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10 Abstract 

11 Development of conservation biological control programs requires the identification of 

12 sources that contribute to predator colonization of crops. Macrolophus pygmaeus 

13 (Rambur) (Hemiptera: Miridae) is an efficient polyphagous predator used in biological 

14 control programs in vegetable crops in Europe. We have developed a marking method 

15 based on spraying with a solution of the brine shrimp Artemia spp. (Anostraca: 

16 Artemiidae) cysts, followed by a PCR detection of Artemia DNA to monitor M. pygmaeus 

17 dispersal from banker plants to tomato crops. Experiments conducted in climatic 

18 chambers show that the topical application of this marking solution on M. pygmaeus does 

19 not significantly reduce adult longevity and that it is detected up to 6 days after the 

20 application. When this Artemia solution was applied on Calendula officinalis L. banker 

21 plants harbouring M. pygmaeus and maintained outdoors, Artemia DNA was still detected 

22 on 62% of the insects after 6 days. The conducted field applications in commercial 

23 greenhouses have confirmed the usefulness of this method to monitor M. pygmaeus 

24 dispersal from banker plants to a newly planted tomato crop. This method can be used to 

25 assess arthropod movement, being an interesting molecular approach for further 

26 improving future pest management strategies.

27

28 Keywords: Macrolophus pygmaeus, Artemia, PCR analysis, arthropod dispersal, 

29 Calendula officinalis, tomato crop. 
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30

31 INTRODUCTION

32 Conservation Biological Control (CBC) of arthropod pests by habitat management is 

33 based on maintaining indigenous natural enemies in the agroecosystem by adopting 

34 measures to improve their survival and reproduction. For this, it is essential to understand 

35 their dispersal patterns, habitat preferences and spatial distribution by tracking their 

36 movements (Corbett, 1998; Thomas, 2001). A wide variety of marking techniques, like 

37 paints, inks, dyes, powders or rare and trace elements (e.g. rubidium), have been 

38 developed over the years to study the dispersal patterns of many arthropods (Lavandero 

39 et al., 2004a; Madeira & Pons, 2016; Di Lascio et al., 2016). They are effective, but most 

40 of them require a strong effort to capture and mark all the specimens, and/or they are 

41 relatively expensive and time consuming (Akey et al., 1991). Arthropod-marking 

42 methods using vertebrate-derived immunoglobulin G (IgG) proteins have also been 

43 applied directly in the field, avoiding a previous capture and simplifying the process 

44 (Jones et al. 2006; Hagler 2019).

45 Macrolophus pygmaeus (Rambur) (Hemiptera: Miridae) is an efficient generalist 

46 predator used in biological control programs to control pests of vegetable crops in Europe. 

47 Inoculative releases of this species are currently applied in commercial greenhouse 

48 tomato crops to control the whiteflies Bemisia tabaci Gennadius and Trialeurodes 

49 vaporariorum Westwood (Hemiptera: Aleyrodidae), as well as some lepidopteran pests, 

50 as the tomato borer Tuta absoluta Meyrick (Alomar et al., 2006a; Moreno-Ripoll et 

51 al.,2012a; Moreno-Ripoll et al., 2012b; Moerkens et al., 2017; Urbaneja et al., 2012). 

52 Macrolophus predators found in Mediterranean tomato crops were initially identified as 

53 M. caliginosus Wagner (now M. melanotoma (Costa)), but latest taxonomic studies have 

54 demonstrated that in fact, they were M. pygmaeus (Martinez-Cascales et al., 2006; 

55 Castañé et al., 2013).

56 In the Mediterranean Basin, abundant naturally occurring populations of M. 

57 pygmaeus are found on several non-crop host plant refuges from where they move into 

58 field and greenhouse vegetable crops (Alomar et al., 1994; Alomar et al., 2002; 

59 Lykouressis et al. 2000; Tavella & Goula, 2001; Gabarra et al. 2004; Castañé et al. 2004; 

60 Ingegno et al. 2009). Therefore, it is important to identify the relative contribution of 

61 these host plant refuges in the colonization of M. pygmaeus to crops. The use of PCR-
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62 based approaches, like microsatellites, have been used to determine the genetic structure 

63 of M. pygmaeus populations (Sanchez et al. 2012), as well as to confirm movement of 

64 predators between greenhouses and the surrounding vegetation (Streito et al. 2017) which 

65 had previously been demonstrated with interception traps (Gabarra et al., 2004; Castañé 

66 et al., 2004). Detection of consumed plant DNA by PCR has also been used to reveal the 

67 movement of a mirid bug between crops (Wang et al., 2017). However, those methods 

68 do not specifically target selected refuge plants to be used in CBC programs. 

69 The aim of this study is to develop a new PCR-based method to study dispersal 

70 patterns between habitats. The proposed marking method consists in spraying refuge 

71 banker plants hosting the target insects with an aqueous solution of grinded arthropods 

72 not found in terrestrial agroecosystems, followed by a conventional PCR for its DNA 

73 detection. The use of banker plants that allow the conservation and reproduction of 

74 predators is a viable strategy to keep them in the greenhouse during crop-free periods and 

75 to enhance early establishment on the new crops (Arnó et al. 2018; Payton Miller & 

76 Rebek, 2018). One of the main hosts plants of M. pygmaeus is the common marigold, 

77 Calendula officinalis L., which is widely distributed (Tavella & Goula, 2001; Alomar et 

78 al., 2006b), and it has been proposed as a companion plant for this predator (Lambion et 

79 al., 2014; Balzan, 2017; Messelink et al., 2014).

80 In this study, we have used Artemia spp. (Anostraca: Artemiidae) for insect-

81 marking, which is a small shrimp that lives in saline waters exclusively. This aquatic 

82 arthropod species produces dormant embryos (cysts), which are commonly used as food 

83 source in fish larval rearing, as well as in mass rearing of insect predators, such as M. 

84 pygmaeus (Castañé et al., 2006; Vandekerkhove et al., 2009).  The novelty and usefulness 

85 of this kind of marking method to identify the source of predators that colonize 

86 greenhouse tomato crops is tested in this study by spraying established populations of M. 

87 pygmaeus on C. officinalis banker plants located in commercial tomato greenhouses. It is 

88 expected that this new approach, reliable and environmentally safe, based on the DNA 

89 detection of an organism non-present in an agroecosystem, would be useful for further 

90 improving current CBC programs. The identification of key predator refuges in adjacent 

91 non-crop habitats will contribute to the optimization of managed wildflower strips close 

92 to the crops, as stated by Gontijo (2019). 

93
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94 MATERIALS AND METHODS

95 Insects

96 All M. pygmaeus used in the laboratory experiments were reared at IRTA’s facilities 

97 (Cabrils, Spain) as described in previous studies (Agustí & Gabarra, 2009a; Agustí & 

98 Gabarra, 2009b). They were maintained on tobacco plants (Nicotiana tabacum L., cv. 

99 Brasilian blend) under controlled conditions at 25 ± 1 ºC, 70 ± 20% RH and with a L16:D8 

100 photoperiod. They were fed exclusively with Ephestia kuehniella Zeller (Lepidoptera: 

101 Pyralidae) eggs. Colonies were renewed every year with introductions of new tomato 

102 field-collected insects from the same area. All the following laboratory experiments were 

103 performed under the same controlled conditions.

104

105 Marking solution preparation and application

106 A solution prepared with dry commercial Artemia spp. cysts (Inve Aquaculture, Inc.) at 

107 a concentration of 0.1 g/ml of distilled water was used for marking plants and insect 

108 specimens. For this, dry cysts were grinded for 60 seconds in a standard coffee grinder in 

109 order to make the Artemia DNA more accessible. Then, the broken cysts were hydrated 

110 with distilled water for 30 min, filtered with an 8 threads/mm mesh and brought to the 

111 final volume with distilled water. The obtained aqueous solution was maintained in a 

112 refrigerator and used in the following 24h.

113 The marking process consisted in spraying the solution directly to the M. 

114 pygmaeus specimens used in the experiments with a regular handheld sprayer, or to the 

115 plants containing M. pygmaeus with a compressed air sprayer (Matabi Berry 5, Goizper 

116 Spraying, Spain). Spraying was done from a distance of 10 cm to the insect or plant until 

117 run-off (ca. 0.25 liter/plant on average).

118

119 PCR detection of marked specimens: primer design and specificity 

120 Each M. pygmaeus was DNA extracted using the Speedtools Tissue DNA Extraction Kit 

121 (Biotools, CA, USA) following the manufacturer protocol. The whole body was used in 

122 all cases, and obtained DNA was eluted in 100 µl of elution buffer provided by the 
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123 manufacturer and stored at -20 ºC. A negative extraction control was added to each set of 

124 DNA extractions. Then, each M. pygmaeus was analyzed by conventional PCR using a 

125 pair of Artemia-specific primers designed from the mitochondrial Cytochrome Oxidase I 

126 (COI) region using the same procedure described in a previous study (Agustí et al., 2003). 

127 Each M. pygmaeus specimen was tested up to 3 times and considered positive if Artemia 

128 DNA was detected in at least one of them, as conducted in previous studies (Gomez-Polo 

129 et al., 2015, 2016; Moreno-Ripoll et al., 2012a).

130 For the design of these Artemia-specific primers the following sequences of 

131 Artemia species and populations from the GenBank database (www.ncbi.nlm.nih.gov) 

132 were used: EU543474 (A. salina from Italy), EU543450 (A. salina from Spain), 

133 EU543473 (A. salina from Cyprus), EU543485 (A. salina from SouthAfrica), EF615583 

134 (A. franciscana), DQ119646 (A. franciscana), GU248378 (A. franciscana), HM998997 

135 (A. parthenogenetica), HM998995 (A. parthenogenetica), HM998993 (A. 

136 parthenogenetica), EF615589 (A. tibetiana), EF615586 (A. tibetiana). Besides of the 

137 sequence of M. pygmaeus/melanotoma (FM210178; Pasquer et al., 2009), the sequence 

138 of another polyphagous predator also used in CBC programs in the Mediterranean area 

139 (Orius laevigatus L. (Hemiptera: Anthocoridae); FM210187) was used as well. All these 

140 sequences were aligned using CLUSTALW2 (www.ebi.ac.uk/Tools/msa/clustalw2/) and 

141 compared for the design of an Artemia-specific pair of primers.

142 All PCR reaction volumes (25 µl) contained 4μl of DNA extract, 0.65U of Taq 

143 DNA polymerase (Invitrogen, CA, USA), 0.2 mM dNTPs (Promega Biotech Corporation, 

144 WI, USA), 0.6 μM of each primer and 7 mM MgCl2 in 10× manufacturer’s buffer. 

145 Amplifications were conducted in a 2720 thermocycler (Applied Biosystems, CA, USA), 

146 where the samples were subjected to 94 ºC for 2 min, followed by 35 cycles of 94 ºC for 

147 30 s, 66 ºC for 30 s, and 72 ºC for 45 s and a final extension of 72 ºC for 5 min. Target 

148 DNA and water were always included as positive and negative controls, respectively. 

149 PCR products were separated by electrophoresis in 2.4% agarose gels stained with 

150 ethidium bromide and visualized under UV light. 

151 The designed Artemia-specific primer pair was tested by conventional PCR with 

152 2-5 individuals of the most common arthropod species present in vegetable crops in the 

153 area of study, which could be potentially ingested by M. pygmaeus, as well as with some 

154 other predator species present in the same area of study. The arthropod species included 
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155 in this specificity test were: the pests Macrosiphum euphorbiae Thomas and Myzus 

156 persicae Sulzer (Hemiptera: Aphididae); Frankliniella occidentalis (Pergande) 

157 (Thysanoptera: Thripidae); Bemisia tabaci Gennadius and Trialeurodes vaporariorum 

158 Westwood (Hemiptera: Aleyrodidae); Helicoverpa armigera Hübner (Lepidoptera: 

159 Noctuidae); Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae); and Tetranychus 

160 urticae (Koch) (Acari: Tetranychidae); and the predators Amblyseius swirskii Athias-

161 Henriot (Acari: Phytoseiidae), O. laevigatus, Macrolophus costalis (Hemiptera: Miridae), 

162 M. melanotoma and M. pygmaeus.

163

164 Characterization of the marking method

165 Several tests were conducted in order to confirm the usefulness and safety of the Artemia 

166 solution as a marker for dispersal studies. First of all, in order to test whether the Artemia 

167 solution had phytotoxic effects, four shoots of C. officinalis were soaked for 30 seconds 

168 in three different concentrations of the Artemia solution: 1) the regular solution (0.1 g/ml); 

169 2) a 1:2 dilution of the regular solution; and 3) a 1:4 dilution of the regular solution in 

170 distilled water. Distilled water was also tested as a negative control. Then, the treated 

171 shoots were visually checked for any sign of phytotoxicity, like changes in leaf colour, 

172 turgidity, injuries or blemishes after 3, 5, 7, 10 and 25 days. 

173 To test whether the spray with the Artemia solution would reduce the survival of 

174 M. pygmaeus, 36 one-day old adults were placed on two tobacco plants in acrylic cages 

175 (20 cm diameter x 40 cm height) and sprayed with the Artemia solution. After that, E. 

176 kuehniella eggs were added as food and dead and alive insects were counted every 3 days 

177 until all died. Every 15 days the remaining insects were transferred to  new unsprayed 

178 plants in order to avoid the presence of newly emerged nymphs of the following 

179 generation. The longevity of 29 non-marked adults was also tested as a control using a 

180 similar setting, but without spraying the plants. Longevity results were pooled, and mean 

181 longevities obtained for sprayed and non-sprayed insects were compared by Student’s t-

182 test. 

183 In order to discard differences of the marking due to the gender, 35 females and 

184 25 males of M. pygmaeus (7-14 days old) were used. They were placed in an acrylic cage 

185 (20cm diameter x 40cm height) on C. officinalis plants and sprayed with the Artemia 
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186 solution. Once they were dry, they were analyzed with the Artemia-specific primers in 

187 order to determine the proportion of marked individuals of each gender.

188 Another experiment was conducted to determine whether the Artemia DNA 

189 detection was possible after the imaginal molting. For this, 10 5th-instar nymphs of M. 

190 pygmaeus were first sprayed with the Artemia solution and then maintained on green bean 

191 pods (Phaseolus vulgaris L.) with E. kuehniella eggs as food. After 24h those nymphs 

192 that had molted to adults were analyzed by PCR in order to determine the percentage of 

193 adults marked after molting. 

194 In order to evaluate the persistence of the topical mark in the climatic chamber 

195 and under field conditions, M. pygmaeus adults were placed on two C. officinalis plants, 

196 sprayed with the Artemia solution and then put in an acrylic cage each (49 x 39 x 47 cm) 

197 with E. kuehniella eggs as food. One cage was kept inside the climatic chamber (25 ± 1 

198 ºC and L16:D8 photoperiod) and the other one was placed outdoors (23.5 ± 3.9ºC and 

199 L16:D8 photoperiod; July conditions in our area). After that, M. pygmaeus collected just 

200 after spraying with the Artemia solution (t=0) and after 3 and 6 days (n=20 M. 

201 pygmaeus/time) from the cage maintained in the climatic chamber were analyzed by PCR. 

202 Regarding the cage maintained outdoors, PCR analyses were conducted with M. 

203 pygmaeus collected after 1, 3 and 6 days after spraying (n=10 M. pygmaeus/time). 

204 Because some of the Artemia cysts in the Artemia solution might be still unbroken 

205 even after grinding and filtering, the capability of M. pygmaeus for self-marking by the 

206 ingestion on those unbroken cysts was also tested. For this, 10 7-days old M. pygmaeus 

207 females were starved for 48h,  individually placed in small Petri dishes (2.5 cm diameter), 

208 and offered 20 hydrated Artemia cysts over a period of 90 min. Afterwards, those 

209 predators which had fed 5-9 Artemia cysts were immediately (t=0) frozen at –20°C for 

210 subsequent PCR analysis. Additionally, 10 predators were also starved for 48h and frozen 

211 to be tested as negative controls.

212

213 Marking and dispersal evaluation in commercial tomato greenhouses

214 The field persistence of the Artemia marking and the dispersal of M. pygmaeus from C. 

215 officinalis banker plants to a newly planted tomato crop was evaluated in 3 commercial 

216 greenhouses (A, B and C) located in El Maresme area (Barcelona, Spain). In order to 

Page 7 of 23 Insect Science



For Review Only

8

217 ensure that the C. officinalis plants harbour well-established M. pygmaeus populations, 

218 those potted C. officinalis plants were previously placed in summer tomato greenhouses 

219 before the final harvest and left to be naturally infested by M. pygmaeus for three months 

220 after the tomato harvest, that is to say until the next tomato crop was planted in the 

221 following February. Those C. officinalis plants were placed as follows: 5 patches of 4 

222 pots in greenhouse A (1800 m²), 7 patches of 4 pots in greenhouse B (1130 m²), and 1 

223 patch of 7 pots in greenhouse C (920 m²). When more than one patch was set-up, they 

224 were separated from each other in order to minimize the overlap of individuals dispersing 

225 from each patch. Patches were placed in the middle of the greenhouses and separated 

226 from each other in order to minimize the possible colonization from outside and cross 

227 contamination between patches.

228 In order to determine the persistence of the Artemia marking under greenhouse 

229 conditions, all C. officinalis plants of greenhouse A were sprayed with the Artemia 

230 solution few days after the tomato planting. All sprays were carefully conducted by 

231 surrounding the C. officinalis patches with a 1.5m high plastic fence to avoid spraying the 

232 closest tomato plants and to minimize M. pygmaeus escapes towards them. Afterwards, 

233 20 M. pygmaeus were collected from the sprayed plants at t = 0 (just after 2h, when they 

234 were dry), and after 3 and 6 days and analyzed by PCR with the Artemia-specific primers. 

235 In order to verify the usefulness of this marking method to study the dispersal of 

236 M. pygmaeus to the newly planted tomato crop, all C. officinalis patches of greenhouse B 

237 were sprayed 3 times at 3-day interval (Fig. 1). In order to determine whether more 

238 frequent sprays of the calendula plants would increase the percentage of marked 

239 individuals, the calendula patch of greenhouse C was sprayed 3 times at 1-day intervals 

240 (Fig. 1). Before the first spray of the C. officinalis plants with the Artemia solution, all M. 

241 pygmaeus present on the newly transplanted tomato plants were manually removed. After 

242 spraying, neighbouring tomato plants were sampled (5 plants per row on the 6 rows 

243 closest to each of the 7 C. officinalis groups of greenhouse B; 11 plants per row of the 8 

244 rows closest to the only C. officinalis group of greenhouse C). The sampling distances in 

245 both greenhouses differed due to the different tomato plant spacing, and covered ca. 2.5 

246 meters on either side of the calendula patches. All M. pygmaeus from these tomato plants 

247 were collected three days after each spray in greenhouse B and one day after the last 

248 banker plant spraying in greenhouse C (Fig. 1). Macrolophus. pygmaeus adults were also 

249 collected from the sprayed C. officinalis plants following the last spray in both 
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250 greenhouses; specifically, at the 9th day in greenhouse B and at the 3rd day in greenhouse 

251 C (Fig. 1). Additional random samples were also collected in other tomato plants close to 

252 the openings of greenhouses B and C to confirm that there was no colonization from 

253 outside and the lack of dispersion of M. pygmaeus further away. In order to avoid any 

254 risk of cross-contamination between insect specimens, the laboratory tips and the mesh 

255 filters of the mouth aspirator were replaced for each captured specimen. After collection, 

256 all mirid bugs were individually placed in 1.5 ml tubes and stored at -20ºC until PCR 

257 analysis with the Artemia-specific primers.

258

259 RESULTS 

260 PCR Detection of marked specimens: primer design and specificity

261 A pair of degenerated Artemia-specific primers was designed (ARTF2: 5´-

262 CYTCHGCYATTGCYCATGCYGGRCCTT-3´ and ARTR3: 5´-

263 GYAYVCGRTCRAYRGAYATYGMYKGRG-3´) to amplify a fragment of 146 bp of 

264 Artemia spp. These primers together with the developed PCR protocol showed a 

265 successful amplification of the commercial Artemia cysts. Additionally, when these 

266 primers were tested for cross-amplification against the most common tomato pests and 

267 predators species (8 pests and 5 predators) present in our area, none of them was amplified 

268 in any case, showing a high specificity for our crop setting.

269

270 Characterization of the marking method

271 All C. officinalis shoots soaked in the three different concentrations of the Artemia 

272 marking solution (0.1 g/ml; 1:2 dilution and 1:4 dilution) had the same appearance as the 

273 controls, which were soaked in distilled water, after 3, 5, 7, 10 and 25 days after soaking. 

274 No changes in leaf colour, turgidity, injuries or blemishes were observed. 

275 Spraying with the Artemia solution did not significantly reduce the mean 

276 longevity of the M. pygmaeus adults when compared  to control adults sprayed with water 

277 (15.9 ± 1.48 and 20.9 ± 2.46 days respectively) (t = 1.73; df = 47.07; P = 0.089).
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278 When M. pygmaeus males and females sprayed with the Artemia solution were 

279 analyzed by PCR, all of them (100%) gave a positive detection, showing no differences 

280 with respect the marking efficacy on both genders. On the other hand, no M. pygmaeus 

281 adult showed Artemia DNA amplification after being sprayed with the Artemia solution 

282 as 5th-nymphal instar, indicating the loss of the marking after the imaginal molting. 

283 PCR analyses of M. pygmaeus sprayed with the Artemia solution and maintained 

284 in the climatic chamber showed that they were still all marked even after 6 days (100% 

285 detection). On the other hand, the detection of the sprayed adults from the cage placed 

286 outdoors decreased with time, changing from 100% after 1 day, to 90% after 3 days and 

287 62% after 6 days. 

288 When 10 M. pygmaeus females that had fed the contents of 5-9 Artemia cysts were 

289 tested by PCR just after eating (t=0), a faint band was obtained in 4 of them indicating 

290 that the Artemia DNA could be also detected by ingestion, even if this detection may be 

291 lost with time. All control starved predators were negative when tested by PCR with the 

292 Artemia-specific primers. 

293

294 Marking and dispersal evaluation in commercial tomato greenhouses

295 PCR analysis with the Artemia-specific primers showed that 70% of the M. pygmaeus 

296 adults collected on C. officinalis in greenhouse A just after spraying with the Artemia 

297 solution (t=0) were marked. This percentage decreased to 50% and 10%, 3 and 6 days 

298 after spraying, respectively (n=20/time). In greenhouses B and C, 55% of the M. 

299 pygmaeus adults collected on C. officinalis (n = 20/greenhouse) at the end of each trial 

300 were marked (Table 1, Figure 1). M. pygmaeus dispersed to the crop at an average rate of 

301 0.38 adults per tomato plant per three days (Table 1).

302 When all M. pygmaeus collected on the newly transplanted tomato plants in 

303 greenhouses B and C were analyzed by PCR, the percentage of marked individuals in 

304 greenhouse B after repeated sprays of the C. officinalis plants increased with time from 

305 4.3 to 30.8% (Table 1). In greenhouse C, after 3 sprays in 3 consecutive days, 12% of the 

306 M. pygmaeus collected on tomato plants were marked. No M. pygmaeus was recorded on 

307 tomato plants close to openings of the greenhouse, indicating that all collected predators 

308 came from the calendula banker plants.
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309

310 DISCUSSION

311 This study demonstrates the usefulness of a topical marking method made from an 

312 aqueous solution of an arthropod not present in terrestrial agroecosystems followed by a 

313 conventional PCR method for its DNA detection to study arthropod dispersal patterns. In 

314 this case, an Artemia spp. solution has been used as topical marker for tracking M. 

315 pygmaeus movement from C. officinalis to a tomato crop, showing that these predators 

316 effectively move from their refuge plants to the newly planted tomato crop. At the same 

317 time, the use of banker plants to maintain predators in the greenhouses during crop-free 

318 periods is also demonstrated, as well as their fast colonization of tomato plants after 

319 planting the new crop.

320 When this Artemia solution was tested on C. officinalis, no phytotoxic effects were 

321 detected, confirming its safety, at least on this plant species. On the other hand, when the 

322 efficacy of the marking method was evaluated on M. pygmaeus, Artemia DNA was 

323 detected on all adults tested, and without significantly reducing their longevity. 

324 Nevertheless, this mark was not detected on any adult emerged from sprayed 5th-instar 

325 nymphs, indicating that it is lost with molting. Even if protein markers have been 

326 described to show variable detection rates after molting (Hagler & Jackson, 2001), other 

327 marking techniques, like paints and dyes are also lost when the insects molt (Lavandero 

328 et al., 2004b). This, which can be negative because it reduces the number of marked 

329 specimens, could be useful as the identification of putative predator sources will be only 

330 based on newly sprayed adults dispersing into the crop. 

331 Because the Artemia solution used in this study was sprayed directly on the plant, 

332 it may be possible that M. pygmaeus was also marked by feeding on potential unbroken 

333 hydrated cysts, as demonstrated previously (Castañé et al., 2006). Our results indicate 

334 that this is possible, however it has been previously demonstrated that this predator 

335 degrades ingested DNA within the following few hours of consumption (Pumariño et al., 

336 2011). Therefore, it is expected that such a low self-mark would only be added to the 

337 topical marking not affecting the dispersal detection of M. pygmaeus.

338 Under laboratory conditions, all tested mirid bugs were still marked for 6 days 

339 after spraying the Artemia solution, which is a relatively long detection period compared 
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340 with other methods, and similar to those obtained by protein immunomarking. When 

341 protein markers were tested in the laboratory on Drosophila suzukii Matsumura (Diptera: 

342 Drosophilidae), egg albumin persisted on all flies for 7 days after the application, 

343 decreasing to 94% after 14 days; milk casein was detected on 65% of specimens on day 

344 1 declining to 50% on day 3, after which it remained relatively constant (49% after 14 

345 days); and soy trypsin detection decreased quickly after 1 day to less than 10% after 14 

346 days (Klick et al., 2014). Comparing these results with the percentages obtained here 

347 when analysing sprayed M. pygmaeus adults from the cage placed outdoors, it is observed 

348 that detection also decreased with time from 100% after 24h, to 90% after 3 days and 

349 62% after 6 days, showing efficacies in the same range. It is also observed that this 

350 outdoor persistence was lower than that maintained in the climatic chamber (62% and 

351 100%, respectively). This was expected due to the well-known effect of the ultraviolet 

352 (UV) radiation on the DNA degradation, even used as a DNA decontaminating agent 

353 (Sarkar & Sommer, 1990; Ou et al., 1991; Thacker et al., 2006), which was not emitted 

354 by the climatic chamber lights (Sylvania Luxline Plus F58W/840 Cool White De Luxe, 

355 Germany). Exposure to direct sunlight in parts of the plant canopy has also been argued 

356 to be a cause for degradation of protein markers (Hagler et al., 2014). The other climatic 

357 conditions (temperature and RH) were very similar. 

358 When detection percentages of M. pygmaeus on C. officinalis maintained in a cage 

359 outdoors were compared with those maintained in the greenhouse A, lower percentages 

360 were obtained in the greenhouse (70%, 50% and 10% after 1, 3 and 6 days, respectively). 

361 There would be three main reasons for this lower detection in the greenhouse. While the 

362 C. officinalis plants placed in the cage were small, the C. officinalis banker plants placed 

363 in the greenhouse had been growing during winter, providing more shelter for M. 

364 pygmaeus, so that the spray might  not reach all predators. The importance of plant canopy 

365 growth has also been considered as a factor for a different efficiency of protein markers 

366 (Lucia et al., 2018). Also, while those M. pygmaeus in the outdoor cages were only adults, 

367 in the greenhouse there was a well-established population with adults and nymphs. As a 

368 result, those individuals sprayed when they were nymphs, may have lost the marking 

369 when molted to adults, further decreasing  the percentage  of marked adults on the plant. 

370 Finally, the lower detection obtained in the greenhouse was also due to the movement of 

371 the marked M. pygmaeus adults to the new tomato crop. 
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372 Based on these results, in order to confirm the effectiveness of the marking method 

373 to study dispersal and to provide M. pygmaeus adults with sufficient time to disperse to 

374 the crop, we sampled the tomato plants three days after spraying the calendula plants. In 

375 greenhouse B, marked M. pygmaeus adults were recovered from the tomato plants in each 

376 of the three consecutive sprays, confirming the usefulness of this method to study 

377 dispersal. The percentage of marked predators increased with time (4.3%, 18.8% and 

378 30.8%), presumably because recently molted adults were freshly marked again.

379 In greenhouse C, after spraying the calendula patches 3 times on a daily basis (Fig. 

380 1), 12% of the M. pygmaeus recovered from the tomato plants were marked. This is higher 

381 than the 4.3% obtained after just one spray, as expected because such frequent 

382 consecutive sprays on the same patch marked those previously unmarked adults, as well 

383 as the newly moulted adults. However, considering that spraying at 3 day intervals also 

384 provides a good estimate of predator dispersal, there is a risk that repeated sprays may 

385 disturb too much the adults. In both greenhouses, half of the M. pygmaeus collected on 

386 the calendula banker plants were marked after the last spray, indicating that with such 

387 levels of marked adults at the source it is possible to verify dispersal. 

388 The efficacy of some protein markers (egg albumin and milk casein) has been also 

389 evaluated in an alfalfa field on several arthropod species (Sivakoff et al., 2012). In that 

390 study, the field was sprayed with both proteins and arthropods were collected 24h later. 

391 Serological analysis showed that the efficacy on five arthropod species ranged from 32% 

392 to 100% for egg albumin and from 15% to 83% for milk casein. Our results are within 

393 the range of variation of proportions of marked individuals obtained after applying protein 

394 solutions to source refuges obtained in recent papers (Lucia et al., 2018; Irvin et al., 2018; 

395 Leach et al., 2018).The observed rates of 0.38 adults per tomato plant (Table 1) represent 

396 a continuous flow of approximately 1.6 adults / m2 every three days, in the ranges of 

397 recommended commercial preventive releases (between 0.25 and 0.5 adults / m2, repeated 

398 2 to 4 times at 1 to 2 weeks intervals) (Moerkens et al., 2017). Macrolophus pygmaeus 

399 should be released as soon as possible after planting in order to ensure fast establishment 

400 and control of pest populations (Arnó et al., 2018). Our results confirm the usefulness of 

401 using banker plants in order to conserve predators during crop-free periods and ensure an 

402 early and quick crop colonization soon after transplant. Calendula officinalis has also 

403 been shown to contribute to the establishment of other predators in greenhouses (Zhao et 

404 al., 2017). Such open rearing units ensure predator persistence in the crop at low pest 
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405 populations (Messelink et al., 2014). The dispersal of natural enemies must be considered 

406 when choosing the optimal spatial arrangement of banker plants in a greenhouse. To 

407 exploit the dispersal capacities of M. pygmaeus, these results indicate that calendula 

408 banker plants could be separated 5m between rows. In order to maximize the 

409 establishment, plants might not be placed in patches, but evenly spaced along the rows.

410 The PCR-based methodology developed in the present study is simple and 

411 effective, which makes it a promising marking alternative method to study movement of 

412 arthropod species. It is also fast and highly sensitive because is able to amplify very small 

413 amounts of Artemia DNA on the marked insects. We have already used this methodology 

414 in a field study to assess predator movement from alfalfa to a peach orchard with success 

415 (unpublished data). The reliability of this method is based on the fact that insects can only 

416 acquire this mark when sprayed, because Artemia is not present in terrestrial ecosystems. 

417 Artemia spp. dry cysts are commercially available, and the Artemia solution prepared as 

418 described here is easy to prepare and to apply on the plants, being also environmentally 

419 safe. Further investigations should be conducted in order to study the ability of the studied 

420 arthropods to self-mark with the Artemia solution by walking on a previously sprayed 

421 plant (with Artemia residues) (Jones et al., 2006). Although the cost of this preliminary 

422 marking method using Artemia cysts as explained here would be around 15€/liter 

423 nowadays, further development should decrease the cost as it happened with other 

424 methods. Reducing the concentration of the Artemia cysts in the marking solution in order 

425 to decrease costs should be further investigated. 

426 The use of such a molecular approach to identify putative sources of predators 

427 colonizing crops may be advantageous as it can be integrated with other approaches 

428 within the same study. For example, the same DNA extraction can be also used to identify 

429 ingested prey, thus determining their contribution to the biological control of crop pests 

430 (Moreno-Ripoll et al., 2012a) and it could be also used for the analysis of ingested plant 

431 DNA to verify the movement of insects between crops (Pumariño et al., 2011; Wang et 

432 al., 2017). The equipment needed for DNA analysis is modest (a regular termocycler and 

433 an electrophoresis equipment), and an available routine equipment in most entomology 

434 laboratories.

435 In conclusion, this study developed a method for arthropod marking with a 

436 solution of a species not present in terrestrial ecosystems followed by a PCR-based 
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437 detection method of its DNA to study arthropod dispersal in agroecosystems. This method 

438 can be used to assess intercrop movement, as well as among crop and non-crop habitats. 

439 Our findings herein provide direct evidence of the movement of M. pygmaeus adults from 

440 C. officinalis banker plants to a newly planted tomato crop, but this methodology can be 

441 used to study dispersion of other arthropod species of agronomical interest under natural 

442 conditions, which could improve future pest management strategies. 

443
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611

612 Table 1. Percentages of PCR detection of Artemia DNA when analyzing Macrolophus 

613 pygmaeus collected in greenhouses B and C. In the table is also indicated the plant species 

614 where those M. pygmaeus were collected on; the number of sprays conducted on the C. 

615 officinalis that hosted M. pygmaeus; the number of days elapsed since the 1st spray; and 

616 the number of M. pygmaeus analyzed by PCR. Calendula officinalis plants were sprayed 

617 3 times every 3 days (greenhouse B) and every day (greenhouse C). 

Greenhouse Plant Number 

of sprays 

Number of 

days after 

1st spray

Number of 

analysed M. 

pygmaeus 

% PCR 

detection 

M. pygmaeus 

departure rate 

(1)

C. officinalis 3 9 20 55.0 -

Tomato 1 3 70 4.3 0.33

Tomato 2 6 69 18.8 0.33

B

Tomato 3 9 65 30.8 0.31

C. officinalis 3 3 20 55.0 -C

Tomato 3 3 50 12.0 0.57

618 (1) M. pygmaeus departure rate has been calculated dividing the number of collected predators on tomato 

619 by the number of sampled tomato plants on each greenhouse. At an average planting of 4 tomatoes/m2, the 

620 resulting mean rate of 0.38 adults/plant, is 1.6 adults/m2 every three days.

621
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Figure 1. Diagram of the sprays conducted in greenhouses B and C with the Artemia 

solution over time. The moments in which Macrolophus pygmaeus were collected either 

from Calendula officinalis or from adjacent tomato plants are also indicated. 
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