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Effect of an external electric field on the
propagation velocity of premixed flames
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Abstract: There have been many experimental investigations into the ability of 
electric fields to enhance combustion by acting upon ion species present in flames [1]. In 
this work, we examine this phenomenon using a one-dimensional model of a lean 
premixed flame under the influence of a longitudinal electric field. We expand upon 
prior two-step chain-branching reaction laminar models with reactions to model the 
creation and consumption of both a positively-charged radical species and free 
electrons. Also included are the electromotive force in the conservation equation for ion 
species and the electrostatic form of the Maxwell equations in order to resolve ion 
transport by externally applied and internally induced electric fields. The numerical 
solution of these equations allows us to compute changes in flame speed due to electric 
fields. Further, the variation of key kinetic and transport parameters modifies the 
electrical sensitivity of the flame. From changes in flame speed and reactant profiles we 
are able to gain novel, valuable insight into how and why combustion can be controlled 
by electric fields.

 Keywords: Premixed flame; Electric field; Laminar flame speed; Charged species;    
Chain-branching reaction

1. Introduction

In order to study the effect of the electric field
on a premixed flame, this paper will consider a
one-dimensional model of a lean premixed flame
under the influence of a longitudinal electric field.

The electric field is oriented in the direction of the
gas flow and can have positive or negative signs,
indicating different electric field polarities. The
model is defined by the set of conservation equa-
tions and chemical reactions which should reflect
the behavior of a lean premixed flame subjected
to an electric field. To model the interaction
between the flame and the electric field, we need
to include in the chemistry model a radical that
can be ionized at high temperatures to give a pro-
tons and electrons that can be affected by the elec-
tric field.

A good candidate is the the two-step, chain-
branching chemistry model developed originally
by [2,3] and further developed later by [4] using
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the high activation energy asymptotic. The model
was later slightly modified in [5,6] by linearizing
the radical recombination step, allowing the defi-
nition of an explicit crossover temperature below
which the chain-branching reaction remains fro-
zen. Some authors refer this two-step kinetic
model as a better approach to real hydrocarbons
and hydrogen flames description than the one-step
model [5–7]. Chain-branching reactions are typi-
cally located in the high-temperature region of
the flame because of its high activation energy.
These reactions produce an increase of the
intermediate species or chemical radicals which
diffuse upstream and downstream of this thin
chain-branching zone and recombine by means
of a very exothermic chain-termination reaction
in a wider region. Therefore, the heat release
occurs throughout the flame and fuel exhaustion
is reached interior to the flame [6,7], a real charac-
teristic of flames. In the one-step model fuel
consumption and final adiabatic flame is reached
all at once.

To complement the model proposed by Dold,
we incorporate here two additional reactions to
account for the production and consumption of
charged species. According to [8], the source of
ions is generally accepted to be the chemiioniza-
tion reaction in which a radical reacts with a third
body to give a proton and an electron. Later, the
proton would recombine with the electrons via a
dissociative recombination to release a certain

amount of heat. When an external electric field
is imposed across the flame front, the charged par-
ticles are removed from the reaction zone at a rate
proportional to the electric field strength until the
field strength is large enough to make the removal
rate of electrons and protons equal to the chemii-
onization formation rate, leading to current
saturation.

Table 1 shows the reactions used to model the
effect of the electric field in a premixed flame. As
we anticipated above, reactions I and II replicate
the model proposed by Dold while reaction III
and IV model the chemiionization and the disso-
ciative recombination, respectively, first proposed
by [9,10] and used in multiple numerical studies
[8,11,12].

2. Formulation

Consider a planar premixed flame propagating
with a constant velocity, SL, with respect to an
unburned gas at initial temperature T 0 and fuel
mass fraction Y F 0

. The mixture is assumed to be
deficient in fuel and the mass fraction of the oxi-
dizer, which is in abundance, remains nearly con-
stant. For the sake of simplicity, the paper deals
with a diffusive-thermal model, according to
which q; cp; DT ; DF ; DZ are all constant.

The equations describing the structure of this
flame in the presence of an electric field include

Nomenclature

m mobility
q mixture density
A frequency factor
c concentration
cp heat capacity
D diffusivity
e elementary charge
Ea activation energy
m mass of particle
Rg gas constant
SL Flame Speed
V diffusion velocity
W molecular weight
Z charge
X ½x� reaction rate [dimensionless]

e0 ½e� vacuum permittivity [dimensionless]

E0 ½E� electric field [dimensionless]

q ½Q� heat of reaction [dimensionless]
T ½h� temperature [dimensionless]
x0 ½x� spatial coordinate [dimensionless]
Y 0 ½Y � mass fraction [dimensionless]
a relaxation parameter
b Zeldovich number

A dimensionless frequency factor for
reaction III

B dimensionless frequency factor for
reaction IV

Db dimensionless activation energy
increment

c dimensionless heat release
l eigenvalue of dimensionless conserva-

tion equations
k iteration counter
Le Lewis number

Subscripts

0 initial or imposed value
1 final value
e� electron
F fuel
T temperature, thermal
Z neutral radical
Zþ positive radical

2



the mass and species conservation equations.
Additionally, the model needs to consider the
effect that the electric field exerts on the charged
species. Since the concentrations of charged spe-
cies are usually small, we will assume that the rela-
tion defining the flux of the ith species due to
diffusion plus electromigration will be that for a
weakly-ionized plasma, an extreme that consider-
ably simplifies our treatment of the problem and
which is usually the case in real flames [13]. Thus,
the contributions to the flux of charged species can
be linearly superposed to define the Nerst–Planck
equation describing the interaction between the
electric field and the charged species [14].

With currents and electric fields present, the
laws of electrodynamics should be incorporated,
in the form of the Maxwell equations, into the
equations of mass and energy conservation. Nev-
ertheless, if there are no magnetic fields and the
electric field does not change with time, the elec-
trodynamic problem reduces to an electrostatic
one. In this case, the electric field can be computed
as @E0=@x ¼ ðcþ � c�Þe=e0.

In an electrically neutral ionized gas, the condi-
tion

P
ciZi ’ 0 is satisfied, where Zi and ci are the

charge and the concentration of the particle i,
respectively. Since the electrons represent nearly
90% of the negative charge carriers [15], we can
write the electrons-to-protons characteristic mass
fraction ratio as Y e� ;0=Y Zþ;0 ’ m�=mþ � 1, indi-
cating that the contribution of the electrons to
the total mass of the gas is small.

In the constant density approximation we are
considering here, the problem reduces to the inte-
gration of energy and mass transport equations
for neutral and charged species. Unlike neutral
gases, where diffusion is controlled by Fick’s
law, the presence of an electric field can change
the way in which the particles are redistributed
in an inhomogeneous mixture. Even when no
external electric field is applied, a displacement
of charged particles would create a charge imbal-
ance that, in turn, would induce an electric field
opposing the charge displacement. This effect
can be taken into account by defining the diffusion
velocity V k as [8,14]

qYV k
j ¼ �qDj

@Y i

@x
þ Zkqm

kY iE; ð1Þ

where Zk is negative if the species is negatively
charged, positive if the species is positively charged
and zero if the species is neutral. The diffusion coef-
ficient of the neutral species is considered constant,
being DF and DZ the diffusion coefficients of fuel
and radicalZ, respectively. On the other hand, Bel-
hi et al. [12] introduced, followingDelcroix [16], the
following expression for the ratio between the diffu-
sion coefficient of electrons and ions
De� ¼ DZþðmþ=m�Þ1=2 where mþ and m� are the
mass of a single proton and electron respectively.

The mobility of a charged particles mi is defined
as the ratio between its drift velocity and the elec-
tric field strength. The strict calculation of the
mobility of ions mZþ and electrons me� would imply
the appropriate assessment of the effect of the
temperature and concentration changes on mi
[11]. Nevertheless, and for the sake of simplicity,
we will assume hereafter constant proton and elec-
tron mobilities. Furthermore, we can write the
ratio between the mobilities of electrons and ions
by using the Einstein relationship given in [12]
me� ¼ mZþðmþ=m�Þ1=2.

The four-step, chain-branching kinetic mecha-
nism used here to model the effect of the electric
field includes the autocatalytic and recombination
steps given above in Table 1, where XI is the tem-
perature-sensitive, chain-branching reaction rate,
with EI the activation energy and AI the frequency
factor, and XII is the temperature-independent
completion reaction rate, with AII the rate con-
stant. Notice that, as indicated by [6], the reaction
can only take place if the temperature T > T c,
where T c is the branching temperature that takes
into account the amount of radical removed by
diffusion from the inner branching zone and is
obtained by imposing XI ¼ b2XII to give

AI

AII

W
W F

Y F 0
¼ E

Rg

T c � T 0

T c

� �2

eEI=RgT c ð2Þ

This temperature is used here to define the non-
dimensional temperature h ¼ ðT � T 0Þ=ðT c � T 0Þ
and the Zel’dovich number b ¼ ðT c � T 0Þ=ðRgT 2

0Þ.

Table 1
Chain-branching, chemionizaition and dissociative recombination reactions used in
this formulation.

iSD Reaction

I F + Z ! 2 Z XI ¼ AI
q2

W FW Z
Y 0
ZY

0
F exp �EI=RTð Þ

II Z + M! P + M + qII XII ¼ AII
q2

W ZW
Y 0
Z

III Z + M! Z+ + e� +M XIII ¼ AIII
q2

W ZW
Y 0
Z exp �EIII=RTð Þ

IV Z+ + e� ! P + qIV XIV ¼ AIV
q2

W ZþW e�
Y 0
ZþY 0

e
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A great amount of work has been done to
identify the ions species present in a flame and
the mechanisms responsible for their production.
A detailed account can be found in [8–10]. In this
regard we incorporate in our simplified model the
steps III and IV that account for the temperature-
dependent chemiionization of the radical Z and
the posterior exothermic recombination of
protons and electrons.

As a summary of the exposed above, we intro-
duce in the energy and mass conservation equa-
tions the non-dimensional temperature h and
spatial coordinate x ¼ x0=ðDT =SLÞ and the scaled
mass fractions of fuel Y F ¼ Y 0

F =Y F 0
, radical Y Z ¼

Y 0
Z=ðW ZðY F 0

=W F Þ, protons Y Zþ ¼ Y 0
Zþ=ðY F 0

W Z=W Fð ÞÞ and electrons Y e� ¼ Y 0
e�=ðY F 0

ðm�=mþÞ
W Z=W Fð ÞÞ to yield the non-dimensional conserva-
tion equations

dh
dx

¼ d2h

dx2
þ lQ xII þ xIV

qIV
qII

� �
ð3Þ

dY F

dx
¼ 1

LeF

d2Y F

dx2
� lxI ð4Þ

dY Z

dx
¼ 1

LeZ

d2Y Z

dx2
þ l xI � xII � xIII½ � ð5Þ

dY Zþ

dx
¼ �l1=2 d EY Zþð Þ

dx
þ 1

LeZþ

d2Y Zþ

dx2

þ l xIII � xIV½ � ð6Þ

dY e�

dx
¼ l1=2 mþ

m�

� �1=2 dðEY e�Þ
dx

þ mþ

m�

� �1=2
1

LeZþ

d2Y e�

dx2

þl xIII �xIV½ � ð7Þ
with boundary conditions h ¼ Y Z ¼ Y Zþ ¼
Y e� ¼ Y F � 1 ¼ 0 at x ! �1 and h0 ¼ Y 0

F ¼
Y 0

Z ¼ Y 0
Zþ ¼ Y 0

e� ¼ 0 at x ! 1.
The solution of the problem provides the

eigenvalue

l ¼ qAIIDT

S2
LW

ð8Þ

which determines completely the flame velocity
SL. Also, the following non-dimensional parame-
ters appear in the above formulation: the Zeldo-
vich number b ¼ 10, the dimensionless heat of
reaction Q ¼ qIIY F 0

=½cpðT c � T 0ÞW F �, with qII the
total heat released from reactions II, the Lewis
numbers of fuel LeF ¼ DT=DF and radical
LeZ ¼ DT=DZ and the heat release parameter
c ¼ ðT c � T 0Þ=T c ¼ 0:7.

The non-dimensional reaction rates are written
as

xI ¼ b2Y ZY F exp b
h� 1

1þ cðh� 1Þ
� �

ð9Þ

xII ¼ Y Z ð10Þ

xIII ¼ b2AY Z exp ðbþ DbÞ h� 1

1þ cðh� 1Þ
� �

ð11Þ

xIV ¼ BY ZþY e� ð12Þ
with A ¼ AIII

AI

W ZþW F

W ZW
e�Db=c

Y F 0
; B ¼ AIV

AII

W W Z
W ZþW F

Y F 0
and

Db ¼ c EIII�EI
RgT c

representing the effect of a differen-

tial activation energy between the chain-branch-
ing and the chemiionization steps. In real flames,
the heat released through the termination reaction
qII is different to that released through the disso-
ciative recombination qIV – qII . Nevertheless,
and for the sake of simplicity, we will assume
hereafter that qIV ¼ qII . In this case, the system
of equations described above in (4)–(7) admits a
first integral that allows the calculation of the tem-
perature downstream of the reaction region
h1 ¼ Qð1� F1Þ, where F1 is the fuel leakage at
x ! 1, facilitating the physical interpretation of
the parameter Q. Notice that if qIV =qII – 1 the
maximum flame temperature is diminished due
to the reduction of the radical Z that is consumed
through reaction II, and the maximum flame
temperature will be given by h1 ¼ Q 1� F1�½
lB 1� qIV =qIIð Þ R1

�1 Y ZþY e�dx�.
The spatial distribution of non-dimensional

electric field
E ¼ E0=½mþðqDTAII=W Þ1=2� depends on the spa-

tial distribution of the charged species and is given
by

dE
dx

¼ l1=2

e
ðY Zþ � Y e�Þ Eðx ! �1Þ ¼ E0 ð13Þ

with e ¼ mþðe0=eÞðAIIW ZþÞ=ðWY F 0
W Z=W F Þ and E0

the external electric field applied.
The large electrons mobility anticipates an

effective diffusion of the electrons away from the
flame. In order to satisfy the boundary conditions
specified above, the limits of the computational
domain must reach distances of the order
jxj � ðmþ=m�Þ � 1. Nevertheless, an asymptotic
approximation at x ! �1 of Y e� and the associ-
ated induced electric field E can be derived from
Eqs. (7) and (13) by imposing
Y Zþ ¼ wIII ¼ wIV ¼ 0 to give

1�l1=2ðmþ=m�Þ1=2E¼ðmþ=m�Þ1=2
LeZþ

Y �1
e�
@Y e�

@x
ð14Þ

with

1� l1=2ðmþ=m�Þ1=2

E ¼ 1� l1=2ðmþ=m�Þ1=2E0

� �2

� 2
lðmþ=m�Þ

eLeZþ
Y e�

� �1=2

ð15Þ

The straightforward integration of (14) gives
the asymptotic behavior of the electrons mass
fraction
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Y e� ¼ a2

b
1� tanh2 � Leza

ðmþ=m�Þ ðxþ CÞ
� �� 	

ð16Þ

a ¼ 1� l1=2ðmþ=m�Þ1=2E0 ð17Þ

b ¼ 2
lðmþ=m�Þ

eLez
; ð18Þ

to be used as a substitute of the boundary condi-
tion at x ! �1 given above.

3. Numerical method

The problem defined by Eqs. (3)–(7) with the
corresponding boundary conditions, was solved
numerically to compute the eigenvalue l and the
profiles of temperature and species in a non-uni-
form grid spanning from xmin ¼ �800 to
xmax ¼ 200 with a maximum clustering of points
around the flame location x ¼ 0. The spatial deriv-
atives were discretized using second order, three-
point central differences in a grid formed by
N ¼ 5000 points, what gives a minimum spacing
dx ’ 0:02 at x ¼ 0. A 50% increase in the number
of points was used in some cases to test the grid
independence of the numerical solution.

The eigenvalue l and the profiles of tempera-
ture and species were computed using an iterative
method based on a GaussSeidel procedure with
over-relaxation that takes advantage of the invari-
ance of the equations to a translation in the coor-
dinate x. Using this property, a random value of
temperature h� is forced at the grid point x� such
that hðx�Þ ¼ h�, what gives an additional condi-
tion that allows the calculation of the eigenvalue

lk at the iteration k from Eq. (3). To avoid the
divergence of the method, we used a relaxation
parameter a so that the value of the eigenvalue
used at the next iteration k þ 1 is given by
lkþ1 ¼ alk þ ð1� aÞlk�1. Typical values of above
mentioned parameters are a ¼ 0:5 and h� ¼ 0:65.
A comprehensive description of the numerical
procedure outlined above can be found in [17].

4. Results

4.1. Structure

We begin by examining the basic structure of
flames modeled in this formulation as shown in
Fig. 1. The solutions for the neutral species
Y F ; Y Z and xI closely follow those found in prior
work studying reactions I and II [6]. h initially fol-
lows the neutral solution, but develops more
slowly in the later stages of the flame. This follows
naturally considering that, with small values of A
and Db P 0, reactions I and II are dominant until
Y F becomes small and temperature overcomes the
higher activation energy in reaction III.

Once reaction III begins to proceed in earnest,
heat release becomes highly dependent upon the
presence of both Y Zþ and Y e� . Upon the applica-
tion of a positive E0 we see significant shifts in
the profiles of both ion species. Electron concen-
tration before and within the flame region is ele-
vated, permitting earlier electron–proton
recombination. The resulting accelerated heat
evolution is subtle but present in h and, due to
exponential temperature dependence, raises the

Fig. 1. (a) Profiles of fuel Y F , radical Y Z and temperature h=Q, (b) and (d) Electron and proton mass fraction profiles,
(c.1) chain-branching reaction rate xI , (c.2) proton–electron production rate xIII and (c.3) proton–electron
recombination reaction rate xIV for E0 ¼ 0 (blue, solid line), E0 ¼ 0:65 (black, dashed line) and E ¼ �0:65 (red dot-
dashed lines) with b ¼ 10; Db ¼ 1; A ¼ 0:1; B ¼ 100, e ¼ 100; mþ=m� ¼ 100 and Q ¼ 5. The inset of Fig. 1(b)
represents the auto-induced electric field created by the charge displacement near the flame. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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peak values of xI and xIII . So, we find that by con-
trolling the delayed heat release of the chemiion-
ization path it is possible to realize significant
changes in total reaction rate, which is to say,
flame speed as is found in Fig. 2. The opposite
effect is observed when a negative electric field is
applied. Recombination is delayed, temperature
rises more slowly, reaction rates are decreased
and flames speed decreases.

Observation of ion species only in the flame
region is not sufficient to fully account for the pro-
cesses at work. Particularly, a wider field of view is
necessary to understand the local rise and fall of
Y e� . The inset of Fig. 1(b) plots the self-induced
electric field, from which the net charge may be
deduced, over a large domain. In the case where
E0 P 0, we see that @E=@x 6 0 for x 6 0 while
@E=@x > 0 (weakly) for x > 0 (weakly), indicating
that electrons are shifted strongly into both the
flame sheet and pre-flame regions. This accumula-
tion increases the availability of electrons within
the flame sheet to participate in reaction IV and
release heat qIV closer to the unreacted fuel. Where
E0 6 0, electrons are driven far into the post-flame
region. This effectively robs the flame sheet of a
fraction of Q by separating the components, Y Zþ

and Y e� necessary for reaction IV.
Fundamentally, their high mobility causes elec-

trons to be a deficient or limiting component for
flame propagation. The influence of E0 and the
reason for its direction dependence come from a
capacity to oppose or enhance the loss of electrons
by advection and diffusion. Electrons driven for-
ward by positive E0 are simply not lost. They
accumulate ahead of the flame but are not
destroyed and remain available to react within
the flame sheet. Electrons driven behind the flame,
conversely, quickly become so far removed from
the flame sheet that the heat they release cannot
contribute meaningfully to propagation.

Note that flame speed will not increase without
limit as E0 increases. As seen in Figs. 2–5, for each
set of parameters (A; B, etc.) there is a critical
value of E0 at which flame speed is maximal and
further increases in E0 reduce flame speed.

4.2. Parameters

In the interest of generality, the dimensionless
parameters A; B; e and Q have been kept some-
what arbitrary, but their values do modify the sen-
sitivity of flames to externally applied electric
fields.

First, we consider A which controls the rate at
which Y Z produces both Y Zþ and Y e� . Increasing
the value of A increases both the intensity of the
enhancement effect and the critical value of E0.
The first point is unsurprising given that A
increases the production of species directly influ-
enced by E0. The second stems from increased

Fig. 2. Influence of A on Flame speed vs. electric field
E0 for b ¼ 10; Db ¼ 1; e ¼ 100; B ¼ 100; Q ¼ 5;
mþ=m� ¼ 100. Points for A ¼ 0:1 correspond to the
cases in Fig. 1.

Fig. 3. Influence of B on Flame speed vs. electric field
E0 for b ¼ 10; Db ¼ 1; e ¼ 100; A ¼ 0:1; Q ¼ 5;
mþ=m� ¼ 100.

Fig. 4. Influence of Q on Flame speed vs. electric field
E0 for b ¼ 10; Db ¼ 1; e ¼ 100; A ¼ 0:1; B ¼ 100;
mþ=m� ¼ 100.

6



self-induced electric fields made possible by higher
total concentrations of both ion species. These
self-induced fields naturally oppose the charge
separation effect that limits flame speed
enhancement.

The efficiency with which the ion species
recombine is governed by B. In the extreme that
B ! 1 the recombination would occur instantly,
with the release of qIV being limited by reaction
III. Figure 3 shows that as this B is increased,
ion transport diminishes and higher electric fields
are necessary to achieve similar increases in flame
speed. The maximum value of lð0Þ=lðEÞ1=2
increases very weakly with B. High rates of recom-
bination can only shift the peak of xIV as far for-
ward as that of xIII , which limits the potential for
propagation enhancement.

As consistent with laminar flame theory and
evidenced by prior work on laminar flames
[6,17], increases in the heat release parameter Q
can dramatically increase flame speed. We see in
Fig. 4 that this does not change the initial value
of @ðlð0Þ=lðEÞÞ1=2=@E, but does increase the crit-
ical value of E0 and, therefore, the maximum
value of ðlð0Þ=lðEÞÞ1=2 . We have discussed the
role of self-induced electrostatic fields in opposing
detrimental charge separation, but the constant
forward travel of the flame front also serves min-
imize the relative motion of ions when E0 > 0.
More simply, one may consider this as a balance
between flame speed, SL, and the electromotive
component of drift velocity in Eq. (1).

Lastly, observe in Fig. 5 the impact of e.
Recalling, of course, from Eq. (13) that intensity
of the auto-induced field will vary inversely with
e. e ¼ 1 corresponds to ions which are acted
upon solely by E0 and diffusion. As such, flame
speed exhibits its strong sensitivity to E0.

For small values, of e, a different phenomenon
develops. When e � 1, any charge separation is
vigorously opposed and transport of Y Zþ by the

imposed field can shift the heat release by reaction
IV. Hence we see a reversal in the response of
flame speed. A positive E0 > 0 tends to drive posi-
tive ions away from the flame front, delaying heat
release. Similarly, weakly negative values E0 will
actually marginally increase flame speeds.

5. Conclusions

The effect of an external electric field on a
freely propagating, planar and adiabatic premixed
flame is investigated for an idealized chemical
mechanism that includes a two-step, chain-
branching model and two additional reactions to
account for the production and consumption of
charged species.

The basic structure of the flames modeled in
this paper follows the structure described by pre-
vious studies [5] in the low temperature region of
the flame. Once Y F � 1, the temperature-
dependent chemiionization step becomes domi-
nant and the heat released is then controlled by
the concentration of protons and electrons, as
indicated by reaction IV.

The application of an external electric field E0

changes the distribution of protons and electrons
around the thin chain-branching layer what, in
turn, modifies the rate at which the heat is released
and induces changes in the flame speed.
Concretely, the application of a positive electric
field E0 promotes the accumulation of electrons
in the cold region of the flame and increases its
availability to react with the protons through
reaction IV once they temperature is sufficiently
high to overcome the activation energy of reaction
III. The opposite effect is observed when E0 < 0.

The sensitivity of the flame velocity regarding
several of the non-dimensional parameters of the
problem have been tested. Specifically, we focused
on the effect of the frequency factors of reaction
III and IV, A and B respectively, the heat released
parameter Q and the non-dimensional permittiv-
ity �e. For all the four parameters, the calculations
revealed a decrease of the flame speed for E0 < 0,
due to the reduction of the electrons concentra-
tion before the flame. On the other hand, an
increase of the flame speed is observed for
E0;max > E0 > 0, where E0;max is the maximum
electric field at which ðlð0Þ=lðEÞÞ1=2 > 1. For
values of E0 > E0;max, the effect of the electric field
on the flame speed is reverted and
ðlð0Þ=lðEÞÞ1=2 < 1. The reason for this is the effec-
tive diffusion of electrons towards the cold size of
the flame induced by the electric field, what
reduces the rate of the dissociative recombination
reaction and delays the rise of temperature behind
the flame.

Maximum flame speed increments of around
15% have been found for a specific combination
of the non-dimensional parameters of the

Fig. 5. Influence of e on flame speed vs. electric field E0

for B ¼ 100; A ¼ 0:1; Q ¼ 5; mþ=m� ¼ 100.
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problem. This number is modest when compared
with the most extreme experimental data found
in the literature [1], but agrees with the saturation
effect reported in [18] for lean flames. The model
presented is not a tool for quantitative prediction,
but a tool for developing an improved qualitative
understanding of the phenomenon. This can serve
as a basis for progressively building less abstract
models by including additional features, such as
thermal expansion or a more complex chemical
kinetics.
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