldom considered (Chapple et al. 2011).  Behavior, however, mediates how an alien 40 
species interact with novel resources and native species and should therefore play a 41 
pivotal role in the establishment opportunities of alien species (Holway and Suarez 42 

1999; Chapple et al. 2011). A characteristic feature of successful established alien 43 
species is their highly aggressive behavior against native species (Chapple et al. 2011) 44 
resulting in the superiority of alien species in competitive interactions such as resource 45 
competition [alien Argentine ant Linepithema humile Mayr versus native tyrant ant 46 
Iridomyrmex bicknelli Emery (Rowles and O’Dowd 2007; Carpintero and Reyes-López 47 

2008)], shelter competition [alien crayfish Pacifastacus leniusculus Dana versus native 48 
crayfish Cambaroides japonicus (De Haan) (Usio et al. 2001)], and nest site 49 

competition [alien European starling Sturnus vulgaris Linnaeus versus native house 50 
wrens Troglodytes aedon (Vieillot) (Weitzel 1988)].  51 

When an alien predator encounters a native predator guild sharing similar prey 52 
resources, intraguild (IG) aggressiveness among the invader and its native opponents is 53 

a frequent observed event. The degree of IG aggressiveness strongly influences not only 54 
the outcome of resource competition, but also the strength and direction of intraguild 55 

predation (IGP) (Polis et al. 1989; Snyder and Evans 2006; Wang et al. 2013). For 56 
example, the Asian ladybeetle Harmonia axyridis Pallas, initially used as alien 57 
biological control agent control agent against greenhouse aphids in France, has 58 

immigrated and established in native European ladybeetle communities (Slogett 2012). 59 
The alien ladybeetle exhibited high IG aggressiveness against the native ladybeetles 60 

Coccinella septempuncata (Linnaeus) and Adalia bipunctata (Linnaeus). Therefore, H. 61 
axyridis was also superior in IGP, which is assumed a major cause for the successful 62 
establishment of H. axyridis in European ladybeetle communities (Raak-van den Berg 63 

et al. 2012).  64 
The plant-inhabiting predatory mite Amblydromalus limonicus (Garman and 65 

McGregor) (Acari: Phytoseiidae), alien in Europe, is used in some European countries 66 

such as Belgium, France, Germany, The Netherlands, Poland and Austria, as natural 67 
enemy against greenhouse thrips species (Garman and McGregor 1956; Moraes et al. 68 
1994; Chant and McMurtry 2005; Knapp et al. 2013). In 2011, the alien predator was 69 
detected for the first time on apple trees in Catalonia (Spain) (Escudero-Colomar and 70 
Chorąży 2012), where the commercial use of A. limonicus as biocontrol agent is not 71 

permitted.  In this region the native predatory mite guild in apple orchards frequently 72 
consists of the species Amblyseius andersoni (Chant), Neoseiulus californicus 73 
McGregor and Euseius stipulatus (Athias-Henriot) (Acari: Phytoseiidae) sharing 74 
herbivorous mites, small insects and pollen  as food resource (Costa-Comelles et al. 75 
1986, Costa-Comelles et al. 1990, Avilla et al. 1993). These native predators provide an 76 

important ecosystem service by the natural control of pest species such as spider mites 77 
(Tetranychus urticae Koch, T. turkestani Ugarov  y  Nikolski, Panonychus ulmi (Koch)) 78 

(Costa-Comelles et al. 1994, ) and gall mites (Aculus schlechtendali (Nalepa)) (Duso C 79 
and Pasini M 2003).  Although all three species are able to use a broad range of food 80 
items allowing development, reproduction and survival, their different feeding 81 
preferences result in resource partitioning and reduce intraguild aggression among them. 82 
Neoseiulus californicus is a selective predator of spider mites producing dense webbing, 83 
which can also serve as shelter against IG predators. Euseius stipulatus is a pollen-84 
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feeding generalist predator, whereas A. andersoni is a generalist predator, feeding and 85 

reproducing on a wide range of animal and non-animal food without specific 86 
preferences (McMurtry et al. 2013).The numerical dominant species in this guild on 87 

apple trees is A. andersoni, a large, aggressive predator (Walzer and Schausberger 88 
2011a, b, 2013), which is responsible for the successful suppression of the spider mite 89 
Panonychus ulmi (Koch) (Vilajeliu et al, 1994).  The now established alien predator A. 90 
limonicus, however, has a very similar life-style as the native predator A. andersoni 91 
(McMurtry et al. 2013).  Thus, the two predator species are currently sharing both space 92 

and prey increasing the likelihood of aggressive IG encounters. Consequently, the 93 
objective of this study is to evaluate the IG aggressiveness potential between them. 94 
These data should provide first indications, whether the native or alien predator is 95 
superior in IGP over the other.  96 
 97 

Material and methods 98 
 99 

Mite cultures 100 
The predatory mites were collected in September 2015 from apple leaves of organically 101 
managed orchards located at the Mas Badia Experimental Station, in La Tallada 102 
d’Emporda (42.0541°N, 3.0614°E), near Girona, Spain. About 100 specimens of 103 

Amblydromalus limonicus and Amblyseius andersoni were used to initiate lab 104 
populations, which were reared on separate arenas consisting of plastic tiles (13 cm x 13 105 

cm) resting on water-saturated foam cubes (14 cm x 14 cm x 3.5 cm) in plastic boxes 106 
(20 cm x 20 cm x 4 cm) half-filled with water. The edges of the arenas were covered 107 
with filter paper strips. Stripes of cloth of 1 cm width were placed on the filter paper in 108 

such a way that they had in direct contact with the water of the plastic box to keep the 109 
filter paper moisturized. A barrier of fruit tree grease (Vitax Ltd, Leicestershire, UK) 110 

was placed around the complete perimeter of the arena. Consequently, the mites were 111 
provided with access to water without a risk of escaping from the arena. Small, 112 
transparent plastic pieces and cotton wool threads were distributed on the surface of the 113 

arena to provide shelter and egg deposition sites for the predatory mites. The predatory 114 
mites were fed with a mix of stages of T. urticae and Typha latifolia pollen ad libitum 115 

three times per week. Rearings of A. limonicus and A. andersoni were kept in climatic 116 

chambers at 25ºC±1ºC, 70±10% RH and 16:8 L:D (Light:Dark). 117 
  118 
Experimental units 119 
The experiment was conducted using lockable cages consisting of acrylic plates (80 x 120 
35 x 3 mm) with a 15 mm diameter hole. Each hole was closed in one side with a fine 121 

mesh screen at the bottom, which provided mites with adequate ventilation. The other 122 
side of the cage was covered with a microscope slide secured with rubber bands 123 
(Schausberger 1997).  Cages were kept in a climatic chamber SANYO at 25°C ± 1°C, 124 
70 ± 10% RH and a photoperiod of 16:8 L:D (Light:Dark). 125 
 126 

IG predator and prey behavior 127 
IGP is a common interaction among phytoseiid mites, which is asymmetric with respect 128 

to size. Small/younger juveniles are usually preyed upon by larger/older juveniles 129 
and/or adult females, whereas adult females and eggs are relatively invulnerable to IGP 130 
(Walzer and Schausberger 2011a). Consequently, large females and small larvae were 131 
used as IG predators and IG prey, respectively. 132 
Single IG predator females of A. limonicus and A. andersoni were isolated and starved 133 
for 24 hours in the lockable cages. Only females that laid eggs during this period were 134 
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used in the experiments. A single IG prey was placed in the cage together with a single 135 

IG predator. 67 to 71 replicates per treatment were conducted. The behavior of IGP 136 
predator and IGP prey was observed and recorded every 10 minutes for 6 hours (360 137 

minutes in total) using a chronometer Fisherbrand™ (Fisher Scientific SL, Madrid) to 138 
evaluate the following parameters: (1) attack time of the IG predator, (2) the attack 139 
success (if the attack results in the death of the prey or not), (3) activity of the IG 140 
predator and IG prey (moving or not).  141 
 142 

IG predator and prey body sizes 143 
All females used in the experiment were measured and 50 larvae of each species were 144 
randomly caught from the rearing boxes. Females and larvae were mounted on 145 
microscopic slides using Heinze polyvinyl alcohol (PVA Heinze) (Heinze 1952; Colloff 146 
2009). The distances between the bases of eight and six setae, i.e. j3, s4, S4, Z5 and j3, 147 

s4 and Z5 at both sides of the dorsal shield were measured for IG predator females and 148 
IG prey larvae of both predatory mites, respectively (Croft et al. 1999) (Fig. 1). The 149 

calculated perimeter is a suitable approximation to body size, because it integrates both 150 
body length and width and corresponds to 85- 90% of the total perimeter of the dorsal 151 
shield.  The pictures of the figures were taken using a Leica DMRXA Direct 152 
microscope equiped with a digital camera Pointgrey Flea3 of 12MPx. The 153 

measurements were done using the Nikon Eclipse 50i microscpe using the software 154 
NIS-D Elements 3.20 (Nikon Corporation, Japan). 155 

 156 

 157 
 158 

Fig 1 Body size measurements a) females (A. limonicus) and b) larvae (A. andersoni).  159 

The distances between the bases of eight (j3-j3, j3-s4, s4-S4, S4-Z5, Z5-Z5) and six (j3-160 
j3, j3-s4, s4-Z5, Z5-Z5) setae on the dorsal shield were measured for the females (IG 161 
predators) and larvae (IG prey), respectively. The calculated perimeter of the dorsal 162 
shields was used as proxy for body size 163 
 164 
 165 
 166 
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Data analysis 167 

SPSS 21.0.1 (SPSS Inc., 2012) was used for all statistical analyses. Kaplan-Meier 168 
analysis with successive Breslow tests was used to compare the IG aggressiveness 169 

functions of the predators (combination of cumulative attacks and attack time) (Bewick 170 
et al. 2004). Generalized linear models (GLMs) with chi-square statistics (Wald-tests) 171 
were used to analyze the effects of IG predator species on the predator activity, prey 172 
activity (moving or not), IGP success (prey killed or not), IG prey survival (yes/no) 173 
(binomial distribution, logit link function). Additionally, the differences between the 174 

two species with respect to the predator body size (females), the prey body size (larvae) 175 
and the IG predator/prey body size ratio were analyzed using GLM’s (normal 176 
distribution, identity link function).  177 
 178 
 179 

Results 180 
 181 

IG predator and prey behavior 182 
The IG aggressiveness functions of the IG predators differed significantly between the 183 
two predator species (Kaplan-Meier analysis, Breslow tests: χ2

1 = 10.834, p = 0.001). 184 
The alien IG predator A. limonicus was more aggressive than the native predator A. 185 

andersoni, which was reflected in earlier attacks (mean attack times of A. limonicus: 186 
48.31 min ± 5.55 SE versus A. andersoni: 103.78 ± 5.55) and more frequent attacks on 187 

IG prey larvae (Fig. 2).  188 
Both IG predator (χ2

1 = 0.142, p = 0.706) and prey activity (χ2
1 = 0.723, p = 189 

0.395) were not influenced by species affiliation (Fig. 3). Contrary, IGP success (χ2
1 = 190 

4.569, p = 0.033) of the alien predator was higher than for the native predator. First, 191 
almost all alien IG predators were observed to attack the IG prey within 360 min in 192 

contrast to the native IG predators (alien A. limonicus: 69 out of 71; native A. andersoni: 193 
58 out of 67). Second, nearly all attacked native IG prey larvae were killed by the alien 194 
predator females, whereas about 10% of the alien IG prey larvae survived the attacks of 195 

the native IG predator females. Thus, the survival probabilities of the native IG prey 196 
were negligible in contrast to the alien IG prey (χ2

1 = 9.500, p = 0.002) (Fig. 3).   197 

 198 

IG predator and prey body sizes  199 
The IG predator females of A. limonicus and A. andersoni were similarly sized (χ2

1 = 200 
0.402, p = 0.526); however, IG larval prey sizes differed between the alien and native 201 
species (χ2

1 = 13.343, p < 0.001). The alien IG prey was larger than the native IG prey 202 
(Fig. 3). Consequently, also the IG predator/prey body size ratio of the alien predator 203 

and native prey was larger than the corresponding data of the native predator and alien 204 
prey (Fig. 4).  205 

 206 
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 207 
 208 

Fig 2 Attack functions (combination of the proportion of attacking predators and the 209 
time elapsed until an attack occurred) of singly caged native IG predators females of A. 210 

limonicus (black line) and A. andersoni (grey line), when offered single IG prey larvae 211 
over 360 min  212 

 213 

 214 

 215 
Fig 3 IG predator activity (A), IG prey activity (B), IG predation success (C) and IG 216 

prey survival (D) of A. limonicus (black bars) and A. andersoni (grey bars), when acting 217 
as IG predator (female) or IG prey (larva) over 360 min. Different lower-case indicate 218 
significant effects between the species based on pairwise LSD-tests 219 
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 220 
Fig 4 Body size of A. limonicus (black bars) and A. andersoni (grey bars) as IG predator 221 
(females) or IG prey (larvae), and the predator/prey body size ratios. Different lower-222 
case indicate significant effects between the species based on pairwise LSD-tests 223 

 224 
 225 

Discussion 226 
 227 

Alien females of A. limonicus proved to be highly aggressive IG predators against 228 
native larvae of A. andersoni, which were attacked earlier and more frequently than 229 

alien IG prey by the native predators. Additionally, nearly all attacks by the alien 230 
predator resulted in the death of native IG prey, whereas about 20% of the alien IG prey 231 
survived in the presence of native predators.   232 
 Both predator and prey traits may explain the proximate reasons for these 233 
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results. A specific feature of A. limonicus females, not known for A. andersoni females, 234 

is their capability to overwhelm and kill 2nd instar thrips larvae (Van Houten et al. 235 
1993), which are about double as large as the predator (Schuster and Pritchard 1963; 236 

Van Houten et al. 1993). In concert with our results, these findings indicate that alien A. 237 
limonicus females have a higher tendency to attack heterospecific individuals than 238 
native A. andersoni females.  Second, the IG predators are similarly sized, but not IG 239 
prey. The native IG larval prey is smaller than the alien IG prey, which facilitates the 240 
overwhelming of the former by the alien predator. Additionally, the alien larvae are 241 

obligatory feeders (Walzer, personal observation), whereas native larvae are facultative 242 
feeders (Schausberger and Croft 1999a).  Thus, alien A. limonicus larvae might be more 243 
successful in defending themselves against IG predator attacks than the native A. 244 
andersoni larvae. 245 
 High interspecific aggressiveness is often correlated with foraging behavior (Sih 246 

et al. 2004), whereas more aggressive species are strong food competitors or superior 247 
IG predators compared to less aggressive species (Schausberger and Croft 1999b, 248 

2000a; Drescher et al. 2011). Dominance in IGP offers three adaptive benefits for  the 249 
alien A. limonicus: (1) the killing of juvenile native IG prey reduces the number of 250 
potential adult IG predators and consequently increases the survival probabilities of 251 
alien offspring; (2) the consumption of native predatory mites probably offers an 252 

additional high-quality food resource for the generalist predator in the novel habitat 253 
(Schausberger and Croft 2000b); and (3) the decimation of a native food competitor 254 

alleviates the access to extraguild prey.  255 
We assume that the implications of the high interspecific aggressiveness of A. 256 

limonicus are strongly dependent on the context. For example, acting as biocontrol 257 

agent against greenhouse thrips species, the aggressive predation behavior of A. 258 
limonicus observed in the present study should have benefits, because A. limonicus can 259 

kill a higher proportion and larger individuals of the target pest than other phytoseiid 260 
mites (Van Houten et al. 1995). However, when acting as alien IG predator in the case 261 
of escape from greenhouses to novel environments, high IG aggressiveness may allow 262 

A. limonicus to become established in native predatory mite communities. Additionally, 263 
the capacity for population increase of A. limonicus is among the highest values 264 

reported for phytoseiid mites (Sabelis 1985; Steiner et al. 2003) and clearly exceeds the 265 

corresponding values of A. andersoni (Lorenzon et al. 2012). Nonetheless, so far the 266 
alien predator A. limonicus was not able to eliminate the native predator A. andersoni on 267 
apple trees in Catalonia.  In contrast, alien and native predatory mites still co-exist since 268 
the detection of A. limonicus in 2011. Five non-mutually exclusive causes may be put 269 
forward to explain these findings. First, the availability of alternative food resources and 270 

high structural habitat complexity may lower the potential detrimental effects of IGP on 271 
the native species, as it was demonstrated in two other phytoseiid mite species 272 
(Pozzebon et al. 2015). Second, strong egg cannibalism of the alien predator species is a 273 
well-documented phenomenon, which seems not dependent on the quality of available 274 
food resources (Vangansbeke et al. 2014).  Such a behavior should reduce the capacity 275 

for population increase, so that A. limonicus is not able to build up sufficient high 276 
population densities to outcompete native species.  Third, the local climatic conditions 277 

may negatively influence the population growth and dispersal abilities of the alien 278 
predator. The relative humidity can be very low during the vegetation period in the 279 
apple producing area of the extreme NE of Catalonia (Ninyerola et al. 2001). 280 
Amblydromalus limonicus is a species with high moisture requirements, being a 281 
determining factor for the hatching success of their larvae (Bakker et al. 1993; Van 282 
Houten et al. 1995). For example, in contrast to A. andersoni, the densities of A. 283 
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limonicus were very low on apple trees in the dry-hot summer 2012 in Catalonia 284 

(Escudero-Colomar, personal observation), which could be caused by high egg 285 
mortality of the alien predator. In California, native A. limonicus populations were 286 

found only along the shore, but not in the drier inland regions (McMurtry and Scriven 287 
1965; McMurtry et al. 1971). Along the same line, alien A. limonicus populations were 288 
only sampled in high densities near to the seacoast in Catalonia (Chorąży et al. 2016). 289 
Thus, the sensitivity of A. limonicus against dry-hot conditions may restrict its dispersal 290 
potential to the coastal areas in Mediterranean countries. Fourth, the leaf morphology of 291 

plants shared by A. limonicus and the native predatory mites may affect the strength of 292 
their IG interactions (Seelmann et al. 2007). The alien predator A. limonicus is known to 293 
avoid pubescent leaves (Lee and Zhang 2018), whereas A. andersoni is often found on 294 
pubescent leaves (Overmeer and Van Zon 1984; Duso and Pasini 2003). Such 295 
differential habitat selection should reduce encounters between the native and alien 296 

predator. Finally, our results suggest that potential IG interactions between the alien 297 
predator A. limonicus and the native predator A. andersoni could be mainly 298 

unidirectional with A. limonicus as predator and A. andersoni as prey. Thus, the 299 
selection pressure to cope with IG interactions should be lower on predator than on 300 
prey, because it is less costly to miss a meal (in the case of the predator) as to be one (in 301 
the case of the prey). Therefore, the native predator A. andersoni may have evolved 302 

adaptive anti-predator strategies to cope with the presence of the aggressive alien IG 303 
predator.  A common behavior in predatory mites is the spatiotemporal avoidance of 304 

leaves occupied by high-risk IG predators (Walzer et al. 2006; Walzer et al. 2009), 305 
which is often optimized by learning (Walzer and Schausberger 2011a, 2012). It 306 
remains an open question, whether experienced A. andersoni females respond in a 307 

similar manner to alien IG predator cues.  308 
 309 
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