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ABSTRACT

This study investigates whether the di�erent step size of option strike

price discreteness contributes to the performance of a model-free variance

in approximating the real-value volatility. The volatility is proxied by the

volatility implied by the Black-Scholes-Merton option pricing model. We

concentrate on examining the respective relationship governing the func-

tion of approximation error against the strike price step. A sample data

extracted from DJIA index options data is used, which covers the pe-

riod from January 2009 until the end of 2015. This study �nds that the

best strike price step size that asserts the most minimum approximation

error by practice is a step size of $1.00. There exists a linear relation-

ship between strike price discreteness size and approximation error. The

choice of the di�erent step size of strike price discreteness is in fact con-

tributes to the performance of a model-free variance in approximating

the real-value volatility.
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1. Introduction

Option pricing has indeed remained practical either by its theory per se
or its application. Owing to this fact, a large number of researchers tend to
shed their light by focusing on this realm of work. The attention has been
phenomenal especially since the extensive study by Black and Scholes (1973)
in developing option pricing model. The model introduced by Black and Sc-
holes (1973) and Merton (1973), i.e. the Black-Scholes-Merton (BSM) model
has been acknowledged as a standard paradigm in �nance realm and is most
extensively used model, despite its failure to hold several assumptions. This
has sparked a plethora of study on the option-implied subject. This research
attempts to di�er from others. Instead of focusing on how to deliberately im-
prove the existing work expansion on option pricing model, this research con-
centrates on exploiting the option-implied information with speci�c objective
on assessing its performance. This serves a crucial line, especially in dealing
with portfolio selection problems.

Optimizing or selecting portfolio with optimal wealth allocation has been
well acknowledged as a typical classic issue faced by investors. The theoretical
study on improving portfolio selection has been the main focus of many re-
searchers. This is obvious especially after the seminal study done by Markowitz
(1952). The fact that option information is proven to e�ciently encapsulate
derivative market perception has triggered many others on studying the opti-
mal selection of a portfolio by exploiting the option moments. A wide spec-
trum of study tends to utilise historical return data in estimating the option
moments. However the portfolio that is based on historical-data estimation
has been found to be poorly performed out-of-sample (DeMiguel et al. (2009)).
Echoing to this concern, this research utilises option moments implied by op-
tion prices, rather than focusing on the use of historical data in improving
option moments estimated in constructing an optimal portfolio strategy.

Option-implied information is inferred from the option prices, hitherto is
referred as forward-looking option-implied moments. This approach can be
perceived as an alternative to the backward-looking historical data. Owing
to its forward-looking nature, these option-implied moments are able to com-
prehensively capture the derivative market perception better than that of the
historical data (See Kempf et al. (2014)). It is then expected that the es-
timation done based on these forward-looking implied moments to perform
superiorly in constructing an optimal portfolio. There are several aspects of
study on the option-implied moments used in selecting portfolios. One can
either consider option-implied volatility, correlation, skewness, risk premium,
beta or covariance. This is evident in a plethora of empirical studies that es-
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timate option-implied moments in a number of ways (Kostakis et al. (2011),
Aït-Sahalia and Brandt (2008), and DeMiguel et al. (2013)). This is indeed a
fertile ground that o�er promising avenue for further exploration in which this
study attempts to �ll into.

The availability of data includes the di�erent step size of strike prices. Since
the strike prices range is not continuous, this leads to discretization errors due to
numerical integration (Jiang and Tian (2005)). The bias can be induced by the
di�erent discreteness of strike prices . Realising that, this research di�erentiates
itself from other existing literature by examining the performance of how a
model-free volatility (MFV) is approximated against the di�erent strike price
discreteness. This study investigates the respective relationship which governs
the selection of strike price step size that leads to the least error. The estimation
of the option-implied moments based on the di�erent discreteness of strike price
is based on two core strands of literature, i.e. Bakshi et al. (2003) and Buss
and Vilkov (2012). The volatility implied by the BSM option pricing model is
set as the point of reference value.

This study intends to empirically investigate the index options data, specif-
ically those that are able to directly proxy the global index options market.
For that reason, the Dow Jones Industrial Average (DJIA) index options data
is utilised in this study. DJIA is the most cited and the most extensively ac-
cepted stock market indices. The sample data considered in this study covers
the period from January 2009 until the end of 2015. The overarching of this
study generally focused on examining whether the di�erent step size of strike
price discreteness contributes to the performance of a model-free variance in ap-
proximating the real-value volatility. The volatility is proxied by the volatility
implied by the Black-Scholes-Merton option pricing model.

This paper is divided into a number of sections. A brief background of study
is provided in the �rst section. The data utilised in this paper is illustrated
in Section 2. Section 3 presents the methodology used in assessing the perfor-
mance of Model-free Bakshi-Kapadia-Madan (MFBKM). The main �ndings of
this study are presented in Section 4. Finally, we conclude in Section 5.
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2. Data

This paper utilises all call and put options on the Dow Jones Industrial
Index (DJIA) traded daily on the Chicago Board Options Exchange (CBOE)
during the period of January 2009 until December 2015. The daily index data
retrieved from the DJIA are composed of trading date, expiration date, closing
price, exercise price and trading volume for each trading option. The underlying
price used in this study will utilise the closing price of the DJIA index, whereas
the actual option price is taken from the closing price of the option price. In
this study, we utilise the Dow Jones Industrial Average (DJIA) index options
data. The options consists of the 30-blue chipped companies index and equity
options which represent the most heavily traded and listed in US.

3. Methodology

In order to investigate which selection of strike price step size that leads to
the smallest approximation error, seven di�erent discreteness of strike prices
are considered. Each strike price step size is then used in estimating the option-
implied moment. Generally, this study relies on two core strands of literature,
i.e. Bakshi et al. (2003) and Buss and Vilkov (2012). The approaches used in
the two studies are mainly adopted in this research with several adjustments
and modi�cations. In order to obtain the option-implied moments values, we
adopt the same methodology as in Buss and Vilkov (2012), which is from the
estimated moments of the market index return.

However, instead of considering all moments, this study focuses on the vari-
ance contract, i.e. the model-free variance (MFV). For the sake of examining
the performance of how the model-free volatility is approximated against the
di�erent strike price discreteness, this study considers strike step discreteness of
$0.50, $1.00, $2.00, $2.50, $4.00, $5.00, and $10.00. The approximation error is
calculated based on how the square-root of model-free variance approximates
the volatility estimated using the Black-Scholes-Merton (BSM) model. The
volatility implied by the BSM option pricing model is utilised as the bench-
mark value. The best-performed strike price step size is depicted by the least
error induced by the approximation.
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3.1 Model-Free Bakshi-Kapadia-Madan

We calculate the option-implied moments based on the extraction approach
introduced in Bakshi et al. (2003). The moments include variance contract, cu-
bic contract, quartic contract, model-free implied volatility, as well as model-
free option implied skewness. We take into account the model-free framework
since the whole information of the BSM implied volatility smile can be consid-
ered using this model. Moreover, this model outperforms the BSM volatility
in foreseeing realized volatility.

We �rst compute the option-implied higher moments from the market index
data using the same methodology utilised in Bakshi et al. (2003). However,
the theoretical foundation behind these model-free higher moments is beyond
our scope. We, therefore, will not discuss it in this paper. The respective
computation of option-implied moments, as derived by Bakshi et al. (2003) are
as follows:

R(t, T ) ≡ lnS(t+ T )− lnS(t); (1)

V (t, T ) ≡ E∗t
{
e−rtR(t, T )2

}
; (2)

W (t, T ) ≡ E∗t
{
e−rtR(t, T )3

}
; (3)

X(t, T ) ≡ E∗t
{
e−rtR(t, T )4

}
. (4)

Equations (1) and (2) represent the variance contract, denoted as V. The
cubic contract is depicted by Equation (3) asW ; while Equation (4) represents
the quartic contract which is signi�ed by X. The model-free option-implied
volatility (MFIV) is simply the square root of Equation (2):

MFIV (t, T ) =
√
V (t, T ). (5)

Let S(t) be the stock price at time t, r be the risk-free interest rate, K(t)
be the strike price at time t, and R(t,T) be the T -log return. C(t) and P(t)
are the price of call and put option, respectively, at time t. The model-free
option-implied skewness (MFIS) is obtained based from Equations (1) to (4).

MFIS(t, T ) =
ertW (t, T )− 3µ(t, T )ertV (t, T ) + 2(µ(t, T ))3

(ertV (t, T )− (µ(t, T ))2)3/2
. (6)
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Besides, Bakshi, Kapadia, and Madan (2003) show that the three de�ned
contracts can attain the following forms:

V (t, τ) =

∫ ∞
St

2
(
1− ln

[
K
St

])
K2

C(t, τ ;K)dK

+

∫ St

0

2
(
1− ln

[
K
St

])
K2

P (t, τ ;K)dK;

(7)

W (t, τ) =

∫ ∞
St

6ln
[
K
St

]
− 3

(
ln
[
K
St

])2
K2

C(t, τ ;K)dK

−
∫ St

0

6ln
[
K
St

]
− 3

(
ln
[
K
St

])2
K2

P (t, τ ;K)dK;

(8)

X(t, τ) =

∫ ∞
St

12
(
ln
[
K
St

])2
− 4

(
ln
[
K
St

])3
K2

C(t, τ ;K)dK

+

∫ St

0

12
(
ln
[
K
St

])2
− 4

(
ln
[
K
St

])3
K2

P (t, τ ;K)dK.

(9)

The risk-neutral variance is depicted as:

V AR(t, τ) ≡ Eq
{
(Rt,τ − Eq [Rt,τ ])2

}
(10)

;

V AR(t, τ) = erτV (t, τ)− µ(t, τ)2. (11)

Recall that in Equation (6) the risk-neutral skewness is shown as

MFIS(t, τ)

≡ Eq{Rt,τ−Eq [Rt,τ ]3}
Eq{Rt,τ−Eq [Rt,τ ]2}3/2

=
erτW (t, τ)− 3erτµ(t, τ)V (t, τ) + 2µ (t, τ)

3[
erτV (t, τ)− µ (t, τ)2

]3/2 .

(12)
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Whereas, the risk-neutral kurtosis is as follows:

MFIK(t, τ) ≡ Eq{(Rt,τ−Eq [Rt,τ ])4}
Eq{(Rt,τ−Eq [Rt,τ ])2}2 ; (13)

MFIK(t, τ) =
erτX(t, τ)− 4erτµ(t, τ)W (t, τ)[

erτV (t, τ)− µ (t, τ)2
]2

+
6erτµ(t, τ)2V (t, τ)− 3µ(t, τ)4[

erτV (t, τ)− µ (t, τ)2
]2 ,

(14)

in which µ-expectation is

µ(t, τ) = erτ − 1− erτ

2
V (t, τ)− erτ

6
W (t, τ)− erτ

24
X(t, τ). (15)

Recall that Equations (1) and (2) are simply representing the variance con-
tract. The cubic contract is depicted by Equation (3); while Equation (4)
represents the quartic contract. This study focuses on the variance contract,
i.e. the model-free variance (MFV).

4. Results and Discussions

In this section, the performance of how the model-free volatility is approxi-
mated against the di�erent strike price discreteness is compared. The volatility
estimated using the BSM option pricing model is placed as the point of refer-
ence. By hypothesis, the strike price step having the smallest discreteness is
believed to deliver smaller approximation error compared to other strike step
considered.

For better illustration, this study considers strike step discreteness of $0.50,
$1.00, $2.00, $2.50, $4.00, $5.00, and $10.00. The approximation error is calcu-
lated subject on how the square-root of model-free variance approximates the
volatility estimated using the BSM model. The approximation errors as the
function of di�erent strike price discreteness are tabulated for both call and
put options. The respective results are reported in Table 1 and Table 3.
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Consistent �ndings are observed in both types of options, in which the
strike price step of $0.50 is recorded to deliver the smallest approximation
error. More to the point, the biggest approximation error is contributed by
strike step of $10.00. The strike price discreteness size is found to have linear
relationship with the approximation error. Again, this supports the hypothesis
of this study in both cases. The results are further veri�ed in Figure 1 and
Figure 2, respective to the call and put options. A linear line is evident in both
�gures, depicting a linear relationship between the strike price discreteness size
and the approximation error.

Table 1: Approximation Error of the Di�erent Strike Step Size for Call Options

Strike Step
($)

MFV MFIV
Approximation

Error (%)
0.50 0.0473 0.2174 -3.361
1.00 0.0492 0.2218 -1.402
2.00 0.0522 0.2284 1.526
2.50 0.0531 0.2304 2.417
4.00 0.0584 0.2416 7.372
5.00 0.0609 0.2468 9.689
10.00 0.0768 0.2771 23.174

Figure 1: Approximation Error versus Strike Price Discreteness for Call Options
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Table 2: Goodness-of-Fit Analysis for Call Options

Model f(x) = p1*x + p2
Coe�cients (with

95% con�dence bounds):
p1 p2

0.02767 (0.02642, 0.02892) -0.04252 (-0.04837, -0.03667)
Goodness of Fit:

SSE 7.51x10-5
R-Square 0.9985

Adjusted R-Square 0.9981
RMSE 3.876x10-3

Table 3: Approximation Error of the Di�erent Strike Step Size for Put Options

Strike Step
($)

MFV MFIV
Approximation

Error (%)
0.50 0.0498 0.2231 -0.824
1.00 0.0514 0.2266 0.716
2.00 0.0545 0.2334 3.712
2.50 0.0569 0.2386 6.029
4.00 0.0609 0.2468 9.677
5.00 0.0656 0.2562 13.857
10.00 0.0825 0.2872 27.646

Figure 2: Approximation Error versus Strike Price Discreteness for Put Options

Note that MFV denotes the model-free variance. Hence the square-root of
MFV represents the MFIV. The approximation error is calculated based on the
relative percentage error.Based on the results of both call and put options, a
clear line of conclusion can be established that there exists a linear relationship
between strike price discreteness size and approximation error. This claim is
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further supported by the curve-�t analysis as presented in Figure 3 and Figure
4, respectively for call and put options.

Figure 3: Linear Fitted of Strike Price Discreteness Accuracy for Call Options

Figure 4: Linear Fitted of Strike Price Discreteness Accuracy for Put Options
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The goodness-of-�t analysis of the �tted line is reported in Table 2 and Table
4, respectively. The �tted line is best explained by linear model polynomial of
�rst order, replicated by f(x) = p1x + p2. 99 percent of adjusted R-square is
recorded in both cases of �tting, suggesting that the strike price discreteness
and approximation error relationship is best explained by the linear model of
polynomial of order one. This advocates that the best strike step to be chosen
theoretically should be of that $0.50. However, since the results are subjected
to data availability, especially that of greater than $100, the most suitable and
practical strike price step size that asserts the most minimum approximation
error is of $1.00.

Table 4: Goodness-of-Fit Analysis for Put Options

Model f(x) = p1*x + p2
Coe�cients (with

95% con�dence bounds):
p1 p2

0.03007 (0.02829, 0.03184) -0.0205 (-0.02878, -0.01223)
Goodness of Fit:

SSE 1.50x10-4
R-Square 0.9974

Adjusted R-Square 0.9968
RMSE 0.005485

5. Conclusions

This research di�erentiates itself from other existing literature by investi-
gating the performance of how the model-free volatility (MFV) is approximated
against the di�erent strike price discreteness. This study focuses on studying
the trend that rules behind the function of approximation error against the
strike price step. Steady �ndings are obtained for both call and put options
a�rm that there exists a pattern of linear line governing between the strike
price discreteness size and approximation error. The best performed strike
price discreteness size having the smallest approximation error is applied to
that of $0.50, theoretically. However, the use of strike step of $0.50 is quite
impractical due to the ine�cient volume and availability of data recorded for
strike size more than $1.00 as for this case. Thus, the most appropriate and
convenient strike price step size that asserts the most minimum approximation
error is of $1.00. The choice of the di�erent step size of strike price discreteness
is important in contributing to the performance of a model-free variance in
approximating the real-value volatility.
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