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Abstract: Nonlinear distributions by the high degree of DeGroot model has been studied in this for consensus 

problem of multi-agent systems (MAS). The idea behind the convergence of nonlinear distribution is that when 

the degree of nonlinear distribution is increasing the number of iterations is in turn decreasing. From these 

viewpoints, the efficient aspects of the proposed nonlinearity model by high degree are that the resulting process 

is of fast convergence and the consensus could not depend on the kind of transition matrix. 
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1. INTRODUCTION 

In recent years, there have been widely attractive 

researches in distributed system problems of the 

group autonomous agents. In many literatures, 

convergence to a common value has been 

established for the question of consensus or 

agreement. [1]. Operate, negotiate and reach 

agreements are the most difficulties as well as 

famous challenges for MAS [2]. Consensus is one of 

the most important problems in research on MAS, 

which involves the statuses of agent and control 

planning in reaching an agreement via exchange of 

information. 

The consensus problem demonstrates how these 

numerous autonomous agents (multi-agent systems) 

congregate to a consensus through their local 

interdictions. Moreover, the way that the word of 

agreement is being expressed shows that the entire 

cases of the autonomous agents are equal [3]. The 

interest in distributed systems is inspired by 

organizing and managing multi-agents in large-scale 

networks with access to information to reach 

agreement on a similar point of interest on a decision 

(value) or consensus convergence.  

In general, all of these concerns have agents 

who interact with each other for information 

exchange [4]. The agreement between the agents is 

obtained by collaboration between agents in most of 

the current research on consensus issues [5]. One of 

the most difficult problems in the area of multi-agent 

systems is to anatomize the complex interaction 

strategy in the case of phenomena that are considered 

easily enough [6]. One of the structure complexity 

of the nonlinear consensus for MAS that when the 

communication of the interconnections among 

agents is stochastic [7]. In [8], a MAS was developed 

that can learn and handle micro units in real-time 

strategy games and use real-time version of NEAT 

to adapt for new cases. The states could be defined 

as views, principles, figures, beliefs, positions, 

speeds, among others, depending on the context [4]. 

Consensus use occurs in many research areas. In 

biology, for example, the dynamics of consensus are 

studied in the behavioral sense of fish and bird 

schools flocking [9]. Models of consensus can be 

used to analyze, forecast and explain flocking 

behaviour. Consensus problems arise in robotics and 

control systems in the communication and 

collaboration of agents in the network of sensors and 

robots, which it has considered a big issue in the 

applications of network environment [10], [11]. 

Consensus is applied in economics to reach an 

agreement on a common trust in the price process. In 

management science, the issue of consensus was 

studied for the management community [12]. 

Through sociology, it is used in primary societies for 

a common language and in social networks for the 

dynamics opinion [13]. It was also a widely covered 

topic of interest in computer science [14]. 

The consensus topic has a long history in 

DeGroot's work [15] and Berger discussed the 

necessary and appropriate conditions of the DeGroot 

model in [16]. A distributed network computing was 

also presented in [17]. Tsitsiklis, Bertsekas in [10], 

[18], studied the problems of asynchronous setup in 

parallel computing. Jadbabaie also studied the 

problem of consensus collocation [11]. Another 

consideration was the theoretical framework for 

solving the problem of consensus that Olfati-Saber 

and Murray investigated [19][20]. A general report 

that has surveyed relevant consensus problems of 

MAS was given by Ren [1]. Moreover, Ozdaglar 

Nedic [21] and Olshevsky [22] widely studied the 

solution domain related with the consensus problem. 

Cheng et al [23] have achieved a reaching agreement 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by The International Islamic University Malaysia Repository

https://core.ac.uk/display/300477988?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:rawad@iium.edu.my
mailto:rawad@iium.edu.my
mailto:alrashidi.sheikhah@live.iium.edu.my
mailto:alrashidi.sheikhah@live.iium.edu.my
mailto:sharyarwani@iium.edu.my
mailto:sharyarwani@iium.edu.my
mailto:hrai@iium.edu.my
mailto:hrai@iium.edu.my
mailto:rawad@iium.edu.my
mailto:rawad@iium.edu.my
mailto:,%20sharyarwani@iium.edu.my
mailto:,%20sharyarwani@iium.edu.my


2 

 

for MAS by increasing the fault-tolerance in 

distributed systems and decreasing the iterations of 

message. It was accomplished by a proposed 

algorithm using digital signature and grouping 

concept. The nonlinear dynamic systems are studied 

in [24] for leader-based consensus on neural network 

of MAS. 

The begging studies, however, have built on the 

conjecture that linear protocols are the dynamics 

related to agent consensus. This conjecture cannot 

always be satisfied because physical engineering 

systems are of a particular kind of consensus 

problem[ 25], [26]. It is not sufficient to agree that 

their actions can be modified through an unbounded 

value for these physical systems [27]. In turn, this 

suggests the creation of consensus protocols to 

ensure that the initial general state is bound [25], 

[26]. In addition, the produce protocol is running and 

can be utilized to develop the performance of the 

consensus for dynamic algorithm [28], [29]. Hence, 

the motivation of this work is to design and analyze 

a non-linear MAS consensus protocol. Therefore, 

there are background in turn motivates us to design 

a nonlinear consensus protocol for consensus 

problem for MAS. There is still significant difficulty 

in designing for a nonlinear system, however, which 

also motivates us to try a more effective method for 

assessing the stability of nonlinear systems. The 

challenge of constructing a nonlinear system 

therefore requires research effort, which is a 

motivation for us to explore and examine the 

stability of nonlinear systems. The current concern is 

to explore possible nonlinear models with faster 

convergence to achieve optimal consensus, but with 

relatively low complexity and more flexible system 

conditions. Indeed, a lot of research, like [30], [31], 

[40], [41], [32]–[39] have presented nonlinear 

stochastic control for convergence to the average.  

  

2. METHODOLOGY 

 

In the DeGroot linear distribution [12], it has been 

considered the group of 𝑥𝑖  agents (𝑥𝑖 =
(𝑥1, 𝑥2, … , 𝑥𝑚)). The initial state for each agent is 

𝑥𝑖
0 = (𝑥1

0, 𝑥2
0, … , 𝑥𝑚

0 ) . It has one transition matrix 

𝑃𝑖𝑗  (𝑃𝑖𝑗 ≥ 0) to update statuses of all agents where 𝑖 

contacts 𝑗 for updating (see Figure 2.1). Therefore, 

the limit behavior of the trajectories has been studied 

of each initial 𝑥𝑖
0 states using DeGroot linear 

distribution by 𝑥𝑖
1  = ∑ 𝑝𝑖𝑗

𝑛
𝑗=1 𝑥𝑖

0. DeGroot's linear 

distribution for consensus problem general operator 

in MAS is as follows: 

𝑥𝑖
(𝑡+1)

 = ∑ 𝑝𝑖𝑗
𝑚

𝑖=1
𝑥𝑖
𝑡 ,                      (2.1) 

where 𝑝𝑖𝑗 is the transition matrix, 𝑥𝑖
𝑡 represents the 

states of agents (column vectors) and 𝑡 the number 

iterations to reach consensus, which means: 

𝑥𝑖
(𝑡+1)

= (

𝑎11 𝑎12 ⋯
𝑎21 𝑎22 …
⋮ ⋮ ⋱

𝑎1𝑚
𝑎2𝑚
⋮

𝑎𝑚1 𝑎𝑚2 … 𝑎𝑚𝑚

)

(

 
 

𝑥1
(𝑡)

𝑥2
(𝑡)

⋮

𝑥𝑚
(𝑡)
)

 
 

      (2.2) 

The stochastic distribution cases of DeGroot 

allow consensus being attained if only if all states of 

agents 𝑥𝑖
(𝑡+1)

 converge to the same limit as 𝑡 → ∞. 

Then, the evaluation of DeGroot linear model will be 

as follows:   

𝑉(𝑥𝑖
(𝑡+1)

)

{
 
 

 
 𝑥1

(𝑡+1)
= 𝑎11𝑥1 + 𝑎12𝑥2 +⋯+ 𝑎1𝑚𝑥𝑚

𝑥2
(𝑡+1)

= 𝑎21𝑥1 + 𝑎22𝑥2 +⋯+ 𝑎2𝑚𝑥𝑚
⋮      =     ⋮       +      ⋮     + ⋱  +    ⋮        

𝑥3
(𝑡+1)

= 𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 + …+ 𝑎𝑚𝑚𝑥𝑚

     

                         (2.3) 

 
Figure 2.1: The structure of DeGroot linear 

distribution for multi-agent systems. 

 

Definition 2.9: Let 𝑉 be DSQO and  𝑥0 ∈ 𝑆𝑚−1. 

x0 ∈ Sm-1.The sequence 

{𝑥0, 𝑉(𝑥0), 𝑉2(𝑥0), … , 𝑉𝑛(𝑥0)} 
{x0, V(x0), V2(x0), . . . } is called the trajectory of 

DSQO starting at 𝑥0x0. where 𝑉2(𝑥0) = 𝑉(𝑉(𝑥0)). 
Usually, it can put 𝑉(𝑥0) = 𝑥0, [34], [42]. 

V0(x0) = x0.The 𝜔(𝑥0)ω(x0) is donated the set of 

limit points of the trajectory and it is said to be the 

𝜔- limit set of the trajectory.  

 

3. PROPOSED WORK 

 

In this section, a high degree for the agents’ status of 

the DeGroot model is proposed for consensus 

problem in MAS. 

Refer to equation (2.1), suppose that 𝑖 agents have 

degree 𝑛, (𝑥𝑛)𝑖
𝑡, where 𝑛 ≥ 1. 

DeGroot's linear distribution for consensus problem 

general operator in MAS is as follows: 

𝑥𝑖
(𝑡+1)

 = ∑ 𝑝𝑖𝑗
𝑚

𝑖=1
(𝑥𝑛)𝑖

𝑡 ,                 (3.1) 

where 𝑝𝑖𝑗 is the transition matrix, (𝑥𝑛)𝑖
𝑡 are the states 

of agents (column vectors), 𝑛 is the degree of the 

state which could be 𝑛 ≥ 1 and 𝑡 is the number of 

iterations to reach a consensus. which means: 
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𝑥𝑖
(𝑡+1)

= (

𝑎11 𝑎12 ⋯
𝑎21 𝑎22 …
⋮ ⋮ ⋱

𝑎1𝑚
𝑎2𝑚
⋮

𝑎𝑚1 𝑎𝑚2 … 𝑎𝑚𝑚

)(

(𝑥𝑛)1
𝑡

(𝑥𝑛)2
𝑡

⋮
(𝑥𝑛)𝑚

𝑡

)(3.2)              

The stochastic distribution cases of DeGroot 

contain the condition that the consensus is attained if 

all states of agents 𝑥𝑖
(𝑡+1)

 converge to the same limit. 

𝑡 → ∞. Then, the evaluation of the linear operator of 

DeGroot will be as follows:  

𝑉(𝑥𝑖
(𝑡+1))

{
 
 

 
 𝑥1

(𝑡+1) = 𝑎11𝑥1
𝑛 + 𝑎12𝑥2

𝑛 +⋯+ 𝑎1𝑚𝑥𝑚
𝑛

𝑥2
(𝑡+1) = 𝑎21𝑥1

𝑛 + 𝑎22𝑥2
𝑛 +⋯+ 𝑎2𝑚𝑥𝑚

𝑛

 ⋮         =     ⋮       +      ⋮      + ⋱  +    ⋮        

𝑥3
(𝑡+1) = 𝑎𝑚1𝑥1

𝑛 + 𝑎𝑚2𝑥2
𝑛 + …+ 𝑎𝑚𝑚𝑥𝑚

𝑛

(3.3) 

4. RESULT AND SIMULATION 

In this section, the linear distribution of the DeGroot 

model with higher is studied. 

Considering the initial values for all cases for 

example are: 

𝑥1 = 0.1    ,       x2 =   0.7,          x3 = 0.2   

It can note that the results are generalized for any 

initial values from zero to one (0 ≤ 𝑥1
0 ≤ 1). 

Then, considering the transition matrices for each 

protocol in all cases as follows: 

4.1 The nonlinear distribution A by higher degree 

of DeGroot’s linear when 𝒏 = 𝟏𝟐. 

DeGroot model:  𝑃𝑖𝑗 = {𝑎𝑖𝑗 ≥ 0, , ∑ 𝑃𝑖𝑗,𝑘 =
𝑚
𝑗=1

1, ∀𝑖, 𝑗 = 1,… ,𝑚}. 

1. Transition matrix of normal non 

symmetric: 

𝑝𝑖𝑗 = (
0.7 0.4 0.4
0.4 0.2 0.6
0.9 0.9 0.7

)       

2. Transition matrix of normal symmetric: 

𝑝𝑖𝑗 = (
0.9 0.4 0.6
 0.4 0.8 0.5
0.6 0.5 0.2

) 

3. Transition matrix of stochastic non 

symmetric: 

𝑝𝑖𝑗 = (
0.25 0.5 0.25
0.1 0.15 0.75
0.3 0.1 0.6

)       

4. Transition matrix of stochastic symmetric: 

𝑝𝑖𝑗 = (
0.4 0.5 0.1
 0.5 0.4 0.1
0.1 0.1 0.8

) 

5. Transition matrix of doubly stochastic non 

symmetric: 

𝑝𝑖𝑗 = (
0.4 0.05 0.55
0.1 0.85 0.05
0.5 0.1 0.4

)      

6. Transition matrix of doubly stochastic 

symmetric: 

𝑝𝑖𝑗 = (
0.9 0.05 0.05
 0.05 0.3 0.65
0.05 0.65 0.3

) 

 
Fig 4.1: The convergence of DeGroot linear 

distribution when n=1 with NMnonsym, NMsym, 

SMnonsym, SMsym, DSMnonsym and DSMsym.  

As it can see in the Figure 4.1, the limit behavior of 

trajectories of DeGroot linear distribution is 

diverging in the case of NM nonsym and sym. 

However, it converges in the cases of SM and DSM 

when the matrix is nonsym and sym. Meanwhile, the 

limit behavior converges to the same limit in the case 

of SM nonsym and it converges to the center in the 

cases of SM sym, DSM nonsym and DSM sym. This 

means that, when the matrix is SM nonsym the limit 

converges to the same value that depends on sum of 

each column while the limit converges to the center 

when the matrix is DSM (the stochastic symmetric 

matrix is also doubly stochastic matrix). Further, it 

can be obtained that if the matrix is non-stochastic 

then the limit never converges.  
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4.2 The nonlinear distribution A by higher degree 

of DeGroot’s linear when 𝒏 ≥ 𝟐. 

4.2.1 DeGroot’s linear when 𝑛 = 2. 

 

Fig 4.2:  The convergence of DeGroot linear 

distribution when n=2 with NMnonsym, NMsym, 

SMnonsym, SMsym, DSMnonsym and DSMsym. 

4.2.2 DeGroot’s linear when 𝑛 = 10. 

 

Fig 4.3: The convergence of DeGroot linear 

distribution when n=10 with NMnonsym, NMsym, 

SMnonsym, SMsym, DSMnonsym and DSMsym. 

 

4.2.3 DeGroot’s linear when 𝑛 = 100. 

 
Figure 4.4: The convergence of DeGroot linear 

distribution when n=100 with NMnonsym, NMsym, 

SMnonsym, SMsym, DSMnonsym and DSMsym. 

From the simulation analysis, the results are 

portrayed in the Figures [4.2 - 4.4]. The implication 

of the resulting analysis is that, it indicates the 

convergence to zero of the limit behavior of 

nonlinear distribution of DeGroot.  

Hence, MAS reaches to a consensus in any case of 

the distribution of transition matrix under a DeGroot 

model with higher degree. 

The efficiency of the proposed nonlinearity model 

by higher degree attains fast convergence to 

consensus compared to the DeGroot linear model 

[15], and may even take only one execution step. 

Furthermore, the most significant and efficient 

aspect of the proposed nonlinearity model by higher 

degree is that the consensus does not depend on the 

transition matrix. 

4.2.3 The higher degrees of DeGroot’s linear 

The transition matrix for DeGroot model: 

𝑃𝑖𝑗 = (
0 0 0
0 0 0
0 0 0

) 
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Figure 4.5: The convergence of the higher degrees 

of DG with zero’s transition matrix. 

 

5. CONCLUSION AND FUTURE WORK 

In this paper, the nonlinear distributions by higher 

degree have been studied for the DeGroot with 

respect to the consensus problem in MAS. The 

presented investigation demonstrates that the 

proposed nonlinear distribution by higher degree of 

the DeGroot are attributed to more efficient 

convergence for the consensus problem in MAS. 

The nonlinear distribution by higher converges to 

zero under any distribution case of the transition 

matrices. The problem left open in this work is that 

the convergence to zero has sense in consensus 

problem in MAS in real application or not. 
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