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Iván González-Dı́aza, Fernando Dı́az-de-Maŕıaa
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Abstract

Latent topic models have become a popular paradigm in many computer vision

applications due to their capability to unsupervisely discover semantics in visual

content. Relying on the Bag-of-Words representation, they consider images as

mixtures of latent topics that generate visual words according to some specific

distributions. However, the performance of these methods is still limited by the

way in which they take into account the spatial distribution of visual words and,

what is even more important, the currently used appearance distributions. In

this paper, we propose a novel region-centered latent topic model that introduces

two main contributions: first, an improved spatial context model that allows for

considering inter-topic inter-region influences; and second, an advanced region-

based appearance distribution built on the Kernel Logistic Regressor. It is worth

highlighting that the proposed contributions have been seamlessly integrated in

the model, so that all the parameters are concurrently estimated using a unified

inference process. Furthermore, the proposed model has been extended to work

in both unsupervised and supervised modes. Our results for unsupervised mode

improve 30% those of previous latent topic models. For supervised mode, where

discriminative approaches are preponderant, our results are quite close to those

of discriminative state-of-the-art methods.

Keywords: Latent Topic Models, Topic Discovery, Category-based Image

segmentation, Kernel Logistic Regression, Context



1. Introduction

During the last years, a significant amount of research effort has been de-

voted to the category-based image segmentation problem since it has become

an essential part of contemporary scene understanding systems, which have

emerged as a natural extension of the classical image classification and recog-

nition systems. The category-based image segmentation (also known as object

class image segmentation) differs from standard image segmentation in that it

not only divides the image into a set of coherent regions, but also assigns a

category to each region. Several methods have been proposed to address this

problem. Most of them are discriminative solutions using Conditional Random

Fields (CRF), such as those in [1, 2, 3, 4], but generative approaches can be

also found in the literature ([5, 6]).

In this paper we focus on Latent Topic Models (LTM), a generative paradigm

that explains the data of a corpus as a mixture of latent topics that represent

semantic entities. In particular, Probabilistic Latent Semantic Analysis (PLSA)

[7] and Latent Dirichlet Allocation (LDA) [8] are the most outstanding examples

of this type of models. Although both PLSA and LDA were originally conceived

as unsupervised models, their formulation has been extended to the supervised

case (the interested reader is referred to [9] for an excellent example of supervised

topic models), thus providing an unified framework to work in both modes.

However, traditional approximations to supervised scenarios suffer from one

drawback that we tackle in this paper. In particular, in previous approaches,

labels for supervised training were usually applied at a granularity level that

does not fit with topics. Therefore, these approaches to supervised topic models

were not able to take full advantage of ground-truth pixel-wise segmentations

typical of category-based segmentation tasks.

This paper complements and extends our previous work described in [10].

Specifically, the model proposed in this paper has been built on LDA instead

of PLSA; we have moved from an intra-topic to an inter-topic influence model,

improving the modeling of the spatial arrangement of the topics; we have in-
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troduced a novel KLR-based appearance model; and, finally, the experimental

evaluation has been significantly extended.

In summary, this paper makes a couple of significant contributions. First,

the proposed model extends LDA to take into account the spatial arrangement

of topics in an image. This is achieved by modeling not only the typical spatial

location of a topic, but also its context. In particular, the proposed model allows

for a flexible management of inter-region inter-topic influences, outperforming

the conventional approaches found in the latent topic literature. Second, the

appearance model usually employed by latent topic models (a multinomial dis-

tribution over visual words) has been notably enhanced by means of the use

of a Kernel Logistic Regression (KLR), which takes into account the relations

among descriptors within a region. The inclusion of a KLR is not a simple plug-

in in the model, since one needs to develop inference methods that concurrently

optimize all the variables involved in the generative process, while keeping the

computational complexity low enough to make the optimization feasible. Fur-

thermore, we also demonstrate how our model is able to work in both unsuper-

vised and supervised modes, a key differentiating factor with respect to most

of the (discriminative) approaches found in the literature. Specifically, a soft-

labeling technique has been proposed that keeps the latent nature of the topics

unaltered and improves the results in supervised tasks when compared to the

customary hard-labeling approach.

The paper is organized as follows: Section 2 summarizes related work. Sec-

tion 3 provides an overview of the proposed generative latent topic model. Sec-

tions 4 and 5 describe the two main contributions of this work: the context model

and the appearance distribution model, respectively. Section 6 puts forward the

required extensions for the model to work in supervised mode. Section 7 de-

scribes the proposed inference algorithm. Section 8 describes the experiments

and discusses the results; and, finally, Section 9 summarizes our conclusions.
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2. Related work

This Section focuses on the existing models for the spatial distribution of

visual words and the appearance in LTMs, which are the two areas where this

paper contributes.

2.1. Modeling the spatial distribution of visual words in LTMs

Undoubtedly, the most important limitation of the original formulation of

PLSA and LDA for computer vision is that they do not take into account the

spatial distribution of visual words in the images. The potential benefits of this

spatial modeling are twofold: first, an improved performance of latent topic

models in tasks such as image classification or topic discovery; and second,

an enrichment of such models with the capability of generating robust image

segmentations. Nevertheless, modeling the spatial location of visual words is

no longer straightforward in this framework since both appearance and spatial

models must be jointly trained using the same learning algorithm that infers

the latent topics.

Some early approaches considering simple geometric modeling deserve to

be mentioned. In [11], the use of doublets of visual words over PLSA allowed

the authors to add simple geometric considerations, achieving notable improve-

ments in object localization. In [12], the authors modeled the joint distribution

of visual features and their locations using a translation- and scale-invariant

approach for unsupervised category discovering. And in [13], Gaussian and uni-

form spatial distributions were used to model foreground and background topics,

respectively. Furthermore, in [14] and [15], LDA and PLSA were extended, re-

spectively, to model the spatial distribution of words using fixed grid cells. In

other kind of approaches, such as that described in [16], the geometric informa-

tion was encoded using what is known as part models, in which the objects are

assumed to be made up of constituent parts.

Other proposals went a bit further and incorporated a blind segmentation

of the images into the latent topic models. In [17], a new version of PLSA was
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proposed that considered topics at region level (where the regions come from a

previous segmentation) for an image retrieval task. In [18], a novel approach to

deal with under- and over-segmentations was proposed; specifically, segmenta-

tions were generated at different levels, then PLSA was used to unsupervisely

detect categories, and finally the best segmentation level was chosen according

to the distance between the proposed regions and the detected categories. In

[19], an extension of LDA was proposed that considered topics at an intermedi-

ate level (regions); these topics produced two kinds of visual words, one related

to the color of the whole region and the other related to the texture descriptors

of the local patches within the region, so that the algorithm started from an

over-segmented version of the image to end up with a more realistic segmenta-

tion, where regions were (hopefully) associated with semantic concepts. Similar

approaches have been successfully applied to image classification and annotation

[20], as well as to scene understanding [21].

Nevertheless, in all of these models, the regions were considered as inde-

pendent entities that did not interact with each other. Other methods, such

as [22, 23], imposed certain spatial coherence by allowing interactions among

regions; specifically, Markov Random Fields (MRF) were used to drive spa-

tially connected regions toward the same topic. We refer to these models as

inter-region intra-topic context models since a region pushes other surround-

ing regions to belong to the same topic. The model proposed in this paper

goes beyond by defining an inter-region inter-topic context model, which allows

for inter-topic interactions as described later. A similar idea using MRFs was

proposed in [24].

2.2. Appearance model in LTMs

Traditionally, the appearance model in LTMs follows a multinomial distri-

bution over each visual word. Although assigning topics at visual word level

might seem appealing for simplicity reasons, many authors have preferred to

work at region level in order to provide more stable representations than those

directly derived from individual visual words (see [2, 17]). In the LDA for-
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(a) (b) (c) (d)

Figure 1: Example of the steps involved in the proposed generative model. (a) Image to be

processed. (b) Image segmentation that is used as the geometric layout of the image. (c)

Ground truth segmentation (desired output of the algorithm), where each color is associated

with a particular semantic concept (green denotes ‘grass’ and blue ‘sheep’). (d) Outcome of

the proposed method.

mulation, this region-based granularity level has been customarily handled by

considering the probability associated with the appearance of a region as the

product of the probabilities (multiplicative model) of the visual words that lie

within that region (the interested reader is referred to [19, 20] for more infor-

mation). Nevertheless, the multiplicative model may become overly dependent

on a particular visual word when estimating the probability associated with a

whole region; furthermore, this multiplicative appearance model actually con-

siders local patches as individual entities so that, given the topic of the region,

their appearances are conditionally independent.

Our proposal differs from these approaches in that a descriptor for the whole

region is computed and used in the appearance model. Furthermore, the ap-

pearance of a region is modeled through a Kernel Logistic Regressor (KLR), so

that the appearance model takes into account the relations among visual words

within a region. Although the KLR has been already used in discriminative

models, as far as we know it is the first time that has been included in a latent

topic model. As mentioned in the Introduction, it is not straightforward at all

since the incorporation of the KLR involves developing inference methods for

all the variables while keeping a moderate complexity level.
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(a) (b)

Figure 2: (a) Graphical model of the proposed approach. The new variables of the model

are drawn within dotted boxes: context model (green), appearance model (red), and ex-

tensions for supervised mode (blue). (b) Graphical model of the variational distribution

used to approximate the posterior in the proposed model. Nodes represent random variables

(observed-shaded, latent-unshaded), edges show dependencies among variables, and boxes

refer to different instances of the same variable.

3. Model overview

In this section we provide an overview of the proposed generative model,

which is built on LDA. For a detailed description of LDA, the interested reader

is referred to [8].

First, it is important to mention that our model relies on a previous blind

(over) segmentation of the image. This segmentation encodes the spatial geom-

etry of the scene so that a sample in our method is associated with a region

instead of a local patch (that was what happened in traditional latent topic

approaches). In particular, we have generated image partitions of about 20-40

regions using the algorithm described in [25] (see Fig. 1(b) for an example).

Fig. 2(a) shows the graphical model representation of the proposed latent

topic model. As shown in the figure, given a corpus D of documents (images),

each image d ∈ D is represented by means of a set of Nd samples and Rd

regions in the segmentation. The objetive of the model is to explain each im-

age as a mixture of K latent topics, each of them showing specific appearance

and geometric properties. The components of the graphical model have been

grouped into three subsystems identified by means of dashed boxes in the fig-
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ure; namely: the context model, the appearance model, and the extensions for

supervised mode. These subsystems will be explained in detail along the next

sections.

Each variable in the model has been proposed in accordance with a particular

assumption regarding the image formation process. Specifically, the following

assumptions have been considered:

a) Images are generated by means of a mixture of latent topics z that are in

turn associated with semantic concepts (such as ‘grass’, ‘sky’, or ‘road’). Hence,

the topic is the key variable in the generative model and will serve to provide

category-based image segmentations.

b) Each topic produces samples whose appearance is encoded by means of

a single descriptor h that is made-up from the descriptors of the local patches

within that region. We firmly believe that local descriptors cannot be considered

as independent variables, and that the relations among descriptors within the

same region are of great importance to decide on the associated topic. This

element is represented inside the dotted red-box in Fig. 2(a).

c) The geometric layout l of an image can be modeled by means of an over-

segmentation based on low-level features. This segmentation produces a set of

Rd regions, each of them belonging to just one topic (then, under-segmentation

is not suitable). Of course, some heterogeneous connected regions may belong

to the same object and thus be associated with the same topic. The generative

model is then in charge of bridging the gap between the initial over-segmentation

and the final representation of the image, in which regions are associated with

semantic concepts (see Fig. 1 (b) and (d) for an illustrative example).

d) Some topics exhibit a strong spatial correlation with each other, appear-

ing in neighboring areas of the image (e.g. ‘car’/‘road’, ‘aeroplane’/‘sky’, etc.).

This observation motivates our concept of what is referred to as ‘spatial con-

text’. Traditional context models in LTMs, such as the Markov Random Field

presented in [23], just provide intra-topic influences among regions (i.e., a region

pushes neighboring regions to belong to the same topic); however, such a model

is not expressive enough to handle the important inter-topic correlations that
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actually occur in typical scenes showing several semantic concepts. The context

model is represented inside the green dotted box in Fig. 2(a).

Next we provide an overall description of the corresponding generative pro-

cess in unsupervised mode (when no labels are available to train the model):

1. Consider a K-dimensional Dirichlet parameter α, with αk > 0, that de-

fines a parametric distribution of the topics in the corpus (the topic pro-

portions at the corpus level).

2. For each image d,

(a) Generate a blind over-segmentation of the image into Rd regions.

(b) Sample a Dirichlet random variable θ|α ∼ Dir(α) that defines the

particular probability distribution over the K latent topics for this

image.

3. For each sample n ∈ {1, 2, . . . , Nd}:

(a) Choose a topic zn according to the probability distribution defined

by θ: zn|θ ∼ Mult(θ), where Mult(.) stands for a Multinomial Dis-

tribution.

(b) Draw an appearance hn, as will be explained in Section 5.

(c) Choose a topic location ln by selecting a region r ∈ 1, 2 . . . Rd from

the initial segmentation, as will be explained in Section 4.

At this point, it is worth clarifying the conceptual difference between samples

(indexed by n = 1, 2, . . . , Nd) and regions (indexed by r = 1, 2, . . . , Rd). The

samples are those inherent to the generative process, i.e., in order to generate an

image according to our model, a set of samples are generated, and for each one, a

topic is chosen, then an appearance, and then a location. The regions are those

resulting from the previous over-segmentation that is used as a geometric layout

on which to build our image representation. Therefore, in general, it would be

possible (from the generative model point of view) to have either more than one

sample associated with an actual region, or even empty regions. For practical

purposes, in the image representation used in this paper the correspondence is
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Figure 3: Illustrative example of two context models: (Left) Intra-topic inter-region context

model from MRF-LDA [23] (Right) Proposed inter-topic inter-region context model.

one-to-one, i.e., a sample is generated for each actual region. Nevertheless, in

order to provide a general formulation, we keep both Nd and Rd further on.

4. The Context-based Location model

This part of the proposal gives meaning to the variables of our model that

lie inside the green dashed box in Fig. 2(a). The aim is to select a location

given a topic, i.e., to choose the most appropriate region given a topic. To this

purpose, a context-based spatial location distribution is proposed.

The proposed context model incorporates inter-region inter-topic relations

to the generative process while keeping it simple enough to allow for closed

expressions in the inference process. As mentioned before, the objective of this

model is to set the basis for inter-region inter-topic cooperation. This means

that regions belonging to a particular topic A may push other regions towards

belonging to other topic B when both topics are spatially correlated (they tend

to appear together). Fig. 3 compares our inter-topic inter-region context model

with the intra-topic inter-region cooperation model used in MRF-LDA [23].

Intuitively speaking, the generative process of the context model is as follows:

once we have selected a topic zn, we look for its best location in the image, i.e.,

we look for the particular region that best fits our context model. To that end,

the proposed context model, illustrated in Fig. 4, relies on three variables:

• λ represents what we call the geometric context, which is a measurement of

the influence of a region on the others according to a relative measurement
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Figure 4: A graphical representation of the proposed context model involving the semantic

and geometric spaces, and the links between them.

of their common boundary. Defining lpr as the common boundary of two

regions p and r, and lr as the perimeter of the region r, the influence λpr

of the region p on the region r is computed as λpr =
lpr

lr
if p 6= r, and zero

otherwise. Hence, it measures the portion of the total perimeter of the

influenced region that is shared with the influencing region. Additionally,

λ is further normalized to obey
∑Rd

r=1 λpr = 1. As can be easily noticed,

the influences are not symmetric: lpr 6= lrp. In fact, our definition favors

the influence of larger regions over smaller ones, what, from our point of

view, makes sense. λ values are pre-computed and remain fixed during

inference.

• c represents what we call the semantic context, which takes into consid-

eration the spatial correlation among topics. In particular, this variable

is a collection of K K-dimensional multinomial parameters ct shared by

all the documents in the corpus. In particular, ctk estimates the prob-

ability of co-occurrence of topics t and k in spatially adjoining regions.

These probabilities satisfy
∑K

t=1 ctk = 1 and, again, are not symmetric,

i.e. ctk 6= ckt.

• δ, called the semantic-geometric link, provides a link between the topic

space and the geometric layout of each image. It is a document-dependent

collection of K Rd-dimensional multinomial parameters δt = [δt1 . . . δtRd
],

with
∑Rd

p=1 δtp = 1. Each component of the vector δtp intends to capture
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the importance of a region p given a topic t, and must be inferred during

the inference process.

Putting these three components together, and with the aim of limiting the

complexity of the solution, we propose a context model as a product of discrete

distributions:

p(ln|zn, δ, c,λ) =

K
∑

t=1

Rd
∑

p=1

1[ln = r]ctzn
δtpλpr (1)

where the expression 1[ln = r] is a simple indicator variable that means that the

location ln of a sample n points to the region r in the previous over-segmentation.

That is, for each potential location r, with r ∈ {1, 2, . . . , Rd}, we consider the

influence of each neighboring location p (λpr), the influence of each correlated

topic t (ctzn
), and the link between both (δtp). It is worth mentioning that this

model could remind a Random Field that connects neighboring regions with a

pairwise potential, which is scaled as a function of the influence between regions

and is dependent on the combination of classes associated with each region.

However, the proposed formulation has been specifically developed for a topic

model and leads to a simpler optimization process.

It is easy to notice that
∑

r p(ln = r|zn, δ, c,λ) = 1, so that ln lives in a

Rd-simplex of regions coming from the initial over-segmentation of the image.

Furthermore, for regularization purposes, we have also used a prior Dirichlet

hyperparameter η over the semantic-geometric links δ.

It is also worth noting that regions have to be in contact in order to generate

positive geometric influences (since they depends on the common boundary).

Consequently only those topics that actually have some contact are considered as

correlated topics, thus removing relations between topics that, although appear

in the same image, are located at disconnected areas. The rationale behind

this approach is related to the computational complexity of the model, which

is initially quadratic with both the number of topics o(K2) and the number of

regions o(R2) in the image. Thus, taking advantage of this limited number of

positive influences, the computational complexity is dramatically reduced. In
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Figure 5: A comparison of the intra-topic and inter-topic empirical context distributions: a)

original image, b) grass intra-topic context, c) sheep intra-topic context, d) grass inter-topic

context, and e) sheep inter-topic context. Lighter colors represent higher probabilities.

practice, we have found that the actual complexity is linear with the number of

regions o(nR), with n ≈ 5 in our experiments. Furthermore, we have noticed

that less constrained influence models do not achieve significantly better results

while notably increasing the computational cost of the inference.

Fig. 5 shows an illustrative example comparing the proposed context model

to the intra-topic inter-region model for an image of the MSRC dataset.

In summary, the process followed to set-up the context model is as follows:

each image d of the dataset is segmented into Rd regions. Then, the geometric

context of the image, parametrized through the influences between regions λ,

is computed from their common boundaries. These influences remain constant

during the learning phase of the generative model, in which the other variables

in the context model (c and deltav) are jointly optimized with the rest of the

elements in the whole generative model.

5. Improving the appearance model using a Kernel Logistic Regressor

In the proposed approach the appearance model relies on region-level de-

scriptors, and is implemented by means of a nonlinear probabilistic machine

learning approach known as the Kernel Logistic Regressor (KLR). This subsys-

tem of our model is depicted within a red dashed box in Fig 2. In the following

subsections, we describe both the parametrization and the learning approach of

our appearance distribution.
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Figure 6: Illustration of the process for generating the region-level descriptors. Each region

contains several local patches, where color and texture descriptors are computed. Region level

descriptors (ht, h
c) are then computed using a BoW approach and a shape descriptor h

s is

added. Then, independent kernel values using KLR are computed for each feature (kc, kt,

and ks) and a final unique output (K) is computed by weighting the individual kernels.

5.1. Obtaining features at region level

For each region in the image, three descriptors are computed: color, texture,

and shape descriptors. Color and texture descriptors are computed by means

of a Bag-of-Words (BoW) approach at region level. Specifically, we have com-

puted these descriptors over a multi-scale dense grid of local circular patches,

as described in [26]. Color descriptors are 36-dimensional Robust Hue His-

tograms [27] whereas texture descriptors are 128-dimensional SIFT features [28].

Then, independent visual vocabularies for color and texture are calculated, with

V c = 1000 and V t = 4000 for color and texture, respectively. Once each local

descriptor is assigned to the closest visual word in each vocabulary (wt
i , wc

i ),

color and texture word occurrence histograms (hc
n, ht

n) are computed at region

level. This approach, illustrated in Fig. 6, allows the generative model to learn

the relations between descriptors within the same region what, to the authors

best knowledge, has not been handled by any latent topic model yet.

In addition, a simple shape descriptor hs
n has been also included by com-

puting a 8-orientation histogram from the Freeman chain code of the region

boundary [29].
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5.2. Proposed generative appearance distribution based on the KLR

The appearance of a region is computed using a Kernel Logistic Regressor

(KLR) that takes into account the nonlinear relations among visual words within

the region. As shown in [30], the negative log-likelihood cost function of the

KLR exhibits a similar shape to that of the Support Vector Machine (SVM)

[31] except for the well-classified samples (which still influence the KLR, but no

the SVM). Consequently, the KLR keeps the outstanding discriminative power

of the SVM.

Although the KLR provides an estimate of the (discriminative) probability

p(zn|hn) of a topic zn given the visual descriptor hn of a region, in this work a

modified version of the KLR has been used as part of a generative model, what

represents in itself a novel approach. In particular, given a sample n and an

associated topic zn, we propose the use of the following distribution:

p(hn|zn,a) =
nzn

1 + e−fzn (hn)
(2)

where hn represents the input features for the region n; nzn
is a normalization

term that ensures that p(hn|zn,a) is a probability density function over the

potential values of hn; and fzn
(hn) is a function whose optimal form, using the

representer theorem, is as follows:

fzn
(hn) =

S
∑

s=1

aznsK(n, s) (3)

where S is the training dataset where each sample s is called a Reference Point

in S; K(n, s) denotes the Kernel function between a sample n and a reference

point s; and the parameters azn
represent the weights of the KLR associated

with each reference point. For simplicity, the bias term has been omitted.

In practice, since some of the weights azn
are zero and, even more, many of

them can be set to zero without significant loss of performance, the complexity

of the KLR can be reduced significantly by selecting only those data that have

a significant influence on the final result (so that the set S in eq. (3) is, in

practice, just a subset of the database). It should also be noted that, since S
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does not depend on zn, we use the same set of reference points for every KLR

(every topic in our model).

The normalization factor nzn
in eq. (2) deserves a few words. Since the

combination of different words in a region leads to a huge number of potential

values for hn, providing an exact normalization that ensures a unit integral for

the appearance distribution becomes unfeasible. However, assuming that our

features are limited to a set of finite volume in the feature space, we propose an

approximate normalization. In particular, the normalization has been chosen to

satisfy
∑

n∈TrainingSet p(hn|zk,a) = 1 for each topic zk, with k = 1, 2, . . . ,K.

Since the proposed normalization considers just a limited combination of words,

two comments are in order: first, the larger the training set, the better the

approximation; and second, for normalization purposes, during the test, each

sample should be converted into its nearest neighbor in the training set, so that

the unseen samples do not break the normalization.

5.3. Feature fusion: a linear combination of kernels

As mentioned in section 5.1, three types of features are extracted for every

region: color BoW, texture BoW, and region shape. In order to combine these

features in a unique KLR output, a simple multiple kernel learning strategy

[32] has been followed: for each feature h, a specific kernel Kh is computed;

then, as illustrated in Fig. 6, a global kernel function is computed as a linear

combination of the individual kernels:

K =
1

∑3
h=1 ph

3
∑

h=1

phKh (4)

In our case, histogram intersection kernels have been used due to the nature

of the features. However, other features might be used that lead to other type

of kernels (Linear, RBF, etc.). In our experiments, the weights values ph have

been selected by cross validation as described later in the experimental section.

5.4. Selecting the reference points

As we mentioned before, S is a subset of the training database, so that only

samples showing notable influence on the results are included. The selection of
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those samples that are taken as reference points in each KLR plays an important

role in terms of both quality and efficiency. The first option is to use the

whole training dataset, so that every region in every document is taken as

reference. However, it makes more sense to look for a sparse representation that

requires less computations and minimizes the over-fitting. Several authors have

investigated this issue and both, unsupervised (such as [33]) and supervised

([34]) methods, have been proposed.

In our proposal we simply consider the likelihood of each sample, which im-

plicitly considers label information if available. Hence, we select an initial set

of reference points S0 using a k-means-based clustering stage. Then, at each

iteration, we add a new set of points whose appearance has not been properly

modeled yet (samples with low likelihood). Although this approach is opti-

mal when the number of reference points added at each iteration is Snew
i = 1

(otherwise, some of the samples might be highly correlated), the value of this pa-

rameter must be selected as a trade-off between performance and computational

complexity. We have used Snew
i = 50 in our experiments.

6. Model extensions for supervised mode

In this section we describe the extensions of the model that make it suit-

able to work in supervised mode, in which a set of labeled training images is

used to learn the distributions that are used later on a test set of unlabeled im-

ages. Specifically, in our case, these labels are given by ground truth pixel-wise

segmentations.

The variables that support the supervised mode are represented inside the

dotted blue box in Fig. 2 and described in detail in the following subsections.

6.1. Soft-labeling vs. hard-labeling

In supervised mode, we use the image labels to align the latent topics with

the actual semantic concepts. Since we work with latent topic models, preserving

its latent nature during the training phase becomes an important prerequisite.
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The benefits of this approach are diverse: a) the model can successfully handle

approximate annotations (see, for example, that illustrated in Fig. 1(c)); b)

it may overcome under-segmentation of the training images; and c) it might

handle datasets where some classes are pixel-wise annotated but others not.

A hard labeling strategy entails introducing multinomial distributions zn|Ln

that depend on the label Ln associated with a region. In doing so, the topics are

no longer latent since the topic associated with every region is actually being

imposed (we would be closer to discriminative approaches than to generative

ones). Therefore, we suggest a soft-labeling approach. First, we add to each

image an artificial new region that is meant to be located outside the image and,

consequently, neither contains local patches nor influences any other region.

This new region is called the non-image region. Then, we propose to use a

discrete distribution over the spatial location of the topics ln|zn, Lr, which is

estimated in accordance with the ground truth segmentation available (training

dataset). In our experiments, this estimation has been performed as follows:

for every region (except for the non-image region), given a topic z, we set the

spatial location l to 1 if the topic appears in the region, or to ǫ if not. While

for the non-image region, l = 1 when the topic is not in the image and l = ǫ

otherwise. Finally, the distribution is normalized by the sum over all regions.

The value of ǫ is supposed to be very low (ǫ = 1e − 4 in our experiments), but

not zero, in order to reach softer solutions.

Finally, one just have to compute the final location distribution ln|zn, δ, λ, c, Lr

as the product of the context-based and supervised distributions and normalize

it to ensure that
∑Rd

r=1 p(ln = r|zn, δ, λ, c, Lr) = 1. In summary, the proposed

approach actually sets a spatial distribution that depends on the selected topic

rather than setting the topics themselves, thus preserving the latent nature of

topics.

6.2. Extending the KLR-based appearance: taking into account negative samples

Following our graphical model, the appearance distribution in eq. (2) is only

computed once a topic zn has been chosen as the one that generates the region,
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thus lacking of negative samples. This becomes a critical issue in supervised

mode since only positives samples are available to train the regressor of the

appearance model.

To overcome this issue we propose the following appearance distribution:

p(hn|zn,a) = nzn

(

1

1 + e−fzn (hn)

)zn
(

1

1 + efzn (hn)

)z̄n

(5)

where z̄n represents a new variable such that p(z̄n) = 1−p(zn). In this manner,

we ensure that both positive and negative samples are properly taken into ac-

count by the appearance distribution of the topics. Obviously, for test purposes,

the term depending on z̄n should be removed, the appearance models remain

unchanged, and eq. (2) is used.

7. Inference

This Section describes the inference process. Given the set of model pa-

rameters Θp = {a, c, α, δ, λ, η,g, L}, exact inference is not possible due to the

coupling between the variables θ and z, what prevents from inferring the poste-

rior distribution of the parameters given the data. Therefore, we propose to use

a simplified variational distribution q (that is tractable) and mean-field varia-

tional inference, so that the Kullback-Leibler divergence between the variational

distribution q and the posterior distribution of the parameters given the data

p(Θp|h, l,g) is minimized. The new variational distribution q is represented

in Fig. 2(b), where it is easy to notice how some links have been removed so

that the independence among variables allows for an analytic solution. The

variational distribution q can be written as follows:

q(θ, z, δ|Θv) = q(θ|γ)

Nd
∏

n=1

q(zn|φn)

K
∏

k=1

q(δk|χk) (6)

where Θv = {γ,φ,χ} are the variational parameters; q(θ|γ) and q(δ|χ) are

Dirichlet distributions; and q(z|φ) is a multinomial distribution.
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Hence, the log-likelihood of the data can be lower bounded as:

log p(h, l,g|Θp) ≥ Eq[log p(θ|α)] +

Nd
∑

n=1

(

Eq[log p(zn|θ)] + Eq[log p(hn|zn,a)]

+ Eq[log p(ln|zn, δ,λ, Ln)]

)

+

K
∑

k=1

Eq[log p(δ|η)] + H(q) (7)

where Eq[·] denotes the expectation over the variational distribution q, and H(·)

the entropy of a distribution.

7.1. Obtaining a lower bound of the context term

The term of the log-likelihood that is associated with the context of a re-

gion requires computing a lower bound to make it tractable. To this end, we

introduce a new variational parameter rtkpr, such that
∑K

t=1

∑Rd

p=1 rtkpr = 1,

that aims to capture the whole normalized relation, coming from both the ge-

ometric context and the semantic link between two regions p and r, given that

the regions p and r belong to the topics t and k, respectively. Once this new

variational parameter has been defined, the Jensen’s inequality can be applied

to determine the lower bound:

Eq[log p(ln|zn, δ,λ)] ≥

K
∑

k=1

K
∑

t=1

Rd
∑

p=1

φnk1[ln = r]rtkpr

[

log
ctkλpr

rtkpr
+ Ψ(χtp) − Ψ

(

Rd
∑

m=1

χtm

)

]

(8)

where Ψ(·) is the first derivative of the log Γ function and we have additionally

introduced the variational parameter χ.

7.2. Reducing the complexity of the appearance term

Before starting and in order to shorten the notation, hereafter, we will in-

distinctly use fnzn
instead of fzn

(hn) for referring to the KLR expression in eq.

(3).

With the purpose of reducing the complexity of the appearance term, the

logistic function can be symmetrized as follows: log f(x) = −log(1 + e−x) =
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x
2 − log(ex/2 + e−x/2) [35]. Then, working out (5) produces:

Eq[log p(hn|zn,a)] = Eq[log nk] + Eq

[

(zn − z̄n)

(

fnk

2
− log gnk

)]

(9)

where gnk = e
1

2
fnk + e−

1

2
fnk . Since gnk is convex over the variable f2

k , the last

term can be lower bounded using a first-order Taylor expansion. This process

involves a new variational parameter ξ and leads to the following expression:

Eq[log p(hn|zn,a)] ≥
K

∑

k=1

{

φnk log nk +

(

φnk −
1

2

)

fnk

−
ξ

2
− log(1 + e−ξnk) − A(ξnk)

(

f2
k (hn) − ξ2

nk

)

}

(10)

with A(ξnk) = 1
4ξnk

tanh
(

ξnk

2

)

. Note that this lower bound is exact when ξ2 =

f2
k (hn). Moreover, the regression function f is now outside the logarithm, thus

allowing for a much simpler optimization.

To update the regressor, a L2-norm regularized function has to be maxi-

mized, namely:

Lfk
=

Nd
∑

n=1

K
∑

k=1

C
(1)
nk fnk − C

(2)
nk f2

k (hn) −
µ

2
‖f‖2

Hk
(11)

where the parameters C1, C2 are:

C
(1)
nk = φnk −

1

2
(12)

C
(2)
nk =

1

4ξnk
tanh

(

ξnk

2

)

(13)

Thus, in order to obtain the optimal values of the regressors ak, an iterative

Newton-Raphson method can be used, so that at iteration t:

a
(t+1)
k = a

(t)
k − H−1

k ∇k (14)

where the values of the gradient ∇k and the Hessian Hk obey:

∇k = KT
k C(1) − 2KT

k (C(2) ◦ fk) −
µ

2
K ′

kak (15)

Hk = −2KT
k diag(C(2))Kk −

µ

2
K ′

k (16)
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where K and K ′ denote the data kernel matrix and the regularization matrix,

respectively, and ◦ represents the Hadamard product (element-wise) of matrices.

Finally, the normalization term is computed as:

n−1
k =

D
∑

d=1

Nd
∑

n=1

1

1 + e−fk(hdn)
(17)

7.3. Parameter updating equations

To learn the values of the model parameters, we use a variational EM ap-

proach. The updating equations that govern the variational parameters in the

E-step of the proposed algorithm are:

ξnk = ±fnk (18)

rtkpr ∝ ctkλpr exp

[

Ψ(χtp) − Ψ

( Rd
∑

m=1

χtm

)]

(19)

χtp = ηp +

Nd
∑

n=1

K
∑

t=1

φnk1[ln = r]rtkpr (20)

φnk ∝ exp

{

Ψ(γk) + log 1[ln = r]Lrk + ξnk

+

K
∑

t=1

Rd
∑

p=1

1[ln = r]rtkpr

[

log
ctkλpr

rtkpr
+ DΨ(χtp)

]}

(21)

γk = αk +

Nd
∑

n=1

φnk (22)

with DΨ(χtp) = Ψ(χtp) − Ψ

(

∑Rd

m=1 χtm

)

.

Furthermore, in the φnk update equation, Multinomials Lk associated with

the region labels should be included only in the training phase in supervised

mode.

In the M-step, the optimal values of the model parameters are computed.

In particular:

ctk ∝

D
∑

d=1

Nd
∑

n=1

Rd
∑

p=1

φdrk1[ldn = r]rtkpr (23)

nk, ak as in eq. (17) and (14), respectively.

α as in the original LDA formulation [8]
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(a)

(b)

Figure 7: Processing pipelines for (a) unsupervised experiments and (b) supervised experi-

ments. In both cases, each step of the process is identified together with the involved variables

(inputs, learned variables, and outputs).

Finally, a note on the convergence speed of the algorithm is in order. We

have found that the convergence speed basically depends on when the KLR-

based appearance model reaches a large enough number of reference points.

Once this number of reference points is reached, the model expressiveness is

enough to solve the problem and the segmentation accuracy stops improving.

This number of reference points turns out to be quite low in the unsupervised

case (about 200 reference points) and, consequently, the convergence is really

fast (4-5 iterations); whereas it is higher for the supervised case (up to 1500

reference points), which requires 25-30 iterations.
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8. Experimental Results

We have assessed the proposed model in two different scenarios for category-

based image segmentation: unsupervised and supervised. The unsupervised sce-

nario, in which we do not have labeled data, is the main one. The goal in this

case is to produce unsupervised segmentations and to discover semantic con-

cepts. In contrast, the supervised scenario, in which labeled data are provided

to train our model, is a complementary scenario that allows us to highlight that

the proposed method is capable of producing competitive results (with respect

to state-of-the-art methods) in both scenarios and, consequently, is an outstand-

ing alternative for scene analysis tasks where different degrees of supervision are

present.

In any case, although not described in the paper, we have used location prior

distributions as in [2].

8.1. Unsupervised category-based image segmentation and topic discovery

These experiments have been conducted on the Microsoft Cambridge Seg-

mentation database (MSRC) [36]. MSRC database contains 591 images of 23

object classes, two of which (‘horse’ and ‘mountain’) have been removed from

the evaluation due to their low number of positives, as suggested in the evalu-

ation protocol proposed in [36]. Obviously, each image may contain more than

one class, and there is a significant degree of both intra-class variation and

inter-class overlapping.

In this case we aim to unsupervisely produce category-based segmentations

or, in other words, to unsupervisely detect topics that correspond to seman-

tic categories in the database. The interested reader is referred to [26] for an

excellent survey that compares the performance of several methods in a topic

discovery task, for which latent topic models become one of the most prevalent

approaches. Although the underlying task is essentially the same, our assess-

ment method is different since we are not only interested in topic detection, but

also in category-based image segmentation. In particular, given a topic discov-

ery task in a multiclass problem, Tuytelaars et al. evaluate a set of independent
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binary detection systems, whereas we focus on how good the category-based

segmentation is (each image contains one or more categories and each pixel in

the image belongs to one and just one semantic category).

The processing pipeline used in this experiment is illustrated in Fig. 7(a),

where every step of the process is identified together with the variables involved.

In the unsupervised mode, our algorithm uses input variables (observed vari-

ables in the model) in order to produce topic-based segmentations. Since the

algorithm is actually not aware of the categories in the database and it simply

produces image segmentations according to the latent topics, we need to use

an oracle that provides an association of each topic with the most likely class

in the database. Obviously, this alignment is one-to-one so that every topic

represents one and only one category in the dataset. From our point of view,

this approach produces a more realistic assessment since the assignment of more

than one topic to the same semantic category is actually penalized, what did

not happen in [26]. Once this previous alignment has been generated, the seg-

mentation accuracy can be measured in the same manner as in a supervised

mode.

In the conducted experiments we have compared our generative model with

several state-of-the-art latent topic models found in the computer vision litera-

ture, and with two versions of our proposal where some components have been

removed:

a) LDA [8], as the baseline topic model;

b) SP-LTM [19], that introduces segmentations considering independent re-

gions;

c) MRF-LDA [23], that extends the previous one by modeling an intra-class

inter-region MRF-based geometric context.

d) Proposed-Mult, in which the KLR-based appearance model has been sub-

stituted by a simple multiplicative model with multinomial distributions;

e) Proposed-w/o Context, in which we have removed the context model.

The compared algorithms were run over the whole MSRC dataset (591 im-
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Table 1: Experimental results for unsupervised category-based image segmentation on the

MSRC database.

Algorithm Overall Accuracy

LDA 24.36%

SP-LTM 24.56%

MRF-LDA 25.41%

Proposed-Mult 26.04%

Proposed-w/o Context 30.42%

Proposed 33.25%

ages). Table 1 shows the segmentation accuracy achieved by all of them. As can

be seen, our proposal clearly outperforms the rest of the latent topic models:

31% improvement with respect to MRF-LDA, which provides the best reference

result. In order to analyse how the proposed context and appearance mod-

els contribute to the performance of the proposed method, we have compared

the proposed method performance to that of incomplete versions of it. The

larger part of the performance improvement is due to the KLR-based appear-

ance model (an improvement of 27.7% when comparing ’Proposed’ to ’Proposed-

Mult’), but there is also a relevant improvement coming from the inclusion of the

context model (9.3% when comparing ’Proposed’ to ’Proposed-w/o Context’).

In summary, the proposed appearance model provides much more expressiveness

than the multinomial distributions used in the rest of the latent topic models,

and the inter-region inter-topic context model clearly outperforms previous con-

text models (as the one proposed in MRF-LDA).

In order to gain more insight into the manner the proposed method works,

it is worthwhile to discuss its strengths and weaknesses. To this end, a selection

of both good and wrong visual segmentation results are provided in Fig. 8.

Examples of good segmentations are given in the first two rows, while wrong

segmentations are given in the last two rows. As can be observed, in general,

the proposed method tended to assign just one or two topics to the whole image,
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Figure 8: An illustration of visual category-based segmentation results achieved by our pro-

posal in unsupervised mode on the MSRC database. Top rows: correctly segmented samples.

Bottom rows: segmentation errors

thus producing segmentations in which the main category was usually spread

along the whole image. This resulted in good segmentations for images showing

either just one semantic category (see ‘flower’ or ‘sign’ examples in the top

row) or various large objects belonging to different categories (see ‘tree-water’

example in the top row).

On the other hand, we find two main causes of error that allows us to explain

most of the cases where the proposed algorithm achieved poor performance;

namely: a) object-oriented categories were absorbed by other scene-oriented

categories that tend to appear in their surroundings (see the first three examples

in the last rows of the figure, where ‘sign’, ‘cows’ and ‘bicycles’ have been

absorbed by ‘sky’, ‘grass’ and ‘road’, respectively); and b) the same topic was

associated with two ‘visually similar’ classes (e.g. ‘dog/cow’ and ‘sign/book’ in

the last row of the figure).

Therefore, we can conclude that the unsupervised version of our latent topic

model successfully discovers semantic categories. Likewise, it generates segmen-

tations and categorizations. The category-based image segmentations produced
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by the proposed method turn out to be better for large regions (in both scene-

or object-oriented categories) than for small instances of object-oriented cate-

gories. This fact is a direct consequence of the clustering property inherent to

the latent topic models, which tend to divide the data space into equally-sized

topics, thus favoring topics that occupy large regions.

8.2. Supervised category-based image segmentation

The experiments on supervised category-based image segmentation have

been conducted on two different databases: MSRC, described in the previous

subsection, and PASCAL VOC 2010 Segmentation Database [37].

PASCAL VOC Segmentation is a challenging segmentation dataset with 20

object categories. In order to provide a meaningful assessment of every model

element, we have used the segmentation ’trainval’ set, divided into a ’train set’

(964 images) for training and validation, and a ’val set’ (964 images) for test.

It should be noticed that segmentation accuracy is computed differently de-

pending on the database: for the MSRC database, it is computed as the percent-

age of pixels correctly classified within the considered 21 class labels. Therefore,

pixels belonging either to the 2 discarded classes or to the non-defined class (see

black pixels in Fig. 1(c), where the black regions are those belonging to the non-

defined class) are not taken into account. For the PASCAL VOC database, in

contrast, background pixels are also taken into account. Furthermore, whereas

MSRC considers only a global accuracy measure, in PASCAL individual accura-

cies for each class are firstly computed and then averaged to provide the global

measure.

It is worth mentioning that following other approaches, such as [38], we

have also included the outputs of SVM-based classifiers using a Spatial Pyramid

Representation of images [39].

As in the unsupervised experiments, several different versions of our proposal

were included in the evaluation to provide some insight into the performance

improvement that comes from each of the proposed extensions. In addition to

the ones considered in the unsupervised environments, a version that follows a
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Table 2: Experimental results on the MSRC database.

Algorithm Accuracy Algorithm Accuracy

TextonBoost [2] 72% Yang et al. [40] 75%

Auto-context [41] 75% Zhang et al. [42] 75%

Verbeek et al. [24] 74% Krähenbühl et al. [43] 86%

Ladickỳ et al. [44] 87% Proposed-Mult 56%

Proposed-w/o Context 81% Proposed-Hard 84%

Proposed 85%

hard-labeling strategy (’Proposed-Hard’).

8.2.1. Results on the MSRC database

For the MSRC database, the evaluation procedure follows the one described

in [36], which divides the complete dataset into a train set (276 images), a

validation set (59 images), and a test set (256 images).

The complete processing pipeline is illustrated in Fig. 7(b), where we have

identified the variables learned in each step of the process. We have used the

validation set to optimize the values of several parameters that cannot be au-

tomatically optimized; namely: the weights ph of the weighted kernel strategy

described in Section 5.3; and the regularization term µ in the KLR. To that

end, we have followed a two-step approach: 1) For each combination of the

parameters (p, µ), where p is a vector grouping the weights ph, we trained our

generative models on the train set to learn parameters of the model (a, c, α) and

obtain the corresponding segmentation accuracies on the validation set; and 2)

keeping the parameter values that led to the highest accuracy on the validation

set, we trained the final model using the train+validation set and obtained the

segmentation accuracy on the test set. As a result of this process, the weights

of the weighted kernel were set to pt = 1.00 (texture), pc = 0.25 (color), and

ps = 0.01 (shape); and µ was set to µ = Nr
1000 , where Nr is the total number of

regions in the training dataset.
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Figure 9: Some illustrative examples of segmentation outputs in MSRC provided by our

proposal in supervised mode.

Table 2 shows the segmentation accuracy achieved by the compared algo-

rithms on the MSRC dataset. In particular, we compare the proposed method

to several state-of-the-art methods for which results have been reported on the

same database and following the same evaluation protocol. As can be observed,

although all the state-of-the-art references are discriminative (CRFs or SVMs),

the proposed method achieved reasonably competitive results when compared

to them: only two of the compared methods provides slightly better results.

These results demonstrates that generative models are able to reach the same

performance level than discriminative approaches when ground-truth pixel-wise

segmentations are used in the training phase.

In what concerns to our proposal, it is easy to notice how the KLR-based

appearance model is in charge of most of the improvement, emphasizing the

relevance of this subsystem. Furthermore, an in-depth analysis of the results

allows us to draw the following conclusions: a) the soft-labeling improves the

hard-labeling approach by 1.2% (’Proposed’ vs. ’Proposed-Hard’), what is a nice

consequence of giving some degree of freedom to the topics in order to keep their

latent nature unaltered; and b) including context information (again) provides

a notable improvement of the results (up to 5%).

Some illustrative visual examples in which our proposal achieved good per-

formance are shown in Fig. 9. As can be seen, the algorithm not only provided
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Figure 10: Highest ranked images corresponding to scenes containing just 1, 2, 3, 4 or 5

semantic categories. These are the images for which our proposal is more confident.

suitable image partitions, but also successfully assigned each region to its asso-

ciated semantic category.

Furthermore, in order to provide a more realistic visual assessment, we se-

lected those images with the highest levels of confidence, that is, those ones

with the highest values of the lower bound of the posterior in eq. (7); however,

we found that these maximum values were always detected in images showing

only one category. Then, we repeated the experiment aiming to find the highest

ranked images for scenes containing just 1, 2, 3, 4 or 5 semantic categories. The

results are shown in Fig. 10. As can be seen, the algorithm provided proper

segmentations for almost all cases. In general, segmentation errors were either

associated with small regions that were absorbed by larger regions in their sur-

roundings (e.g. the legs of the ‘cow’ in the third example have been absorbed

by the ‘grass’ region), or to confusable objects that appeared together in the

image (e.g. ‘aeroplane’ and ‘building’ in the fifth example).

8.2.2. Results on the PASCAL VOC database

For the PASCAL VOC dataset, following the approach described in [43],

we have also included, as additional features, the responses provided by the

bounding box object detectors [45] for each object class (with a weight po =

0.10). Furthermore, we have used the same parameter values validated for

MSRC.

Regarding the results on this dataset, we have compared our proposal with
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Figure 11: Some illustrative examples of segmentation outputs in PASCAL VOC 2010 pro-

vided by our proposal in supervised mode.

the state-of-the-art method proposed in [43] where the authors reported results

using the same ’trainval’ dataset. For this particular dataset, we have obtained

a Segmentation Accuracy of 32.7%, which compares favorably with the 30.2%

reported in [43]. In addition, some visual examples are provided in Fig. 11.

9. Discussion

In this paper we have presented a latent topic model for category-based im-

age segmentation. Two are the main contributions of the model with respect to

the state-of-the-art in the latent topic literature: 1) an inter-topic inter-region

context model that successfully takes into account the spatial neighborhood of

a region to decide which topic is the most appropriate for that region; and 2) a

novel KLR-based appearance distribution that allows for considering the non-

linear relations among local descriptors within the same region, while keeping

the computational complexity low enough to reach a practical solution. Fur-

thermore, it is worth emphasizing how these contributions have been designed

within an unified inference framework, what is not easily found in systems alike.
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In addition to these two contributions, a set of extensions of the model have

been proposed to allow it to work in supervised mode. Some of these extensions

are related to the KLR-based appearance (handling negative samples during

training), and other to a soft-labeling strategy that keeps unaltered the latent

nature of topics. This is in itself a valuable contribution since the proposed

model is able to work in both unsupervised and supervised modes, in contrast

to other (usually discriminative) alternatives.

All the contributions have been experimentally assessed in both unsuper-

vised and supervised category-based image segmentation tasks. We have also

shown to what extent each specific proposal contributes to the whole system

performance. Furthermore, our experimental results prove that the algorithm

not only outperforms several techniques found in the latent topic literature, but

also compares reasonably well to discriminative state-of-the-art methods in a

supervised scenario.
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