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Abstract
In this paper, we propose a new front-end for Acoustic Event
Classification tasks (AEC) based on the combination of the
temporal feature integration technique called Filter Bank Co-
efficients (FC) and Non-Negative Matrix Factorization (NMF).
FC aims to capture the dynamic structure in the short-term fea-
tures by means of the summarization of the periodogram of each
short-term feature dimension in several frequency bands using
a predefined filter bank. As the commonly used filter bank has
been devised for other tasks (such as music genre classification),
it can be suboptimal for AEC. In order to overcome this draw-
back, we propose an unsupervised method based on NMF for
learning the filters which collect the most relevant temporal in-
formation in the short-time features for AEC. The experiments
show that the features obtained with this method achieve signif-
icant improvements in the classification performance of a Sup-
port Vector Machine (SVM) based AEC system in comparison
with the baseline FC features.
Index Terms: acoustic event classification, temporal feature in-
tegration, non-negative matrix factorization

1. Introduction
In recent years, the problem of automatically detecting and clas-
sifying acoustic non-speech events has attracted the attention of
numerous researchers. Although speech is the most informative
acoustic event, other kind of sounds (such as laughs, coughs,
keyboard typing, etc.) can give relevant cues about the human
presence and activity in a certain scenario (for example, in an
office room). This information could be used in different ap-
plications, mainly in those with perceptually aware interfaces
such as smart-rooms [1]. Additionally, acoustic event detection
and classification systems, can be used as a pre-processing stage
for automatic speech recognition (ASR) in such a way that this
kind of sounds can be removed prior to the recognition process
increasing its robustness. In this paper, we focus on acoustic
event classification (AEC).

A design of a suitable feature extraction process for AEC
is an important issue. Several front-ends have been proposed in
the literature, some of them based on Mel-Frequency Cepstral
Coefficients (MFCC) [1], [2], [3], [4], log filter bank energies
[3], Perceptual Linear Prediction (PLP) [5], log-energy, spectral
flux, entropy and zero-crossing rate [1]. Most of these features
are short-time characteristics in the sense that they are com-
puted on a frame-by-frame basis (typically, the frame period
used for speech/audio analysis is about 10-20 ms).

In other approaches (often denoted as temporal feature inte-
gration [6]), features at larger time scales are extracted by com-
bining somehow the short-time characteristics information over

a longer time-frame composed of several consecutive frames.
The most common temporal integration technique consists of
mapping the short-time features to their statistics (mean, stan-
dard deviation, skewness, etc.) computed over a certain tempo-
ral window [7], [8].

Recently, another temporal integration approach based on
Filter Bank Coefficients (FC), which was initially proposed for
general audio and music genre classification [6], [9], [10], has
been experimented for AEC with promising results [7]. In con-
trast to the statistics-based features, FC allows to capture the
dynamic structure in the short-time features. The idea behind
FC is to summarize the periodogram of each short-time fea-
ture dimension by computing the power in several predefined
frequency bands using a filter bank, which is usually the one
proposed in [9]. However, as pointed in [10], this fixed filter
bank is not general enough since the relevance of the dynamics
in the short-time features for classification can be expected to
be task-dependent. In this context, in [10] a supervised method
for learning an optimal filter bank for music genre classification
is presented. In this paper, we present an unsupervised method
based on Non-Negative Matrix Factorization (NMF) for the de-
sign of a filter bank more suitable for AEC and show that the
proposed method outperforms the baseline FC parameters in an
AEC task. In addition, our method is very versatile, in the sense
that it is not specific for AEC and therefore, it can be applied to
other speech/audio classification tasks.

This paper is organized as follows: Section 2 describes the
audio feature extraction process for AEC. Section 3 presents the
mathematical background of NMF and its application for the
unsupervised design of the filter bank for the FC-based front-
end. Section 4 describes the experiments and results to end with
some conclusions and ideas for future work in Section 5.

2. Audio Feature Extraction
Figure 1 represents the block diagram of the feature extraction
process for AEC. It consists of two main stages: short-time fea-
ture extraction and temporal feature integration.

2.1. Short-time feature extraction

In this work, we have considered two different acoustic param-
eters as short-time features: the well-known MFCC and a modi-
fication of this baseline parameterization denoted as MFCC HP.

MFCC HP has been motivated by the study performed in
[11] in which the relevance of medium and high frequencies
for distinguishing between different acoustic events is observed,
suggesting that a high pass filtering of the short-term spectrum
of the audio signal can be beneficial for improving the discrimi-
nation capabilities of the AEC system. In practice, this is ac-

Copyright © 2013 ISCA 25-29 August 2013, Lyon, France

INTERSPEECH 2013

2924

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/30047705?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Figure 1: Block diagram of the feature extraction process.

complished by the explicit removal of several low-frequency
filters from the original mel-scaled filter bank. In [11] it is
shown that good results are obtained by eliminating the first
low-frequency filters corresponding to frequencies below 75-
275 Hz. Once the audio spectrum is filtered with this modified
filter bank and the corresponding log filter bank energies are
computed, a Discrete Cosine Transform (DCT) is applied over
them as in the case of the conventional MFCC, yielding to a set
of cepstral coefficients.

In both, MFCC and MFCC HP, the log-energy of each
frame and the first derivatives (where indicated) are computed
and added to the cepstral coefficients.

2.2. Temporal feature integration

Once the cepstral coefficients are extracted, temporal feature
integration is applied over audio segments of a given length in
order to obtain a set of feature vectors at a larger time scale. In
this work, we focus on the approach called Filter Bank Coeffi-
cients (FC) [6], [9], [10], which aims at capturing the temporal
short-time features’ behaviour.

First, the sequence of T short-time coefficients of dimen-
sion Dx, X = {x1 ,x2 , ...,xT} is divided into K segments,
Y = {y1 ,y2 , ...,yK} as follows,

yk = {xk·Hs ,xk·Hs+1, ...,xk·Hs+Ls−1} (1)

where Ls is the segment size and Hs is the hop size, both
defined in number of short-time frames.

Second, the periodogram of each dimension of the short-
time features contained in the k-th segment yk is estimated and,
then, it is summarized by calculating the power in different fre-
quency bands using a predefined filter bank,

zk = PkU (2)

where Pk comprises the periodograms of the sequence of
the short-time coefficients belonging to the k-th segment, U is
the frequency magnitude response of the filter bank and zk is
the final feature vector. The dimensions of Pk, U and zk are,
respectively, Dx x Dp, Dp x nf and Dx x nf , where Dp

is the dimensionality of each individual periodogram and nf

is the number of filters in the bank. The FC parameters Z =
{z1 , z2 , ..., zK} are the input to the AEC system, which, in
this case, is based on Support Vector Machines (SVM).

Previous works [6], [9], in which the FC approach has been
applied for general audio and music genre classification tasks,
use a filter bank U composed of four filters corresponding to
the following frequency bands:

• Filter 1: 0 Hz (DC filter)

• Filter 2: 1 - 2 Hz (modulation energy)

• Filter 3: 3 - 15 Hz (modulation energy)

• Filter 4: 20 - 43 Hz (perceptual roughness)

As the importance of the different dynamics in short-time
features for classification may depend on the task, it can be ar-
gued that this fixed filter bank is not optimal for all audio classi-
fication problems. In other words, some modulation frequencies
can be relevant for distinguishing between, for example, differ-
ent acoustic events, and not between music genres. In next sec-
tion, we present an unsupervised method for designing the FC
filter bank and its application to AEC.

3. NMF-based design of the FC filter bank
Our goal is to develop an unsupervised approach to find the op-
timal filter bank in such a way that the resulting FC parameters
z carry the most significant information about the underlying
temporal structure of the short-time features. This problem can
be formulated as the decomposition of the periodograms P into
their main components (i.e., into their more relevant frequency
bands).

Non-Negative Matrix Factorization (NMF) provides a way
to decompose a signal into a convex combination of non-
negative building blocks (called Spectral Basis Vectors, SBV)
by minimizing a given cost function. As both, the power spec-
trum of the MFCCs and the frequency response of the elements
of the filter bank, are inherently positive, NMF can offer a suit-
able solution to our problem, as will be explained in next sub-
sections. Along the rest of the paper, we denote the filter bank
obtained by NMF as W in order to distinguish it from the fixed
filter bank U.

3.1. Non-Negative Matrix Factorization (NMF)

Given a matrix V ∈ R
A×B
+ , where each column is a data vec-

tor, NMF approximates it as a product of two matrices of non-
negative low rank W and H, such that

V ≈WH (3)

where W ∈ R
A×C
+ and H ∈ R

C×B
+ and normally C ≤

min (A, B). This way, each column of V can be written as
a linear combination of the C basis vectors (columns of W),
weighted with the coefficients of activation or gain located in
the corresponding column of H. NMF can be seen as a di-
mensionality reduction of data vectors from an A−dimensional
space to the C−dimensional space. This is possible if the
columns of W uncover the latent structure in the data [12]. The
factorization is achieved by an iterative minimization of a given
cost function as, for example, the Euclidean distance or the gen-
eralized Kullbak Leibler (KL) divergence,

DKL (V‖WH) =
X
ij

 
Vij log

Vij

(WH)ij

− (V −WH)ij

!

(4)
In this work, we consider the KL divergence because it has

been recently used with good results in speech processing tasks,
such as speech enhancement and denoising for ASR tasks [13]
[14] or feature extraction [15]. In order to find a local optimum
value for the KL divergence between V and (WH), an iterative
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scheme with multiplicative update rules can be used as proposed
in [12] and stated in (5),

W←W ⊗
V

WH
HT

1HT H← H⊗ WT V
WH

WT 1
(5)

where 1 is a matrix of size V, whose elements are all ones
and the multiplications⊗ and divisions are component wise op-
erations. NMF produces a sparse representation of the data, re-
ducing the redundancy.

3.2. Constructing the FC filter bank with NMF

As mentioned before, the matrix to be descomposed is formed
by the periodograms of the short-time features. As a unique fil-
ter is learnt for all the components, the matrix P consists of the
row-wise concatenation of the Dx periodograms of the short-
time parameters extracted from the training set of the different
acoustic events considered. Therefore, the dimension of P is
(Dx x ns) x Dp, where ns is the total number of segments in
the training set.

Once this matrix is transposed (PT), its corresponding fac-
tored matrices WH are obtained using the learning rules in (5).
The dimensions of W and H are, respectively, Dp x nf and
nf x (Dx x ns). The resulting matrix W contains the SBVs
which represent the basis of the power spectrum of the short-
time features, as it is verified that PT ≈WH, and, therefore,
they could be interpreted as the filters of the required filter bank.

In order to compute the NMF-based FC parameters, equa-
tion (2) is applied substituting the fixed filter bank U by W.

4. Experiments and results
4.1. Database and baseline system

The database used for the experiments consists of a total of
2,114 instances of target events belonging to 12 different acous-
tic classes: applause, cough, chair moving, door knock, door
open/slam, keyboard typing, laugh, paper work, phone ring,
steps, spoon/cup jingle and key jingle. The composition of the
whole database was intended to be similar to the one used in
[3] and it is shown in Table 1. Audio files were obtained from
different sources: websites, the FBK-Irst database [16] and the
UPC-TALP database [17]. The total number of audio segments
of 2 s length in the database (see subsection 4.2) is 7,775.

Table 1: Database used in the experiments.

Class Event type No. of occurrences
1 Applause [ap] 155
2 Cough [co] 199
3 Chair moving [cm] 115
4 Door knock [kn] 174
5 Door open/slam [ds] 251
6 Keyboard typing [kt] 158
7 Laugh [la] 224
8 Paper work [pw] 264
9 Phone ring [pr] 182
10 Steps [st] 153
11 Spoon/cup jingle [cl] 108
12 Key jingle [kj] 131

Total 2,114
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Figure 2: Frequency responses of the filter banks used in the
temporal feature integration process. (a) Fixed filter bank (U),
4 filters; Filter banks determined by NMF (W): (b) 4 filters; (c)
6 filters; (d) 8 filters.

Since this database is too small to achieve reliable classifi-
cation results, we have used a 6-fold cross validation to artifi-
cially extend it, averaging the results afterwards. Specifically,
we have split the database into six disjoint balanced groups.
One different group is kept for testing in each fold, while the
remainder are used for training.

The AEC system is based on a one-against-one SVM with
RBF kernel and a majority voting scheme for the final decision
[7]. For each one of these experiments, a 5-fold cross valida-
tion was used for computing the optimal values of RBF kernel
parameters.

4.2. Feature extraction

Two different types of short-time features are considered:
MFCC and MFCC HP. The difference between them is that for
MFCC HP the two first filters in the mel-scaled filter bank are
removed, so frequencies below approximately 75 Hz are not
considered in the cepstral coefficients computation. In both
parameterizations, 12 cepstral parameters are extracted every
10 ms using a Hamming analysis window of 20 ms long and a
mel-scaled filter bank composed of 40 and 38 triangular bands
for MFCC and MFCC HP, respectively. Also, the log-energy
of each frame and the first derivatives (where indicated) are
computed and added to the cepstral coefficients, yielding to a
Dx = 13 (or 26 when the first derivatives are used) dimension
short-time feature vector.

For the temporal feature integration, audio segments of 2 s
length with overlap of 1 s are used. The periodograms of each
short-time feature dimension are computed over these segments
and filtered using the filter bank U defined in subsection 2.2,
for the baseline FC parameters and the filter bank W obtained
with the NMF method, for the NMF-based FC ones.

The filters of U are 2nd order Butterworth filters. On the
contrary, in the NMF-based method, for each fold, the filter
bank W is obtained by applying the method described in sec-
tion 3 over the corresponding training set. In all folds, NMF
is initialized by generating 10 random matrices (W and H),
in such a way that the factorization with the smallest euclidean
distance between PT and (W H) is chosen for initialization.
Then, these initial matrices are refined by minimizing the KL
divergence using the multiplicative update rules given in equa-
tion (5) and a maximum of 200 iterations. Finally, the resulting
W contains the filters of the required bank.
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Table 2: Classification rate [%] for different feature sets.

Short-time Temporal Classif. rate Classif. rate
features integration (segment) [%] (event) [%]
MFCC FC 65.68± 1.06 70.59± 1.94

MFCC HP FC 70.91± 1.01 76.39± 1.81
MFCC HP FC NMF 74.39± 0.97 79.29± 1.73
MFCC + ∆ FC 67.92± 1.04 71.75± 1.92

MFCC HP + ∆ FC 72.36± 0.99 76.39± 1.81
MFCC HP + ∆ FC NMF 76.15± 0.95 80.15± 1.70

Figures 2 (b), (c) and (d) represent the NMF-based filter
bank W obtained on a single fold using the previous procedure
for nf = 4, 6 and 8 filters, respectively. For comparison pur-
poses, the baseline filter bank U is also represented in Figure
2 (a). Note that, although the maximum modulation frequency
is 50 Hz (the short-term features are extracted each 10 ms), for
improving the readability of the figures, only frequencies up to
20 Hz are represented. From the comparison of Figures 2 (a)
and (b), it can be seen that filters 1 and 2 of U roughly ap-
pears in W. The highest frequency filter in W presents a high
bandwidth and covers the modulation frequencies of the base-
line filters 3 and 4. Finally, the filter 4 of U is substituted by
a low-frequency filter in W, suggesting that, for describing the
temporal structure of the MFCCs, low modulation frequencies
are more relevant than high ones. The same conclusion can be
drawn from Figures 2 (c) and (d), in which it can be observed
that, when the number of filters increases, NMF tends to place
more filters in low and medium modulation frequencies than in
high frequencies. Also, it is worth mentioning that the resulting
filters do not differ very much between folds.

4.3. Experiments with NMF-based FC parameters

Table 2 shows the results achieved in terms of the average clas-
sification rate at segment level (percentage of segments cor-
rectly classified) and at target event level (percentage of target
events correctly classified) as well as the corresponding 95 %
confidence intervals for the different parameterizations consid-
ered. ”FC” and ”FC NMF” indicates, respectively, the use of
the fixed filter bank and the NMF-based one, both composed of
4 filters, in the temporal feature integration process. The suffix
”+∆” indicates that the short-time feature set includes the first
derivatives of the cepstral coefficients.

First of all, it can be observed that, in general, the use of
∆ parameters improves the classification results with respect to
the case in which ∆s are not considered, although these differ-
ences are not statistically significant. Anyway, both cases fol-
low the same trends. In fact, for either case (without and with
∆s), when comparing MFCC with MFCC HP, both using the
baseline filter bank U (FC), it can be observed that MFCC HP
achieves better results, being the difference in performance with
respect to MFCC statistically significant at 95% confidence.
This result suggests that the high pass filtering of the acoustic
event spectrum prior to the computation of the cepstral coeffi-
cients is useful for obtaining more discriminative features, and
therefore, for improving the final results.

With respect to the use of the filter bank extracted by the
NMF procedure in combination with the short-time features
MFCC HP (MFCC HP + NMF FC), it can be seen that this pa-
rameterization outperforms the fixed filter bank (MFCC HP +
FC). In this case, the relative error reduction with respect to

Table 3: Classification rate [%] for different number of filters
in the filter bank extracted by NMF.

Short-time Number of Classif. rate Classif. rate
features filters (segment) [%] (event) [%]

MFCC HP
4 74.39± 0.97 79.29± 1.73
6 74.02± 0.97 79.19± 1.73
8 73.69± 0.98 78.99± 1.74
10 73.65± 0.98 79.09± 1.73

MFCC HP + ∆
4 76.15± 0.95 80.15± 1.70
6 75.51± 0.96 78.37± 1.76
8 74.70± 0.97 76.20± 1.82
10 73.99± 0.98 74.36± 1.86

MFCC HP + FC is around 12.0% at segment level and 12.3%
at target event level when ∆ parameters are not considered and
around 13.7% at segment level and 15.9% at target event level
when ∆s are included. In addition, in this latter case, the dif-
ferences in performance are statistically significant. This result
shows that the filters learned by NMF are capable to capture
the dynamical structure of the cepstral coefficients, producing a
filter bank more suitable for AEC than the fixed one.

4.4. Experiments with different number of filters in the
NMF-based filter bank

For either type of feature set, MFCC HP or MFCC HP + ∆,
experiments were performed considering 4, 6, 8 and 10 bands
in the NMF-based filter bank. Table 3 contains the correspond-
ing classification rates as well as the corresponding 95 % confi-
dence intervals.

For MFCC HP, results vary with the number of filters, al-
though the differences are rather small and not statistically sig-
nificant. However, for MFCC HP + ∆, the classification rate
decreases along the number of frequency bands, suggesting that
4 filters are enough for representing the temporal behaviour of
the short-time features (especially for the ∆ parameters).

5. Conclusions
In this paper, we have presented a new front-end for AEC based
on the combination of FC features and NMF. In particular, NMF
is used for the unsupervised learning of the filter bank which
captures the most relevant temporal behaviour in the short-time
features. From the resulting NMF-based filter bank, we have
observed that low modulation frequencies are more important
than the high ones for distinguishing between different acoustic
events. The experiments have shown that the features obtained
with this method achieve significant improvements in the clas-
sification performance of a SVM-based AEC system in compar-
ison with the baseline FC parameters.

For future work, we plan to extend our method in two di-
rections: the design of a different filter bank for each dimension
of the short-time features and the development of a semisuper-
vised version for AEC.
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