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Abstract

Muscle development and lipid accumulation in muscle critically affect meat quality of live-

stock. However, the genetic factors underlying myofiber-type specification and intramuscu-

lar fat (IMF) accumulation remain to be elucidated. Using two independent intercrosses

between Western commercial breeds and Korean native pigs (KNPs) and a joint linkage-

linkage disequilibrium analysis, we identified a 488.1-kb region on porcine chromosome 12

that affects both reddish meat color (a*) and IMF. In this critical region, only the MYH3

gene, encoding myosin heavy chain 3, was found to be preferentially overexpressed in the

skeletal muscle of KNPs. Subsequently, MYH3-transgenic mice demonstrated that this

gene controls both myofiber-type specification and adipogenesis in skeletal muscle. We
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discovered a structural variant in the promotor/regulatory region of MYH3 for which Q allele

carriers exhibited significantly higher values of a* and IMF than q allele carriers. Further-

more, chromatin immunoprecipitation and cotransfection assays showed that the structural

variant in the 50-flanking region of MYH3 abrogated the binding of the myogenic regulatory

factors (MYF5, MYOD, MYOG, and MRF4). The allele distribution of MYH3 among pig pop-

ulations worldwide indicated that the MYH3 Q allele is of Asian origin and likely predates

domestication. In conclusion, we identified a functional regulatory sequence variant in por-

cine MYH3 that provides novel insights into the genetic basis of the regulation of myofiber

type ratios and associated changes in IMF in pigs. The MYH3 variant can play an important

role in improving pork quality in current breeding programs.

Author summary

Local native livestock breeds, such as pigs and cattle, are important reservoirs of genetic

variation, because they have adapted to local conditions and have not been as strongly

selected as commercial livestock breeds. Therefore, the study of local native breeds is of

utmost interest to identify causative mutations for traits in which large differences exist

between local native breeds and breeds used internationally for meat production. Herein,

we apply these principles to meat quality related traits in pigs. A combined linkage-linkage

disequilibrium analysis identified theMYH3 gene on pig chromosome 12, which encodes

myosin heavy chain 3 protein. Subsequently, we discovered a regulatory mutation in

MYH3, which occurs at high frequency in Korean Native Pigs compared to the frequency

at which it occurs in Western pig breeds. We confirmed the effect ofMYH3 on muscle

fiber-type composition and intramuscular fat content using transgenic mice and transfec-

tion assays in porcine fibroblast cells. This is the first causal mutation identified in live-

stock for these traits and the result is immediately applicable for the genetic improvement

of pork quality. These results also enhance our understanding of the genetic basis regard-

ing the regulation of myofiber type ratios and associated changes in intramuscular fat con-

tents in pigs and mammals in general.

Introduction

Despite the remarkable progress of studies using high-throughput genome technologies com-

bined with genome-wide linkage and association in various organisms, elucidating the genetic

architecture of complex quantitative traits remains a key challenge of modern biology [1]. In

this respect, the phenotypic and genetic diversity among breeds of domestic animals provides

an excellent opportunity to investigate the relationship between phenotypic and genotypic var-

iations [2, 3]. Despite their retarded growth, Korean native black pigs (KNPs) found on Jeju

Island are renowned for their meat quality characteristics, such as a reddish meat color (a�)

and a high degree of marbling (i.e., intramuscular fat, IMF) compared with the traits of the

Western commercial pig breeds such as Landrace (Fig 1A and 1B) [4]. The clear a� of KNPs is

mainly due to the large amount of slow/type1/oxidative myofibers in the muscle tissue (Fig 1C

and 1D), and the high degree of marbling is associated with the excess accumulation of IMF

(Fig 1E). The variation in muscle fiber composition and IMF content is complex; highly inter-

related phenomena are dependent on multiple genetic components and, environmental
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conditions together with a host of various cellular signals and hormones involved in myogen-

esis and adipogenesis [5, 6]. Therefore, it is expected that muscle fiber- and IMF- related traits

are remarkably complex quantitative traits, of critical economic importance, but the underly-

ing genetic basis is largely unknown. Here, linkage and association analyses were conducted to

dissect the genetic architecture of a� and IMF traits in pork, and a major QTL on chromosome

12 was identified to be significantly associated with the two traits. The aim of this study was to

elucidate and characterize the genetic determinant underlying the major QTL.

Results

Identification of the porcine MYH3 gene as a putative quantitative trait

gene (QTG) for a� and IMF content

To investigate the genetic basis underlying a� and IMF in the longissimus dorsimuscle, we gen-

erated a large intercross between Landrace pigs and KNPs with 1,105 F2 progeny (LK cross)

[7] and identified a quantitative trait locus (QTL) located on pig chromosome 12 (SSC12) that

had a substantial effect on both a� and IMF based on genome-wide linkage analysis [8]. Previ-

ous studies reported that the QTL on SSC12 contains a cluster of genes encoding the myosin

heavy chains (MYHs) which are strongly associated with a� and IMF [9, 10]. Here, we geno-

typed the entire LK cross using the Illumina PorcineSNP60K BeadChip platform [11, 12]. A

genome-wide association study (GWAS) revealed a major locus for the two traits [a�: 26.6%

phenotypic variance explained by the SNP (% VarSNP), P-value = 1.5×10−70; IMF: 24.2%

VarSNP, P-value = 1.1×10−88] at the SSC12 region harboring theMYH gene cluster (S1A and

S1B Fig). The position of the most significantly associated marker (rs81437379) for the two

traits was 54,956,054 (NCBI Sus scrofa version 11.1). Using linkage analysis, instead of an asso-

ciation study, we could also replicate the major QTL for the two traits at rs81437379 (S2A Fig;

a�: 20.5% VarQTL, P-value = 1.02×10−49; IMF: 29.4% VarQTL, P-value = 3.2×10−74).

To refine the identified QTL on SSC12 in the LK cross, we conducted a joint linkage and

linkage disequilibrium (LALD) analysis of a� and IMF using DualPHASE software [13].

The test statistics of the LALD mapping for a� (P-value = 3.47×10−103) and IMF (P-value =

7.35×10−136) were maximized at the 718.4-kb QTL region (i.e., 12:54,842,795–55,561,243, Fig

2A and 2C; S3 Fig). The effects of founder haplotypes (i.e., those haplotypes found in the

parental animals) were estimated at the most likely QTL position. The distribution of the

founder haplotype effects formed a bimodal cluster, which supported a biallelic QTL model

(S5A and S5C Fig).

To confirm the QTL signals identified in the LK cross, we established another independent

intercross between Duroc pigs and KNPs with 381 F2 offspring (DK cross). All of the individu-

als in this cohort were also genotyped using the Illumina PorcineSNP60K BeadChip in a man-

ner similar to the genotyping of the LK cross. The additional GWAS and linkage analysis

replicated the finding of the highly significant association and linkage signals for a� (P-value

for association = 7.2×10−11; P-value for linkage = 1.2×10−16) and IMF (P-value for association =

4.3×10−13; P-value for linkage = 3.2×10−19) at the same location (rs81437379) on SSC12 as

detected in the LK cross (S1C and S1D Fig; S2B Fig). Furthermore, the LALD mapping using

Fig 1. Pigs used in this study. (A) Photos of a Landrace pig (left) and a KNP (right). (B) Photos of cross section of longissimus dorsimuscle from the Landrace

(left) and KNP (right). Note the pronounced difference in reddish meat color (a�) as well as marbling (i.e., intramuscular fat, IMF). (C) Myosin ATPase

histochemistry after preincubation at pH 4.6 of the longissimus dorsimuscle from the Landrace (left) and KNP (right). Red arrows indicate type1 (slow/

oxidative) fiber; yellow arrow heads indicate type2A fiber (fast/oxido-glycolytic); gray arrowheads indicate type2B fiber (fast/glycolytic). Scale bar = 200 μm.

(D) Boxplot with individual raw a� values of Landrace (n = 43) and KNP (n = 21) (E) Boxplot with individual raw IMF contents of Landrace (n = 43) and KNP

(n = 21).

https://doi.org/10.1371/journal.pgen.1008279.g001
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Fig 2. High-resolution mapping of a QTL that affects a� and IMF contents in the longissimus dorsi muscles of LK (n = 1,232) and DK (n = 395) crosses. (A)

LALD mapping results on SSC12 for a� and IMF from the LK cross. In the case of a� and IMF, the LALD mapping with correction for the effect of the most likely
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the DK cross revealed the maximum test statistics at the region of the 858.6-kb interval for a�

and IMF (12:55,073,130–55,931,714; Fig 2B and 2C; S3 Fig). The distribution of the founder

haplotype effects from the LALD mapping also showed a bimodal shape in the DK cross (S5B

and S5D Fig). Subsequently, a conservative 2-LOD drop support interval was applied to define

the shared critical region identified by LALD mapping in the LK and DK crosses as described

in S3 Fig. The interval size of the new critical region was 488.1-kb (12:55,073,130–55,561,243).

According to the NCBI Sus scrofa 11.1 annotation, the critical interval contained eleven pro-

tein coding genes, including LOC100736982, LOC110255887,MYH4,MYH1,MYH2,MYH3,

LOC100517855, ADPRM, TMEM220, LOC110255888 and PIRT (Fig 2C). Based on compara-

tive sequence and phylogenetic analyses, LOC100736982 and LOC110255887 were identified

asMYH13 andMYH8, respectively (S1 Table and S4 Fig).

In both the longissimus and quadricepsmuscles, quantitative reverse transcriptase-PCR

(qRT-PCR) detected a highly significant difference inMYH3 transcript level abundance

between KNPs and Landrace pigs, with this gene being transcribed approximately 7-12-fold

more actively in KNPs than in Landrace pigs (Fig 2D). The results of Western blotting analysis

using proteins prepared from the skeletal muscle samples confirmed the differential expression

of MYH3 between the two pig breeds (Fig 2E). We did not detect any significant differences in

transcription levels in any of the other genes located within this critical interval.

Phenotypic changes induced by ectopic expression of porcine MYH3 in

transgenic (TG) mice mimic the KNP phenotype

To evaluate the role of MYH3 in muscle fiber composition and lipogenesis in skeletal muscle,

we generated TG mice overexpressing porcine MYH3 (S6A and S6B Fig). No significant body

weight difference was observed between TG mice and wild-type (WT) mice (S6C Fig). From a

morphological aspect, the hindlimb of the TG-mouse strain number 24, which exhibited the

highest MYH3 expression among the four TG-mouse strains (S6A and S6B Fig), showed a rec-

ognizable reddish color that is characteristic of slow/type1/oxidative muscle fiber, while the

counterpart of the WT-mouse strain was paler in appearance, strongly suggesting the influence

of MYH3 on muscle fiber-type composition (Fig 3A). Accordingly, myosin ATPase staining

analysis revealed a greater presence of slow/type1/oxidative fibers in the quadricepsmuscles of

TG mice, whereas the quadricepsmuscles of the WT mice mainly contained fast- type fibers

(fast/type2A/oxido-glycolytic and fast/type2B/glycolytic) (Fig 3B). In particular, a significant

increase in the area of the slow type muscle fiber was detected (P-value = 0.0004) in TG mice

compared to that of the WT mice, whereas, no significant difference (P-value = 0.93) in the

area of the fast-type fibers was found (S6D Fig).

The TG-mice overexpressing MYH3 also showed enhanced levels of myoglobin, troponin I

(Tn I), and mitochondrial oxidative cytochrome c enzyme (Cyt C), all of which are critical fea-

tures of slow/type1/oxidative muscle fibers (Fig 3C). Messenger-RNA expression ofMyh7,

which is a molecular marker for slow/type1/oxidative fiber [14], was higher in the TG mice

QTL did not show any sign of additional QTL on SSC12 (yellow and gray dotted lines). (B) LALD mapping results on SSC12 for a� and IMF from the DK cross.

The vertical dotted lines for each cross were estimated by the LOD-drop method (S3 Fig). (C) Blue (LK cross, 3-LOD drop support interval) and green (DK cross,

2-LOD drop support interval) boxes indicate cross-specific LOD-drop support intervals. Maximum test statistics for each cross were obtained at the region

colocalized in the 488.1-kb critical shared region represented by the black double headed arrow (12: 55,073,130–55,561,243). Eleven NCBI protein coding genes are

located within the 488.1-kb critical interval associated with a� and IMF. Gene names in parentheses were annotated by this study (S1 Table and S4 Fig). (D) Gene

transcription analysis of the 11 positional candidate genes. Relative mRNA expression levels of the 11 genes in the longissimus dorsimuscle (left) and in the

quadricepsmuscle (right) in Landrace (n = 6) and KNP (n = 6). Data histograms and error bars represent the mean±standard error, �P<0.05. (E) Western blotting

analysis of MYH3 in the longissimus dorsimuscle (left) and in the quadricepsmuscle (right) between Landrace and KNP. We used a muscle sample from one

animal per lane.

https://doi.org/10.1371/journal.pgen.1008279.g002

A functional variant of the MYH3 regulates meat quality traits in pigs

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008279 October 11, 2019 6 / 26

https://doi.org/10.1371/journal.pgen.1008279.g002
https://doi.org/10.1371/journal.pgen.1008279


A functional variant of the MYH3 regulates meat quality traits in pigs

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008279 October 11, 2019 7 / 26

https://doi.org/10.1371/journal.pgen.1008279


than in the WT mice (P-value < 0.05). However, the three molecular markers for fast-type

muscle fibers (i.e.,Myh1,Myh2, andMyh4 [14]), showed no significant differential mRNA

expression between the two strains of mice (Fig 3D). Western blotting analysis of Myh7 and

Myh4 also demonstrated the same expression pattern as their transcripts (Fig 3D). The results

of immunohistochemical analysis showed a high degree of colocalization of porcine MYH3

and slow Myh7 in the TG-mice, while the opposite localization of porcine MYH3 and fast

Myh4 was detected (Fig 3E). Moreover, qRT-PCR analysis revealed strongly increased gene

expression of slow/type1/oxidative fiber associated genes (Myoglobin, Tnnt1, Tnni1, and

Tnnc1). However, no significant expression difference in fast-type muscle fiber-associated

genes (Aldoa, Pvalb, Tnnt3, Tnni2, and Tnnc2) was observed between TG and WT mice (S6E

Fig). Combined, these results clearly indicate that overexpression ofMYH3 influences the

myofiber composition in the skeletal muscle of the TG mice.

The way in which MYH3 functionally influences the expression of adipogenesis-related

genes is still unknown. Nevertheless, we selected eight genes actively involved in adipogenesis

(i.e., CD36, Lpl, Fabp4, Fto, Ppargc1α, Adipoq, Pparγ, and C/ebpα) to test whether the overex-

pression of theMYH3 gene influences the expression of genes known to be involved in the adi-

pogenesis pathway in skeletal muscle [15–17]. The eight adipogenesis-related genes displayed

significantly higher mRNA expression in TG mice compared to WT mice (Fig 3F). Further-

more, the ingenuity pathway analysis (IPA) was used to infer a molecular interaction network

of adipogenesis (Fig 3G). The IPA also identified the adipogenesis pathway as the top-ranked

canonical pathway with strong statistical support (P-value = 1.02×10−7). These results suggest

that the overexpression of MYH3 regulates the coordinated expression of genes involved in

adipogenesis in the skeletal muscle tissues of the TG mice partially due to increased IMF

resulting from the more abundant myofiber type I. MYH3 overexpression in quadriceps skele-

tal muscles also enhanced levels of intramyocellular triacylglycerol (TAG) and free fatty acids

(FFAs) (Fig 3H). These data further support MYH3 as the most likely QTG responsible for the

regulation of myofiber type ratios and the associated changes in adipogenesis in the skeletal

muscle of both mice and pigs.

Sequencing F1 sire chromosomes, marker-assisted segregation analysis

(MASA), and in silico functional annotation detect putative functional

sequence variants (FSVs) of MYH3 affecting a� and IMF

To identify FSVs in the 488.1-kb critical region that affect the porcineMYH3 gene (S3 Fig), we

first sequenced genomic DNA samples from the F1 sires of LK (n = 18) and DK (n = 6) crosses

together with the parental animals using a massively parallel sequencing technology [i.e., Land-

race (n = 17) and KNP (n = 19) for LK cross; Duroc (n = 9) and KNP (n = 5) for DK cross].

The criteria to detect putative FSVs among the identified DNA sequence variants (DSVs)

within the 488.1-kb critical interval were as follows: 1) the FSV has to be biallelic since the

Fig 3. Characterization of MYH3 TG mice for muscle fiber type specification and adipogenesis. (A) Gross morphology of hindlimb muscle of WT and

TG mice. (B) Hindlimb muscle stained for myosin ATPase histochemistry. Red arrowheads indicate type1 (slow/oxidative) fiber; yellow arrowheads indicate

type2A (fast/oxido-glycolytic); and gray arrowheads indicate type2B (fast/glycolytic). Scale bar = 50 μm. (C) Western blotting assays of slow-type muscle

associated proteins extracted from quadricepsmuscles. We used a muscle sample from one animal per lane. (D) Gene expression analyses of muscle fiber

type-associated genes by qRT-PCR (upper) and Western blot (lower). Data are from four-months-old WT (n = 3) and TG (n = 5) mice. (E)

Immunohistochemical analysis using anti-MYH4 and anti-MYH7 antibodies in TG mice. Scale bar = 50 μm. (F) Expression of eight adipogenesis-associated

genes in quadricepsmuscle by qRT-PCR. Data are from mRNA prepared from four-month-old WT (n = 3) and TG (n = 5) mice. Data are presented as the

mean±standard error. �P<0.05, ��P<0.01. (G) The gene interaction network for adipogenesis generated by the ingenuity pathway analysis (IPA).

Overexpressed genes are labeled in a reddish color. The color concentration represents the fold change of the genes (e.g., Adipoq shows the highest fold

change). (H) Measurement of triacylglycerol and free fatty acids in quadricepsmuscle. Data are from four-month-old WT (n = 3) and TG (n = 5) mice.
�P<0.05, ��P<0.01.

https://doi.org/10.1371/journal.pgen.1008279.g003
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effect of the founder haplotypes followed a bimodal distribution (S5 Fig); 2) it should be segre-

gating in both LK and DK crosses; and 3) it should affect the binding capacity of regulatory

sequence motifs i.e., transcription factor binding sites such as the enhancer, silencer and pro-

moter in the noncoding region, because we detected a clear differential MYH3 expression

between the two parental breeds (Fig 2D and 2E). In this 488.1-kb critical region, we detected

7,606 DSVs from the LK cross and 5,211 DSVs from the DK cross. Using 12 (LK cross) and 5

(DK cross) informative F1 sire families, we performed MASA to test whether the identified

variants in theMYH3 region fulfilled the biallelic QTL assumption [18, 19]. The results indi-

cated that eight sires were heterozygous for the QTL genotype (Q/q) and four were homozy-

gous (either Q/Q or q/q) (S2 Table and S7A Fig). Therefore, the genotype of the putative FSV

should be homozygous in the four nonsegregating F1 sires and heterozygous in the eight segre-

gating F1 sires in the LK cross. Application of this criterion to the 7,606 DSVs sorted out 548

putative FSVs in the 488.1-kb critical region in the LK cross. Likewise, this approach was

applied to the F1 sires from the DK cross. We detected 5,211 DSVs in the critical region from

the 5 DK F1 sires (S2 Table and S7B Fig). Among these variants, application of the same bi-alle-

lic FSV criterion yielded 2,672 putative FSVs in the DK cross. Intersection of putative FSVs

from the two crosses resulted in 547 overlapping putative FSVs.

To investigate whether these 547 variants are located in putative regulatory motifs in the

noncoding regions of the 488.1-kb critical interval, we computationally predicted the motifs in

the entire critical interval using the MEME suite [20]. Among the 547 variants, ninety putative

FSVs were detected within the motifs predicted by the MEME suite (S3 Table). Subsequently,

we investigated whether the ninety predicted motifs could be annotated using TRAP, JASPAR

and PROMO programs [21–23]. A total of twenty-two predicted motifs were annotated as

transcription factor binding sites based on the in silico analysis using the three programs (S3

Table). Notably, a motif located in the 2-kb of the 50 promoter/regulatory region of the

MYH3 gene was predicted as the binding site for all four known myogenic regulatory factors

(MRFs) (i.e., MYOD, MYOG, MYF5 and MRF4). The Sanger sequencing analysis of the 2-kb

promoter region of theMYH3 gene using the parental animals revealed a 6-bp deletion

(XM_013981330.2:g.−1805_−1810del, chr12: 55,373,707) at the motif in the KNPs (Fig 4A).

The 6-bp deletion variant, XM_013981330.2:g.−1805_−1810del, fulfilled the criteria of being a

biallelic and overlapping FSV between the two cohorts. Moreover, this 6-bp deletion variant is

located in theMYH3 promoter at the position of the overlapping binding motifs for the four

MRFs (Fig 4A). Thus, the XM_013981330.2:g.−1805_−1810del is expected to affect the binding

of these MRFs.

Bayesian fine-mapping of the 488.1-kb critical region characterizes

XM_013981330.2:g.−1805_−1810del as a candidate causal FSV

To investigate whether the XM_013981330.2:g.−1805_−1810del obtained from the MASA and

in silico functional annotation can be regarded as a candidate causal FSV, we applied Bayesian

fine-mapping approaches using CAVIAR and eCAVIAR programs [24–26]. Prior to the fine-

mapping analyses, we reconducted the PorcineSNP60K BeadChip-based GWAS including the

XM_013981330.2:g.−1805_−1810del to obtain summary association statistics of the 488.1 criti-

cal region [27]. XM_013981330.2:g.−1805_−1810del was revealed as the top-ranked variants

for a� and IMF in the 488.1-kb critical region (Table 1). In the Bayesian fine-mapping using

the CAVIAR program, we established a 99% credible set of variants within which the candi-

date causal FSV(s) for a� and IMF are most likely to be included. The CAVIAR results revealed

that the 99% credible set included only XM_013981330.2:g.−1805_−1810del with an extremely

high posterior probability of being a candidate causal variant (S4 Table). Additionally, we
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performed bivariate Bayesian fine-mapping using the eCAVIAR program to provide evidence

for whether XM_013981330.2:g.−1805_−1810del has a pleiotropic effect on a� and IMF. The

combined likelihood posterior probability from eCAVIAR provided evidence that theMYH3
6-bp deletion variant can be considered as a pleiotropic variant for both a� and IMF (S4

Table).

These results provide information on the contrast between this particular 6-bp deletion var-

iant and other variants used for GRAMMAR based GWAS. The regional P-value plot showed

that it is extremely difficult to distinguish which variant should be considered as a candidate

causal variant from the GRAMMAR based GWAS; there are several variants that can be

regarded as candidate causal variants based on their P-value (S10 Fig). In this case, CAVIAR-

Fig 4. Genomic structure of porcine MYH3, its FSV, and the effect of the FSV on the MYH3 expression. (A) The 2-kb region in the 50- flanking region from

the transcription start site (TSS), coding exons and introns, and the 0.5-kb region in the 30- flanking region from the stop codon were Sanger sequenced. Light

blue boxes represent 50- flanking region and 30- flanking region noncoding exons. The positions of the TATA box in the promoter and the TSS are indicated.

Dark blue boxes represent coding exons, and the ATG initiation codon is designated. The red dot indicates the position of XM_013981330.2:g.−1805_−1810del.
Predicted myogenesis regulatory factor (MRF) binding sites detected in the FSV sequence are presented in the box. (B) Determination of the genotype of the

XM_013981330.2:g.−1805_−1810del was conducted by PCR amplification and subsequentHpyCH4IV digestion. The q/q genotype represents theMYH3
homozygous genotype originating from Landrace and Duroc pigs; theQ/Q genotype represents theMYH3 homozygous genotype originating from KNPs. The

+ and–symbols represent positive and negative controls, respectively. (C) Messenger RNA expression levels for the porcineMYH3 gene stratified by genotype

at the XM_013981330.2:g.−1805_−1810del in longissimus dorsimuscle (least square mean±standard error). The significance of the effect of the FSV on gene

expression was computed using the general linear model y = μ+g+s+l+e, where y is the relative mRNA expression level, g is the fixed effect of the genotype, s is

the fixed effect of sex, b is the fixed effect of line, and e is residual. Different letters above the error bar show significant differences between genotypes (P<0.05).

https://doi.org/10.1371/journal.pgen.1008279.g004
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based fine-mapping demonstrated a power to discriminate candidate causal variant(s) from

the other variants in the GWAS.

The effect of this candidate causal variant on the phenotypes is shown in Table 1. The

results show that the KNP originated Q allele is favorably associated with meat quality-related

traits, whereas the Landrace originated q allele is positively associated with growth-related

traits. The Q allele is also favorably associated with mRNA expression levels of the porcine

MYH3 gene in the longissimus dorsimuscle (Fig 4C). The genic action is mostly additive for all

traits examined.

Functional characterizations reinforce the critical importance of the MYH3
6-bp deletion variant

Subsequently, we analyzed the effect of the candidate functional variant ofMYH3 on transcrip-

tion using transient transfection assays with luciferase reporter constructs containing either

the Landrace (q) or KNP (Q) sequence fragments in porcine fibroblast cells [28, 29]. Compared

with the promoterless construct, both the constructs containing the Q and the q sequence

fragments increased luciferase reporter activity: the reporter activity increased ~3.7-fold for

the Q construct and ~1.6-fold for the q construct. The reporter gene activity was consistently

higher for the Q constructs than for the q constructs (Fig 5A). In addition, a chromatin im-

munoprecipitation (ChIP) assay of porcine fibroblast cells was conducted to investigate

whether the four MRFs act as direct trans-acting factors that bind to the XM_013981330.2:g.−
1805_−1810del site. The results of the ChIP assay demonstrated that MYF5 specifically bound

to the q allele sequence, whereas theQ allele sequence that included the 6-bp deletion abolished

its binding affinity. In the case of MYOD, MYOG, and MRF4, these MRFs were only able to

interact partially with the Q sequence because the binding site was not completely abrogated

by the 6-bp deletion (Fig 4A and Fig 5B).

Table 1. Effect of the MYH3 functional sequence variant (FSV) on growth and meat quality traits of the longissimus dorsi muscle in LK and DK crosses (least square

mean±standard error).

Traits1

LK cross Q/Q2

(108)

Q/q
(427)

q/q
(568)

P-value PBonferroni4

Body weight at 140 d (kg) 67.23±0.98a 70.05±0.55b 72.52±0.48c 7.08±10−8 0.003

Carcass weight (kg) 72.93±1.21a 76.09±0.69b 79.14±0.59c 6.15×10−7 0.026

a� of LDM3 (AU) 2.42±0.02a 2.21±0.02b 1.88±0.01c 1.95×10−70 8.41×10−66

IMF of LDM3 (%) 1.72±0.04a 1.23±0.03b 0.67±0.03c 7.22×10−89 3.11×10−84

DK cross Q/Q
(54)

Q/q
(162)

q/q
(124)

P-value PBonferroni

Body weight at 140d (kg) 66.57±1.49 66.23±0.93 69.76±1.04 0.23 1

Carcass weight (kg) 65.95±1.63 67.99±1.03 71.15±1.16 0.016 1

a� of LDM (AU) 10.79±0.19a 8.76±0.12b 6.48±0.13c 4.18×10−30 8.51×10−24

Type1 fiber area5 (μm2) 378.3±163.2a 347.1±73.3a 292.0±79.7b 5.23×10−9 5.15×10−5

Type1 fiber areaP6 (%) 13.81±0.90a 11.23±0.38a 8.71±0.41b 9.64×10−9 7.22×10−5

IMF of LDM3(%) 2.17±0.06a 1.62±0.04b 0.96±0.04c 1.12×10−33 3.38×10−27

1140d: 140 days of age; LDM: longissimus dorsi muscle; IMF: intramuscular fat content; AU: arbitrary unit.
2QTL genotypes correspond to the genotypes of the XM_013981330.2:g.−1805_−1810del variant and the number of pigs in each QTL genotype.
3Data that were natural log transformed.
4Probability of false positives per scan adjusted by Bonferroni’s method.
5Type 1 (slow/oxidative) fiber area and 6Type 1 (slow/oxidative) fiber area composition. Values with different superscripts (i.e., a,b and c) in a row are significantly

different at the P<0.05 level.

https://doi.org/10.1371/journal.pgen.1008279.t001
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To critically evaluate the functional effect of the four MRFs on the transcriptional activities

of the luciferase reporter constructs containing either the Q or q sequence of theMYH3 vari-

ant, we used transient cotransfection assays of porcine fibroblast cells. As shown in Fig 5C,

when the q type of theMYH3 promoter construct was cotransfected with either one of the four

MRF constructs or the four MRFs, a significant reduction in luciferase activity was observed

compared to the activity associated with the Q type. Notably, coexpression of the q type of the

MYH3 construct with all four MRFs led to significantly reduced luciferase activity compared

with the activity in the fibroblast cells transfected with the empty control luciferase reporter

alone. In contrast, overexpression of the four MRFs only weakly repressed the expression of

Fig 5. Analysis of promoter activity and transcription factor binding site in porcine fibroblast cells. (A) Schematic overview of the XM_013981330.2:g.−
1805_−1810del luciferase reporter constructs and the results of the promoter activity assay. The arrow represents the sequence segment location of the

XM_013981330.2:g.−1805_−1810del. Data histograms and error bars represent the mean±standard error of triplicate independent samples. �P<0.05, ��P<0.01.

(B) ChIP assay of the binding of MRFs to the XM_013981330.2:g.−1805_−1810del promoter region in porcine fibroblast cells derived from KNPs (Q) and

Landrace (q). (C) Results from cotransfection experiments in porcine fibroblast cells. TheMYH3 q promoter acts as a stronger repressor than theMYH3 Q
promoter. The 5DG4 represents a cotransfection experiment with all four MRFs. Data histograms and error bars represent the mean±standard error of

triplicate independent samples. �P<0.05, ��P<0.01.

https://doi.org/10.1371/journal.pgen.1008279.g005
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the Q type of theMYH3 reporter construct, which contains the 6-bp deletion. These data sug-

gest that theMYH3 q variant is able to bind the four MRFs, whereas theMYH3 Q variant

diminishes this interaction with their target sequence due to the less efficient binding of MRFs.

Transient transfection assays with other combinations of MRFs showed the same trends

regarding the expression activity of the luciferase reporter (S8 Fig). The results of transient

transfection analyses indicate that theMYH3 q variant acts as a repressor element, whereas the

MYH3 Q variant functions as a significantly weaker repressor, which results in overexpression

ofMYH3 in the skeletal muscle of KNPs. Altogether, the functional characterization of

XM_013981330.2:g.−1805_−1810del provided clear evidence that the porcineMYH3 variant is

a causal FSV affecting both a� and IMF.

Allele frequency among pig populations indicates an Asian origin of the

MYH3 KNP allele

To investigate the XM_013981330.2:g.−1805_−1810delfrequency across diverse pig breeds, we

genotyped theMYH3 FSV in a wide panel of 377 pigs representing nine Asian domestic breeds,

12 European domestic breeds, and wild boars from Africa, Europe, and Asia (S5 Table). TheQ
allele occurred at high and intermediate frequencies in Chinese Neijang (0.80), Chinese Putian

(0.80), Chinese Tongcheng (0.90), Chinese Xiang (0.54), and KNP (0.63) but was also found in

Korean and East Russian wild boars albeit at low frequency. In contrast, theQ allele was almost

absent in the European commercial breeds, as well as in both European and African wild boars.

This allele distribution indicates that theMYH3 Q allele is of Asian origin and likely predates

domestication. Berkshire and Middle White breeds are an exception compared with the other

European breeds. The rare exception for these breeds is probably due to an introgression of the

Asian pigs in Europe, which was known to have occurred since the 18th century [30, 31]. Nota-

bly, we found that theQ allele is maintained at a moderate frequency despite its favorable effect

on meat quality in KNPs. This could be due to the negative association of theQ allele with

growth-related traits (Table 1). Sequence data indicated that nucleotide diversity in the critical

region (12:55,073,130–55,561,243) was higher in Asian breeds (π = 0.0059) than in European

breeds (π = 0.0038), which is consistent with the demographic history of pigs and in agreement

with the results of previous studies (S6 Table) [32]. However, no decrease in the levels of genetic

variability surrounding theMYH3 FSV was observed in the European breeds compared to the

levels in the Asian breeds. Although no signature of selection was detected with Tajima’s D sta-

tistics, an interesting possible exception was KNPs, for which Tajima’s D = 2.50 at the promoter

region may indicate balancing selection. Furthermore, we observed no reduction in diversity in

theMYH3 and its promoter region because of domestication, neither in Europe nor in Asia.

The absence of a significant selective footprint (as measured by Tajima’s D or low diversity) in

breeds with high frequency of theQ allele may be due to soft sweeps, which are much more dif-

ficult to detect than hard sweeps with these tests. In addition, Tajima’s D is highly variable in

the presence of ongoing selection [33].

Discussion

Although numerous genetic studies have mapped thousands of QTLs for complex quantitative

traits [34], a very limited number of actual causative mutations have been detected in domesti-

cated animals. This study is the first to show thatMYH3 is a causative gene for myofiber type

ratios and associated changes in IMF and adipogenesis in pigs and mice.MYH3 is known as

an MYH isoform that is mainly expressed in various developmental stages including during

the embryonic stage in skeletal muscle [35, 36]. Additionally, coding mutations that occur in

theMYH3 gene can cause muscle development disorders in humans [37, 38]. Furthermore, we
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identified a structural variant in the promoter of theMYH3 gene that affects both muscle

fiber-type specification and IMF accumulation using two independent crosses in pigs. We also

discovered that the FSV alters the sequence of critical transcription factor binding sites located

in the promoter ofMYH3. Subsequently, we showed that the FSV ofMYH3 can regulate tran-

scription by differential binding of the four MRFs using a chromatin immunoprecipitation

(ChIP) assay and transient transfection experiments in porcine fibroblast cells.

As shown in Table 1, the causative FSV was also related to growth traits in pigs. However,

there was no significant body weight difference observed between transgenic and wild-type

mice. A plausible interpretation of this result can be related to pleiotropy and linkage; if the

FSV has a pleiotropic effect on both meat quality and growth traits, a body weight difference

between transgenic and wild-type mice can be expected. Hence, the observed association does

not necessarily indicate pleiotropy (i.e., the growth and meat quality related traits are influ-

enced by the same causal variant), since the association could possibly be due to linkage (i.e.,

two different causal variants being in linkage disequilibrium, one influencing meat quality

related traits and the other influencing growth related traits). Hence, it is possible that the vari-

ant affecting growth variation may not be included in the transgenic vector construction. This

antagonistic effect of the FSV between the favorable meat quality traits and growth parameters

can be concerned when this variant is considered in the implementation of current breeding

programs. However, we are convinced that theMYH3 variant can be useful for inclusion in

breeding programs; if a marker-assisted selection/gene editing strategy using this variant can

be implemented together with traditional selection procedures, we can expect to obtain genetic

gain in growth traits in a long-term perspective. In fact, we previously reported growth-related

QTLs in the LK cross, but no major QTL was detected [39]. Given the polygenic architecture

of growth, we argue that growth traits can also be improved by a combined approach using the

MYH3marker information and traditional selective breeding.

The moderate to high frequency of the Q allele among some of the Asian domestic pig

breeds including KNPs along with the positive association of the q allele with growth perfor-

mance indicate that some sort of balancing selection may have shaped the evolution ofMYH3
in pigs. This case is similar to the case of the porcine RYR1 gene, which causes pale soft exuda-

tive meat and porcine stress syndromes in homozygotes but has a positive effects on muscle

mass in heterozygotes [40]. An additional argument in favor of balancing selection could be

the positive Tajima’s D value in KNPs and the absence of a decrease in variability in European

pigs (S6 Table); however, the exact mechanism remains to be elucidated since the Q allele is

almost absent in European pigs (S5 Table).

In conclusion, we present the positional cloning of porcineMYH3 as a QTG and the identi-

fication of a 6-bp deletion FSV located in the 50-flanking region that regulates transcription of

theMYH3 gene and contributes to a major effect on both a� and IMF in pigs. This work

enhances the understanding of the regulation of myotype ratios and associated changes in

IMF in pig skeletal muscle. Furthermore, this information is immediately applicable for breed-

ers who are actively involved in genetic improvement of pork quality through marker-assisted

selection or introgression of the desired structural variant allele in breeding populations.

Materials and methods

Ethics statement

All experimental procedures using pigs were conducted according to national and institutional

guidelines and were approved by the Ethical Committee of the institution [Approval No.

(date): 2014–095 (2014-08-06)]. All mouse experiments were approved by the Institutional

Animal Care and Use Committee of the KRIBB [Approval No. (date): KRIBB-AEC-16077
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(2016-04-01)] and were performed in accordance with the Guide for the Care and Use of Lab-

oratory Animals published by the U.S. National Institutes of Health.

Animals and phenotypes

Two independent cohorts were used in this study: a Landrace×KNP F2 intercross and a Dur-

oc×KNP F2 intercross. The first cross was established as described previously [7]. Briefly, sev-

enteen purebred Landrace pigs were mated with 19 purebred KNPs to produce a total of 91 F1

progeny and 1,105 F2 progeny (568 males and 537 females). For the second cross, nine pure-

bred Duroc pigs were crossed with 5 purebred KNPs to produce 36 F1 and 345 F2 animals (187

males, 158 females). Animals in the two cohorts were raised at the experimental farm of the

National Institute of Animal Science, Jeju, Republic of Korea. They were fed ad libitum, and

males were not castrated. All F2 experimental animals were slaughtered in the same commer-

cial slaughterhouse. The means and standard errors of age at slaughter (days) were 199.2±0.35

(LK cross) and 195.7±0.66 (DK cross). The means and standard errors of carcass weight (kg)

were 79.2±0.38 (LK cross) and 69.7±0.68 (DK cross). The approximate average slaughter ages

of the pigs used for expression analysis were 170 (Landrace) and 180 (KNP) days. The data col-

lection of meat quality-related traits (i.e., a� and IMF) was conducted as reported previously

[8]. Traits related to muscle fiber characteristics were obtained using the myofibrillar ATPase

staining method [41] and microscope counting.

Genotypes and genome-wide association study (GWAS)

All experimental samples were genotyped for 62,163 SNP markers using PorcineSNP60K

BeadChip (Illumina). The SNP markers were filtered with a minor allele frequency<5%, a

genotype call rate<90% and a P-value of the Chi-square test for Hardy-Weinberg equilibrium

errors�0.000001. For the LK cross, a total of 40,628 SNPs on 18 autosomes remained for this

GWAS. For the DK cross, a total of 39,964 SNPs on 18 autosomes remained for this GWAS.

Error rates in Mendelian inheritance for all markers were also checked in the F2 pedigrees

using SNP marker information (<5%). A single-SNP marker analysis based on the genome-

wide rapid association using a mixed model and regression (GRAMMAR) approach was car-

ried out to identify QTLs affecting meat quality-related traits in the two cohorts [42]. Each

trait was adjusted for fixed (sex, batch and carcass weight) and random polygenic effects using

the mixed-effects model method implemented in the ASReml program (VSN International).

To estimate random polygenic effects, the kinship matrix computed from the F2 pedigree was

used. The residuals derived from the mixed-effects model were used as response variables in

the linear regression analyses to correct for the familial relatedness within the F2 intercross

population. The GWA analyses were conducted under an additive model for each SNP using

the PLINK program [43]. Bonferroni-adjusted significant (i.e., 0.05/40,628 markers, significant

P-value = 1.23×10−6 for the LK cross; 0.05/39,964 markers, significant P-value = 1.25×10−6 for

the DK cross) and suggestive (i.e., 1/40,628 markers, suggestive P-value = 2.46×10−5 for the LK

cross; 1/39,964 markers, suggestive P-value = 2.50×10−5 for the DK cross) thresholds were

established to address multiple testing issues in GWAS. The % phenotypic variance explained

by the top-ranked SNP marker was (% VarSNP) estimated using the following equation [44]: %

VarQTL = [2p(1-p)a2 / σg
2] ×100, where p is the minor allele frequency of the SNP, a is the esti-

mated allelic effect of the SNP, and σg
2is the additive genetic variance for each trait estimated

by the ASReml program (VSN international). The % phenotypic variance explained by the

QTL was (% VarQTL) estimated by the following equation: [(RSSreduced−RSSfull)/RSSreduced] ×
100, where RSSreduced and RSSfull are residual sum of squares of statistical models of linkage

analysis with and without the QTL term, respectively.
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Joint linkage and linkage disequilibrium (LALD) analysis

High-resolution mapping of the QTL was conducted by jointly exploiting linkage and linkage

disequilibrium using a haplotype-based approach. First, we used CRI-MAP ver 2.503, developed

by Evans and Maddox (URL: www.animalgenome.org/bioinfo/tools/share/crimap), to con-

struct the genetic linkage map of SSC12 using 935 SNP markers for the Landrace×KNP cross

and 997 SNP markers for the Duroc×KNP cross. Second, founder haplotypes those found in the

F0 pigs were reconstructed using the DualPHASE program [13], which combines family (link-

age and Mendelian segregation) and population (linkage disequilibrium) information in a Hid-

den Markov Model frame. A total of twenty founder haplotype clusters (K = 20) were used for

the next step. Third, the haplotypes were incorporated into a mixed model including fixed (sex,

batch and carcass weight), random (i.e., the twenty effects of founder haplotypes and animal

effects), and random residual terms to perform fine mapping of QTL using the QxPAK ver 5.05

[45]. In addition, the LALD mapping with the effect of the most likely QTL position as cofactor

was conducted to screen additional QTL signals in the chromosome of interest.

Marker-assisted segregation analysis (MASA) and in silico functional

annotation in the 488.1-kb critical region on SSC12

MASA was performed in two ways: first, we conducted a half-sib QTL analysis to obtain evi-

dence for QTL segregation within each F1 sire-family. Identification of heterozygous Q/q F1

sires was based on the results of the half-sib QTL analysis using their respective F2 progeny (S7

Fig) [18]. Second, the QTL genotype of F1 sires was determined by a log likelihood ratio test

[19]. The F1 sires were regarded as heterozygous if log10likelihood ratio score>2; homozygous

if log10likelihood ratio score>−2; and undetermined genotype when −2 < log10likelihood

ratio < 2 (S2 Table). The transcription start site of theMYH3 gene was identified using Pro-

moter 2.0 [46]. To investigate whether the identified putative FSVs were located within tran-

scriptional regulatory motifs, the MEME suite was used [20]. Subsequently, a detailed in silico
annotation of the identified motifs was conducted by TRAP, JASPAR and PROMO programs,

respectively [21–23]. These four programs were used with their default settings.

Genotype imputation and fine-mapping of the 488.1-kb critical region

Prior to the fine-mapping approaches, we imputed genotype data in the critical region using

FImpute program which can utilize information from both pedigrees and populations [47].

The genotype imputation was conducted with the default settings of the FImpute program.

For the imputation, we only used the variants from the 60K SNP chip and the 6-bp deletion

variant for further fine mapping to fill in missing genotypes of the variants. To characterize the

identified putative FSV in the 488.1-kb critical region, a Bayesian fine-mapping approach

based on the CAusal Variants Identification in Associated Regions (CAVIAR) program [25].

The CAVIAR program incorporates association summary statistics (i.e., Z-scores) and LD cor-

relation structures to compute the posterior probability of being candidate causal for each vari-

ant in the region of fine-mapping. The eCAVIAR program [26], a bivariate extension of

CAVIAR, was also applied to fine-map the causal variant by colocalization analysis of associa-

tion signals from a� and IMF. eCAVIAR calculates combined likelihood posterior probability

(CLPP) to measure the degree of colocalization of the two QTLs by computing the probability

that the variant is pleiotropic for both phenotypes. A threshold of 0.99 for both posterior prob-

ability and CLPP was applied to select candidate causal variants in the CAVIAR and eCAVIAR

analyses. To evaluate the uncertainty of the fine-mapping analyses, 99% credible sets were con-

structed for both CAVIAR and eCAVIAR analyses (S4 Table).
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Gene transcription analysis

Total RNA was isolated from cells and tissues using Trizol reagent (Ambion), according to the

manufacturer’s protocol. RNA was treated with DNase I and reverse transcribed into cDNA

using the TOPscript cDNA Synthesis Kit (Enzynomics). For cDNA synthesis, 5 μg of each

sample RNA was incubated at 55˚C for 60 min and at 95˚C for 5 min. Each cDNA was used as

a template for qRT-PCR amplification in combination with specific primers (S7 and S8

Tables). We performed qRT-PCR using the QuantiTect SYBR Green PCR Kit (Qiagen) and

the Rotor-Gene Q thermal cycler (Qiagen). The qRT-PCR experiments were conducted based

on the MIQE guidelines [48]. qRT-PCR was performed for 40 cycles at 95˚C for 20 sec, at

60˚C for 20 sec, and at 72˚C for 20 sec. Transcription levels were normalized to those of

GAPDHmRNA. GAPDH has been used as the reference gene in several expression studies

related to myogenesis and adipogenesis [49–52]. Data were analyzed using the ΔΔCt method

[53].

NGS and Sanger sequencing

A massively parallel sequencing technology was used to identify SNP markers in the porcine

whole genome, including theMYH3 locus on SSC12, using genomic DNA of the 24 F1 sires

and the parental pigs [Landrace (n = 17) and KNPs (n = 19) for the LK cross; Duroc (n = 9)

and KNPs (n = 5) for the DK cross] from the two crosses (i.e., 18 pigs from the LK cross; 6 pigs

from the DK cross). Adapter-ligated DNA libraries were prepared for single and paired-end

sequencing. All sequence data were produced using HiSeq X (Illumina) according to the stan-

dard protocol. The average coverage depth was approximately 30×. In addition, the Sanger

sequencing method using BigDye Terminator 134 v3.1 Cycle Sequencing Kit (Applied Biosys-

tems) was applied to determine the sequence of the 5’ and 3’ flanking regions and exon regions

of the porcineMYH3 gene using DNA samples from the parental animals of the two cohorts

[i.e., Landrace (n = 17) and KNPs (n = 19) for the LK cross; Duroc (n = 9) and KNPs (n = 5)

for the DK cross].

Generation of transgenic (TG) mice

All mice (C57BL/6 background, male, 4 months of age) used in the study were maintained in

the Korea Research Institute of Bioscience and Biology (KRIBB) animal facility under patho-

gen-free conditions in a temperature-controlled climate at 22±2˚C and with a 12 h light/dark

cycle. All animals had free access to standard chow and water during the experiments. For

the convenience of cloning, the CDS of the porcine MYH3 gene was divided into four parts

for in vitro synthesis (Bioneer). We lined them up end-to-end to make a 5,859 bp full-length

open reading frame (ORF) and inserted it into the position between the XbaI and EcoRI of

a pCAGGS-EGFP-Puro vector (S6A Fig). In addition, a Flag-sequence was appended to

the 30 end of the ORF to allow for the detection of the expression of recombinant protein

directly through Western blotting. TG-mice were generated via DNA microinjection. PCR

analysis was applied to test the construction of TG-mice using a primer set (forward: 50-

CCG AGA GCT GGA GTT TGA-30; reverse: 50- CTC CCA TAT GTC CTT CCG AGT-30).

Quadriceps muscles were excised from 4-month old WT- and TG-mice and used for further

experiments.

Western blotting analysis

Tissue protein lysates were prepared with RIPA buffer containing a cocktail of protease inhibi-

tors and then quantified using a Protein Assay Kit (Bio-Rad). Protein samples were separated
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by SDS-PAGE and transferred to a PVDF membrane. After blocking in TBST solution con-

taining 5% skim milk, membranes were incubated overnight at 4˚C with specific antibodies

(S9 Table). Expression signals of each protein were detected using ECL reagents (GE Health

Care) with secondary antibodies. Luminescent densities were measured using a LAS-3000

Luminescent Image Analyzer System (Fujifilm).

Histological analysis of mice

Traits related to muscle fiber characteristics were obtained using the myofibrillar ATPase

staining method described by Brooke and Kaiser (1970) and microscope counting. For IHC

analysis, paraffin sections (4 μm) were fixed in 4% PFA, permeabilized with 0.1% Triton X-100

and left for 1 h in serum containing blocking solution. Anti-MYH7, anti-MYH4 and anti-flag

M2 antibodies were diluted to 1:100 in PBS and incubated overnight at 4˚C. After washing

with PBS containing Tween 20, the sections were incubated for 1 h with fluorescent conjugated

secondary antibodies and visualized under a fluorescence microscope. DAPI was used for

nuclei counterstaining.

Measurement of triacylglycerol (TAG), triglycerides and free fatty acids

(FFAs)

Both WT and TG mice were fasted for 6 h before sacrifice, and dissected quadricepsmuscle

and blood were obtained. TAG, triglycerides and FFAs were assayed using a Triglyceride

Assay Kit (ABCAM) and a Free Fatty Acid Assay Kit (ABCAM). The levels of TAG, triglycer-

ides, and FFAs were measured by the fluorescent intensities at an absorbance ratio of 535/590

nm wavelength. Finally, the levels of TAG, triglycerides, and FFAs were calculated based on

typical standard curves.

Luciferase and chromatin immunoprecipitation (ChIP) assays

Primarily cultured porcine fibroblast cells, originating from biopsied porcine ear tissues, were

cultured in DMEM (Life Technologies) containing 10% FBS (HyClone) and 1×penicillin-

streptomycin reagent (Gibco). Cells were grown at 37˚C in humidified air containing 5% CO2

and the medium was changed every 2 days. The porcine fibroblast cells have been used for our

other studies [28, 29]. AllMYH3 luciferase reporter constructs were generated by subcloning

the porcineMYH3 promoter in front of the luciferase gene in the pGL3 basic vector. The

MYH3 luciferase reporter constructs and internal control (pRL-SV40) vectors were cotrans-

fected into the cells using Lipofectamine 2000 (Invitrogen). Luciferase assays were performed

using a Dual-Luciferase Reporter Assay System (Promega). Transfected cells were rinsed in

PBS and then lysed in 1× passive lysis buffer, after measuring firefly (reporter construct) and

Renilla (internal control) luciferase values using the VICTOR Multilabel Plate Reader (Perkin

Elmer). MRF genes (i.e.,MYF5,MYOD,MYOG, andMRF4) were cotransfected with an

MYH3 promoter and an internal control vector into porcine fibroblast cells. After 48 h,MYH3
promoter activity was measured using the Dual-Luciferase Reporter Assay System. The influ-

ence ofMYH3 promoter activity was determined according to MRFs binding in the functional

sequence variant position. ChIP assays were carried out using a Chromatin Immunoprecipita-

tion Assay Kit (Millipore). Precleared chromatin was immunoprecipitated with 4 μg of the HA

antibody (Sigma). The obtained DNA samples were verified by PCR analysis (forward 50-GGT

CCT ACT GGC GCT TAA GAC AGA-30; reverse 50- GGT TGT GGC AGG AAT GTG TGA

TTG-30) for the MRFs binding motif on theMYH3 promoter region.
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Statistical analysis

The results are expressed as the mean±standard error. Minitab version 17 (Minitab Inc.) and

MS Excel (Microsoft Inc.) were used to evaluate statistical significance using two-sided Stu-

dent’s t-test or two-sided Welch’s t-test when comparing two groups or analysis of variance for

multiple group comparisons. The F-test implemented in the Minitab program was applied to

assess variance equality between two groups (P-value 0.01). P<0.05 was considered as signifi-

cant for the two-sample t-tests. Unless otherwise stated P-values are nominal; the nominal P-

value represents the probability of false positives for a single test.

Population genetic analysis

The XM_013981330.2:g.−1805_−1810del was genotyped in 377 wild and domestic pigs distrib-

uted worldwide (S5 Table). Furthermore, to characterize the genetic variability surrounding

the region, a total of 160 NGS data samples were analyzed (S6 Table); 65 sequences were down-

loaded from SRA [54–58]; and 10 KNP, 10 Duroc, and 10 Landrace NGS data were obtained

in this study. The sequences included wild boars (10 Korean and 10 of European origin) and

domestic pigs (34 Chinese and Korean and 41 European). The Chinese pig breeds were

Meishan and Toncheng, and the European pig breeds were Berkshire, Duroc, Iberian, Land-

race, and Large White. Downloaded samples from SRA had been sequenced to an average

depth of approximately 11×, whereas the depth of those in this study (i.e., KNPs, Duroc and

Landrace) was approximately 30×. Alignment was carried out with BWA 0.7.15—mem option

[59]. The bam files were then realigned around indels with the GATK IndelRealigner tool

[60], and PCR duplicates were removed with the picard MarkDuplicates option (http://

broadinstitute.github.io/picard/). SNP calling was performed with SAMTOOLS/BCFTOOLS

suite version 1.3.1 for each individual separately [61]. SNPs were called in positions with depth

bounds between 5× and twice the average depth rounded to the nearest upward integer; fur-

ther, a minimum mapping (RMS) quality of 20 and a base quality of 20 were required. Finally,

SNPs with a minimum quality of 10 were retained. To estimate nucleotide diversity, in addi-

tion to heterozygous positions, the number of bases sequenced was also required. We extracted

these regions with minimum and maximum depth using SAMTOOLS depth, further filtering

by minimum map and base qualities and then, using BEDTOOLS [62], we intersected these

regions with the homozygous blocks provided in the individual gvcf file. This resulted in a

modified gvcf file in which both SNPs and homozygous blocks had been filtered by the same

criteria. Diversity and Tajima’s D estimates were as in accounting for missing data [63], and as

implemented in MSTATPOP software [64].

Supporting information

S1 Fig. Manhattan plots and quantile–quantile plots of the GWAS for a� and IMF traits in

LK and DK crosses. The y-axis shows the −log10P, and the x-axis shows the physical positions

of the SNP markers on the pig autosomes. The genome-wide significant threshold value is

5.90, equals Bonferroni’s correction of 5% (represented by the red horizontal lines). (A) For a�

in the LK cross (n = 963); (B) For IMF in the LK cross (n = 962); (C) For a� in the DK cross

(n = 294); (D) For IMF in the DK cross (n = 294). The Manhattan plots show the identification

of the major QTL for a� and IMF traits on SSC12 in the two crosses. The genomic inflation fac-

tor (λ) was 1.0 for all four results of GWAS.

(TIF)

S2 Fig. Linkage mapping of a QTL that influences a� and IMF contents in the longissimus
dorsi muscle of the LK (n = 1,232) and DK (n = 395) crosses. (A) Linkage mapping results
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on SSC12 for a� and IMF traits in the LK cross (B) Linkage mapping results on SSC12 for a�

and IMF traits in the DK cross. The y-axis represents the F-value test statistic. The marker

map with genetic distance between DNA markers in Kosambi cM is given on the x-axis. The

thick horizontal line indicates the 1% chromosome-wide significant threshold, and the thin

horizontal line indicates the 5% chromosome-wide significant threshold. The QTLs were colo-

calized in the region encompassing rs81437379. Linkage analysis for mapping QTL was per-

formed using the GridQTL program (URL:www.gridqtl.org.uk).

(TIF)

S3 Fig. Cross-specific and shared critical regions on SSC12 identified by joint linkage and

association mapping. SNP position is the physical base pair position in SSC12 (Sus scrofa

11.1). LOD_a� and LOD_IMF represent the LOD (logarithm of odds) score for the redness

meat color and intramuscular fat content. The red-colored values represent maximum LOD

scores for a� and IMF traits in each intercross. The dark gray region represents the critical

region (12:54,842,795–55,561,243) for the LK cross, while the light gray region (12:55,073,130–

55,931,714) indicates the critical region for the DK cross. A conservative 2-LOD drop support

interval was applied to estimate the critical region. The black box line is highlights the

488.1-kb shared critical region. Numbers in the ovals represent the LOD drop support.

(TIF)

S4 Fig. A Neighbor-joining phylogenetic tree for mammalian MYH genes, based on genetic

distances computed with Kimura’s two-parameter method, was constructed using MEGA7

(URL: www.megasoftware.net). Multiple sequence alignment was performed with DIA-

LIGN2.2.1 (URL:dialign.gobics.de). Numbers at the nodes represent the bootstrap support val-

ues derived from 10,000 replicates. The scale indicates the genetic distance. The accession

numbers for the mRNA sequences are provided in Table S1. The species used are as follows:

Bo (cattle), Ch (green monkey), Ca (dog), Go (Gorilla), Ho (human), Mu (mouse), Ra (rat),

and Su (pig). We used the Dr (fruit fly)MYHmRNA sequence (NM_165190.4) as the out

group. TheMYH isoforms formed distinct clusters and this result provided conclusive evi-

dence thatMYH13 (LOC100736982) andMYH8 (LOC110255887) have been identified in pigs

by this analysis.

(TIF)

S5 Fig. Estimated effect of founder haplotypes on a� and IMF and frequencies of in the two

studied populations. Founder haplotypes showing similar effects were pooled. Founder hap-

lotypes associated with the inferred q and Q alleles of the later-detected as candidate functional

sequence variants are shown in blue and red boxes, respectively. Phenotype data in the three

panels (A, C and D) were natural log transformed. (A, C) For LK cross; (B, D) For DK cross.

(TIF)

S6 Fig. Identification and characterization of TG-mice. (A) Transgenic construction of the

porcineMYH3 vector. The construct consists of the CAG promoter, porcineMYH3mRNA

sequence, flag for protein detection and pA (poly A) (upper panel). Western blotting analysis

revealed that the 24 F1 founder showed the highest expression of MYH3 protein. The x-axis

represents TG-mouse id. (B) Estimated porcineMYH3 transgene copy number in each TG.

The x-axis represents TG-mouse id. The porcine MYH3 copy number ranged from 2 to 13 in

each TG-mouse. (C) Body weight comparison between WT (n = 3) and TG (n = 4) mice. Body

weights of male mice were measured at 4 months of age. (D) Comparison of the area of slow

(type1/oxidative) and fast (type2) muscle fibers between WT (n = 5) and TG (n = 5) mice. The

horizontal bars indicate median. (E) Expression of slow and fast muscle-associated genes in

quadricepsmuscle. Analyses of slow-type (left) and fast-type (right) muscle- associated gene
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expression by qRT-PCR. Four-month-old WT (n = 3) and TG (n = 4) mice were used. Data

are mean±standard error for three independent replicates. �P<0.05, ��P<0.01.

(TIF)

S7 Fig. Identification of informative segregating F1 sires. Maximum chromosome-wide

−log10P values for a� and IMF in each of the analyzed half-sib sire families by using the

GridQTL program (URL:www.gridqtl.org.uk). (A) Twelve for the LK cross; (B) Five for the DK

cross. The chromosome-wide significance levels (1% for A; 5% for B) obtained from 10,000 per-

mutations are shown as horizontal lines. Numbers above the bar graph correspond to the most

likely chromosome position of QTL (cM). The numbers in the parentheses represent the number

of progeny in each sire family. The black triangles indicate the sire families segregating for QTL.

(TIF)

S8 Fig. Analysis of luciferase assay using the MYH3 promoter with various MRF combina-

tions. Reporter and MRFs constructs were electroporated in porcine fibroblast cells (MYH3
Luc, ‘empty’ vector cotransfected with MRF constructs). Luciferase activity of KNP (Q) was

compared with that of Landrace (q). TheMYH3 KNP (Q) promoter acts as a weaker repressor

than theMYH3 Landrace (q) promoter. Data histograms and error bars represent the mean

±standard error of three independent samples. ���P<0.001.

(TIF)

S9 Fig. Full blot figures. (A) Full blot figures of Fig 2E; (B) Full blot figures of Fig 3C; (C) Full

blot figures of Fig 3D.

(TIF)

S10 Fig. Regional P-value plots obtained from GRAMMAR based GWAS for a� and IMF.

The y-axis shows the −log10(P-value), and the x-axis shows the physical positions of the SNP

markers on the pig chromosome 12. The genome-wide significance threshold value is 5.90,

which equals Bonferroni’s correction of 5% (represented by the red horizontal lines). There

are lines to connect the pairwise LD structure with a black horizontal line representing the

488.1-kb critical region. The physical position of each SNP marker is demonstrated above the

LD plot. The � indicates the position ofMYH3 FSV. The magnitude of LD by r-square statistic

is shown. (A) For a� in the LK cross (n = 963); (B) For IMF in the LK cross (n = 962).

(TIF)

S1 Table. Messenger RNA sequence identification, Refseq name, and physical position

used for the phylogenetic analysis.

(DOCX)

S2 Table. Determination of QTL genotypes of F1 sires by marker assisted segregation anal-

ysis in LK and DK crosses (mean±standard error).

(DOCX)

S3 Table. Positions of overlapped putative FSVs located in predicted regulatory motifs in

the 488.1-kb critical region.

(DOCX)

S4 Table. Results of CAVIAR and eCAVIAR analyses using the Porcine60K BeadChip

chip variants in the 488.1-kb critical region.

(DOCX)

S5 Table. Allele frequency of the MYH3 FSV among pig populations.

(DOCX)
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S6 Table. Nucleotide diversities per base pair and Tajima’s D statistics by region and by

pig population, obtained from re-sequencing data.

(DOCX)

S7 Table. qRT-PCR primers for analysis of mouse muscle samples.

(DOCX)

S8 Table. qRT-PCR primers for analysis of muscle samples from pigs.

(DOCX)

S9 Table. List of antibodies used in this study.

(DOCX)

S10 Table. Resequencing data access information.

(DOCX)
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