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Abstract 

 

    Seed ordering and selection is a key technique to 
provide high-test quality with limited resources in Built-In 
Self Test (BIST) environment. We present a hard-to-detect 
delay fault selection method to optimize the computation 
time in seed ordering and selection processes. This 
selection method can be used to select faults for test 
generation when it is impractical to target all delay faults 
resulting large test pattern count and long Computation 
time. Three types of selection categories are considered, 
ranged in the number of seeds it produced, which is useful 
when we consider computing resources, such as memory 
and storage. We also evaluate the impact of the selection 
method in mixed-mode BIST when seed are expanded to 
more patterns, and evaluate the statistical delay quality 
level (SDQL) with the original work. Experimental results 
show that our proposed method can significantly reduce 
computation time while slightly sacrificing test quality.   
 
1. Introduction 
 
    New challenges emerge for testing field engineering, as 
VLSI technologies are scale down to nanometer. This 
leads to the increasing probability of timing-related defects 
to occur. Small Delay Defects (SDDs), which caused by 
resistive opens, resistive shorts and some other process 
variations might significantly impact the overall product 
quality especially for the 45nm scales and below when the 
sensitized path is a critical path. Thus, serious 
consideration are growing rapidly in targeting these SDDs 
to minimizes the test escape rate as well as improves 
defect coverage in some extend of in-field reliability [1]. 
In order to detect SDDs, propagation through long path is 
required in test application, since the minimum slack that 
such a small delay produced cannot exceed the slack in 
shorter paths. However, Traditional Automatic Test 
Pattern generation (ATPG) tools tend to generate a pattern 
sequences that targets the fault along the path that has the 
largest timing slack, which is the short path [2]. 

Therefore, commercial timing-aware ATPG tools, e.g.,  
Synopsys TetraMAX have been developed to overcome 
the lack of coverage of traditional timing-unaware ATPGs 
[3].  In spite of the ability to targets each undetected fault 
along paths with minimal timing slack, they result in 
significantly large CPU runtime and pattern count. This 
means increasing in manufacturing cost and resources, and 
it is not practical to apply for the testing environment 
where the specification is limited. To avoid the high cost 
and complexity during testing, novel method are required 
to reduce the pattern count but effectively target SDDs. 

Seed ordering algorithm based on exploiting the 
algebraic properties of the pseudorandom pattern generator 
(PRPG) to increase the number of patterns generated from 
one seed, can be efficient method to reduce the seed 
storage [4]. LFSR reseeding –based BIST was first 
introduced by Koenemann in [5] as a technique for coding 
test patterns into PRPGs. In terms of targeting SDDs the 
proposed method in [6] considered the test compression 
for seed selection problem in LFSR-reseeding-based BIST, 
however it only utilized one seed for one pattern, or 
deterministic pattern in the compression method. Since, we 
can apply some pseudo-random patterns combined with 
deterministic patterns (mixed-mode BIST), more seeds can 
be reduced and there is a chance that the patterns will 
increase the detection coverage of SDDs. Recent seed 
ordering and selection method, proposed by Yoneda et al. 
[7] selects seeds based on the gain in the sum of the 
longest path lengths sensitized by seeds, which is 
correlated with statistical delay quality level (SDQL). 
Experiment results show that this method can obtain 
significant seed count reduction under several mixed-mode 
BIST approaches. Yet, the method is still considered to be 
time consuming, since it generated all patterns from the 
fault list, which later encoded into seeds. This is why we 
need another solution considered test time constraints as a 
compromise between the SDQL and the resources. 
 
2. Statistical Delay Quality Level  (SDQL) 
 

We applied statistical delay quality level (SDQL) 
proposed by Sato et al, in [8]. SDQL is modeled in 
measurable indicator of delay quality. Let f  be a delay 
fault at some signaled f  line. Let Tf

mgn denote the 
difference between system clock timing and the length of 
the longest path passing through f, and Tdet denote the 
difference between test timing and the length of the longest 
sensitized path passing through f  by a given test set. Let 
F(s) be a delay defect distribution. SDQL represents the 
amount of delay defects escaped to be detected by the test 
set, and can be expressed by: 

 

 𝑆𝐷𝑄𝐿 = 𝐹 𝑠𝑇𝑑𝑒𝑡
𝑓

𝑇𝑚𝑔𝑛
𝑓                                               (1) 

 
Since, the SDQL show the amount of test escape, we 

tried to reduce the value during testing.  
  
3. Seed Ordering  
 

The seed ordering proposed in [7] uses the sum of the 
longest sensitized path lengths for all the faults. First, for 
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each fault, the length of the longest path sensitized by each 
seed is obtained.. Let 𝑙!!" and 𝑙!! be the length of the longest 
path sensitized by the pseudo-random pattern which is 
expanded from seed set St and seed S for a fault f. Sum of 
the longest sensitized path length for the expanded patterns 
from S is denoted by Ls. Then, the sum of the longest 
sensitized path lengths when S is added to St is obtained as 
follows. 

 

𝐿!"!{!}   = 𝐿! + 𝑚𝑎𝑥 𝑙!!" − 𝑙!!, 0!∈!                             (2) 

Then, the Gain is calculated as LSt+{S} – Ls. Gain is 
calculated for each seed S in the base seed set St. Seed with 
the largest Gain values will be removed from the base seed 
set Sbase and included in the ordering set St. Fault 
simulation is applied for each seed to obtained 𝑙!!. The first 
seed that is selected into the ordering set is selected based 
on SDQL. However, the remaining seeds will be selected 
based on the Gain values. 
 
4. Proposed Hard-to-detect Fault Selection 
 
In this section, we describe the proposed hard-to-detect 
fault selection method. These kinds of faults are faults with 
relatively detected by few test patterns. It is very important 
in order to save computation time on the timing-aware 
ATPG. Since, it wasted a lot of time in sensitized faults 
that do not contribute to SDDs coverage resulting in a 
large number of test patterns. Furthermore, a large number 
of faults mean a large number of long paths to sensitize. 
Therefore, our idea is to reduce the number of faults for 
generating patterns in timing-aware ATPG. 
The proposed method selects faults based on detection 
count constraint. We set h values as 1, 3, and 5, in other 
words in fault simulation, we count the number of times 
that a fault is detected by pattern set and create subsets of h 
(up to 1 time, 3 times, and 5 times). Then, for each fault 
that is falls into these categories will be included. The fault 
selection procedure is as follows:  
1. Generates patterns based on transition fault model 

with all faults set. 
2. Run fault simulation using the above patterns. 
3. Create subsets of fault list based on h as result of 

fault simulation. 
Furthermore, the hard-to-detect subset fault list will be 
used in the timing-aware ATPG to generate patterns for 
targeting SDDs. Therefore it can generate faster since the 
fault list base is reduced.  
 
5. Experimental Results 
5.1 Seed Ordering 
 

In order to evaluate the effectiveness of our proposed 
method, we conducted experiments using several ITC ’99 
benchmark circuits. Table 1. Show the characteristics of 

the circuits used in the experiments. 
Table 1. Characteristics of benchmark circuit 
Circuit #gates #FFs B in F(t) 

b15 8985 417 1.19 
b17 27766 1317 1.19 
b18 79400 3020 0.71 
b19 152599 6042 0.71 

 
Synopsis TetraMAX ATPG with Small Delay Defect 

Test mode were used with provided delay defect 
distribution function F(t) in order to calculate SDQL 
values with the following equation. 

 
𝐹 𝑡 =   𝐴   ∙   𝑒!!" + 𝐶                                                            (3) 
 

We set A, and C to 1 and 0 respectively, then calculated 
B so that function of system clock timing of the circuit, 
F(TMC) = 0.1 holds. The calculated values of B are shown 
in the Table 1. 
 
Table 2. Fault base set for generation pattern 

Circuit #Faults 
h-1 h-3 h-5 original 

B15 3,930 6,423 7,245 17,329 
B17 15,868 25,942 29,062 65,218 
B18 39,265 60,812 67,453 172,403 
B19 78,454 121,472 134,392 353,301 

 
To evaluate the test quality of our proposed method in 

the ordering process, we compare hard-to-detect fault 
selection base with three different constrains (h-1, h-3, and 
h-5) to the original work which included all fault in the 
patterns generation. The fault base set after the selection 
process applied is shown in table 2. Test patterns with 
unspecified bits (X’s) are generated by timing-aware 
ATPG using the faults in table 2, then these patterns 
encoded into a base seed set. We can see in the results, the 
selection method significantly reduced the number of 
faults, which mean less number of long path to sensitized. 

Seed generation results are shown in Table 3. “#schains” 
denote the number of scan chains and the seed coverage 
which is the ratio of the number of the encoded seeds to 
the number of the generated patterns. For the base seed 
sets in the Table 3, we compared the proposed hard-to-
detect fault selection method with the original methods 
targeting all faults during fault simulation. The number of 
expanded patterns from seed Sii is set to 1 (d =1) for all 
seeds in the base seed set. We can observe that the 
proposed method obtained significant reduction in the 
number of seeds compared to original methods. Figure 2 
shows the SDQL transitions using the selection categories 
compare to the original. We can observe from the figures 
that our proposed method even with smaller number of 
seed can obtained effective SDQL coverage. Thus, we 
have to sacrifice SDQL coverage varied among the 
selection categories 
 
 

 
 
 
 



 

 

 
Table 3. Seed generation results for timing-aware patterns 

Circuit BIST Architecture #patterns #seeds 
#LFSR #schains h-1 h-3 h-5 original h-1 h-3 h-5 original 

B15 96 8 490 543 568 727 478 528 553 700 
B17 240 26 735 935 978 1,375 706 891 931 1,319 
B18 384 60 1,479 1,690 1,760 3,293 1,415 1,609 1,689 3,129 
B19 608 120 2,006 2,681 2,908 6,131 1,906 2,560 2,784 5,850 

 
 
 
 
 
 
 
 
 
 
                   
 

(a) b15                                                                                  (b) b17                                     
 
 
 
 
 
 
 
 
 
 
 
 
(c) b18                                                                                     (d) b19 

Figure 2. SDQL transition of the ordered seeds from the proposed selection and original  
 

Table 4. Seed ordering results for different mixed-mode BIST 
Circuit Type d SDQL Ordering Computation time (m) 

h-1 h-3 h-5 original h-1 h-3 h-5 original 
b18 I 1 34,894.94 34,165.45 33,789.73 32,510.24 6.21 7.14 7.66 13.48 

2 34,735.76 34,030.25 33,665.68 32,428.76 9.49 10.87 11.78 20.77 
4 34,556.28 33,866.16 33,516.78 32,315.38 17.14 19.72 21.02 37.95 
8 34,390.90 33,731.80 33,389.95 32,203.47 34.34 39.71 41.66 76.41 

II 1024 34,685.55 34,012.80 33,640.54 32,426.86 10.09 11.13 11.31 17.24 
2048 34,600.98 33,937.69 33,564.83 32,384.50 14.12 15.06 15.50 21.15 
4096 34,483.89 33,819.18 33,462.49 32,323.50 21.96 22.88 23.30 28.94 

III 1024 34,599.11 33,943.39 33,575.58 32,387.12 13.92 15.04 15.48 21.15 
2048 34,477.68 33,831.20 33,478.04 32,324.42 21.79 22.90 23.34 29.63 
4096 34,330.71 33,687.38 33,351.41 32,232.54 37.73 38.88 39.23 46.09 

b19 I 1 74,077.77 72,316.43 72,123.42 68,274.49 17.27 22.99 25.01 50.70 
2 73,755.27 72,093.86 71,891.89 68,156.53 27.73 37.09 39.72 80.03 
4 73,406.32 71,798.39 71,595.62 67,944.48 51.51 68.79 74.57 153.38 
8 73,050.98 71,530.23 71,310.90 67,688.74 103.17 139.48 151.21 315.89 

II 1024 73,772.55 72,077.48 71,913.30 68,137.08 26.23 31.77 32.49 58.94 
2048 73,592.33 71,950.11 71,786.90 68,069.92 35.03 40.34 42.32 68.00 
4096 73,338.09 71,760.22 71,605.27 67,950.66 52.52 57.84 59.83 85.33 

III 1024 73,610.69 71,972.19 71,793.07 68,072.68 34.83 40.46 42.41 67.73 
2048 73,363.38 71,789.97 71,625.00 67,970.68 52.78 58.69 59.82 86.23 
4096 73,027.66 71,542.90 71,378.98 67,804.02 88.37 92.96 95.94 121.05 

 
5.2 Mixed-mode BIST 
 

In mixed-mode BIST contribution of pseudo-random 
patterns to delay test quality is evaluated. Three types of 
mixed-mode BIST approaches are used. 

Type I: for every seed S, d patterns are expanded; d is 
set to 1, 2, 4, and 8. 

Type II:  d patterns are expanded only from the first 
selected seed S1, and 1 deterministic pattern is expanded 
from the other seeds. d is set to 1024, 2048, and 4096. 

Type III: the first two seeds S1 and S2 will be expanded 
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to d patterns, and 1 deterministic patterns is expanded 
from the other seeds, d  is set to 1024, 2048, and 4096.  

Table 4 shows seed ordering results in mixed-mode 
BIST for b18 and b19. We can observe that when d 
become large, SDQL value is decrease and the number 
of test pattern is increased. This also correlated to test 
time. Furthermore, we compare the results between type 
I, type II and type III. In this case, type III generate more 
pseudo-random pattern compared to two other types. 
The results shows that the long pseudo-random patterns 
expanded from one seed are more effective than the very 
short expanded pattern for every seed in type I.  

In comparison between our proposed method and the 
original work, our proposed method can achieve 
reduction in SDQL values slightly different compare to 
the original but significant gap in computation time. 
This mean, under the same test time constraint we can 
expand more patterns with our proposed method to 
achieve more coverage. 

 
5.3 Computation Time 
 
We evaluate the optimization in computation time for 

our proposed method. In the experiments, two additional 
times is needed to get the hard-to-detect fault base set. 
First, computation time for generating patterns for 
transition delay fault. Second, Computation time for fault 
simulation to create fault list based on the detection counts. 
Table 5 summarizes Computation times for fault selection. 

 To compare between the original work and our 
proposed method, we evaluate each computation cost in: 

1. Fault selection. (Time to select faults in the 
proposed method). 

2. ATPG. (Time for generating patterns).  
3. Ordering. (Time for fault simulation in seed 

ordering). 
Since, fault selection only applied in our proposed 

method, for original work we set this time to 0. Table 6 
shows Computation time for all process. The results 
show that the original work consumed longer time due 
to the fact that it targeted all faults during timing-aware 
ATPG. Therefore, if the test time is expensive, our 
proposed method can be applied to accelerate testing 
time. 

 
Table 5.  Computation time for fault selection 
Circuit P.generation (m) Fsim (m) 
b15 0.11 0.07 
b17 1.08 0.41 
b18 4.49 1.46 
b19 7.25 4.49 

 
 

6. Conclusions 
 
We have presented a hard-to-detect fault selection 

method in the seed ordering and selection for high 
quality delay test. The proposed method selects fault 
based on detection count constraint. We set several 
constraints and relax the hardness and evaluate the 

effectiveness compare to the original work. 
Experimental results show that the proposed method 
significantly reduced seed count in the base seed set. We 
evaluate the effectiveness based on SDQL values, and 
found that the delay test quality is slightly decreased. 
However, if we expand more patterns from seeds in the 
mixed-mode BIST environment we can increase the 
coverage. Furthermore, our method can obtain 
significant test timing reduction. 

 
Table 6. Computation time 
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Circuit Type h-1 h-3 h-5 original 
b15 Selection 0.18 0.18 0.18 0 

ATPG 0.19 0.33 0.37 1.29 
Ordering 0.31 0.32 0.3 0.47 
Total (m) 0.68 0.83 0.85 1.76 

b17 Selection 1.49 1.49 1.49 0 
ATPG 1.71 2.69 2.88 5.95 
Ordering 0.86 1.06 1.14 1.7 
Total (m) 4.06 5.24 5.51 7.65 

b18 Selection 5.95 5.95 5.95 0 
ATPG 7.59 8.88 9.59 27.08 
Ordering 6.21 7.14 7.66 13.48 
Total (m) 19.75 21.97 23.2 40.56 

b19 Selection 11.75 11.75 11.75 0 
ATPG 14.85 20.75 23.81 70.87 
Ordering 17.27 23.99 25.01 50.7 
Total (m) 43.87 56.49 60.57 121.57 


