-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by Universidad Carlos Il de Madrid e-Archivo

Improving performance and maintainability through refactoring in C++11 Garcia and Stroustrup

Improving performance and maintainability through refactoring in
C++11

J. Daniel Garcia Bjarne Stroustrup
josedaniel.garcia@uc3m.es Bjarne@Stroustrup.com
Computer Science and Computer Science Department
Engineering Department Columbia University, USA

University Carlos IIT of Madrid, Spain
August 27, 2015

Abstract

Abstraction based programming has been traditionally seen as an approach that improves software quality
at the cost of losing performance. In this paper, we explore the cost of abstraction by transforming the
PARSEC benchmark fluidanimate application from low-level, hand-optimized C to a higher-level and more
general C++4 version that is a more direct representation of the algorithms. We eliminate global variables
and constants, use vectors of a user-defined particle type rather than vectors of built-in types, and separate
the concurrency model from the application model. The result is a C++ program that is smaller, less
complex, and measurably faster than the original. The benchmark was chosen to be representative of many
applications and our transformations are systematic and based on principles. Consequently, our techniques
can be used to improve the performance, flexibility, and maintainability of a large class of programs. The
handling of concurrency issues has been collected into a small new library, YAPL.

1 Introduction

A traditional argument against abstraction-based programming has been loss of performance. Many believe
that higher-level programming techniques necessarily introduce performance penalties. For example, it is widely
assumed that C++ code must be slower than C code because very low-level hand optimizations are assumed
necessary for performance. However, performing those low-level optimizations makes it harder to produce
correct code and the resulting code is harder to maintain.

A typical approach for improving performance on multiprocessors is parallelization. Many approaches exist
for shared memory machines from classical pragma based solutions as OpenMP [5], to library based solutions
as Intel Threading Building Blocks (TBB) [20]. Tt is widely believed that producing a parallel version of an
application requires rewriting, or at least a substantial modification of original source code. This introduces an
additional burden for long term maintenance.

We challenge these assumptions with the following specific objectives:

e Explore the assumed abstraction penalty.
e Explore the capabilities added to C++ by C++11 [11] (the 2011 ISO C++ standard).
e Provide a framework for evaluating application optimizations and their associated costs.

e Allow for user source code to be agnostic about parallelism.

Page 1 of 20

https://core.ac.uk/display/30047732?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Improving performance and maintainability through refactoring in C++11 Garcia and Stroustrup

To evaluate our ideas, we apply extensive refactorings on an existing application: fluidanimate. This appli-
cation is representative of physics simulations for animations.
The rest of this paper is organized as follows:

e Section 2 describes the fluidanimate application.

e Section 3 presents a set of basic refactorings applied to the application.

Section 4 describes the design of the YAPL library.

Section 5 presents additional refactorings applied to the fluidanimate application.

e Section 6 provides evaluation in terms of maintainability and performance.

Section 7 provides references to related work.

Section 8 states conclusions.

2 The fAluidanimate application

We refactor fluidanimate [18], an application which is part of the publicly available PARSEC benchmark [2].
The application is documented as originally contributed by Intel and it uses an extension of the smoothed
particle hydrodynamics (SPH) method to simulate an incompressible fluid.

The application reads from an external file information about a set of particles, and simulates their interac-
tions as time advances during a number of iterations, supporting single or double precision computations. The
benchmark provides a sequential version, as well as parallel versions using pthreads and Intel TBB.

The application is written in C++, but it makes hardly any use of C4++ abstraction facilities. Essentially,
it follows a C-style design expressed using a small, low-level, sub-set of C++:

e Data type abstraction is mostly used to define a Vec3D (3D-space vector) for making computation on
physical magnitudes like position or velocity.

e Differences between single and double precision are managed by means of the preprocessor.

e Most functions neither take nor return parameters and communication between functions is performed
via globals. There is a common belief that parameter passing hurts performance.

e Memory is managed through a highly sophisticated ad-hoc memory pool.

Fluidanimate uses fstream for reading and writing files. However, we concentrate on computation perfor-
mance and have made no changes to I/O.

Please, note that our aim is to express the algorithms of fluidanimate more directly. We are not trying to
provide a fundamentally different solution to the problems fluidanimate addresses, say by modifying the way
threads and locking are used.

3 Basic refactorings

While analyzing the application we applied some general refactoring techniques that could be applied. We
eliminated multiple uses of globals that could hurt both performance and maintainability. We also found that
extensive use of structures of arrays were examples of premature optimizations and could be replaced by arrays
of structures, again improving both performance and maintainability.

Page 2 of 20

Improving performance and maintainability through refactoring in C++11 Garcia and Stroustrup

3.1 Removing globals

Many software developers assume that accessing global variables provides a performance advantage, so they use
globals even when that approach seriously hurts maintainability of source code. However, on modern machine
architectures and with modern compilers, global variables access may require more instructions per access than
stack allocated variables. In particular, when a value is accessed multiple times a stack-allocated variables
provide better performance.

We found the following uses of globals in fluidanimate source code:

e Application constants that are known at compile time.
e Application parameters whose values are computed on application initialization and do not change later.

e Mutable data shared among functions in the hope of improved performance.

Our first task in refactoring the fluidanimate code was to eliminate those globals.

3.1.1 Application constants

For application constants that are known at compile time, C4++11 offers constexpr. For values that should not
be modified after they have been initially computed at run time, C4++ offers const. A key difference between
constexpr and const is that the former by definition are evaluated at compile-time by the compiler.

Developers in many OO programming languages define constants as members of some application class.
However, this approach often leads to dispersal of constants in the source code, implying dangers of duplication
and inconsistency. In C++4, for ease of comprehension and maintenance, we prefer to place those constants in
the application namespace or in an inner namespace to that application namespace.

When an application framework is designed to be generic, the need of generic constants arises. In particular,
fluidanimate needs single- and double-precision floating-point constants. C++11 did not offer direct support
the notion of a generic constant, but C++14 does and variable templates are now supported by the major
compilers.

Initially, we simulate generic constants by embedding them in a generic struct but with C++14 we can
represent them directly (see Listing 1). Neither approach implies any cost in terms of memory usage or run
time.

In summary, all the presented approaches avoid the problems of scope and tool support implied by using
macros as symbolic constants.

3.1.2 Application parameters

The second class of globals (application parameters set on initialization) can be represented as a single class
with constant public non-static data members. Then, an instance of this class becomes a data member of some
context class and can be passed around if needed. This technique avoids global objects and consequently avoid
the extra penalty derived from accessing far global data instead of near local data (see Listing 2).

3.1.3 Global data structures

Finally, global data structures can be eliminated by defining the proper abstractions and passing them as
arguments to the appropriate functions. When removing globals through abstraction, special care needs to be
taken to avoid run-time penalties. This step is also a perfect opportunity to identify and eliminate instances of
premature optimizations. Optimizations should be performed only after careful measurement and ideally only
if they do not compromise the important abstractions or interfaces. Importantly, this abstraction process gives
an opportunity for removing code duplication which hurts both performance and maintainability.

In the fluidanimate application, we found globals to provide direct access to an ad-hoc memory pool and to
directly manage linked lists of blocks of cells where each one contains a block of particle information.

We analyzed the code and found the set of composable abstractions for this application to be:

Page 3 of 20

Improving performance and maintainability through refactoring in C++11 Garcia and Stroustrup

Listing 1: Generic constants as variable templates (C++14).

namespace fluid {
namespace constants { // present constants as variable templates (C++14)

template <typename T>
constexpr T viscosity = 0.4;

template <typename T>
constexpr space_vector<T>
external_acceleration { T{}, T(—9.8), T{}};

/).
}
s

using namespace fluid::constants;
auto x = 2 * viscosity<double>;
auto a = external_acceleration<float>;

Listing 2: Application parameters encapsulation.

template <typename T>
class params {
public:
params(T ppm);
public:
const T h_;
const T hsq_;
const T h6_;
const T density_coeff_;
const T pressure_coeff_;
const T viscosity _coeff_ ;
private:
// Initialization helpers ...

};

e cell A 3D region of space containing a set of particles. A cell does not expose its implementation details.
In particular, we do not use memory pools to manage particles and we do not use linked lists of blocks.

e grid A 3D matrix of cells with application specific processing. The main objective of the grid is to allow
generalized processing of cells and their particles.

e simulation Provides a simulation management interface providing mechanisms for loading input data,
generating output, and taking statistics if needed. It manages a grid.

Removing globals through abstraction requires insight into the application, domain knowledge. It cannot
be just a mechanical substitution of one programming language feature with another.

Page 4 of 20

Improving performance and maintainability through refactoring in C++11 Garcia and Stroustrup

3.2 Sequences and structures

Many developers prefer structures of arrays (namely parallel arrays) over arrays of structures. The latter often
models the problem domain better, but the former is widely reported to provide better performance [17, pp.194—
196]. In particular structures of arrays are supposed to improve the cache hit ratio. However, we found that
this cannot be applied as a general rule. Instead, finding the best performance requires careful analysis and
measurement for each case.

In fluidanimate, the structures of arrays pattern is systematically applied so that a cell contains parallel
arrays for different information elements (as position, velocity or acceleration). However, the effect of this
pattern depends highly on access patterns. In fluidanimate most operations in particles require simultaneously
access to several information elements. Thus, intra-particle locality tends to be more important than inter-
particle locality.

To improve the clarity of code, we decided to convert to an array of structures, by using std: :vector<particle>
(see Listing 3).

Listing 3: Particle type after removing structure of arrays.

template <class T>
class particle {
public:
particle (const space_vector<T> & p,
const space_vector<T> & hv, const space_vector<T> & v);
public:
space_vector<T> position_;
space_vector<T> hv_;
space_vector<T> velocity_;
space_vector<T> accel_;
T density_;
h

// Ezample of particle operation
template <typename T>
void particle<T>::advance() {
using namespace constants;
space_vector<T> v_half = hv_ + accel_ * time_step<T>();
position- += v_half x time_step<T>();
velocity. = hv_ + v_half;
velocity_ x= 0.5;
hv_ = v_half;

Based on the literature, we expected to pay a significant performance penalty for this improvement in code
clarity and maintainability. However, it turned out that we gained in performance (see Section 6).

4 YAPL: Yet Another Parallel Library

To compare the sequential version of fluidanimate to its parallel versions, and to compare its parallel versions
to each other, we separated the specification of concurrency from the specification of the application model.
The aim is to provide the concurrency model as a parameter to the application.

To do that, we designed a simple library, YAPL [10], as an experimentation framework for containers and
algorithms. YAPL provides an interface to a container library with key differences from other existing libraries.

Page 5 of 20

Improving performance and maintainability through refactoring in C++11 Garcia and Stroustrup

YAPL design principles are based in a small set of ideals:

1. User code should be the same in sequential and parallel modes. This ideal is not always achievable, but
we strive to minimize differences.

2. There should be a clear separation between a container abstraction (a list of values) and its supporting
implementation structure (e.g., a linked list of nodes or a vector.).

3. For element access, YAPL uses mappings (a generalization of ranges). It does not use the C++ standard-
library iterators because iterators are inherently sequential.

4. Tt should be easy to select the execution policy for an application (sequential, parallel, GPU, ...).

We have developed a prototype implementation of YAPL to offer minimal support for the refactoring of
fluidanimate supporting a sequential version as well as a parallel version based on Intel TBB. Additional modes
can be easily added. Our prototype offers a 3D cube of objects and its associated operations.

4.1 YAPL structure

YAPL offers components in five categories:

e A container provides a minimal interface for the container abstraction. A key property of a container is
that it provides mechanisms for generating mappings to that container. An example is cube.

e A support structure implements a concrete strategy that can be used by multiple containers. An
example is block.

e A mapping provides an interface to operate on a subset of container elements. Different subsets may be
generated through different defining criteria. Examples are full_cube mapping or plane_cube mapping.

e An algorithm is an operation that can be applied to any mapping. A general example is the algorithm
apply.

e A policy allows the programmer to configure how operations are sequenced and elements allocated.
Examples are sequential_policy or tbb_policy.

4.2 Cubes in YAPL

A cube is a generic container that provides access to a 3D matrix of objects. All containers in YAPL are
parametrized in terms of their element type and a policy. The latter allows for easily defining containers with
different policies for execution or memory management.

A Cube (for a given cell type and policy) can be created by specifying its size for each dimension (see
Listing 4). Those sizes can be easily retrieved from a Cube. Alternatively, sizes and indices can be managed
using a cube_index type.

Both styles can be used for accessing an element from the cube (see Listing 5).

However, explicit use of indexing should be avoided when traversing cubes:

e Performance is worse than traversing the cube through a mapping.

e Explicit traversal makes transformations to parallel implementations harder than implicit traveral.

A mapping is a general YAPL concept for referencing a set of elements in a container and performing an
operation on those elements. In essence, a mapping defines a subset of elements in the container. Several
functions in the container library allow to obtain mappings from a container (see Listing 6).

Combining containers and mappings it is easy to define algorithms to perform general operations on YAPL
mappings. We use lambda expressions to provide operations to be applied to every element in a mapping.

Page 6 of 20

Improving performance and maintainability through refactoring in C++11 Garcia and Stroustrup

Listing 4: Cube interface.

using cube_type = yapl::cube<cell_type, policy>;
cube_type c{10, 15, 20};

size_t nx = c.size<0>(); // nz=10
size_t ny = c.size<1>(); // ny=15

cube_index sz{10,15,20}:
cube_type d{sz};

auto size = d.size(); // cube_index{10,15,20}

Listing 5: Accessing cube elements by indices and cube_index

do_something(c(2,3,4)); // access using integer indices
¢(2,3,4) .do_something_else();

cube_index 1{2,3,4};
do_something(c(i)); // access using a cube_index
c(i).do_something_else();

Listing 6: Obtaining different mappings from a container.

// ml is a mapping to all elements in cube c
auto ml = c.all();

// m2 is mapping to elements in plane 10
// on y—dimension of cube ¢
auto m2 = c.plane<1>(10);

Listing 7: Applying a generalized operation to a mapping through a lambda expression.

apply (my_cube.all(),
[J(cell.type & c) {
c.do_whatever();
}
)i

Listing 8: Applying a generalized operation to a mapping including indices

apply-indexed(my_cube.all(),
[J(cell-type & ¢, const cube_index & 1) {
c.init (i);
}
)

Page 7 of 20

Improving performance and maintainability through refactoring in C++11 Garcia and Stroustrup

Most operations on mappings can be expressed without providing extra details. However, in a few cases we
need to provide the cube with element coordinates (see Listing 8).

Many applications dealing with cubic structures must apply an operation to all the neighbours of an element.
Also, those operations sometimes need to be applied only to the half of neighbours to avoid duplication in
symmetric operations.

Listing 9: Application of an operation to a neighbourhood.

vector<cell_types> nl;

my_cube.for_all_ neighbours(i, [&nl](cell_type & c) {
nl.push_back(&c);

s

// Avoids duplicates when traversing cubes
vector<cell_types> n2;

my_cube.for_all_neighbours_unique(i, [&n2](cell_-type & c) {
n2.push_back(&c);

D;

4.3 YAPL and strategy encapsulation

Policies are used in a consistent manner for all classes in a name space. Unfortunately, C++ does not offer
namespaces with template parameters. In the absence of parameterized namespaces, the common approach is
to use a policy parameter in all classes. However, multiple orthogonal policies tend to emerge over time, leading
to a potentially confusing list of policy template parameters. We mitigate that situation by aggregating all
policies in a single policy class (see Listing 10).

Listing 10: Policy aggregation

template <typename E, typename A>
class policy {

using executor_type = E;

using allocator_type = A;

};

template <typename T>
using sequential_policy =
policy <sequential_executor<T'>, std::allocator<T>>;

template <typename T>
using tbb_policy =
policy <tbb_executor<T>, std::allocator<T>>;

The using-declarations provide aliases for useful policy types. This strategy of policy parameterization allows
that application code can be almost identical for different versions of the application without run-time overheads
(see Listing 11).

Page 8 of 20

Improving performance and maintainability through refactoring in C++11 Garcia and Stroustrup

Listing 11: Policy based algorithm selection.

template <typename P>

void run_simulation(double ppm, size_t np) {
using simulation_type = simulation<double,P>;
simulation_type sim{ppm,np};
sim.read(file);

for (sizet i=0;i<np;++i) {
sim.advance_frame();
}
}

void run_sequential_simulation(double ppm, size_t np) {
run_simulation<sequential_policy<double>>(ppm,np);
}

void run_tbb_simulation(double ppm, size_t np) {
run_simulation<tbb_policy<double>>(ppm,np);
}

5 Additional refactorings

5.1 Refactoring a grid with YAPL
With YAPL, the grid abstraction can be easily expressed in terms of a yapl::cube (see Listing 12).

Listing 12: Grid expressed in terms of cube

template <typename T, typename P>
class grid {
public:
grid (T ppm);
void rebuild_grid () ;
void compute_forces();
void process_collisions () ;
void reprocess_collisions () ;
void advance_particles();
private:
const params<T> params_;
const domain<T> domain_;

using cell_type = typename P::cell_type;
using grid_policy = typename P::grid_policy;
using cube_type = yapl::cube<cell_type, grid_policy>;

cube_type cells_;
cube_type cells2_;

Page 9 of 20

Improving performance and maintainability through refactoring in C++11 Garcia and Stroustrup

As an example of how an algorithm can be expressed in terms of YAPL, we provide here the implementation
of the advance_particle member function (see Listing 13).

Listing 13: Implementing grid algorithms with YAPL.

template <typename T, typename P>
void grid<T,P>::advance_particles() {
yapl::apply(cells_ . all (), [J(cell_type & c) {
c. for_all_particles ([](particle<T> & p) {
p.advance();

b;
b
}

5.2 Avoiding Data Races

Our ideal is to make the application code agnostic in respect to concurrency. However, that this is not always
possible. One example is the cell abstraction, where a parallel version may need concurrent accesses to cells.

To avoid data races, we protect such accesses with a mutex. However, that would penalize sequential versions,
which would be locking without need. To avoid that, we make the muter a template parameter of the cell
and we make use of a null muter for the sequential case (see Listing 14).

Listing 14: A cell with a generalized mutex.

template <typename T, typename M>
class cell {
public:
cell ();
void add_neighbour(cell<T,M> & c);
void add_particle(const particle<T> & p);
void emplace_particle(const space_vector<T> & pos,
const space_vector<T> & hv, const space_vector<T> &v);

template <typename F>
void for_all_particles (F f);

template <typename F>
void for_all near_particles (F f);

private:
std :: vector<particle<T>> particles_;
std :: vector<cell<T,M>x*> neighbours_;
mutable M mutex_;

};

With that approach, writing algorithms that lock only when needed is trivial. The programmer simply
protect critical regions with a lock_guard and the locking operations are completely eliminated (at compile
time) in serial executions (see Listing 15).

The lock_guard [22, 27] is a standard-library (RAII) type that ensures that a lock on a mutex is released at
the end of its scope, so that no explicit unlock operation is needed (and thus cannot be forgotten).

Page 10 of 20

Improving performance and maintainability through refactoring in C++11 Garcia and Stroustrup

Listing 15: Examples of generalized locking.

template <typename T, typename M>

void cell <T,M>::add_particle(const particle<T> & p) {
std :: lock_guard<M> l{mutex_};
particles_ . push_back(p);

}

template <typename T, typename M>
template <typename F>
void cell<T,M>::for_all(F f) {

std :: lock_guard<M> l{mutex_};

for (auto & p : particles_) {

f(p);

}

}

6 Evaluation

6.1 Source code metrics

To evaluate the impact of refactoring on source code, we used basic source code metrics. Table 1 shows size
metrics of original and refactored source code. For the original code two versions are analyzed independently:
the sequential version and the parallel TBB-based version. For the refactored version figures are given for the
refactored source code and the YAPL library. Note that the refactored version offers in a single code base where
the original PARSEC vesion required separate sequential and the parallel versions. A key advantage of our
approach is that a single code base needs to be maintained.

Table 1: Source code size metrics for original and refactored application

Metric ‘ Seq. Parallel Total ‘ Refactored YAPL Total
Logical LOC 717 961 1678 829 454 1283
Number of functions 35 52 87 165 110 275
LLOC per function | 20.49 18.48 19.29 5.02 4.13 4.67
Number of classes 5 15 20 23 16 39

Even counting YAPL library, the resulting code base is around 25% smaller than the original code base.
The reason for this is that generic programming made it easy to remove replicated source code. The refactored
version uses significantly more classes and functions, reflecting a higher level of abstraction. The average length
of a function dramatically shrank to 25% of the original.

To compare the original and resulting source code we used cyclomatic complexity.

Table 2 shows cyclomatic complexity measures for original and refactored source code. The refactored source
code shows smaller figures for function complexity in both maximum and average values. In particular, we got
a very high reduction for the maximum function complexity (from 61 to 12). We also got a drastic reduction
in the average complexity (from 5.33 to 1.46).

In summary, the refactored code is simpler and (in our opinion) far more maintainable. Such improvements
are often assumed to come at the cost of performance.

Page 11 of 20

Improving performance and maintainability through refactoring in C++11 Garcia and Stroustrup

Table 2: Cyclomatic complexity metrics for original and refactored application

Metric ‘ Seq. Parallel Total | Refact. YAPL Total
Maximum complexity 33 61 61 8 12 12
Aggregate complexity | 198 266 464 197 204 401
Average complexity 5.66 5.11 5.33 1.19 1.85 1.46

6.2 Performance metrics of sequential version

For performance evaluation, we used two different machines of different size. The first machine was a single
socket board with one Intel Core i7-2600 processor and 4GB of main memory. The processor has 4 cores plus
the ability of using hyper-threading and a shared L3 cache of 8 MB. The machine runs an Ubuntu 12 (kernel
3.2) distribution.

The second machine was a dual socket board with two Intel Xeon E5-2695 processors and 128 GB of main
memory. Fach processor has 12 cores plus the ability of using hyper-threading and a shared L3 cache of 30 MB.
The machine runs a CentOS 6.5 Linux (kernel 2.6) distribution.

For compilation, we used g++ version 4.8.2 with all optimizations activated (-03) and C++11 mode
(-std=c++11).

In all executions of the benchmark, we measured total execution time, including processing and file I/0.
I/0 is a fixed cost which is not increased with the number of iterations. For every given setup we executed
the application independently 10 times and we took average values. We did not perform a higher number of
experiments as we got very low variations (below 1%).

We performed executions of the benchmark with the standard 500K particles. Figure 1 shows global ex-
ecution of both original and refactored versions when the number of iterations increases. We have performed
measurements until 2000 iterations. However, the standard number of evaluations for this benchmark is 500
iterations.

1,200 |- |

1,000 |- |

g 800 - B
=

2 600 B
=
3

& 400 | i

200 |+ =

—e— original
ol —m— refactored

| | | | | | | | | | |
0 200 400 600 800 1,0001,2001,4001,6001,8002,000

Iterations

Figure 1: Global execution time versus number of iterations for sequential version

Page 12 of 20

Improving performance and maintainability through refactoring in C++11 Garcia and Stroustrup

Figure 2 shows the execution time per iteration.

0.62 - |

e
o
T
|

0.58

0.56 - |

0.54 |- |

Normalized Execution time (s)

—e— original

0.52
—m— refactored

|
0 200 400 600 800 1,0001,2001,4001,6001,8002,000

Iterations

Figure 2: Normalized execution time per iteration for sequential version

For very low numbers of iterations, the original version performs better than for higher number of iterations
because initial conditions of the problem locate most particles in very few cells. This leads to less dynamic
memory operations. As simulation time progresses to realistic values, particles tend to move to different cells
requiring more memory management operations and increasing execution time. Then, the refactored version
consistently requires less time per iteration.

This improvement is in stark contrast to the conventional “wisdom” that we need to carefully hand-optimize
using low-level features to get acceptable performance.

Figure 3 shows the speedup of the refactored application over the original for different number of iterations.
While for very low number of iterations the speedup is more than 1.16 (0.52s vs. 0.6s), this value decreases when
the number of iterations increases up to 1.13 (0.54s vs. 0.62s) for 2000 iterations. For the standard number of
iterations for the benchmark we got a speedup of 1.15. The point here is not the amount of speedup obtained
for the higher-level refactored version, but that there is an improvement at all. Consequently we did not find a
penalty due to the introduction of higher level abstractions and the elimination of lower level optimizations.

6.3 Performance metrics of a parallel version

To compare the parallel versions, we used the original Intel Threading Building Blocks version from the PARSEC
benchmark as our baseline. In our application, we took the same source code and compiled it using the parallel
implementation of YAPL based on Intel Threading Building Blocks. This required no major application source
code modification. To contrast, in the original source code base, the sequential and parallel versions differ
greatly in many places, which could easily become a maintenance nightmare.

To measure the effect of the number of threads, we fixed the number of iterations to 500 and we varied the
number of threads. Figure 4 shows the execution time when threads are varied from 1 to 64 for the 24-core
machine. For both our version and the original version, the maximum speedup compared to the serial version
(about 10 times) is found for 32 to 64 threads. We observed a small speedup for our version compared to the
original version for small number of threads (12% for 4 threads). However, in general performance is essentially

Page 13 of 20

Improving performance and maintainability through refactoring in C++11 Garcia and Stroustrup

1.16

1.13 .

|
0 200 400 600 800 1,0001,2001,4001,6001,8002,000

Iterations

Figure 3: Speedup of refactored application for sequential version

the equivalent for both versions of the application with no significant loss of performance for the much simpler
source code of the refactored version.

Figure 5 shows the execution time when threads are varied from 1 to 8 for the 4-core machine. We observed
much higher speedups in this case, which reaches to values higher than 40% for the best cases with 4 and 8
threads.

The key difference between the 4-core and the 24-core machines is the size of L3 cache (30 MB versus 4
MB). On the 24-core machine, the better cache performance of our implementation is neutralized by the larger
cache. This is to be expected: better use of the cache matters only when the amount of data is large relative
to the size of the cache.

6.4 Analysis of performance counters

To better explain the reasons behind the better performance of our approach, we took hardware information by
means of performance counters. We fixed the number of iterations to 500 and obtained performance counters of
the original and refactored sequential versions for both single and double precision versions. We repeated each
measurement 10 times and took average values.

Table 3 shows measurements of instruction execution for double precision. Very similar results are obtained
for single precision.

Table 3: Instruction performance counters

Counter ‘ Orig. Refact. Ratio
Instruction Count 1,551,283,161,425 1,229,633,929,251 0.793
Instructions per cycle 1.580 1.437 0.909
Branch instructions 192,188,523,664 115,360,411,922 0.600
Branch miss ratio 0.80% 1.03% 1.281

We consistently obtained a reduction in the number of instructions effectively executed of about 20%. We

Page 14 of 20

Improving performance and maintainability through refactoring in C++11 Garcia and Stroustrup

400 - 00 original ||
[0refactored
— 300 - =
Zz
(<]
g
- _
.2 200 R
*5’ I
3
%
=
100 - =
.0 B0 | Il m 0 Om
1 2 4 8 16 32 64

Threads

Figure 4: Global execution time for different number of threads in a large machine

observed that a fraction of this reduction came from a 40% reduction of branch instructions, although branch
miss ratio increased from 0.8% to 1.0%. Thus, a key factor in the performance improvement was an important
reduction in the number of instructions being executed. There are several changes that contributed to this
instruction reduction.

First, the use of constexpr for true constants improves code generation when those constants are used in
expressions. This is especially true for constants of non-primitive types (e.g., constants of space_vector<T> in
this application.

A second source of instruction reduction comes from the traversal of the grid cells for the cases where an
operation needs to be applied to all cells in the grid. Our generic algorithm uses a single loop instead three
nested loops needing less branch instructions.

Finally, our grid data structure uses contiguous memory, instead of a linked list of nodes. This greatly sim-
plifies the code for traversing the grid. We recognize that our data cache performance shows some degradations.
However, that degradation is more than compensated by the fact that traversing a linear data structure is much
simpler to optimize than traversing a linked list of blocks, where each block contains a small array.

Table 4 shows measurements of cache performance for double precision. We focus here in access to data
showing counters for L1D cache and LL cache.

In terms of L1 cache data access, the refactored solution requires more data loads (an increase of 19.5%)
and stores (an increase of 36%). Globally, cache references increases in 21% with an increase in miss rate of
about 35%. The net effect is that L1 cache data miss ratio goes from 2.5% in the original application to 2.8%
in the refactored application.

However, at the last level cache the number of loads is roughly the same with a reduction of load misses
of about 10%, which gives a small reduction in load miss ration (from 48% to 44%). However, the number of
stores is drastically reduced to 32% of original stores, and misses are also reduced to 25% of original misses.
The net effect here is there are less LLC references (71% of original references with the miss ration going down
from 56% to 46%.

The composed cache effect is that our solution introduces some overhead in terms of data access. For example
our application grid is a yapl: : cube of cells (where each cell keeps a dynamic std: :vector of particles). Thus

Page 15 of 20

Improving performance and maintainability through refactoring in C++11

Garcia and Stroustrup

Execution time (s)

350 |

300 -

250 -

200 -

150 |-

100 |-

00 original
[0refactored

Threads

Figure 5: Global execution time for different number of threads in a smaller machine

Table 4: Cache performance counters

Counter \ Original Refactored Ratio
L1D loads 307,475,745,493 367,497,050,132 1.195
L1D load misses 6,675,053,456 8,145,499,302 1.220
L1D load miss ratio 2.17% 2.22% 1.021
L1D stores 33,899,889,447 46,123,150,112 1.361
L1D store misses 1,829,699,692 3,402,246,983 1.859
L1D store miss ratio 5.40% 7.38% 1.367
L1D references 341,375,634,940 413,620,200,244 1.212
L1D misses 8,504,753,148 11,547,746,285 1.358
L1D miss ratio 2.49% 2.79% 1.121
LLC loads 3,450,090,601 3,415,907,907 0.990
LLC load misses 1,670,299,537 1,503,452,051 0.900
LLC load miss ratio 48.41% 44.01% 0.909
LLC stores 772,690,374 250,333,416 0.324
LLC store misses 703,538,509 181,604,136 0.258
LLC store miss ratio 91.05% 72.55% 0.797

this incurs an additional memory management overhead. It is however remarkable that the data access overhead
is mostly handled in the cache hierarchy and that the number of data references resulting in a miss is lower
that in the original application.

Page 16 of 20

Improving performance and maintainability through refactoring in C++11 Garcia and Stroustrup

7 Related work

The C++ programming language has evolved over the years. Its latest approved standards [11, 12] are usually
referred as C++11 and C++14. A good overview of these new versions can be found in [24] while a more
complete description of the language and its accompanying standard library can be found in [25]. There are a
number of recent features incorporated into C++ that made this work possible:

e Compile-time constant expression data definition [8] through constexpr, allows for symbolic constants
that do not need to be initialized at program startup.

e Compile-time evaluation [8, 7] of functions (also denoted as constexpr functions), allows a way to initialize
constexpr objects at compile time. This feature also provides a way to simulate generic compile-time
constants. This workaround is not needed as the next version of C++ becomes available.

e Definition of synonyms for generic types introducing bindings for some of their parameters, namely tem-
plate aliases [26, 6] made the code of YAPL as well as the client code much simpler.

e An extensive use of type deduction through the use of auto [14, 15] as type specifier also simplified the
code and made it more easy to evolve.

e The possibility of defining lambda expressions [28, 13] as an easy way to pass around client code that
needs to be invoked from the library.

A first try to refactoring and global variables can be found in [9]. A recent work on refactoring of global
variables in C can be found in [21]. Another context in which global elimination has been used is thread safety
[23]. However, while their approach focuses in thread safety the work presented here shows that performance is
not hurt.

The array-of-structures versus structures of arrays duality can be solved by refactoring approaches. Condit
[4] propose data slicing as a mechanism for preserving interfaces while improving cache locality. Kjolstad [16]
split structs in hot and cold fields by splitting a struct into two, where one part contains the fields that are
accessed often and the other contains the fields that are accessed less often. The structs are then stored in
different arrays.

Both Microsoft Parallel Pattern Library [3] and Intel Threading Building Blocks take a common approach
for providing a library solution to parallelism with a set of generic parallel algorithms (e.g. parallel_for,
parallel find, ...). To traverse data structures they provide the concept of a range which is less constrained
than the iterator concept. YAPL’s mapping is a generalization of such concept. A similar approach is taken by
Thrust [1] for providing access to parallelism in CUDA capable GPUs. In all these cases, the libraries preserve
a high degree of resemblance to C++ Standard Template Library.

Another parallel library with similarities with YAPL is STAPL [19]. While STAPL addresses both shared
and distributed memory, YAPL only focuses in shared memory programming models. Both designs define
their own set of containers instead of adding restrictions to be STL compatible. However a key difference in
YAPL is the distinction between the interface (the container) and the representation infrastructure (the support
structure). STAPL uses two combined concepts for traversing: views and pRange. In contrast YAPL defines
single concept: a mapping for that purpose.

8 Conclusions

Many software developers make the assumption that abstraction-based programming necessarily incur a sig-
nificant performance cost. An example is the belief that low-level hand-optimized C code always give better
performance than a higher-level C++ counterpart. To challenge these assumptions we applied several refac-
toring techniques to a hand-optimized physics simulation application, the PARSEC benchmark fluidanimate.
We removed the many globals from the original source code and simplified it by removing optimizations. For

Page 17 of 20

Improving performance and maintainability through refactoring in C++11 Garcia and Stroustrup

example, we replaced arrays with implicit relationships with a single arrays of structures. We also eliminated
the extensive use of hand-optimized memory pools. Besides, we defined an experimental application framework
designed to allow that the same source code may express the sequential and the parallel version of an application:
YAPL.

In the design of YAPL we applied a small set of design principles mode agnosticism (no key difference
between sequential and parallel version of an application), separation of concerns (a layer for containers and
a another layer for support structures of those containers), no-iteration (instead of making adaptations and
workarounds a different concept of a mapping is used), and use of policies (making easy to select the execution
policy to be used). We made extensive use of these principles in the whole design of YAPL.

We were able to have a single version of the fluidanimate application code leaving the execution mode as
a setup parameter. Thus, we encapsulated the differences among versions in the YAPL library, while all the
problem domain logic remains in the application code. Our refactoring led to an important reduction in the
number of lines of code in the application (23%), while we increased the number of functions (316%) and classes
(195%), indicating an increase in the level of abstraction. At the same time, the complexity of functions was
reduced (by 72% for the average and 80% for the maximum) as well as the number of logical lines per function
(by 75%). In summary, these refactorings produced shorter, simpler, and more easily maintainable source code.

Given the introduction of a higher level of abstraction and many small functions, a loss of performance would
be widely expected and a slight loss would be acceptable. However, for the sequential version of the application
the refactored version gave a slight performance improvement (about 1.10 for a standard number of iterations
in the benchmark). Moreover, for the parallel version of the application, the refactored version gives a speedup
around 1.45 compared with a hand-written parallel version. Both versions use Intel TBB. The YAPL-based
version got better performance than the original PARSEC version for any number of underlying threads.

We credit our improvements to (generated) code reduction and improved cache locality. Looking at hardware
counters we find that our refactorings eliminated almost 20% of instructions executed, with a similar reduction
in the number of branch instructions executed. This gave a small reduction in instruction cache loads and also
improved the instructions cache hit ratio. We found that our solution required more cache data references.
However, the increase in load misses was compensated with a drastic reduction in store misses.

Acknowledgments

The authors would like to thank original authors and maintainers of the PARSEC benchmark.

J. Daniel Garcia’s work was partially supported by Fundacién CajaMadrid through their grant programme
for Madrid University Professors.

Bjarne Stroustrup’s work was partially supported by NSF grant #0833199.

References

[1] N. Bell, J. Hoberock, and C. Rodrigues. Thrust: A Productivity-Oriented Library for CUDA. In D. B.
Kirk and W. mei W. Hwu, editors, Programming Massively Parallel Processors: A Hands-on Approach.
Morgan Kaufmann, Burlington, MA, USA, 2nd. edition, Dec. 2012.

S

C. Bienia. Benchmarking Modern Multiprocessors. PhD thesis, Princeton University, NJ, USA, Jan. 2011.

=)

C. Campbell and A. Miller. Parallel Programming with Microsoft Visual C++: Design Patterns for De-
composition and Coordination on Multicore Architectures. Microsoft Press, Apr. 2011.

[4] J. Condit and G. C. Necula. Data slicing: Separating the heap into independent regions. In R. Bodik,
editor, Compiler Construction, volume 3443 of Lecture Notes in Computer Science, pages 172—187. Springer,
Berlin, Heidelberg, Germany, 2005.

[5] L. Dagum and R. Menon. Openmp: an industry standard api for shared-memory programming. IEEE
Computational Science and Engineering, 5(1):46-55, Jan. 1998.

Page 18 of 20

Improving performance and maintainability through refactoring in C++11 Garcia and Stroustrup

(6]

[7]

G. dos Reis and B. Stroustrup. Template aliases (Revision 3). ISO/IEC JTC1/SC22/WG21 Working Paper
N2258, ISO/IEC, Apr. 2007.

G. dos Reis and B. Stroustrup. General Constant Expressions for System Programming Languages. In
Proceedings of the 2010 ACM Symposium on Applied Computing, SAC ’10, pages 2131-2136, New York,
NY, USA, 2010. ACM Press.

G. dos Reis, B. Stroustrup, and J. Maurer. Generalized Constant ExpressionsRevision 5. ISO/IEC
JTC1/SC22/WG21 Working Paper N2235, ISO/IEC, apr 2007.

R. Fanta and V. Rajlich. Restructuring legacy c code into c++. In IEEE International Conference on
Software Maintenance, ICSM 99, pages 77-85, Los Alamitos, CA, USA, Aug. 1999. IEEE Computer
Society.

J. D. Garcia. Yapl — yet another parallel library. https://github.com/jdgarciauc3m/yapl, 2013. [Ounline;
available since 18-Jul-2015].

ISO/IEC. Information Technology — Programming Languages — C++. International Standard ISO/IEC
14882:2011, ISO/IEC, Geneva, Switzerland, Aug. 2011.

ISO/IEC. Information Technology — Programming Languages — C++. International Standard ISO/IEC
14882:2014, ISO/IEC, Geneva, Switzerland, Dec. 2014.

J. Jarvi and J. Freeman. C+4+ lambda expressions and closures. Science of Computer Programming,
75(9):762-772, Sept. 2010.

J. Jarvi, B. Stroustrup, and G. dos Reis. Deducing the type of variable from its initializer expression.
ISO/IEC JTC1/SC22/WG21 Working Paper N1721, ISO/TEC, Oct. 2004.

J. Jarvi, B. Stroustrup, and G. dos Reis. Deducing the type of variable from its initializer expression
(revision 4). ISO/TEC JTC1/SC22/WG21 Working Paper N1984, ISO/IEC, Apr. 2006.

F. Kjolstad, D. Dig, and M. Snir. Bringing the HPC Programmer’s IDE into the 21st Century through
Refactoring. In SPLASH 2010 Workshop on Concurrency for the Application Programmer, CAP’ 10, New
York, NY, USA, Oct. 2010. ACM Press.

M. McCool, A. D. Robinson, and J. Reinders. Structured Parallel Programming: Patterns for Efficient
Computation. Morgan Kaufmann, Waltham, MA, USA, July 2011.

M. Miller, D. Charypar, and M. Gross. Particle-based fluid simulation for interactive applications. In
Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on Computer animation, SCA ’03,
pages 154-159, Aire-la-Ville, Switzerland, 2003. Eurographics Association.

L. Rauchwerger, F. Arzu, and K. Ouchi. Standard templates adaptive parallel library (stapl). In D. R.
O’Hallaron, editor, Languages, Compilers, and Run-Time Systems for Scalable Computers, volume 1511 of
Lecture Notes in Computer Science, pages 402—409. Springer, Berlin, Heidelberg, Germany, 1998.

J. Reinders. Intel Threading Building Blocks: Outfitting C++ for Multi-Core Processor Parallelism.
O’Reilly, Sebastopol, CA, USA, July 2007.

H. Sankaranarayanan and P. A. Kulkarni. Source-to-source refactoring and elimination of global variables
in ¢ programs. Journal of Software Engineering and Applications, 6(5):264-273, May 2013.

D. C. Schmidt. Strategized locking, thread-safe decorator, and scoped locking: Patterns and idioms for
simplifying multi-threaded c¢++ components. C++ Report, 11(9), Sept. 1999.

Page 19 of 20

Improving performance and maintainability through refactoring in C++11 Garcia and Stroustrup

23]

A. R. Smith and P. A. Kulkarni. Localizing globals and statics to make ¢ programs thread-safe. In
Proceedings of the 14th International Conference on Compilers, Architectures and Synthesis for Embedded
Systems, CASES 11, pages 205-214, New York, NY, USA, Oct. 2011. ACM Press.

B. Stroustrup. A Tour of C++. C++ In Depth Series. Addison-Wesley, Boston, MA, USA, Oct. 2013.

B. Stroustrup. The C++ Programming Language. Addison-Wesley, Boston, MA, USA, 4th edition, May
2013.

B. Stroustrup and G. dos Reis. Template aliases for C++. ISO/TEC JTC1/SC22/WG21 Working Paper
N1489, ISO/IEC, Sept. 2003.

M. Suess and C. Leopold. Generic locking and deadlock-prevention with c++. In C. H. Bischof, H. M.
Bcker, P. Gibbon, G. R. Joubert, T. Lippert, B. Mohr, and F. J. Peters, editors, Parallel Computing:
Architectures, Algorithms and Applications, ParCo 07, pages 211-218, Aachen, Germany, Sept. 2007. IOS
Press.

J. Willcock, J. Jarvi, D. Gregor, B. Stroustrup, and A. Lumsdaine. Lambda expressions and closures for
C++. ISO/IEC JTC1/SC22/WG21 Working Paper N1968, ISO/IEC, Feb. 2006.

Page 20 of 20

