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Abstract. In this paper we propound the use of a number of entropy-
based metrics and a visualization tool for the intrinsic evaluation of
Sentiment and Reputation Analysis tasks. We provide a theoretical jus-
tification for their use and discuss how they complement other accuracy-
based metrics. We apply the proposed techniques to the analysis of
TASS-SEPLN and RepLab 2012 results and show how the metric is
effective for system comparison purposes, for system development and
postmortem evaluation.

1 Introduction

The appropriate evaluation of multi-class classification is a founding stone of
Machine Learning. For Sentiment and Reputation Analysis (SA and RA), where
different polarities—for instance positive, neutral, negative—and several degrees
of such polarities may be of interest, it is a crucial tool.

However, accuracy-based methods in predictive analytics suffer from the well-
known accuracy paradox, viz. a high level of accuracy is not a necessarily an
indicator of high classifier performance [1, 2, 3]. In other words, a high accuracy
figure does not necessarily imply that the classifier has been able to model the
underlying phenomena.

Since accuracy-improving methods try to improve the heuristic rule of mini-
mizing the number of errors, we have to question whether rather than a short-
coming of accuracy, this paradox might be a shortcoming of the heuristic.

An alternative heuristic is to maximize the information transferred from in-
put to output through the classification process, as described by the contin-
gency matrix. In [4] an information-theoretic visualization scheme was proposed,

� FJVA and JCdA are supported by EU FP7 project LiMoSINe (contract 288024).
CPM has been partially supported by the Spanish Government-Comisión Intermin-
isterial de Ciencia y Tecnoloǵıa project TEC2011-26807 for this paper.
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the entropy triangle, where the mutual information (MI) of the contingency ma-
trix is related to the distance of the input and output distributions from unifor-
mity and to the variation of information [5], another distance measuring how
much information from input was not learnt and how much information at the
output is not predicted by the classifier.

Unfortunately, MI is expressed in bits, not in efficiency, and this detracts
from its intended reading as a metric. Furthermore, it is actually one aspect of a
tripolar manifestation [4], hence not adequate as a binary indicator of goodness.
Also, it measures how well has the classifier learnt the input distribution, but
not what its expected accuracy is.

On the other hand, the Normalized Information Transfer (NIT) factor [6] is
a measure that relates to MI in the same way that the reduction in perplexity
of a language model relates to the entropy of a source: it quantifies how well the
classifier has done its job of reducing the uncertainty in the input distribution.
This reading allows us to justify an Entropy-Modulated Accuracy that can be
used as a complement to more standard, error-based metrics, like precision, recall
or F-score.

In the following we introduce more formally these two tools (Section 2) and
apply them to the systems that took part in the last TASS-SEPLN and RepLab
2012 campaigns (Section 3). We conclude with some suggestions for their use.

2 The Entropy Triangle and the Normalized Information
Transfer

2.1 The Entropy Triangle: A Visualization Tool

The entropy triangle is a contingency matrix visualization tool based on an
often overlooked decomposition of the joint entropy of two random variables[4].
Figure 1 shows such a decomposition showing the three crucial regions:
– The mutual information,

MIPXY = HPX ·PY −HPXY

– The variation of information, the addition of the conditional perplexities on
input and output [5],

V IPXY = HPX|Y +HPY |X (1)

– And the entropy decrement between the uniform distributions with the same
cardinality of events as PX and PY and the entropy of the joint distribution
where both are independent,

ΔHPX ·PY = HUX ·UY −HPX ·PY . (2)

Note that all of these quantities are positive. In fact from the previous decom-
position the following balance equation is evident,

HUX ·UY = ΔHPX ·PY + 2 ∗MIPXY + V IPXY (3)

0 ≤ ΔHPX ·PY ,MIPXY , V IPXY ≤ HUX ·UY
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Fig. 1. Extended entropy diagrams related to a bivariate distribution, from
[4]. The bounding rectangle is the joint entropy of two uniform (hence independent)
distributions UX and UY of the same cardinality as input probability distribution PX

and output PY , resp. The expected mutual information MIPXY appears twice in (a)
and this makes the diagram split for each variable symmetrically in (b).

where the bounds are easily obtained from distributional considerations. If we
normalize (3) by the overall entropy HUX ·UY we obtain the equation of the 2-
simplex in entropic space,

1 = Δ′HPX ·PY + 2 ∗MI ′PXY
+ V I ′PXY

(4)

0 ≤ Δ′HPX ·PY ,MI ′PXY
, V I ′PXY

≤ 1

representable by a De Finetti or ternary entropy diagram or simply entropy
triangle (ET).

The evaluation of classifiers is fairly simple using the schematic in Fig. 2.

1. Classifiers on the bottom side of the triangle transmit no mutual information
from input to output: they have not profited by being exposed to the data.

2. Classifiers on the right hand side have diagonal confusion matrices, hence
perfect (standard) accuracy.

3. Classifiers on the left hand side operate on perfectly balanced data distribu-
tions, hence they are solving the most difficult multiclass problem (from the
point of view of an uninformed decision).

Of course, combinations of these conditions provide specific kinds of classifiers.
Those at the apex or close to it are obtaining the highest accuracy possible on
very balanced datasets and transmitting a lot of mutual information hence they
are the best classifiers possible. Those at or close to the left vertex are essentially
not doing any job on very difficult data: they are the worst classifiers. Those at
or close to the right vertex are not doing any job on very easy data for which they
claim to have very high accuracy: they are specialized (majority) classifiers and
our intuition is that they are the kind of classifiers that generate the accuracy
paradox [1].
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Fig. 2. Schematic Entropy Triangle showing interpretable zones and extreme
cases of classifiers. The annotations on the center of each side are meant to hold for
that whole side.

In just this guise, the ET has already been successfully used in the evalua-
tion of Speech Recognition systems [4, 7]. But a simple extension of the ET is
to endow it with a graduated axis or colormap that also allows us to visual-
ize the correlation of such information-theoretic measures with other measures
like accuracy, greatly enhancing its usefulness. Examples of its use can be seen
in Figs. 3 and 4, and this is the main tool we propose to complement other
Sentiment Analysis metrics.

2.2 The Normalized Information Transfer (NIT) Factor and the
Entropy-Modified Accuracy (EMA)

The problem with the ET is that in spite of being helpful as a visualization and
exploration tool, it does not allow for system ranking at the heart of modern
competitive, task-based evaluation. For such purposes we use a corrected version
of the accuracy and a measure derived from mutual information.

A measure of the effectiveness of the learning process is the information trans-
fer factor μXY = 2MIPXY but we prefer to report it as a fraction of the number
of classes, the Normalized Information Transfer factor (NIT),

q(PXY ) =
μXY

k
= 2MIPXY

−HUX (5)

The NIT is explained in the context of the perplexity of the classifier [6]. The
quantity μX = 2MIXY is interpreted there as the reduction in the number of
classes afforded by a classifier on average, as seen from the point of view of an
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uninformed decision: the higher this reduction, the better. In the worst case—
random decision—, this reduction is MIPXY = 0, 2MIPXY = 1 whence the NIT
is 1/k. In the best possible case (perfect classifier, balanced class distribution)
this reduction is MIPXY = log2k, 2

MIPXY = k, whence the normalized rate is 1
so that the range of the NIT factor is 1/k ≤ q((PXY ) ≤ 1 matching well the
intuition that a random decision on a balanced data set can only guess right 1/k
of the times on average but the best informed decision guesses right always.

Considering the two paragraphs above, kX|Y = 2
HPX|Y can be interpreted as

the remanent number of equiprobable classes seen by the classifier (after learning
the task). But kX|Y is precisely the number of equiprobable classes the classifier
sees after subtracting the NIT, whence the entropy-modulated accuracy (EMA)
of the classifier would be

a′(PXY ) = 1/kX|Y = 2
−HPX|Y

We can see that the EMA is corrected by the input distribution and the
learning process, i.e. the more efficient the learning process, the higher the NIT
and the higher the EMA but, the more imbalanced the input class distribution,
the lower kX and the higher the EMA.

Note that this last commentary makes the EMA a suspicious metric: classifiers
should only be compared when the effective perplexities of the tasks they are
applied to are comparable, that is, with similar kX . For classifiers across tasks,
then, the NIT is a better measure of success, although when measuring perfor-
mance on the same task, modified accuracy is a good metric. In the following,
we will report both.

3 Experiments and Evaluation

3.1 Sentiment Analysis in TASS-SEPLN

The aim of the TASS-SEPLN competition was to classify tweets into different
degrees of Sentiment polarity. The data consists of tweets, written in Spanish
by nearly 200 well-known personalities and celebrities of the world [8]. Each
tweet is tagged with its global polarity, indicating whether the text expresses a
positive, negative or neutral sentiment, or no sentiment at all. Five levels have
been defined: strong positive (P+), positive (P), neutral (NEU), negative (N),
strong negative (N+) and one additional no sentiment tag (NONE). Table 1
shows the distribution of these classes in the training and test sets, and their
effective perplexities: the training sets are much more balanced.

In TASS-SEPLN, polarity classification is evaluated as two different tasks.
The goal of TASS5 is to automatically classify each of the tweets into one of the
5 polarity levels mentioned above. However, prior to this classification, the task
requires to filter out those tweets not expressing any sentiment (i.e., those tagged
as NONE), so the number of classes is k = 6 . TASS3 consists in classifying each
tweet in 3 polarity classes (positive, neutral and negative). To this end, tweets
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Table 1. Distribution of tweets per polarity class in the TASS corpus

TASS5 P+ P NEU N N+ NONE TOTAL kX

training 1 764 1 019 610 1 221 903 1 702 7 219 5.6
testing 20 745 1 488 1 305 11 287 4 557 21 416 60 798 4.1

TASS3

training 2 783 610 2 124 1 702 7 219 3.6
testing 22 233 1 305 15 844 21 416 60 798 3.2

tagged as positive and strong positive are merged into a single category (posi-
tive), and tweets tagged as negative and strong negative into another (negative).
This task is called TASS3 but has k = 4 .

Table 2 shows the numeric results of the different metrics on the (a) TASS3
and (b) TASS5 tasks. These data reveal that the EMA is much lower than normal
accuracy and that there would be some reordering of the ranking if EMA was
the ranking criterion. In particular, some sets of submissions are systematically
pushed downwards in the table according to EMA. These phenomenon warrants
some postmortem analysis of the results of such systems.

Furthermore, some systems, specifically those with μXY ≈ 1.000, essentially
took random decisions but their accuracies were well above random. This is a
strong result that shows the inadequacy of accuracy for such evaluations.

Figure 3 presents the ET visualization of the performance of the different
systems at either task, revealing some interesting results. First, in both tasks four
systems are closer to the upper vertex of the triangle implying a better behaviour
than the others. However, their distance to the apex of the ET indicates that even
these systems are still far from solving the task, that is, being able to model the
different polarities captured in the data, even though the best accuracy is 72.3%
in TASS3, 67.8% in TASS5. This is another strong hint that high accuracy does
not correlate with high performance in the task. Furthermore, the triangles show
that two systems (correlative submissions in either tasks) are placed very close
to the base of triangle, which suggests both random decision and specialization
as majority classifiers, despite their achieving an accuracy of around 35% in both
tasks. These are the very same systems with μXY ≈ 1.000 .

Second, while the accuracy of the systems is better in TASS3 than in TASS5
(as expected, since the complexity of the problem increases with the number of
classes), the evaluation according to the ET shows that the behaviour of the
systems is, in practice, the same in both tasks. In our opinion, the explanation
can be found in the evaluation methodology and distribution of classes in the
dataset: for TASS3, positive and strong positive tweets are merged in a single
category, and negative and strong negative tweets are merged in another category.
But since the number of tweets in the positive and strong negative categories is
very low in comparison with the number of tweets in the remaining categories,
the effect of misclassifying tweets of these two categories in TASS5 is not that
marked, in terms of accuracy.
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Table 2. Perplexities, accuracy (a), EMA (a′
X) and NIT factor (qX) for

the TASS test runs. . The ranking by accuracy (official) and by EMA have some
inversions (red=should sink, green=should rise).

(a) TASS3: k = 4, kX = 3.2

TASS3 run kX|Y μXY a a′
X qX

daedalus-1 2.090 1.539 0.723 0.478 0.385
elhuyar-1 2.265 1.420 0.711 0.441 0.355
l2f-1 2.258 1.424 0.691 0.443 0.356
l2f-3 2.256 1.426 0.690 0.443 0.356
l2f-2 2.312 1.391 0.676 0.432 0.348
atrilla-1 2.541 1.266 0.620 0.394 0.316
sinai-4 2.706 1.189 0.606 0.370 0.297
uned1-1 2.735 1.176 0.590 0.366 0.294
uned1-2 2.766 1.163 0.588 0.362 0.291
uned2-1 2.819 1.141 0.501 0.355 0.285
imdea-1 2.953 1.089 0.459 0.339 0.272
uned2-2 3.033 1.061 0.436 0.330 0.265
uned2-4 2.900 1.109 0.412 0.345 0.277
uned2-3 3.070 1.048 0.404 0.326 0.262
uma-1 2.649 1.214 0.376 0.377 0.304
sinai-2 3.212 1.001 0.358 0.311 0.250
sinai-1 3.213 1.001 0.356 0.311 0.250
sinai-3 3.216 1.000 0.351 0.311 0.250

(b) TASS5: k = 6, kX = 3.2

TASS5 run kX|Y μXY a a′
X qX

daedalus-1 2.413 1.705 0.678 0.414 0.284
elhuyar-1 2.664 1.545 0.653 0.375 0.257
l2f-1 2.625 1.567 0.634 0.381 0.261
l2f-3 2.620 1.570 0.633 0.382 0.262
l2f-2 2.734 1.505 0.622 0.366 0.251
atrilla-1 3.077 1.337 0.570 0.325 0.223
sinai-4 3.432 1.199 0.547 0.291 0.200
uned1-2 3.505 1.174 0.538 0.285 0.196
uned1-1 3.454 1.191 0.525 0.290 0.199
uned2-2 3.809 1.080 0.404 0.263 0.180
uned2-1 3.395 1.212 0.400 0.295 0.202
uned2-3 3.865 1.064 0.395 0.259 0.177
uned2-4 3.600 1.143 0.386 0.278 0.190
imdea-1 3.674 1.121 0.360 0.272 0.187
sinai-2 4.107 1.002 0.356 0.243 0.167
sinai-1 4.110 1.001 0.353 0.243 0.167
sinai-3 4.113 1.000 0.350 0.243 0.167
uma-1 3.338 1.232 0.167 0.300 0.205

3.2 Reputation Analysis in RepLab 2012

RepLab 2012 was an evaluation campaign aimed at comparing classification sys-
tems trained to determine whether a tweet content has positive, negative or
neutral implications for corporate reputation [9]. This task is related to sen-
timent analysis and opinion mining, but differs in some important points: not
only opinions or subjective content are being analysed, but also polar facts, i.e.
objective information that might have negative or positive implications for a
company’s reputation. For instance, “Barclays plans additional job cuts in the
next two years” is a fact with negative implications for reputation. Since more
than 1 out of 3 tweets are polar facts affecting reputation without containing
sentiments or emotions, the number of cases that cannot be correctly captured
using sentiment analysis techniques alone is very significant.

Moreover, the focus is set on the decisive role that the point of view or perspec-
tive can play since, for example, the same information may be negative from the
point of view of the clients and positive from the point of view of investors. For
instance, “R.I.P. Michael Jackson. We’ll miss you” has a negative associated sen-
timent for fans, but a positive implication for the reputation of Michael Jackson.

The data set was manually labelled by experts for 6 companies (for training)
and 31 companies (for testing) both in English and Spanish. The distribution of
tweets among classes is summarized in Table 3.
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(a)

(b)

Fig. 3. Entropy triangles for the TASS Sentiment Analysis tasks for 3 (a)
and 5 (b) polarity degrees. Colormap correlates with accuracy.

Figure 4 shows the performance of the different systems submitted to the Re-
pLab 2012 evaluation on the Entropy Triangle, whose analysis seems to indicate
that classifying reputation polarity is a more complex task than classifying sen-
timent polarity, since the results in the RepLab 2012 show that most systems
present a nearly random behaviour (obtaining very bad performances in the
more balanced test distribution). This is further supported on lower accuracies
and EMAs.

Only one system (the one above the others) presents results that suggest that,
even reporting a low performance, is differentiating correctly between classes. No-
toriously, this system is knowledge-supervised, while most of the rest approaches
are based in machine learning statistical supervised approaches.

In contrast, the system to the middle of the bottom side of the triangle is spe-
cialized returning to every input the label of the majority class. This deduction
from the theoretical side was corroborated by its authors declaring that this last
system classifies all instances as positive [10], the majority class in training. This
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Table 3. Distribution of tweets per polarity class in the RepLab 2012 corpus.
Effective perplexities are very different for training and testing.

Dataset P NEU N TOTAL kX

training 885 550 81 1 516 2.32
testing 1 625 1 488 1 241 4 354 2.98

was a profitable strategy in terms of accuracy according to the training set (see
Table 3) but certainly not in the test set where the classes are not that skewed
(hence accuracies in the 30%). This extreme behaviour is perfectly identified in
the ET and with the NIT factor and it would have been detected irrespective of
the test set distribution. In fact, this system is the last in the ranking according
to both EMA and NIT whilst holding the 24th position out of 35, according to
accuracy. Since many of the systems of the competition were based on statistical
modelling, similar behaviours can be observed due to the marked imbalance of
the training set classes.

An example of this is the system presented to both evaluations (RepLab
2012 [11] and TASS-SEPLN [12]). This system, based on sentiment analysis
techniques [13], achieved a reasonably good performance in TASS3, but was
considerably worse in the RepLab 2012. This behaviour seems to corroborate our
hypothesis that polarity for reputation and sentiment analysis are substantially
different tasks. Finally, it is also worth mentioning that both tasks should take
into consideration the presence of irony. Few works have dealt with the effect of
irony when analyzing polarity [14, 15], but its correct analysis should increase the
performance of SA and RA approaches. Our intuition is that this phenomenon

Fig. 4. Entropy triangles for the whole population of systems presented to
the RepLab2012 Reputation Analysis. The colormap encodes accuracy. The task
is not solved, even as a collective effort, taking the NIT as the criterion.

9



Table 4. Relevant perplexities, accuracy a(PXY ), EMA a′(PXY ) and NIT
factor qX(PXY ) for RepLab 2012 confusion matrices. kX is not homogeneous
due to the possibility of submitting only part of the results.

RepLab 2012 kX kX|Y μXY a a′
X qX

polarity-Daedalus-1 2.982 2.678 1.113 0.491 0.373 0.371
polarity-HJHL-4 2.775 2.629 1.056 0.439 0.380 0.352
profiling-uned-5 2.982 2.897 1.029 0.436 0.345 0.343
profiling-BMedia-4 2.982 2.899 1.029 0.427 0.345 0.343
profiling-BMedia-5 2.982 2.911 1.024 0.420 0.343 0.341
profiling-uned-2 2.982 2.902 1.027 0.418 0.345 0.342
profiling-uned-4 2.982 2.902 1.027 0.418 0.345 0.342
profiling-BMedia-2 2.982 2.911 1.024 0.415 0.344 0.341
profiling-OPTAH-2.tx 2.981 2.841 1.049 0.408 0.352 0.350
profiling-BMedia-3 2.982 2.924 1.020 0.398 0.342 0.340
profiling-BMedia-1 2.982 2.941 1.014 0.398 0.340 0.338
profiling-OXY-2 2.982 2.938 1.015 0.396 0.340 0.338
profiling-uned-1 2.982 2.892 1.031 0.396 0.346 0.344
profiling-uned-3 2.982 2.892 1.031 0.396 0.346 0.344
profiling-OXY-1 2.982 2.939 1.015 0.394 0.340 0.338
polarity-HJHL-1 2.775 2.685 1.034 0.391 0.372 0.345
profiling-ilps-4 2.982 2.962 1.007 0.391 0.338 0.336
profiling-ilps-3 2.982 2.914 1.023 0.385 0.343 0.341
profiling-ilps-1 2.982 2.962 1.007 0.384 0.338 0.336
profiling-kthgavagai 2.982 2.922 1.020 0.383 0.342 0.340
profiling-ilps-5 2.982 2.876 1.037 0.382 0.348 0.346
profiling-OPTAH-1.tx 2.981 2.904 1.026 0.380 0.344 0.342
polarity-HJHL-3 2.775 2.695 1.030 0.377 0.371 0.343
profiling-GATE-1 2.982 2.982 1.000 0.373 0.335 0.333
profiling-OXY-4 2.982 2.947 1.012 0.369 0.339 0.337
profiling-ilps-2 2.982 2.960 1.008 0.369 0.338 0.336
polarity-HJHL-2 2.775 2.697 1.029 0.369 0.371 0.343
profiling-uiowa-2 2.982 2.937 1.015 0.367 0.340 0.338
profiling-uiowa-5 2.982 2.940 1.014 0.367 0.340 0.338
profiling-OXY-5 2.982 2.967 1.005 0.365 0.337 0.335
profiling-uiowa-1 2.980 2.933 1.016 0.362 0.341 0.339
profiling-uiowa-4 2.982 2.974 1.003 0.360 0.336 0.334
profiling-GATE-2 2.982 2.971 1.004 0.357 0.337 0.335
profiling-uiowa-3 2.980 2.975 1.001 0.355 0.336 0.334
profiling-OXY-3 2.982 2.967 1.005 0.350 0.337 0.335

is more common in RA texts and can explain, to some extent, the remarkable
differences in the results.

Table 4 shows the numeric results of the various metrics being compared.
The interesting note here is that another system would actually have won the
competition if the metric was EMA, specifically “polarity-HJHL-4”. This is one
of set of systems marked in green whose EMA is comparable to that which won
the competition.
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4 Conclusions: A Proposal

We have motivated and proposed a combination of two tools as an alternative or a
complement to standard accuracy-based metrics for Sentiment Analytics tasks,
testing them on two different evaluation runs of Sentiment Analysis (TASS-
SEPLN) and Reputation Analysis (RepLab 2012).

On the one hand, EMA is a better motivated, although pessimistic, estimate
of accuracy that takes into consideration the dataset being considered and how
much a particular system has learnt in the training process. This is to be used
for ranking purposes.

On the other hand, the NIT factor is a measure of how efficient the training
process of the classifier was, that can be visualized directly with the help of the
Entropy Triangle. This is intended as a mechanism for technology development
under the heuristic of maximizing the information transmitted in the learning
process. It is well-matched to EMA in the sense that maximizing the former
maximizes the latter.

We have shown that using both in combination in postmortem system analysis
detects incongruencies and shortcomings of rankings based in accuracy.

As future lines of work a more in depth analysis of the learning process can
be pursued by interpreting the split entropy diagram of Fig. 1.

The MATLAB1 code to draw the entropy triangles in Figs. 3 and 4 has been
made available at: http://www.mathworks.com/matlabcentral/fileexchange/
30914

Acknowledgments. We would like to thank the organizers of the TASS-
SEPLN and RepLab12 evaluations for providing us with the evaluation data.
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and sentiment analysis techniques to classify polarity for reputation. In: CLEF
(2012)

[12] Mart́ın-Wanton, T., Carrillo-de-Albornoz, J.: UNED at TASS 2012: Polarity classi-
fication and trending topic system. In: Workshop on Sentiment Analysis at SEPLN
(2012)

[13] Carrillo-de-Albornoz, J., Plaza, L., Gervás, P.: A hybrid approach to emotional
sentence polarity and intensity classification. In: Conference on Computational
Natural Language Learning, CoNLL 2010, pp. 153–161 (2010)

[14] Reyes, A., Rosso, P., Veale, T.: A multidimensional approach for detecting irony
in twitter. Language Resources and Evaluation 47, 239–268 (2013)

[15] Reyes, A., Rosso, P.: On the difficulty of automatically detecting irony: beyond a
simple case of negation. In: Knowledge and Information Systems, 1–20 (2013)

12




