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Abstract

The presence of costly cooperation between otherwise selfish actors is not trivial. A prominent mechanism that promotes
cooperation is spatial population structure. However, recent experiments with human subjects report substantially lower
level of cooperation then predicted by theoretical models. We analyze the data of such an experiment in which a total of
400 players play a Prisoner’s Dilemma on a 4|4 square lattice in two treatments, either interacting via a fixed square lattice
(15 independent groups) or with a population structure changing after each interaction (10 independent groups). We
analyze the statistics of individual decisions and infer in which way they can be matched with the typical models of
evolutionary game theorists. We find no difference in the strategy updating between the two treatments. However, the
strategy updates are distinct from the most popular models which lead to the promotion of cooperation as shown by
computer simulations of the strategy updating. This suggests that the promotion of cooperation by population structure is
not as straightforward in humans as often envisioned in theoretical models.
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Introduction

Why would a self-interested individual pay towards the welfare

of someone else? The evolution of cooperation is a fascinating

problem originating in evolutionary biology [1–3] which has

extended to several other disciplines subsequently [4–7]. While the

evolution of cooperation requires an explanation, several mech-

anisms have been proposed that are routinely invoked to explain it

[8,9]. One of them which is particularly popular among theorists is

spatial population structure. Regular lattices lead to interesting

effects and dependences on details of the underlying evolutionary

model [10–20]. The exploration of non-regular population

structures, such as scale-free networks, suggest an intricate

dependence on details of the population structure and update

mechanisms [18,21–26]. Even more complex effects arise when

the underlying population structure is dynamic [27–32].

The promotion of cooperation based on population structure

has been analyzed extensively by an enormous number of

mathematical and computational models. Many theoretical papers

suggest a direct applicability to human behavior. But until now,

only few experiments to test these predictions have been

performed, as discussed in [33]. Such behavioral experiments

have been performed on one-dimensional lattices [34], two

dimensional lattices [35–37], and complex networks [37–39].

These studies have tested the predictions of theoretical models, i.e.

the level of cooperation induced by population structure, and also

the underlying assumption of update mechanisms.

So far, there is little evidence that the sophisticated theoretical

results of cooperation in structured populations can be carried

over directly to human behavior. One important question from

the perspective of a theoretician is whether human subjects

condition their decision making on the population structure, i.e.

whether they use consistent strategy updating in spatial and non-

spatial experiments. Here, we analyze the data of such a

behavioral experiment with a two-dimensional lattice and fully

independent controls to address this issue [35]. Previously, this

data has only been used to infer the strategy updating in the spatial

system, but no systematic comparison between the treatments has

been provided. We find no significant difference between the

spatial and the non-spatial treatment in strategy updating, which

suggests that the subjects did not adapt their behavior to the

population structure. However, the way that strategies are updated

is different from the update rules usually used in theoretical models

that promote the evolution of cooperation.

Results

Experimental setup
The classical Prisoner’s Dilemma is played between two players,

each of them can choose to cooperate (C) or to defect (D). The
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payoff matrix is given by
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where the shown payoffs are for the row player. Here, T stands for

the temptation to defect, R for the reward for mutual cooperation,

P for the punishment for mutual defection and S for the sucker’s

payoff. A Prisoner’s Dilemma is defined by the inequation

TwRwPwS. In other words, while mutual cooperation leads

to a higher payoff than mutual defection, it is worthwhile to defect

against a cooperator (TwR) and to defect against a defector

(PwS), In addition to this payoff ranking, the condition

2RwTzS should be added in repeated games. In the experiment

we have analyzed, the payoffs were chosen as T~0:40 J,

R~0:30 J, P~0:10 J and S~0:00 J.

In the vast majority of spatially extended models, players make

only a single decision in each round which determines their action

against all their neighbors. The same holds for our experiment.

Participants of the spatial treatment discussed here were virtually

located on the nodes of a 4|4 square lattice with periodic

boundary conditions, as if the players would be located on the

torus. They play a PD game with each of the four neighbors in

their von Neumann neighborhood (the four cells orthogonally

surrounding a central cell on the lattice). Players must choose one

strategy which determines their action in all four games with their

four neighbors. The payoffs are calculated by adding the four

payoffs of individual games with each neighbor. There are no self-

interactions. After each round, players were informed about their

action and payoff as well as the actions and payoffs of their four

neighbors. Based on this information and their experience from

previous interactions, they had to decide on their next action.

The experiment had 25 sessions separated in two different

treatments. In the spatial treatment the players had fixed

neighbors, which stayed the same throughout the whole game.

This treatment was repeated 15 times, each with 16 players and 25

rounds. In the non spatial control treatment (repeated 10 times

with 16 players and 25 rounds), the neighbors were assigned to a

new, random location on the lattice after each round and

consequently, the neighbors of each player changed in each

round. Players were not informed about the number of rounds. In

both treatments, players are informed about the outcomes of every

round, about the actions and payoffs of the neighbors they played

with. However, at the moment they need to make a decision about

their next action, they are not informed about the previous actions

or payoff of their new neighbors. In contrast it was easy to

remember the previous actions of the neighbors in the spatial

setting.

General observables in the two treatments
Let us compare the general outcomes of the spatial and non-

spatial treatments.

We find no significant differences in the fraction of cooperative

actions between the two treatments. Figure 1 illustrates that the

errors bars of the treatments are overlapping to the great extend,

which suggests that there are no large differences between the

treatments. This can be backed up by several statistical tests. First,

we fit the difference between the two treatments with a linear

function. We find an intercept of 0:001+0:017 and a slope

0:001128+0:001153. Since both values are smaller than their

errors, it suggests that the values are close to zero. Second, we

constructed a nonlinear regression model with a dummy variable

for the spatial and the non spatial treatments. In this model, the

fraction of cooperative actions C(t) in round t is given by

C(t)~(C(1)zsDC(1))(CzsDC)t{1 ð2Þ

Here, the parameters of the model are C(1), measuring the

fraction of cooperative actions in the first round of the non spatial

treatment, DC(1), measuring the difference in cooperative actions

in the first round between the two treatments, C, measuring the

decay on cooperative actions in the non spatial treatment, and DC,

measuring the difference in this decay between the two treatments.

In addition, we introduced the dummy variable s, which equals 0
for the non spatial treatment and 1 for the spatial treatment. From

the nonlinear regression model, we find C(1)~0:49 (pv10{3)

and C~0:94 (pv10{3). The p-values show that these numbers

are significantly different from zero. For the differences, we obtain

p~0:75 for DC(1) and p~0:33 for DC, showing that the

dependence on the dummy variable is not statistically significant.

All this indicates that the difference between two treatments is not

significant.

Next, we address the distribution of cooperative acts per player,

the distribution of cumulative payoff per player, and the

correlation between the two. Figure 1 illustrates that these two

distributions are very similar in the two treatments. To compare

the distributions between the treatments quantitatively, we

performed a Kolmogorov-Smirnov test. We found p~0:69 for

the comparison of the two distributions of cooperative acts and

p~0:13 for the comparison of the two distributions of cumulative

payoffs. These p-values indicate that we cannot accept the

hypothesis that the two distributions arising from the two

treatments are different. In order to compare the correlation

between the cumulative payoffs and the number of cooperative

acts, we developed a linear regression model,

E(NC)~E0zsDE0zrNCzsDrNC , ð3Þ

where E is the cumulative payoff, NC is the number of cooperative

acts, E0 is the intercept for the non spatial treatment and DE0 the

difference between the intercepts of the two treatments. The slope

in the non spatial treatment is measured by r and Dr measures the

difference of the slope between the two treatments. Again, s is a

dummy variable which is equal to 0 for the non spatial treatment

and 1 for the spatial treatment. We obtained E0~16:9+0:3

(pv10{3), r~{0:30+0:05 (pv10{3), DE0~0:9+0:5
(p~0:022), and Dr~{0:7+0:6 (p~0:17). The large p values

for DE0 and Dr show that there is no significant difference

between the two treatments.

In the next section, we depart from the level of aggregate

information on the system level and address the individual

decisions of our players in more detail. Many theoretical models

have shown that this kind of update mechanism can have a

profound impact on the outcome in such models [16,17,23,26].

Update mechanisms
In order to understand the dynamics of the system in more

detail, we fitted three different update mechanisms that are

popular in theoretical studies to the data of the experiment

(i) Unconditional imitation, where each players switches to the

strategy that performed best in the past in the neighborhood.

In addition, we assume that some decisions are made at

random and that this fraction changes over time.

Experimental Spatial Games
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(ii) Fermi rule - where strategies with higher payoffs are

imitated with higher probability. In addition, sometimes a

random strategy is chosen.

(iii) Moody conditional cooperation - Cooperation conditioned

upon the own action in the previous round and the number

of cooperators in the neighborhood.

In the classical studies on the promotion of cooperation on

lattices, unconditional imitation has been assumed [10,12,40]. In

this case, players update their strategies by imitating the previous

action of the neighbor with the highest payoff. In Figure 2, we

illustrate how often the players action is the same as the action of

the highest scoring neighbor in the previous round. The

probability of this inferred imitation is around 75% and is growing

during the game. However, before we conclude that the

unconditional imitation is the update mechanism players use

frequently, we should notice that defection is almost always the

most successful strategy in the neighborhood. Therefore, if a

player defects it seems that she/he is imitating the best neighbor.

Consequently, the level of defection is very similar to the level of

inferred imitation (Figure 2). To further test the hypotheses of

unconditional imitation we performed a randomization test [41].

In this test, the action of the players is kept, but the neighborhood

is randomized. This gives a reference model for imitation, because

with randomized neighborhoods there can be no imitation. We

repeated the randomization 10 000 times to compute the

distribution of probabilities of inferred imitation from a random

setting. The results are presented in the insets of Figure 2. We see

that distributions are very narrow and that the value from the

experiment is slightly higher than the randomized average. The p-

value is p~0:001 for the spatial treatment and p~0:028 for the

non spatial treatment, indicating that the small difference between

the observed imitation and the randomized one is significant. This

is different from the result of the same analysis in [36], where the

small difference is not significant. However there are several

differences between the two experiment which could be respon-

sible for this disagreement, such as sample size, system size,

number of neighbors, payoff matrix etc. Importantly, in both

experiment the level of imitation was lower then 80%. Thus,

players sometimes use strategies not played in their neighborhood

before, which is very likely to prevent the cluster formation in both

cases equally.

Figure 1. Comparison of the spatial and non-spatial treatments. (a) The fraction of players that have chosen to cooperate is decreasing over

time, but remains substantial throughout the experiment [35]. The error bars are the standard deviations of a binomial distribution,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C(1{C)=n)

p
,

where n is the number of samples and C is the fraction of cooperation. (b) The distribution of cooperative acts per player. We do not observe
unconditional cooperation, and very little unconditional defection (5 out of 240 players in the spatial treatment and 6 out of 160 players in the non
spatial treatment). (c) The distributions of cumulative payoffs are peaked with median of 15.4 J for the spatial and 15.0 J for the non spatial
treatment. The standard deviation is 2.3 J in both cases. (d) Correlation between the frequency of cooperation on the x-axis and the cumulative
payoff on the y-axis. Each point is one player.
doi:10.1371/journal.pone.0047718.g001
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The second mechanism we tested is typically referred to as

Fermi rule [11,14,42]. For this rule, the better the neighbor

performs the higher is the possibility that he/she will be imitated,

see Fig. 3. Here, b measures the intensity of selection, for b?0
imitation is random and for b??, we recover the unconditional

imitation from above. Note that this is slightly different from the

original Fermi update mechanism, which would be difficult to

check. In the original mechanism a random player is chosen and

then imitated with the probability given above. However, the

additional randomness would make it difficult to analyze the

original rule in the experimental data, because in two identical

situations, two players could chose a different payoff difference as

the basis for comparison. Therefore we measure the probability of

imitating the most successful neighbor who played the opposite

strategy instead. This test corresponds to a rule where instead of

the random player, the best player of the opposite action is chosen

and imitated with the same probability as in the original rule.

However the rule conserves a very important property of the

original rule, which is to allow strategy changes even when the

payoff difference is negative, since the best performing player of

the opposite strategy can still have a payoff smaller than the focal

player. To analyze this dependence, we again fitted the data to a

Figure 2. Unconditional imitation test in the spatial treatment (left) and in the non spatial treatment (right). The main panels show
three different type of data: the fraction of inferred imitations, the level of defection and fraction of decisions in which defection was the best
performing strategy in the neighborhood. The inferred level of imitation is the fraction of actions in which the players action coincided with the
action of the best neighbor in the previous round. Since defection is almost always the best performing strategy, a defecting player seems to be
imitating. Therefore, the level of defection is almost identical to the level of the inferred imitations. However, the randomization test illustrated in the
inset shows that there is still more imitation than expected in a random setting. The vertical lines show the inferred imitation observed in the
experiments, plus and minus a standard deviation, and the gray bars show the distribution of the inferred imitation in the randomized sample.
doi:10.1371/journal.pone.0047718.g002

Figure 3. Probability of imitating depending on the payoff difference. Left: probability of switching to another strategy depending on the
payoff differences for both the spatial and non spatial experiment. The payoff difference is between the focal player and the best player of the
opposite strategy. The results are consistent with imitating the neighbors with higher payoffs. However this imitation is not unconditional, but the
higher the payoff difference the larger is the probability of imitation. In addition, players might spontaneously switch their strategies even if they
have no neighbors playing the other strategy, resembling mutations. Error bars are the standard deviations of a binomial distribution,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PC<D(1{PC<D)=n)
p

, where n is the number of samples and PC<D is the probability of changing the action). Right: Probability of mutations in
time. Mutations are defined as the probability that a cooperator surrounded by four cooperators would change the strategy in the next round or that
a defector surrounded by four defectors will change the strategy in the next round. We see a large number of mutations, which decreases over time,
but always stay substantial. Again in both treatments the players show a similar pattern of behavior. Error bars are the standard deviations of a

binomial distribution,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M(1{M)=n)

p
, where n is the number of samples and M is the probability of mutation).

doi:10.1371/journal.pone.0047718.g003
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logistic regression model,

PC<D(Dp)~
1

1ze{(azsDazbDpzsDbDp)
: ð4Þ

Here, a measures the probability to switch strategy in the case of

zero payoff differences and Da measures the difference between

this quantity in the two treatments. The parameter b measures the

intensity of selection and Db is the difference in the intensity of

selection between the treatments. As above, s is a dummy variable

with s~0 for the non spatial and s~1 for the spatial treatment.

The p-values for Da and Db are 0:7 and 0:6, respectively, such that

the dependence on the treatment is not significant.

However, the players will switch their strategies even if they are

surrounded by players with the same strategy as theirs. This

corresponds to mutations or exploration behavior [43]. This

exploration behavior decreases over time in a manner comparable

with the decrease of global cooperation level (Figure 3). To analyze

the difference between the spatial and non spatial treatment, we

utilize a non linear regression model,

M(t)~(mzsDm)(CzsDC)t{1 ð5Þ

where, M(t) is the fraction of exploration behavior in round t. The

initial level of exploration is measured by m and Dm, its decay is

measured by C and DC. The p-values for the parameters Dm and

DC are both 0:48. Thus, the dependence on the treatment is

statistically not significant.

The last update mechanism we analyzed is conditional behavior

based on the own previous action and the number of cooperators

in the neighborhood. In [36], this has been termed ‘‘moody

conditional cooperation’’. In Figure 4, we show the probability of

cooperating depending on the number of neighbors who

cooperated in the previous round and the action of the focal

players in the previous round. In the case that the focal player

cooperated in the previous round, the probability of her/him

cooperating increases linearly with the number of cooperating

neighbors, as in previous work. On the other hand, if the player

defected in the previous round, the probability of him/her

cooperating decreases linearly with the number of cooperating

neighbors. We developed a linear regression model with two

dummy variables,

PC(l)~c0lzc1lzc2szc3llzc4slzc5ls ð6Þ

where PC(l) is probability of cooperation after l of your neighbors

cooperated in the previous round. The ci are the parameters of the

model, in a similar manner as described above. Again, s is a

dummy variable which is equal to 0 for the non spatial treatment

and 1 for the spatial one. The second dummy variable l is equal to

1 if the focal player cooperated himself/herself in the previous

round and 0 otherwise. P(l) depends significantly only on c0 and

c3 (p-valuesv10{4). Therefore, the probability of cooperation

does not depend on the treatment. It does not depend either on

the number of cooperators in the previous round if we do not

control for the players own action.

Simulations
In the experiments, there is no hint for a significant difference

between the treatments. In order to understand why this happens,

we have performed simulations with the three update mechanisms

fitted to the experimental data: unconditional imitation (with

random strategy exploration), Fermi rule (also with random

strategy exploration) and moody conditional cooperation. We

found that these three update mechanisms will not promote

cooperation on lattices and that for them spatial structure does not

make a difference, even for much larger systems. Unconditional

imitation with random strategy exploration obeys the equation

Figure 4. Probability of cooperation depending on the previous action and the number of cooperators in the neighborhood. These
are called moody conditional cooperators in [36]. We see that there is a clear difference between the behavior after cooperating and defecting. After
cooperating, the probability of cooperating increases with the number of cooperating neighbors and after defecting the probability of cooperation is
decreasing with the number of cooperating neighbors. Again, in both the spatial and the non spatial setting the behavior is very similar.
doi:10.1371/journal.pone.0047718.g004
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PA?B(Dp)~mCt{1z(1{2mCt{1)H(Dp) ð7Þ

where PA?B is the probability that a player with action A will

change his action to the action of the player B, who is her/his best

performing neighbor. The round of the game is t, Dp~pB{pA,

where pA is the payoff of an A player and pB is the payoff of his

best performing neighbor playing B. H(x) is the Heaviside

function, which is one for positive arguments and zero otherwise.

From the experimental data, we found m~0:380+0:013 and

C~0:962+0:003. For the simulations with imitation only we set

the random strategy exploration parameter m~0. In the first

round, C is played with probability 70% and in the every other

round the probability of imitation the best player is determined

according to the probability given by Eq.7.

If the player does not imitate she/he will play C or D with equal

probability. We see that the simulations with mw0 reproduce the

cooperation level well, but as we saw before, the best performing

neighbor will almost always be a defector. Therefore the above

update mechanism is equivalent to the mechanism where the next

action is determined only by the term mCt{1 in Eq. 7. Promotion

of cooperation can only occur through the formation of clusters of

cooperators, which is prevented by the random strategy explora-

tion. Therefore, since clusters of cooperators cannot be formed

anyway, both spatial and non spatial treatments show low levels of

cooperation driven by mw0 only. On the other hand, for m~0, the

two simulation setups display very different dynamics. In the

spatial setting, the level of cooperation drops at the beginning,

until clusters start forming and expand in a sufficiently large

system. In the non spatial setting, such clusters cannot form and

the cooperation level drops to zero.

In the Fermi update rule, the probability of switching to the

opposite strategy depends on the difference of the payoffs between

the focal player its neighbors. The dependence is given by the

Fermi function, see above. While conventionally a random

neighbor is chosen for comparison, in the analysis of the

experimental data we have focused on the neighbor with the

opposite strategy and the highest payoff. In our simulations, we

take the same approach. If there are no players with the opposite

strategy in the neighborhood, players will still switch their strategy

with some probability. We call this mutations or exploration

behavior. In contrast to [35], we here assume that this quantity is

time dependent. In the right panel of Figure 3, we present the

probability of mutations over time. Summarizing this approach we

find for the probability of changing strategy

PC<D(Dp)~mCt{1z(1{2mCt{1)
1

1ze{bDpza
: ð8Þ

Note that for b??, we recover the unconditional imitation from

above. For the simulations, we used the parameters obtained from

fitting to the experiment, b~0:15+0:01, a~0:45+0:07,

m~0:45+0:05, C~0:954+0:007 for the spatial treatment and

b~0:17+0:02, a~0:52+0:11, m~0:49+0:07,

C~0:947+0:009 for the non spatial treatment.

The last model we simulated are the moody conditional

cooperators. The probability of cooperating is given by

PCDC(l)~aCzbCl PCDD(l)~aDzbDl ð9Þ

The probability of cooperating after l neighbors cooperated and

the focal player cooperated is PCDD(l). If the focal player defected,

the corresponding probability is PCDD(l). For the simulations, we

chose the parameters aC~0:20, bC~0:35, aD~0:22, and

bD~{0:08.

Simulations were performed for a spatial and a non spatial

setting. In order to analyze the influence of the size of the lattice,

we simulated lattice size 4|4 and 100|100. Figure 5 shows the

Figure 5. Simulations for different update mechanisms. Top figures are for the spatial structure and the bottom ones are for non spatial
structure. Left to right: unconditional imitation, Fermi and moody conditional cooperators. We see that, for this payoff matrix, the only update
mechanism where the spatial structure is relevant is unconditional imitations without random strategy exploration.
doi:10.1371/journal.pone.0047718.g005
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levels on cooperation in these simulations for the same payoff

matrix as in the experiments, and for the parameters obtained

from the fit to the experimental data. As previously well

established [10], unconditional imitation without exploration will

promote cooperation in the presence of spatial population

structure, but not in non spatial settings. But the promotion of

cooperation will take place only if there is essentially no random

strategy exploration in the system. The presence of noise in the

strategy updating will also destroy the clusters of cooperators.

Thus, the level of cooperation will be equal to the strategy

exploration both in the spatial and the non spatial setting. On the

other hand, the Fermi rule and the moody conditional cooperators

rule lead to the same levels of cooperation in the spatial and in the

non spatial setting for our choice of parameters. Notice, that this

may change for a different payoff matrix, other parameters or if we

would allow self-interactions. Our results are in good agreement

with the results in [44], where it is shown by simulations that in a

population of cooperators, defectors and moody conditional

cooperators, the structure of the population does not promote or

inhibit cooperation compared to a well mixed population.

Discussion

We have compared a spatial and a non spatial behavioral

experiment with human subjects playing a Prisoner’s Dilemma.

We have found no significant differences between the two

treatments, neither in macroscopic properties such as the level of

cooperation, nor in the way that players update their strategies.

On the one hand, this is good news for theorists, because their

assumption of consistent strategy updates in spatial and non spatial

systems seems to be justified. On the other hand, our results

suggest that the idea that spatial structure promotes cooperation

cannot be carried over to human experiments in a straightforward

way. This result is in line with previous results from other

experiments. Cassar has found that cooperation was hard to reach

on different, albeit small networks [38]. Kirchkamp and Nagel

have performed an experiment on a one dimensional lattice

(circles) as well as in a group setting; their results suggest that naive

imitation may be negligible in such experiments [34]. Suri and

Watts have performed an online experiment and found that

network topology had no significant effect on the level of

cooperation [39].

It could be argued that in the above experiments the

cooperation is not observed because of the small system size, but

in experiments one order of magnitude larger [36] or even two

orders of magnitude larger [37], the level of cooperation changed

over time similarly. However, in those experiments, the same

players were used for both treatments subsequently. Therefore, the

comparison we make here is not straightforward in those

experiments. All these experiments are performed on different

spatial structures with different payoff matrices and system sizes.

Common to them is the observation that a strategy updating that

does not allow the innovation of a new strategy in a neighborhood,

e.g. players switching to defection in a neighbor of cooperators, is

not a good explanation for the data.

It could be argued that the size of our system is not big enough

for spatial structure to make a difference or that the payoff matrix

is not the ideal choice. In principle, it is possible that for a different

payoff matrix or a larger system, significant differences between

the two treatments (spatial and non spatial) would be observed.

Therefore, the similarity of players’ behavior in both settings

should be put to the test in larger systems and for different payoff

matrices, before a final conclusion is made. However, one has to

keep in mind that random strategy exploration is preventing the

formation of clusters. It seems to be unlikely that this feature

disappears for larger lattices or different parameters.

However, our results do not imply that the theoretical analysis

of spatial games is not meaningful. In other biological or

technological systems these considerations may be applicable

directly. Moreover, the effect of spatial structure could be much

more subtle than implied by many theoretical works. In particular,

theoretical work should consider the role of mutations (which may

arise from mixed strategies, strategies that try to anticipate the

future behavior of the neighbors, or from strategies which consider

more than one past interaction), see e.g. [43,45,46], or other, more

sophisticated strategy update mechanisms [47–49], which is only

rarely done in structured populations. However, it is difficult to

imagine strictly spatially structured hunter gatherer society.

In addition, population structure may have played a crucial role

in our evolutionary past and potentially also in our present and

future [50]. It is frequently argued that many features of human

behavior have evolved in hunter gatherer societies. The popula-

tion structure of these societies may thus be crucial for the

evolution of human cooperation.

Most importantly, theoretical considerations of fixed networks

are a necessary first step to analyze dynamical networks, which

may be a more realistic way to address human behavior. Recent

experiments of such dynamical networks indicate that there is

indeed a scope for the evolution of cooperation mediated by

network structure [51,52].

Methods

We used the experimental data from [35]. A detailed

explanation of the experiment can be found there. The data of

this experiment is available upon request. We emphasize that each

player was identified by a letter ranging from a to p (e.g., a has the

following neighbors: b, d, e, and m). Therefore, in the spatial

treatment players could see that their neighbors were always the

same, for example: f, d, e, and a. Subjects were told in the

instructions that their neighbors would stay the same throughout.

On the other hand, in non spatial treatment, players could see that

in each round they have different neighbors. Subjects were told in

the instructions that their neighbors would change after each

round. Consequently, it is highly unlikely that the players

misunderstood their specific rules of the game. In the non spatial

treatment the players had no access to information of the previous

actions of their present neighbors. Thus, they could not react

directly to their previous behavior. In contrast it was very easy in

the spatial setting to memorize the four strategies of their

neighbors for the next encounter.
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25. Perc M, Szolnoki A, Szabó G (2008) Restricted connections among distinguished

players support cooperation. Physical Review E 78: 066101.
26. Roca CP, Cuesta JA, Sanchez A (2009) Evolutionary game theory: Temporal

and spatial effects beyond replicator dynamics. Physics of Life Reviews 6.

27. Pacheco JM, Traulsen A, Nowak MA (2006) Coevolution of strategy and
structure in complex networks with dynamical linking. Physical Review Letters

97: 258103.

28. Antal T, Ohtsuki H, Wakeley J, Taylor PD, Nowak MA (2009) Evolution of

cooperation by phenotypic similarity. Proc Natl Acad Sci USA 106: 8597–8600.
29. Tarnita CE, Antal T, Ohtsuki H, Nowak MA (2009) Evolutionary dynamics in

set structured populations. Proc Natl Acad Sci USA 106: 8601–8604.

30. Poncela J, Gomez-Gardenes J, Traulsen A, Moreno Y (2009) Evolutionary game
dynamics in a growing structured population. New Journal of Physics 11:

083031.
31. Zschaler G, Traulsen A, Gross T (2010) A homoclinic route to full cooperation

in adaptive social networks. New Journal of Physics 12: 093015.

32. Wu B, Zhou F, Luo Q, Wang L, Traulsen A (2010) Evolution of cooperation on
stochastical dynamical networks. PLoS One 5: e11187.

33. Helbing D, Yu W (2010) The future of social experimenting. Proc Natl Acad Sci
USA 107: 5265–5266.

34. Kirchkamp O, Nagel R (2007) Naive learning and cooperation in network
experiments. Games and Economic Behavior 58: 269–292.

35. Traulsen A, Semmann D, Sommerfeld RD, Krambeck HJ, Milinski M (2010)

Human strategy updating in evolutionary games. Proc Natl Acad Sci USA 107:
2962–2966.

36. Grujic J, Fosco C, Araujo L, Cuesta J, Sanchez A (2010) Social experiments in
the mesoscale: Humans playing a spatial prisoner’s dilemma. PLoS One 5:

e13749.

37. Gracia-Lázaro C, Ferrer A, Ruiz G, Tarancón A, Cuesta JA, et al. (2012)
Heterogeneous networks do not promote cooperation when humans play a

prisoner’s dilemma. Proc Natl Acad Sci USA 109: 12922–12926.
38. Cassar A (2007) Coordination and cooperation in local, random and small world

networks: Experimental evidence. Games and Economic Behavior 58: 209–230.
39. Suri S, Watts DJ (2011) Cooperation and contagion in web-based, networked

public goods experiments. PLoS One 6: e16836.

40. Nowak MA, Bonhoeffer S, May RM (1994) Spatial games and the maintenance
of cooperation. Proc Natl Acad Sci USA 91: 4877–4881.

41. Fisher RA (1935) The Design of Experiment. Hafner.
42. Traulsen A, Nowak MA, Pacheco JM (2006) Stochastic dynamics of invasion

and fixation. Physical Review E 74: 011909.

43. Traulsen A, Hauert C, De Silva H, Nowak MA, Sigmund K (2009) Exploration
dynamics in evolutionary games. Proc Natl Acad Sci USA 106: 709–712.

44. Gracia-Lázaro C, Cuesta JA, Sánchez A, Moreno Y (2012) Human behavior in
prisoner’s dilemma experiments suppresses network reciprocity. Sci Rep 2: 325.

45. Helbing D, Szolnoki A, Perc M, Szabó G (2010) Defector-accelerated
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