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Real world optimization of financial portfolios pose a
challenging multiobjective problem that can be tackled
using Evolutionary Algorithms. The fact that the op-
timization process is subject to the presence of uncer-
tainty concerning asset returns is likely to lead to unre-
liable solutions. This work suggests extending the clas-
sic mean-variance optimization problem with a third
explicit robustness objective. This results on sets of
portfolios that can be subsequently grouped together
according to their reliability. This additional informa-
tion allows for a better informed decision making re-
garding asset allocation.

Keywords: Multiobjective Evolutionary Algorithms,
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1. Introduction

Asset allocation has been one of the core lines
on financial research for decades. The problem can
be succinctly described as finding the best combi-
nations of financial assets according to specific cri-
teria set by the decision maker. Solving the prob-
lem under real-world constraints is complicated
and subject to uncertainty. The main contribution
of this paper is presenting a new approach com-
patible with solutions based on evolutionary algo-
rithms that mitigates the latter factor.
At the core of Modern Portfolio Theory lies the

seminal work of Markowitz [9,10]. This author sug-
gested a mean-variance optimization framework
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that defines the portfolio optimization as multiob-
jective problem where investors try to both mini-
mize risk and maximize return at the same time.
Given the opposing nature of these objectives, the
solution does not consist of a single asset alloca-
tion, but a range of them that define a Pareto
front. In this context, this front is called ”Effi-
cient frontier”. The portfolios included in the effi-
cient frontier define a curve similar to fig.1, plotted
in the risk-return space of all possible portfolios.
Once this set has been identified, is up to the de-
cision maker to choose the portfolio that suits him
better according to his preferences.

Fig. 1. Efficient frontier

The problem, as presented by Markowitz, relies
on a set of simplifying assumptions that make it
solvable using quadratic programming (QP). Un-
fortunately, real world portfolio optimization is
hardly compatible with most of them, adding a
great deal of complexity to the task. This has led
to two lines of work, one coming for operations re-
search relying on mathematical tools like cone pro-
gramming and a second one based on heuristics.
Even though the former leads to fast and elegant
solutions, it ends up facing the mentioned prob-
lem: at some point, the mathematical complexity
of the real world problem is extremely difficult to
handle. For this reason, heuristics, such as the ones
falling under the umbrella of evolutionary compu-
tation, are gaining popularity among researchers
and practitioners.
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The multiobjective nature of the problem has
made it attractive to researchers on multiobjec-
tive evolutionary algorithms (MOEAs). This has
resulted on many contributions either suggesting
new solutions to the core problem, or using it as
a benchmarking ground for different algorithms.
Among these we could mention Skolpadungket
et al. [17], who test a set of multi-objective
algorithms (VEGA, SPEA2, NSGA-II...); Radz-
iukyniene and Xilinskas [14], where authors com-
pare FastPGA, MOCELL, AbYSS, and NSGA-
II on both of the basic framework, and an ex-
tended version that considers the dividend yield as
a third objective. More recently, Anagnostopoulos
and Mamanis [1] compared the performance of dif-
ferent multiobjective algorithms. Deb et al. [4], in-
troduce a customized hybrid version of NSGA-II
to tackle the problem.
Even though Modern Portfolio Theory is con-

solidated, it is not unusual finding portfolio man-
agers who question the reliability of the solutions
provided by models. One of the major issues is
the sensitivity of the results to key parameters.
Regardless of the optimization method chosen to
find the efficient frontier, the optimization process
requires estimates for the asset returns and the
variance-covariance matrix. Given that the fore-
casts for these parameters are extremely likely to
be inaccurate, the selected set of portfolios tend
to show risks and returns that differ from the ex-
pected ones. In these instances, the deviations can
be quite substantial.
Figure 2 illustrates this phenomenon with a real

example. It pictures the expected risk and returns
for the portfolios in the solution evaluated using
the forecasted parameters vs the the real ones
(observed ex-post). On the one hand, the set of
portfolios that were optimized for the tradition-
ally considered most likely scenario (mean return
for each asset over a period of time, and variance-
covariance matrix computed using the same data)
define the upper efficient frontier. On the other,
we represent the risk and return for the same port-
folios using the real observed parameters (actual
asset returns instead of the mentioned averages)
in the lower set. difference is quite apparent.
Since it is clear that this unreliability constitutes

a major factor, there is a growing body of litera-
ture devoted to this matter. The effort to control
the uncertainty associated with the mentioned pa-
rameters largely fall in two categories. The first
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Fig. 2. Solution evaluated with forecasted (red points, on
top) and real parameters (blue points, on bottom)

one puts an emphasis on having robust estimates
for the parameters. This usually results in efforts
to filter the estimates to reduce, for instance, the
influence of extreme past events on their computa-
tion [12]. Conversely, the second group of authors
focus their attention on approaches that handle
uncertainty in the parameters during the optimiza-
tion process [13,18]. This work is related to the lat-
ter. We introduce an approach based on MOEAs
that mitigates the problem. This is interesting be-
cause, as it was mentioned before, these evolution-
ary algorithms are better suited to operate under
real-world constraints.
The standard approaches to find the efficient

frontier are based on a single scenario. That means
that it involves a single prediction for the asset
returns and the variance-covariance matrix. Given
that is almost certain that the estimates will not
be accurate, the decision maker bears the risk of
trusting a solution that may be extremely sen-
sitive to deviations. For this reason we consider
that assessing the candidate solutions in differ-
ent likely scenarios and identifying those that con-
sistently offer a good performance might be a
good approach. That is the reason why we suggest
extending the classic mean-variance optimization
problem with a third explicit robustness objective
that considers performance under different poten-
tial values of the parameters.
The solution introduced in this paper is related

to alternatives based on resampling [15,16]. The
most comparable traditional approach is the one
described by Idzorek [7]. He suggests the use of a
combination of traditional QP with Monte Carlo
simulation to derive a set of fronts that are subse-
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quently merged into a single solution. Even though
the idea is pretty interesting, the approach suffers
the same shortcomings as QP, that is, the ability to
deal with real-world constrains. A solution based
on MOEAs would be less likely to suffer from this
limitation.
There is a previous effort based of evolution-

ary algorithms along the lines of this work. The
solution introduced in [6] uses a simple resam-
pling that replaces every generation the parame-
ters used in the fitness functions. The alternative
presented in this work has the advantage of provid-
ing the decision maker with a wider range of alter-
natives grouped according to their reliability. This
allows for a sensitivity analysis which contributes
to better-informed choices.
Given that proposed approach is compatible

with different MOEAs, the solution will be tested
on three alternatives. The algorithms considered
in the experimental section will be SPEA2, NSGA-
II and SMPSO. The first two, SPEA2 [19] and
NSGA-II [3], are some of the most referenced mul-
tiobjective genetic algorithms in the literature.
Their suitability in the domain has been confirmed
in previous works like [17,1]. The other, SMPSO
[11], is a multiobjective evolutionary algorithm
based on particle swarm optimization.
As with any other multiobjective problem, the

analysis of the solutions will require the use of
metrics. However, the metrics that are most used
in this field, such as Hypervolume, Spread or Set-
Coverage are not appropriate indicators of stabil-
ity in this context. For this reason we use three
specific ones, Estimation Error, Extreme Risk and
Unrealized Returns that capture different aspects
of stability. These metrics will be described in de-
tail later.
The rest of the paper is organized as follows.

First, we make a formal introduction to the finan-
cial portfolio optimization problem. Next, we de-
scribe the encoding and the fitness function at the
core of the process. Then, we explain the men-
tioned metrics. This will be followed by the exper-
imental framework and the experimental results.
Finally, the last section will be devoted to the con-
clusions.

2. Financial Portfolio Optimization Problem

Financial portfolios can be defined as a collec-
tion of investments or assets held by an institution

or a private individual. Modern Portfolio Theory
was originated in the article published by Harry
M. Markowitz, in 1952 [9]. It explains how to use
the diversification to optimize the Portfolio. In
general, the portfolio optimization problem is the
choice of an optimum set of assets to include in the
portfolio and the distribution of investor’s wealth
among them. Markowitz [10] assumed that solving
the problem requires the simultaneous satisfaction
of the maximization of the expected portfolio re-
turn E(Rp) and the minimization of risk (variance)
σ2
p, that is, solving a multiobjective optimization

problem with two objective functions. The portfo-
lio optimization problem can be formally defined
as:

– Minimize the risk (variance) of the portfolio:

σ2
p = Σn

i=1Σ
n
j=1wiwjσij (1)

– Maximize the return of the portfolio:

E(Rp) = Σn
i=1wiµi (2)

– Subject to:

Σn
i=1wi = 1 (3)

0 ≤ wi ≤ 1; i = 1...n (4)

where n is the number of available assets, µi the
expected return of the asset i, σij the covariance
between asset i and j, and wi are the decision vari-
ables giving the composition of the portfolio. The
constraints referenced in equations 3 and 4 require
full investment of funds and prevent the investor
from shorting any asset, respectively. In practice,
risk is usually characterized in terms of the stan-
dard deviation σp instead of the variance σ2

p. We
will adhere to this criterion.
The solution to the problem should also consider

some real world constraints [2] such as:

– Cardinality constraint: it is possible to define
the maximum Cmax and minimum Cmin num-
ber of assets in which it is possible to invest
(wi ̸= 0):

Cmin ≤ Σ(wi ̸= 0) ≤ Cmax (5)

– Values limit constraint: each weight wi must
have a value in the interval [liminf , limsup],
where:

0.0 ≤ liminf ≤ wi ≤ limsup ≤ 1.0 (6)
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All of these equations are solved by a set of
points that constitute the efficient frontier of the
problem. The points of that curve represent port-
folios which have the minimum amount of risk,
given a certain expected return (and viceversa).

3. Proposed Robustness-Enhancing
Multiobjective Formulation

In this Section, it will be explained how MOEAs
has been used to tackle the problem of achieving
robust or stable portfolios. In order to specify the
problem, both the representation of the solutions
or chromosome (portfolios) and the function to be
optimized (the fitness function) must be described.

3.1. Encoding

Individuals for evolutionary algorithms will rep-
resent portfolios, so that each portfolio is a single
element of the population. The solution encoding
is given by a vector of real numbers. Each of these
numbers represents the percentage of investment
per asset (also called weight: wi where i ranges
from 1...n, and n is the number of investable as-
sets). As it is observed from the definition prob-
lem explained before, every individual must meet
the constraints specified by eqs. 3, 4. The sum of
weights per individual must be 1, that is full in-
vestment is required. Also, the individuals must
satisfy additional real-world constraints showed in
eqs. 5 and 6. The satisfaction of these constraints
is guaranteed by a process of repairing solutions.
This process basically consists on adjusting the
number of invested assets when they do not be-
long to the interval [Cmin, Cmax] to ensure compli-
ance with the cardinality constraint. This is done
adding or dropping assets until the requirement is
met. In case the sum of weights per individual is
not 1.0, the repairing process fine tunes the hold-
ings adding or subtracting random amounts up to
the required adjustment. These changes are forced
to meet the investment limits [liminf , limsup]. The
individuals are repaired both after initializing the
population and applying the genetic operators to
guarantee the effectiveness of solutions.

3.2. Adjusted Fitness Function

As it is previously commented, predicted pa-
rameters are subject to uncertainty and usually
differ from the real ones. Basic approaches usu-
ally optimize portfolios for just one scenario, the
forecasted, getting solutions that may be hyper-
specialized on it. Therefore, when these portfolios
are computed using the observed parameters, the
predicted efficient frontier lies far from the actual
one. The way to avoid this situation is to find those
portfolios that are stable in more than one sce-
nario, so that they are robust to big changes in pa-
rameters becoming, in consequence, more reliable
in practice. With this purpose, a third objective
that evaluates the stability of a portfolio has been
included in the formulation of the fitness function.
Let us remember that the problem is tackled

using multi-objective evolutionary algorithms with
three objectives to optimize. The first two ones are
given by the formulation explained in section 2,
this is: the return E(Rp) (eq. 2) to be maximized
and the risk σp (eq. 1) to be minimized. Next, the
third objective to improve robustness considered
in this work is explained in detail.
This objective is denoted as Zp. Minimizing it

at the same time than it maximizes E(Rp) and
minimizes σp, our approach tries to get a set of
portfolios that are not only robust, but also per-
forms well in terms of risk and return while keep-
ing good trade-off among the three objectives. For
this purpose, Zp measures the robustness of one
particular individual evaluating it under different
resampled parameters. This value is got averag-
ing the Mahalanobis distances among the pair of
E(Rp)/σp objectives of the individual p (denoted
as xp) and the expected risk/return in G differ-
ent and feasible scenarios (xp1, .., xp4). Eq. 7 shows
how this objective is calculated:

Z =
ΣG

i=1[dM (xp, xpi)]
2

G
(7)

where G is the number of resampled scenarios
and dM is the Mahalanobis distance [8] defined as
follows (with Σ as the variance-covariance matrix):

dM (x, y) =
√
(x− y)TΣ−1(x− y) (8)

The rationale for the choice of Mahalanobis dis-
tance as basis for comparison is the fact that it cap-
tures the structural relationship among variables.
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Among other advantages, this makes the compar-
ison resistant to scale issues derived from the dif-
ference in value range for each objective.
As xp is computed under the expected parame-

ters, dM (xp, xpi) gives the deviation of the portfo-
lio when its variables are evaluated in a different
scenario. New groups of parameters, G, are created
in each generation and they are used to evaluate
the stability of every existing individual (the new
and the old ones). Using different scenarios reduces
significantly the risk of generating one that do not
differ enough from the one used by the algorithm.
Even more, the distance is raised to the square in
order to emphasize more the deviations. Logically,
smaller values of distances correspond to more re-
liable portfolios.
The set of the new feasible scenarios is gener-

ated using nonparametric bootstrap, so that the
data of the set of parameters used to evaluate the
population is resampled creating a new one as it
is described in Alg. 1.

Algorithm 1 Resampling method
S is the original sample set with a size Ns.
S′ is the new sample set with a size N ′

s. At the beginning,
S′ = 0 and N ′

s = 0.
while N ′

s ̸= Ns do
Select randomly Xi ∈ S.
S′ = S′ ∪ {Xi}.

end while
Return(S′)

4. Evaluation Metrics

In the context studied in this work, the most
used metrics, as Hypervolume (HV) and Spread
[20], can not be used to measured the quality of
solutions from a robustness point of view. These
metrics could be useful when we look for good
distributed and strong dominant fronts. However,
they are not appropriate to capture the effect
showed in fig. 2. To measure the robustness of the
solutions, we define three metrics that evaluate dif-
ferent aspects related portfolio robustness. They
are named: Estimation Error, Unrealized Returns
and Extreme Risk.

– Estimation Error: It evaluates the average dif-
ference between the expected risk and return
for every portfolio in the efficient frontier and
the actual risk and return a posteriori once

the real values of the parameters are observed.
Formally, it can be expressed as:

EE =
ΣN

p=1[dM (xp, xp
′)]2

N
(9)

where N is the number of portfolios in the
Pareto front; xp represents the pair (E(Rnp), σ

2
np)

for portfolio p and period tn calculated using
forecasted parameters; xp

′ is defined by the

pair (E(Rnp)
′
, σ2

np
′
) where both return and

risk are computed using the the real param-
eters (the ones observed for tn)for the same
portfolio and moment in time; and, dM is the
Mahalanobis distance defined in eq. 8.
The smaller is the difference between the fore-
cast and reality, the lower is the value of this
metric and, therefore, the higher is the relia-
bility of the original front.

– Unrealized Returns: This indicator provides
information on the average potential return
left on the table. Namely, it measures the av-
erage squared difference between the realized
return and the maximum potential return for
that risk level for all the portfolios in the so-
lution. This is defined as:

UR =
ΣN

p=1[E(Rnpe)− E(Rnp)]
2

N
(10)

where N is the number of portfolios in the
solution, E(Rnp) is the return of portfolio p
computed using the ex-post parameters for
time tn and E(Rnpe) is the return of the port-
folio, pe, with the most similar risk level in
the efficient frontier derived using the ex-post
parameters. High values on this metric would
indicate large unrealized potential returns.

– Extreme Risk: This metric evaluates the sen-
sitivity of the solutions to worst-case scenar-
ios. It is closely related to the third objective.
For computation purposes, it uses the same
basic definition. There are, however, two dif-
ferences. The first one is that instead of rely-
ing a relatively small set, G, of resampled sce-
narios, this metric is derived from a consider-
ably larger one, Q. The second is that, instead
of considering the average for all Q scenar-
ios, it only takes into account a small subset.
Specifically, the computation would include
only the W worst-case ones. For this purposes
we define worse-case scenarios as the parame-
ter combinations that result in the highest av-
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erage Mahalanobis distance between the ex-
pected risk and returns, and the risk and re-
turn for the same portfolios using the resam-
pled parameters. This metric is defined as:

ER =
ΣW

w=1
ΣN

p=1[dM (xp,xpw)]2

N

W
(11)

where N is the number of portfolios in the
solution, dM (xp, xpw) is the Mahalanobis dis-
tance between the pair (E(Rnp), σ

2
np) and

(E(Rnpw), σ
2
npw); this last one represents the

return/risk for the w scenario, p portfolio and
tn period of time.
The rationale for this indicator is providing
an estimate for the expected average negative
outcome of the realization of the worst sce-
nario with probability W/Q. The higher the
metric, the higher the risk.

5. Experimental Framework

5.1. Data Sets

Experimentation has been performed using sam-
ple that consists of 240 monthly returns for eight
broad financial indexes representing that many as-
set classes. The series of monthly returns cover the
time period from January, 1990 to December, 2009
and the source for the data is Datastream. The list
of indexes is provided in Table 1.

Table 1

Data Sets

Name Code

Frank Russell 1000 Growth FRUS1GR

Frank Russell 1000 Value FRUS1VA

Frank Russell 2000 Growth FRUS2GR

Frank Russell 2000 Value FRUS2VA

S&P GSCI Commodity Total Return GSCITOT

MSCI EAFE MSEAFEL

BOFA ML CORP MSTR ($) MLCORPM

BOFA ML US TRSY /AGCY MSTRAAA($) MLUSALM

For experimental purposes, in order to test our
approach in many real and historical situations,
a sliding window has been implemented. The aim
of this is generating a large set of single-period
portfolio optimization problem instances based on
real data, not a single testing ground for a dynamic
multi-period approach. The size of the window is

set to n = 120, return periods that correspond to
10 years of data. So that, the algorithm will rely
on data from t1 to tn to identify the best possible
allocations for the period tn+1. Each time, the 10-
year window will move one month, 120 times in
total to cover the date interval from 31/01/1990
to 31/12/2009.

5.2. Evolutionary Multi-objective Algorithms and
their Parametrization

Motivated by our interest in the multi-objective
approach, we will test the effectiveness of the pro-
posed approach on different MOEAs using the
same chromosome structure and fitness evaluation
procedure described in sections 3.1 and 3.2.
We have selected three different algorithms:

NSGA-II, proposed by Deb et al. [3], is one of the
most widely used multiobjective metaheuristics
and the reference algorithm, SMPSO [11] that is
based on particle swarm optimization, and SPEA2
algorithm [19], developed by Zitzler et al., has
been also selected because performs better than
other MOEAs in the field of Portfolio Optimiza-
tion [17,1]. A summary of their parameter settings
is included in Table 2.

Table 2

Parameters. L = 8 (individual length). The termination
condition is to compute 300 iterations.

SPEA2

Population size 200 individuals

Archive size 200 individuals

Crossover SBX, pc = 0.9

Mutation Polynomial, pm = 1/L

Selection of Parents Binary tournament

NSGA-II

Population size 200 individuals

Crossover SBX, pc = 0.9

Mutation Polynomial, pm = 1/L

Selection of Parents Binary tournament

SMPSO

Archive size 200 particles

Swarm size 200 particles

Mutation Polynomial, pm = 1/L

These algorithms are implemented in jMetal [5],
a Java framework aimed at multiobjective opti-
mization with metaheuristics. By reusing the base
classes of jMetal, all the techniques share the same
basic core components (solution encodings, oper-
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ators, etc.). This ensures a fair comparison of the
considered algorithms.
One study varying the value of G in fitness func-

tion (described in sec. 3.2) has been done. We con-
sider that choosing four scenarios (G = 4) to eval-
uate the individual is enough to represent the vari-
ability in parameters. G > 4 would increment the
computing time of the algorithm without highly
increasing the heterogeneity.
Moreover, every algorithm is carried out un-

der the same cardinality [Cmin, Cmax] = [2, 6] and
value-limits per asset [liminf , limsup] = [0.1, 0.8]
constraints described in section 2 (eqs. 5 and 6).

5.3. Front Processing

The set of fronts resulting from the experimenta-
tion contains non-dominated individuals according
to the three objectives driving the evolution pro-
cess. Figure 3 shows one solution picked at random
from the set of experiments based on the SPEA2
algorithm for illustration purposes.
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Fig. 3. SPEA2. Time window from 31/05/1996 to

28/04/2006.

The three-objective solutions are not readily
comparable with the ones resulting from the stan-
dard two-objective formulation. For this reason,
these sets of portfolios will be split in subsets ac-
cording to the robustness objective. The identifi-
cation of the non-dominated solutions in terms of
risk and return for each subset results in fronts
whose quality can be evaluated using the stability
metrics defined in section 4.
With this purpose, at the end of the execution,

the final solution set is ranked by Zp objective and
split in three parts. Zp with lower values means

higher stability of the portfolio (see sec. 2) so that,
the first third of individuals with smaller Zp will
be classified as “high stability”, followed by the
second third as“medium stability” and the last one
as “low stability”. Then, Zp values are discarded
from solutions keeping only the non-dominated in-
dividuals in terms of risk and return objectives.
Figs. 4, 5 and 6 show the three fronts derived from
the processing of the front represented in fig. 3.
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Fig. 4. High stability front. SPEA2. Time window from
31/05/1996 to 28/04/2006.
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Fig. 5. Medium stability front. SPEA2. Time window from

31/05/1996 to 28/04/2006.

6. Experimental Results

In this section we present the experimental re-
sults based on the data and procedures already
introduced. The approach is tested on SPEA2,
NSGA-II and SMPSO and the high, medium and
low stability fronts have been evaluated using the
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Fig. 6. Low stability front. SPEA2. Time window from
31/05/1996 to 28/04/2006.

metrics defined in section 4. These results are
benchmarked against the results obtained by the
standard versions of the same algorithms, using
only the two objectives that define the basic port-
folio optimization problem (risk minimization and
return maximization).
The experimental settings are the same, re-

gardless of the approach (robust vs. standard),
and all the algorithms use the same encoding de-
scribed in section 3.1. Given the stochastic na-
ture of MOEAs, 20 runs have been carried out for
each approach and each algorithm. The results are
therefore presented in terms of standard descrip-
tive statistics. The differences among the different
results have been formally tested for statistical sig-
nificance using the Wilcoxson test. The choice of
this test is justified by the lack of normality in the
distribution of the metrics.
Tables 3, 4 and, 5 show the values of Estima-

tion Error, Unrealized Return and Extreme Risk
metrics, respectively. Tables include the average,
medium and variance for both standard and ro-
bust approaches for the tested MOEAs (SPEA2,
NSGAII and, SMPSO). Tables also report the per-
centage of improvement of the robust version over
the standard approach (see column labeled as Av.
imp.), which it is computed as:

Av.imp. = 1− AverageStandardAlg.

AverageRobustAlg.
The estimation error shows the expected pattern

of results. The higher the stability of the solution,
the lower the metric. Regardless of the algorithm
chosen, the average improvement is considerable.
The highest average gains come from the genetic
algorithms, but this is due to the high baseline er-
ror. SMPSO seems to offer a better performance as

Table 3

Estimation Error

EE Average Median Variance Av. imp.

SPEA2 2.5198 1.7945 5.1421

SPEA2 High S 0.9387 0.6448 0.9844 62.75 %

SPEA2 Medium S 2.0338 1.5425 3.6269 19.29 %

SPEA2 Low S 4.1945 3.2386 16.4057 -66.46 %

NSGAII 2.2823 1.7996 3.9817

NSGAII High S 0.8557 0.5442 1.2544 62.51 %

NSGAII Medium S 1.9449 1.4377 3.4238 14.78 %

NSGAII Low S 4.4823 3.5236 18.2888 -96.40%

SMPSO 1.5204 1.2878 1.7354

SMPSO High S 0.7660 0.5744 0.5298 49.62 %

SMPSO Medium S 1.2768 0.9673 1.3110 16.03 %

SMPSO Low S 2.4097 2.1001 4.2289 -58.48%

it provides the best average result, the second best
median error (close to the lowest one, offered by
NSGA II) and the most consistent results as shown
in the variance. In this case, the average reduction
in the mean value of the metric across all the ex-
periments is 49.62%. This means that the discrep-
ancy between the expected behavior of the selected
portfolios and reality is significantly lower for the
ones evolved to be stable than for the alternatives
identified using the standard mean-variance opti-
mization framework. The estimation error on the
bottom third subset of portfolios is, as expected,
substantially high. The result is particularly bad
for NSGA II, almost doubling the baseline.

Table 4

Unrealized Returns

UR Average Median Variance Av. imp.

SPEA2 3.5848 2.7989 8.5604

SPEA2 High S 2.3903 1.9530 2.8606 33.32 %

SPEA2 Medium S 3.3552 2.6677 7.6028 6.40 %

SPEA2 Low S 4.3958 3.3277 14.7493 -22.62 %

NSGAII 3.4871 2.7326 7.8823

NSGAII High S 2.2413 1.8409 2.2544 35.72 %

NSGAII Medium S 3.3600 2.6389 7.6546 3.64 %

NSGAII Low S 4.5813 3.4372 16.4506 -31.38%

SMPSO 2.9805 2.4745 4.9961

SMPSO High S 1.9837 1.6159 1.9944 33.44 %

SMPSO Medium S 2.6855 2.2980 4.1098 9.90 %

SMPSO Low S 3.7202 3.0062 8.1424 -24.82%

Table 4 shows a similar set of results regard-
ing the second metric. The unrealized returns drop
significantly once we consider the stable subset of
solutions. The difference is much when we con-
sider the medium stability solutions. Once again,
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SMPSO provides the best performance. Even
though the basic versions of SPEA2 and NSGA-
II tend to offer significantly larger unrealized re-
turns than SMPSO, the improvement gained from
the third objective is similar in relative terms.
The gains from selecting the most stable solutions
range from 33.32% and 35.72%. The choice of the
medium stability front reduces the mentioned gain
from 33.40% to 9.9% in the best case, SMPSO,
and from 35.70% to 3.64% for NSGA-II.

Table 5

Extreme Risk

ER Average Median Variance Av. imp.

SPEA2 3.5308 3.0614 4.9670

SPEA2 High S 1.5177 1.2593 1.1936 57.02 %

SPEA2 Medium S 2.9764 2.5328 3.6940 15.70 %

SPEA2 Low S 5.6684 4.6919 15.8470 -60.54 %

NSGAII 3.2407 2.8451 3.9687

NSGAII High S 1.3633 1.0087 1.4098 57.93%

NSGAII Medium S 2.8657 2.4719 3.5085 11.57%

NSGAII Low S 6.0523 5.0495 17.8200 -86.76%

SMPSO 2.2485 2.0297 1.8884

SMPSO High S 1.2384 1.0332 0.6596 44.92 %

SMPSO Medium S 1.9356 1.7212 1.5613 13.92 %

SMPSO Low S 3.4179 3.0564 4.9731 -52.01%

When we consider extreme scenarios only, we
obtain consistent results. The selection of the 5
worst case scenarios out of a set of 100 per time
period leads to a generalized increase in the pre-
diction errors. The distribution of these errors
matches the ones reported for EE metric. Ta-
ble 4 shows how the additional robustness objec-
tive reduces the average metric up to 57.93%. The
PSO-based solution provides both the best aver-
age results and the highest consistency. Is worth
noting that, for the stable case, the median er-
ror for NSGA-II is slightly better than the one
for SMPSO. However, this comes at a cost of a
variance that is more than twice the size. This
phenomenon does not hold when we consider the
medium stability solution. Here, the superiority of
SMPSO over the multiobjective genetic algorithms
is apparent regardless of the considered statistic.
The results for the low stability section of the
three-objective front are consistently bad. Having
said that, there is an unexpected result. The av-
erage error in the wost-case scenarios across the
whole period of study for SMPSO Low Stability is
lower than baseline for SPEA2 in both the average
and median cases.

According to the results presented in tables 3, 4
and 5, the inclusion of the third objective to guide
the evolution process enhances the robustness of
the solutions regardless of the algorithm consid-
ered. The highest improvement over the standard
MOEAs takes place on the high stability third of
the solutions. There are also some improvements
on solutions for the medium stability range and, as
we could anticipate, the results are extremely poor
on the bottom third. All the reported differences
observed in the metrics within the three core algo-
rithms are statistically significant at the 1% con-
ventional level. The only exception to this is the
comparison of UR between the medium stability
front computed using NSGA-II and its baseline,
which is significant at 5%.
Regarding the behavior of the evolutionary al-

gorithms, for the high stability portfolios, SPEA2
and NSGAII perform worse than SMPSO in terms
of estimation error and unrealized returns. The dif-
ferences tend to be milder for the extreme scenar-
ios. However, the gap on this metric gets wider
once we lower the requirements for the value of the
robustness in the third objective.

7. Summary and Conclusions

Portfolio optimization has been for decades one
of the core research areas in Finance. This prob-
lem is usually framed as a multiobjective prob-
lem aimed at the identification of the asset allo-
cations that result on the simultaneous maximiza-
tion of return and minimization of risk. The iden-
tification of the efficient frontier is a challenging
optimization task, specially once real world con-
straints are taken into consideration. This is the
reason why multiobjective evolutionary algorithms
are increasingly getting traction on this area.
In this work, we suggested extending the mean-

variance standard model with a third stability ob-
jective. The aim of this change is mitigating the
exposure of the decision maker created by the
uncertainty on the real value of the parameters.
Given that both the forecast for the expected re-
turns of the investable assets and the variance-
covariance matrix is likely to be inaccurate, we
suggest a solution that prevents overspecialization.
The solution is the definition of a stability objec-
tive that measures the sensitivity of the portfo-
lios that define the population to unexpected val-
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ues for the parameters. This approach results on
a three-dimensional efficient frontier that provides
the decision maker relevant information regarding
the reliability of the forecasted risk and return for
each portfolio.
The effectiveness of this approach was tested

comparing the estimates for the efficient frontiers
in terms of the robustness metrics: estimation er-
ror, unrealized return and extreme risk. In order
to be able to compare the three objective efficient
frontier and the two objective standard version,
the set of portfolios that form latter has been split
into three subsets of equal size according to the
stability. The selection of the dominant solutions
in terms of risk and return for each of them, re-
sulted in three efficient frontier that were readily
comparable with the standard approach.
The experimental work covered twenty years

worth of data for eight broad financial indexes and
three multiobjective evolutionary algorithms. The
results show that the suggested third stability ob-
jective is closely related to robustness. Regardless
of the basic algorithm chosen, the third objective
allows the identification of portfolios that are sub-
stantially more reliable that the ones provided by
the standard methods. The results show consis-
tency; high stability fronts are more reliable than
medium stability fronts which, in turn, are more
reliable that the low stability frontiers. This is true
across metrics and algorithms. The comparison of
these three categories with the baseline standard
algorithms also presents a regular pattern: both
the high stability and the medium stability fron-
tiers beat the basic solution, whose results outper-
form the low stability frontier.
Even though the results structure is indepen-

dent of the basic algorithms, the choice of the
MOEA does affect the solution. Out of the three
alternatives considered, NSGA-II, SPEA2 and
SMPSO, the third one provides the most stable re-
sults. The other two, both genetic algorithms, offer
a similar performance.
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