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In food webs, the degree of intervality of consumers' diets is an indicator of the number of dimensions that are necessary to determine the
niche of a species. Previous studies modeling food-web structure have shown that real networks are compatible with a high degree of diet contiguity.
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ith the opposite, namely that species' diets have relatively low contiguity. This is particularly true when
value, in which case the indeterminacy of diet contiguities provided by current models can be large. We
n the range of possible values of diet contiguity. According to this model, we find that diet contiguity not
are ranked in ascending order of body size.
1. Introduction

Food webs are networks that describe trophic (consumer-
resource) interactions in communities (Cohen et al., 1990),
and regularities in their structural properties are among the
most prevalent in ecosystems (Camacho et al., 2002; Dunne
et al., 2002; Cattin et al., 2004; Camacho and Arenas, 2005;
Stouffer et al., 2005; Pascual and Dunne, 2006; Allesina et al.,
2008). The existence of systematic patterns in food webs of very
different origin and nature has encouraged researchers to propose
models for their structure, with the aim of reproducing the
observed patterns from simple food web assembly rules (Cohen
, INTA-CSIC, 28850 Torrejón

.A. Capitán),
urv.cat (R. Guimerà).
Williams and Martínez, 2000; Cattin et al., 2004; Stouffer et
al., 2006; Allesina et al., 2008; Capitán et al., 2009, 2011; Capitán
and Cuesta, 2011). The design and evaluation of theoretical
models for food-web structure is crucial to understand the
persistence of ecological communities and their fragility against
external perturbations (Stouffer et al., 2008, 2012; Capitán
and Cuesta, 2010; Stouffer and Bascompte, 2011).

Theoretical models of food webs often rely on the concept of
ecological niche. A species' niche was initially conceived as the set of
relevant traits that determine the trophic position of a species in the
network of trophic interactions (Hutchinson, 1957). The question of
how many “niche dimensions” are relevant to represent species in
their communities has given rise to a long debate in ecology (Cohen,
1977). It has been argued (Stouffer et al., 2006) that the structure of
empirical food webs can be fairly well explained reducing the
number of traits to simply one. If a single trait were enough to
characterize the network of feeding interactions, species could be
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ordered in a way that each consumer had a contiguous diet, that is,
each species would prey upon a set of consecutive resources. Hence
consumer's diets could be represented as intervals in a one-
dimensional niche space. A food web in which all consumers' diets
form continuous intervals along a single niche dimension is known
as a perfectly interval food web. Non-interval webs, however, are
networks such that no species ordering is possible for consumers'
diets to be perfectly contiguous. The quasi-interval nature of real food
webs has inspired the majority of recent models for food-web
structure (Williams and Martínez, 2000; Stouffer et al., 2005;
Allesina et al., 2008), but some researchers have pointed out that
real networks are not perfectly interval and that models that generate
perfectly interval food webs are therefore inappropriate (Cattin et al.,
2004). Stouffer et al. (2006) solved the puzzle by demonstrating
quantitatively that a small degree of diet non-contiguity is enough to
generate networks whose intervality is compatible with that of
empirical food webs. The small deviation from complete intervality
suggests that a single trait or a small set of them are enough to
capture the structure of feeding interactions and species' niches.
Other studies have proven recently that the number of niche
dimensions in food webs is low (Eklöf et al., 2013)—see, however,
the work by Rossberg et al. (2010) regarding the dimensionality of the
niche space.

Several candidates for the trait corresponding to the niche
dimension were proposed in the past, most prominently body size
(Lawton and Warren, 1988). Based on this correspondence between
an “abstract” niche variable and body size, other models for food-
web structure have been proposed (Loeuille and Loreau, 2005;
Lewis and Law, 2007; Petchey et al., 2008). Recent works (Guimerà
et al., 2010; Stouffer et al., 2011; Zook et al., 2011 ealt with
the long-standing question of what determines the ecological niche
of a species. These studies have tried to find an empirical property
or a species trait playing the role of the niche dimension in models
of food-web structure. As potential proxies for niche value, these
works have considered species trophic position (measured in
different ways) and body size (usually measured as the average,
among a certain sample of individuals, of body masses or body
lengths). Species in the network are ordered by the empirical
property and the total number of gaps in the resulting diets is
compared afterwards to a randomly ordered food web. All these
works conclude that species body size explains the degree of
intervality and the contiguity of diets in real food webs significantly
better than random orderings or ranking species according to other
quantities such as trophic positions.

In addition, species' size contributes to explaining the meso-
scopic structure of ecological networks. Besides intervality, other
topological properties such as the distribution of predators and
prey (Camacho et al., 2002; Stouffer et al., 2005), or the presence
of structural motifs in the network (Bascompte and Melián, 2005;
Camacho et al., 2007; Stouffer et al., 2007), are relevant when it
comes to characterizing the topology of natural food webs. In
particular, the existence of compartments (i.e., groups of species
that interact among themselves with higher probability than with
species outside) has been put into correspondence with body size
(Guimerà et al., 2010). The analysis of compartments in empirical
ecological networks is best described using body size as a proxy
for niche value. In accordance with previous related work, trophic
level appears to be a poor proxy for niche value (Jennings et al.,
2002; Woodward et al., 2005).

Here we show that, with existing food web models, one cannot
in principle conclude that species' diets must be highly contiguous
—high diet contiguity is compatible with observed data, but so is
relatively low contiguity. This is particularly true when one takes
body size as a proxy for niche value. To minimize this problem we
propose a model that extends the generalized niche model (GNM)
of Stouffer et al. (2006) by allowing predation on a certain range of
resources whose niches are larger than the niche value of the
consumer. The rationale behind this choice is supported by
empirical evidence showing that consumer-resource body-size
ratios in natural ecosystems are often smaller than one, i.e.,
consumer size is very often smaller than resource's size (Brose
et al., 2006; Petchey et al., 2008). Our model describes several
properties of real food webs better than previous models and,
more importantly, enables us to narrow down the range of
possible values of diet contiguity. Therefore, we show that diet
contiguity, not only can be high, but must be high when species
are ranked in ascending order of body size.
2. Materials and methods

2.1. The generalized niche model

The analysis of food-web intervality conducted by Stouffer et al.
(2006) led them to generalize the niche model (NM) by Williams

and Martínez (2000). The resulting generalized niche model (GNM)
produces interaction networks with a certain number of gaps in
consumer's diets. GNM food webs are generated as follows. Let S be
the number of species in the web. A niche value ni drawn from a
uniform distribution in the interval [0, 1] is assigned to each species.
Part of the diet of consumer j is chosen as the subset of species that
lie in the range rj ¼ cxnj, where x is drawn from a beta-distribution
f ðxÞ ¼ βð1−xÞβ−1 and β¼ ðS2=2LÞ−1, with L being the total number of
trophic interactions (links) in the network. The center cj of the range
is chosen uniformly at random in the interval ½rj=2; nj�, and the
parameter c belongs to [0, 1]. The rest of the diet consists of
Δkj ¼ ð1−cÞrjS species chosen at random from those species i not yet
consumed by j and whose niche values obey ni ≤nj.

The parameter c measures diet contiguity. For c¼1 one recovers
the original perfectly interval NM with a one-dimensional niche
space, since any species i whose niche falls within the range rj is
consumed by j. In contrast, for co1 the diets of predators do not

i of consumer j are randomly chosen among the species for which
ni ≤nj.

2.2. Extending the generalized niche model

We propose an extension of the generalized niche model
(EGNM) that allows for a predator j to have some of its non-
contiguous prey with niche values larger than nj (upward con-
sumption). To this end we introduce a new parameter p in the
model that tunes the maximum niche value mj for the non-
contiguous prey of a consumer, so that species j can consume
from niches ni ≤mj ¼ nj þ pð1−njÞ (for p¼0 we recover the GNM,
and for p¼1 any species is susceptible to be preyed upon). We call
this parameter “probability of upward consumption”. Our model
proceeds as the GNM except for the random choice of the Δkj non-
contiguous prey. If ni ≤nj, any prey i (among those not already
consumed in the contiguous part of the diet) can be selected with
a uniform probability, as in the GNM. For njoni ≤mj, however, we
choose a (linear) decreasing probability to randomly select a prey (see
Fig. 1). Any other decreasing function leads to similar results. This
assumption reflects the fact that, indeed, for a small con-sumer, the
larger the resource the smaller the likelihood to
interact with it. The mathematical form of this distribution is

f ðniÞ ¼

ρ if ni∈½0;nj�\½cj−rj=2; cj þ rj=2�;

ρ 1−
1
p
ni−nj
1−nj

� �
if ni∈½nj;nj þ pð1−njÞ�;

0 otherwise:

8>>><
>>>:

ð1Þ

form a continuous interval. In the limit c¼0 one recovers the
generalized cascade model [GCM; Stouffer et al., 2005], since all prey
2



Fig. 1. (A) Scheme of the EGNM. Consumer j is allowed to prey any species i with
ni ≤mj ¼ nj þ pð1−njÞ. At p¼0 we recover the GNM, and at p¼1 any species can be
consumed by j. We first draw the range rj of contiguous prey (black circles) for
consumer j. Then we randomly choose Δkj ¼ ð1−cÞrjS prey (squares) in the interval
½0; mj� according to the probability distribution depicted in (B), for which potential
prey with ni4nj are less likely to be selected.
Normalization imposes the condition ∑ni f ðniÞ ¼ 1, where the sum
is restricted to niche values not contained in ½cj−rj=2; cj þ rj=2� or
½mj;1�, which determines the normalization coefficient ρ. The
random choice of species according to this discrete distribution
continues until Δkj prey are assigned to the predator.

An interesting point is that, strictly speaking, the GNM is not
compatible with some empirical food webs (Allesina et al., 2008).
This is due to the fact that some of the non-contiguous prey
observed in empirical food webs cannot be accounted for when
randomly selected prey are restricted to have niche values smaller
than the niche of the predator. Our EGNM model permits random
consumption upwards in the niche axis, and therefore removes the
constraint imposed on the niches values of non-contiguous prey.
At least in the p¼1 limit, and often much before that, our model is
strictly compatible with any empirical food web.
2.3. Diet contiguity estimation

Estimating diet contiguity in empirical food webs is involved
because niche values of species are unknown. To address this
difficulty we assume, initially, that the niche values used in niche-
based models of an empirical food web can be put into direct
correspondence with the body size values reported for that net-
work in the form of body mass or body length. As mentioned, this
assumption is supported by recent work addressing how body-
size-ordered food webs compare to their random-ordered coun-
terparts (Stouffer et al., 2011; Zook et al., 2011), as well as
the analysis of compartments in empirical food webs (Guimerà et
al., 2010). See Appendix A for a list of the empirical food webs
used in this work and their main properties.

In particular, for each empirical food web, we order species
from smallest to largest body size, thus yielding the ordering
P ¼ fs1; s2;…; sSg where body sizes obey ws1 ows2 o⋯owsS . The
diet contiguity for such a permutation of species labels can be
measured by the total number of species belonging to gaps in
consumers' diets (Stouffer et al., 2006),

Ge ¼ GðPÞ ¼ ∑
S

i ¼ 1
∑
γi

j ¼ 1
gij; ð2Þ

where γi stands for the number of gaps in the diet of species i and
gij is the number of species present in the j-th gap. We list in
Appendix A the empirical number of gaps Ge yielded by the body-
size ordering for all the food webs with body-size data available.
2.4. Validation metrics

To compare the performance of both models when trying to
reproduce the structure of real food webs, we have studied 12
statistical quantities plus the number of gaps in consumers' diets. Most
of them are the usual descriptors of foodwebs (Williams andMartínez,
2000). Since our EGNM is in principle biased toward linking consumers
to species with larger niche values, we have also focused in measures
like the average number of loops, the average shortest path, or the
average trophic level, which somehow should reflect this potential bias.
The set of propertieswehavemeasured is:
1–3.
 Species types: the fraction T of top (species with no pre-
dators), basal (B, species with no prey) and intermediate
ðI ¼ 1−B−TÞ species (Cohen et al., 1990).
4–5. T

ability (VulSD). Normalized generality ðΓiÞ and vulnerability
ðϒiÞ of species i are defined as Schoener (1989)

Γi ¼
1
z
∑
S

j ¼ 1
aij; ϒ i ¼

1
z
∑
S

j ¼ 1
aji; ð3Þ

where aij stand for the entries of the network's adjacency
matrix (aij ¼ 1 if species i preys upon species j and zero
otherwise). The normalization with the linkage density z¼L/
S force mean Γi and ϒ i to equal unity, hence standard
deviations can be compared across different webs.

he standard deviations of generality (GenSD) and vulner-
6.
 Trophic similarity of a pair of species (sij) measures the overlap of
in- and out-going links in the web. It is the ratio between the
number of common predators and prey and the total number of
predators and prey (Martínez, 1991). For each web, the max-
imum similarity index of species i is averaged over the network
to obtain mean maximum similarity,

MaxSm¼ 1
S
∑
S

i ¼ 1
max
i≠j

sij: ð4Þ
7.
 Average trophic level (TL): the trophic level ℓi of species i has
been computed as

ℓi ¼ 1þ 1
ai
∑
S

j ¼ 1
aijℓj; ð5Þ

where ai ¼ ∑j
S
¼ 1aij is the number of prey in the diet of species i

(Levine, 1980). It equals 1 plus the weighted average of chain
lengths from a species to a basal species, theweights being equal
to aij=ai (i.e., each predator consumes equally from all its prey).
Note that this quantity is inspired in the flow of energy from
bottom to top occurring in the food web. The trophic position of
each species is averaged across the web to yield the quantity TL.
8–9.
 Standard deviation of ℓi averaged across the web (TLSD)
measures the degree of trophic specialization (Levine,
1980). Omnivory [Omniv, Polis, 1991] is the fraction of species
that prey on different trophic levels (i.e., that are connected
with basal species by food chains of different lengths).
10.
 Another measure of trophic position is the mean shortest
path (Short) from each species to a basal species (Williams
and Martínez, 2004).
11.
 The fraction of cannibals (self-consuming species, Cannib)
quantifies the number of loops of length 1.
12.
 The presence of non-trivial loops is measured by the average
number of triangular loops (Loops). To calculate it, we use a
matrix (B) whose entries are bij ¼ aij−aii (i.e., the adjacency
matrix without cannibalistic loops). The number of loops of
length 3 starting from species i can be obtained as the i-th
diagonal element of the third power of B. We finally average
this number across the web.
3
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2.5. Maximum-likelihood parameter estimation

Our validation metrics is formed by 13 statistical properties. As
shown below, the observed number of gaps is normally distrib-
uted. We have also checked that the rest of statistical quantities
follow Gaussian distributions when averaged over enough model
realizations. For both the GNM and the EGNM we estimate model's
log-likelihood as

log L¼ − ∑
k

i ¼ 1
log si−

1
2
∑
k

i ¼ 1
z2i ; ð6Þ

where the sum extends to the k¼13 empirical properties Xi that
we have measured for each food web, and zi ¼ ð〈Xi〉−Xi;eÞ=si is the
corresponding z-score, 〈Xi〉 and si

2 being the model average and
variance of Xi, respectively, and Xi;e the observed value of that
property in empirical networks. Mean and variance will be certain
functions of model parameters, so the likelihood function will
depend implicitly on model parameters—on c for the GNM, or on
(c, p) for the EGNM. Model parameters will be estimated max-
imizing the log-likelihood function. Note that Eq. (6) assumes that
all the statistical properties are independent, which is not neces-
sarily true. For example, the fraction of top, intermediate and
bottom species are correlated since their sum is equal to one.
Ignoring one of these three variables, however, leads to compar-
able estimates. For the sake of simplicity, we assume that correla-
tions between different quantities are weak and use Eq. (6) as
model's log-likelihood estimate.

Our maximum likelihood (ML) estimation procedure focuses of
network properties of ecological interest. We have not used the
likelihood function for the GNM (Allesina et al., 2008) and its
counterpart for the EGNM because, in practice, due to inevitable
mismatches between statistical models and reality, a likelihood
approach could end up concentrating on features of the data that
are actually not biologically interesting. However, a property-
based approach (Kendall et al., 1999; Reuman et al., 2006) focuses
on statistical properties of ecological interest. In our case, proper-
ties like the number of gaps in consumers' diets, or those proper-
ties that can be altered by permitting upward consumption (such
as Loops, Short, TL, TLSD, Omniv, etc.), are relevant for our purposes
and have been taken into account explicitly in our estimation of
log-likelihood.

Model selection follows the Akaike Information Criterion (AIC).
For each model, we have calculated the index

AIC ¼ 2n−2 log Lmax; ð7Þ
given the ML parameter estimates, n being the number of para-
meters of the model. By choosing the model with minimum AIC
index we are minimizing the information loss among all candidate
models (Akaike, 1974).
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Fig. 2. Diet contiguity estimation for the Benguela food web. (A) Histogram of the
number of gaps [cf. Eq. (2)] obtained for the GNM (105 model realizations) at three
different values of diet contiguity c. The hypothesis that G is a normally distributed
variable can not be rejected (continuous lines). The average number of gaps
observed at c¼0 (GCM, 130 gaps) and the empirical number of gaps (body size
ranking, Ge ¼ 92) are marked with vertical lines. (B) Histograms of the number of
gaps obtained for a probability of upward consumption p¼1 and three values of
prey contiguity c (105 EGNM realizations). Species number S and linkage density z
are chosen to match Benguela values. Histograms do not depart from normal
distributions (continuous lines) in a significant manner. The largest number of gaps
(252 at c¼0, marked as RND) is far larger than the empirical number of gaps
(Ge ¼ 92, body-size ordering, marked as BW). The distribution for c¼0.88 (whose
average matches the empirical value) scarcely overlaps with its completely random
counterpart for c¼0 —compare with (A).
3. Results

3.1. Diet contiguity confidence intervals

In their work, Stouffer et al. (2006) were interested in deter-
mining the maximum amount of diet contiguity c compatible with
the number of gaps observed in empirical food webs. Accordingly,
they used the ordering of species that minimizes Eq. (2) for each
empirical food web and took the maximum value of c compatible
with empirical observations. However, realizations of the GNM
with different values of the diet contiguity allow for the calculation
of the full 95% confidence intervals of c. To obtain the confidence
intervals one calculates the cumulative probability PrðG≤Ge; cÞ
to observe a number of gaps G smaller than the empirical value
Ge as a function of prey contiguity c. Such probability can be easily
calculated because we can not reject the null hypothesis that the
number of gaps is normally distributed (Fig. 2a). The intervals are
indeed quite broad for body-size orderings (Fig. 3, first panel).

Additionally, under the assumption that body size corresponds to
niche value, the empirical intervality is, in general, smaller than the
maximum possible (Zook et al., 2011), and the confidence interval
grows (Fig. 2). Compared to the GNM, our EGNM introduces more
gaps in consumers' diets, both because it allows for larger number of
gaps and because, in general, gaps are larger. This fact can be observed
in Fig. 2b, andwe discuss its implications below.

We use a collection of food webs for which body-size data are
available. Reported size data refer either to average body masses or
average body lengths of individuals (Brose et al., 2005), so we
generically use the term ‘body size’ to encompass both cases. For
each food web we determine the empirical number of diet gaps Ge

derived from the body-size ordering (see Appendix A for a list of
values and details about these orderings). Then we generate
stochastic realizations of our EGNM for different values of the
probability p of upward consumption, i.e., the parameter that
determines to what extent a species can have non-contiguous prey
with niche values higher than itself ðp∈½0; 1�Þ. For each p, averages
over realizations lead to the cumulative probability Pr G≤G c .

values (S, z and Ge) that correspond to the Benguela marine
ecosystem (Yodzis, 1998).

ð e; Þ
Fig. 3 shows an example of such histograms for the set of empirical
4
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Fig. 3. Cumulative probability PrðG≤Ge; cÞ as a function of c for several values of the probability of upward consumption p (105 EGNM realizations; the number of species S
and linkage density z correspond to those of Benguela). Since the number of gaps follows a normal distribution, its z-score z¼Ge−〈G〉=sG yields PrðG≤Ge; cÞ ¼
1=2½1þ erfðz=

ffiffiffi
2

p
Þ�, erf being the standard error function. The 95% confidence interval of diet contiguity is shadowed as the region for which PrðG≤Ge; cÞ≥0:05 and

PrðG≥Ge; cÞ≥0:05 simultaneously. Dotted, horizontal lines mark the 5%, 50%, and 95% confidence levels. The bottom, right panel depicts the dependence between p and c at
the 5% (circles), 50% (squares) and 95% (triangles) confidence levels. Observe how the 95% confidence interval (shadowed region of the last panel) narrows as p increases.
Increasing the probability of upward consumption leads to
narrower 95% confidence intervals for prey contiguity c because
larger values of p imply the possibility of more and larger gaps,
so the small number of gaps observed in real networks become
compatible only with high diet contiguity (see Fig. 4). The
narrowing of the range of possible values for the diet contiguity c is
important. Indeed, Stouffer et al. (2006) showed that a small
deviation from perfect contiguity c≲1 is enough to account for the
gaps observed in real food webs, but one may argue that very low
diet contiguity in the GNM is also compatible with the data. For

contiguous prey anywhere in the niche space (p¼1), c must be
confined to the interval (0.789, 0.920) for the same food web.
Therefore, assuming that our EGNM at least as accurate as the
GNM (we will focus on this assumption in the model selection
section), since the confidence interval for diet contiguity narrows
and moves towards values closer to 1, there is evidence that not
only diet contiguity could be high, as the GNM model itself
predicts, but that it must be so.

3.2. Model selection and parameter estimates

ML parameter estimation has been performed by averaging
each statistical property over 5000 model realizations except for
Caribbean Reef, Caricaie Lakes (2000 realizations), andWeddell (500

example, at a 5% confidence level, c¼0.289 is also compatible with
the number of gaps observed in Benguela (Fig. 3, panel p¼0). The
GNM is therefore compatible both with high and low values of diet
contiguity. In contrast, when species are allowed to have non-
realizations), the largest food webs in the dataset. We have

between the EGNM and the GNM, Δ¼ AIC−AIC0. If Δo0, the
EGNM is expected to perform better than the GNM. Our model
is selected in 13 out of 17 empirical food webs, which means that
the additional parameter we introduce produces an information
loss significantly smaller than the GNM.

Note that using the explicit body-size ordering moves diets
away from perfect intervality, which in turn disfavors the proxi-
mity to 1 of our estimation of prey contiguity. Despite this fact, the
c-estimates listed in Table 1 are rather close to 1 in most cases.
Therefore, the introduction of a new parameter controlling
upward interactions in the niche axis enables us to narrow down
the range of possible values of prey contiguity c and provides
further evidence that c must indeed be close to 1.

Once one of the models has been selected, the relative likelihood
e−Δ=2 can be interpreted as the relative probability that the other
model minimizes the (estimated) information loss. We list relative
likelihoods in Table 1. Observe that the GNM is selected in 4 cases,
but even for those webs the relative likelihood that the EGNM
minimizes the information loss is never negligible—it is always larger
than 0.44. Conversely, when our model is chosen, the relative
likelihood is smaller than 0.21, being negligible in most cases.

ML parameter estimates for diet contiguity and probability of
upward consumption have been plotted together with the 95%
confidence intervals for diet contiguity as a function of the

measured the log-likelihood on a 101�101 grid of equally spaced
pairs ðc; pÞ∈½0;1� � ½0;1�. ML parameter estimates are listed
in Table 1. Moreover, Table 1 shows the AIC-index difference
5
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Fig. 4. Diet contiguity 95% confidence intervals as a function of the probability of upward consumption p. Note that Caribbean (small) and Weddell Sea webs yield an large
empirical number of gaps, hence for small pwe can not reject the hypothesis that these network structures can be generated with a randommodel. Black squares correspond
to the (p, c) pairs yielded by ML estimation.
probability of upward consumption in Fig. 4. Except for EcoWEB41,
all the parameter estimates lie within the interval determined for
the corresponding value of p or are above—but close to—the
maximum diet contiguity compatible with the data at a 95%
confidence level.

Fig. 5 summarizes the performance of the EGNM for each
statistical property separately. Using the ML estimated parameters,
we calculate the z-score of each quantity from 105 model realiza-
tions. The model that renders the z-score zi closest to zero will
explain better property i. In terms of the percentage of properties
that are better described, EGNM's success ratio equals 58% —out of
a total of 221 possibilities (17 food webs evaluated against 13
properties), 128 were better explained by our EGNM.

We observe a tendency for EGNM to capture some properties
better than the GNM, in particular the number of gaps in
predator's diets and the fraction of cannibals, as well as the
quantities that measure species' trophic position (TL, TLSD, and
Short). Note that EGNM's potential bias toward upward consump-
tion in the niche axis increases trophic-level values and shortest-
path lengths. Interestingly, this bias additionally explains why the
standard deviation of generality (GenSD) is better accounted for by
the EGNM, since fluctuations in the number of prey of each
predator will be larger when p≈1. On the other hand, although
properties like the fraction of loops and omnivory are influenced
by EGNM's bias toward upward consumption, they are reasonably
well represented by our model.
4. Discussion

Food web intervality has long been studied as a proxy for the
structure of the niche space, which determines the structure of
food webs in ecosystems. However, it was only recently that
Stouffer et al. (2006) provided a way to quantify, not whether a
food web is interval or not, but to what extent the network is
interval. This quantification is challenging in two respects. First,
the quantification of diet contiguity depends on the model one
uses to generate null food webs. Second, to determine the degree
of intervality of a food web one needs to order species according to
their niche “values,” which are unknown a priori.

With regard to the first challenge, we argue that with existing
models low diet contiguity is also compatible with the degree of
6



Table 1
Parameter estimates of ML optimization for the GNM ðc0Þ and the EGNM (c,p).
Differences between GNM and EGNM log-likelihoods (log L0 and log L, respec-
tively) are provided, as well as the difference Δ¼ AIC−AIC0 of Akaike information
coefficients. The relative likelihood e−Δ=2 has been listed for each empirical food
web. When the GNM is selected, relative likelihoods have been marked in boldface.

Food web c p c0 logðL=L0Þ Δ e−Δ=2 Selected
model

Benguela 0.90 0.92 0.85 0.72 0.56 0.76 GNM
Broadstone
stream

0.88 0.34 0.88 2.92 −3.84 0.15 EGNM

Caribbean reef 0.94 0.72 0.94 36.6 −71.1 o10−15 EGNM

Caribbean
(small)

0.75 0.98 0.82 56.2 −110.4 o10−23 EGNM

Caricaie lakes 0.90 0.98 0.91 133.6 −265.3 o10−57 EGNM

Carpinteria 0.86 0.86 0.83 0.18 1.64 0.44 GNM
Coachella 0.84 0.12 0.85 0.71 0.58 0.75 GNM
EcoWEB41 0.52 0.95 0.90 22.6 −43.2 o10−9 EGNM

EcoWEB60 0.67 0.79 0.81 7.95 −13.9 o10−3 EGNM

Grassland 0.82 0.85 0.81 0.70 0.61 0.74 GNM
Mill stream 0.91 0.06 0.92 3.42 −4.84 0.09 EGNM
Scotch broom 0.90 0.48 0.92 4.24 −6.48 0.04 EGNM
Sierra lakes 0.92 0.38 0.94 2.54 −3.08 0.21 EGNM
Skipwith pond 0.85 0.07 0.88 4.95 −7.90 0.02 EGNM
Tuesday lake 0.94 0.46 0.92 7.34 −12.7 o10−2 EGNM

Weddell 0.43 0.35 0.55 122.0 −241.9 o10−52 EGNM

Ythan 0.69 0.99 0.82 100.5 −198.9 o10−43 EGNM
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Fig. 5. For each food web, we mark with a full, black box the statistical properties
that are better represented for EGNM webs with a non-zero probability of upward
consumption. Blank boxes denote that the GNM captures better the empirical
property.
intervality observed in real food webs. Therefore, we propose a
model whose intervality, as defined in Stouffer et al. (2006), i s
much more sensitive to the parameter that controls diet conti-
guity. The situation is conceptually similar to trying to estimate the
value of a hidden variable in a system—one should always choose
a proxy that is very sensitive to the value of the hidden variable.
Importantly, the proxy should not be very sensitive to other
variables, but only to the one we are interested in. In the context
of food webs, this means that we are concerned with models
whose intervality changes quickly with diet contiguity while other
network properties remain close to those observed empirically.
Our extension of the generalized niche model fulfills these
requirements—as we show in Appendix B, when the intervality
of model webs stops being compatible with empirically observed
values, other network properties are still closer to their empirical
values than for the GNM averages.

With regard to the second challenge, multiple works have
pointed out that body size is at least a reasonable proxy for niche
value, and certainly the best proxy we have been able to find. Zook
et al. (2011) have compared the degree of intervality of empirical
food webs when trophic positions are chosen as proxy for niche
values. Although they conclude that body size can not completely
explain observed patterns in food webs, it outperforms the results
when compared to trophic levels (measured in three different
ways). Therefore, we argue that ordering species by body size
should yield reasonably good estimates of diet contiguity. In
practice, however, using body size broadens the range of estimates
of diet contiguity and biases their value down. Even then, our
more sensitive model enables us to conclude that intervality must
be high.

Our EGNM produces food webs that are consistent with
empirical data when body size is chosen as a proxy for niche
values. In particular, our model solves the inconsistency of the
GNM pointed out by Allesina et al. (2008), who found some
instances for which GNM-based webs could not reproduce the
observed maximum number of non-contiguous prey per predator.
This drawback is inherent to the GNM, which restricts the random
assignment of non-contiguous prey downwards in the niche axis.
Our extension relaxes this constraint and permits species order-
ings that are compatible with the interaction patterns observed in
empirical food webs.

Despite the acknowledged relevance of parasitic interactions in
food webs (Lafferty et al., 2006), we have focused in this work on
networks that are almost free of them. We have treated as
equivalent both predatory and parasitic interactions when para-
sites or parasitoids are present in the data (for example, in Scotch
Broom and Grassland webs). Although parasite-parasitoid interac-
tions are weakly dependent on body size, it could be relevant to
carry out a similar study for more realistic data that incorporates
parasitism in greater proportions (Lafferty et al., 2006).

The analysis performed by Stouffer et al. (2011) reveals to what
extent body size is a significant explanatory variable accounting
for a single niche dimension, and this degree of significance
strongly depends on the evolutionary history of species. It seems
that other latent traits are also responsible for species' roles in
food webs. Importantly, it has been demonstrated that closely
related species, in terms of their phylogeny, exhibit similar
niches. The interplay between phylogenetic and ecological factors
may be crucial in the determination of species' niche values
distribution within a single trophic network (Rezende et al.,
2009). The incorporation of the empirical, probably heterogeneous
distribution of species over the niche space to mechanistic models
of food-web structure reveals itself as a key question to address in
the future.
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Table A1
Food webs (for which body size has been reported) and their properties: number of species S, linkage density z and empirical number of gaps Ge [see Eq. (2) of the main text].
References for binary interaction matrices are provided, as well as the references that have been used to compile body sizes in each case. Reported data correspond to species
body length for Grassland, Mill Stream, Scotch Broom, Sierra Lakes, Skipwith Pond and Weddell Sea, and to species body mass for the remaining webs.

Food web Adjacency matrix reference Body-size reference S z Ge

Benguela 29 7.0 92
Broadstone stream 28 5.6 67
Caribbean Reef 207 9.8 6969
Caribbean (small) 50 11.1 606
Caricaie Lakes 135 10.0 4640
Carpinteria 72 3.3 705
Coachella 26 8.8 75
EcoWEB41 19 2.7 27
EcoWEB60 33 2.1 114
Grassland

Yodzis (1998)
Brose et al. (2005)
Bascompte et al. (2005)
Reide (unpublished)
Brose et al. (2005)
Lafferty et al. (2006)
Reide (unpublished)
Jonsson (1998) Jonsson
(1998)
Brose et al. (2005) 55 1.6 246

Mill stream 74 5.0 483
Scotch broom 47 2.0 147
Sierra lakes 32 6.0 36
Skipwith pond

Brose et al. (2005)
Brose et al. (2005)
Brose et al. (2005)
Brose et al. (2005) 34 7.6 135

Tuesday lake 51 4.7 170
Weddell 440 4.2 53,088
Ythan

Yodzis (1998)
Woodward et al. (2005)
Bascompte et al. (2005)
Opitz (1996)
Cattin Blandenier (2004)
Lafferty et al. (2006)
Polis (1991)
Cohen (1989)
Cohen (1989)
Dawah et al. (1995)
Ledger, Edwards, and Woodward (unpublished)
Memmott et al. (2000)
Harper-Smith et al. (2005)
Warren (1989)
Cohen et al. (2009)
Jacob, Brey, and Mintenbeck (unpublished) Hall
and Raffaelli (1991)

Cohen et al. (2009)
Brose et al. (2005)
Cohen et al. (2009) 92 4.5 1594
Appendix A. Dataset description

We use a collection of ecological networks for which body size
(in the form of averaged body masses or averaged body lengths of
sampled individuals) has been measured and reported. Table A1
lists, for each food web, the reference which contains the network
of (binary) interactions, the reference used to compile body-size
data, the number of species S of the food web, the linkage density
z, and the empirical number of gaps Ge obtained when species are
ranked in ascending order of body sizes.

The correspondence between species identity and body size was
not unambiguous, i.e., for most of the webs there were two or more
species recorded to have the same body size. Note that any ordering
in each group of equivalent species is compatible with the ranking
in ascending order of sizes. In most of the cases we can enumerate
all the possible permutations of equivalent species. Therefore we
choose the ordering that minimizes the number of gaps among all
the permutations of these subsets. There were only two webs
(Grassland and Weddell Sea) for which the exhaustive enumeration
of all possible permutations of each degenerate subset was numeri-
cally out of the reach. In those cases, we randomly sample the
possible orderings by transposing pairs of species within the same
degenerate subset, and choose the minimum number of gaps after
106 species transpositions. We have checked that the variability
introduced by this degeneracy do not change dramatically the
empirical number of gaps (i.e., we have calculated the maximum
number of gaps compatible with the reported sizes and turns out to
be comparable with the minimum value).

Body sizes have been compiled using different sources (see Table
A1). In some cases we used data provided as online supporting
material in several publications. That was the case of Caribbean Reef
(Bascompte et al., 2005), Tuesday Lake1 and Ythan Estuary (Cohen et al.,
2009). Most of sizes were retrieved from the article by Brose et al.
(2005), which constitutes a compilation of consumer-resource inter-
actions including either average body mass or average body length for
different consumer-resource pairs. Most of the interactions listed in
Brose et al. (2005) were extracted for previously published food webs.
In many cases, the food web reported by Brose et al. (2005) does not
coincide with the web reported in the original article. For example,
although Benguela is one of the food webs provided by Brose et al.
1 Cohen et al. (2009) provided samples of Tuesday Lake performed in 1984 and

1986. Here we chose the 1986 sample.
(2005), it has some missing links when compared with the original
reference (Yodzis, 1998). We have used the database by Brose et al.
(2005) to extract the connectivity structure for Broadstone Stream,
Caricaie Lakes,2 Grassland, Mill Stream, Scotch Broom, Sierra Lakes,
Skipwith Pond, a n d Weddell Sea, although the number of species
and linkage density slightly differed from those originally reported.

We have observed two additional issues when processing the
data files to extract each food web:

On the other hand, the text data file provided by Brose et al.
(2005) specifies the life stage of each species in each consumer-
resource interaction. We have ignored life stages because taking
them into account does not introduce any difference in the resulting
network, except for Broadstone Stream, Caricaie Lakes and Skipwith
Pond. For these three webs, life stage differences exclusively appear
for the same species acting either as consumer (life stage is recorded
as, say, adult) or resource (life stage is recorded as juvenile, for
instance). Therefore, if different life stages are considered as different
nodes–as in Petchey et al. (2008)–resource life stages will be always
regarded as basal species, which obviously introduces an artifact in
the resulting web. Moreover, although species can exhibit different
life stages, reported body sizes are exactly the same irrespective of
the life stage. Therefore we have omitted life stage differences when
constructing the networks. In those three webs, the differences
introduced by ignoring life stages in the number of species and
linkage density are small. In particular, ignoring life stage in Skipwith
Pond yields a food web with the same taxa as reported in the original
reference (Warren, 1989).
1.
geo

dom
Brose et al. (2005) report links for Scotch Broom that form a
disconnected graph. We have maintained the giant (weakly)
connected component since empirical data are to be compared
with model realizations, which yield connected networks. We
have checked that the remaining food webs form connected
graphs.
2.
 We have debugged the text file provided by Brose et al. (2005)
because sometimes species names contained blank spaces.
Automatic text processing can mistakenly recognize as differ-
ent those taxa which appear simultaneously with and without
blank spaces.
2 Brose et al. (2005) report data of 8 samplings of Caricaie Lakes in different
graphical locations. We chose the sample of a triennially mown vegetation

inated by Orchio-Schoenetum nigricantis (Cattin Blandenier, 2004).
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Fig. B1. Statistical descriptors for each food web in the dataset. Diet contiguities in
model webs correspond to a 5% confidence level in the number of gaps. Success ratio
is equal to 61%. Color code is the same as in Fig. 5 of the main text. (For
interpretation of the references to color in this figure caption, the reader is referred
to the web version of this article.)

Table A2
Values of model parameter c (diet contiguity) for the EGNM and the GNM (c0) at a
5% confidence level in the number of gaps. At that level, empirical values of the
number of gaps stop being compatible with model averages. The probability of
upward consumption p has been chosen as in the main text (p¼0 for the GNM; see
Table 1 of the main text for EGNM's estimates). Observe that, in some instances,
diet contiguities are zero. In such cases, the empirical number of gaps takes values
that render these webs indistinguishable from their random counterparts, see Fig. 4

of the main text and Stouffer et al. (2006).

Food web c c0

Benguela 0.78 0.29
Broadstone stream 0.74 0.66
Caribbean reef 0.87 0.82
Caribbean (small) 0.61 0.00
Caricaie lakes 0.74 0.16
Carpinteria 0.65 0.45
Coachella 0.00 0.00
EcoWEB41 0.57 0.19
EcoWEB60 0.31 0.00
Grassland 0.59 0.42
Mill stream 0.83 0.83
Scotch broom 0.71 0.69
Sierra lakes 0.91 0.90
Skipwith pond 0.55 0.50
Tuesday lake 0.86 0.85
Weddell 0.00 0.00
Ythan 0.63 0.15
Appendix B. Model performance at fixed confidence level for
intervality

To check that EGNM's intervality changes quickly with diet
contiguity c while other statistical properties remain close to their
empirical values, we have determined the values of c at a 5%
confidence level, both for the EGNM and the GNM, for all food
webs in the collection, keeping fixed the probability of upward
predation estimated with maximum likelihood (see Table 1 of the
main text and recall that p¼0 for the GNM). At that confidence
level, EGNM and GNM are expected to perform worse. Indeed, for
these values of c (which have been listed in Table A2), the number
of gaps obtained for model networks start to be incompatible with
empirical intervalities. We look at the remaining statistical proper-
ties and compare the EGNM and GNM values in order to deter-
mine which model yields quantities closer to the empirical values.

Results have been reported in Fig. B1. We have averaged up to
105 model realizations and obtained the corresponding z-scores
for all statistical properties except the number of gaps. Black boxes
mean that the EGNM z-score is closest to zero than the GNM
z-score, and white otherwise. We measure overall model's perfor-
mance as the fraction of properties that EGNM closely describes
when compared to GNM. Success ratio is equal to 61% in this case.
This implies that our model is very sensitive to the parameter that
controls diet contiguity, in the sense that the remaining statistical
properties remain close to the empirical values whereas intervality
has changed abruptly, far from being close to the empirically
observed values.
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