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Abstract.
Computer viruses are evolving by developing multiple spreading mechanisms

that are simultaneously used during the infection process. The identification of the
nodes that allow a better spreading efficiency of these kind of viruses is becoming
a determinant part of the defensive strategy against malware. These multi-vector
viruses can be modeled in multi-layered networks in which each node belongs
simultaneously to different layers, adapting the spreading vector to the properties
of the layer. This way, the same virus has different propagation rates in each layer
and also in the multi-layered network considered as a whole. The set of nodes
selected as initial group of infected subjects can determine the final propagation
of the infection.

In this work, we analyze the spreading of a virus in a multi-layered network
formed by M layers, given different sets of initial infected nodes, and, in particular,
the effect of the initial selection on the efficiency of the infection. The initial group
of infected nodes is selected according to properties of the nodes considered as
part of a layer and also of the whole system. As an example, we apply this
study to a multi-layered network formed by two layers: the social network of
collaboration of the Spanish scientific community of Statistical Physics, and the
telecommunication network of each institution.
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1. Introduction

Computer viruses are evolving by developing multiple spreading mechanisms
that are simultaneously used during the infection process. These malware
had a huge impact in the Internet network and use new methods of spread-
ing. For these kind of viruses the propagation is easy and quick within a
Local Area Network (LAN). However, effective security measures [1] limit the
propagation of these viruses to other LANs. To overcome this limit, these
viruses also make use of other secondary vector of propagation such as the
social relations between humans. Due to the complexity of the virus prop-
agation and infection, reinfection is quite common after virus removal, so it
is technically complicated to clean a whole LAN quickly enough to stop the
reinfection. The identification of the nodes that allow a better spreading effi-
ciency of these kind of viruses is becoming a determinant part of the defensive
strategy against malware.

The classic disease models describe individuals that are susceptible to, in-
fected with and recovered from a particular disease. In the literature, two dif-
ferent models are commonly used: The susceptible-infectious-recovered (SIR)
model and the susceptible-infectious-susceptible (SIS) model. The SIR model
is more appropriated for infectious diseases that confer lifelong immunity,
whereas the SIS model is used with diseases where repeat infectious are com-
mon [2], as in the case we are studying. This epidemic spreading models have
been widely studied in the scientific literature, usually considering only one
network [3, 4, 5, 6, 7, 8, 9] and, more recently, using several interconnected
layers of networks [10, 11, 12, 13, 14]. However, none of these formalisms are
convenient in the case of malware spreading, where nodes exist in different
layers and the state of each node in every layer must be the same. In the case
of virus propagation, the same computer that connects within a LAN is also
sending and receiving e-mails and pen drives, following the social network of
the users of the computers. Therefore the state of each node cannot depend
on the layer.

In this work, we analyze the spreading of a virus in a multi-layered net-
work formed by M layers, given different sets of initial infected nodes, and, in
particular, the effect of the initial selection on the efficiency of the infection
propagation. The initial group of infected nodes is selected according to prop-
erties of the nodes considered as part of a layer and also of the whole system.
As an example, we apply this study to a multi-layered network formed by two
layers: the social network of collaboration of the Spanish scientific community
of Statistical Physics, and the telecommunication network of each institution.
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Figure 1: Multi-layer network where the state of each node in every layer is
the same but the interactions within each layer may differ.

2. The Model

Let us consider M layers of networks formed each one by N nodes labeled in
every layer with i = 1, . . . , N . In this work we assume that nodes with the
same label represent the same node, and that there are no links regarding the
propagation of the epidemic connecting two nodes in different layers. There-
fore, in our model, the usual adjacency matrix is replaced by a set of matrices,

A
(α)
ij with α = 1, . . . ,M , that specifies the links between nodes in each layer α.

Notice that, in this multi-layered networks, the state of nodes with the same
label must be the same, and the change in the state of one node in one layer
changes automatically his state in all other layers. This is depicted in Figure
1.

We will study a SIS epidemic spreading in a multi-layered network in
which the contagion in every layer α, follows a different dynamics given by the
contagion matrix C(α) and where all layers have the same recovery rate µ 1.

Notice that, since the contagion matrices are different, the epidemic spread-
ing may follow a contact process (CP), a reactive process (RP) or something
in between. To this end we define the contagion matrix in each layer as

C
(α)
ij = β(α)

(
w

(α)
ij

w
(α)
i

)γα

, (1)

where w
(α)
ij is the weight of the links between nodes i and j in layer α, w

(α)
i is

the total strengh [15] of node i in layer α, β(α) is the contagion rate of layer
α, and γα is the parameter that defines the contagious process in each layer α
from a reactive process for γα = 0 to a contact process for γα = 1.

Notice that, since each layer may follow a different contagion process, time
scales in each layer (or even in each node) may vary considerably. To account

1We consider that the propagation process depends on the layer in which it is embedded,
but that the healing process depends on the mechanisms and services that he has available,
although this specification can be generalized to a recovery rate layer-dependent.
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for that issue we will model the system as a microscopic Markov process in
continuous time, where the state of the system is defined by the state of every
node, x = {x1, . . . , xN}, with xi = 0 when node i is susceptible and xi = 1
when it is infected. The transition rate for node i from infected to susceptible
is

q−i (x) = µxi, (2)

where µ is the (constant) recovery rate, which we assume layer-independent
since the same healing mechanisms are available to all nodes (this assumption
can, however, be easily relaxed). On the other hand, the transition rate from
susceptible to infected is

q+i (x) = (1− xi)

1− M∏
α=1

N∏
j=1

(1− C
(α)
ji xj)

 . (3)

where (2) corresponds to the transition of node i from infected state to suscep-
tible and (3) stands for the opposite. In the latter expression, all the possible
contagions from the infected neighbors of node i in all the layers have been
considered. With these transition rates, the Markov process in continuous
time associated to the epidemic follows the master equation

∂P (x, t)

∂t
=

N∑
i=1

{[
q+i (fi(x)) + q−i (fi(x))

]
P (fi(x), t)

−
[
q+i (x) + q−i (x)

]
P (x, t)

}
,

(4)

where fi(x1, . . . , xi, . . . , xN ) = (x1, . . . , 1 − xi, . . . , xN ) is the flip operator
of the i-th component, that changes the state of node i from susceptible to
infected and viceversa.

As in [?], the products in expression (3) can be grouped by layers and we
can define the effective contagion matrix, C̄,

C̄ij ≡ 1−
M∏
α=1

(1− C
(α)
ij ), (5)

and write the rate equation as

∂P (x, t)

∂t
=

N∑
i=1


xi

1−
N∏
j=1

(1− C̄jixj)

+ (1− xi)µ

P (fi(x), t)(1− xi)

1−
N∏
j=1

(1− C̄jixj)

+ xiµ

P (x, t)

 ,

(6)
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where we have used that there are no self-loops in these multi-layered network,
and therefore C̄ii = 0.

Assumming the approximation that the marginal probability of node i
being infected, pi, does not depend on pj , for j ̸= i, and for small probabilities
of infection [7], then from the master equation (6) we obtain that

dpi(t)

dt
≃ −µpi +

N∑
j=1

C̄jipj , (7)

wich renders the general solution p(t) = p(0)e(C̄−µI)t. This solution, although
approximated, can give us some insight of the epidemic dynamics on the multi-
layered network depending on the initial condition of infected nodes p(0). Let
λmax be the highest eigenvalue of C̄, then for µ > λmax pi(t) → 0 as t grows
for any initial condition p(0) since all the eigenvalues of C̄ − µI are negative:
we are below the epidemic threshold. For µ < λmax, as there is at least one
positive eigenvalue in the exponent, we obtain that pi(t) diverges for large t
for any initial condition p(0) that has a non zero component in the eigenspace
formed by the eigenvectors with positive eigenvalues, and thus we are above
the epidemic threshold. Therefore, the epidemic threshold of the network
corresponds to case where λmax = µ, in which the highest eigenvalue of the
exponent C̄−µI is zero and the system converges to a non-null state for initial
conditions with non zero components in the eigenspace of λmax

2.
This analysis agrees with previous expressions of the epidemic threshold

[7, 8], but also takes into account the importance of the initial set of infected
nodes, p(0), in the spreading process, as it depends on the component of p(0)
in the eigenspace of λmax, which may not always non-zero. This depency
makes important the study of the final propagation in terms of the initial set
nodes.

3. Case study: Scientific collaborations

Scientific collaborations usually take several researchers from the same or dif-
ferent institutions to gather. These meetings involve a wide scope of social
interactions, such as e-mails, virtual or face-to-face meetings, research visits,
invited talks, or conference attendances, among others. Some of these interac-
tions include connecting a foreign laptop to a local network (by wire or Wi-fi
connections) or connecting someone’s pendrive to a computer.

Usually, universities or research institutions have one or more LANs, and
each institution connects its own LANs using IP switches or routers. The

2We are considering left eigenvectors in this analysis from expression (7) and since the
contagion matrix C̄ is, in general, not symmetrical.
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Figure 2: (color online) Social network of the Spanish Statistical Physics sci-
entific community (FISES). Links represent collaborations between authors,
the size of each node the number of links and the color indicates the affiliation.
Therefore, links joining nodes of different colors show collaborations between
research institutions.

internal IPs of each institution are considered trusted, whereas the external IPs
are considered possibly dangerous. Therefore, the connections with external
LANs use secured links with firewalls as a way to implement the perimetral
security controls.

This isolation breaks down when we consider the social interactions of
the scientific collaborations described above. For these reasons, and since the
information of collaborations and affiliations is publicly available, the tandem
formed by the LANs and scientific collaborations is a good example of real
networks to include in our study. To this end, we have chosen the Span-
ish statistical mechanics (FisEs) research community, described in [?]. Both
networks (the social network of the scientific collaborations and the physical
network of the institutions LANs) are formed by 687 nodes distributed in 105
affiliations. Each institution is formed by a clique isolated from the rest (due
to the security measures), and the largest institution has 39 researchers. In the
social network there are 73 independent collaborations networks, the largest
formed by 188 authors. The final network is depicted in Figure 2.

Strikingly, the number of connected components in the coupled network
reduces dramatically to 8, the largest with 657 nodes, almost the total number
of nodes in our networks. Note that, by coupling two poorly connected net-
works we have obtained a network that reduces in an order of magnitude the
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Figure 3: (color online) Density of infected nodes in the stationary state, ρ,
vs. density of infected nodes in the initial seed, ρ(0). The infection strategy is
based on the strength of nodes in the contagion matrix C̄. The contagion rates
are β1 = 1.0, β2 = 0.0 (blue); β1 = 0.0, β2 = 0.027 (green) and β1 = 0.18,
β2 = 0.02 (red).

number of connected components and with a largest component of the order
of the number of total nodes. In figure are depicted the interconnections that
the social network adds to the physical network. These interconnections affect
deeply the virus spreading, as we will show below.

4. Virus propagation depending on the initial condition

In order to study the dependence of the initial condition of infected nodes
in the virus propagation we performed numerical simulations of the stochastic
contagion process described in section 2. using the network described in section
3.. We used the following procedure. First, we order the nodes by some
intrinsic measurable magnitude π; if there is a set of nodes with the same
value of π, we re-order them randomly keeping the total order of π in the list.
Then we start the stochastic contagion with the first node in the list and take
the average density of contagion in the stationary state after 200 simulations,
ρ. We repeat the process with the folling nodes of the list and, finally, we
repeat the overall process several times.

The first results of this procedure using the strength of nodes as the or-
dering magnitude is depicted in Figure 3, which shows the dependency on the
density of initial infected nodes, ρ(0), of the density in the stationary state ρ.
We pursue to study this dependency with other properties such as the eigen-
vector centrality, the degree, etc., and compare them to a random picking of
nodes with no specific order.
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5. Conclusions

We study the propagation process in a multi-layered network in terms of the
initial condition of infected nodes, x(0). We use the effective matrix C̄ ob-
tained in [16] in order to study this dependency in terms of different intrinsic
magnitudes of the nodes of the coupled network. The results when the strength
of nodes is chosen as the ordering magnitude are shown in Figure 3.

This procedure can be extended to other magnitudes, such as the eigen-
vector centrality, the degree, etc., in order to seek the optimal initial seed
needed to percolate the network. The results can be of great interest in social
contagion processes such as, for instance, viral marketing, meme spreading
and bankruptcy of financial institutions.
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Sci. Rep., 2, p.292 (2012).

[10] S. V. Buldyrev, R. Parshani, G. Paul, H. E. Stanley, and
S. Havlin, Nature, 464, p.1025 (2010).

[11] S-W. Son, G. Bizhani, C. Christensen, P. Grassberger, and
M. Paczuski, EPL, 97, p.16006 (2012).

[12] A. Saumell-Mendiola, M. A. Serrano, and M. Boguñá, Phys.
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