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Abstract:  14 

The purpose of the article is to implement a holistic concept namely Quality by Design (QbD) 15 

approach for assessment of deep frying of potatoes chips. Critical quality attributes (CQAs), 16 

critical process parameters (CPPs) and quality target parameters (QTPs) were identified and 17 

measured all along the chips processing chain in 98 independent experiments. Temperature, 18 

time and oil quality usually used in the food industry were applied. Multilinear regression 19 

(MLR) was conducted to identify the variables (CQAs and CPPs) that could explain variation 20 

of the QTPs. An aggregation of significant QTPs was also performed in order to determine a 21 

single value that could express final products quality coupled to MLR analysis. It was possible 22 

to identify the main CQAs and CPPs that can explain the variation of some QTPs (colour a*, 23 

“flavour roast” sensory attribute, pentylfuran content and acrylamide content) as well as 24 

aggregated data. 25 

 26 
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1. INTRODUCTION 29 

Food consumer and retailer expectations are incessantly increasing, market requires safe and 30 

nutritious food that looks appetizing, tastes good, at an affordable price and with a minimal 31 

environmental impact. To achieve consistency in all the product properties the process 32 

conditions (path to endpoint or process signature) must also be kept under statistical control 33 

[Kourti, 2006]. However, food materials are complex biological matrices, and the variability 34 

introduced by the sequence of unit operations in food processing directly influences the 35 

compositional and sensorial properties as well as the safety and the shelf-life of the final food 36 

products. To reduce this variability, the strategies based on Quality Assurance can be quite 37 

effective but are expensive and not flawless (Chen et al., 2011).  38 

Therefore, the food producers must frequently manage poor repeatability of food quality 39 

attributes and batch failures; unsuitable or noncompliant batches must be discarded or reworked 40 

with high additional costs. To overcome these problems, the food industry is trying to shift to 41 

a novel holistic concept, the Quality by Design (QbD), which initially has been implemented 42 

by the pharmaceutical industry in 2004 by the United States Food and Drug Administration 43 

(FDA, 2004; Bakeev, 2010; van den Berg et al. 2013; Tajmmal Munir et al. 2015). The QbD 44 

hypothesis is that the quality of the food products should be incorporated during their 45 

development by precisely designing and controlling the process, and not by post-production 46 

quality testing (Rathore & Kapoor, 2017). Adoption of such innovative process concept can 47 

also give a broader view of the parameters to be optimized to ensure safe and high-quality food 48 

products (Cullen et al. 2014).  49 

Examples of QbD applications in the food industry are increasing, even if examples of real 50 

industrial during-production monitoring are rare in the scientific literature because it might 51 

reveal confidential product and process information. In many cases there is, however, a clear 52 



need to bridge the gap between the many promising scientific reports and actual use of these 53 

methods in the food industry (van den Berg et al. 2013; Panikuttira & O’Donnell 2018). 54 

Among the industrial food processes, deep-frying is a common, but complex, multifunctional 55 

unit operation for fast dewatering, texturing or cooking foods, which simultaneously involves 56 

heat and mass transfer. One of the most widespread fried products are the potato chips, whose 57 

production embraces different steps, such as washing and peeling of raw materials, slicing, 58 

blanching and dewatering, etc. Deep frying is considered the more critical step, because the 59 

quality and safety of the final fried products are influenced by many factors, such as the nature 60 

and composition of fried materials, the combination of processing time and temperature, the 61 

heating profile, the oxidation status of frying oil, etc. (Rojo & Perkins, 1987; Vitrac et al., 2003; 62 

González-Martínez et al., 2004; Chatzilazarou et al., 2006; Romani et al., 2009; Kalogianni et 63 

al., 2010; Zhang et al., 2012; Kalogianni et al. 2017). 64 

The main objective of the present study is to establish a Quality by Design approach in order to 65 

identify main quality parameters of the final products related with safety, taste and colour and 66 

to identified the useful quality and process parameters that can explain variation during 67 

production of deep-fried potatoes “chips”. Another objective is the evaluation of suitable data 68 

aggregation strategies that could predict the quality and safety parameters of the final product.  69 

 70 

2. MATERIAL AND METHODS 71 

 72 

2.1 Fresh potatoes and frying oils 73 

Homogenous 30 kg batches of potatoes (cultivar Agria) suitable for deep frying (Yang et al., 74 

2016) were provided by Frufesc (Disbesa Grup, Barcelona, Spain) during a period of 5 month 75 

(from October to February). Each batch was used to carry out five frying experiments during 76 



the same working day. The potato batch was randomly divided in 5 aliquots of 5 kg each, which 77 

were processed sequentially along the same working day. Commercial fresh and exhaust 78 

sunflower oil, commonly used in the industry were both provided by an industrial manufacturer 79 

of potatoes chips (Grupo Siro, Palencia, Spain). 80 

 81 

2.1 Frying equipment 82 

The frying process was carried out with a continuous fryer model Frymatic24 (Nilma S.p.a., 83 

Parma, Italy), with a maximum capacity of 40 kg/h, and equipped with an original Distribute 84 

Temperature Sensor (DTS) made by the Institute of Photonic Sciences (ICFO, Casteldefelds, 85 

Spain). The DTS probes were based on Fibre Bragg Gratings (FBG) written in two optical 86 

fibres. Each of the two probes consisted of five single FBGs, equi-spaced (15 cm) on the same 87 

optical fibre, protected by a stainless tube and connected only at one end, on an armoured patch-88 

cord terminated with a FC/UPC connector. Therefore DTS probes recorded simultaneously, 89 

each second, oil temperature in ten points along the frying tank (Figure 1). Temperature values 90 

recorded by the two probes in the same position along the tank were aggregated to define five 91 

temperature zones called E, M1, M2, M3 and Ex, where “E” zone corresponded to the entrance 92 

of the potatoes in the frying tank, and the “Ex” zone corresponded to the exit (Figure 1). Oil 93 

temperature was measured before starting (TOav) and during (TC°E, TC°M1, TC°M2, TC°M3 and 94 

TC°Ex) frying process. The average temperature of the oil (TC°av) was also calculated as the 95 

average of all the values recorded in the five zones at the same time. 96 

 97 

2.2 Frying experiments 98 

A specific design of experiment (DoE) was defined, based on 65 independent frying 99 

experiments for the calibration set and 33 independent frying experiments for the validation set. 100 



Independent variables considered in the DoE were: i) frying temperature (ranging from 150 °C 101 

to 175 °C; n = 5 levels), ii) time of frying (ranging from 150 to 180 seconds, n= 5 levels) and 102 

iii) oil quality (ranging from 100% fresh oil to 100% exhaust oil defined as used oil with a level 103 

of total polar material above 12%, n= 5 levels).  104 

For all the frying experiments the same protocol was followed, which included: i) washing of 105 

the fresh potatoes with cold water and peeling (potato peeler M5, Sammic S.L., Azkoita - Spain) 106 

ii) immersion of peeled potatoes in cold-water, iii) slicing (Robot Coupe CL50 with a 1 mm 107 

disk, Dijon, France), and iv) final washing with cold water (5 °C).  108 

Oil temperature and time of frying were precisely adjusted to the DoE by the controller of the 109 

continuous fryer. The frying tank was filled with 100 L of sunflower oil and oil quality was 110 

modified by mixing fresh with exhaust sunflower oil in established proportions according to 111 

the DoE. When oil reached the target temperature, a batch of about 4 kg sliced potatoes was 112 

loaded in the fryer. 113 

 114 

2.4 Process monitoring and sampling 115 

For each one of the 98 independents frying experiments (Calibration and Validation sets), nine 116 

CQAs of the raw material and nineteen CQAs (related to oil quality), were monitored during 117 

the frying process in addition to three critical process parameters (CPPs). Every day, before 118 

starting the frying experiments, ten potatoes were randomly selected from the potato batch, in 119 

order to assess the CQAs of the raw material before frying. Each sampled potato was cut in two 120 

halves; the first one was used to immediately measure the colour, the second one was divided 121 

in five aliquots, which were separately packed in multilayer PP-aluminium bags and 122 

immediately stored at -80 ºC.  123 



Oil samples were taken during each frying process with a stainless spoon; samples were 124 

immediately transferred in a 100 mL aluminium bottle (ISO Al 99.5; Bürkle, Bad Bellingen, 125 

Germany), refrigerated with liquid nitrogen and stored at -80 ºC for chemical analyses. 126 

After processing, and taking out the first kg of sliced potatoes to stabilize the fryer, an aliquot 127 

of chips was taken for each one of the frying experiments, then packaged in multilayer PP-128 

aluminium bags and immediately stored at -80 ºC for analysis of twelve QTPs (Quality target 129 

Parameters), including both chemical and sensorial parameters related with quality and safety. 130 

Average, standard deviation, maximum and minimum of all parameters (CQAs and CPPs) for 131 

calibration and validation sets are presented in table 1, while QTPs are presented in table 2. 132 

 133 

2.4.1 Colour measurement 134 

Instrumental colour parameters in fresh potatoes samples, before frying, were measured with a 135 

Konica Minolta chromameter Model CR-400 HS (Minolta, Tokyo, Japan) with an aperture of 136 

8 mm. In potatoes chips, after frying, a Konica Minolta chromameter Model CR-410 HS 137 

(Minolta, Tokyo, Japan) with an aperture of 50 mm was used. In both cases, the equipment was 138 

set up for illuminate D65 (2º observer angle) and calibrated using a standard white reflector 139 

plate. On the Model CR-400 HS, 5 points were measured for each samples while for the Model 140 

CR-410 HS, 3 measurements were taken in succession on a batch of chips. Readings were 141 

obtained applying the standard CIE 1976 L*, a* and b* (1976) colour system space. 142 

2.4.2 Total Soluble Solids Content  143 

Total Soluble Solids (TSS) content in fresh potatoes was determined by using a Quick Brix 144 

TM90 (Mettler Toledo GmbH, Giessen, Germany). Potatoes samples were smashed, and one 145 

drop placed on the refractometer glass, measurements were done in triplicate. 146 

2.4.3 Sugars Content  147 



Sucrose, Glucose and Fructose content in fresh potatoes were quantified by HPLC-RI following 148 

the method of Folgado et al., (2014). Briefly, fresh potato samples (4 grams) were homogenised 149 

and extracted two times with cold (-20 ºC) ethanol 95%. After centrifugation, an aliquot of the 150 

ethanolic fractions was evaporated with N2, re-dissolved in 0.5 mL of ultrapure water, 151 

membrane filtered (pore size 0.2 m) and injected in the HPLC system (20 L). 152 

Chromatographic separation was carried out with a binary pump 515 equipped with a 2414 153 

Refractive Index detector (Waters, Milford MA, USA) and an Aminex HPX-87C 300 x 7.8 mm 154 

column (Bio-Rad, CA, USA) thermostated at 80 ºC. Isocratic elution was carried out with 155 

ultrapure MilliQ® water (Merck KGaA, Darmstadt, Germany) at a flow of 0.6 mL/min., and 156 

quantification was made with an external calibration curve. 157 

 158 

2.4.4 Oil oxidation parameters  159 

Total Polar Material (TPM) in oil was quantified during frying with a cooking oil tester mod. 160 

270 (Testo, Lenzkirch, Germany). Results were express in percentage (%) of Total Polar 161 

Material. Data was collected in triplicate during each frying process. Peroxide Index, Acidity 162 

Index and p-anisidine value in frying oil were assessed with a FoodLab Fat system (CDR s.r.l, 163 

Florence – Italy) following the protocols and the reactants provided by the fabricant.  164 

 165 

2.4.5. Fatty acids profile 166 

Fatty acids profile in frying oil was analysed according to Mach et al. (2006). Fatty acid methyl 167 

esters (FAMEs) were obtained by following the ISO method 5509E (ISO 5509E, 1978) and 168 

analysed using an HP 5890 Series II gas chromatograph (Hewlett Packard SA, Barcelona, 169 

Spain). Individual fatty acids (FA) were identified by comparison of their retention times with 170 



those of pure standards. Quantification was made by using an internal standard calibration with 171 

glyceryl tritridecanoate. 172 

 173 

2.4.6. Volatile compounds 174 

Furan, acrolein, hexanal, pentylfuran and 2,4-decadienal in sunflower oils and chips were 175 

analysed by SPME-GC/MS with a 6850 Network GC system equipped with a 5975C VL MS 176 

axis detector (Agilent Technologies, Santa Clara, CA, U.S.A.) and a Combi Pal autosampler 177 

(CTC Analytics AG, Zwingen, Switzerland). One gram of sample was added with 1 µL of 178 

mixed internal standard solution (acrolein-13C and hexanal-d12, both at 100 mg/L in 179 

isopropanol) in a 10 mL glass vial, vortexed for 30 seconds and pre-incubated at 50 ºC for 2 180 

min at a speed of 500 rpm. A SPME DVB/CAR/PDMS fibre assembly (Supelco, Bellefonte -181 

USA) was used with an extraction time of 30 min and constant agitation at 40 ºC. The 182 

chromatographic separation was carried out on a DB-5MS column (30 m, 0.250 mm ID, 1.00 183 

μm film thickness; Agilent J&W GC Columns, Santa Clara CA, USA) with helium as carrier 184 

gas at a flow of 0.8 mL/min. Initial temperature of the oven was set at 33 ºC, then followed by 185 

a 2 ºC/min ramp up to 50 ºC, a 3 ºC/min ramp up to 72 ºC, a 6 ºC/min ramp up to 180 ºC and a 186 

10 ºC/min ramp up to 220 ºC. For quantification purposes, aliquots of samples were spiked with 187 

defined amounts of labelled (acrolein-13C and hexanal-d12) and unlabelled compounds in 188 

different mass ratios. The ratios of the area counts for the specific ions of the analytes and the 189 

labelled standards were plotted against the ratio of the corresponding concentrations, and the 190 

response factors were calculated according to Ewert et al. (2011).  191 

 192 

2.4.7 Acrylamide assessment 193 

Acrylamide was quantified in frying oil and chips by HPLC-MS. One gram of frying oil or 194 

potato chips were extracted following the protocol of Al-Taher (2012) based on Quechers. Ten 195 



L of the purified extracts were injected in the Agilent 1200 Series HPLC system, equipped 196 

with an Agilent 6100 Series Single Quadrupole MS detector (Agilent Technologies, Inc., CA, 197 

USA) and a reverse phase C18 column (2.1 i.d. x 100 mm, 3 m). Elution was carried out 198 

isocratically with mobile phase A (water: methanol:formic acid 97.4:2.5:0.1) at a flow rate of 199 

0.2 mL/min. MS detector was operated in positive electrospray ionization mode, and the ion 200 

with m/z = 72, corresponding to the [M-H]+ of the acrylamide, was monitored. Quantification 201 

was made considering the response of the ion with m/z = 75, corresponding to the molecular 202 

ion of the internal standard (acrylamide 13C-3).  203 

 204 

2.4.8 Quantitative Descriptive Analyses  205 

Five Sensory descriptors (“odour roast”, “flavour rancid”, “flavour roast”, “crunchy” and “oil 206 

mouth feel”) were generated by open discussion in two preliminary sessions by eight trained 207 

assessors.  A non-structured scoring scale was used, where 0 meant the absence of the descriptor 208 

and 10 meant the highest intensity of the descriptor. Sensory evaluation was performed for each 209 

session time in two sessions (per sampling time) using chips samples corresponding to a frying 210 

experiment. Samples were coded using three random numbers and presented to assessors. The 211 

first order and the carry-over effects were balanced according to MacFie et al., (1989). For each 212 

frying experiment, the average score of the assessors and sessions have been calculated.  213 

 214 

2.5. Modelling, Statistics and Aggregation 215 

2.5.1 Multilinear regression and statistic values 216 

Multilinear regression (MLR) coupled to a Step-Wise model (probability for entry: 0.1 and 217 

probability for removal: 0.1) was used to develop calibration models on the QTP values from 218 

65 experiments. Two parameters, coefficient of determination of calibration (R2
cal) and 219 



probability (Pr > |t|) for each explanatory variables (CQAs and CPPs) were reported. Models 220 

were determined using the XLSTAT Premium software version 2018.1 (Addinsoft, France). 221 

The different model gives also a predictive equation and a root mean square error of calibration 222 

(RMSEC).   223 

RMSEC =  √
1

M−1
× ∑ (yi

ref − yi)
2M

i=1   EQ.01 224 

Where: 225 

M is the number of samples 226 

yi
ref is the reference value for sample i 227 

yi is the predicted value for sample i 228 

The different models were tested on a validation set of 33 experiments and the quality of the 229 

models on each QTP values was assessed with the root mean square error of prediction 230 

(RMSEP), coefficient of determination (R2
val), Bias and range error ratio (RER): 231 

RMSEP =  √
1

M
× ∑ (yi

ref − yi)
2M

i=1    EQ.02 232 

Bias =
∑ (yi

ref−yi)M
i=1

𝑀
      EQ.03 233 

RER =  
ymax

ref −ymin
ref

RMSEP
     EQ.04 234 

Where: 235 

ymax
ref  and ymin

ref  are respectively the maximum and minimum values of the validation set  236 

2.5.2 Data aggregation 237 

The idea to aggregate QTPs parameters is to have only one data to describe the quality of our 238 

potatoes chips product using a mid-level fusion approach (Borràs et al. 2015). To do so a min-239 



max normalisation of selected quality target product profile was done using equation EQ. 05 240 

followed by the weighting of normalised data (y𝑖
𝑛𝑜𝑟𝑚) before calculation of the aggregated data 241 

(CDFi) with EQ. 06. 242 

y𝑖
𝑛𝑜𝑟𝑚 =  

(𝑦𝑖 −𝑦𝑚𝑖𝑛)

(𝑦𝑚𝑎𝑥−𝑦𝑚𝑖𝑛)
   EQ.05 243 

CDF𝑖 =  ∑ β𝑖×yi
normMN

i=1   EQ.06 244 

where M N is the number of selected QTPs, β𝑖 is the weight a number between 0 and 1 and 245 

have been selected by authors to give more importance to some QTP parameters. 246 

Four “negative” quality attributes, colour parameter a*, sensory descriptor “flavour roast”, 247 

acrylamide content and volatiles content pentylfuran content, have been selected to be 248 

aggregated. Four aggregated indexes CDFI1, CDFI2, CDFI3 and CDFI4 have been calculated 249 

using EQ. 06 and different weights βi. In the first aggregation CDFI1, all quality attributes had 250 

the same weight [0.25, 0.25, 0.25, 0.25]. For the second one CDFI2, the weights of volatile 251 

quality attribute have been reduced to 0.1 and the others increase to 0.3 in order to take more 252 

into accounts safety attribute and attributes related with consumer perception. For the third 253 

CDFI3 [0.2, 0.3, 0.4, 0.1] and fourth CDFI4 [0.2, 0.2, 0.5, 0.1] aggregation more emphasis was 254 

given to safety issues realty with acrylamide content. In the first aggregation index, CDFI1, all 255 

quality attributes [a*, roast, acrylamide, pentylfuran] had the same weight [0.25, 0.25, 0.25, 256 

0.25]. For the second index, CDFI2, the weight of pentylfuran content has been reduced to 0.1 257 

and the others increased to 0.3 in order to highlight safety (acrylamide content) and consumer 258 

perception. For the third CDFI3 [0.2, 0.3, 0.4, 0.1] and fourth CDFI4 [0.2, 0.2, 0.5, 0.1] indexes 259 

more emphasis was given to safety issues related with acrylamide content. Weights for a*, 260 

flavour roast, acrylamide and pentylfuran are [0.25, 0.25, 0.25, 0.25] for CDFI1, [0.3, 0.3, 0.3, 261 

0.1] for CDFI1, [0.2, 0.3, 0.4, 0.1], for CDFI3 and [0.2, 0.2, 0.5, 0.1] for CDFI4. A principal 262 



component analysis (PCA) has been carried out on the four quality parameters and the first 263 

PCA factor was retained as an additional aggregated index (PCA factor 1). 264 

 265 

3. RESULTS 266 

Table 1 shows the average, standard deviation, maximum and minimum values for the selected 267 

CQAS as well as for CPPs for the calibration and validation sets. Most of the CQAs display 268 

important standard deviations indicating substantial variations in the composition of the raw 269 

materials and deep frying conditions and, therefore, including in the predictive models sources 270 

of variations usually found in the real processes.  271 

 272 

3.1. Multilinear analysis on single QTPs parameters 273 

The coefficient of determination from calibration set (R2
cal), the root mean square error of 274 

calibration (RMSEC), the standardized regression coefficients and the p-values from the 275 

multilinear regressions calculation are presented in table 2. R2
cal gives the strength of a 276 

relationship between exploratory variables and QTPs and it is generally admitted (Moore et al. 277 

2013) that a coefficient above 0.7 indicates that the proposed model explains correctly the 278 

variation of the QTPs. Colour parameters a* and b*, sensory descriptors “Odour roast” and 279 

“Flavour roast” and volatile parameters hexanal and pentylfuran presented coefficients of 280 

determination above 0.7. Others QTPs such as sensory descriptor “Flavour rancid”, acrylamide 281 

content and 2.4 decadienal content, showed R2
cal between 0.5 and 0.7, indicating that the 282 

predictive models do not explain completely their variations. L*, sensory descriptors “crunchy” 283 

and “oil mouth feel” had R2
cal below 0.5, indicating that our models do not explain their 284 

variation. Table 2 shows that, out of 29 explanatory variables, 2 to 8 have been retained to 285 

explain the variation of each QTPs. On the opposite, 7 explanatory variables (Fructose content, 286 



reducing sugars content, TPM, p-anisidine value, fatty acid (FA) 18:2 cis-9 trans-12, ∑FA ɯ6, 287 

∑FA trans and monosaturated fatty acids or MUFA) have not been retained by none of the 288 

models to explain variation of the QTPs and were discarded.   289 

MLR models describing QTPs a* and b*, retained respectively 4 and 8 exploratory variables 290 

related with raw materials, oil quality, volatile, fatty acids, variables related with oil temperature 291 

and process time. For sensory descriptors “odour roast” and “flavour roast”, 5 and 4 explanatory 292 

variable were respectively retained, related with Sucrose content, L*, hexanal content, saturated 293 

FA, oil temperature TC°E and time. For acrylamide content, the MLR model retained 4 294 

explanatory variables related with red colour, volatile, ratio ɯ6/ɯ3 and TC°E oil temperature. 295 

For QTPs volatiles pentylfuran and 2.4 decadienal, MLR model did not retain any explanatory 296 

variable of raw materials, but it retained oil quality parameters, volatile parameter, Saturated 297 

FA and TC°E oil temperature for the first. For QTP 2.4 decadienal only 4 explanatory variables 298 

related with oil quality, volatiles and fatty acids. For QTP hexanal, 3 explanatory variables are 299 

related with raw materials and 4 with oil characteristics (volatile and fatty acids).  300 

In 5 of the 6 QTPs with a R2
cal above superior to 0.7, exploratory variables related with CPPs 301 

have a positive standardized regression coefficients indicating that an increase of temperature 302 

or time will increase the different QTPs. Only sensory descriptor “flavour rancid” presents a 303 

negative standardized regression coefficient for the exploratory variables TC°av. Considering 304 

raw materials and oil exploratory variables, positive and negative standardized regression 305 

coefficients have been calculated  by the model for QTPs a*, b*, “odour Roast”, “flavour 306 

rancid” and “flavour roast”. For volatiles, all QTPs present positive standardized regression 307 

coefficients indicating that an increase of all exploratory variables will lead to an increase of 308 

the volatiles in the chips. For acrylamide content, an increase of exploratory variable a* will 309 

lead to an increase of acrylamide content while an increase of hexanal and ratio ɯ6/ɯ3 will 310 

have the opposite effect.  311 



 312 

3.2 Prediction with multilinear models 313 

Multilinear model have been used to predict the evolution of selected QTPs with a validation 314 

set of 33 experiments. Quality parameters of the prediction are reported in table 3. Taking into 315 

account colour parameters of the potatoes chips, only a* presents a coefficient of determination 316 

of validation (R2
val) superior to 0.7. For colour parameter b*, results are disappointing with R2

val 317 

below 0.5. Models for the sensory descriptors “odour roast” and “flavour rancid” have a R2
val 318 

between 0.6 and 0.7, and “flavour roast” has a R2
val above 0.7. For the acrylamide content, when 319 

2 outliers are removed from the analysis, R2
val are between 0.5 and 0.7. Concerning the volatile 320 

parameter hexanal, the step-wise model give a R2
val below 0.5, while for volatile parameters 321 

pentylfuran and 2-4 decadienal, R2
val are between 0.5 and 0.7. 322 

To summarise, only 2 QTPs (a* and “flavour roast”) have a R2
val above 0.7, while others 5 323 

(“odour roast”, acrylamide content; hexanal, pentylfuran and 2.4-decadienal) have a R2
val 324 

between 0.5 and 0.7. The quality of the models could also be provided by the RER parameters. 325 

The QTP acrylamide gives a value of RER of 5.0, while our best predictive models were 326 

obtained for sensory descriptors “flavour rancid” and “odour roast” with a respective RER of 327 

6.9 and 6.6. The best RER values ranged between 4.0 and 10.0 indicating that our models have 328 

a performance corresponding to screening target (AACC Method 39-00.01). 329 

 330 

3.3 Aggregation of QTPs parameters 331 

The contribution of each QTPs to the first PCA factor was 37.2% for a*, 27.8% for “flavour 332 

roast”, 27.4% for acrylamide content and 7.6% for pentylfuran. Multilinear regression analyses 333 

were conducted on different aggregated indexes and results on the calibration set are shown in 334 

Table 4.  R2
cal is above superior to 0.7 for 3 of the 4 indexes, CDFI4 being the exception with a 335 



value of 0.692, and for the first PCA factor, thus indicating that our models can explain the 336 

variation of aggregated chips quality parameters. It can be noted that, an increase of the weight 337 

of acrylamide content in aggregated indexes, had the effect to reduce R2
cal. Number of 338 

explanatory variables retained by the MLR model have been reduced to 7: a* in CDFI2, CDFI3 339 

and CDFI4; b* in only one case (CDFI1), when all selected QTPs have the same weight; glucose 340 

content in only one case (CDFI4), when the weight of acrylamide content has been set up at 0.5; 341 

hexanal volatile content of the oil in CDFI2, CDFI3 and CDFI4; ɯ6 content of the oil in only one 342 

case (CDFI1); MUFA in CDFI2 and CDFI3; Oil temperature TC°E in all aggregated index. It is 343 

significant that all oil quality parameters (TPM, acidity, p-anisidine and peroxide value) have 344 

been discarded by the model as well as Time. All standardized regression coefficients of oil 345 

temperature TC°E are positive as well as MUFA and a* and glucose when they are retained by 346 

the model. On the contrary, b*, hexanal and ɯ6 present a negative standardized regression 347 

coefficients when they are retained. 348 

Models have been applied to the validation data set to explain the variation of our aggregated 349 

indexes (table 5). Predictive results of the variation of CDFI1, CDFI2 and CDFI3 are encouraging 350 

with R2
val between 0.668 and 0.728. RER values are between 6.2 and 7.8, indicating a 351 

performance target corresponding to screening target. Although first PCA factor shows the best 352 

coefficient of determination of validation R2
val with one outlier, the aggregated index CDFI2 353 

explained by the Step-Wise model seems to be a good option (Figure 2).  Model for the 354 

aggregated index CDFI2 used only 4 explanatory variables (colour a*, hexanal content, MUFA 355 

and oil temperature TC°E), had a R2
val of 0.718 and no outliers in the validation set.  356 

 357 

4. DISCUSSION 358 

In order to define the final chips product a total of 12 QTPs, including 3 colour parameters, 5 359 

sensory attributes, 3 volatiles parameters and acrylamide content, have been used. Usually, 360 



research works evaluate the impact of some processing parameters on single compounds, like 361 

the acrylamide content (Zhang et al. 2015) or texture and oil intake in the potatoes (Pedeschi et 362 

al. 2005) but few had a more global approach (Yang et al 2016; Santos et al. 2018).  363 

In the present study only results from MLR algorithm are presented even if non-linear 364 

algorithms (Random forest regression and log-linear regression models) have been tested on 365 

our dataset. Results of non-linear algorithms have proven to be disappointing. The limited 366 

number of independent experiments seems to be a limiting factor to use such non-linear 367 

approaches. 368 

Our results show that colour parameters L* and a* had a significant variation that can be 369 

explained by CPPs parameters such as the average oil temperature. Yang et al. (2016) had have 370 

compared the evolution of colour of potatoes strips retrieved issue from Agria, Kennebec and 371 

Red Pontiac cultivars regarding oil temperatures and frying time 190°C / 160 s, 170°C / 240 s, 372 

150°C / 330 s. In contrast with our results, few colour variations of the final products have been 373 

measured for Agria cultivar, much more have been detected for the other two cultivars. 374 

Pedreschi et al. (2005) proved that the oil temperature and time of frying is related to the colour 375 

a* parameter of the potato and the acrylamide formation. Our predictive results for acrylamide 376 

are lower than expected but some positive points could be extracted. Yang et al. (2016) 377 

established that the correlations between selected studied factors of raw materials (such as 378 

asparagine, fructose, glucose, sucrose, reducing sugar, oil uptake, colour L*, colour b* and 379 

shear force) were significant to explain the acrylamide content in the final product. Some of the 380 

parameters have been measured in our study and the explanatory variables colour a*, hexanal 381 

content, ratio ɯ6/ɯ3 and average frying temperature have been used by the MLR model to 382 

explain and predict the variation of acrylamide content. Our study, as a new approach, took into 383 

account sensory attributes, because chip taste is related with Maillard reactions, which is the 384 

main responsible for the formation of acrylamide (Lee & Shibamoto, 2002). However, no clear 385 



relationship (R2<0.5) could be found between measured acrylamide content and sensory 386 

descriptors or other compositional parameters of potatoes chips. Even if such results are in 387 

discrepancy with finding of Pedreschi et al. (2005), it should be pointed out that a different 388 

cultivar was used (Agria versus Panda) and that our experiment was carried out with a 389 

continuous semi-industrial fryer and using oil at different degree of oxidation to mimic the 390 

industrial condition. On the other hand, formation of acrylamide involves complex mechanism 391 

reactions that probably the CQAs and CPPs included in the model cannot describe completely 392 

(Purlis, 2010).  393 

Aggregated indexes with different QTPs parameters describing potatoes chips characteristics 394 

have also been analysed, in order to predict a global potatoes chips quality. In food science, low 395 

and mid-level data fusion have been undertaken for a wide range of applications such as quality 396 

parameters correlation, sensory properties assessment, cultivar selection or origin 397 

authentication (Borras et al., 2015). In our case, four parameters describing potatoes chips have 398 

been used, and different weight has been given to acrylamide content. Using aggregated data 399 

indexes a compromise have been found between the need to obtain safe products with lower 400 

acrylamide contents, but taking into accounts the sensory profile. Whatever the aggregated 401 

index selected to obtain the "best product", within the experimental domain here studied and 402 

with our frying equipment, we should use fresh potatoes with highest intensity of yellow/green 403 

colour (highest b* and lowest a* values) and the lowest frying oil temperature (150 ºC). As time 404 

did not appear as an explanatory variable in aggregated indexes, we could use the shortest time 405 

(150 seconds) to achieve the maximum production efficiency. If we consider CDFI4, which 406 

gives more importance to acrylamide content, fresh potatoes with the lowest glucose content 407 

should be selected. MUFA, hexanal and ɯ6 oil contents are indicators of the oil quality. The 408 

variation of these parameters with respect to those of the fresh oil could be used to establish the 409 

oil turnover, which will depend on the aggregated index selected. 410 



In the present work, online measurements were possible for some of the attributes, such as 411 

colour parameters (L*, a* and b*) in raw materials, oil quality (TPM) and process parameters 412 

(time and temperature), but others key parameters (sugar content of raw materials, volatiles, 413 

fatty acids) were analysed off-line at laboratory scale. So, future improvements of Quality by 414 

Design approach are also strictly linked to the implementation of suitable online analytical 415 

methods for a comprehensive monitoring of the process. 416 

 417 

5. CONCLUSION 418 

The Quality by Design approach has been used to identify the main quality and process 419 

parameters that can be modified for the production of deep-fried potatoes “chips”. To conduct 420 

processing, specific target parameters related with sensory descriptors could be predicted with 421 

MLR models with some accuracy by measurement of few explanatory variables related with 422 

potatoes brightness, oil volatile, saturated fatty acid and oil temperature, but for safety issues 423 

such as acrylamide content the predictive models are far from satisfactory. A general aggregated 424 

index incorporating 4 different quality parameters of the chips can be predicted with a 425 

reasonable accuracy, and can be used to establish the optimal process conditions. They are still 426 

a number of complex mechanisms and factors to be identified that can influence the quality 427 

parameters of potatoes chips. The work had shown the need of further studies to explore the 428 

data fusion strategies for quality parameters of the final products to define single parameter that 429 

can be easily predicted and still full fit the goal to optimise sustainable processing.  430 
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Table 1: Mean ±standard deviation (SD), maximum and minimum of the different critical quality attributes (CQAs) and Quality Process Parameters (CPPs) measured for the calibration 

set (N=65) and Validation Set (N=33). TPM stands for total polar materials; FA stands for fatty acid; MUFA stands for monosaturated fatty acids; PUFA stands for polysaturated fatty 

acids.  

  Calibration Set (N = 65)  Validation Set (N=33) 

  Mean Max Min  Mean Max Min 

P
o

ta
to

es
 C

Q
A

s 
L*(CIELAB) 66.4 ±1.1 68.5 62.7  66.4 ±1.6 68.5 62.7 

a*(CIELAB) -3.6 ±0.8 -2.7 -5.6  -3.6 ±0.9 -2.7 -5.6 

b*(CIELAB) 14.4 ±5.0 25.1 10.2  14.4 ±5.4 25.1 10.2 

TSS (°Brix) 1.8 ±0.3 2.5 1.2  1.8 ±0.4 2.5 1.2 

Sucrose (mg/100L) 575 ±157 759 217  633 ±124 759 217 

Glucose (mg/100 L) 215 ±128 500 26  236 ±146 500 26 

Fructose (mg/100 L) 299 ±60 447 198  319 ±64 447 198 

O
il

 C
Q

A
s 

TPM (%) 8.6 ±3.6 15.1 1.1  8.3 ±3.6 14.3 1.7 

Acidity index (%) 0.30 ±0.22 0.81 0.03  0.26 ±0.19 0.73 0..04 

p-anisidine value 14.2 ±15.3 46.9 0.5  13.3 ±15.7 48.6 0.5 

Peroxide index (meqO2/kg) 4.8 ±2.8 14.5 1.0  4.2 ±2.2 10.4 1.2 

Acrolein (ppb) 499 ±245 1205 150  548 ±237 1017 155 

Furan (ppb) 38 ±28 139 1  35 ±25 133 4 

Hexanal (ppm) 2.15 ±0.77 5.21 0.59  2.26 ±0.78 4.40 1.24 

Pentylfuran (ppm) 1.71 ±0.68 3.69 0.12  1.76 ±0.81 5.10 0.51 

2,4-decadienal (ppm) 137 ±96 445 0  158 ±115 553 23 

FA 18:1 trans ɯ9 (%) 0.13 ±0.08 0.28 0  0.11±0.07 0.27 0.00 

FA 18:2 cis-9 trans-12 (%) 0.07 ±0.02 0.16 0.04  0.07±0.01 0.09 0.02 

FA 18:2 trans-9 cis-12  (%) 0.07 ±0.01 0.11 0.05  0.07±0.01 0.10 0.04 

∑FA ɯ6 (%) 8.4 ±1.1 10.0 6.5  8.5 ±1.0 9.8 6.5 

∑FA trans (%) 0.27 ±0.07 0.41 0.13  0.25 ±0.07 0.38 0.14 

Ratio ɯ6/ ɯ3 152 ±64 414 40  147 ±56 229 26 

∑FA ɯ3 (%) 0.06 ±0.03 0.24 0.02  0.07 ±0.05 0.32 0.04 

Saturated FA (%) 9.3 ±0.2 9.8 8.9  9.3 ±0.3 9.8 8.8 

MUFA (%) 82 ±1 84 80  82 ±1 84 80 

PUFA (%) 8.4±1.1 10.0 6.5  8.5 ±1.0 9.9 6.6 

C
P

P
s 

Time (s) 164 ±10 180 150  164 ±10 180 150 

TC°av (°C) 159 ±7 172 147  158 ±8 172 147 

TC°E (°C) 157 ±7 170 142  156 ±8 169 144 

  



Table 2: Standardized regression coefficients and p-value (Pr > |t|) in parenthesis of the F statistic from an analysis of variance (ANOVA) and coefficient of determination R2
cal , Root Mean 

Square Error of calibration (RMSEC) of the multi linear regression (MLR) using the model Step-wise (probability for entry: 0.1 and probability for removal: 0.1) for the different QTPs of 

potatoes chips. FA 18:2 trans(2) stands for FA 18:2 trans-9 cis-12; FA stands for fatty acid; PUFA stands or polysaturated fatty acids. 

Quality Target Parameters (QTPs) of potatoes chips 

  Colour Sensory Safety Volatiles 

  L*(CIELAB) a*(CIELAB) b*(CIELAB) Odour Roast Flavour rancid Flavour Roast Crunchy Oil Mouth feel Acrylamide Hexanal Pentylfuran 2.4decadienal 

R2
Cal 0.375 0.711 0.739 0.777 0.633 0.764 0.439 0.480 0.539 0.729 0.755 0.642 

RMSEC 3.6 1.4 1.7 0.7 0.7 0.8 0.5 0.6 0.68 ppm 99 ppb 82 ppb 10 ppm 

L*(CIELAB)      0.12 (0.066)  0.33 (0.004)  0.26 (0.004)   

a*(CIELAB)         0.46 (<0.001)    

b*(CIELAB)  -0.20 (0.037) 0.51 (< 0.001)          

TSS   -0.17 (0.020)     -0,23 (0.031)  -0.22 (0.010)   

Sucrose     -0.17 (0.056) -0.16 (0.070)     -0.35 (<0.001)   

Glucose  0.39 (< 0.001)   0.39 (<0.001)        

Acidity   -0.49 (<0.001)    -0.45 (< 0.001) -0.28  (0.095)   0.36 (0.006)  

peroxide           0.16 (0.089) 0.21 (0.018) 

Acrolein   -0.17 (0.042)     -0.22 (0.034)     

Furan    -0.32 (0.002) -0.30 (0.024) -0,14 (0.039) 0.18 (0.093)      

Hexanal 0.41 (<0.001) -0.19 (0.017)     0.26 (0.009)  -0.35 (<0.001) 0.20 (0.028)  0.37 (< 0.001) 

Pentylfuran     0.36 (0.007)     0.43 (< 0.001) 0.47 (< 0.001)  

2.4-decadienal          -0.21 (0.013)  0.30 (0.001) 

FA 18:1 trans 

ɯ9 
   0.21 (0.043)    -0.36 (0.320)     

FA 18:2 trans(2)          0.33 (<0.001)   

∑FA trans             

Ratio ɯ6/ ɯ3         -0.21 (0.063)   0.30 (0.001) 

∑FA ɯ3   0.17 (0.025)  -0.20 (0.037)        

Saturated FA      -0,16 (0.020)     0.33 (< 0.001)  

PUFA   -0.34 (0.015)          

Time (s)   0.14 (0.063) 0.13 (0.083) 0.20 (0.027)        

TC°av (°C)   0.40 (< 0.001)  -0.44 (< 0.0001)  0.42 (< 0.0001)      

TC°E (°C) -0.48 (< 0.001) 0.79 (< 0.001)  0.77 (< 0.001)  0.83 (< 0.001)   0.54 (< 0.001)  0.23 (0.002)  

 

 



Table 3: Validation of the different models used to explain the variability of selected QTPs. Nv: number of experiments from the validation set; R2
Val: coefficient of determination of the 

validation set; RMSEP: root mean square error of prediction; Bias: model bias; RER: range error ratio. 

QTPs Nv R2
Val RMSEP Bias RER 

a*(CIELAB) 33 0.789 1.6 0.0 5.1 

b*(CIELAB) 31 0.316 2.5 -0.4 4.8 

Odour Roast 32 0.656 0.8 0.0 6.4 

Flavour Rancid 33 0.614 0.7 0.0 6.9 

Flavour Roast 33 0.736 0.9 0.0 6.6 

Acrylamide (ppm) 31 0.520 0.9 0.0 5.0 

Hexanal (ppb) 32 0.319 137 13 4.1 

Pentylfuran (ppb) 32 0.613 91 25 5.7 

2.4decadienal (ppm) 32 0.514 10 1.4 5.5 

 

 

 

 

 

 

 

 

 



Table 4: Standardized regression coefficients and p-value (Pr > |t|) in parenthesis of the F statistic from an analysis of variance (ANOVA) and coefficient of determination R2
cal , Root Mean 

Square Error of calibration (RMSEC) of the multi linear regression (MLR) using the model Step-wise (probability for entry: 0.1 and probability for removal: 0.1) for PCA factor 1 and 

aggregated indexes CDFI1, CDFI2, CDFI3 and CDFI4. MUFA stands for monosaturated fatty acids 

 CDFI1 CDFI2 CDFI3 CDFI4 

R2
Cal 0.778 0.747 0.719 0.692 

RMSEC 0.08 0.09 0.09 0.10 

a*(CIELAB)  0.29 (<0.001) 0.33 (<0.001) 0.39 (< 0.001) 

b*(CIELAB) -0.27 (0.001)    

Glucose    0.23 (0.010) 

Hexanal  -0.16 (0.028) -0.19 (0.015) -0.25 (0.002) 

∑FA ɯ6 -0.37 (< 0.001)    

MUFA  0.24 (0.003) 0.21 (0.010)  

TC°E 0.81 (< 0.001) 0.84 (< 0.001) 0.82 (< 0.001) 0.81 (< 0.001) 

 

 

 

 

 

 

 

 



 

Table 5: Validation of the different models used to explain the variability of PCA factor 1 and aggregated indexes (CDFI1, CDFI2, CDFI3 and CDFI4). Nv: number of experiments from the 

validation set; R2
Val: coefficient of determination of the validation set; RMSEP: root mean square error of prediction; Bias: model bias; RER: range error ratio. 

 Nv R2
Val RMSEP Bias RER 

PCA factor 1 32 0.747 0.84 -0.07 7.1 

CDFI1 32 0.728 0.09 0.00 6.9 

CDFI2 33 0.718 0.11 -0.01 6.6 

CDFI3 33 0.668 0.12 0.00 6.2 

CDFI4 32 0.650 0.14 0.00 5.5 

 

 

 

 

 

 

 

 

 

 



 



 




