

Search Sources Lists SciVal 7

? ? Create account

Sign in

 \checkmark

Document details

Journal of Cleaner Production Volume 255, 10 May 2020, Article number 120247

Proposal of upgrading Isfahan north wastewater treatment plant: An adsorption/bio-oxidation process with emphasis on excess sludge reduction and nutrient removal (Article)

Amin, M.M.^{a,b}, Taheri, E.^{a,b}, Ghasemian, M.^{a,b}, Puad, N.I.M.^c, Dehdashti, B.^{a,b}, Fatehizadeh, A.^{a,b} 🖂

^aEnvironment Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran

^bDepartment of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran

^cBioprocess and Molecular Engineering Research Unit (BPMERU), Department of Biotechnology Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, Kuala Lumpur, Malaysia

Abstract

View references (34)

There is a rising challenge in managing the activated sludge process due to excess sludge disposal from the wastewater treatment plant and inadequate effluent quality due to the stricter standard of effluent quality. Hence, the incorporation of oxic-settling-anoxic process and ultrasonic waves in the return sludge line was proposed to assess the excess sludge reduction and nutrient removal in the adsorption/bio-oxidation activated sludge process as

Metrics ② View all metrics >

PlumX Metrics

Usage, Captures, Mentions, Social Media and Citations beyond Scopus.

Cited by 0 documents

Inform me when this document is cited in Scopus:

Set citation alert >

Set citation feed >

Related documents

a proposal upgrading . The results indicated that sludge production from adsorption/bio-oxidation process could be reduced using oxic-settling-anoxic and ultrasonic by 50% at each studied mixed liquor suspended solids level. Compared to the adsorption/bio-oxidation process, the total and soluble chemical oxygen demand removal efficiencies in adsorption/bio-oxidation process with oxic-settling-anoxic and ultrasonic slightly decreased suggesting a lysis phenomenon. During the operation of adsorption/bio-oxidation process with oxic-settling-anoxic and ultrasonic, the total Kjeldahl nitrogen removal efficiency improved in A and B stages, with $38.3 \pm 8.1\%$ and $83.1 \pm 6.5\%$ versus $36.8 \pm 14.5\%$ and $75.1 \pm 7.3\%$, respectively. According to the stoichiometric calculations, in B stage of adsorption/bio-oxidation process with oxic-settling-anoxic and ultrasonic, the soluble available ultimate biochemical oxygen demand and net NO_3 produced for denitrification were 69.5 and 43.8 mg/L, respectively. Overall, the experimental data revealed that the adsorption/bio-oxidation process with oxic-settling-anoxic and ultrasonic produced lower excess biological sludge and better total Kjeldahl nitrogen removal efficiency compared to the adsorption/bio-oxidation system alone. © 2020 Elsevier Ltd

SciVal Topic Prominence (i)

Topic: Sludge | Activated sludge | Sludge yield

Prominence percentile: 79.887 (i)

Chemistry database information ①

Substances

Author keywords

Activated sludge process Excess sludge reduction OSA process Ultrasonic

Indexed keywords

Evaluation of a biological wastewater treatment system combining an OSA process with ultrasound for sludge reduction

Romero-Pareja, P.M., Aragon, C.A., Quiroga, J.M. (2017) Ultrasonics Sonochemistry

The effects of a full-scale anaerobic side-stream reactor on sludge decay and biomass activity

Velho, V.F., Andreottola, G., Foladori, P. (2019) Water Science and Technology

Effects of side-stream ratio on sludge reduction and microbial structures of anaerobic sidestream reactor coupled membrane bioreactors

Cheng, C., Zhou, Z., Niu, T. (2017) Bioresource Technology

View all related documents based on references

Find more related documents in Scopus based on:

Authors > Keywords >

Funding details

Funding sponsor	Funding number	Acronym
	500/92/7208	

Funding text

The present publication has been made possible through the financial, technical, administrative, and logistic support from Isfahan province Water and Wastewater Company under the grant No. 500/92/7208.

ISSN: 09596526 CODEN: JCROE Source Type: Journal Original language: English DOI: 10.1016/j.jclepro.2020.120247

Document Type: Article **Publisher:** Elsevier Ltd

References (34)

View in search results format >