

平成 24年度情報処理学会関西支部	
 支部大会

*	
 Nara Institute of Science and Technology	

A-1
Acceleration of Seed Ordering and Selection

For High Quality VLSI Delay Test

Ratna Aisuwarya *, Yuta Yamato *, Tomokazu Yoneda *, Kazumi Hatayama*, Michiko Inoue *

Abstract

 Seed ordering and selection is a key technique to
provide high-test quality with limited resources in Built-In
Self Test (BIST) environment. We present a hard-to-detect
delay fault selection method to optimize the computation
time in seed ordering and selection processes. This
selection method can be used to select faults for test
generation when it is impractical to target all delay faults
resulting large test pattern count and long Computation
time. Three types of selection categories are considered,
ranged in the number of seeds it produced, which is useful
when we consider computing resources, such as memory
and storage. We also evaluate the impact of the selection
method in mixed-mode BIST when seed are expanded to
more patterns, and evaluate the statistical delay quality
level (SDQL) with the original work. Experimental results
show that our proposed method can significantly reduce
computation time while slightly sacrificing test quality.

1. Introduction

 New challenges emerge for testing field engineering, as
VLSI technologies are scale down to nanometer. This
leads to the increasing probability of timing-related defects
to occur. Small Delay Defects (SDDs), which caused by
resistive opens, resistive shorts and some other process
variations might significantly impact the overall product
quality especially for the 45nm scales and below when the
sensitized path is a critical path. Thus, serious
consideration are growing rapidly in targeting these SDDs
to minimizes the test escape rate as well as improves
defect coverage in some extend of in-field reliability [1].
In order to detect SDDs, propagation through long path is
required in test application, since the minimum slack that
such a small delay produced cannot exceed the slack in
shorter paths. However, Traditional Automatic Test
Pattern generation (ATPG) tools tend to generate a pattern
sequences that targets the fault along the path that has the
largest timing slack, which is the short path [2].

Therefore, commercial timing-aware ATPG tools, e.g.,
Synopsys TetraMAX have been developed to overcome
the lack of coverage of traditional timing-unaware ATPGs
[3]. In spite of the ability to targets each undetected fault
along paths with minimal timing slack, they result in
significantly large CPU runtime and pattern count. This
means increasing in manufacturing cost and resources, and
it is not practical to apply for the testing environment
where the specification is limited. To avoid the high cost
and complexity during testing, novel method are required
to reduce the pattern count but effectively target SDDs.

Seed ordering algorithm based on exploiting the
algebraic properties of the pseudorandom pattern generator
(PRPG) to increase the number of patterns generated from
one seed, can be efficient method to reduce the seed
storage [4]. LFSR reseeding –based BIST was first
introduced by Koenemann in [5] as a technique for coding
test patterns into PRPGs. In terms of targeting SDDs the
proposed method in [6] considered the test compression
for seed selection problem in LFSR-reseeding-based BIST,
however it only utilized one seed for one pattern, or
deterministic pattern in the compression method. Since, we
can apply some pseudo-random patterns combined with
deterministic patterns (mixed-mode BIST), more seeds can
be reduced and there is a chance that the patterns will
increase the detection coverage of SDDs. Recent seed
ordering and selection method, proposed by Yoneda et al.
[7] selects seeds based on the gain in the sum of the
longest path lengths sensitized by seeds, which is
correlated with statistical delay quality level (SDQL).
Experiment results show that this method can obtain
significant seed count reduction under several mixed-mode
BIST approaches. Yet, the method is still considered to be
time consuming, since it generated all patterns from the
fault list, which later encoded into seeds. This is why we
need another solution considered test time constraints as a
compromise between the SDQL and the resources.

2. Statistical Delay Quality Level (SDQL)

We applied statistical delay quality level (SDQL)
proposed by Sato et al, in [8]. SDQL is modeled in
measurable indicator of delay quality. Let f be a delay
fault at some signaled f line. Let Tf

mgn denote the
difference between system clock timing and the length of
the longest path passing through f, and Tdet denote the
difference between test timing and the length of the longest
sensitized path passing through f by a given test set. Let
F(s) be a delay defect distribution. SDQL represents the
amount of delay defects escaped to be detected by the test
set, and can be expressed by:

 𝑆𝐷𝑄𝐿 = 𝐹 𝑠𝑇𝑑𝑒𝑡
𝑓

𝑇𝑚𝑔𝑛
𝑓 (1)

Since, the SDQL show the amount of test escape, we

tried to reduce the value during testing.

3. Seed Ordering

The seed ordering proposed in [7] uses the sum of the
longest sensitized path lengths for all the faults. First, for

2

each fault, the length of the longest path sensitized by each
seed is obtained.. Let 𝑙!!" and 𝑙!! be the length of the longest
path sensitized by the pseudo-random pattern which is
expanded from seed set St and seed S for a fault f. Sum of
the longest sensitized path length for the expanded patterns
from S is denoted by Ls. Then, the sum of the longest
sensitized path lengths when S is added to St is obtained as
follows.

𝐿!"!{!} = 𝐿! + 𝑚𝑎𝑥 𝑙!!" − 𝑙!!, 0!∈! (2)

Then, the Gain is calculated as LSt+{S} – Ls. Gain is
calculated for each seed S in the base seed set St. Seed with
the largest Gain values will be removed from the base seed
set Sbase and included in the ordering set St. Fault
simulation is applied for each seed to obtained 𝑙!!. The first
seed that is selected into the ordering set is selected based
on SDQL. However, the remaining seeds will be selected
based on the Gain values.

4. Proposed Hard-to-detect Fault Selection

In this section, we describe the proposed hard-to-detect
fault selection method. These kinds of faults are faults with
relatively detected by few test patterns. It is very important
in order to save computation time on the timing-aware
ATPG. Since, it wasted a lot of time in sensitized faults
that do not contribute to SDDs coverage resulting in a
large number of test patterns. Furthermore, a large number
of faults mean a large number of long paths to sensitize.
Therefore, our idea is to reduce the number of faults for
generating patterns in timing-aware ATPG.
The proposed method selects faults based on detection
count constraint. We set h values as 1, 3, and 5, in other
words in fault simulation, we count the number of times
that a fault is detected by pattern set and create subsets of h
(up to 1 time, 3 times, and 5 times). Then, for each fault
that is falls into these categories will be included. The fault
selection procedure is as follows:
1. Generates patterns based on transition fault model

with all faults set.
2. Run fault simulation using the above patterns.
3. Create subsets of fault list based on h as result of

fault simulation.
Furthermore, the hard-to-detect subset fault list will be
used in the timing-aware ATPG to generate patterns for
targeting SDDs. Therefore it can generate faster since the
fault list base is reduced.

5. Experimental Results
5.1 Seed Ordering

In order to evaluate the effectiveness of our proposed
method, we conducted experiments using several ITC ’99
benchmark circuits. Table 1. Show the characteristics of

the circuits used in the experiments.
Table 1. Characteristics of benchmark circuit
Circuit #gates #FFs B in F(t)

b15 8985 417 1.19
b17 27766 1317 1.19
b18 79400 3020 0.71
b19 152599 6042 0.71

Synopsis TetraMAX ATPG with Small Delay Defect

Test mode were used with provided delay defect
distribution function F(t) in order to calculate SDQL
values with the following equation.

𝐹 𝑡 = 𝐴 ∙ 𝑒!!" + 𝐶 (3)

We set A, and C to 1 and 0 respectively, then calculated
B so that function of system clock timing of the circuit,
F(TMC) = 0.1 holds. The calculated values of B are shown
in the Table 1.

Table 2. Fault base set for generation pattern

Circuit #Faults
h-1 h-3 h-5 original

B15 3,930 6,423 7,245 17,329
B17 15,868 25,942 29,062 65,218
B18 39,265 60,812 67,453 172,403
B19 78,454 121,472 134,392 353,301

To evaluate the test quality of our proposed method in

the ordering process, we compare hard-to-detect fault
selection base with three different constrains (h-1, h-3, and
h-5) to the original work which included all fault in the
patterns generation. The fault base set after the selection
process applied is shown in table 2. Test patterns with
unspecified bits (X’s) are generated by timing-aware
ATPG using the faults in table 2, then these patterns
encoded into a base seed set. We can see in the results, the
selection method significantly reduced the number of
faults, which mean less number of long path to sensitized.

Seed generation results are shown in Table 3. “#schains”
denote the number of scan chains and the seed coverage
which is the ratio of the number of the encoded seeds to
the number of the generated patterns. For the base seed
sets in the Table 3, we compared the proposed hard-to-
detect fault selection method with the original methods
targeting all faults during fault simulation. The number of
expanded patterns from seed Sii is set to 1 (d =1) for all
seeds in the base seed set. We can observe that the
proposed method obtained significant reduction in the
number of seeds compared to original methods. Figure 2
shows the SDQL transitions using the selection categories
compare to the original. We can observe from the figures
that our proposed method even with smaller number of
seed can obtained effective SDQL coverage. Thus, we
have to sacrifice SDQL coverage varied among the
selection categories

Table 3. Seed generation results for timing-aware patterns

Circuit BIST Architecture #patterns #seeds
#LFSR #schains h-1 h-3 h-5 original h-1 h-3 h-5 original

B15 96 8 490 543 568 727 478 528 553 700
B17 240 26 735 935 978 1,375 706 891 931 1,319
B18 384 60 1,479 1,690 1,760 3,293 1,415 1,609 1,689 3,129
B19 608 120 2,006 2,681 2,908 6,131 1,906 2,560 2,784 5,850

(a) b15 (b) b17

(c) b18 (d) b19

Figure 2. SDQL transition of the ordered seeds from the proposed selection and original

Table 4. Seed ordering results for different mixed-mode BIST
Circuit Type d SDQL Ordering Computation time (m)

h-1 h-3 h-5 original h-1 h-3 h-5 original
b18 I 1 34,894.94 34,165.45 33,789.73 32,510.24 6.21 7.14 7.66 13.48

2 34,735.76 34,030.25 33,665.68 32,428.76 9.49 10.87 11.78 20.77
4 34,556.28 33,866.16 33,516.78 32,315.38 17.14 19.72 21.02 37.95
8 34,390.90 33,731.80 33,389.95 32,203.47 34.34 39.71 41.66 76.41

II 1024 34,685.55 34,012.80 33,640.54 32,426.86 10.09 11.13 11.31 17.24
2048 34,600.98 33,937.69 33,564.83 32,384.50 14.12 15.06 15.50 21.15
4096 34,483.89 33,819.18 33,462.49 32,323.50 21.96 22.88 23.30 28.94

III 1024 34,599.11 33,943.39 33,575.58 32,387.12 13.92 15.04 15.48 21.15
2048 34,477.68 33,831.20 33,478.04 32,324.42 21.79 22.90 23.34 29.63
4096 34,330.71 33,687.38 33,351.41 32,232.54 37.73 38.88 39.23 46.09

b19 I 1 74,077.77 72,316.43 72,123.42 68,274.49 17.27 22.99 25.01 50.70
2 73,755.27 72,093.86 71,891.89 68,156.53 27.73 37.09 39.72 80.03
4 73,406.32 71,798.39 71,595.62 67,944.48 51.51 68.79 74.57 153.38
8 73,050.98 71,530.23 71,310.90 67,688.74 103.17 139.48 151.21 315.89

II 1024 73,772.55 72,077.48 71,913.30 68,137.08 26.23 31.77 32.49 58.94
2048 73,592.33 71,950.11 71,786.90 68,069.92 35.03 40.34 42.32 68.00
4096 73,338.09 71,760.22 71,605.27 67,950.66 52.52 57.84 59.83 85.33

III 1024 73,610.69 71,972.19 71,793.07 68,072.68 34.83 40.46 42.41 67.73
2048 73,363.38 71,789.97 71,625.00 67,970.68 52.78 58.69 59.82 86.23
4096 73,027.66 71,542.90 71,378.98 67,804.02 88.37 92.96 95.94 121.05

5.2 Mixed-mode BIST

In mixed-mode BIST contribution of pseudo-random
patterns to delay test quality is evaluated. Three types of
mixed-mode BIST approaches are used.

Type I: for every seed S, d patterns are expanded; d is
set to 1, 2, 4, and 8.

Type II: d patterns are expanded only from the first
selected seed S1, and 1 deterministic pattern is expanded
from the other seeds. d is set to 1024, 2048, and 4096.

Type III: the first two seeds S1 and S2 will be expanded

4

to d patterns, and 1 deterministic patterns is expanded
from the other seeds, d is set to 1024, 2048, and 4096.

Table 4 shows seed ordering results in mixed-mode
BIST for b18 and b19. We can observe that when d
become large, SDQL value is decrease and the number
of test pattern is increased. This also correlated to test
time. Furthermore, we compare the results between type
I, type II and type III. In this case, type III generate more
pseudo-random pattern compared to two other types.
The results shows that the long pseudo-random patterns
expanded from one seed are more effective than the very
short expanded pattern for every seed in type I.

In comparison between our proposed method and the
original work, our proposed method can achieve
reduction in SDQL values slightly different compare to
the original but significant gap in computation time.
This mean, under the same test time constraint we can
expand more patterns with our proposed method to
achieve more coverage.

5.3 Computation Time

We evaluate the optimization in computation time for

our proposed method. In the experiments, two additional
times is needed to get the hard-to-detect fault base set.
First, computation time for generating patterns for
transition delay fault. Second, Computation time for fault
simulation to create fault list based on the detection counts.
Table 5 summarizes Computation times for fault selection.

 To compare between the original work and our
proposed method, we evaluate each computation cost in:

1. Fault selection. (Time to select faults in the
proposed method).

2. ATPG. (Time for generating patterns).
3. Ordering. (Time for fault simulation in seed

ordering).
Since, fault selection only applied in our proposed

method, for original work we set this time to 0. Table 6
shows Computation time for all process. The results
show that the original work consumed longer time due
to the fact that it targeted all faults during timing-aware
ATPG. Therefore, if the test time is expensive, our
proposed method can be applied to accelerate testing
time.

Table 5. Computation time for fault selection
Circuit P.generation (m) Fsim (m)
b15 0.11 0.07
b17 1.08 0.41
b18 4.49 1.46
b19 7.25 4.49

6. Conclusions

We have presented a hard-to-detect fault selection

method in the seed ordering and selection for high
quality delay test. The proposed method selects fault
based on detection count constraint. We set several
constraints and relax the hardness and evaluate the

effectiveness compare to the original work.
Experimental results show that the proposed method
significantly reduced seed count in the base seed set. We
evaluate the effectiveness based on SDQL values, and
found that the delay test quality is slightly decreased.
However, if we expand more patterns from seeds in the
mixed-mode BIST environment we can increase the
coverage. Furthermore, our method can obtain
significant test timing reduction.

Table 6. Computation time

7. References

[1] R.Mattiuzo, D. Appello C. Allsup, “Small Delay Defect

Testing,”
http://www.tmworld.com/article/CA6660051.html, Test
&Measurement World, 2009.

[2] N. Ahmed, M. Tehranipoor, and V.Jayaram, “Timing-
based delay test for screening small delay defects,” in Proc.
Design Automation Conference, pp, 320-325, July 2006.

[3] Synopsys,TetraMAX ATPG User Guide, Version C-
2009.06-SP2, Sep. 2009.

 [4] A. A. Ahmad, M. Subhasish, and M.J. Edward,
“Optimized Reseeding by Seed Ordering and Encoding” in
IEEE on Computer-aided Design of Integrated Circuits
and Systems”, vol. 24, pp 264-270, Feb. 2005.

[5] B. Koenemann, “LFSR-Coded test patterns for scan
designs,” in Proc. Euro Test Conference, pp. 237 – 242,
1991.

[6] M. Yilmaz and K. Chakrabarty, “Seed selection in LFSR-
reseeding-based test compression for the detection of small
delay defects.”, in Proc. Design, Automation and Test in
Europe, pp. 1488-1493, Apr. 2009.

[7] T.Yoneda, M. Inoue, A. Taketani, H. Fujiwara, “Seed
ordering and selection for high quality delay test” in Proc.
Asian Test Symposium, pp. 313-318, Dec. 2010.

[8] Y. Sato, S. Hamada, T. Maeda, A. Takatori, and S.
Kajihara, “Evaluation of the statistical delay quality
model,”,, in Proceedings of the 2005 Asia and South
Pasific Design Automation Conference, (New York, NY,
USA), pp. 305-310, ACM, 2005.

Circuit Type h-1 h-3 h-5 original
b15 Selection 0.18 0.18 0.18 0

ATPG 0.19 0.33 0.37 1.29
Ordering 0.31 0.32 0.3 0.47
Total (m) 0.68 0.83 0.85 1.76

b17 Selection 1.49 1.49 1.49 0
ATPG 1.71 2.69 2.88 5.95
Ordering 0.86 1.06 1.14 1.7
Total (m) 4.06 5.24 5.51 7.65

b18 Selection 5.95 5.95 5.95 0
ATPG 7.59 8.88 9.59 27.08
Ordering 6.21 7.14 7.66 13.48
Total (m) 19.75 21.97 23.2 40.56

b19 Selection 11.75 11.75 11.75 0
ATPG 14.85 20.75 23.81 70.87
Ordering 17.27 23.99 25.01 50.7
Total (m) 43.87 56.49 60.57 121.57

