
Sampling Theory in Shift-Invariant Spaces:

Generalizations

PhD THESIS
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Resumen

A grandes rasgos la teorı́a de muestreo estudia el problema de recuperar una función

continua a partir de un conjunto discreto de sus valores. El resultado más importante

y pilar fundamental de esta teorı́a es el conocido teorema de muestreo de Shannon que

afirma que:

Si una señal fptq no contiene frecuencias mayores que 1{2 ciclos por segundo en-
tonces está completamente determinada por sus ordenadas en una sucesión de puntos
espaciados en un segundo. Además puede ser reconstruida mediante la fórmula

fptq “
ÿ
kPZ

fpkq sinπpt ´ kq
πpt ´ kq , t P R .

En otras palabras, la formula anterior es válida para funciones bandalimitadas (al inter-

valo r´π, πs en este caso), i.e., funciones para las cuales la transformada de Fourier se

anula en el exterior de cierto intervalo (r´π, πs en este caso). Este resultado, a pesar de

su impacto en teorı́a de la señal, presenta varios problemas que muchos investigadores

(matemáticos, fı́sicos e ingenieros) han tratado de solucionar. Es por esto que el es-

tudio de la teorı́a de muestreo en espacios invariantes por traslación ha cobrado gran

importancia en la comunidad cientı́fica que trabaja en problemas relacionados con el

procesado de señales.

Una herramienta importante que usaremos recurrentemente es la conocida trans-

formada de Fourier para funciones en L2pRq. Esta está definida en L1pRq X L2pRq
como pfpwq “ 1?

2π

ż 8
´8

fptqe´iwt dt

o pfpξq “
ż 8
´8

fptqe´2πiξt dt

y luego se extiende, mediante un argumento de densidad, a todo L2pRq. Sus respectivas

fórmulas inversas son

fpwq “ 1?
2π

ż 8
´8

pfptqeiwt dt
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o

fpξq “
ż 8
´8

pfptqe2πiξt dt
A lo largo de esta memoria usaremos ambas definiciones indiferentemente. La primera

mide la frecuencia angular en radianes por segundo mientras que en la segunda ξ rep-

resenta la frecuencia en hertzios, o ciclos por segundo. Si seleccionamos, por ejemplo

la primera, podemos definir el espacio de Paley-Wiener de la siguiente forma:

PWπ “ �
f P L2pRq : supp pf Ď r´π, πs( .

En otras palabras

fptq “ 1?
2π

ż π

´π

pfpwqeiwt dw “ @ pf, e´iwt

?
2π

D
L2r´π,πs , t P R.

En general, se definirı́a análogamente el espacio PWσπ con σ ą 0. Con la se-

gunda definición de transformada de Fourier, el espacio anterior estarı́a definido por la

condición supp pf Ď r´1{2, 1{2s.
Las generalizaciones más comunes de los espacios Paley-Wiener son las siguientes:

• La primera consiste en sustituir el espacio de Hilbert L2r´π, πs y el núcleo

de Fourier en la expresión anterior por un espacio de Hilbert arbitrario H y un

núcleo

K : Ω Q t ÞÑ Kptq P H ,

con Ω Ď R (o C), y considerar entonces, para cada x P H, la función

fxptq “ xx,KptqyH, t P Ω .

Ver, por ejemplo, Refs. [40, 50, 61, 123]. Ası́ obtenemos un espacio de Hilbert

con núcleo reproductor (RKHS en sus siglas inglesas) HK puesto que el fun-

cional evaluación Et : f ÞÑ fptq es acotado para cada t P Ω. Por tanto, para

cada t P Ω, el teorema de representación de Riesz asegura la existencia de un

único kt P HK tal que fptq “ xf, kty para todo f P HK . El núcleo reproductor

del espacio HK viene dado por

kpt, sq :“ xks, kty “ ksptq, pt, sq P Ω ˆ Ω .

Los espacios RKHS tienen la propiedad importante de que la convergencia en

norma implica convergencia puntual en Ω, que será uniforme en aquellos sub-

conjuntos de Ω en donde la función t ÞÑ }kt} esté acotada.

Si existe una base ortonormal en HK de la forma tkp¨, tnqunPZ, donde la sucesión

ttnunPZ Ă Ω, la siguiente fórmula de muestreo se cumple para todo f P HK :

fptq “
ÿ
nPZ

fptnq kpt, tnq
kptn, tnq , t P Ω .
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El espacio de Paley-Wiener PWπ es un RKHS y su núcleo reproductor está dado

por kπpt, sq “ sinπpt´sq
πpt´sq , t, s P R. En particular, para la sucesión ttn “ nunPZ

se tiene que
� sinπpt´nq

πpt´nq
(
nPZ es una base ortonormal para PWπ , y la fórmula de

muestreo anterior es precisamente la de Shannon.

• De acuerdo con el teorema de Shannon el espacio de Paley-Wiener PWπ es un

subespacio invariante por traslación de L2pRq generado por la función sinc, i.e.,

sinc t :“ sinπt{πt, t P Rzt0u y sinc 0 “ 1. Puede ser descrito por tanto como

PWπ ”
! ÿ

nPZ
an sincpt ´ nq, tanu P �2pZq

)
.

Otra generalización consiste en reemplazar la función sinc por otra función ge-

neradora ϕ P L2pRq que presente mejores propiedades computacionales (ver,

por ejemplo, Refs. [108, 109]. En otras palabras, tomar en consideración subes-

pacios de L2pRq de la forma

V 2
ϕ “

! ÿ
nPZ

an ϕp¨ ´ nq , tanu P �2pZq
)

que no es otra cosa que

V 2
ϕ “

! ÿ
nPZ

an Tnϕp¨q , tanu P �2pZq
)

donde T es el operador shift fptq ÞÑ fpt ´ 1q. Considerando en vez de T un

operador unitario U en un espacio de Hilbert abstracto H, se obtienen los sub-

espacios U -invariantes. El estudio de la teorı́a de muestreo en estos subespacios

será el objetivo del Capı́tulo 4. Más referencias acerca de esta última extensión

se pueden encontrar a lo largo del manuscrito.

Este manuscrito estudia la última de estas dos posibles extensiones.

El primer capı́tulo comienza con una introducción histórica de las principales ramas

de la matemática que se abordan en esta memoria, la teorı́a de muestreo de Shannon y

la teorı́a de frames. También incluimos, como motivación, la extensión de la fórmula

de Shannon a espacios invariantes por traslación, resultado obtenido, por primera vez,

por G. Walter en [113].

El segundo capı́tulo está dedicado al estudio de subespacios invariantes por trasla-

ción de L2pRdq con un conjunto de múltiples generadores. Vale la pena mencionar que

las muestras no son precisamente valores de la señales en un conjunto discreto, estas

son obtenidas mediante la acción sobre la señal de un sistema de convolución. Si los

generadores son funciones con soporte compacto la complejidad computacional es baja

y se evitan los errores de truncamiento; este caso será analizado. Es natural también

considerar sucesiones de muestras perturbando los puntos en donde se obtienen las
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mismas; en este marco encontramos condiciones que hacen posible la reconstrucción.

Los desarrollos aquı́ obtenidos son inútiles desde un punto de vista práctico ya que las

funciones de reconstrucción dependen de la sucesión de errores que es, obviamente,

desconocida. No obstante, un algoritmo frame es implementado para soslayar este

problema.

El Capı́tulo 3 va un poco más allá; esta vez suponemos que las señales pertenecen

a un subespacio de Lp
νpRdq, donde ν es una función peso. Una función f pertenece a

Lp
νpRdq si νf pertence a LppRdq. Esta función peso controla el decaimiento o creci-

miento de las señales. También obtenemos aquı́ fórmulas de reconstrucción usando un

método similar al del Capı́tulo 2. En este caso consideramos generadores que sean fun-

ciones localmente en L8ν pRdq y globalmente en L1
νpRdq. Además el espacio auxiliar

deberá tener estructura de álgebra de Wiener; esto requerirá supuestos adicionales en

las funciones peso. Obtenemos fórmulas de muestreo regular asociadas a dos tipos de

sistemas lineales: los obtenidos mediante convolución con ciertas funciones prefijadas

y los que la respuesta impulsional es una delta de Dirac trasladada.

El Capı́tulo 4 justifica por si mismo el tı́tulo de la tesis. Es bien conocido que el

operador de traslación T : fptq ÞÑ fpt ´ 1q es unitario en L2pRq. En los capı́tulos

anteriores tratamos con espacios de la forma spanL2pRq
�
ϕpt ´ nq, n P Z

(
, donde la

función generadora ϕ pertenece a L2pRq. Una extensión natural es considerar un ope-

rador unitario U : H Ñ H, donde H es un espacio de Hilbert separable y desarrollar

una teorı́a de muestreo generalizada en subespacios de la forma

Aa :“ span
�
Una, n P Z

(
,

donde a es un elemento fijo en H. Con el fin de generalizar los sistemas de convolución

y, principalmente, obtener resultados de perturbación, suponemos que el operador U
está incluido en un grupo continuo de operadores unitarios tU tutPR. Obtenemos resul-

tados interesantes en este marco abstracto, usando técnicas de teorı́a de frames, teorı́a

espectral y sucesiones estacionarias, entre otras. En nuestra opinión, este capı́tulo es

uno de los logros más importantes y originales de la memoria.



Brief description of the manuscript

Roughly speaking sampling theory deals with determining whether we can or can

not recover a continuous function from some discrete set of its values. The most impor-

tant result and main pillar of this theory is the well-known Shannon’s sampling theorem

wich states that:

If a signal fptq contains no frequencies higher than 1{2 cycles per second, it is
completely determined by giving its ordinates at a sequence of points spaced one sec-
ond apart, and can be reconstructed from these ordinates, via the formula

fptq “
ÿ
kPZ

fpkq sinπpt ´ kq
πpt ´ kq , t P R .

In other words, formula above is valid for band-limited functions(to the interval r´π, πs),
i.e. functions for which the Fourier transform vanishes outside certain interval (r´π, πs
in this case). This crucial result in spite of its impact has several problems that re-

searchers(mathematicians, physicists and engineers) have tried to solve. That is why

the study of shift-invariant spaces have gained great importance for the scientist com-

munity working on signal processing.

An important tool that we will recurrently use is the well known Fourier transform

for functions in L2pRq. It is defined in L1pRq X L2pRq as

pfpwq “ 1?
2π

ż 8
´8

fptqe´iwt dt

or pfpξq “
ż 8
´8

fptqe´2πiξt dt

and then extended, by a density argument, to the whole L2pRq. Their respective inverse

formulae are

fpwq “ 1?
2π

ż 8
´8

pfptqeiwt dt
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or

fpξq “
ż 8
´8

pfptqe2πiξt dt

Along this memoir we will use both of them interchangeably. The first one is measur-

ing the angular frequency in radians per second while in the second ξ represents the

frequency in hertz, or cycles per second. If we choose, for instance, the first one, we

define the Paley-Wiener space in the following way:

PWπ “ �
f P L2pRq : supp pf Ď r´π, πs(.

In other words

fptq “ 1?
2π

ż π

´π

pfpwqeiwt dw “ @ pf, e´iwt

?
2π

D
L2r´π,πs , t P R.

Analogously, we can define the space PWσπ with σ ą 0. Using the second definition

of Fourier transform the involved condition would be supp pf Ď r´1{2, 1{2s.
The most common extensions of Paley-Wiener spaces are the following:

• The first one consists in substituting the Hilbert space L2r´π, πs and the Fourier

kernel in the expression above by an arbitrary Hilbert space H and a kernel

K : Ω Q t ÞÑ Kptq P H ,

with Ω Ď R (or C), and thus consider, for each x P H, the function

fxptq “ xx,KptqyH , t P Ω .

See, for instance, Refs. [40, 50, 61, 123]. In this extension we obtain a Re-

producing Kernel Hilbert Space (RKHS) HK since the evaluation functional

Et : f ÞÑ fptq is bounded for all t P Ω. Therefore, for each t P Ω, Riesz

representation theorem assures the existence of an unique kt P HK such that

fptq “ xf, kty for all f P HK . The reproducing kernel of the space HK is given

by

kpt, sq :“ xks, kty “ ksptq, pt, sq P Ω ˆ Ω .

The RKHS has the important property that convergence in norm implies point-

wise convergence in Ω, which will be uniform on those subsets of Ω where the

function t ÞÑ }kt} is bounded.

If there exists an orthonormal basis for HK of the form tkp¨, tnqunPZ, where the

sequence ttnunPZ Ă Ω, then the following sampling formula holds for every

f P HK :

fptq “
ÿ
nPZ

fptnq kpt, tnq
kptn, tnq , t P Ω .
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The Paley-Wiener space PWπ is a RKHS and its reproducing kernel is given by

kπpt, sq “ sinπpt´sq
πpt´sq , t, s P R. In particular, taken ttn “ nunPZ it is known

that
� sinπpt´nq

πpt´nq
(
nPZ is an orthonormal basis for PWπ , and the above sampling

formula reduces to Shannon’s one.

• According to Shannon’s sampling theorem the Paley-Wiener space PWπ is a

shift-invariant subspace of L2pRq generated by the sinc function, i.e., the func-

tion defined as sinc t :“ sinπt{πt, t P Rzt0u and sinc 0 “ 1. It can be described

as

PWπ ”
! ÿ

nPZ
an sincpt ´ nq, tanu P �2pZq

)
.

Other generalization consists of replacing the sinc function by another generat-

ing function ϕ P L2pRq having better convergence properties (see, for instance,

Refs. [108, 109]). In other words, take into account subspaces of L2pRq of the

form

V 2
ϕ “

! ÿ
nPZ

an ϕp¨ ´ nq , tanu P �2pZq
)

which is nothing but

V 2
ϕ “

! ÿ
nPZ

an Tnϕp¨q , tanu P �2pZq
)

where T is the shift operator. The replacement of T by an arbitrary unitary oper-

ator U on an abstract Hilbert space H gives the U -invariant subspaces. The study

of a sampling theory in these spaces is the subject of Chapter 4. More references

concerning this last extension are profusely given along the manuscript.

This manuscript concerns with the last one of these two possible extensions.

The first chapter begins with an historical introduction of the main mathematical

branches this memoir deal with, Shannon sampling theory and frame theory. We also

include as a motivation the extension of Shannon’s formula to shift-invariant spaces, a

work done by G. Walter in [113].

The second chapter is devoted to study L2pRdq shift-invariant spaces with a set

of multiple stable generators, in which we obtain generalized sampling formulas. It is

worth to mention that samples are not precisely values of the signal at some discrete set,

they are obtained by the action of a convolution system on the signal. If the generators

are functions with compact support the computational complexity is lower and trunca-

tions errors are avoided, this case is also analyzed. It is also natural to consider error

sequences perturbing the samples; in this setting, we found conditions to make possible

the reconstruction. The sampling expansions here obtained are useless from a practi-

cal point of view because the reconstruction functions depend on the error sequence

which is obviously unknown. Nevertheless, a frame type algorithm is implemented to

overcome this problem.
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Chapter 3 goes a little further. This time we suppose that signals belong to a sub-

space of Lp
νpRdq, where ν is a weight function. A function f belongs to Lp

νpRdq if νf
belongs to LppRdq. This weight function controls the decay or growth of the signals.

We also obtained here reconstruction formulas using a similar approach to the one in

Chapter 2. We have to consider generators which are functions locally in L8ν pRdq and

globally in L1
νpRdq. Furthermore the auxiliary sampling space should have a Wiener

algebra structure, this will require further assumptions on the weight functions. We de-

rive regular sampling formulas involving two types of linear systems, the ones obtained

by convolution with certain fixed functions and the ones in which the impulse response

is a translated Dirac delta.

Chapter 4 justifies by itself the title of the thesis. It is well known that the shift

operator T : fptq ÞÑ fpt ´ 1q is unitary in L2pRq. We dealt in the previous chapters

with spaces of the form spanL2pRq
�
ϕpt ´ nq, n P Z

(
, where the generator function ϕ

belongs to L2pRq. A natural extension is to consider an unitary operator U : H Ñ H,

where H is a separable Hilbert space and develop a generalized sampling theory in

subspaces of the form

Aa :“ span
�
Una, n P Z

(
,

where a is a fixed element in H. In order to generalize convolution systems and mainly

to obtain some perturbation results, we assume that the operator U is included in a

continuous group of unitary operators tU tutPR. We obtain interesting results in this

abstract setting, using techniques from frame theory, spectral theory, stationary se-

quences, among other branches of mathematics. In our opinion this chapter is one of

the most important and original achievements of the memoir.



1
Introduction to Sampling Theory

1.1 A little bit of history

Let us suppose that we have a function f defined on some domain D, and has a

series representation there of the form

fptq “
ÿ
kPZ

fptkqSkptq, t P D , (1.1)

where ttkukPZ is a discrete collection of points in D, and tSkukPZ is some set of suit-

able expansion functions. An expansion like (1.1) is called sampling series and the first

thing that comes to mind is how the function can be represented in terms of its values

at just a discrete set of its domain. Series of this kind and their generalizations are the

main interest of sampling theory.

Sampling theory as we know it today is about sixty-five years old, but its founda-

tions relies on the work of several renowned mathematicians, such as Poisson, Borel,

Hadamard, de la Vallée Poussin, and E. T. Whittaker. Actually, there are studies which

make us think that the very first sampling result can be deduced from Cauchy’s work,

but for some authors the evidence of this is poor and could not be firmly substantiated.

Nevertheless, the reader can check Refs. [62, 74], both authors coincides that classical

sampling theorem may come from papers by Cauchy, they also agree in the fact that

the strength of the evidence is debatable.
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The fundamental result of sampling theory states that if a signal fptq 1 contains no

frequencies higher than W {2 cycles per second, it is completely determined by giving

its ordinates at a sequence of points spaced 1{W seconds apart, say tk “ k{W, k P Z,
and can be reconstructed from these ordinates, via the formula

fptq “
ÿ
kPZ

f
´ k

W

¯ sinπpWt ´ kq
πpWt ´ kq , t P R . (1.2)

Here, as we have mention before, we can see how all the information of the function is

contained in the sample values that are taken, this time, at equidistantly spaced instants.

We also noticed that in this setting, the reconstruction functions tSkukPZ are given by

Skptq “ sinπpWt ´ kq
πpWt ´ kq “ sincpWt ´ kq,

where the cardinal sine function sinc is defined as

sinc v :“
#

sinπv
πv , v ‰ 0;

1, v “ 0.

The cardinal series (1.2) is the key of the sampling theory’s birth and that is why we

expose here how this series was obtained by many mathematicians working on different

branches of mathematics.

At the end of the nineteenth century Borel in [18] was dealing with the problem of

how the coefficients tanunPN of a function fpzq “ ř
anz

n determine its singularities.

One way to attack this problem is to construct an auxiliary function ψ determined (in

part) by the conditions ψpnq “ an, at that time Borel chose

ψpzq “ sinπz

π

ÿ
nPN

an
z ´ n

,

with
ř |an| ă 8 for convergence. This has the appearance of the cardinal series, but

with a closer look we will detect a few differences. A couple years earlier, Borel in

[17] had been studying the general Lagrange-type formula

fpzq “
ÿ
n

cnφpzq
φ1panqpz ´ anq ,

the amazing fact here is that Borel explicitly mentioned that under certain conditions,

if we know the functions at the integer points we know the entire function. A few years

later Hadamard [56] made a much more extensive study of the same problem, quoting

Borel’s work, but he also missed the precise cardinal series.

1A signal is nothing but a function fptq, both terms will be used throughout the manuscript.
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An interpolation scheme due to de la Vallée Poussin [112] is often cited as being

an early form of the sampling theorem, he considered the finite interpolation formula

sinmt

m

bÿ
a

p´1qn fpnπ{mq
t ´ nπ{m,

where f is defined on ra, bs, and the summation is understood to be over those n for

which nπ{m P ra, bq. The limit m Ñ 8 is now taken, and de la Valle Poussin’s main

result is that the formula converges to fptq at any point t in a neighborhood of which f
is continuous and of bounded variation. The work of de la Vallée Poussin was applied

and extended by many mathematicians: Steffensen [94], Theis [105], Ferrar [39], the

last one reported that Steffensen seems to have been the first to relate cardinal series to

other interpolation series, in this case Newton’s divided difference formula.

The cardinal series can be obtained formally by considering the Lagrange interpo-

lation formula in the form

Hmpzq
!fp0q

z
`

mÿ
n“1

” fpnq
H 1

mpnqpz ´ nq ` fp´nq
H 1

mp´nnqpz ` nq
ı)

,

where

Hmpzq “ z
mź

n“1

´
1 ´ z2

n2

¯
,

which interpolates fpzq at z “ ´m, . . . , 0, . . . ,m. Since

sinπz

πz
“ z

8ź
n“1

´
1 ´ z2

n2

¯
,

the cardinal series is obtained by letting m Ñ 8, we can find the details of this ap-

proach in the work of T. A. Brown [19], Ferrar [38] and also J. M. Whittaker [116]. On

the other hand, one can consider a special case of Cauchy’s partial fractions expansion

for a suitably restricted meromorphic function F with poles at the points pn, namely

F pzq “
ÿ
n

res
F pwq

pz ´ wq
ˇ̌̌̌
w“pn

;

one applies this to F pzq “ fpzq{ sinπz, where f is entire, and the cardinal series

results, this was developed by Ferrar (1925).

The sampling theorem involving the formula (1.2), which we will discuss in the

next section, is mainly attributed to E. T. Whittaker [115] and further develop by his

second son J. M. Whittaker, but actually, who was the first person to discovered this

seminal result is a question far from being clarified. Indeed, Ferrar claimed that another

mathematician, F. J. W. Whipple, had discovered it five years before E. T. Whittaker,

but did not publish his findings.
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It is also worth to mention the work of the Japanese mathematician K. Ogura [82].
In the paper [21], Butzer, et al. assert that the firts clear statement of the classical
sampling theorem was made by Ogura; they also pointed out that the hypotheses and
the formulation were both correct. The proof, which is simple and rigorous, Ogura just
quote that it can be easily obtained using calculus of residues, in [21] the authors also
ascertain this fact.

The Whittakers’ work was purely mathematical and we can deduce that neither one
of them had any application in mind. They did not mention the engineering words, sig-
nal or cycle or bounded frequencies, but used their mathematical counterparts. This is
one of the many examples we have as a motivation for doing mathematics, application
is not always necessary, we just make math and time will endorse the right value to our
work.

E. T. Whittaker’s result was later retaken and introduced in information theory and
communication engineering by C. E. Shannon in 1940, though it did not appear in the
literature until after World War II in 1949. In his two famous papers [92] and [93]
which granted him several awards, Shannon acknowledge the work of E. T. Whittaker.

In the late fifties, it became known in the western world that Shannon’s result had
been discovered earlier in 1933 by a russian engineer, V. Kotel’nikov [73], who applied
it in communication engineering earlier than Shannon, and it was known by his name
in the russian and eastern european literature.

Concerning the cardinal series everything here exposed is contained in the superb
article [59] and the amazing story surrounding Shannon’s theorem was taken from
[123]. For more anecdotes and details the reader can check references therein. From
now and on, we shall call the sampling theorem, Whittaker-Shannon-Kotel’nikov sam-
pling theorem (WSK theorem) as A. I. Zayed does in his great book [123], there, the
author present several facts which justified this sharing of the credit.

As a recent advances in Shannon theory we can cite Refs. [20, 22]. In [20] the
authors shows the equivalence of six well known results: WSK theorem, Poisson’s
summation formula, general Parseval formula, the reproducing kernel formula, the
Paley-Wiener theorem of Fourier analysis and the Valiron-Tschakaloff sampling for-
mula. Meanwhile, paper [22] is concerned with Shannon sampling reconstruction for-
mulae of derivatives of bandlimited signals as well as of derivatives of their Hilbert
transform, and their application to Boas-type formulae for higher order derivatives.

If we perform a search of the word “frame” in this manuscript we will obtain
over two hundred instances. This is because we have attacked the proposed prob-
lems with many of the tools which frame theory can provide. The theory of frames
for a Hilbert spaces plays a fundamental role in signal processing, image processing,
data compression, sampling theory and could be used even for abstract mathemati-
cal purposes. Among the classical books related to frame theory we can cite Refs.
[23, 25, 26, 49, 57, 58, 122].
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To locate the origins of frames we have to cite the landmark work by Duffin and

Schaeffer [33], where they dealt with some problems in nonharmonic Fourier series, a

branch of mathematics concerned with the completeness and expansion properties of

sets of complex exponentials teiλntu in Lpr´π, πs. The foundations of the theory of

nonharmonic Fourier series lie in the works by a couple of mathematicians very related

with this memoir, R. Paley and N. Wiener.

Duffin and Schaeffer in [33] defined as a frame, any infinite sequence of nonzero

vectors tφnunPN on the Hilbert space H such that for an arbitrary vector v P H,

A}v}2 ď
ÿ
nPN

|xv, φny|2 ď B}v}2 ,

where A and B are positive constants independent of v.

Inexplicably, frames were living inside the theory of nonharmonic Fourier series

for years. However, they were brought back to life in 1986 by Daubechies, Grossman

and Meyer with the work [30], at the beginning of the Wavelet era. In this great paper

the authors emphasize the power of the “overcomplete” property of frames, the loss

of the uniqueness of the coefficients in the expansions x “ ř
n cn xn is indeed a very

good thing.

As a final comment here we emphasize that in the whole manuscript the samples

are not taken from the signal itself but from some new functions obtained by the action

on the signal of some linear operators; concretely the samples will be of the form�
Lfptnq “ pf ˚ hqptnq(

nPZ

where h is a fixed function. Following engineering jargon we are taking our samples

from the filter L with impulse response h; the average function h reflects the character-

istics of the acquisition device of the samples. This concept of generalized sampling,

also known as average sampling was first introduced by A. Papoulis in [83].

1.2 By way of motivation: introducing our technique

The classical Whittaker-Shannon-Kotel’nikov sampling theorem (WSK theorem)

states that any function f band-limited to r´1{2, 1{2s, that is,

fptq “
ż 1{2

´1{2
pfpwqe2πitwdw , t P R

can be reconstructed from the sequence of samples tfpnqunPZ as

fptq “
8ÿ

n“´8
fpnq sin πpt ´ nq

πpt ´ nq , t P R .
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Thus, the Paley-Wiener space PW1{2 of band-limited functions to r´1{2, 1{2s (that is,

supp pf Ď r´1{2, 1{2s) is generated by the integer shifts of the cardinal sine function,

sincptq :“ sin πt{πt. A simple proof of this result is given by using the Fourier duality

technique which uses that the Fourier transform

F : PW1{2 ÝÑ L2r´1{2, 1{2s
f ÞÝÑ pf

is an unitary operator from PW1{2 onto L2r´1{2, 1{2s. Thus, the Fourier series of pf
in L2r´1{2, 1{2s is

pf “
8ÿ

n“´8
x pf, e´2πinwy e´2πinw “

8ÿ
n“´8

fpnq e´2πinw .

By applying the inverse Fourier transform F´1, we get

fptq “
8ÿ

n“´8
fpnqF´1

“
e´2πinwχr´π,πspwq‰ptq

“
8ÿ

n“´8
fpnq sin πpt ´ nq

πpt ´ nq in L2pRq .

The pointwise convergence comes from the fact that PW1{2 is a reproducing kernel

Hilbert space (written shortly as RKHS) where convergence in norm implies pointwise

convergence (which in this case is uniform on R); this comes out from the inequality:

|fptq| ď }f} for each t P R and f P PW1{2 .

For the RKHS’s theory and applications, see, for instance, Ref. [90].

The WSK theorem has its d-dimensional counterpart. Any function f band-limited

to the d-dimensional cube r´1{2, 1{2sd, i.e.,

fptq “
ż
r´1{2,1{2sd

pfpxqe2πixJtdx

for each t P R
d (here we are using the vector notation xJt :“ x1t1 ` ¨ ¨ ¨ ` xdtd

identifying elements in R
d with column vectors), may be reconstructed from the

sequence of samples tfpαquαPZd as

fptq “
ÿ

αPZd

fpαq sin πpt1 ´ α1q
πpt1 ´ α1q ¨ ¨ ¨ sin πptd ´ αdq

πptd ´ αdq , t “ pt1, . . . , tdq P R
d .

Although Shannon’s sampling theory has had an enormous impact, it has a number

of problems, as pointed out by Unser in Refs. [108, 109]: It relies on the use of
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ideal filters; the band-limited hypothesis is in contradiction with the idea of a finite

duration signal; the band-limiting operation generates Gibbs oscillations; and finally,

the sinc function has a very slow decay at infinity which makes computation in the

signal domain very inefficient. Besides, in several dimensions it is also inefficient

to assume that a multidimensional signal is band-limited to a d-dimensional interval.

Moreover, many applied problems impose different a priori constraints on the type of

signals. For this reason, sampling and reconstruction problems have been investigated

in spline spaces, wavelet spaces, and general shift-invariant spaces; signals are assumed

to belong to some shift-invariant space of the form:

V 2
ϕ :“ spanL2

�
ϕpt ´ αq : α P Z

d
(
,

where the function ϕ in L2pRdq is called the generator of V 2
ϕ . See, for instance, Refs.

[8, 6, 11, 13, 24, 109, 113, 118, 119, 124] and the references therein.

In this new context, the analogous of the WSK sampling theorem in a shift-invariant

space V 2
ϕ was first time proved by Walter in [113]:

1.3 Walter’s sampling theorem in shift-invariant spaces

Let ϕ P L2pRq be a stable generator for the shift-invariant space V 2
ϕ which means

that the sequence tϕp¨ ´ nqunPZ is a Riesz basis for V 2
ϕ . A Riesz basis in a separable

Hilbert space is the image of an orthonormal basis by means of a bounded invertible op-

erator. Any Riesz basis txnu8n“1 has a unique biorthogonal (dual) Riesz basis tynu8n“1,

i.e., xxn, ymyH “ δn,m, such that the expansions

x “
8ÿ

n“1

xx, ynyH xn “
8ÿ

n“1

xx, xnyH yn ,

hold for every x P H (see [25, 122] for more details and proofs). Recall that the

sequence tϕpt´nqunPZ is a Riesz sequence, i.e., a Riesz basis for V 2
ϕ (see, for instance,

[25, p. 143]) if and only if there exist two positive constants 0 ă A ď B such that

A ď
ÿ
kPZ

|pϕpw ` kq|2 ď B , a.e. w P r0, 1s .

Thus we have that

V 2
ϕ “

! ÿ
nPZ

an ϕp¨ ´ nq : tanu P �2pZq
)

Ă L2pRq .

We assume that the functions in the shift-invariant space V 2
ϕ are continuous on R.

Equivalently, that the generator ϕ is continuous on R and the function
ř

nPZ |ϕpt´nq|2
is uniformly bounded on R (see [98]). Thus, any f P V 2

ϕ is defined on R as the

pointwise sum fptq “ ř
nPZ anϕpt ´ nq for each t P R.
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On the other hand, the space V 2
ϕ is the image of L2r0, 1s by means of the

isomorphism

Tϕ : L2r0, 1s ÝÑ V 2
ϕ

te´2πinxunPZ ÞÝÑ tϕpt ´ nqunPZ ,
which maps the orthonormal basis te´2πinwunPZ for L2r0, 1s onto the Riesz basis

tϕpt ´ nqunPZ for V 2
ϕ . For any F P L2r0, 1s we have

TϕF ptq “
ÿ
nPZ

xF, e´2πinxyϕpt ´ nq

“ xF,
ÿ
nPZ

ϕpt ´ nqe´2πinxy

“ xF,KtyL2r0,1s , t P R ,

where, for each t P R, the function Kt P L2r0, 1s is given by

Ktpxq “
ÿ
nPZ

ϕpt ´ nqe´2πinx “
ÿ
nPZ

ϕpt ` nqe´2πinx “ Zϕpt, xq .

Here, Zϕpt, xq :“ ř
nPZ ϕpt ` nqe´2πinx denotes the Zak transform of the function

ϕ. See [25, 53, 65] for properties and uses of the Zak transform.

As a consequence, the samples tfpa ` mqumPZ of f P V 2
ϕ , where a P r0, 1q is

fixed, can be expressed as

fpa ` mq “ xF,Ka`my “ xF, e´2πimxKay , m P Z where F “ T ´1
ϕ f .

Then, the stable recovery of f P V 2
ϕ from its samples tfpa ` mqumPZ, reduces to the

study of the sequence
�
e´2πimxKapxq(

mPZ in L2r0, 1s. The following result is easy

to prove, having in mind that the multiplication operator

mF : L2r0, 1s ÝÑ L2r0, 1s
f ÞÝÑ Ff ,

is well-defined if and only if F P L8r0, 1s; in this case, it is bounded and

}mF } “ }F }8 (see, for instance, Ref. [121] for a proof).

Theorem 1.1. The sequence of functions
�
e´2πimxKapxq(

mPZ is a Riesz basis for
L2r0, 1s if and only if the inequalities 0 ă }Ka}0 ď }Ka}8 ă 8 hold, where
}Ka}0 :“ ess infxPr0,1s |Kapxq| and }Ka}8 :“ ess supxPr0,1s |Kapxq|. Moreover,
its biorthogonal Riesz basis is

�
e´2πimx{Kapxq(

mPZ.

Note that the above basis is an orthonormal one if and only if |Kapxq| “ 1 a.e. in

r0, 1s.
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Let a be a real number in r0, 1q such that 0 ă }Ka}0 ď }Ka}8 ă 8; next we

prove Walter’s sampling theorem for V 2
ϕ in [113]. Given f P V 2

ϕ , we expand the

function F “ T ´1
ϕ f P L2r0, 1s with respect to the Riesz basis

�
e´2πinx{Kapxq(

nPZ.

Thus we get

F “
ÿ
nPZ

xF,Ka`nye
´2πinx

Kapxq “
ÿ
nPZ

fpa ` nqe
´2πinx

Kapxq in L2r0, 1s .

Applying the operator Tϕ to the above expansion we obtain

f “
ÿ
nPZ

fpa ` nqTϕpe´2πinx{Kapxqq

“
ÿ
nPZ

fpa ` nqSap¨ ´ nq in L2pRq ,

where we have used the shifting property

Tϕpe´2πinxF qptq “ pTϕF qpt ´ nq, t P R, n P Z

for the function Sa :“ Tϕp1{Kaq P V 2
ϕ . As in the Paley-Wiener case, the shift-

invariant space V 2
ϕ is a reproducing kernel Hilbert space. Indeed, for each t P R, the

evaluation functional at t is bounded:

|fptq| ď }F }}Kt} ď }T ´1
ϕ }}Kt}}f}

“ }T ´1
ϕ }

´ ÿ
nPZ

|ϕpt ´ nq|2
¯1{2 }f} , f P V 2

ϕ .

Therefore, the L2-convergence implies pointwise convergence which here is uniform

on R. The convergence is also absolute due to the unconditional convergence of a Riesz

expansion. Thus, for each f P V 2
ϕ we get the sampling formula

fptq “
8ÿ

n“´8
fpa ` nqSapt ´ nq , t P R .

This mathematical technique, which mimics the Fourier duality technique for Paley-

Wiener spaces [60], has been successfully used in deriving sampling formulas in other

sampling settings [41, 43, 46, 47, 63, 69, 71]. Here, it will be used for obtaining

generalized sampling formulas in L2pRdq shift-invariant subspaces with multiple stable

generators and also in more general settings.





2
Generalized sampling in L2pRdq shift-invariant
subspaces with multiple stable generators

2.1 Statement of the general problem

Assume that our functions (signals) belong to some shift-invariant space of the

form:

V 2
Φ :“ spanL2pRdq

�
ϕkpt ´ αq : k “ 1, 2, . . . , r and α P Z

d
(
,

where the functions in Φ :“ tϕ1, . . . , ϕru in L2pRdq are called a set of generators for

V 2
Φ . Assuming that the sequence tϕkpt´αquαPZd; k“1,2...,r is a Riesz basis for V 2

Φ , the

shift-invariant space V 2
Φ can be described as

V 2
Φ “

! ÿ
αPZd

rÿ
k“1

dkpαq ϕkpt ´ αq : dk P �2pZdq, k “ 1, 2 . . . , r
)
. (2.1)

The general theory of shift-invariant spaces and their applications can be seen, for in-

stance, in Refs. [15, 16, 87]. These spaces and the scaling functions Φ “ tϕ1, . . . , ϕru
appear in the multiwavelet setting. Multiwavelets lead to multiresolution analyses and

fast algorithms just as scalar wavelets, but they have some advantages: they can have

short support coupled with high smoothness and high approximation order, and they

can be both symmetric and orthogonal (see, for instance, Ref. [70]). Classical sampling

in multiwavelet subspaces has been studied in Refs. [91, 99].
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On the other hand, in many common situations the available data are samples of

some filtered versions f ˚ hj of the signal f itself, where the average function hj
reflects the characteristics of the acquisition device. This leads to generalized sampling

(also called average sampling) in V 2
Φ (see, among others, Refs. [3, 10, 41, 46, 43, 68,

80, 83, 96, 97, 99]).

Suppose that s convolution systems (linear time-invariant systems or filters in

engineering jargon) Lj , j “ 1, 2, . . . , s, are defined on the shift-invariant subspace

V 2
Φ of L2pRdq. Assume also that the sequence of samples

tpLjfqpMαquαPZd; j“1,2,...,s

for f in V 2
Φ is available, where the samples are taken at the sub-lattice MZ

d of Zd,

where M denotes a matrix of integer entries with positive determinant. If we sample

any function f P V 2
Φ on MZ

d, we are using the sampling rate 1{rpdetMq and, roughly

speaking, we will need, for the recovery of f P V 2
Φ , the sequence of generalized sam-

ples tpLjfqpMαquαPZd; j“1,2,...,s coming from s ě rpdetMq convolution systems

Lj .

Assume that the sequences of generalized samples satisfy the following stability

condition: There exist two positive constants 0 ă A ď B such that

A}f}2 ď
sÿ

j“1

ÿ
αPZd

|LjfpMαq|2 ď B}f}2 for all f P V 2
Φ .

In [10] the set of systems tL1,L2, . . . ,Lsu is said to be an M -stable filtering sampler

for V 2
Φ . The goal here is to obtain sampling formulas in V 2

Φ having the form

fptq “ pdetMq
sÿ

j“1

ÿ
αPZd

pLjfqpMαqSjpt ´ Mαq , t P R
d , (2.2)

such that the sequence of reconstruction functions tSjp¨ ´ MαquαPZd; j“1,2,...,s is a

frame for the shift-invariant space V 2
Φ . This will be done in the light of the frame

theory for separable Hilbert spaces, by using a similar mathematical technique as in

the above chapter.

Recall that a sequence txnu is a frame for a separable Hilbert space H if there exist

two constants A,B ą 0 (frame bounds) such that

A}x}2 ď
ÿ
n

|xx, xny|2 ď B}x}2 for all x P H .

Given a frame txnu for H the representation property of any vector x P H as a se-

ries x “ ř
n cnxn is retained, but, unlike the case of Riesz bases, the uniqueness of

this representation (for overcomplete frames) is sacrificed. Suitable frame coefficients

tcnu, depending linearly and continuously on x, are obtained by using the dual frames

tynu of txnu, i.e., the sequence tynu is another frame for H such that, for each x P H,

the expansions x “ ř
nxx, ynyxn “ ř

nxx, xnyyn hold. For more details on the frame

theory see Appendix A which collects the main results of the superb monograph [25].
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2.2 Preliminaries on L2pRdq shift-invariant subspaces

Let Φ :“ tϕ1, ϕ2, . . . , ϕru be a set of functions, where ϕk P L2pRdq k “
1, 2, . . . , r , such that the sequence

�
ϕkpt ´ αq(

αPZd; k“1,2...,r
is a Riesz basis for the

shift-invariant space

V 2
Φ :“

! ÿ
αPZd

rÿ
k“1

dkpαq ϕkpt ´ αq : dk P �2pZdq, k “ 1, 2 . . . , r
)

Ă L2pRdq .

There exists a necessary and sufficient condition involving the Gramian matrix-function

GΦpwq :“
ÿ

αPZd

pΦpw ` αqpΦpw ` αqJ , where pΦ :“ ppϕ1, pϕ2, . . . , pϕrqJ ,

which assures that the sequence tϕkp¨ ´ αquαPZd; k“1,2...,r is a Riesz basis for V 2
Φ ;

namely (see, for instance, [10]): There exist two positive constants c and C such that

c Ir ď GΦpwq ď C Ir a.e. w P r0, 1qd . (2.3)

We assume throughout the paper that the functions in the shift-invariant space

V 2
Φ are continuous on R

d. As in the case of one generator, this is equivalent to the

generators Φ being continuous on R
d with

ř
αPZd |Φpt ´ αq|2 uniformly bounded

on R
d, the proof of this equivalence can be found in [98], and the generalization to

Lp-Banach spaces in [44]. Thus, any f P V 2
Φ is defined on R

d as the pointwise sum

fptq “
rÿ

k“1

ÿ
αPZd

dkpαq ϕkpt ´ αq , t P R
d . (2.4)

Besides, the space V 2
Φ is a RKHS since the evaluation functionals, Etf :“ fptq are

bounded on V 2
Φ for each t P R

d. Indeed, for each fixed t P R
d we have

|fptq|2 “
ˇ̌̌ ÿ
αPZd

rÿ
k“1

dkpαq ϕkpt ´ αq
ˇ̌̌2

ď
´ ÿ

αPZd

rÿ
k“1

|dkpαq|2
¯´ ÿ

αPZd

rÿ
k“1

|ϕkpt ´ αq|2
¯

“
´ ÿ

αPZd

rÿ
k“1

|dkpαq|2
¯´ ÿ

αPZd

|Φpt ´ αq|2
¯

ď }f}2
c

ÿ
αPZd

|Φpt ´ αq|2, f P V 2
Φ ,

where we have used Cauchy-Schwarz’s inequality in (2.4), and the inequality satisfied

for any lower Riesz bound c of the Riesz basis tϕkp¨ ´ αquαPZd; k“1,2...,r for V 2
Φ , that
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is,

c
ÿ

αPZd

rÿ
k“1

|dkpαq|2 ď }f}2 .

Thus, the convergence in V 2
Φ in the L2pRdq-sense implies pointwise convergence

which is uniform on R
d having in mind the boundedness of

ř
αPZd |Φpt ´ αq|2 in R

d.

The product space

L2
rr0, 1qd :“ �

F “ pF1, F2, . . . , FrqJ : Fk P L2r0, 1qd , k “ 1, 2, . . . , r
(

with its usual inner product

xF,HyL2
rr0,1qd :“

rÿ
k“1

xFk, HkyL2r0,1qd “
ż
r0,1qd

H˚pwqFpwqdw

becomes a Hilbert space. Similarly, we introduce the product Banach space L8r r0, 1qd
which will be used later.

The system
�
e´2πiαJwek

(
αPZd; k“1,2,...,r

, where ek denotes the vector of Rr with

all the components null except the k-th component which is equal to one, is an

orthonormal basis for L2
rr0, 1qd.

The shift-invariant space V 2
Φ is the image of L2

rr0, 1qd by means of the isomorphism

TΦ : L2
rr0, 1qd ÝÑ V 2

Φ

te´2πiαJwekuαPZd; k“1,2,...,r ÞÝÑ tϕkpt ´ αquαPZd; k“1,2,...,r ,

which maps the orthonormal basis
�
e´2πiαJwek

(
αPZd; k“1,2,...,r

for L2
rr0, 1qd onto

the Riesz basis tϕkpt ´ αquαPZd; k“1,2,...,r for V 2
Φ . For each F “ pF1, . . . , FrqJ P

L2
rr0, 1qd we have

TΦFptq :“
ÿ

αPZd

rÿ
k“1

@
Fk, e

´2πiαJ¨D
L2r0,1qdϕkpt ´ αq , t P R

d . (2.5)

It is routine to check that the isomorphism TΦ can also be expressed by

fptq “ TΦFptq “ xF,KtyL2
rr0,1qd , t P R

d ,

where the kernel transform R
d Q t ÞÑ Kt P L2

rr0, 1qd is defined as Ktpxq :“ ZΦpt, xq,

and ZΦ denotes the Zak transform of Φ, i.e.,

pZΦqpt, wq :“
ÿ

αPZd

Φpt ` αqe´2πiαJw .
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Note that pZΦq “ pZϕ1, . . . , ZϕrqJ where Z denotes the usual Zak transform. See

[25, 53, 65] for properties and uses of the Zak transform.

The following shifting property of TΦ will be used later: For F P L2
rr0, 1qd and

α P Z
d we have

TΦ
“
Fp¨qe´2πiαJ¨‰ptq “ TΦFpt ´ αq , t P R

d . (2.6)

Indeed, using (2.5)

TΦ
“
Fp¨qe´2πiαJ¨‰ptq “

ÿ
βPZd

rÿ
k“1

@
Fkp¨qe´2πiαJ¨, e´2πiβJ¨D

L2r0,1qdϕkpt ´ βq

“
ÿ
βPZd

rÿ
k“1

@
Fkp¨q, e´2πipβJ´αJq¨D

L2r0,1qdϕkpt ´ βq

“
ÿ
βPZd

rÿ
k“1

@
Fkp¨q, e´2πiβJ¨D

L2r0,1qdϕkpt ´ α ´ βq

“ TΦFpt ´ αq .

2.2.1 The convolution systems Lj on V 2
Φ

We consider s convolution systems Ljf “ f ˚ hj , j “ 1, 2, . . . , s, defined for

f P V 2
Φ where each impulse response hj belongs to one of the following three types:

(a) The impulse response hj is a linear combination of partial derivatives of shifted

delta functionals, i.e.,`
Ljf

˘ptq :“
ÿ

|β|ďNj

cj,βD
βfpt ` dj,βq , t P R

d .

If there is a system of this type, we also assume that
ř

αPZd |Dβϕpt ´ αq|2 is

uniformly bounded on R
d for |β| ď Nj .

(b) The impulse response hj of Lj belongs to L2pRdq. Thus, for any f P V 2
ϕ we have

`
Ljf

˘ptq :“ rf ˚ hjsptq “
ż
Rd

fpxqhjpt ´ xqdx, t P R
d.

(c) The function phj P L8pRdq whenever Hϕk
pxq :“ ř

αPZd |pϕkpx ` αq| P L2r0, 1qd
for all k “ 1, 2, . . . , r.

Lemma 2.1. Let L be a convolution system of the type pbq or pcq. Then for each fixed
t P R

d the sequence
�`
Lϕk

˘pt ` αq(
αPZd belongs to �2pZdq for each k “ 1, . . . , r.
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Proof. First assume that h P L2pRdq; then we haveÿ
αPZd

|Lϕkpt ` αq|2 “ ›› ÿ
αPZd

Lϕkpt ` αqe´2πiαJx
››2
L2r0,1qd

“ ››ZLϕkpt, xq››2
L2r0,1qd

“ ›› ÿ
αPZd

`yLϕk

˘px ` αqe2πipx`αqJt
››2
L2r0,1qd ,

where, in the last equality, we have used a version of the Poisson summation for-

mula [45, Lemma 2.1]. Notice that pϕk,ph P L2pRdq implies, by Cauchy-Schwarz’s

inequality, that pϕk
ph “ xLϕk P L1pRdq.

Now, ›› ÿ
αPZd

`yLϕk

˘px ` αqe2πipx`αqJt
››2
L2r0,1qd

“ ›› ÿ
αPZd

pϕkpx ` αqphpx ` αqe2πipx`αqJt
››2
L2r0,1qd

ď
›››´ ÿ

αPZd

|pϕkpx ` αq|2
¯1{2´ ÿ

αPZd

|phpx ` αq|2
¯1{2›››2

L2r0,1qd

ď C1{2}h}2L2r0,1qd ,

where we have used (2.3) and the fact that }h}2L2pRdq “ }řαPZd |phpx ` αq|2}L1r0,1qd .

Finally, assume that Hϕk
P L2r0, 1qd; since pϕk P L1pRdq X L2pRdq we obtain thatxLϕk “ pϕk

ph P L1pRdq X L2pRdq .
Since

ř
αPZd | yLϕkpx ` αq| ď }ph}L8pRdqHϕk

pxq, using again [45, Lemma 2.1] we getÿ
αPZd

|Lϕkpt ` αq|2 “ ›› ÿ
αPZd

`yLϕk

˘px ` αqe2πipx`αqJt
››2
L2r0,1qd

ď ›› ÿ
αPZd

| yLϕkpx ` αq|››2
L2r0,1qd

ď }ph}2L8pRdq}Hϕk
}2L2r0,1qd .

Notice that above result becomes trivial for systems of type (a).

Lemma 2.2. Let L be a convolution system of the type (a), (b) or (c). Then, for each
f P V 2

Φ we have `
Lf

˘ptq “ xF, `ZLΦ˘pt, ¨qyL2
rr0,1qd , t P R

d ,

where F “ T ´1
Φ f .
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Proof. Assume that L is a convolution system of type paq. Under our hypothesis on L,

for m “ 0, 1, 2 . . . , N we have that

f pmqptq “
ÿ

αPZd

rÿ
k“1

xFk, e
´2πiαJ¨yϕpmqk pt ´ αq .

Having in mind we have assumed that
ř

αPZd |Φpmqpt ´ αq|2 is uniformly bounded on

R
d, we obtain that

pLfqptq “
Nÿ

m“0

cmf pmqpt ` dmq

“
Nÿ

m“0

cm
ÿ

αPZd

rÿ
k“1

@
Fk, e

´2πiαJ¨Dϕpmqk pt ` dm ´ αq

“
rÿ

k“1

@
Fk,

Nÿ
m“0

cm
ÿ

αPZd

ϕ
pmq
k pt ` dm ´ αqe´2πiαJ¨D

L2r0,1qd

“
rÿ

k“1

@
Fk,

ÿ
αPZd

Lϕkpt ´ αqe´2πiαJ¨D
L2r0,1qd

“
rÿ

k“1

@
Fk, pZLϕkqpt, ¨qD

L2r0,1qd .

Assume now that L is a convolution system of the type pbq or pcq. For each t P R
d,

considering the function ψpxq :“ hp´xq, x P R
d, we have

pLfqptq “ @
f, ψp¨ ´ tqD

L2pRdq

“
A ÿ

αPZd

rÿ
k“1

@
Fk, e

´2πiαJ¨Dϕkp¨ ´ αq, ψp¨ ´ tq
E
L2pRdq

“
ÿ

αPZd

rÿ
k“1

@
Fk, e

´2πiαJ¨D
L2r0,1qd

A
ϕk, ψp¨ ´ t ` αq

E
L2pRdq

“
ÿ

αPZd

rÿ
k“1

@
Fk, e

´2πiαJ¨D
L2r0,1qdLϕkpt ´ αq .

Since the sequence tpLϕkqpt ` αquαPZd P �2pZdq, Parseval’s equality gives

pLfqptq “
rÿ

k“1

@
Fk,

ÿ
αPZd

Lϕkpt ´ αq e´2πiαJ¨D
L2r0,1qd

“ @
F, pZLΦqpt, ¨qD

L2
rp0,1q , t P R

d ,

which ends the proof.
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2.2.2 Sampling at a lattice of Zd: An expression for the samples

Given a nonsingular matrix M with integer entries, we consider the lattice in Z
d

generated by M , i.e.,

ΛM :“ tMα : α P Z
du Ă Z

d .

Without loss of generality we can assume that detM ą 0; otherwise we can consider

M 1 “ ME where E is some d ˆ d integer matrix satisfying detE “ ´1. Trivially,

ΛM “ Λ1M . We denote by MJ and M´J the transpose matrices of M and M´1 re-

spectively. The following useful generalized orthogonal relationship holds (see [111]):

ÿ
pPN pMJq

e´2πiαJM´T p “
#
detM, α P ΛM

0 α P Z
dzΛM

(2.7)

where

N pMJq :“ Z
d X tMJx : x P r0, 1qdu (2.8)

The set N pMJq has detM elements (see [111] or [117]). One of these elements is

zero, say i1 “ 0; we denote the rest of elements by i2, . . . , idetM ordered in any form;

from now on,

N pMJq “ ti1 “ 0, i2, . . . , idetMu Ă Z
d .

Notice that the sets, defined as Ql :“ M´Jil ` M´Jr0, 1qd, l “ 1, 2, . . . , detM ,

satisfy (see [117, p. 110]):

Ql X Ql1 “ H if l ‰ l1 and Vol

ˆ detMď
l“1

Ql

˙
“ 1 .

Thus, for any function F integrable in r0, 1qd and Z
d-periodic we haveż

r0,1qd
F pxqdx “

detMÿ
l“1

ż
Ql

F pxqdx

Now assume that we sample the filtered versions Ljf of f P V 2
Φ , j “ 1, 2, . . . , s,

at a lattice ΛM . Having in mind Lemma 2.2, for j “ 1, 2, . . . , s and α P Z
d we obtain

that `
Ljf

˘pMαq “ xF,ZLjΦpMα, ¨qy
“ xF,ZLjΦp0, ¨qe´2πiαJMJ¨yL2

rr0,1qd ,
(2.9)

where F “ T ´1
Φ f P L2

rr0, 1qd. Denote

gjpxq :“ ZLjΦp0, xq , j “ 1, 2, . . . , s ; (2.10)
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in other words,

gJj pxq :“ `
gj,1pxq, gj,2pxq, . . . , gj,rpxq˘ ,

where gj,kpxq “ ZLjϕkp0, xq for 1 ď j ď s and 1 ď k ď r.

As a consequence of expression (2.9) for generalized samples, a challenge problem

is to study the completeness, Bessel, frame, or Riesz basis properties of the sequence�
gjpxqe´2πiαJMJx

(
αPZd; j“1,2,...,s

in L2
rr0, 1qd.

To this end we introduce the s ˆ rpdetMq matrix of functions

Gpxq :“

»———–
gJ1 pxq gJ1 px ` M´Ji2q ¨ ¨ ¨ gJ1 px ` M´JidetM q
gJ2 pxq gJ2 px ` M´Ji2q ¨ ¨ ¨ gJ2 px ` M´JidetM q

...
...

. . .
...

gJs pxq gJs px ` M´Ji2q ¨ ¨ ¨ gJs px ` M´JidetM q

fiffiffiffifl , (2.11)

and its related constants

AG : “ ess inf
xPr0,1qd

λminrG˚pxqGpxqs,

BG : “ ess sup
xPr0,1qd

λmaxrG˚pxqGpxqs ,

where G
˚pxq denotes the transpose conjugate of the matrix Gpxq, and λmin

(respectively λmax) the smallest (respectively the largest) eigenvalue of the positive

semidefinite matrix G
˚pxqGpxq. Observe that 0 ď AG ď BG ď 8. Note that in

the definition of the matrix Gpxq we are considering the Z
d-periodic extension of the

involved functions gj , j “ 1, 2, . . . , s.

Regardless the functions gj in L2
rr0, 1qd, j “ 1, 2, . . . , s, are given by (2.10), the

following result holds:

Lemma 2.3. Let gj be in L2
rr0, 1qd for j “ 1, 2, . . . , s and let Gpxq be its associated

matrix as in (3.9). Then,

(a) The sequence
�
gjpxqe´2πiαJMJx

(
αPZd; j“1,2,...,s

is a complete system for L2
rr0, 1qd

if and only if the rank of the matrix Gpxq is rpdetMq a.e. in r0, 1qd.

(b) The sequence
�
gjpxqe´2πiαJMJx

(
αPZd; j“1,2,...,s

is a Bessel sequence for L2
rr0, 1qd

if and only if gj P L8r r0, 1qd (or equivalently BG ă 8). In this case, the optimal
Bessel bound is BG{pdetMq.

(c) The sequence
�
gjpxqe´2πiαJMJx

(
αPZd; j“1,2,...,s

is a frame for L2
rr0, 1qd if and

only if 0 ă AG ď BG ă 8 . In this case, the optimal frame bounds are
AG{pdetMq and BG{pdetMq.
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(d) The sequence
�
gjpxqe´2πiαJMJx

(
αPZd; j“1,2,...,s

is a Riesz basis for L2
rr0, 1qd if

and only if it is a frame and s “ rpdetMq.

Proof. For any F P L2
rr0, 1qd we have

xFpxq,gjpxqe´2πiαJMJxyL2
rr0,1qd “

ż
r0,1qd

rÿ
k“1

Fkpxqgj,kpxqe2πiαJMJx dx

“
rÿ

k“1

detMÿ
l“1

ż
Ql

Fkpxqgj,kpxqe2πiαJMJx dx

“
rÿ

k“1

ż
M´Jr0,1qd

detMÿ
l“1

Fkpx ` M´Jilqgj,kpx ` M´Jilq e2πiα
JMJx dx

“
ż
M´Jr0,1qd

rÿ
k“1

detMÿ
l“1

Fkpx ` M´Jilqgj,kpx ` M´Jilq e2πiα
JMJx dx

“
ż
M´Jr0,1qd

detMÿ
l“1

gJj px ` M´JilqFpx ` M´Jilq e2πiα
JMJx dx ,

(2.12)

where we have considered the Z
d-periodic extension of F. By using that the sequence

te2πiαJMJxuαPZd is an orthogonal basis for L2
`
M´Jr0, 1qd˘ we obtain

sÿ
j“1

ÿ
αPZd

ˇ̌̌
xFpxq,gjpxqe´2πiαJMJxyL2

rr0,1qd
ˇ̌̌2 “

1

detM

sÿ
j“1

››› detMÿ
l“1

gJj px ` M´JilqFpx ` M´Jilq
›››2
L2

rpM´Jr0,1qdq
.

Denoting

Fpxq :“ “
FJpxq,FJpx ` M´Ji2q, ¨ ¨ ¨ ,FJpx ` M´JidetM q‰J ,

the equality above reads

sÿ
j“1

ÿ
αPZd

ˇ̌̌
xFpxq,gjpxqe´2πiαJMJxyL2

rr0,1qd
ˇ̌̌2 “ 1

detM

››GpxqFpxq››2
L2

spM´Jr0,1qdq .

(2.13)

On the other hand, using that the function gj is Zd-periodic, we obtain that the set�
gjpx`M´Jil `M´Ji1q,gjpx`M´Jil `M´Ji2q, . . . ,gjpx`M´Jil `M´JidetM q(
has the same elements as�

gjpx ` M´Ji1q,gjpx ` M´Ji2q, . . . ,gjpx ` M´JidetM q( .
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Thus the matrix Gpx ` M´Jilq has the same columns of Gpxq, possibly in a differ-

ent order. Hence, rankGpxq “ rpdetMq a.e. in r0, 1qd if and only if rankGpxq “
rpdetMq a.e. in M´Jr0, 1qd. Moreover,

AG “ ess inf
xPM´Jr0,1qd

λminrG˚pxqGpxqs,

BG “ ess sup
xPM´Jr0,1qd

λmaxrG˚pxqGpxqs .
(2.14)

To prove (a), assume that there exists a set Ω Ď M´Jr0, 1qd with positive measure

such that rankGpxq ă rpdetMq for ech x P Ω. Then, there exists a measurable

function vpxq, x P Ω, such that Gpxqvpxq “ 0 and }vpxq}L2
rpdetMqpM´Jr0,1qdq “ 1 in

Ω. This function can be constructed as in [67, Lemma 2.4]. Define F P L2
rr0, 1qd such

that Fpxq “ vpxq if x P Ω, and Fpxq “ 0 if x P M´Jr0, 1qdzΩ. Hence, from (2.13)

we obtain that the system is not complete. Conversely, if the system is not complete,

by using (2.13) we obtain a Fpxq different from 0 in a set with positive measure such

that GpxqFpxq “ 0. Thus rankGpxq ă rpdetMq on a set with positive measure.

To prove (b) notice that

sÿ
j“1

ÿ
αPZd

ˇ̌̌
xFpxq,gjpxqe´2πiαJMJxyL2

rr0,1qd
ˇ̌̌2 “ 1

detM

››GpxqFpxq››2
L2

spM´Jr0,1qdq

“ 1

detM

ż
M´Jr0,1qd

F
˚pxqG˚pxqGpxqFpxqdx .

(2.15)

If BG ă 8 then, for each F, we have

1

detM

ż
M´Jr0,1qd

F
˚pxqG˚pxqGpxqFpxqdx ď BG

detM
}F}2L2

rpdetMqpM´Jr0,1qdq

“ BG

detM
}F}2L2

rr0,1qd ,
(2.16)

from which the sequence
�
gjpxqe´2πiαJMJx

(
αPZd; j“1,2,...,s

is a Bessel sequence and

its optimal Bessel bound is less than or equal to BG{pdetMq.

Let K ă BG; there exists a set ΩK Ă M´Jr0, 1qd with positive measure such that

λmaxxPΩK
rG˚pxqGpxqs ě K. Let F P L2

rr0, 1qd such that its associated vector func-

tion F is 0 if x P M´Jr0, 1qdzΩK and F is an eigenvector of norm 1 associated with

the largest eigenvalue of G˚pxqGpxq if x P ΩK . Using (2.15), we obtain

sÿ
j“1

ÿ
αPZd

ˇ̌̌
xFpxq,gjpxqe´2πiαJMJxyL2

rr0,1qd
ˇ̌̌2 ě K

detM
}F}2L2

rr0,1qd .
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Therefore if BG “ 8 the sequence
�
gjpxqe´2πiαJMJx

(
αPZd; j“1,2,...,s

is not a Bessel

sequence, and the optimal Bessel bound is BG{pdetMq.

To prove (c) assume first that 0 ă AG ď BG ă 8. By using part (b), the sequence�
gjpxqe´2πiαJMJx

(
αPZd; j“1,2,...,s

is a Bessel sequence in L2
rr0, 1qd.

Moreover, using (2.15) and the Rayleigh-Ritz theorem (see [64, p. 176]), for each

F P L2
rr0, 1qd we obtain

sÿ
j“1

ÿ
αPZd

ˇ̌̌
xFpxq,gjpxqe´2πiαJMJxyL2

rr0,1qd
ˇ̌̌2 ě AG

detM
}F}2L2

rpdetMqpM´Jr0,1qdq

“ AG

detM
}F}2L2

rr0,1qd
(2.17)

Hence the sequence
�
gjpxqe´2πiαJMJx

(
αPZd; j“1,2,...,s

is a frame with optimal lower

bound larger that or equal to AG{pdetMq.

Conversely if
�
gjpxqe´2πiαJMJx

(
αPZd; j“1,2,...,s

is a frame for L2
rr0, 1qd we know

by part (b) that BG ă 8. In order to prove that AG ą 0, consider any constant

K ą AG. Then there exists a set ΩK Ă M´Jr0, 1qd with positive measure such

that λminxPΩK
rG˚pxqGpxqs ď K. Let F P L2

rr0, 1qd such that its associated Fpxq
is 0 if x P M´Jr0, 1qdzΩK and Fpxq is an eigenvector of norm 1 associated with

the smallest eigenvalue of G˚pxqGpxq if x P ΩK . Since F is bounded, we have that

GpxqFpxq P L2
spM´Jr0, 1qdq. From (2.15) we get

sÿ
j“1

ÿ
αPZd

ˇ̌̌
xFpxq,gjpxqe´2πiαJMJxyL2

rr0,1qd
ˇ̌̌2 ď K

detM
}F}2L2

rpdetMqpM´Jr0,1qdq

“ K

detM
}F}2L2

rr0,1qd .
(2.18)

Denoting by A the optimal lower frame bound of
�
gjpxqe´2πiαJMJx

(
αPZd; j“1,2,...,s

,

we have obtained that K{pdetMq ě A for each K ą AG; thus AG{pdetMq ě A
and consequently, AG ą 0. Moreover, under the hypotheses of part (c) we deduce that

AG{pdetMq and BG{pdetMq are the optimal frame bounds.

The proof of (d) is based on Theorem A.7: A frame is a Riesz basis if and only if it

has a biorthogonal sequence. Assume that the sequence�
gjpxqe´2πiαJMJx

(
αPZd; j“1,2,...,s

is a Riesz basis for L2
rr0, 1qd being the sequence thj,αuαPZd, j“1,2,...,s its biorthogonal

sequence. Using (2.12) we getż
M´Jr0,1qd

detMÿ
l“1

gJj px ` M´Jilqhj1,0px ` M´Jilq e2πiα
JMJx dx
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“ xhj1,0p¨q,gjpxqe´2πiαJMJ¨y “ δj,j1δα,0 .

Therefore,

detMÿ
l“1

gJj px ` M´Jilqhj1,0px ` M´Jilq e2πiα
JMJx “ pdetMqδj,j1 ,

a.e. in M´Jr0, 1qd.Thus the matrix Gpxq has a right inverse a.e. in M´Jr0, 1qd and, in

particular, s ď rpdetMq. On the other hand, AG ą 0 implies that

detrG˚pxqGpxqs ą 0, a.e. in M´Jr0, 1qd, and there exists the matrix

rG˚pxqGpxqs´1
G
˚pxq a.e. in M´Jr0, 1qd.

This matrix is a left inverse of the matrix Gpxq which implies s ě rpdetMq. Thus, we

obtain that rpdetMq “ s.

Conversely, assume that
�
gjpxqe´2πiαJMJx

(
αPZd; j“1,2,...,s

is a frame for L2
rr0, 1qd

and rpdetMq “ s. In this case Gpxq is a square matrix and

detrGpxq˚pxqGpxqpxqs ą 0 a.e. in M´Jr0, 1qd implies that detGpxq ‰ 0 a.e. in

M´Jr0, 1qd. Having in mind the structure of Gpxq its inverse must be the rpdetMqˆs
matrix

G
´1pxq “

»———–
c1pxq . . . cspxq

c1px ` M´Ji2q . . . cspx ` M´Ji2q
...

. . .
...

c1px ` M´JidetM q . . . cspx ` M´JidetM q

fiffiffiffifl ,

where, for each j “ 1, 2, . . . , s, the function cj P L2
rr0, 1qd.

It is easy to verify that the sequence
�pdetMqcjpxqe´2πiαJMJx

(
αPZd; j“1,2,...,s

is

a biorthogonal sequence of
�
gjpxqe´2πiαJMJx

(
αPZd; j“1,2,...,s

and therefore, it is a

Riesz basis for L2
rr0, 1qd.

2.3 Generalized regular sampling in V 2
Φ

In this section we prove that expression (2.9) allows us to obtain F “ T ´1
Φ f from

the generalized samples tLjfpMαquαPZd; j“1,2,...,s; as a consequence, applying the

isomorphism TΦ we recover the function f in V 2
Φ .

Assume that the functions gj given in (2.10) belong to P L8r r0, 1qd for j “
1, 2, . . . , s; thus, gJj pxqFpxq P L2r0, 1qd. Having in mind (2.7) and the expression
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(2.9) for the generalized samples, we have that

pdetMq
ÿ

αPZd

`
Ljf

˘pMαqe´2πiαJMJx

“
ÿ

αPZd

`
Ljf

˘pαqe´2πiαJx
ÿ

pPN pMJq
e´2πiαJM´Jp

“
ÿ

pPN pMJq

ÿ
αPZd

`
Ljf

˘pαqe´2πiαJpx`M´Jpq

“
ÿ

pPN pMJq

ÿ
αPZd

xF,gjp¨qe´2πiαJMJ¨yL2
rr0,1qd e

´2πiαJpx`M´Jpq

“
ÿ

pPN pMJq

ÿ
αPZd

´ ż
r0,1qd

rÿ
k“1

Fkpyqgj,kpyqe´2πiαJMJydy
¯
e´2πiαJpx`M´Jpq

“
ÿ

pPN pMJq

rÿ
k“1

Fkpx ` M´Jpqgj,kpx ` M´Jpq

“
ÿ

pPN pMJq
gJj px ` M´Jpq Fpx ` M´Jpq .

Defining

Fpxq :“ “
FJpxq,FJpx ` M´Ji2q, . . . ,FJpx ` M´JidetM q‰J ,

the above equality allows us to writte, in matrix form, that GpxqFpxq equals to

pdetMq
” ÿ
αPZd

`
L1f

˘pMαqe´2πiαJMJx, . . . ,
ÿ

αPZd

`
Lsf

˘pMαqe´2πiαJMJx
ıJ

.

In order to recover the function F “ T ´1
Φ f , assume the existence of an r ˆ s matrix

apxq :“ ra1pxq, . . . ,aspxqs, with entries in L8r0, 1qd, such that“
a1pxq, . . . ,aspxq‰ Gpxq “ rIr,OpdetM´1qrˆrs a.e. in r0, 1qd .

If we left multiply GpxqFpxq by apxq, we get

Fpxq “ pdetMq
sÿ

j“1

ÿ
αPZd

`
Ljf

˘pMαqajpxqe´2πiαJMJx in L2
rr0, 1qd . (2.19)

Finally, the isomorphism TΦ gives

fptq “ pdetMq
sÿ

j“1

ÿ
αPZd

`
Ljf

˘pMαqpTΦajqpt ´ Mαq , t P R
d ,

where we have used the shifting property (2.6) and that the space V 2
Φ is a RKHS. Much

more can be said about the above sampling result. In fact, the following theorem holds:
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Theorem 2.1. Assume that the functions gj given in (2.10) belong to L8r r0, 1qd for
each j “ 1, 2, . . . , s. Let Gpxq be the associated matrix defined in r0, 1qd as in (2.11),
and its related constant AG. The following statements are equivalents:

(a) AG ą 0.

(b) There exists an r ˆ s matrix apxq :“ “
a1pxq, . . . ,aspxq‰ with columns

aj P L8r r0, 1qd, and satisfying“
a1pxq, . . . ,aspxqsGpxq “ rIr,OpdetM´1qrˆrs a.e. in r0, 1qd . (2.20)

(c) There exists a frame for V 2
Φ having the form tSj,ap¨ ´ MαquαPZd; j“1,2,...,s such

that for any f P V 2
Φ

f “ pdetMq
sÿ

j“1

ÿ
αPZd

pLjfqpMαqSj,ap¨ ´ Mαq in L2pRdq . (2.21)

(d) There exists a frame tSj,αp¨quαPZd; j“1,2,...,s for V 2
Φ such that for any f P V 2

Φ

f “ pdetMq
sÿ

j“1

ÿ
αPZd

pLjfqpMαqSj,α in L2pRdq . (2.22)

Proof. First we prove that (a) implies (b). As the determinant of the positive

semidefinite matrix G
˚pxqGpxq is equal to the product of its eigenvalues, condition

(a) implies that ess infxPRd detrG˚pxqGpxqs ą 0. Hence, the Moore-Penrose pseudo

inverse matrix is given by G
:pxq :“ rG˚pxqGpxqs´1

G
˚pxq, a.e. in r0, 1qd, and it

satisfies G
:pxqGpxq “ IrpdetMq. The first r rows of G

:pxq form an r ˆ s matrix

ra1pxq, . . . ,aspxqs which satisfies (2.20). Moreover, the functions ajpxq, j “ 1, . . . , s,

are essentially bounded since the condition ess infxPr0,1qd detrG˚pxqGpxqs ą 0 holds.

Next, we prove that (b) implies (c). For j “ 1, 2, . . . , s, let ajpxq be a function

in L8r r0, 1qd, and satisfying ra1pxq, . . . ,aspxqsGpxq “ rIr,OpdetM´1qrˆrs. In (2.19)

we have proved that, for each F “ T ´1
Φ pfq P L2

rr0, 1qd, we have the expansion

Fpxq “ pdetMq
sÿ

j“1

ÿ
αPZd

`
Ljf

˘pMαqajpxqe´2πiαJMJx in L2
rr0, 1qd ,

from which

f “ pdetMq
sÿ

j“1

ÿ
αPZd

`
Ljf

˘pMαqSj,ap¨ ´ Mαq in L2pRdq ,

where Sj,a :“ TΦaj for j “ 1, 2, . . . , s . Since we have assumed that gj P L8r r0, 1qd
for each j “ 1, 2, . . . , s , the sequence

�
gjpxqe´2πiαJMJx

(
αPZd; j“1,2,...,s

is a Bessel
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sequence in L2
rr0, 1qd by using part (b) in Lemma 2.3. The same argument proves that

the sequence
�pdetMqajpxqe´2πiαJMJx

(
αPZd; j“1,2,...,s

is also a Bessel sequence in

L2
rr0, 1qd. These two Bessel sequences satisfy for each F P L2

rr0, 1qd

Fpxq “ pdetMq
sÿ

j“1

ÿ
αPZd

xF,gje
´2πiαJMJ¨yajpxqe´2πiαJMJx in L2

rr0, 1qd .

Hence, they are a pair of dual frames for L2
rr0, 1qd (see Proposition A.4). Since TΦ is

an isomorphism, the sequence
�
Sj,apt´Mαq(

αPZd; j“1,2,...,s
is a frame for V 2

Φ ; hence

(b) implies (c). Statement (c) implies (d) trivially.

Assume condition (d), applying the isomorphism T ´1
Φ to the expansion (2.22) we

get

Fpxq “ pdetMq
sÿ

j“1

ÿ
αPZd

xF,gje
´2πiαJMJ¨yT ´1

Φ pSj,αqpxq in L2
rr0, 1qd , (2.23)

where
�
T ´1
Φ Sj,α

(
αPZd; j“1,2,...,s

is a frame for L2
rr0, 1qd. By using Lemma 2.3, the

sequence
�
gjpxqe´2πiαJMJx

(
αPZd; j“1,2,...,s

is a Bessel sequence; expansion (2.23)

implies that is also a frame (see A.4). Hence, by using again Lemma 2.3, condition (a)

holds.

In the case that the functions gj , j “ 1, 2, . . . , s, are continuous on R
d (for in-

stance, if the sequences of generalized samples
�
Ljϕkpαq(

αPZd belongs to �1pZdq for

1 ď j ď s and 1 ď k ď r), the following corollary holds:

Corollary 2.1. Assume that the functions gj , j “ 1, 2, . . . , s, in (2.10) are continuous
on R

d. Then, the following assertions are equivalents:

(a) rank Gpxq “ rpdetMq for all x P R
d.

(b) There exists a frame tSj,ap¨ ´ rnqunPZ; j“1,2,...,s for V 2
Φ satisfying the sampling

formula (2.21).

Proof. Whenever the functions gj , j “ 1, 2, . . . , s, are continuous on R
d, condition

AG ą 0 is equivalent to that det
“
G
˚pxqGpxq‰ ‰ 0 for all x P R

d. Indeed, if

detG˚pxqGpxq ą 0 then the r first rows of the matrix

G
:pxq :“ rG˚pxqGpxqs´1

G
˚pxq,

give an r ˆ s matrix apxq “ ra1pxq,a2pxq, . . . ,aspxqs satisfying statement (b) in

Theorem 2.1, and therefore AG ą 0.

The reciprocal follows from the fact that det
“
G
˚pxqGpxq‰ ě A

rpdetMq
G

for all

x P R
d. Since det

“
G
˚pxqGpxq‰ ‰ 0 is equivalent to rank Gpxq “ rpdetMq for all

x P R
d, the result is a consequence of Theorem 2.1.
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The reconstruction functions Sj,a, j “ 1, 2, . . . , s , are determined from the Fourier

coefficients of the components of

ajpxq :“ ra1,jpxq, a2,jpxq, . . . , ar,jsJ , j “ 1, 2, . . . , s .

More specifically, if pak,jpαq :“ ş
r0,1qd ak,jpxqe2πiαJxdx we get (see (2.5))

Sj,aptq “
ÿ

αPZd

rÿ
k“1

pak,jpαqϕkpt ´ αq , t P R
d . (2.24)

The Fourier transform in (2.24) gives pSj,apxq “ řr
k“1 ak,jpxqpϕkpxq.

Assume that the r ˆ s matrix apxq “ “
a1pxq,a2pxq, . . . ,aspxq‰ satisfies (2.20).

We consider the periodic extension of ak,j , i.e., ak,jpx ` αq “ ak,jpxq, α P Z
d. For

all x P r0, 1qd, the rpdetMq ˆ s matrix

A
Jpxq :“

»——–
a1pxq a2pxq ¨ ¨ ¨ aspxq

a1px ` M´Ji2q a2px ` M´Ji2q ¨ ¨ ¨ aspx ` M´Ji2q
...

...
. . .

...
a1px ` M´JidetM q a2px ` M´JidetM q ¨ ¨ ¨ aspx ` M´JidetM q

fiffiffifl
is a left inverse matrix of Gpxq, i.e., AJpxqGpxq “ IrpdetMq.

Provided that condition (2.20) is satisfied, it can be easily checked that all matrices

apxq with entries in L8r0, 1qd, and satisfying (2.20) correspond to the first r rows of

the matrices of the form

A
Jpxq “ G

:pxq ` Upxq“Is ´ GpxqG:pxq‰ , (2.25)

where Upxq is any rpdetMq ˆ s matrix with entries in L8r0, 1qd, and G
: denotes the

Moore-Penrose pseudo inverse G
:pxq :“ rG˚pxqGpxqs´1

G
˚pxq.

Notice that if s “ rpdetMq there exists a unique matrix apxq, given by the first

r rows of G´1pxq; if s ą rpdetMq there are infinitely many solutions according to

(2.25).

Moreover, the sequence
�pdetMqa:jp¨qe´2πiαJMJ¨(

αPZd; j“1,2,...,s
, associated with

the r ˆ s matrix ra:1pxq,a:2pxq, . . . ,a:spxqs obtained from the r first rows of G:pxq,

gives precisely the canonical dual frame of the frame�
gjp¨qe´2πiαJMJ¨(

αPZd; j“1,2,...,s
.

Indeed, the frame operator S associated to
�
gjp¨qe´2πiαJMJ¨(

αPZd; j“1,2,...,s
is given

by

SFpxq “ 1

detM

“
g1pxq,g2pxq, . . . ,gspxq‰GpxqFpxq , F P L2

rr0, 1qd ,
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from which one gets

S
“pdetMqa:jp¨qe´2πiαJMJ¨‰pxq “ gjpxqe´2πiαJMJx , j “ 1, 2, . . . , s and α P Z

d .

Something more can be said in the case where s “ rpdetMq:

Theorem 2.2. Assume that the functions gj , j “ 1, 2, . . . , s , given in (2.10) belong to
L8r r0, 1qd and s “ rpdetMq. The following statements are equivalent:

(a) AG ą 0

(b) There exists a Riesz basis tSj,αuαPZd; j“1,2,...,s for V 2
Φ such that for any f P V 2

Φ ,
the expansion

f “ pdetMq
ÿ

αPZd

sÿ
j“1

pLjf
˘pMαq Sj,α , (2.26)

holds in L2pRdq .

In case the equivalent conditions are satisfied, necessarily Sj,αptq “ Sj,apt´Mαq, t P
R

d, where Sj,a “ TΦpajq, j “ 1, 2, . . . , s , and the r ˆ s matrix a :“ ra1,a2, . . . ,ass
is formed with the r first rows of the inverse matrix G

´1. The sampling functions Sj,a,
j “ 1, 2, . . . , s , satisfy the interpolation property pLj1Sj,aqpMαq “ δj,j1δα,0, where
j, j1 “ 1, 2, . . . , s and α P Z

d.

Proof. Assume that AG ą 0; since Gpxq is a square matrix, this implies that

ess infxPRd |detGpxq| ą 0. Therefore, the r first rows of G
´1pxq gives a solution

of the equation

ra1pxq, . . . ,aspxqsGpxq “ rIr,OpdetM´1qrˆrs
with aj P L8r r0, 1qd for j “ 1, 2, . . . , s.

According to Theorem 2.1, the sequence

tSj,αuαPZd; j“1,2,...,s :“ tSj,apt ´ MαquαPZd; j“1,2,...,s ,

where Sj,a “ TΦpajq, satisfies the sampling formula (2.26). Moreover, the sequence�pdetMqajpxqe´2πiαJMJx
(
αPZd; j“1,2,...,s

“ �
T ´1
Φ Sj,ap¨ ´ Mαq(

αPZd; j“1,2,...,s

is a frame for L2
rr0, 1qd. Since rpdetMq “ s, according to Lemma 2.3 it is a Riesz

basis for L2
rr0, 1qd. Hence, the sequence tSj,apt´MαquαPZd; j“1,2,...,s is a Riesz basis

for V 2
Φ and condition (b) is proved.

Conversely, assume now that tSj,αuαPZd; j“1,2,...,s is a Riesz basis for V 2
Φ satisfy-

ing (2.26). From the uniqueness of the coefficients in a Riesz basis, we get that the
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interpolatory condition pLj1Sj,αqpMα1q “ δj,j1δα,α1 holds for j, j1 “ 1, 2, . . . , s and

α, α1 P Z
d. Since T ´1

Φ is an isomorphism, tT ´1
Φ Sj,αuαPZd; j“1,2,...,s is a Riesz ba-

sis for L2
rr0, 1qd. Expanding the function gj1 pxqe´2πiα1JMJx with respect to the dual

basis of tT ´1
Φ Sj,αuαPZd; j“1,2,...,s, denoted by tGj,αuαPZd; j“1,2,...,s, we obtain

gj1 pxqe´2πiα1JMJx “
ÿ

αPZd

sÿ
j“1

xgj1 p¨qe´2πiα1JMJ¨, T ´1
Φ Sj,αyL2r0,1qdGj,αpxq

“
ÿ

αPZd

Lj1Sj,αpMα1qGj,αpxq “ Gj1,α1 pxq .

Therefore, the sequence tgjpxqe´2πiαJMJxuαPZd; j“1,2,...,s is the dual basis of the

Riesz basis tT ´1
Φ Sj,αuαPZd; j“1,2,...,s . In particular it is a Riesz basis for L2

rr0, 1qd,

which implies, according to Lemma 2.3, that AG ą 0; this proves (a). Moreover, the

sequence tT ´1
Φ Sj,αuαPZd; j“1,2,...,s is necessarily the unique dual basis of the Riesz

basis tgjpxqe´2πiαJMJxuαPZd; j“1,2,...,s. Therefore, this proves the uniqueness of the

Riesz basis tSj,αuαPZd; j“1,2,...,s for V 2
Φ satisfying (2.26).

2.3.1 Reconstruction functions with prescribed properties

A generalized sampling formula in the shift-invariant space V 2
Φ as

fptq “ pdetMq
sÿ

j“1

ÿ
αPZd

pLjfqpMαqSj,apt ´ Mαq , t P R
d , (2.27)

can be read as a filter bank. Indeed, introducing the expression for the sampling

functions

Sj,aptq “
ÿ
βPZd

rÿ
k“1

pak,jpβqϕkpt ´ βq , t P R
d,

the change γ :“ β ` Mα in the summation’s index gives

fptq “ pdetMq
rÿ

k“1

ÿ
γPZd

" sÿ
j“1

ÿ
αPZd

pLjfqpMαqpak,jpγ ´Mαq
*
ϕkpt´γq , t P R

d .

Thus, the relevant data for the recovery of the signal f P V 2
Φ ,

dkpγq :“
sÿ

j“1

ÿ
αPZd

pLjfqpMαqpak,jpγ ´ Mαq , γ P Z
d , 1 ď k ď r ,

is obtained by means of r filter banks whose impulse responses involve the Fourier

coefficients of the entries of the r ˆ s matrix a :“ “
a1,a2, . . . ,as

‰
in (2.20), and the

input is given by the sampling data.
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Notice that reconstruction functions Sj,a with compact support in the above

sampling formula implies low computational complexities and avoids truncation

errors. This occurs whenever the generators ϕk have compact support and the sum in

(2.24) is finite. These sums are finite if and only if the entries of the r ˆ s
matrix a are trigonometric polynomials. In this case, all the filter banks involved in

the reconstruction process are FIR (finite impulse response) filters.

Before to give a necessary and sufficient condition assuring compactly supported

reconstruction functions Sj,a in formula (2.27), we introduce first some complex

notation, more convenient for this study. We denote zα :“ zα1
1 zα2

2 . . . zαd

d for

z “ pz1, . . . , zdq P C
d, α “ pα1, . . . , αdq P Z

d, and the d-torus by

T
d :“ tz P C

d : |z1| “ |z2| “ . . . “ |zd| “ 1u .
For 1 ď j ď s and 1 ď k ď r we define

gj,kpzq :“
ÿ
μPZd

Ljϕkpμqz´μ, gJj pzq :“ `
gj,1pzq, gj,2pzq, . . . , gj,rpzq˘ ,

and the s ˆ rpdetMq matrix

Gpzq :“
”
gJj pz1e2πimJ

1 il , . . . , zde
2πimJ

d ilq
ı

j“1,2,...,s
k“1,2,...,r; l“1,2,...,detM

(2.28)

where m1, . . . ,md denote the columns of the matrix M´1. Recall that i1, i2, . . . , idetM
in Z

d are the elements of N pMJq defined in (2.8). Note also that for the values

x “ px1, . . . , xdq P r0, 1qd and z “ pe2πix1 , . . . , e2πixdq P T
d we have Gpxq “ Gpzq.

Provided that the functions gj are continuous on R
d, Corollary 2.1 can be reformu-

lated as follows: There exists an r ˆ s matrix apzq “ “
a1pzq, . . . , aspzq‰ with entries

essentially bounded in the torus Td and satisfying

apzqGpzq “ rIr,OpdetM´1qrˆrs for all z P T
d (2.29)

if and only if

rank Gpzq “ rpdetMq for all z P T
d . (2.30)

Denoting the columns of the matrix apzq as aJj pzq “ `
a1,jpzq, . . . , ar,jpzq˘,

j “ 1, 2, . . . , s , the corresponding reconstruction functions Sj,a in sampling formula

(2.27) are

Sj,aptq “
ÿ

αPZd

rÿ
k“1

pak,jpαqϕpt ´ αq , t P R
d , (2.31)

where pak,jpαq, α P Z
d, are the Laurent coefficients of the functions ak,jpzq, that is,

ak,jpzq “
ÿ

αPZd

pak,jpαqz´α . (2.32)
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Note that, in order to obtain compactly supported reconstruction functions Sj,a in

(2.27), we need an r ˆ s matrix apzq whose entries are Laurent polynomials, i.e., the

sum in (2.32) is finite. The following result, which proof can be found in [46] under

minor changes, holds:

Theorem 2.3. Assume that the generators ϕk and the functions Ljϕk, 1 ď k ď r
and 1 ď j ď s, have compact support. Then, there exists an r ˆ s matrix apzq whose
entries are Laurent polynomials and satisfying (2.29) if and only if

rank Gpzq “ rpdetMq for all z P pCzt0uqd .
The reconstruction functions Sj,a, j “ 1, 2, . . . , s, obtained from such matrix apzq
through Eq. (2.31) have compact support.

From one of these r ˆ s matrices, say rapzq “ rra1pzq, . . . ,raspzqs, we can get all

of them. Indeed, it is easy to check that they are given by the r first rows of the

rpdetMq ˆ s matrices of the form

Apzq “ rApzq ` Upzq“Is ´ GpzqrApzq‰ , (2.33)

where rApzq :“
”rajpz1e2πimJ

1 il , . . . , zde
2πimJ

d ilq
ı
k“1,2,...,r; l“1,2,...,detM

j“1,2,...,s

,

and Upzq is any rpdetMq ˆ s matrix with Laurent polynomial entries. Remember that

m1, . . . ,md denote the columns of the matrix M´1, and i1, . . . , idetM the elements of

N pMJq defined in (2.8).

Next we study the existence of reconstruction functions Sj,a, j “ 1, 2, . . . , s ,

in (2.27) having exponential decay; it means that there exist constants C ą 0 and

q P p0, 1q such that |Sj,aptq| ď Cq|t| for each t P R
d. In so doing, we introduce the

algebra HpTdq of all holomorphic functions in a neighborhood of the d-torus Td. Note

that the elements in HpTdq are characterized as admitting a Laurent series where the

sequence of coefficients decays exponentially fast [66].

The following theorem, which proof can be found in [46] under minor changes,

holds:

Theorem 2.4. Assume that the generators ϕk and the functions Ljϕk, j “ 1, 2, . . . , s
and k “ 1, 2, . . . , r, have exponential decay. Then, there exists an r ˆ s matrix apzq “
ra1pzq, . . . , aspzqs with entries in HpTdq and satisfying (2.29) if and only if

rank Gpzq “ rpdetMq for all z P T
d .

In this case, all of such matrices apzq are given as the first r rows of a rpdetMqˆs
matrix Apzq of the form

Apzq “ G:pzq ` Upzq“Is ´ GpzqG:pzq‰ , (2.34)
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where Upzq denotes any rpdetMq ˆ s matrix with entries in the algebra HpTdq and
G:pzq :“ “

G˚pzqGpzq‰´1
G˚pzq. The corresponding reconstruction functions Sj,a,

j “ 1, 2, . . . , s, given by (2.31) have exponential decay.

2.3.2 Some illustrative examples

We include here some examples illustrating Theorem 2.3, a particular case of

Theorem 2.1, by taking B-splines as generators; they certainly are important for

practical purposes [108].

The case d “ 1, r “ 1, M “ 2 and s “ 3

Let N3ptq :“ χr0,1q ˚ χr0,1q ˚ χr0,1qptq be the quadratic B-spline, where χr0,1q
denotes the characteristic function of the interval r0, 1q, and let Lj , j “ 1, 2, 3 , be the

systems:

L1fptq “ fptq; L2fptq “ fpt ` 2

3
q and L3fptq “ fpt ` 4

3
q .

Since the functions LjN3, j “ 1, 2, 3 , have compact support, then the entries of

the 3 ˆ 2 matrix Gpzq in (2.28) are Laurent polynomials and we can try to search a

vector apzq :“ ra1pzq,a2pzq,a3pzqs satisfying (2.29) with Laurent polynomials

entries also. This implies reconstruction functions Sj,a, j “ 1, 2, 3 , with compact

support. Proceeding as in [41] we obtain that any function f P V 2
N3

can be recovered

through the sampling formula:

fptq “
ÿ
nPZ

3ÿ
j“1

Ljfp2nqSj,apt ´ 2nq , t P R ,

where the reconstruction functions, according to (2.31), are given by

S1,aptq “ 1

16

“
N3pt ` 3q ´ 3N3pt ` 2q ´ 3N3pt ` 1q ` N3ptq‰,

S2,aptq “ 1

16

“
27N3pt ` 1q ´ 9N3ptq‰,

S3,aptq “ 1

16

“ ´ 9N3pt ` 1q ` 27N3ptq‰ , t P R .

The case d “ 1, r “ 2, M “ 1 and s “ 3

Consider the Hermite cubic splines defined as

ϕ1ptq “
$’&’%

pt ` 1q2p1 ´ 2tq, t P r´1, 0s
p1 ´ tq2p1 ` 2tq, t P r0, 1s
0, |t| ą 1

and ϕ2ptq “
$’&’%

pt ` 1q2t, t P r´1, 0s
p1 ´ tq2t, t P r0, 1s
0, |t| ą 1

.
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They are stable generators for the space V 2
ϕ1,ϕ2

(see Ref. [29]). Consider the sampling

period M “ 1 and the systems Lj , j “ 1, 2, 3 , defined by

L1fptq :“
ż t`1{3

t

fpuqdu , L2fptq :“ L1f
`
t ` 1

3

˘
, L3fptq :“ L1f

`
t ` 2

3

˘
.

Since the functions Ljϕk, j “ 1, 2, 3 and k “ 1, 2 , have compact support, then the

entries of the 3 ˆ 2 matrix Gpzq in (2.28) are Laurent polynomials and we can try to

search an 2 ˆ 3 matrix apzq :“ ra1pzq,a2pzq,a3pzqs satisfying (2.29) with Laurent

polynomials entries also. This leads to reconstruction functions Sj,a, j “ 1, 2, 3 , with

compact support. Proceeding as in [43] we obtain in V 2
ϕ1,ϕ2

the following sampling

formula:

fptq “
ÿ
nPZ

3ÿ
j“1

LjfpnqSj,apt ´ nq , t P R ,

where the sampling functions, according to (2.31), are

S1,aptq :“ 85

44
ϕ1ptq ` 1

11
ϕ1pt ´ 1q ` 85

4
ϕ2ptq ´ ϕ2pt ´ 1q ,

S2,aptq :“ ´23

44
ϕ1ptq ´ 23

44
ϕ1pt ´ 1q ´ 23

4
ϕ2ptq ` 23

4
ϕ2pt ´ 1q ,

S3,aptq :“ 1

11
ϕ1ptq ` 85

44
ϕ1pt ´ 1q ` ϕ2ptq ´ 85

4
ϕ2pt ´ 1q , t P R .

2.3.3 L2-approximation properties

Consider an r ˆ s matrix apxq :“ “
a1pxq,a2pxq, . . . ,aspxq‰ with entries ak,j P

L8r0, 1qd, 1 ď k ď r, 1 ď j ď s, and satisfying (2.20). Let Sj,a be the associated

reconstruction functions, j “ 1, 2, . . . , s , given in Theorem 2.1. The aim of this section

is to show that if the set of generators Φ satisfies the Strang-Fix conditions of order �,
then the scaled version of the sampling operator

Γafptq :“
sÿ

j“1

ÿ
αPZd

pLjfqpMαqSj,apt ´ Mαq , t P R
d ,

gives L2- approximation order � for any smooth function f (in a Sobolev space). In

so doing, we take advantage of the good approximation properties of the scaled space

σ1{hV 2
Φ , where for h ą 0 we are using the notation: σhfptq :“ fphtq, t P R

d.

The set of generators Φ “ tϕkurk“1 is said to satisfy the Strang-Fix conditions of

order � if there exist r finitely supported sequences bk : Zd Ñ C such that the function

ϕptq “ řr
k“1

ř
αPZd bkpαqϕkpt´αq satisfies the Strang-Fix conditions of order �, i.e.,

pϕp0q ‰ 0, Dβ pϕpαq “ 0, |β| ă �, α P Z
dzt0u . (2.35)
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We denote by

W 
2 pRdq :“ �

f measurable : }Dγf}2 ă 8 , |γ| ď �
(

the usual Sobolev space, and by |f |,2 :“ ř
|β|“ }Dβf}2 the corresponding seminorm

of a function f P W 
2 pRdq. When 2� ą d we identify f P W 

2 pRdq with its continuous

choice (see [1]).

It is well-known that if Φ satisfies the Strang-Fix conditions of order �, and the gen-

erators ϕk satisfy a suitable decay condition, the space V 2
Φ provides L2-approximation

order � for any function f regular enough. For instance, Lei et al. proved in

[75, Theorem 5.2] the following result: If a set Φ “ tϕkurk“1 of stable generators

satisfies the Strang-Fix conditions of order �, and the decay condition

ϕkptq “ O
`r1 ` |t|s´d´´ε

˘
for each k “ 1, 2, . . . , r and some ε ą 0, then, for

any f P W 
2 pRdq, there exists a function fh P σ1{hV 2

Φ such that

}f ´ fh}2 ď C |f |,2 h , (2.36)

where the constant C does not depend on h and f .

In this section we assume that all the systems Lj , j “ 1, 2, . . . , s, are of type (b),

i.e., Ljf “ f ˚ hj , belonging the impulse response hj to the Hilbert space L2pRdq.

Recall that a Lebesgue measurable function h : Rd ÝÑ C belongs to the Hilbert space

L2pRdq if

|h|2 :“
ˆż

r0,1qd

´ ÿ
αPZd

|hpt ´ αq|
¯2

dt

˙1{2
ă 8 .

Notice that L2pRdq Ă L1pRdq X L2pRdq. For f P L2pRdq and h P L2pRdq, the fol-

lowing inequality holds:
››th ˚ fpαquαPZd

››
2

ď |h|2 }f}2 (see [66, Theorem 3.1]); thus

the sequence of generalized samples tpLjfqpMαquαPZd; j“1,2,...,s belongs to �2pZdq
for any f P L2pRdq.

First we note that the operator Γa :
`
L2pRdq, } ¨ }2

˘ ÝÑ `
V 2
Φ , } ¨ }2

˘
given by

pΓafqptq :“ pdetMq
sÿ

j“1

ÿ
αPZd

pLjfqpMαqSj,apt ´ Mαq , t P R
d ,

is a well-defined bounded operator onto V 2
Φ . Besides, Γdf “ f for all f P V 2

Φ .

Under appropriate hypotheses we prove that the scaled operator Γh
a :“ σ1{hΓaσh

approximates, in the L2-norm sense, any function f in the Sobolev space W 
2 pRdq as

h Ñ 0`. Specifically we have:

Theorem 2.5. Assume 2� ą d and that all the systems Lj satisfy Ljf “ f ˚ hj with
hj P L2pRdq, j “ 1, . . . , s. Then,

}f ´ Γh
a f}2 ď p1 ` }Γa}q inf

gPσ1{hV 2
Φ

}f ´ g}2, f P W 
2 pRdq,
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where }Γa} denotes the norm of the sampling operator Γa. If the set of generators
Φ “ tϕkurk“1 satisfies the Strang-Fix conditions of order � and, for each k “ 1, 2, . . . , r ,
the decay condition ϕkptq “ O

`r1 ` |t|s´d´´ε
˘

for some ε ą 0, then

}f ´ Γh
a f}p ď C |f |,2 h , for all f P W 

2 pRdq,
where the constant C does not depend on h and f .

Proof. Using that Γh
a g “ g for each g P σ1{hV 2

Φ then, for each f P L2pRdq and

g P σ1{hV 2
Φ , Lebesgue’s Lemma [31, p. 30] gives

}f ´ Γh
a f}2 ď }f ´ g}2 ` }Γh

a g ´ Γh
a f}2

ď p1 ` }Γa}q inf
gPσ1{hV 2

Φ

}f ´ g}2 ,

where we have used that }Γh
a } “ }Γa} for h ą 0. Now, for each f P W 

2 pRdq and

h ą 0, there exists a function fh P σ1{hV 2
Φ such that (2.36) holds, from which we

obtain the desired result.

More results on approximation by means of generalized sampling formulas can be

found in Refs. [44, 48].

2.4 Irregular sampling in V 2
Φ : time-jitter error

Given an error sequence ε :“ tεj,αuαPZd; j“1,2,...,s in R
d, this section aims to study

when it is possible to recover any function f P V 2
Φ from the sequence of perturbed

samples tpLjfqpMα` εj,αquαPZd; j“1,2,...,s. Keeping in mind expression (2.9) for the

systems Lj , j “ 1, 2, . . . , s, for f “ TΦF P V 2
Φ we have

pLjfqpMα ` εj,αq “ xF, pZLjΦqpεj,α, ¨qe´2πiαJMJ¨yL2
rr0,1qd , α P Z

d , (2.37)

where we have used that

pZLjΦqpMβ ` εj,β , xq “ pZLjΦqpεj,β , xqe2πiβJMJx , β P Z
d .

Equation (2.37) leads us to study the frame property of the perturbed sequence

tpZLjΦqpεj,α, ¨qe´2πiαJMJ¨uαPZd; j“1,2,...,s (2.38)

in L2
rr0, 1qd. On the other hand, we know that, whenever 0 ă AG ď BG ă 8, the

sequence (2.38) is a frame for L2
rr0, 1qd with optimal frame bounds AG{pdetMq and

BG{pdetMq. In the case of s “ rpdetMq, the above sequence is a Riesz basis for

L2
rr0, 1qd.
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2.4.1 The perturbed sequence

One possibility is to use frame perturbation theory in order to find the suitable

error sequences for which the sequence (2.38) is a frame for L2
rr0, 1qd. Given an

error sequence ε :“ tεj,αuαPZd; j“1,2,...,s Ă R
d we define on �2rpZdq the operator

Dε “ “
Dε,1, . . . , Dε,s

‰
, where

Dε,j c :“
! rÿ

k“1

ÿ
βPZd

“
LjϕkpMα ´ β ` εj,αq ´ LjϕkpMα ´ βq‰ckβ)

αPZd

for each c “ `tc1βuβPZd , . . . , tcrβuβPZd

˘ P �2rpZdq. The operator norm is defined as

usual

}Dε} :“ sup
cP2rpZdqzt0u

}Dε c }2spZdq
}c }2rpZdq

,

where }Dε c }22spZdq :“
řs

j“1 }Dε,j c }22pZdq for each c P �2pZdq.

Theorem 2.6. Assume that gj P L8r r0, 1qd for j “ 1, 2, . . . , s with AG ą 0. If the
error sequence ε :“ tεj,αuαPZd; j“1,2,...,s satisfies the inequality }Dε}2 ă AG{pdetMq,
then there exists a frame tSε

j,αuαPZd; j“1,2,...,s for V 2
Φ such that, for any f P V 2

Φ

fptq “
sÿ

j“1

ÿ
αPZd

`
LjfqpMα ` εj,αqSε

j,αptq , t P R
d , (2.39)

where the convergence of the series is in the L2pRdq-sense, absolute and uniform on
R

d. Moreover, when s “ rpdetMq the sequence tSε
j,αuαPZd; j“1,2,...,s is a Riesz basis

for V 2
Φ , and the interpolation property pLlS

ε
j,αqpMβ ` εj,βq “ δj,lδα,β holds.

Proof. The sequence tpZLjΦqp0, ¨qe´2πiαJMJ¨uαPZd; j“1,2,...,s is a frame (a Riesz

basis if rpdetM )=s) for L2
rr0, 1qd with frame (Riesz) bounds AG{pdetMq and

BG{pdetMq. For any

F pxq “
´ ÿ

γPZd

c1γe
´2πiγJx, . . . ,

ÿ
γPZd

crγe
´2πiγJx

¯
in L2r0, 1qd



2.4 Irregular sampling in V 2
Φ : time-jitter error 57

we have

sÿ
j“1

ÿ
αPZd

ˇ̌ @pZLjΦqpεj,α, ¨qe´2πiαJMJ¨ ´ pZLjΦqp0, ¨qe´2πiαJMJ¨ , F p¨qD
L2

rr0,1qd
ˇ̌2

“
sÿ

j“1

ÿ
αPZd

ˇ̌ @ ÿ
βPZd

rLjΦpβ ` εj,αq ´ LjΦpβqse´2πipMα´βqJ¨ , F p¨qD
L2r0,1qd

ˇ̌2
“

sÿ
j“1

ÿ
αPZd

ˇ̌ rÿ
k“1

ÿ
βPZd

rLjϕkpβ ` εj,αq ´ Ljϕkpβqs ckMα´β

ˇ̌2
“

sÿ
j“1

ÿ
αPZd

ˇ̌ rÿ
k“1

ÿ
βPZd

rLjϕkpMα ´ β ` εj,αq ´ LjϕkpMα ´ βqsckβ
ˇ̌2

“
sÿ

j“1

}Dε,jc}22pZdq “ }Dεc}22spZdq ď }Dε}2}c}22rpZdq “ }Dε}2}F }2L2
rr0,1qd .

By using Lemma A.8, the sequence tpZLjΦqpεj,α, ¨qe´2πiαJMJ¨uαPZd; j“1,2,...,s is a

frame for L2
rr0, 1qd (a Riesz basis if rpdetMq “ s). Let thε

j,αuαPZd; j“1,2,...,s be its

canonical dual frame. Hence, for any F P L2
rr0, 1qd we have

F “
sÿ

j“1

ÿ
αPZd

@
Fp¨q, pZLjΦqpεj,α, ¨qe´2πiαJMJ¨D

L2
rr0,1qd hε

j,α

“
sÿ

j“1

ÿ
αPZd

`
LjfqpMα ` εj,αqhε

j,α in L2
rr0, 1qd .

Applying the isomorphism TΦ, one gets (2.39) in L2pRdq where Sε
j,α “ TΦhε

j,α. Since

TΦ is an isomorphism between L2
rr0, 1qd and V 2

Φ , the sequence tSε
j,αuαPZd; j“1,2,...,s

is a frame for V 2
Φ (a Riesz basis if rpdetMq “ s).

Pointwise convergence in the sampling series is absolute due to the unconditional

character of a frame. The uniform convergence on R
d is a consequence of the

reproducing property in V 2
Φ . The interpolatory property in the case rpdetMq “ s

follows from the uniqueness of the coefficients with respect to a Riesz basis.

Following the techniques in [42] (see also Refs. [34, 104]), whenever the generator

ϕ and the impulse responses of the systems Lj , j “ 1, 2, . . . , s, are compactly sup-

ported one could obtain a bound for }Dε} in terms of δ :“ supj,α }εj,α}8. Finally, it

is worth to mention the recent related Refs. [78, 118].

The next result yields a uniform bound of the norm }Dε} regardless the sequence ε
such that tεj,αuαPZd is in rαj , βjsd Ă r´r, rsd, for each j “ 1, 2, . . . , s.
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Theorem 2.7. For any sequence ε such that tεj,αuαPZd Ă rαj , βjsd Ă r´r, rsd for
each j “ 1, 2, . . . , s the following inequality holds

}Dε}2 ď
sÿ

j“1

ΛjΓj , (2.40)

where, for each j “ 1, 2, . . . , s, the constants Λj and Γj are given by

Λj :“ sup
βPN pMq

tdkuĂrαj ,βjsd

rÿ
k“1

ÿ
αPZd

|LjϕkpMα ` β ` dkq ´ LjϕkpMα ` βq| ,

Γj :“ sup
dPrαj ,βjsd

rÿ
k“1

ÿ
αPZd

|Ljϕkpα ` dq ´ Ljϕkpαq| .

N pMq “ ti1 “ 0, i2, . . . , idetMu defined as in section 2.2.2.

Proof. Suppose that
řs

j“1 ΛjΓj ă 8; otherwise the result obviously holds. Denoting

d
pjkq
α,β :“ LjϕkpMα ´ β ` εj,αq ´ LjϕkpMα ´ βq ,

for a fixed β, let β1 such that Mβ1 ´ β P N pMq; without lose of generality, set

Mβ1 ´ β “ ip. Thus,

rÿ
k“1

ÿ
αPZd

|dpjkqα,β | “
rÿ

k“1

ÿ
αPZd

|LjϕkpMα ´ β ` εj,αq ´ LjϕkpMα ´ βq|

“
rÿ

k“1

ÿ
αPZd

|LjϕkpMα ` ip ´ Mβ1 ` εj,αq ´ LjϕkpMα ` ip ´ Mβ1q|

“
rÿ

k“1

ÿ
αPZd

|LjϕkpMα ` ip ` εj,α`β1 q ´ LjϕkpMα ` ipq| ď Λj .

For a fixed α,

rÿ
k“1

ÿ
βPZd

|dpjkqα,β | “
rÿ

k“1

ÿ
βPZd

|LjϕkpMα ´ β ` εj,αq ´ LjϕkpMα ´ βq|

“
rÿ

k“1

ÿ
βPZd

|Ljϕkpβ ` εj,αq ´ Ljϕkpβq| ď Γj .
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For any c “ `tc1αuαPZd , . . . , tcrαuαPZd

˘ P �2rpZdq we have

}Dεc}22spZq “
sÿ

j“1

}Dεjc}22pZdq

“
sÿ

j“1

ÿ
αPZd

ˇ̌̌̌ rÿ
k“1

ÿ
βPZd

“
LjϕkpMα ` β ` dkq ´ LjϕkpMα ` βq‰ckβ ˇ̌̌̌2

“
sÿ

j“1

ÿ
αPZd

ˇ̌̌̌ rÿ
k“1

ÿ
βPZd

d
pjkq
α,β ckβ

ˇ̌̌̌2
ď

sÿ
j“1

ÿ
αPZd

rÿ
k“1

rÿ
k1“1

ÿ
β,β1PZd

|dpjkqα,β ckβd
pjk1q
α,β1 ck1β1 |

ď
sÿ

j“1

rÿ
k“1

rÿ
k1“1

ÿ
β,β1PZd

|ckβ ||ck1β1 |
ÿ

αPZd

|dpjkqα,β ||dpjk1q
α,β1 |

ď
sÿ

j“1

rÿ
k“1

rÿ
k1“1

ÿ
β,β1PZd

|ckβ |2 ` |ck1β1 |2
2

ÿ
αPZd

|dpjkqα,β ||dpjk1q
α,β1 |

“
sÿ

j“1

rÿ
k“1

ÿ
βPZd

|ckβ |2
ÿ

αPZd

|dpjkqα,β |
rÿ

k1“1

ÿ
β1PZd

|dpjk1q
α,β1 |

ď
sÿ

j“1

rÿ
k“1

ÿ
βPZd

|ckβ |2
ÿ

αPZd

|dpjkqα,β |Γj

ď
sÿ

j“1

rÿ
k“1

ÿ
βPZd

|ckβ |2ΛjΓj ď
ˆ sÿ

j“1

ΛjΓj

˙ rÿ
k“1

ÿ
βPZd

|ckβ |2

ď
ˆ sÿ

j“1

ΛjΓj

˙
}c}22rpZdq ,

which concludes the proof.

It is worth to mention that, in some important examples, the value of
řs

j“1 ΛjΓj

in (2.42) can be explicitely computed in terms of δ :“ supj,α |εj,α|. We include two

of them in the one dimension case taken from Ref. [42]; for details te reader can check

also references therein.

Recovering functions in V 2
N4

where N4 denotes the cubic B-spline

For each fixed m P N, the B-spline Nm is defined as Nm :“ N1 ˚ N1 ˚ . . . ˚ N1

(m times) where N1 denotes the characteristic function of the interval p0, 1q. It is

known [25] that tNmp¨ ´ kqukPZ is a Riesz sequence in L2pRq. The corresponding

shift-invariant space V 2
Nm

is the space of splines of degree m ´ 1 in L2pRq with nodes

at the integers.

By means of samples from f and f 1
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For r “ s “ 2, consider the systems pL1fqptq :“ fpt ` aq and pL2fqptq :“
f 1pt ` aq. For a “ 0 we have

Gpwq “
ˆ
ZN4p0, wq ZN4p0, w ` 1{2q
ZN 1

4p0, wq ZN 1
4p0, w ` 1{2q

˙
“ 1

6

ˆ
z ` 4z ` z3 ´z ` 4z2 ´ z3

3z ´ 3z3 ´3z ` 3z3

˙
where z “ e´2πiw. Since detG “ 2pz5 ´ z3q{3 vanishes at w “ 0, it follows that

αG “ 0. Hence, Theorem 2.6 does not apply. However, taking a “ 1{2 we obtain

g1pwq “ pZN4qp1{2, wq “ 1

48
` 23

48
e´2πiw ` 23

48
e´4πiw ` 1

48
e´6πiw

g2pwq “ pZN 1
4qp1{2, wq “ 1

8
` 5

8
e´2πiw ´ 5

8
e´4πiw ´ 1

8
e´6πiw

The eigenvalues of the matrix G
˚pwqGpwq are

1 ` 157

288
sin2 2πw ˘ 7

288

a
576 sin2 2πw ` 265 sin4 2πw

The minimum on p0, 1{2q of the smallest eigenvalue is attained at w “ 1
2π arctan

b
392
403

and takes the value αG “ 216
265 . Besides, the maximum on p0, 1{2q of the largest eigen-

value is βG “ 9{4 attained at w “ 1{4.

For d P r0, 1{2s, we have

3ÿ
k“0

|N4pk ` 1{2 ´ dq ´ N4pkq| “
3ÿ

k“0

|N4pk ` 1{2 ` dq ´ N4pkq|

“ 3

2
d ´ 2

3
d3

For d P p0, 1{3q the inequality N 1
4p5{2q ą N 1

4p5{2 ` dq holds. Thus, for d P r0, 1{3q
we get

3ÿ
k“0

|N 1
4pk ` 1{2 ´ dq ´ N 1

4pkq| “
3ÿ

k“0

|N 1
4pk ` 1{2 ` dq ´ N 1

4pkq| “ 2d

Therefore, whenever rα1, β1s “ rα2, β2s “ r´δ, δs, with 0 ă δ ă 1{3, we obtain that

Γ1 “ p3{2qδ ´ p2{3qδ3 and Γ2 “ 2δ.

Now, having in mind the symmetry of N4 and the inequalities

N4p1{2 ` δq ´ N4p1{2q ą N4p1{2q ´ N4p1{2 ´ δq
and

N4p5{2q ´ N4p5{2 ` dq ą N4p5{2 ´ dq ´ N4p5{2q ,
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we get

sup
dPr´δ,δs

|N4p3{2 ` δq ´ N4p3{2q| ` sup
dPr´δ,δs

|N4p7{2 ` δq ´ N4p7{2q|

“ sup
dPr´δ,δs

|N4p1{2 ` δq ´ N4p1{2q| ` sup
dPr´δ,δs

|N4p5{2 ` δq ´ N4p5{2q|

“ 3δ

4
` δ2

2
´ δ3

3

Analogously, using the symmetry of N 1
4, the inequality

N 1
4p1{2 ` δq ´ N 1

4p1{2q ą N 1
4p1{2q ´ N 1

4p1{2 ´ δq ,
and that

sup
dPr´δ,δs

|N 1
4p5{2 ` dq ´ N4p5{2q| “ N 1

4p5{2 ´ δq ´ N4p5{2q ,

we get

sup
dPr´δ,δs

|N 1
4p3{2 ` δq ´ N 1

4p3{2q| ` sup
dPr´δ,δs

|N 1
4p7{2 ` δq ´ N 1

4p7{2q|

“ sup
dPr´δ,δs

|N 1
4p1{2 ` δq ´ N 1

4p1{2q| ` sup
dPr´δ,δs

|N 1
4p5{2 ` δq ´ N 1

4p5{2q|

“ δ ` 2δ2

Hence, Λ1 “ p3{4q δ ` p1{2q δ2 ´ p1{3q δ3 and Λ2 “ δ ` 2δ2. Thus, for any sequence

ε “ tεj,nunPZ; j“1,2 Ă rδ, δs, where δ ă 1{3, we have that

}Dε}2 ď Λ1Γ1 ` Λ2Γ2 “ 25 δ2

8
` 19 δ3

4
´ δ4 ´ δ5

3
` 2 δ6

9
.

Thus, from Theorem 2.6, whenever supj,n |εj,n| ă C « 0.3022, where C is the root

of

25δ2{8 ` 19δ3{4 ´ δ4 ´ δ5{3 ` 2δ6{9 ´ 108{265 “ 0

in p0, 1{3q, there exists a Riesz basis tSε
j,nunPZ; j“1,2 for V 2

N4
such that the expansion

fptq “
ÿ
nPZ

“
fp2n ` 1{2 ` ε1,nq Sε

1,nptq ` f 1p2n ` 1{2 ` ε2,nq Sε
2,nptq‰ , t P R ,

holds.

By means of average sampling

For each f P V 2
N4

consider the system defined as pL1fqptq :“
ż t`1{2

t´1{2
fpxqdx. For

d P r0, 1{2s we haveÿ
kPZ

|pL1N4qpk ´ dq ´ pL1N4qpkq| “
ÿ
kPZ

|pL1N4qpk ` dq ´ pL1N4qpkq|

“ 23d

24
` 5d2

8
´ d3

6
´ d4

4
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where we have used the symmetry of L1N4 with respect the line t “ 2. Thus, for

rα1, β1s “ r´δ, δs, where δ ď 1{2, we obtain

Γ1 “ 23δ{24 ` 5δ2{8 ´ δ3{6 ´ δ4{4 .
Besides,

Λ1 “ 2 sup
dPr´δ,δs

ˇ̌pL1N4qpdq ´ pL1N4qp0qˇ̌ ` 2 sup
dPr´δ,δs

ˇ̌pL1N4qp1 ` dq ´ pL1N4qp1qˇ̌
` sup

dPr´δ,δs

ˇ̌pL1N4qp2q ´ pL1N4qp2 ` dqˇ̌ “ 5δ2

4
´ δ3

6
´ δ4

2
` 23δ

24

Hence, for any sequence tεnunPZ Ă r´δ, δs, δ ď 1{2, we have that

}Dε}2 ď Λ1Γ1 “ 529δ2

576
` 115δ3

64
` 133δ4

288
´ 33δ5

32
´ 43δ6

72
` δ7

8
` δ8

8

Moreover

αG “ inf
wPp0,1q

|g1pwq|2

“ inf
wPp0,1q

ˇ̌̌1 ` 76e´2πiw ` 230e´4πiw ` 76e´6πinw ` e´8πinw

384

ˇ̌̌2 “ 25

576

Hence, from Theorem 4.8, whenever supn |εn| ă C « 0.185, where C is the root of

529δ2{576`115δ3{64`133δ4{288´33δ5{32´43δ6{72`δ7{8`δ8{8´25{576 “ 0

in p0, 1{2q, there exists a Riesz basis tSε
nunPZ for V 2

N4
such that the expansion

fptq “
ÿ
nPZ

pL1fqpn ` εnq Sε
nptq , t P R ,

holds for each f P V 2
N4

.

2.4.2 Another approach

In order to obtain reconstruction formulas like (2.39) we can focus the problem

with a different sight, this time taking into account the differential operator acting on

the image of the generators tϕkuk“1,2,...r by the filters tLjuj“1,2,...s, we are obviously

assuming that Ljϕk are continuously differentiable for j “ 1, 2, . . . s and k “ 1, 2, . . . r.

For a fixed Ψ P L2pRdq consider the function

CΨ ptq “
ÿ
βPZd

}Ψpt ` βq}2.

It is not difficult to check that CΨ is always Zd-periodic and belongs to L1r0, 1qd. We

will require strong conditions on the �2-norm of the error sequence as well as on the

supremum norm of the rs functions C∇Ljϕk
.
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Theorem 2.8. Assume that gj P L8r r0, 1qd for j “ 1, 2, . . . , s with AG ą 0. If
the error sequence ε :“ tεj,αuαPZd; j“1,2,...,s satisfies }tεj,αu}2pZdq ă 1 for all j “
1, 2, . . . s and C∇Ljϕk

P L8pRdq for all j “ 1, 2, . . . s and k “ 1, 2, . . . r with

u :“
sÿ

j“1

rÿ
k“1

}C∇Ljϕk
}8 ă AG{pdetMq ,

then there exists a frame tSε
j,αuαPZd; j“1,2,...,s for V 2

Φ such that, for any f P V 2
Φ

fptq “
sÿ

j“1

ÿ
αPZd

`
LjfqpMα ` εj,αqSε

j,αptq , t P R
d , (2.41)

where the convergence of the series is in the L2pRdq-sense, absolute and uniform on
R

d. Moreover, when s “ rpdetMq the sequence tSε
j,αuαPZd; j“1,2,...,s is a Riesz basis

for V 2
Φ , and the interpolation property pLlS

ε
j,αqpMβ ` εj,βq “ δj,lδα,β holds.

Proof. By the fundamental theorem of calculus,

LjϕkpMα ´ β ` εj,αq ´ LjϕkpMα ´ βq “
ż 1

0

∇Ljϕkptεjα ` Mα ´ βq ¨ εjαdt

then ˇ̌̌
LjϕkpMα ´ β ` εj,αq ´ LjϕkpMα ´ βq

ˇ̌̌2
“
ˇ̌̌ ż 1

0

∇Ljϕkptεjα ` Mα ´ βq ¨ εjαdt
ˇ̌̌2

ď
ż 1

0

}∇Ljϕkptεjα ` Mα ´ βq}2dt
ż 1

0

}εjα}2dt

“ }εjα}2
ż 1

0

}∇Ljϕkptεjα ` Mα ´ βq}2dt

which implies ÿ
βPZd

|LjϕkpMα ´ β ` εj,αq ´ LjϕkpMα ´ βq|2

ď }εjα}2
ż 1

0

ÿ
βPZd

}∇Ljϕkptεjα ` Mα ´ βq}2dt

ď }εjα}2}C∇Ljϕk
}8 .
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Now,

sÿ
j“1

ÿ
αPZd

ˇ̌ @pZLjΦqpεj,α, ¨qe´2πiαJMJ¨ ´ pZLjΦqp0, ¨qe´2πiαJMJ¨ , F p¨qD
L2

rr0,1qd
ˇ̌2

“
sÿ

j“1

ÿ
αPZd

ˇ̌ rÿ
k“1

ÿ
βPZd

rLjϕkpMα ´ β ` εj,αq ´ LjϕkpMα ´ βqsckβ
ˇ̌2

ď }c}22rpZdq
sÿ

j“1

ÿ
αPZd

rÿ
k“1

ÿ
βPZd

|LjϕkpMα ´ β ` εj,αq ´ LjϕkpMα ´ βq|2

ď }c}22rpZdq
sÿ

j“1

ÿ
αPZd

rÿ
k“1

}εjα}2}C∇Ljϕk
}8

ď }c}22rpZdq
rÿ

k“1

sÿ
j“1

}C∇Ljϕk
}8

ÿ
αPZd

}εjα}2

ď u}c}22rpZdq “ u}F }2L2
rr0,1qd .

which concludes the proof as the one in Theorem 2.6.

We have obtained formula (2.39) with two differents hypothesis, but from a

practical point of view it is useless, since the frame tSε
j,αuαPZd; j“1,2,...,s, which

depends on the error sequence tεj,αuαPZd, j“1,2,...,s, is impossible to determine. As

a consequence, to recover any function f P V 2
Φ from the samples

tLjfpMα ` εj,αquαPZd; j“1,2,...,s

we should use the frame algorithm (see [36]). In order to approximate the sequence

takαuαPZd; k“1,...,r P �2pZdq associated to f “ řr
k“1

ř
αPZd akα ϕkpt ´ αq P V 2

Φ , the

frame algorithm can be implemented in the �2pZdq setting as in Ref. [42].

2.4.3 The frame algorithm

Now we are going to implement a frame algorithm in the �2rpZdq setting. To this

end, consider the canonical isometry U : �2rpZdq Ñ L2
rr0, 1qd

U c :“ ` ÿ
βPZd

c1βe
´2πiβJMJ¨, . . . ,

ÿ
βPZd

crβe
´2πiβJMJ¨˘J ,

where c “ ptc1βuβPZd , . . . , tcrβuβPZdqJ P �2rpZdq.

For fptq “ řr
k“1

ř
αPZd ckαϕkpt ´ αq P V 2

Φ , denote by F the sequence

F :“ U´1F “ U´1T ´1
Φ f “ ptc1αuαPZd , . . . , tcrαuαPZdqJ P �2rpZdq .
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The samples tpLjfqpMα ` εj,αqu can be written as`
LjfqpMα ` εj,αq “ @

Fp¨q, pZLjΦqpεj,α, ¨qe´2πiαJMJ¨D
L2

rr0,1qd “ @
F,Lj,α

D
2rpZdq

where, for j “ 1, 2, . . . , s and α P Z
d,

Lj,α :“ U´1
`pZLjΦqpεj,α, ¨qe´2πiαJMJ¨˘

“ U´1
” ÿ
βPZd

e2πipβ
J´αJMJq¨`pLjϕ1qpεj,α ` βq, . . . , pLjϕrqpεj,α ` βq˘Jı

“ U´1
” ÿ
βPZd

e2πiβ
J¨`pLjϕ1qpεj,α ` β ` Mαq, . . . , pLjϕrqpεj,α ` β ` Mαq˘Jı

“ U´1
” ÿ
βPZd

e´2πiβJ¨`pLjϕ1qpεj,α ´ β ` Mαq, . . . , pLjϕrqpεj,α ´ β ` Mαq˘Jı
“
ˆ

tpLjϕ1qpεj,α ´ β ` MαquβPZd , . . . , tpLjϕrqpεj,α ´ β ` MαquβPZd

˙J

The sequence tLj,αuαPZd; j“1,2,...,s is a frame for �2rpZdq. Indeed, assume that

tεj,αuαPZd Ă rαj , βjsd Ă r´r, rsd

for each j “ 1, 2, . . . , s, and that
řs

j“1 ΛjΓj ă AG{detM . According to the proof of

Theorem 2.6 and Lemma A.8, the sequence tpZLjΦqpεj,α, ¨qe´2πiαJMJ¨uαPZd; j“1,2,...,s

is a frame for L2
rr0, 1qd with bounds

A :“ AG

detM

˜
1 ´

gffedetM

AG

sÿ
j“1

ΛjΓj

¸2

,

B :“ BG

detM

˜
1 `

gffedetM

BG

sÿ
j“1

ΛjΓj

¸2

(2.42)

Since U´1 is an isometry, the sequence tLj,αuαPZd; j“1,2,...,s is a frame for �2rpZdq
with the same bounds.

Hence, the recovering of the function f “ TΦ U F P V 2
Φ from the samples

tpLjfqpMα ` εj,αqu is reduced to recover F from the sequence�xF,Lj,α

D
2rpZdq

(
αPZd; j“1,2,...,s

.

In so doing, the classical frame algorithm reads:
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Consider

F0 “ AF :“ 2

A ` B

ÿ
αPZd

sÿ
j“1

xF,Lj,αy2pZdqLj,α

“ 2

A ` B

ÿ
αPZd

sÿ
j“1

`
LjfqpMα ` εj,αqLj,α

and define recursively Fk`1 “ Fk `ApF´Fkq , k P N. Then, the sequence tfkukPN
in V 2

Φ given by

fkptq “
rÿ

m“1

ÿ
αPZd

apkqmα ϕmpt ´ αq , t P R
d ,

where

Fk “ `tapkq1α uαPZd , . . . , tapkqrα uαPZd

˘
,

satisfies

}f ´ fk}L2pRdq ď }TΦ} }F ´ Fk}2rpZdq ď }TΦ} γk`1}F}2rpZdq

ď }TΦ} }T ´1
Φ } γk`1}f}L2pRdq “

d
}Φ}8
}Φ}0 γk`1}f}L2pRdq ,

where γ :“ pB ´ Aq{pB ` Aq , and we have used that }T ´1
Φ }´2 “ }Φ}0 and

}TΦ}2 “ }Φ}8, see Theorem A.5. In order to improve this algorithm, specially when

the ratio B{A is large, we can use the methods of acceleration of the frame algorithm

proposed by Gröchenig in [52].

Finally it is worth to mention that the general irregular sampling case has been

treated, for instance, in Refs. [6, 8, 9, 36, 96, 100, 101, 102, 103, 119].



3
Uniform average sampling in frame generated
weighted shift-invariant spaces

3.1 Statement of the problem

We have already mentioned the possible drawbacks behind Shannon’s sampling

theory (Section 1.2), that is why we have focused our attention in sampling on spaces

like

V 2
Φ “

! ÿ
αPZd

rÿ
k“1

dkpαq ϕkpt ´ αq : dk P �2pZdq, k “ 1, 2 . . . , r
)
.

where the sequence tϕkpt ´ αquαPZd; k“1,2...,r is a Riesz basis for V 2
Φ .

In the preceding chapter we have obatained a formula of the form

fptq “ pdetMq
sÿ

j“1

ÿ
αPZd

pLjfqpMαqSjpt ´ Mαq , t P R
d , (3.1)

where the sequence of reconstruction functions tSjp¨´MαquαPZd; j“1,2,...,s is a frame

for the shift-invariant space V 2
Φ . Besides the samples tpLjfqpMαquαPZd; j“1,2,...,s are

some filtered versions of the signal itself, in other words, for each j “ i, 2, . . . , s,

Lj is a linear operator acting on the function f , these operators reflect features of the

acquisition device which provides the samples.
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Besides, to model decay or growth of real signals one can assume that they belong

to a Lp
νpRdq space with weight function ν. Notice that a function f belongs to Lp

νpRdq
if νf belongs to LppRdq. If the weight function ν grows rapidly as |t| Ñ 8, then the

functions in Lp
νpRdq decay roughly at a corresponding rate. Conversely, if the weight

function ν decays rapidly, then the functions in Lp
νpRdq may grow as |t| Ñ 8 (see, for

instance, [6, 54, 118]).

In this chapter we deal with generalized (average) regular sampling in a weighted

shift-invariant space V p
ν pΦq in Lp

νpRdq, formally defined as

V p
ν pΦq :“

! rÿ
j“1

ÿ
αPZd

ajpαqφjpt ´ αq : tajpαquαPZd P �pνpZdq, j “ 1, 2, . . . , r
)
.

That is, we derive sampling formulas like (2.2) valid in V p
ν pΦq. The set of

generators Φ :“ tφjurj“1 is contained in the Wiener amalgam space W pL1
νq, i.e., the

generators are functions locally in L8pRdq and globally in L1
νpRdq.

The sequence tφjp¨ ´ αquαPZd; j“1,2,...,r is assumed to be a p-frame for V p
ν pΦq;

thus V p
ν pΦq is a closed subspace in Lp

νpRdq. See Section 3.2 below for the precise

results.

In order to obtain our appropriate sampling functions Sl, l “ 1, 2, . . . , s, we use

Wiener’s Lemma for the weighted Wiener algebra Aν ; thus, we need a submultiplica-

tive weight ν satisfying also the so called GRS-condition (see [54, 55]). Typical subex-

ponential or Sobolev weights satisfy our requirements. Our main sampling result (see

Theorem 3.3 in Section 3.3) will be first proved in spantφjp¨ ´αquαPZd; j“1,2,...,r (see

Lemma 3.5 in Section 3.3) and then proved in V p
ν pΦq by means of a density argument.

Finally, the recovery of any function f P V p
ν pΦq from a sequence of its samples is

also treated in Section 3.3; in this case we assume in addition that the set of generators

Φ “ tφjurj“1 has Lp
ν-stable shifts.

Firstly, we collect the needed preliminaries in Section 3.2.

3.2 Weighted shift-invariant spaces V p
ν pΦq (1 ď p ď 8)

3.2.1 Some needed preliminaries for weighted spaces

Let ν be a weight function which in general means a non-negative function on R
d.

Given a sequence c :“ tcpαquαPZd , for 1 ď p ă 8 the weighted �pνpZdq space is

defined by the norm

}c}pν :“
´ ÿ

αPZd

|cpαq|pνpαqp
¯1{p

,

and for p “ 8, we have

}c}8
ν
:“ sup

αPZd

|cpαq|νpαq .
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A function f belongs to Lp
νpRdq if νf belongs to LppRdq. The norm is defined by

}f}Lp
νpRdq “ }νf}LppRdq. Equipped with these norms, the spaces �pνpZdq and Lp

νpRdq
are Banach spaces; when ν ” 1, we obtain the usual �p and Lp spaces.

Given a set of functions Φ :“ tφjurj“1, the weighted multiply generated shift-

invariant space V p
ν pΦq is formally defined as

V p
ν pΦq :“

! rÿ
j“1

ÿ
αPZd

ajpαqφjpt ´ αq : tajpαquαPZd P �pνpZdq, j “ 1, 2, . . . , r
)
.

In order to give a complete sense to these spaces as (closed) subspaces of Lp
νpRdq, the

convergence properties of the series
řr

j“1

ř
αPZd ajpαqφjpt ´ αq should be studied.

Thus, suitable hypotheses on the generators Φ must be imposed (see Section 3.2.2

infra).

Throughout the paper the weight function ν is always assumed to be continuous,

symmetric, i.e., νpxq “ νp´xq, positive and submultiplicative, i.e.,

0 ă νpx ` yq ď νpxqνpyq, for all x, y P R
d .

It is straightforward to deduce that νpxq ě 1 for all x P R
d. Some typical examples of

weight functions are the subexponential weight νpxq “ eα|x|β with α ě 0, β P r0, 1s,
and the Sobolev weight νpxq “ p1 ` |x|qα, with α ě 0.

For 1 ď p ă 8 we consider the Wiener amalgam spaces

W pLp
νq :“

!
f measurable : }f}p

W pLp
νq :“

ÿ
αPZd

ess sup
xPr0,1sd

�|fpx ` αq|pνpαqp( ă 8
)
,

and for p “ 8
W pL8ν q :“

!
f measurable : }f}W pL8

ν q :“ sup
αPZd

�
ess sup
xPr0,1sd

t|fpx ` αq|νpαqu( ă 8
)
.

Endowed with above norms, these spaces become Banach spaces. Furthermore, they

are also translation-invariant spaces.

The subspace of continuous functions in W pLp
νq, denoted as W0pLp

νq, is a closed

subspace of W pLp
νq and thus also a Banach space. The inclusion

W0pLp
νq Ă W0pLq

νq , where 1 ď p ď q ď 8
holds (see [6]). From Ref. [85] we also have the following inclusions

W pLp
νq Ă W pLq

νq Ă Lq
ν , where 1 ď p ď q ď 8 .

Given a function φ and a sequence a, the semi-discrete convolution product is

formally defined by

φ ˚1 a :“
ÿ

αPZd

apαqφp¨ ´ αq .
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A weight function ν is called moderate with respect to the submultiplicative weight

ω, or simply ω-moderate, if it is continuous, symmetric, and positive and satisfies

νpx ` yq ď Cωpxqνpyq for all x, y P R
d. As a submultiplicative weight ν is, in

particular, ν-moderate (with constant C “ 1) we have the following inequalities (see,

for instance, [6, 85]):

Lemma 3.1. (a) If f P Lp
ν , g P L1

ν and 1 ď p ď 8, then }f ˚ g}Lp
ν

ď }f}Lp
ν
}g}L1

ν
.

(b) If f P Lp
ν , g P W pL1

νq and 1 ď p ď 8, then }f ˚ g}W pLp
νq ď C}f}Lp

ν
}g}W pL1

νq,
for some positive constant C .

(c) If a P �pν , b P �1ν and 1 ď p ď 8, then }a ˚ b}pν ď }a}pν }b}1ν .

(d) If f P W pLp
νq, c P �1ν and 1 ď p ď 8, then }f ˚1 c}W pLp

νq ď }c}1ν }f}W pLp
νq .

(e) If f P W pL1
νq, c P �pν and 1 ď p ď 8, then }f ˚1 c}W pLp

νq ď }c}pν }f}W pL1
νq .

Lemma 3.2. If f P Lp
ν and g P W pL1

νq, then the sequence d defined by

d :“
!ż

Rd

fpxqgpx ´ αqdx
)
αPZd

belongs to �pν , and we have }d}pν ď }f}Lp
ν
}g}W pL1

νq.

Notice that from Lemma 3.2, for f P Lp
ν and h P W pL1

νq, it is easy to deduce the

inequality }tpf ˚ hqpαquαPZd}pν ď C}f}Lp
ν
}h}W pL1

νq for some positive constant C.

For the sake of completeness we include the following result borrowed from [6, Theo-

rem 3.1]):

Lemma 3.3. Assume that tφjurj“1 Ă W0pL1
νq and 1 ď p ď 8. Then the following

inclusion holds:
V p
ν pΦq Ă W0pLp

νq.

Proof. Let f “ řr
j“1

ř
αPZd ajpαqφjp¨ ´ αq P V p

ν pΦq, then Lemma 3.1peq implies

that

}f}W pLp
νq ď

rÿ
j“1

}aj}pν }φj}W pL1
νq . (3.2)

On the other hand, it is easy to prove that there exists a positive constant C such that

}f}L8
ν

ď C}f}W pL8
ν q ď C}f}W pLp

νq. (3.3)

To verify the continuity of f in the case 1 ď p ă 8, for each N P N consider

fN “ řr
j“1

ř
|α|ďN ajpαqφjp¨ ´ αq, where |α| “ |α1| ` |α2| ` ¨ ¨ ¨ ` |αd|; then (3.2)

and (3.3) imply that

}f ´ fN }L8
ν

ď C}f ´ fN }W pLp
νq

ď C max
j“1,2,...,r

!
}φj}W pL1

νq
) rÿ

j“1

´ ÿ
|α|ąN

|ajpαq|pνpαqp
¯1{p

.
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Therefore, the sequence of continuous functions νfN converges uniformly to the con-

tinuous function νf . Since ν is positive and continuous, f must be continuous as well.

For the case p “ 8, we choose sequences φ
pnq
j of continuous functions with com-

pact support such that }φj ´ φ
pnq
j }W pL1

νq Ñ 0 as n Ñ 8 for all j “ 1, 2, . . . , r.

Set

fnpxq “
rÿ

j“1

ÿ
αPZd

ajpαqφpnqj px ´ αq .

Since the sum is locally finite, each fn is continuous. Using again (3.2) and (3.3) we

estimate

}f ´ fn}L8
ν

ď C}f ´ fn}W pL8
ν q

ď C max
j“1,2,...,r

!
}cj}8

ν

)´ rÿ
j“1

}φj ´ φ
pnq
j }W pL1

νq
¯
.

It follows that the sequence νfn converges uniformly to νf , and again, since ν is

positive and continuous, f is continuous.

3.2.2 On the generators of V p
ν pΦq (1 ď p ď 8)

Let Φ “ tφjurj“1 be the set of generators for V p
ν pΦq; in most of the papers in the

mathematical literature it is assumed that the sequence tφjp¨ ´ αquαPZd; j“1,2,...,r is

a Riesz basis for V p
ν pΦq. Here we assume a more general condition: the sequence

tφjp¨ ´αquαPZd; j“1,2,...,r is a p-frame for V p
ν pΦq. Following [7] or [85], we introduce

the concept of p-frame:

Definition 3.1. A collection tφjp¨ ´ αquαPZd; j“1,2,...,r is said to be a p-frame for
V p
ν pΦq if there exists a positive constant C (depending on Φ, p and ν) such that

C´1}f}Lp
ν

ď
rÿ

j“1

›››! ż
Rd

fpxqφjpx ´ αqdx
)
αPZd

›››
pν

ď C}f}Lp
ν
, f P V p

ν pΦq.
(3.4)

Next result, obtained from a theorem in [85] (see also [118]), gives a characteriza-

tion of the space V p
ν pΦq as a closed subspace of Lp

ν ; it generalizes the result given in

[7] for the non-weighted case:

Theorem 3.1. Let Φ “ tφjurj“1 Ă W pL1
νq and 1 ď p ď 8. Then the following

statements are equivalent:

i) V p
ν pΦq is a closed subspace in Lp

ν .

ii) tφjp¨ ´ αquαPZd; j“1,2,...,r is a p-frame for V p
ν pΦq.
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iii) There exists a positive constant C such that

C´1rpΦ, pΦspξq ď rpΦ, pΦspξqrpΦ, pΦspξqT ď CrpΦ, pΦspξq, ξ P r´π, πsd.

iv) There exist positive constants C1 and C2 (depending on Φ and w) such that

C1}f}Lp
ν

ď inf
f“řr

i“1 φi˚1ci

rÿ
j“1

››�cjpαq(
αPZd

››
pν

ď C2}f}Lp
ν
, f P V p

ν pΦq.

v) There exists a set of functions Ψ :“ tψjurj“1 Ă W pL1
νq, such that

f “
rÿ

j“1

ÿ
αPZd

xf, ψjp¨ ´ αqyφjp¨ ´ αq

“
rÿ

j“1

ÿ
αPZd

xf, φjp¨ ´ αqyψjp¨ ´ αq, f P V p
ν pΦq.

In the above theorem the matrix of functions rpΦ, pΦspξq is defined by

rpΦ, pΦspξq “
” ÿ
αPZd

pφipξ ` 2παqpφjpξ ` 2παq
ı
1ďi,jďr

,

and we are assuming that pφipξqpφjpξq is integrable for any 1 ď i, j ď r.

Some comments about the above result are in order:

1. If the sequence tφjp¨ ´ αquαPZd; j“1,2,...,r is a p0-frame for V p0
ν pΦq, then it is a

p-frame for V p
ν pΦq for any 1 ď p ď 8. This fact is proved in Corollary 3.13 in

[85], and in Corollary 1 in [7] for the non-weighted case.

2. Theorem 2.4 in [6] assures us that if Φ Ă W pL1
νq then the space V p

ν pΦq is a

subspace (not necessarily closed) of Lp
ν and W pLp

νq for any 1 ď p ď 8. Hence

we have V p
ν pΦq Ă spanLp

ν
tφjp¨ ´ αquαPZd; j“1,2,...,r. On the other hand, if one

of the statements in the previous theorem is satisfied we have the other inclusion;

in other words

V p
ν pΦq “ spanLp

ν
tφjp¨ ´ αquαPZd; j“1,2,...,r .

3. Finally it is worth to mention that for f P V p
ν pΦq we do not have uniqueness for

the coefficients tajpαquαPZd P �pνpZdq in the expansion

f “
rÿ

j“1

ÿ
αPZd

ajpαqφjp¨ ´ αq in Lp
νpRdq .
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3.3 Uniform average sampling in V p
ν pΦq (1 ď p ď 8)

3.3.1 The convolution systems Ll (1 ď l ď s)

Throughout this chapter we consider again s convolution systems Ll, 1 ď l ď s, of

the following type: the impulse response hl of the system Ll belongs to W pL1
νq, i.e.,`

Llf
˘ptq :“ rf ˚ hlsptq “

ż
Rd

fpxqhlpt ´ xqdx , t P R
d .

Whenever f P V p
ν pΦq the above convolution f ˚ hl is well-defined as a function in Lp

ν :

see Lemma 3.1(a). Besides, provided that φj P W pL1
νq, j “ 1, 2, . . . , r, the sequence

tLlφjpαquαPZd belongs to �1νpZdq; this is a consequence of the inclusion W pL1
νq Ă L1

ν

and Lemma 3.2.

For the submultiplicative weight ν, let Aν be the weighted Wiener algebra of the

functions

fpxq “
ÿ

αPZd

apαq e2πiαJx ,

with a :“ tapαquαPZd P �1νpZdq; here we are using the notation αJx :“ řd
k“1 αkxk

for α P Z
d and x P R

d. This space Aν , normed by }f}Aν
:“ }a}1ν and with pointwise

multiplication becomes a commutative Banach algebra.

A weight function ν satisfies the so called GRS-condition (Gelfand-Raikov-Shilov)

if for each α P Z
d,

lim
nÑ8 νpnαq1{n “ 1 .

Then the Wiener’s Lemma holds:

Theorem 3.2. Let ν be a weight satisfying the GRS-condition. If f P Aν and fpxq ‰ 0
for every x P R

d, the function 1{f is also in Aν .

See the proof, for instance, in [54, 55]).

Thus, for l “ 1, 2, . . . , s and j “ 1, 2, . . . r, the Fourier transform of the sequence

tLlφjpαquαPZd belongs to the Wiener algebra Aν , and it will play an important role in

the sequel. We denote it by

gl,jpxq :“
ÿ

αPZd

`
Llφj

˘pαq e´2πiαJx , x P R
d ,

and

gJl pxq :“ `
gl,1pxq, gl,2pxq, . . . , gl,rpxq˘ , 1 ď l ď s . (3.5)

In order to recover any function f P V p
ν pΦq from its generalized samples at a lat-

tice MZ
d, i.e., from the sequence of samples

�pLlfqpMαq(
αPZd; l“1,2,...,s

, a suitable
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expression for the samples will be useful. As a consequence of Lemma 3.2, the se-

quence
�pLlfqpαq(

αPZd; l“1,2,...,s
belongs to �pν ; in order that the sequence of samples�pLlfqpMαq(

αPZd; l“1,2,...,s
belongs also to �pν , we will need to assume the following

compatibility condition:

Definition 3.2. Given a submultiplicative weight ν and a lattice MZ
d, we say that ν

is M -compatible if the ratio νpαq{νpMαq remains bounded as |α| goes to infinity.

The compatibility condition in Definition 3.2 is not always true; for a subexpo-

nential weight there exists a nonsingular matrix M with integer entries for which the

condition fails. For instance, consider the matrix

M “
ˆ
3 1
4 2

˙
and pβ,´2βqJ P Z

2 with β P Z; we have Mpβ,´2βqJ “ pβ, 0qJ .

For the weight νpxq “ e|x|, the ratio ν
`pβ,´2βq˘{ν`pβ, 0q˘ “ ep

?
5´1q|β| remains

unbounded as |β| Ñ 8.

However, one can prove that any Sobolev weight is compatible with respect to any

lattice MZ
d. Also, subexponential weights are compatible with respect to any diagonal

lattice. From now on, the submultiplicative weight ν will be considered M -compatible.

3.3.2 An expression for the samples

Recall that ν is a submultiplicative weight so that Aν is a Banach algebra. Consider

the map
TΦ : Aν ˆ . . . ˆ Aν ÝÑ Lp

νpRdq
FJ :“ pf1, . . . , frq ÞÝÑ řr

j“1 φj ˚1 aj , (3.6)

where

fjpxq “
ÿ

αPZd

ajpαq e´2πiαJx P Aν , j “ 1, 2, . . . , r .

It is easy to deduce the existence of a positive constant C such that }f}Lp
ν

ď C}f}W pLp
νq.

Thus,

›› rÿ
j“1

φj ˚1 aj
››
Lp

ν
ď C

rÿ
j“1

››φj ˚1 aj
››
W pLp

νq

ď C max
j“1,2,...,r

�}φj}W pLp
νq
( rÿ
j“1

››aj››1ν ,
where we have used Lemma 3.1pdq. Now, with the inclusion W pL1

νq Ă W pLp
νq we get

that TΦ is a well-defined bounded operator by considering in Aν ˆ . . . ˆ Aν the norm

}F} :“ řr
j“1 }aj}1ν .
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For f P spantφjp¨ ´αquαPZd; j“1,2,...,r let a :“ tpa1pαq, . . . , arpαqqu be the finite

sequence such that f “ řr
j“1 φj ˚1aj and the corresponding trigonometric polynomial

FJpxq : “
´ÿ

α

a1pαq e´2πiαJx, . . . ,
ÿ
α

arpαq e´2πiαJx
¯

“
ÿ
α

apαq e´2πiαJx ,

so that TΦF “ f . For any l “ 1, 2, . . . , s and α P Z
d, we have

pLlfqpMαq “
ÿ
βPZd

rÿ
j“1

ajpβqpLlφjqpMα ´ βq

“ xF,gl e
´2πiαJMJxyL2r0,1qd

“
ż
r0,1qd

FJpxqglpxq e2πiαJMJxdx .

(3.7)

As the sequence te´2πiαJMJxuαPZd is an orthogonal basis for L2pM´Jr0, 1qdq, we

can exploit this fact in computing the above integral as follows

pLlfqpMαq “
detMÿ
k“1

ż
Qk

FJpxqglpxq e2πiαJMJxdx

“
ż
M´Jr0,1qd

detMÿ
k“1

FJpx ` M´Jikqglpx ` M´Jikq e2πiα
JMJxdx .

(3.8)

This leads us to introduce the s ˆ pdetMqr matrix of functions Gpxq, x P r0, 1qd,

which, involving the functions in (3.5), is given by

Gpxq :“

»———–
gJ1 pxq gJ1 px ` M´Ji2q ¨ ¨ ¨ gJ1 px ` M´JidetM q
gJ2 pxq gJ2 px ` M´Ji2q ¨ ¨ ¨ gJ2 px ` M´JidetM q

...
...

. . .
...

gJs pxq gJs px ` M´Ji2q ¨ ¨ ¨ gJs px ` M´JidetM q

fiffiffiffifl

“
”
gJl

`
x ` M´Jik

˘ı
l“1,2,...,s

k“1,2,...,detM

.

(3.9)

As we will see in next section, the reconstruction functions Sl, l “ 1, 2, . . . , s,

appearing in formula (3.1) rely on the existence of left inverse matrices of Gpxq having

entries in the weighted Wiener algebra Aν .
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Lemma 3.4. There exists an r ˆ s matrix dpxq :“ `
d1pxq,d2pxq, . . . ,dspxq˘ with

entries dj,l P Aν , j “ 1, 2, . . . , r, l “ 1, 2, . . . , s and satisfying

dpxqGpxq “

»———–
1 0 . . . 0 0 . . . 0
0 1 . . . 0 0 . . . 0
...

...
. . .

...
...

. . .
...

0 0 . . . 1 0 . . . 0

fiffiffiffifl “ rIr,OrˆpdetM´1qrs , x P r0, 1qd ,

(3.10)

if and only if rank Gpxq “ pdetMqr for all x P R
d.

Proof. Notice that rankGpxq “ pdetMqr if and only if detpG˚pxqGpxqq ‰ 0 where

G
˚pxq denotes the conjugate transpose of Gpxq. If rank Gpxq “ pdetMqr then the

first r rows of the Moore-Penrose pseudo inverse of Gpxq,

G
:pxq :“ `

G
˚pxqGpxq˘´1

G
˚pxq ,

satisfy (3.10); moreover, according to Wiener’s Lemma (see [55]) the entries of G:
belong to Aν .

Conversely, assume that the r ˆ s matrix dpxq “ `
d1pxq,d2pxq, . . . ,dspxq˘

satisfies (3.10). We consider the periodic extension of dj,l, i.e., dj,lpx ` αq “ dj,lpxq,

α P Z
d. For all x P r0, 1qd, the matrix

Dpxq :“

»———–
d1pxq d2pxq ¨ ¨ ¨ dspxq

d1px ` M´Ji2q d2px ` M´Ji2q ¨ ¨ ¨ dspx ` M´Ji2q
...

...
. . .

...
d1px ` M´JidetM q d2px ` M´JidetM q ¨ ¨ ¨ dspx ` M´JidetM q

fiffiffiffifl
(3.11)

is a left inverse matrix of Gpxq. Therefore, necessarily rankGpxq “ pdetMqr, for all

x P r0, 1qd.

Provided that the condition (3.10) in Lemma 3.4 is satisfied, it can be easily checked

that all matrices dpxq with entries in Aν , and satisfying (3.10) correspond to the first r
rows of the matrices of the form

Dpxq “ G
:pxq ` Upxq“Is ´ GpxqG:pxq‰ , (3.12)

where Upxq is any pdetMqr ˆ s matrix with entries in Aν and G
:pxq denotes the

Moore-Penrose pseudo-inverse of Gpxq. Notice that if s “ pdetMqr there exists a

unique matrix dpxq, given by the first r rows of G´1pxq; if s ą pdetMqr there are

many solutions according to (3.12).

As it was pointed out in the beginning of this chapter, in proving our sampling

result for V p
ν pΦq, 1 ď p ď 8, we are going to prove it first for the linear span of
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tφjp¨ ´αquαPZd; j“1,2,...,r. In so doing, assume that the set of generators Φ “ tφjurj“1

satisfies, for j “ 1, 2, ¨ ¨ ¨ , r, that φj P W0pL1
νq, this condition ensures that functions

in V p
ν pΦq are continuous (see Lemma 3.3). Consider also s convolution systems Ll,

l “ 1, 2, ¨ ¨ ¨ , s, with hl P W pL1
νq. Under these circumstances we have:

Lemma 3.5. Let dpxq “ `
d1pxq, d2pxq, . . . , dspxq˘ be an r ˆ s matrix with entries

dj,l P Aν , j “ 1, 2, . . . , r, l “ 1, 2, . . . , s, and satisfying condition (3.10). Then, for
any f P spantφjp¨ ´ αquαPZd; j“1,2,...,r the following sampling expansion holds:

f “
sÿ

l“1

ÿ
αPZd

pLlfqpMαqSl,dp¨ ´ Mαq in Lp
νpRdq , (3.13)

where the reconstruction function Sl,d is given by

Sl,dptq “ pdetMq
ÿ

αPZd

rÿ
j“1

pdj,lpαqφjpt ´ αq , t P R
d , (3.14)

with pdj,lpαq :“ ş
r0,1qd dj,lpxq e2πiαJx dx, α P Z

d, the Fourier coefficients of the func-
tions dl,j P Aν , j “ 1, 2, . . . , r and l “ 1, 2, . . . , s.

Proof. For f P spantφjp¨ ´ αquαPZd; j“1,2,...,r let a “ tpa1pαq, . . . , arpαqqu be the

finite sequence such that f “ řr
j“1 φj ˚1 aj and

FJpxq : “
´ÿ

α

a1pαq e´2πiαJx, . . . ,
ÿ
α

arpαq e´2πiαJx
¯

“
ÿ
α

apαq e´2πiαJx

the corresponding trigonometric polynomial such that TΦF “ f (see (3.6)).

Having in mind expression (3.8), the sequence of samples tpLlfqpMαquαPZd forms

the Fourier coefficients of the continuous function

detMÿ
k“1

FJpx ` M´Jikqglpx ` M´Jikq

with respect to the orthogonal basis te´2πiαJMJxuαPZd for L2pM´Jr0, 1qdq.

Since tLlφjpαquαPZd P �1νpZdq we have that tLlfpMαquαPZd P �1νpZdq; re-

mind that pLlfqpMαq is a finite sum
ř

β

řr
j“1 ajpβqpLlφjqpMα ´ βq and ν is M -

compatible. Therefore, for l “ 1, 2 . . . , s, we have

detMÿ
k“1

FJpx ` M´Jikqglpx ` M´Jikq “ pdetMq
ÿ

αPZd

pLlfqpMαq e´2πiαJMJx ,
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where x P M´Jr0, 1qd. By periodicity, the above equality also holds for all x P r0, 1qd.

Hence we can write

GpxqFpxq “ pdetMq
ÿ

αPZd

e´2πiαJMJx
´

pL1fqpMαq , . . . , pLsfqpMαq
¯J

where Gpxq is the s ˆ pdetMqr matrix, defined in (3.9) and

Fpxq :“ `
FJpxq,FJpx ` M´Ji2q, ¨ ¨ ¨ ,FJpx ` M´JidetM q˘J .

Multiplying on the left by the matrix dpxq we obtain Fpxq by means of the generalized

samples

Fpxq “ pdetMq
sÿ

l“1

ÿ
αPZd

pLlfqpMαqdlpxq e´2πiαJMJx, x P r0, 1qd . (3.15)

Since tpLlfqpMαquαPZd belongs to �1νpZdq and dl,j P Aν , the series in (3.15) also

converges in the norm of Aν ˆ . . . ˆ Aν . Indeed, for N P N,››› ÿ
|α|ąN

pLlfqpMαqdlpxq e´2πiαJMJx
››› ď }dl}

››› ÿ
|α|ąN

pLlfqpMαq e´2πiαJMJx
›››
Aν

“ }dl}
ÿ
|α|ąN

|pLlfqpMαq|νpαq .

Applying TΦ to both sides of the equality (3.15), and using that“
TΦdlp¨q e´2πiαJMJ¨‰ptq “ “

TΦdl

‰pt ´ Mαq , α P Z
d ,

we deduce that

f “
sÿ

l“1

ÿ
αPZd

pLlfqpMαqSl,dp¨ ´ Mαq in Lp
νpRdq ,

where Sl,d “ pdetMqTΦdl, for l “ 1, 2, . . . , s.

The reconstruction functions Sl,d, l “ 1, 2, . . . , s, are determined from the Fourier

coefficients of dj,l, pdj,lpαq :“ ş
r0,1qd dj,lpxq e2πiαJxdx. More specifically,

Sl,dptq “ pdetMq
ÿ

αPZd

rÿ
j“1

pdj,lpαqφjpt ´ αq , t P R
d . (3.16)

The sequence pdj,l P �1νpZdq because the function dj,lpxq “ ř
αPZd

pdj,lpαq e´2πiαJx

belongs to Aν . As a consequence, the function Sl,d P V 1
ν pΦq.

Some comments about Lemma 3.5 are in order:
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1. We are assuming that rank Gpxq “ pdetMqr for all x P R
d and, consequently

s ě rpdetMq.

2. The Fourier transform of Sl,d can be determined from the functions dj,l. Indeed,

from (3.14), we obtain that

pSl,dpwq “ pdetMq
rÿ

j“1

dj,lpwqpφjpwq , w P R
d .

3. In the case s “ pdetMqr, there is a unique r ˆ s matrix dpxq satisfying (3.10),

which is that one formed with the first r rows of the matrix G
´1pxq “ Dpxq

in the notation of (3.11). Then, using (3.8), we obtain that the reconstruction

functions Sl,d satisfy in this case an interpolatory property. Namely:

pLl1Sl,dqpMαq

“ pdetMq
ż
M´Jr0,1qd

detMÿ
k“1

dlpx ` M´Jikqgl1 px ` M´Jikq e2πiαJMJxdx

“ δl1,l pdetMq
ż
M´Jr0,1qd

e2πiα
JMJxdx “

#
1 if l “ l1 and α “ 0

0 otherwise.

3.3.3 The average sampling result in V p
ν pΦq (1 ď p ď 8)

Assume that Φ Ă W0pL1
νq and that we have s systems Ll with hl P W pL1

νq
such that there exists an r ˆ s matrix dpxq “ `

d1pxq, d2pxq, . . . , dspxq˘ with entries

dj,l P Aν , j “ 1, 2, . . . , r, l “ 1, 2, . . . , s satisfying condition (3.10). Thus, a density

argument allows us to prove that sampling formula (3.13) in Lemma 3.5 is also valid

for the whole space V p
ν pΦq. In fact, the following theorem holds:

Theorem 3.3. Under the above assumptions, for any f P V p
ν pΦq, 1 ď p ď 8, the

sampling formula

f “
sÿ

l“1

ÿ
αPZd

pLlfqpMαqSl,dp¨ ´ Mαq , (3.17)

holds in the Lp
ν-sense. The series in (3.17) also converges absolutely and uniformly to

f on R
d.

Proof. We define on V p
ν pΦq the sampling operator

Γd : V p
ν pΦq ÝÑ V p

ν pΦq
f ÞÝÑ Γdf :“ řs

l“1

ř
αPZdpLlfqpMαqSl,dp¨ ´ Mαq .
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It is a well-defined and bounded operator; indeed, having in mind (3.16) we have

pΓdfqptq “ pdetMq
sÿ

l“1

ÿ
αPZd

pLlfqpMαq
ÿ
βPZd

rÿ
j“1

pdj,lpβqφjpt ´ Mα ´ βq

“ pdetMq
rÿ

j“1

ÿ
δPZd

´ sÿ
l“1

ÿ
αPZd

pLlfqpMαqpdj,lpδ ´ Mαq
¯
φjpt ´ δq

“ pdetMq
rÿ

j“1

sÿ
l“1

´
ajl ˚1 φj

¯
ptq ,

where ajlpδq :“ ř
αPZdpLlfqpMαqpdj,lpδ ´ Mαq. Notice that,

|ajlpδq|νpδq “
ˇ̌̌ ÿ
αPZd

pLlfqpMαq pdj,lpδ ´ Mαq
ˇ̌̌
νpδq

ď
ÿ

αPZd

ˇ̌̌
pLlfqpMαq pdj,lpδ ´ Mαq

ˇ̌̌
νpδq

ď
ÿ

αPZd

ˇ̌̌
pLlfqpαq pdj,lpδ ´ αq

ˇ̌̌
νpδq

ď
ÿ

αPZd

ˇ̌̌
pLlfqpαq pdj,lpδ ´ αq

ˇ̌̌
νpαqνpδ ´ αq

“
´

t|pLlfqpαq|νpαqu ˚ t|pdj,lpαq|νpαqu
¯

pδq .

Thus, Lemma 3.1pcq gives

}ajl}pν ď
›››tpLlfqpαquαPZd

›››
pν

›››tpdj,lpαquαPZd

›››
1ν

ď }f}Lp
ν
}hl}W pL1

νq
›››tpdj,lpαquαPZd

›››
1ν

.
(3.18)

In the last step we have used Lemma 3.2. Now, taking into account Lemma 3.1peq,

and the fact that the continuous inclusion W pLp
νq Ă Lp

ν provides a positive constant C
such that }f}Lp

ν
ď C }f}W pLp

νq, we obtain

}Γdf}Lp
ν

ď pdetMq
rÿ

j“1

sÿ
l“1

›››ajl ˚1 φj

›››
Lp

ν

ď C pdetMq
rÿ

j“1

sÿ
l“1

›››ajl ˚1 φj

›››
W pLp

νq

ď C pdetMq
rÿ

j“1

sÿ
l“1

}ajl}pν }φj}W pL1
νq .

(3.19)

Combining (3.19) and (3.18) we deduce the boundedness of the operator Γd.
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Now, given f P V p
ν pΦq, there exists a sequence of functions tfNu contained in

spantφjp¨ ´ αquαPZd; j“1,2,...,r such that }fN ´ f}Lp
ν

Ñ 0 as N Ñ 8. By using

Lemma 3.5 we have,

0 ď }f ´ Γdf}Lp
ν

“ }f ´ fN ` ΓdfN ´ Γdf}Lp
ν

ď `
1 ` }Γd}˘}fN ´ f}Lp

ν
Ñ 0 , N Ñ 8 ,

which implies that Γdf “ f in Lp
νpRdq, i.e., the validity of expansion (3.13) in V p

ν pΦq.

The series
řs

l“1

ř
αPZdpLlfqpMαqSl,dpt ´ Mαq converges, absolutely and

uniformly on R
d, to the continuous function f . Indeed,ÿ

|α|ąN

ˇ̌pLlfqpMαqSl,dpt ´ Mαqˇ̌ ď sup
|α|ąN

ˇ̌pLlfqpMαqˇ̌ sup
tPr0,1qd

ÿ
αPZd

ˇ̌
Sl,dpt ´ Mαqˇ̌

ď sup
|α|ąN

ˇ̌pLlfqpMαqˇ̌νpMαq sup
tPr0,1qd

ÿ
αPZd

ˇ̌
Sl,dpt ´ Mαqˇ̌

ď sup
|α|ąN

ˇ̌pLlfqpMαqˇ̌νpMαq }Sl,d}W pL1
νq ÝÑ 0 as N Ñ 8 ,

uniformly on R
d. In the last inequality we have used that Sl,d P V 1

ν pΦq Ă W0pL1
νq,

l “ 1, 2, . . . , s (see Lemma 3.3), and

}Sl,d}W pL1
νq “

ÿ
αPZd

ess sup
tPr0,1qd

ˇ̌
Sl,dpt ` αqˇ̌νpαq

ě sup
tPr0,1qd

ÿ
αPZd

ˇ̌
Sl,dpt ´ Mαqˇ̌ .

3.3.4 Dirac sampling case

This subsection is devoted to study another type of linear systems: their impulse

response is a translated Dirac delta, i.e.,
`
Llf

˘ptq :“ fpt ` clq, t P R
d, where

cl is a fixed vector in R
d. Provided that φj P W pL1

νq, j “ 1, 2, . . . , r, the se-

quence tLlφjpαquαPZd also belongs to �1νpZdq. Indeed, for a fixed cl P R
d, with

cl “ dl ` xl, xl P r0, 1qd and dl P Z
d, we haveÿ

αPZd

|φpα ` clq|νpαq “
ÿ
βPZd

|φpβ ` xlq|νpβ ´ dlq

ď
ÿ
βPZd

|φpβ ` xlq|νpβqνpdlq

ď νpdlq
ÿ
βPZd

|φpβ ` xlq|νpβq

ď νpdlq
ÿ
βPZd

ess sup
xPr0,1sd

|φpβ ` xq|νpβq “ νpdlq}φ}W pL1
νq .
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Thus, for these new systems the functions defined in (3.5) make sense.

In order to extend Theorem 3.3 for the case 1 ď p ă 8 we need to assume stronger

hypotheses on the set of generators Φ “ tφjurj“1 in W0pL1
νq. Next, we state the

Lp
ν-stable shifts concept as established in [75] for the non-weighted case. Note that the

space W0pL1
νq is included in the corresponding L8ν pRdq space, defined in [75] as

L8ν pRdq :“
!
f measurable : }f}L8

ν
:“ ess sup

xPr0,1qd
ÿ

αPZd

|fpx ` αq|νpx ` αq ă 8
)
.

Definition 3.3. For 1 ď p ă 8, a finite subset Φ “ tφjurj“1 of W0pL1
νq is said to have

Lp
ν-stable shifts if there exist positive constants 0 ă A ď B (depending on p and Φ)

such that

A
rÿ

j“1

}aj}pν ď ›› rÿ
j“1

φj ˚1 aj
››
Lp

ν
ď B

rÿ
j“1

}aj}pν , (3.20)

for any sequence aj P �pνpZdq, j “ 1, 2, . . . , r, when 1 ď p ă 8.

Given f P V p
ν pΦq, i.e., fptq “ řr

j“1

ř
βPZd ajpβqφjpt´βq with tajpβquβPZd P �pν

for j “ 1, 2, . . . , r, we have

pLlfqpαq “ fpα ` clq “
rÿ

j“1

ÿ
βPZd

ajpβqφjpα ` cl ´ βq

“
rÿ

j“1

´
tajpβquβPZd ˚ tφjpβ ` clquβPZd

¯
pαq .

Having in mind the first inequality in (3.18), in proving Theorem 3.3 we just need an

inequality like ››tpLlfqpαquαPZd

››
pν

ď K }f}Lp
ν
.

Since tφjpβ ` clquβPZd P �1ν , from Lemma 3.1pcq there exists a positive constant

K1 such that

}tpLlfqpαquαPZd}pν ď K1

rÿ
j“1

}tajpαquαPZd}pν .

Finally, from the left inequality in (3.20) we get

}tpLlfqpαquαPZd}pν ď K2}f}Lp
ν
,

where K2 is a positive constant. Thus, Theorem 3.3 can be extended to Dirac’s systems,

whenever 1 ď p ă 8. Due to the inequality }tpLlfqpαquαPZd}8
ν

ď }f}L8
ν

, the case

p “ 8 becomes trivial.

Finally, it is worth to mention that Theorem 3.3 remains true for linear combina-

tions of average and Dirac’s systems.



4
Sampling theory in U -invariant spaces

4.1 By way of motivation

The aim in this chapter is to derive a generalized sampling theory for U -invariant

subspaces of a separable Hilbert space H, where U : H Ñ H denotes an unitary

operator. The motivation for this work can be found in the previous chapters. To

be more precise in the generalized sampling problem in shift-invariant subspaces of

L2pRq; there H :“ L2pRq and U is the shift operator T : fptq ÞÑ fpt ´ 1q in L2pRq.

Namely, assume that our functions (signals) belong to some (principal) shift-invariant

subspace

V 2
ϕ :“ spanL2pRq

�
ϕpt ´ nq, n P Z

(
,

where the generator function ϕ belongs to L2pRq and the sequence tϕpt ´ nqunPZ is

a Riesz sequence for L2pRq. Recall that a Riesz sequence in H is a Riesz basis for its

closed span. Thus, the shift-invariant space V 2
ϕ can be described as

V 2
ϕ “

! ÿ
nPZ

αn ϕpt ´ nq : tαnunPZ P �2pZq
)
.

Mathematically, the generalized sampling problem consists of the stable recovery of

any f P V 2
ϕ from the above sequence of samples, i.e., to obtain sampling formulas in
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V 2
ϕ having the form

fptq “
sÿ

j“1

ÿ
mPZ

`
Ljf

˘prmqSjpt ´ rmq , t P R ,

such that the sequence of reconstruction functions tSjp¨ ´ rmqumPZ; j“1,2,...,s is a

frame for the shift-invariant space V 2
ϕ . In this case the sequence of samples

tpLjfqprmqumPZ; j“1,2,...,s ,

has been obtained by means of s convolution systems Ljf :“ f ˚ hj , j “ 1, 2, . . . , s,

which are defined on V 2
ϕ .

As it was said in Chapter 2, sampling in shift-invariant spaces of L2pRq (or L2pRdq),

with one or multiple generators, has been profusely treated in the mathematical litera-

ture. See, for instance, Refs. [8, 6, 27, 28, 32, 37, 41, 45, 68, 83, 102, 106, 107, 110,

113] and references therein.

In the present chapter we provide a generalization of the above problem in the

following sense. Let U be an unitary operator in a separable Hilbert space H; for a

fixed a P H, consider the closed subspace given by

Aa :“ span
�
Una, n P Z

(
.

In case that the sequence tUnaunPZ is a Riesz sequence in H we have

Aa “
! ÿ

nPZ
αn U

na : tαnunPZ P �2pZq
)
.

In order to generalize convolution systems and mainly to obtain some perturbation

results in this new setting, we assume that the operator U is included in a continuous

group of unitary operators tU tutPR in H as U :“ U1. Recall that tU tutPR is a family

of unitary operators in H satisfying (see Ref. [4, vol. 2; p. 29]; see also Refs. [14, 89,

114]):

(1) U t U t1 “ U t`t1
,

(2) U0 “ IH ,

(3) xU tx, yyH is a continuous function of t for any x, y P H.

Note that pU tq´1 “ U´t, and since pU tq˚ “ pU tq´1, we have pU tq˚ “ U´t. For

more details concerning continuous group of operators and the results we will use in

what follows we refer to Appendix B and references therein.

Thus, for b P H we consider the linear operator H Q x ÞÝÑ Lbx P CpRq such that`
Lbx

˘ptq :“ xx, U tbyH for every t P R .
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Given U -systems Lj , j “ 1, 2, . . . , s, corresponding to s elements bj P H, i.e., Lj ”
Lbj for each j “ 1, 2, . . . , s, the generalized regular sampling problem in Aa consists

of the stable recovery of any x P Aa from the sequence of the samples�
Ljxprmq(

mPZ; j“1,2,...s
where r P N , r ě 1 .

This U -sampling problem has been treated, for the first time, in some recent papers

[79, 86]. Sampling in shift-invariant subspaces or in modulation-invariant subspaces

of L2pRq becomes a particular case of U -sampling associated, respectively, with the

translation operator Ta : fptq ÞÑ fpt´aq or with the modulation operator Mb : fptq ÞÑ
eibtfptq in L2pRq.

The operators Lb can be seen as a generalization of the convolution systems in

L2pRq. Note that, for the shift operator U : fpuq ÞÑ fpu ´ 1q in L2pRq, we have

xf, U tbyL2pRq “
ż 8
´8

fpuq bpu ´ tqdu “ pf ˚ hqptq , t P R ,

where hpuq :“ bp´uq, u P R.

Here we propose a completely different approach which allows to analyze in depth

the U -sampling problem. In Section 4.3 we prove the existence of frames in Aa, having

the form
�
Urmcj

(
mPZ; j“1,2,...s

, where cj P Aa for j “ 1, 2, . . . , s, such that for each

x P Aa the sampling expansion

x “
sÿ

j“1

ÿ
mPZ

LjxprmqUrmcj in H (4.1)

holds. To this end, as in the shift-invariant case (see, for instance, Refs. [41, 45]), we

use that the above sampling formula is intimately related with some special dual frames

in L2p0, 1q (see Section 4.2 below) via the isomorphism

TU,a : L2p0, 1q ÝÑ Aa

mapping the orthonormal basis te2πinwunPZ for L2p0, 1q onto the Riesz basis tUnaunPZ
for Aa. In [86] regular sampling expansions like (4.1) are obtained by using a com-

pletely different technique; basically, they use the cross-covariance function xUna, bjyH
between the sequences tUnaunPZ and tUnbjunPZ, j “ 1, 2, . . . , s. We developed a

version of this work adapted to our framework in Subsection 4.3.1 below.

Strictly speaking, we do not need the formalism of the continuous group of unitary

operators to derive the sampling results in Section 4.3 since we only use the discrete

group tUnunPZ which is completely determined by U . However, for the study, in

Section 4.4, of the time-jitter error in sampling formulas as in (4.1), the continuous

group of unitary operators tU tutPR becomes essential. In this case we dispose of a

perturbed sequence of samples

tpLjxqprm ` εmjqumPZ; j“1,2,...,s ,
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with errors εmj P R, for the recovery of x P Aa. We prove that, for small enough

errors εmj , the stable recovery of any x P Aa is still possible. Finally, in Section 4.5

we deal with the case of multiple stable generators. We only sketch the procedure since

it is essentially identical to the one generator case.

4.2 On sampling in U -invariant subspaces

For a fixed a P H, assume that the sequence tUnaunPZ is a Riesz sequence in H.

Thus, the U -invariant subspace Aa :“ span
�
Una, n P Z

(
can be expressed as

Aa “
! ÿ

nPZ
αn U

na : tαnunPZ P �2pZq
)
.

For simplicity and ease of notation we are considering the one generator setting; as

we have said before the same sampling results for the general case can be obtained by

analogy, and it will be drawn in Section 4.5.

Since the inner product xUna, UmayH depends only on the difference n ´ m P Z,

the sequence tUnaunPZ is an stationary sequence. Moreover, the auto-covariance Ra

of the sequence tUnaunPZ admits the integral representation

Rapkq :“ xUka, ayH “ 1

2π

ż π

´π

eikθdμapθq , k P Z ,

in terms of a positive Borel measure μa on p´π, πq called the spectral measure of the

sequence (see [72]). This is obtained from the integral representation of the unitary

operator U on H (see, for instance, Refs. [4, 120]). The spectral measure μa can be

decomposed into an absolute continuous and a singular part as

dμapθq “ φapθqdθ ` dμs
apθq .

A necessary and sufficient condition in order for the sequence tUnaunPZ to be a Riesz

sequence for H is given in next theorem in terms of the decomposition of the spectral

measure μa:

Theorem 4.1. Let tUnaunPZ be a sequence obtained from an unitary operator in a
separable Hilbert space H with spectral measure dμapθq “ φapθqdθ ` dμs

apθq, and
let Aa be the closed subspace spanned by tUnaunPZ. Then the sequence tUnaunPZ is
a Riesz basis for Aa if and only if the singular part μs

a ” 0 and the function φa (called
the spectral density of the stationary sequence) satisfies

0 ă ess inf
θPp´π,πq

φapθq ď ess sup
θPp´π,πq

φapθq ă 8 .

Proof. Theorem 4.1 is just the one generator case pL “ 1q of Theorem 4.11 below.
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Proposition 4.1. Let tUnaunPZ be a Riesz basis for Aa with spectral density φapθq,
then the dual Riesz basis is given by the sequence tUnbunPZ, where the coefficients
of b with respect to tUnaunPZ are the Fourier coefficients of the function 1{φa P
L2p´π, πq. Moreover the spectral density of the Riesz basis tUnbunPZ is precisely
φbpθq “ 1

φapθq .

Proof. Consider the expansion b “ ř
kPZ bk Uka P Aa, the biorthogonality between

the sequences tUnaunPZ and tUnbunPZ means

δm,0 “ xUma, byH “ xUma,
ÿ
kPZ

bk U
kayH “

ÿ
kPZ

bk
1

2π

ż π

´π

eipm´kqθφapθqdθ

“ 1

2π

ż π

´π

` ÿ
kPZ

bke
´ikθ

˘
φapθqeimθ dθ “ 1

2π

ż π

´π

Bpθqφapθqe´imθ dθ ,

where Bpθq :“ ř
kPZ bk eikθ; in other words, we have Bpθqφapθq ” 1 in L2p´π, πq,

as a consequence, the terms of the sequence tbkukPZ P �2pZq are the Fourier coeffi-

cients of the function 1{φapθq P L2p´π, πq. Moreover,

xUnb, byH “ x
ÿ
kPZ

bk U
n`ka,

ÿ
lPZ

bl U
layH

“
ÿ
kPZ

ÿ
lPZ

bkbl
1

2π

ż π

´π

eipn`k´lqθφapθqdθ

“ 1

2π

ż π

´π

einθ
` ÿ
kPZ

bke
ikθ

˘`ÿ
lPZ

ble
´ikθ

˘
φapθq dθ

“ 1

2π

ż π

´π

einθ
ˇ̌
Bpθqˇ̌2φapθq dθ .

Therefore, φbpθq “ ˇ̌
Bpθqˇ̌2φapθq “ 1{φapθq, θ P p´π, πq; that is, for n P Z we obtain

xUnb, byH “ 1

2π

ż π

´π

einθ
dθ

φapθq .

Finally, for the shift operator T : fpuq ÞÑ fpu´1q in L2pRq, Theorem 4.1 allows to

recover the classical necessary and sufficient condition for the sequence tϕpt´nqunPZ,

where ϕ P L2pRq, to be a Riesz basis for the corresponding shift-invariant subspace V 2
ϕ

in L2pRq. Indeed, consider the Fourier transform as pϕpθq :“ 1?
2π

ş8
´8 ϕptq e´itθ dθ in
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L1pRq X L2pRq; using the Parseval’s equality one easily gets

xT kϕ,ϕyL2pRq “
ż 8
´8

ϕpu ´ kqϕpuq du “
ż 8
´8

{ϕpu ´ kqpθqpϕpθq dθ

“
ż 8
´8

|pϕpθq|2 e´ikθ dθ “
ż π

´π

ÿ
nPZ

|pϕpθ ` 2πnq|2 e´ikθ dθ

“ 1

2π

ż π

´π

e´ikθ 2π
ÿ
nPZ

|pϕp´θ ` 2πnq|2 dθ ,

that is,

φϕpθq “ 2π
ÿ
nPZ

|pϕp´θ ` 2πnq|2 , θ P p´π, πq .

Thus, Theorem 4.1 yields the aforementioned classical condition (see, for instance,

[25, p.143]):

0 ă ess inf
θPp´π,πq

ÿ
nPZ

|pϕpθ ` 2πnq|2 ď ess sup
θPp´π,πq

ÿ
nPZ

|pϕpθ ` 2πnq|2 ă 8 .

The following isomorphism between L2p0, 1q and Aa will be crucial along the

chapter:

The isomorphism TU,a

We define the isomorphism TU,a which maps the orthonormal basis te2πinwunPZ
for L2p0, 1q onto the Riesz basis tUnaunPZ for Aa, that is,

TU,a : L2p0, 1q ÝÑ Aa

F “
ÿ
nPZ

αn e
2πinw ÞÝÑ x “

ÿ
nPZ

αn U
na .

The following U -shift property holds: For any F P L2p0, 1q and N P Z, we have

TU,a

´
F e2πiNw

¯
“ UN

`
TU,aF

˘
. (4.2)

The U -systems

For any fixed b P H we define the U -system Lb as the linear operator between H
and the set CpRq of the continuous functions on R given by

H Q x ÞÝÑ Lbx P CpRq such that Lbxptq :“ xx, U tbyH , t P R .
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For any x P Aa and t P R, by using the Plancherel equality for the orthonormal basis

te2πinwunPZ in L2p0, 1q, we have

Lbxptq “ xx, U tbyH “ @ ÿ
nPZ

αn U
na, U tb

D
H “

ÿ
nPZ

αn xU tb, UnayH

“
A
F,

ÿ
nPZ

xU tb, UnayH e2πinw
E
L2p0,1q

“ @
F,Kt

D
L2p0,1q ,

(4.3)

where TU,aF “ x, and the function

Ktpwq :“
ÿ
nPZ

xU tb, UnayH e2πinw “
ÿ
nPZ

Lbapt ´ nq e2πinw

belongs to L2p0, 1q since the sequence
�xU tb, UnayH

(
nPZ belongs to �2pZq for each

t P R; note that the sequence tUnaunPZ is a Riesz basis for Aa.

An expression for the generalized samples

Suppose that s vectors bj P H, j “ 1, 2, . . . , s, are given and consider their

associated U -systems Lj :“ Lbj , j “ 1, 2, . . . , s. Our aim is the stable recovery of any

x P Aa from the sequence of samples
�
Ljxprmq(

mPZ; j“1,2,...s
where r ě 1. To this

end, first we obtain a suitable expression for the samples. For x P Aa let F P L2p0, 1q
such that TU,aF “ x; by using (4.3), for j “ 1, 2, . . . s and m P Z we have

Ljxprmq “
A
F,

ÿ
nPZ

xUrmbj , U
nayH e2πinw

E
L2p0,1q

“
A
F,

ÿ
kPZ

xUkbj , ayH e2πiprm´kqw
E
L2p0,1q

“
A
F,

“ ÿ
kPZ

xa, UkbjyH e´2πikw
‰
e2πirmw

E
L2p0,1q

,

where the change in the summation’s index k :“ rm ´ n has been done. Hence,

Ljxprmq “ @
F, gjpwq e2πirmw

D
L2p0,1q for m P Z and j “ 1, 2, . . . , s , (4.4)

where the function

gjpwq :“
ÿ
kPZ

Ljapkq e2πikw (4.5)

belongs to L2p0, 1q for each j “ 1, 2, . . . , s.

As a consequence of (4.4), the stable recovery of any x P Aa depends on whether

the sequence �
gjpwq e2πirmw

(
mPZ; j“1,2,...s
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forms a frame for L2p0, 1q. First we need to introduce some notations. Namely, con-

sider the s ˆ r matrix of functions in L2p0, 1q

Gpwq : “

»———–
g1pwq g1pw ` 1

r q ¨ ¨ ¨ g1pw ` r´1
r q

g2pwq g2pw ` 1
r q ¨ ¨ ¨ g2pw ` r´1

r q
...

...
. . .

...
gspwq gspw ` 1

r q ¨ ¨ ¨ gspw ` r´1
r q

fiffiffiffifl

“
„
gj

´
w ` k ´ 1

r

¯j
j“1,2,...,s
k“1,2,...,r

(4.6)

and its related constants

αG :“ ess inf
wPp0,1{rq

λminrG˚pwqGpwqs,

βG :“ ess sup
wPp0,1{rq

λmaxrG˚pwqGpwqs ,

where G
˚pwq denotes the transpose conjugate of the matrix Gpwq, and λmin (respec-

tively λmax) the smallest (respectively the largest) eigenvalue of the positive semidefi-

nite matrix G
˚pwqGpwq. Observe that 0 ď αG ď βG ď 8. Notice that in the definition

of the matrix Gpwq we are considering 1-periodic extensions of the involved functions

gj , j “ 1, 2, . . . , s.

A complete characterization of the sequence
�
gjpwq e2πirmw

(
mPZ; j“1,2,...s

in the

space L2p0, 1q is obtained from Lemma 2.3, as a particular case; here the dimension

d “ 1, the number of generators is r “ 1 and the sampling lattice M is an scalar r P N

(see also Refs. [41, 45]):

Lemma 4.1. For the functions gj P L2p0, 1q, j “ 1, 2, . . . , s, consider the associated
matrix Gpwq given in (4.6). Then, the following results hold:

(a) The sequence tgjpwq e2πirnwunPZ; j“1,2,...,s is a complete system for L2p0, 1q if
and only if the rank of the matrix Gpwq is r a.e. in p0, 1{rq.

(b) The sequence tgjpwq e2πirnwunPZ; j“1,2,...,s is a Bessel sequence for L2p0, 1q if
and only if gj P L8p0, 1q (or equivalently βG ă 8). In this case, the optimal
Bessel bound is βG{r.

(c) The sequence tgjpwq e2πirnwunPZ; j“1,2,...,s is a frame for L2p0, 1q if and only if
0 ă αG ď βG ă 8. In this case, the optimal frame bounds are αG{r and βG{r.

(d) The sequence tgjpwq e2πirnwunPZ; j“1,2,...,s is a Riesz basis for L2p0, 1q if and
only if is a frame and s “ r.
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A comment about Lemma 4.1 in terms of the average sampling terminology intro-

duced by Aldroubi et al. in [10] is in order. According to [10] we say that

1. The set tL1,L2, . . . ,Lsu is an r-determining U -sampler for Aa if the only

vector x P Aa, satisfying Ljxprmq “ 0 for all j “ 1, 2, . . . , s and m P Z,

is x “ 0.

2. The set tL1,L2, . . . ,Lsu is an r-stable U -sampler for Aa if there exist positive

constants A and B such that

A}x}2 ď
sÿ

j“1

ÿ
mPZ

|Ljxprmq|2 ď B}x}2 for all x P Aa.

Hence, parts (a) and (c) of Lemma 4.1 can be read, by using (4.4), as follows:

i. The set tL1,L2, . . . ,Lsu is an r-determining U -sampler for Aa if and only if

rankGpwq “ r a.e. in p0, 1q (and hence, necessarily, s ě r).

ii. The set tL1,L2, . . . ,Lsu is an r-stable U -sampler for Aa if and only if

0 ă αG ď βG ă 8 .

An r-determining U -sampler for Aa can distinguish between two distinct elements in

Aa, but the recovery, if any, is not necessarily stable. If the system tL1,L2, . . . ,Lsu is

an r-stable U -sampler for Aa, then any x P Aa can be recovered, in a stable way, from

the sequence of generalized samples
�
Ljxprmq(

mPZ; j“1,2,...,s
, where necessarily the

inequality s ě r holds. Roughly speaking, the operator which maps

Aa Q x ÞÝÑ �
Ljxprmq(

mPZ; j“1,2,...,s
P �2spZq :“ �2pZq ˆ ¨ ¨ ¨ ˆ �2pZq

(s times)

has a bounded inverse.

Having in mind (4.4), from the sequence of samples
�
Ljxprmq(

mPZ; j“1,2,...,s
we

recover F P L2p0, 1q, and by means of the isomorphism TU,a, the vector

x “ TU,aF P Aa. This will be the main goal in the next section:

4.3 Generalized regular sampling in Aa

Along with the characterization of the sequence tgjpwq e2πirnwunPZ; j“1,2,...,s as a

frame in L2p0, 1q, in [41] a family of dual frames are also given: Choose functions hj

in L8p0, 1q, j “ 1, 2, . . . , s, such that“
h1pwq, h2pwq, . . . , hspwq‰Gpwq “ r1, 0, . . . , 0s a.e. in p0, 1q . (4.7)
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It was proven in [41] that the sequence trhjpwq e2πirnwunPZ; j“1,2,...,s is a dual frame

of the sequence tgjpwq e2πirnwunPZ; j“1,2,...,s in L2p0, 1q. In other words, taking into

account (4.4), we have for any F P L2p0, 1q the expansion

F “
sÿ

j“1

ÿ
mPZ

Ljxprmq rhjpwq e2πirmw in L2p0, 1q . (4.8)

This a particular case of Eq. (2.19).

Concerning to the existence of the functions hj , j “ 1, 2, . . . , s, consider the first

row of the r ˆ s Moore-Penrose pseudo inverse G
:pwq of Gpwq given by

G
:pwq :“ “

G
˚pwqGpwq‰´1

G
˚pwq .

Its entries are essentially bounded in p0, 1q since the functions gj , j “ 1, 2, . . . , s, and

det´1
“
G
˚pwqGpwq‰ are essentially bounded in p0, 1q, and (4.7) trivially holds. All

the possible solutions of (4.7) are given by the first row of the r ˆ s matrices given by

HUpwq :“ G
:pwq ` Upwq“Is ´ GpwqG:pwq‰ , (4.9)

where Upwq denotes any r ˆ s matrix with entries in L8p0, 1q, and Is is the identity

matrix of order s.

Applying the isomorphism TU,a in (4.8), for x “ TU,aF P Aa we obtain the

sampling expansion:

x “
sÿ

j“1

ÿ
mPZ

Ljxprmq TU,a

“
rhjp¨q e2πirm ¨‰

“
sÿ

j“1

ÿ
mPZ

LjxprmqUrm
“
TU,aprhjq‰

“
sÿ

j“1

ÿ
mPZ

LjxprmqUrmcj,h in H ,

(4.10)

where cj,h :“ TU,aprhjq P Aa, j “ 1, 2, . . . , s, and we have used the U -shift property

(4.2). Besides, the sequence
�
Urmcj,h

(
mPZ; j“1,2,...,s

is a frame for Aa. In fact, the

following result holds:

Theorem 4.2. Let bj be in H and let Lj be its associated U -system for j “ 1, 2, . . . , s.
Assume that the function gj , j “ 1, 2, . . . , s, given in (4.5) belongs to L8p0, 1q; or
equivalently, βG ă 8 for the associated s ˆ r matrix Gpwq. The following statements
are equivalent:

(a) αG ą 0
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(b) There exists a vector
“
h1pwq, h2pwq, . . . , hspwq‰ with entries in L8p0, 1q satisfy-

ing “
h1pwq, h2pwq, . . . , hspwq‰Gpwq “ r1, 0, . . . , 0s a.e. in p0, 1q .

(c) There exist cj P Aa, j “ 1, 2, . . . , s, such that the sequence
�
Urkcj

(
kPZ; j“1,2,...s

is a frame for Aa, and for any x P Aa the expansion

x “
sÿ

j“1

ÿ
kPZ

LjxprkqUrkcj in H , (4.11)

holds.

(d) There exists a frame
�
Cj,k

(
kPZ; j“1,2,...s

for Aa such that, for each x P Aa the
expansion

x “
sÿ

j“1

ÿ
kPZ

LjxprkqCj,k in H ,

holds.

Proof. We have already proved that (a) implies (b) and that (b) implies (c). Obviously,

(c) implies (d). As a consequence, we only need to prove that (d) implies (a). Applying

the isomorphism T ´1
U,a to the expansion in (d), and taking into account (4.4) we obtain

F “ T ´1
U,ax “

sÿ
j“1

ÿ
kPZ

Ljxprkq T ´1
U,a

`
Cj,k

˘
“

sÿ
j“1

ÿ
kPZ

@
F, gjpwq e2πirmw

D
L2p0,1q T

´1
U,a

`
Cj,k

˘
in L2p0, 1q ,

where the sequence
�
T ´1
U,a

`
Cj,k

˘(
kPZ; j“1,2,...s

is a frame for L2p0, 1q. The sequence�
gjpwq e2πirmw

(
mPZ; j“1,2,...s

is a Bessel sequence in L2p0, 1q since βG ă 8, and

satisfying the above expansion in L2p0, 1q. According to Proposition A.4 the se-

quences
�
T ´1
U,a

`
Cj,k

˘(
kPZ; j“1,2,...s

and
�
gjpwq e2πirkw(

kPZ; j“1,2,...s
form a pair of

dual frames in L2p0, 1q; in particular, by using Lemma 4.1 we obtain that αG ą 0
which concludes the proof.

In case the functions gj , j “ 1, 2, . . . , s are continuous on R, condition (a) in

Theorem 4.2 can be expressed in terms of the rank of the matrix Gpwq; notice that this

occurs, for example, whenever the sequences tLjapkqukPZ, j “ 1, 2, . . . , s, belong to

�1pZq.

Corollary 4.1. Assume that the 1-periodic extension of the functions gj , j “ 1, 2, . . . , s,
given in (4.5) are continuous on R. Then, the following conditions are equivalent:
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(i) rankGpwq “ r for all w P R.

(ii) There exist cj P Aa, j “ 1, 2, . . . , s, such that the sequence
�
Urkcj

(
kPZ; j“1,2,...s

is a frame for Aa, and the sampling formula (4.11) holds for each x P Aa.

Proof. Whenever the functions gj , j “ 1, 2, . . . , s, are continuous on R, the condition

αG ą 0 is equivalent to det
“
G
˚pwqGpwq‰ ‰ 0 for all w P R.

Indeed, if detG˚pwqGpwq ą 0 then the first row of the matrix

G
:pwq :“ rG˚pwqGpwqs´1

G
˚pwq ,

gives a vector rh1, h2, . . . , hss satisfying the statement (b) in Theorem 4.2 and, as a

consequence, αG ą 0.

The reciprocal follows from the fact that det
“
G
˚pwqGpwq‰ ě αr

G
for all w P R.

Since, det
“
G
˚pwqGpwq‰ ‰ 0 is equivalent to rank Gpwq “ r for all w P R, the

result is a consequence of Theorem 4.2.

Whenever the sampling period r equals the number of U -systems s we are in the

presence of Riesz bases, and there exists a unique sampling expansion in Theorem 4.2:

Corollary 4.2. Let bj be in H for j “ 1, 2, . . . , r, i.e., r “ s in Theorem 4.2. Let
Lj be its associated U -system for j “ 1, 2, . . . , r. Assume that the function gj ,
j “ 1, 2, . . . , r, given in (4.5) belongs to L8p0, 1q; or equivalently, βG ă 8 for
the associated r ˆ r matrix Gpwq. The following statements are equivalent:

(1) αG ą 0.

(2) There exists a Riesz basis tCj,kukPZ; j“1,2,...,r such that for any x P Aa the expan-
sion

x “
rÿ

j“1

ÿ
kPZ

LjxprkqCj,k in H (4.12)

holds.

In case the equivalent conditions are satisfied, necessarily there exist cj P Aa, j “
1, 2, . . . , r, such that Cj,k “ Urkcj for k P Z and j “ 1, 2, . . . , r. Moreover, the
interpolation property Lj1cjprkq “ δj,j1 δk,0, where k P Z and j, j1 “ 1, 2, . . . , r,
holds.

Proof. Assume that αG ą 0; since Gpwq is a square matrix, this implies that

ess inf
wPR |detGpwq| ą 0 .
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Therefore, the first row of G´1pwq gives the unique solution rh1pwq, h2pwq, . . . , hrpwqs
of (4.7) with hj P L8p0, 1q for j “ 1, 2, . . . , r.

According to Theorem 4.2, the sequence

tCj,kukPZ; j“1,2,...,r :“ tUrkcjukPZ; j“1,2,...,r ,

where cj “ TU,aprhjq, satisfies the sampling formula (4.12). Moreover, the sequence

trhjpwq e2πirkwukPZ; j“1,2,...,r “ tT ´1
U,a

`
Urkcj

˘ukPZ; j“1,2,...,r

is a frame for L2p0, 1q. Since r “ s, according to Lemma 4.1, it is a Riesz basis.

Hence, tUrkcjukPZ; j“1,2,...,r is a Riesz basis for Aa and (2) is proved.

Conversely, assume now that tCj,kukPZ; j“1,2,...,r is a Riesz basis for Aa satisfying

(4.12). From the uniqueness of the coefficients in a Riesz basis, we get that the interpo-

latory condition pLj1Cj,kqprk1q “ δj,j1δk,k1 holds for j, j1 “ 1, 2, . . . , r and k, k1 P Z.

Since T ´1
U,a is an isomorphism, the sequence tT ´1

U,a

`
Cj,k

˘ukPZ; j“1,2,...,r is a Riesz basis

for L2p0, 1q. Expanding the function gj1 pwq e´2πirk1w with respect to the dual basis of

tT ´1
U,a

`
Cj,k

˘ukPZ; j“1,2,...,r, denoted by tDj,kukPZ; j“1,2,...,r, and having in mind (4.4)

we obtain

gj1 pwq e2πirk1w “
rÿ

j“1

ÿ
kPZ

@
gj1 p¨q e2πirk1¨, T ´1

U,a

`
Cj,k

˘D
L2p0,1qDj,kpwq

“
rÿ

j“1

ÿ
kPZ

Lj1 Cj,kprk1qDj,kpwq “ Dj1,k1 pwq .

Therefore, the sequence tgjpwq e2πirkwukPZ; j“1,2,...,r is the dual basis of the Riesz

basis tT ´1
U,a

`
Cj,k

˘ukPZ; j“1,2,...,r . In particular, it is a Riesz basis for L2p0, 1q, which

implies, according to Lemma 4.1, that αG ą 0, i.e., condition (1). Moreover, the

sequence tT ´1
U,a

`
Cj,k

˘ukPZ; j“1,2,...,r is necessarily the unique dual basis of the Riesz

basis tgjpwq e2πirkwukPZ; j“1,2,...,r. Therefore, this proves the uniqueness of the Riesz

basis tCj,kukPZ; j“1,2,...,r for Aa satisfying (4.12).

4.3.1 Another approach involving the left shift and decimation operators

In a Hilbert space H, the U -invariant subspaces are intimately related to stationary

sequences, in this section we develop another approach to the sampling problem in Aa.

Recall that a sequence s “ tskukPZ is said to be stationary if the inner product

xsm, snyH depends only on the difference m ´ n, for every m,n P Z. Besides, two

stationary sequences s “ tskukPZ and w “ twkukPZ are said to be stationary corre-
lated if

xsm`k, wn`kyH “ xsm, wnyH for all m,n, k P Z,
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and Rs,wpkq :“ xsk, w0yH, for every k P Z defines the corresponding cross-covariance
function. The following result is a well-known characterization of stationary sequences

(see [72]):

Lemma 4.2. To every stationary sequence s “ tsnunPZ in a Hilbert space H there
exists a unique unitary operator U : H Ñ H and s P H such that sn “ Uns for all
n P Z. Conversely every pair pU, sq of a unitary operator U and an s P H defines by
sn “ Uns, n P Z, a stationary sequence s “ tsnunPZ in H.
Moreover, two stationary sequence s and w are stationary correlated if and only if
they are generated by the same unitary operator U , i.e., sn “ Uns and wn “ Unw for
some s, w P H.

Again, the cross-covariance Rs,w functions admits a spectral representation which

is related to the integral representation of the unitary operator U (see [72]). For every

two stationary correlated sequences s “ tsnunPZ, w “ twnunPZ in a Hilbert space H
the cross-covariance function admits a spectral representation

Rs,wpkq “ xsk, w0yH “ 1

2π

ż π

´π

eikθ dμs,wpθq , k P Z , (4.13)

in the form of an integral with respect to a (complex) spectral measure μs,w.

Studying the sequence
�
Urkbj

(
kPZ; j“1,2,...s

in Aa

For bj P Aa, j “ 1, 2, . . . s , consider the sequence
�
Urkbj

(
kPZ; j“1,2,...s

. For

every j “ 1, 2, . . . s, the spectral measure μa,bj
in the integral representation of the

cross-covariance function of the sequences a :“ tUkaukPZ and bj :“ tUkbjukPZ
has no singular part since the sequence tUkaukPZ is a Riesz basis for Aa. Indeed,

according to Theorem 4.1, the spectral measure associated with the auto-covariance

function of the sequence tUkaukPZ has no singular part; then by using the Cauchy-

Schwarz type inequality in [14, p. 125] we get the result.

In the sequel we will use the abridged notation bk,j :“ Urkbj ; our goal in this

section is to study the sequence
�
bk,j

(
kPZ; j“1,2,...s

in Aa in terms of an s ˆ r matrix

Ψa,bpeiθq introduced below. For the sake of completeness we include some needed

calculations borrowed from Ref. [86].

First of all, we have

xUka, bn,jy “ 1

2π

ż π

´π

eipk´rnqθφa,bj
peiθqdθ , (4.14)

where φa,bj
stands for the cross spectral density of the stationary correlated sequences

a :“ tUkaukPZ and bj :“ tUkbjukPZ. Define

Φa,bpeiθq :“ `
φa,b1

peiθq, φa,b2
peiθq, . . . , φa,bs

peiθq˘J .
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In what follows we will use the left-shift operator S defined as

S : L2pTq ÝÑ L2pTqř
kPZ akeikθ ÞÝÑ ř

kPZ ak`1e
ikθ ,

or equivalently, by pSfqpeiθq “ fpeiθqe´iθ, where T :“ teiθ : θ P r´π, πqu denotes

the unidimensional torus.

Also, we will consider the decimation operator Dr, r a positive integer, defined as

Dr : L2pTq ÝÑ L2pTqř
kPZ akeikθ ÞÝÑ ř

kPZ arkeikθ ,

which can equivalently be written as

pDrfqpeiθq “ 1

r

r´1ÿ
k“0

fpei θ`2kπ
r q .

For each l “ 0, 1, . . . , r ´ 1, set the s ˆ 1 matrix of functions on the torus T

Ψ l
a,bpeiθq :“ `

DrS
´lΦa,b

˘peiθq ,
and define the s ˆ r matrix of functions on the torus T

Ψa,bpeiθq :“
´
Ψ0

a,bpeiθq Ψ1
a,bpeiθq . . . . . . Ψ r´1

a,b peiθq
¯
. (4.15)

It is worth to mention that the matrix Ψa,b was explicitly computed in [86] for the

translation and modulation cases in L2pRq (see Section 4.3.2 below).

Next, for any x P Aa, we obtain an expression for the inner products

αn,j :“ xx, Urnbjy , n P Z and j “ 1, 2, . . . , s .

Indeed, writing x “ ř
kPZ xkU

ka where txkukPZ P �2pZq we have:

αn,j “ xx, Urnbjy “
ÿ
kPZ

xkxUka, Urnbjy

“
ÿ
kPZ

xk
1

2π

ż π

´π

eipk´rnqθφa,bj
peiθqdθ

“ 1

2π

ż π

´π

ÿ
kPZ

xke
ikθφa,bj

peiθqe´irnθdθ ,

that is,

αn :“ `
αn,1, αn,2, . . . , αn,s

˘J “ 1

2π

ż π

´π

Φa,bpeiθqXpeiθqe´irnθdθ , (4.16)
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where Xpeiθq :“ ř
kPZ xke

ikθ .

Now, for l “ 0, 1, . . . , r ´ 1, define the sequence xplq :“ txplqk :“ xkr`lukPZ. Thus,

we can write

Xpeiθq “
r´1ÿ
l“0

ÿ
kPZ

xkr`le
ipkr`lqθ “

r´1ÿ
l“0

Xplqpeirθqeilθ , (4.17)

where Xplqpeiθq “ ř
kPZ x

plq
k eikθ .

Using Eq. (4.17) in Eq. (4.16), we obtain

αn “
r´1ÿ
l“0

1

2π

ż π

´π

Φa,bpeiθqXplqpeirθqeilθe´irnθdθ .

After some easy calculations we get

αn “
r´1ÿ
l“0

1

2π

ż π

´π

S´lΦa,bpeiθqXplqpeirθqe´irnθdθ

“
r´1ÿ
l“0

1

2π

ż rπ

´rπ

S´lΦa,bpei θr q
r

Xplqpeiθqe´inθdθ

“
r´1ÿ
l“0

r´1ÿ
k“0

ż 2πpk`1q

2πk

S´lΦa,bpei θr q
2πr

Xplqpeiθqe´inθdθ

“
ż 2π

0

r´1ÿ
l“0

r´1ÿ
k“0

S´lΦa,bpei θ`2πk
r q

2πr
Xplqpeiθqe´inθdθ

“ 1

2π

ż π

´π

r´1ÿ
l“0

pDrS
´lΦa,bqpeiθqXplqpeiθqe´inθdθ .

(4.18)

Defining Cpeiθq :“ ř
kPZ αk e

ikθ, Eq. (4.18) implies that

Cpeiθq “
r´1ÿ
l“0

`
DrS

´lΦa,b

˘peiθqXplqpeiθq ,

which can be written in matrix form as,

Cpeiθq “
´ ÿ

kPZ
αk,1 e

ikθ,
ÿ
kPZ

αk,2 e
ikθ, . . . ,

ÿ
kPZ

αk,s e
ikθ

¯J
“ Ψa,bpeiθq`Xp0qpeiθq, Xp1qpeiθq, . . . , Xpr´1qpeiθq˘J
“ Ψa,bpeiθqrXpeiθq “ pLΨa,b

rXqpeiθq

(4.19)

where LΨa,b
: L2

rpTq ÝÑ L2
spTq denotes the multiplication operator by Ψa,b and

rXpeiθq :“ `
Xp0qpeiθq, Xp1qpeiθq, . . . , Xpr´1qpeiθq˘J . (4.20)
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We denote by L2
rpTq (respectively L2

spTq) the product Hilbert space

L2pTq ˆ ¨ ¨ ¨ ˆ L2pTqloooooooooooomoooooooooooon
r times

(respectively s times) .

Thus,

}Ψa,b
rX}2L2

spTq “ 1

2π

ż π

´π

xΨa,bpeiθqrXpeiθq,Ψa,bpeiθqrXpeiθqyCrdθ

“ 1

2π

ż π

´π

xΨ˚a,bpeiθqΨa,bpeiθqrXpeiθq, rXpeiθqyCrdθ .

(4.21)

The above calculations let us prove the following result:

Theorem 4.3. Let bj P Aa for j “ 1, 2, . . . , s and let Ψa,b be the associated matrix
given in (4.15). Then, the following results hold:

(a) The sequence
�
Urkbj

(
kPZ; j“1,2,...s

is a complete system in Aa if and only if the
rank of the matrix Ψa,bpζq is r a.e. ζ in T.

(b) The sequence
�
Urkbj

(
kPZ; j“1,2,...s

is a Bessel sequence for Aa if and only if there
exists a constant B ă 8 such that

Ψ˚a,bpζqΨa,bpζq ď B Ir a.e. ζ in T. (4.22)

(c) The sequence
�
Urkbj

(
kPZ; j“1,2,...s

is a frame for Aa if and only if there exist
constants 0 ă A ď B ă 8 such that

A Ir ď Ψ˚a,bpζqΨa,bpζq ď B Ir a.e. ζ in T. (4.23)

(d) The sequence
�
Urkbj

(
kPZ; j“1,2,...s

is a Riesz basis for Aa if and only if it is a
frame and s “ r.

Proof. To prove paq, assume that there exists a set Ω Ď T with positive measure such

that rank
“
Ψa,bpζq‰ ă r for each ζ P Ω. Then, there exists a measurable function

vpζq, ζ P Ω, such that Ψa,bpζqvpζq “ 0 and }vpζq}L2
rpTq “ 1 in Ω. This function can

be constructed as in [67, Lemma 2.4]. Define rV P L2
rpTq such that rVpζq “ vpζq if

ζ P Ω, and rVpζq “ 0 if ζ P TzΩ. Hence, from (4.19) we obtain that the system is not

complete.

Conversely, if the system is not complete, by using (4.19) we obtain a rVpζq dif-

ferent from 0 in a set with positive measure such that Ψa,bpζqrVpζq “ 0. Thus

rank Ψa,bpζq ă r on a set with positive measure.
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To prove pbq, we keep in mind that tUkaukPZ is a Riesz basis for Aa, the mapping

T : �2pZq Ñ Aa, given by T txkukPZ “ x “ ř
kPZ xkU

ka is bijective and there exist

two constants 0 ă ma ď Ma ă 8 such that

ma}txku}22 ď }T txku}2H ď Ma}txku}22 . (4.24)

Assume first that (4.22) is satisfied. It follows from (4.19) and (4.21) that

}Ψa,b
rX}2L2

spTq ď B}rX}2L2
rpTq . (4.25)

By construction }Ψa,b
rX}2L2

spTq “ řs
j“1

ř
kPZ |xx, bk,jy|2 and }rX}2L2

rpTq “ }txkukPZ}22 .

Using (4.24), it follows from (4.25) that

sÿ
j“1

ÿ
kPZ

|xx, bk,jy|2 ď B

ma
}x}2H

Conversely, assume that tbkjukPZ; j“1,2,...s is a Bessel sequence for Aa, then there

exists 0 ă B1 ă 8 such that
sÿ

j“1

ÿ
kPZ

|xx, bk,jy|2 ď B1}x}2H .

Using (4.24), this implies

}Ψa,b
rX}2L2

spTq ď B1Ma}rX}2L2
rpTq

for all rX P L2
rpTq. Inserting the right hand side of (4.21) for }Ψa,b

rX}2L2
spTq, it is

straightforward to see that (4.22) holds with B “ B1Ma.

The proof of pcq is completed proceeding as in pbq.

To prove pdq consider the mapping

S : Aa ÝÑ �2spZq
x ÞÝÑ txx, bk,jyukPZ; j“1,2,...s .

According to (4.19), the mapping S is isometric equivalent to LΨa,b
, and assuming that

tbk,jukPZ; j“1,2,...s is a frame, it is a Riesz basis if and only if S is surjective.

First, if tbk,jukPZ; j“1,2,...s is a Riesz basis, then it is a frame and S is surjective.

Applying (a) yields that LΨa,b
is bijective, and therefore LΨ̊a,b

“ LΨ˚
a,b

is bijective.

Hence, rankrΨa,bpζqΨ˚a,bpζqs is s for almost every ζ in T so

r “ rankrΨ˚a,bpζqΨa,bpζqs “ rankrΨa,bpζqΨ˚a,bpζqs “ s,

and finally s “ r.

Conversely, if tbk,jukPZ; j“1,2,...s is a frame and s “ r, (a) implies that Ψa,bpζq
is invertible for almost every ζ in T, which implies that LΨa,b

is surjective, then S is

surjective and tbk,jukPZ; j“1,2,...s is a Riesz basis.
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The following lemma will allow us to restate Theorem 4.3:

Lemma 4.3. Let Gpζq be an s ˆ r matrix with entries in L2pTq, and consider the
constants

AG :“ ess inf
ζPT λmin

“
G˚pζqGpζq‰ ,

BG :“ ess sup
ζPT

λmax

“
G˚pζqGpζq‰ ,

where λmin (respectively λmax) denotes the smallest (respectively the largest) eigen-
value of the positive semidefinite matrix G˚pζqGpζq. Then,

(a) The matrix Gpζq has essentially bounded entries on T if and only if BG ă 8.

(b) There exist constants 0 ă A ď B ă 8 such that

A Ir ď G˚pζqGpζq ď B Ir , a.e. ζ P T

if and only if
0 ă AG ď BG ă 8 .

Proof. The first part of lemma follows from that λmax

“
G˚pζqGpζq‰ “ }Gpζq}22, and

max
i, j

|aij | ď }A}2 ď ?
mn max

i, j
|aij | for any matrix A “ “

aij
‰
i“1,2...,m
j“1,2...,n

,

where }A}2 denotes the spectral norm of the matrix A (see, for instance, Ref. [64])

Now we prove the second part of the lemma. Since G˚pζqGpζq ď B Ir means

that xBx ´ G˚pζqGpζqx, xy ě 0 for all x P C
r, in particular, taking an eigenvector

x associated to the largest eigenvalue λmax of G˚pζqGpζq such that }x} “ 1, one

has that B ě λmaxpG˚pζqGpζqq. Hence, B ě ess supζPT λmax

“
G˚pζqGpζq‰. In a

similar way, A Ir ď G˚pζqGpζq implies that A ď ess infζPT λmin

“
G˚pζqGpζq‰.

Conversely, Rayleigh-Ritz theorem [64, p. 176] yields that

λmax

“
G˚pζqGpζq‰ “ max

xPCr

x˚G˚pζqGpζq
x˚x

“ max
xPCr

xG˚pζqGpζqx, xy
xx, xy

Thus, ess supζPT λmax

“
G˚pζqGpζq‰ “ BG implies that

max
xPCr

xG˚pζqGpζqx, xy
xx, xy ď BG , a.e. ζ P T .

In other words, BGIr ě G˚pζqGpζq; analogously, G˚pζqGpζq ě AGIr.

It is easy to deduce from the proof that AG and BG are the optimal constants A ą 0
and B ă 8 satisfying the inequalities A Ir ď G˚pζqGpζq ď B Ir , a.e. ζ P T.
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As a consequence of Lemma 4.3, statements pbq and pcq in Theorem 4.3 can be

restated in terms of the constants

AΨ :“ ess inf
ζPT λmin

“
Ψ˚a,bpζqΨa,bpζq‰ ;

BΨ :“ ess sup
ζPT

λmax

“
Ψ˚a,bpζqΨa,bpζq‰ (4.26)

as:

Theorem 4.4. Let bj P Aa for j “ 1, 2, . . . , s , and let Ψa,b be the associated matrix
given in (4.15) and its related constants (4.26). Then, the following results hold:

(i) The sequence
�
Urkbj

(
kPZ; j“1,2,...s

is a Bessel sequence for Aa if and only if the
constant BΨ ă 8.

(ii) The sequence
�
Urkbj

(
kPZ; j“1,2,...s

is a frame for Aa if and only if the constants
AΨ and BΨ satisfy 0 ă AΨ ď BΨ ă 8. In this case, AΨ and BΨ are the
optimal frame bounds for

�
Urkbj

(
kPZ; j“1,2,...s

.

The frame expansion

Define the r ˆ s matrix of functions on the torus T

Γ peiθq :“
ÿ
kPZ

Γk e
ikθ “ “

Ψ˚a,bpeiθqΨa,bpeiθq‰´1
Ψ˚a,bpeiθq (4.27)

It is worth to mention that the following procedure also works with any left-inverse of

the matrix Ψa,bpeiθq; see Eq. (4.31) below.

Firstly, the following expansion involving the inner products αn,j “ xx, Urnbjy of

x P Aa holds:

Lemma 4.4. Assume that the matrix Ψa,bpζq has essentially bounded entries on T.
For any x “ ř

kPZ xkU
ka P Aa we have

rxn “
ÿ
kPZ

Γk αn´k ,

where rxn denotes the n-th Fourier coefficient of the function rXpeiθq defined in (4.20),
and the sequence tαnunPZ is given in (4.16).

Proof. Indeed,

rxn “ 1

2π

ż π

´π

rXpeiθqe´inθdθ “ 1

2π

ż π

´π

` ÿ
kPZ

Γke
ikθ

˘
Ψa,bpeiθqrXpeiθqe´inθdθ

“
ÿ
kPZ

Γk
1

2π

ż π

´π

Ψa,bpeiθqrXpeiθqe´ipn´kqθdθ “
ÿ
kPZ

Γk αn´k .
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At this point, we are ready to prove the following expansion result:

Theorem 4.5. Let bj P Aa for j “ 1, 2, . . . , s , and assume that the associated matrix
Ψa,b given in (4.15) has essentially bounded entries on T, i.e., BΨ ă 8. The following
statements are equivalent:

(i) The constant AΨ ą 0.

(ii) There exist cj P Aa, j “ 1, 2, . . . , s, such that the sequence
�
Urkcj

(
kPZ; j“1,2,...s

is a frame for Aa, yielding, for any x P Aa, the expansion

x “
sÿ

j“1

ÿ
kPZ

xx, UrkbjyUrkcj in H .

In case the equivalent conditions hold,
�
Urkbj

(
kPZ; j“1,2,...s

and
�
Urkcj

(
kPZ; j“1,2,...s

form a pair of dual frames in Aa.

Proof. First we prove that piq implies piiq. Observe that x “ ř
kPZ xk U

ka can be

written as
ř

nPZ rxJn ran where ran “ `
Unra, Unr`1a, ¨ ¨ ¨ , Unr`r´1a

˘J
. Next,

x “
ÿ
nPZ

rxJnran “
ÿ
nPZ

` ÿ
kPZ

Γkαn´k

˘Jran “
ÿ
nPZ

ÿ
kPZ

αJn´kΓ
J
k ran

“
ÿ
nPZ

ÿ
kPZ

αJnΓJk ran`k “
ÿ
nPZ

αJn
` ÿ
kPZ

ΓJk ran`k

˘ (4.28)

For l P Z and j “ 1, 2, . . . , s define cl,j :“ Urlcj , where`
c1, c2, . . . , cs

˘J “
ÿ
kPZ

ΓJk rak ,
and bl,j :“ Urlbj . Then Eq. (4.28) implies

x “
ÿ
nPZ

αJn
` ÿ
kPZ

ΓJk ran`k

˘ “
ÿ
nPZ

αJnUnr
´ ÿ

kPZ
ΓJk rak¯

“
sÿ

l“1

ÿ
nPZ

xx, bn,l y cn,l in H .

(4.29)

In order to be allowed to use Proposition A.4, we have to prove that the above con-

structed sequence tck,jukPZ; j“1,2,...,s is a Bessel sequence for Aa. To this end, we
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compute the corresponding Ψa,c matrix for c :“ tck,jukPZ; j“1,2,...,s. Setting rΓJk sij “
akij , we obtain

xUka, cn,jy “
ÿ
lPZ

rÿ
i“1

xUka, Unr
`
alji U

lr`ir`i´1a
˘y

“
ÿ
lPZ

rÿ
i“1

alji xUk´nr´lr´i`1a, ay

“
ÿ
lPZ

rÿ
i“1

alji
1

2π

ż π

´π

eipk´nr´lr´i`1qθφapeiθqdθ .

Now, ¨̊
˚̋̊xUka, cn,1y

xUka, cn,2y
...

xUka, cn,sy

‹̨‹‹‚“
ÿ
lPZ

Γ
J
l

¨̊
˚̋̊

1
2π

şπ
´π

eipk´nr´lrqθφapeiθqdθ
1
2π

şπ
´π

eipk´nr´lr´1qθφapeiθqdθ
...

1
2π

şπ
´π

eipk´nr´lr´r`1qθφapeiθqdθ

‹̨‹‹‚

“ 1

2π

ż π

´π

ÿ
lPZ

Γ
J
l e
´ilrθ

¨̊
˚̋̊ eipk´nrqθ

eipk´nr´1qθ
...

eipk´nr´r`1qθ

‹̨‹‹‚φapeiθqdθ

“ 1

2π

ż π

´π

eipk´nrqθΓ ˚peirθqrepeiθqφapeiθqdθ ,

where repeiθq :“ `
1, e´iθ, . . . , e´ipr´1qθ˘J. Hence, we have deduced that

Φa,cpeiθq “ Γ ˚peirθqrepeiθqφapeiθq .
Therefore, for l “ 0, 1, . . . , r ´ 1, we have

Ψ l
a,cpeiθq :“ DrS

´l
“
Γ ˚peirθqrepeiθqφapeiθq‰ ,

and consequently, the s ˆ r matrix

Ψa,cpeiθq :“
´
Ψ0

a,cpeiθq,Ψ1
a,cpeiθq, . . . ,Ψ r´1

a,c peiθq
¯

can be written as

Ψa,cpeiθq “ Dr

“
φapeiθqΓ ˚peirθqrEpeiθq‰ , (4.30)

where

rEpeiθq :“

¨̊
˚̋̊ 1 eiθ ¨ ¨ ¨ eipr´1qθ

e´iθ 1 ¨ ¨ ¨ eipr´2qθ
...

...
. . .

...

e´ipr´1qθ e´ipr´2qθ ¨ ¨ ¨ 1

‹̨‹‹‚.
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As a consequence of Theorem 4.4, the proof ends if we prove that the matrix Ψa,cpeiθq
has essentially bounded entries: Clearly, the decimation operator Dr sends bounded

functions into bounded functions; Theorem 4.1 implies that φa is bounded so, taking

into account (4.30) it remains to check that the matrix Γ ˚peirθq has essentially bounded

entries.

Now, since

Γ ˚peirθq “ Ψa,bpeirθq“Ψ˚a,bpeirθqΨa,bpeirθq‰´1
,

the lower bound condition pcq in Theorem 4.3 and Lemma 4.3 imply that the matrix“
Ψ˚a,bpeirθqΨa,bpeirθq‰´1

has bounded entries, and therefore the matrix Γ ˚peirθq has

bounded entries. We have shown that Ψa,cpeiθq has bounded entries, then Theorem 4.4,

part paq and Lemma 4.3 guarantee that the sequence tck,jukPZ; j“1,2,...,s is a Bessel

sequence; then, the sequences tbk,jukPZ; j“1,2,...,s and tck,jukPZ; j“1,2,...,s form a pair

of dual frames in Aa (see A.4).

Finally, condition piiq implies condition piq. According to Proposition A.4, the

sequence
�
Urkbj

(
kPZ; j“1,2,...s

is a frame for Aa since it is a Bessel sequence and the

expansion in (ii) holds. By using Theorem 4.4 we obtain that AΨ ą 0.

It is worth to observe that the analysis done in Theorem 4.2 provides a whole family

of dual frames for the sequence
�
Urkbj

(
kPZ; j“1,2,...s

. In fact, everything works if we

replace Γ peiθq in (4.27) by any matrix of the form,

ΓUpeiθq :“ Ψ :a,bpeiθq ` Upeiθq“Is ´ Ψa,bpeiθqΨ :a,bpeiθq‰ , (4.31)

where Upeiθq is any r ˆ s matrix with entries in L8pTq, and Ψ :a,b denotes the Moore-

Penrose pseudo inverse Ψ :a,bpeiθq :“ rΨ˚a,bpeiθqΨa,bpeiθqs´1Ψ˚a,bpeiθq. Note that we

need essentially bounded entries in the matrix ΓUpeiθq since the multiplication operator

MF : f ÞÑ Ff in L2pTq is well-defined (and consequently bounded) if and only if

F P L8pTq.

Notice that if s “ r, we have Ψ :a,b “ Ψ´1
a,b which implies a unique ΓU, and we are

in presence of a pair of dual Riesz bases. In fact, the following result holds:

Corollary 4.3. Let bj P Aa for j “ 1, 2, . . . , r , i.e., r “ s in Theorem 4.2. Assume
that the square matrix Ψa,b given in (4.15) has entries essentially bounded on T, i.e.,
BΨ ă 8. The following statements are equivalent:

(a) The constant AΨ ą 0.

(b) There exists a Riesz basis tCk,jukPZ; j“1,2,...s such that for any x P Aa the expan-
sion

x “
sÿ

j“1

ÿ
kPZ

xx, UrkbjyCk,j in H

holds.
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In case the equivalent conditions are satisfied, necessarily there exist cj P Aa, j “
1, 2, . . . , r, such that Ck,j “ Urkcj for k P Z and j “ 1, 2, . . . , r. Moreover, the
sequences

�
Urkcj

(
kPZ; j“1,2,...s

and
�
Urkbj

(
kPZ; j“1,2,...s

are dual Riesz bases in Aa,
and the interpolation property xcj , Urkbj1 y “ δj,j1 δk,0, where k P Z and j, j1 “
1, 2, . . . , r, holds.

Proof. To prove paq ñ pbq we use Theorem 4.2; whenever 0 ă AΨ ď BΨ ă 8 there

exist cj P Aa, j “ 1, 2, . . . , s, such that the sequence
�
Urkcj

(
kPZ; j“1,2,...s

is a frame

for Aa and, for any x P Aa the expansion

x “
sÿ

j“1

ÿ
kPZ

xx, UrkbjyUrkcj in H ,

holds. Actually, from Theorem 4.3 we get that r “ s implies that
�
Urkbj

(
kPZ; j“1,2,...s

is a Riesz basis, and consequently, tUrkcjukPZ; j“1,2,...s is indeed its dual Riesz basis.

The converse follows easily from the fact that if tCk,jukPZ; j“1,2,...s is a Riesz basis,

then pbq implies that
�
Urkbj

(
kPZ; j“1,2,...s

is its dual Riesz basis; hence, Theorem

4.3 provides AΨ ą 0. The interpolation property comes out from the biorthogonal

condition of a pair of dual Riesz bases.

Closing this section it is worth to mention that the results stated and proved in this

subsection mathematically enrich some of the remarkable results concerning regular

sampling contained in the interesting Ref. [86]. Here we have assumed only one gen-

erator a P H and that bj P Aa for all j “ 1, 2, . . . , s. If bj R Aa for some j, see

the additional remarks see the next section. The case of several generators al P H,

l “ 1, 2, . . . , L , can be essentially treated in the same way.

4.3.2 Some comments on the sequence
�
Urkbj

(
kPZ; j“1,2,...s

Concerning Theorem 4.2, more can be said about the sequence�
Urkbj

(
kPZ; j“1,2,...s

, where the vectors bj P H define the U -systems Lj ” Lbj ,

j “ 1, 2, . . . , s. Having in mind (4.4) and the isomorphism TU,a, we obtain that

αG

r
}TU,a}´2}x}2 ď

sÿ
j“1

ÿ
kPZ

|xx, Urkbjy|2 ď βG

r
}T ´1

U,a}2}x}2 for all x P Aa .

(4.32)

• In case that bj P Aa for each j “ 1, 2, . . . , s, we derive that
�
Urkbj

(
kPZ; j“1,2,...s

is a frame for Aa, and it is dual to the frame
�
Urkcj

(
kPZ; j“1,2,...s

in Aa. Thus,

the sampling expansion (4.11) is nothing but a frame expansion in Aa.
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• In case that some bj R Aa, the sequence
�
Urkbj

(
kPZ; j“1,2,...s

is not contained in

Aa. However, inequalities (4.32) hold. Therefore, the sequence�
Urkbj

(
kPZ; j“1,2,...s

is a pseudo-dual frame for the frame
�
Urkcj

(
kPZ; j“1,2,...s

in Aa (see [76, 77]). Denoting by PAa
the orthogonal projection onto Aa, we

derive from (4.32) that the sequence
�
PAa

`
Urkbj

˘(
kPZ; j“1,2,...s

is a dual frame

of
�
Urkcj

(
kPZ; j“1,2,...s

in Aa.

• The sequence
�
Urkbj

(
kPZ; j“1,2,...s

will be a Riesz basis or a pseudo-Riesz basis

for Aa whenever r “ s.

Translation and Modulation cases

We can notice that in the subsection 4.3.1 the information which the operator U
provides is contained in the spectral density of the representation (4.14). Now, we

are going to deduce these densities for the, by far, most famous examples of sampling

operators.

Consider the translation operator, T defined as T : fpuq ÞÑ fpu ´ 1q in L2pRq,

then for f, g P L2pRq and we have

xT k f, gyL2pRq “
ż 8
´8

fpu ´ kq gpuq du “
´
fp´¨q ˚ gp¨q

¯
pkq

“ 1?
2π

ż 8
´8

{´
fp´¨q ˚ gp¨q

¯
pwq eikw dw

“ 1?
2π

ż 8
´8

?
2π pfp´wq pfp´wq eikw dw

“
ż 8
´8

eikw pfp´wq pgp´wq dw

“
ÿ
nPZ

ż 2πn`2π

2πn

eikw pfp´wq pgp´wq dw

“
ÿ
nPZ

ż 2π

0

eikw pfp´w ` 2πnq pgp´w ` 2πnq dw

“
ż 2π

0

eikw
ÿ
nPZ

pfp´w ` 2πnq pgp´w ` 2πnq dw .

Then the cross spectral density associated to the sequences tT kfukPZ and tT kgukPZ is

φf,gpwq “ 2π
ÿ
nPZ

pfp´w ` 2πnq pgp´w ` 2πnq .

For the modulation operator, M defined as M : fpuq ÞÑ eiufpuq in L2pRq is
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simpler; indeed, for f, g P L2pRq and we have

xMk f, gyL2pRq “
ż 8
´8

eikufpuq gpuq du

“
ÿ
nPZ

ż 2πn`2π

2πn

eikufpuq gpuq du

“
ÿ
nPZ

ż 2π

0

eikufpu ` 2πnq gpu ` 2πnq du

“
ż 2π

0

eiku
ÿ
nPZ

fpu ` 2πnq gpu ` 2πnq du

“
ż π

´π

eiku
ÿ
nPZ

fpu ` 2πnq gpu ` 2πnq du .

In this case the cross spectral density is

φf,gpwq “ 2π
ÿ
nPZ

fpu ` 2πnq gpu ` 2πnq .

As a final remark we consider worth to mention that in the main motivation of

this approach [86], the authors explicitly compute the matrix given in (4.15) for the

translation and modulation operators. The entry in the m-th row and l-th column of the

matrix Ψ for the translation case, adapted to our setting, is

rΨpeiθqsm,l “ 1

r

r´1ÿ
k“0

eilp
θ`2kπ

r q ÿ
nPZ

paˆ2πn ´ 2kπ

r
´ θ

r

˙pbm`1

ˆ
2πn ´ 2kπ

r
´ θ

r

˙
and for the modulation case

rΨpeiθqsm,l “ 1

r

r´1ÿ
k“0

eilp
θ`2kπ

r q ÿ
nPZ

a

ˆ
2πn ` 2kπ

r
` θ

r

˙
bm`1

ˆ
2πn ` 2kπ

r
` θ

r

˙
in both cases m “ 0, 1, . . . , s´1 and l “ 0, 1, . . . , r´1, and the functions tbjuj“1,2...,s

belong to L2pRq as well as the generator a.

4.3.3 Sampling formulas with prescribed properties

The sampling formula (4.11) can be thought as a filter-bank. Indeed, assume that

for j “ 1, 2, . . . , s we have

cj,h “ TU,aprhjq “ r
ÿ
nPZ

phjpnqUna
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where phjpnq “
ż 1

0

hjpwq e´2πinwdw , n P Z .

Substituting in (4.11), after the change of summation index m :“ rk ` n we obtain

x “
ÿ
mPZ

! sÿ
j“1

ÿ
kPZ

rLjxprkqphjpm ´ rkq
)
Uma ,

that is, the relevant data is the output of a filter-bank:

αm :“
sÿ

j“1

ÿ
kPZ

rLjxprkqphjpm ´ rkq , m P Z .

where the input is the given samples and the impulse responses depends on the sam-

pling vectors cj,h, j “ 1, 2, . . . , s.

In the oversampling setting, i.e., s ą r, according to (4.9) there exist infinitely

many sampling vectors cj,h, j “ 1, 2, . . . , s, for which the sampling formula (4.11)

holds. A natural question is whether we can choose the sampling vectors cj,h, j “
1, 2, . . . , s, with prescribed properties.

For instance, a challenging problem is to ask under what conditions we are in the

presence of a FIR (finite impulse response) filter-bank; i.e,

cj,h “ r
ÿ
finite

phjpnqUna , j “ 1, 2, . . . , s ,

or equivalently, when the functions hj , j “ 1, . . . , s, are 2π-periodic trigonomet-

ric polynomials. Instead, we deal with Laurent polynomials by using the variable

z “ e2πiw, that is,

gjpzq :“
ÿ
kPZ

Ljapkq zk , j “ 1, 2, . . . , s .

We introduce the s ˆ r matrix

Gpzq : “

»———–
g1pzq g1pzW q ¨ ¨ ¨ g1pzW r´1q
g2pzq g2pzW q ¨ ¨ ¨ g2pzW r´1q
...

...
. . .

...
gspzq gspzW q ¨ ¨ ¨ gspzW r´1q

fiffiffiffifl

“
”
gj
`
zW k

˘ı
j“1,2,...,s
k“0,1,...,r´1

,

where W :“ e2πi{r . In case the functions gjpzq, j “ 1, 2, . . . , s, are Laurent poly-

nomials, the matrix Gpzq has Laurent polynomials entries. Besides, the relationship

Gpwq “ Gpe2πiwq, w P p0, 1q, holds.
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So that, we are interested in finding Laurent polynomials hjpzq, j “ 1, 2 . . . , s,

satisfying “
h1pzq, h2pzq, . . . , hspzq‰Gpzq “ r1, 0, . . . , 0s .

Thus, the trigonometric polynomials hjpwq :“ hjpe2πiwq, j “ 1, 2, . . . , s , satisfy

(4.7), and the corresponding reconstruction vectors cj,h “ TU,aprhjq, j “ 1, 2, . . . , s,

can be expanded in Aa with just a finite number of terms. Namely,

cj,h “ r
ÿ
finite

phjpnqUna ,

where

hjpzq “
ÿ
finite

phjpnq zn , j “ 1, 2, . . . , s .

The following result holds:

Theorem 4.6. Assume that the sequences
�
Ljapkq(

kPZ, j “ 1, 2, . . . , s, contain only
a finite number of nonzero terms. Then, there exists a vector

hpzq :“ rh1pzq, h2pzq, . . . , hspzqs
whose entries are Laurent polynomials, and satisfying

hpzqGpzq “ r1, 0, . . . , 0s
if and only if

rank Gpzq “ r for all z P Czt0u .

Proof. This result is a consequence of the next lemma which proof can be found in

[125, Theorems 5.1 and 5.6]:

Lemma 4.5. Let Gpzq be an sˆr matrix whose entries are Laurent polynomials. Then,
there exists an rˆs matrix Hpzq whose entries are also Laurent polynomials satisfying
HpzqGpzq “ Ir if and only if

rankGpzq “ r for all z P Czt0u .

Analogously we can consider the case where the coefficients of the reconstruction

vectors cj,h “ r
ř

nPZ phjpnqUna, j “ 1, 2, . . . , s, have exponential decay, i.e., there

exist C ą 0 and q P p0, 1q such that

|phjpnq| ď Cq|n| , n P Z , j “ 1, 2, . . . , s .

Assuming that the sequences
�
Ljapkq(

kPZ, j “ 1, 2, . . . , s, have exponential decay

then, we can find reconstruction vectors cj,h such that the sequences tphjpnqunPZ, j “
1, 2, . . . , s, have exponential decay if and only if rank Gpzq “ r for all z P C such that

|z| “ 1. For the details, see [46] and references therein.
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4.3.4 Asymmetric sampling

This subsection is based on the recent work [69]; there the authors deal with an

asymmetric multi-channel sampling problem. They also use a Fourier type duality and

here we extend their results to the U -sampling framework; the computations perfectly

fit to our more general setting.

An expression for the generalized asymmetric samples

Suppose that s vectors bj P H, j “ 1, 2, . . . , s, are given and consider their asso-

ciated U -systems Lj :“ Lbj , j “ 1, 2, . . . , s. Our aim is the stable recovery of any

x P Aa from the sequence of asymmetric samples�
Ljxpσj ` rjmq(

mPZ; j“1,2,...s

where σj P R and rj P N. To this end, first we obtain a suitable expression for the

above samples. Notice here that the samples are no longer taken on integer numbers,

then we should consider the operator U to be included in a continuous group of unitary

operators tU tutPR in H.

For x P Aa let F P L2p0, 1q such that TU,aF “ x; by using (4.3), for j “ 1, 2, . . . s
and m P Z we have

Ljxpσj ` rjmq “
A
F,

ÿ
nPZ

xUσj`rjmbj , U
nayH e2πinw

E
L2p0,1q

“
A
F,

ÿ
kPZ

xUσj`kbj , ayH e2πiprjm´kqw
E
L2p0,1q

“
A
F,

“ ÿ
kPZ

xa, Uσj`kbjyH e´2πikw
‰
e2πirjmw

E
L2p0,1q

,

where the change in the summation’s index k :“ rjm ´ n has been done. Hence,

Ljxpσj ` rjmq “ @
F, gjpwq e2πirjmw

D
L2p0,1q for m P Z and j “ 1, 2, . . . , s ,

(4.33)

where the function

gjpwq :“
ÿ
kPZ

Ljapσj ` kq e2πikw (4.34)

belongs to L2p0, 1q for each j “ 1, 2, . . . , s.

As a consequence of (4.33), the stable recovery of any x P Aa depends on whether

the sequence
�
gjpwq e2πirjmw

(
mPZ; j“1,2,...s

forms a frame for L2p0, 1q.

Following [69] we have�
gjpwq e2πirjmw

(
mPZ; j“1,2,...s

“ �
gj,nj pwq e2πirmw

(
mPZ; j“1,2,...s;nj“1,2,...,r{rj
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where r :“ lcmtrj : j “ 1, 2, . . . , su and gj,nj
pwq :“ gjpwq e2πirjpnj´1qw.

Let D be the unitary operator

D : L2p0, 1q ÝÑ L2
rp0, 1{rq

F ÞÝÑ DF ,

where

DF pwq :“
´
F pwq, F pw ` 1

r
q, . . . , F pw ` r ´ 1

r
q
¯J

, w P p0, 1{rq.

We also consider the
`řs

j“1
r
rj

˘ ˆ r matrix on p0, 1{rq

Gpwq :“
”
Dg1,1pwq . . . Dg1, r

r1
pwq . . . Dgs,1pwq . . . Dgs, r

rs
pwq

ıJ
(4.35)

and its related constants

αG : “ ess inf
wPp0,1{rq

λminrG˚pwqGpwqs,

βG : “ ess sup
wPp0,1{rq

λmaxrG˚pwqGpwqs ,

where G
˚pwq denotes the transpose conjugate of the matrix Gpwq, and λmin (respec-

tively λmax) the smallest (respectively the largest) eigenvalue of the positive semidefi-

nite matrix G
˚pwqGpwq. Observe that 0 ď αG ď βG ď 8. Notice that in the definition

of the matrix Gpwq we are considering 1-periodic extensions of the involved functions

gj , j “ 1, 2, . . . , s.

Proceeding as in Section 4.2 we state a complete characterization of the sequence�
gjpwq e2πirjmw

(
mPZ; j“1,2,...s

in L2p0, 1q .
The result is obtained from Lemma 2.3, as a particular case; here the dimension d “ 1,

the number of generators is r “ 1 and the sampling lattice M is now a collection of

scalars trjuj“1,2,...s Ă N:

Lemma 4.6. For the functions gj P L2p0, 1q, j “ 1, 2, . . . , s, consider the associated
matrix Gpwq given in (4.6). Then, the following results hold:

(a) The sequence tgjpwq e2πirjnwunPZ; j“1,2,...,s is a complete system for L2p0, 1q if
and only if the rank of the matrix Gpwq is r a.e. in p0, 1{rq.

(b) The sequence tgjpwq e2πirjnwunPZ; j“1,2,...,s is a Bessel sequence for L2p0, 1q if
and only if gj P L8p0, 1q (or equivalently βG ă 8). In this case, the optimal
Bessel bound is βG{r.
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(c) The sequence tgjpwq e2πirjnwunPZ; j“1,2,...,s is a frame for L2p0, 1q if and only if
0 ă αG ď βG ă 8. In this case, the optimal frame bounds are αG{r and βG{r.

(d) The sequence tgjpwq e2πirjnwunPZ; j“1,2,...,s is a Riesz basis for L2p0, 1q if and
only if is a frame and

řs
j“1

1
rj

“ 1.

Asymmetric regular sampling in Aa

Once we have characterized the sequence tgjpwq e2πirjnwunPZ; j“1,2,...,s as a frame

in L2p0, 1q we can mimic the technique of Section 4.3, that is: Choose in L8p0, 1q
functions hj,nj

with, j “ 1, 2, . . . , s and 1 ď nj ď r
rj

, such that“
h1,1pwq, . . . , h1, r

r1
pwq, . . . , hs,1pwq . . . , hs, r

rs
pwq‰Gpwq “ r1, 0, . . . , 0s . (4.36)

a.e. in p0, 1q. Again we have that the sequence�
rhj,nj pwq e2πirmw

(
mPZ; j“1,2,...s;nj“1,2,...,r{rj

is a dual frame of the sequence�
gj,nj

pwq e2πirmw
(
mPZ; j“1,2,...s;nj“1,2,...,r{rj .

In other words, taking into account (4.33), we have for any F P L2p0, 1q the expansion

F “
sÿ

j“1

r
rjÿ

lj“1

ÿ
kPZ

Ljx
`
σj ` rk ` rjplj ´ 1q˘ rhj,lj pwq e2πirkw in L2p0, 1q . (4.37)

We have used,

Ljxpσj ` rjmq “ @
F, gjpwq e2πirjmw

D
L2p0,1q “ @

F, gj,lj pwq e2πirkwD
L2p0,1q ,

with m “ k r
rj

` lj ´ 1, j “ 1, 2, . . . , s and 1 ď lj ď r
rj

.

This time the existence of the functions hj,nj
, j “ 1, 2, . . . , s; 1 ď nj ď r

rj
,

depends on the first row of the r ˆ `řs
j“1

r
rj

˘
Moore-Penrose pseudo-inverse G

:pwq
of Gpwq given in this case by

G
:pwq :“ “

G
˚pwqGpwq‰´1

G
˚pwq .

Its entries are essentially bounded in p0, 1q since the functions gj,nj , j “ 1, 2, . . . , s;

1 ď nj ď r
rj

, and det´1
“
G
˚pwqGpwq‰ are essentially bounded in p0, 1q, and (4.36)

trivially holds. All the possible solutions of (4.36) are given by the first row of the

r ˆ `řs
j“1

r
rj

˘
matrices given by

HUpwq :“ G
:pwq ` Upwq“I ´ GpwqG:pwq‰ , (4.38)
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where Upwq denotes any r ˆ s matrix with entries in L8p0, 1q, and I is the identity

matrix of order
řs

j“1
r
rj

.

Applying the isomorphism TU,a in (4.37), for x “ TU,aF P Aa we obtain the

sampling expansion:

x “
sÿ

j“1

r
rjÿ

lj“1

ÿ
kPZ

Ljx
`
σj ` rk ` rjplj ´ 1q˘ TU,a

“
rhj,lj p¨q e2πirk ¨‰

“
sÿ

j“1

r
rjÿ

lj“1

ÿ
kPZ

Ljx
`
σj ` rk ` rjplj ´ 1q˘Urk

“
TU,aprhj,lj q‰

“
sÿ

j“1

r
rjÿ

lj“1

ÿ
kPZ

Ljx
`
σj ` rk ` rjplj ´ 1q˘Urkcj,lj ,

(4.39)

where cj,lj :“ TU,aprhj,lj q P Aa, j “ 1, 2, . . . , s, and we have used the U -shift

property (4.2). Besides, the sequence
�
Urkcj,lj

(
kPZ; j“1,2,...,s; lj“1,2,..., r

rj

is a frame

for Aa. In fact, the following result holds:

Theorem 4.7. Let bj be in H and let Lj be its associated U -system for j “ 1, 2, . . . , s.
Assume that the function gj , j “ 1, 2, . . . , s, given in (4.34) belongs to L8p0, 1q; or
equivalently, βG ă 8 for the associated

`řs
j“1

r
rj

˘ ˆ r matrix Gpwq. The following
statements are equivalent:

(a) αG ą 0.

(b) There exists a vector
“
h1,1pwq, . . . , h1, r

r1
pwq, . . . , hs,1pwq . . . , hs, r

rs
pwq‰ with en-

tries in L8p0, 1q satisfying“
h1,1pwq, . . . , h1, r

r1
pwq, . . . , hs,1pwq . . . , hs, r

rs
pwq‰Gpwq “ r1, 0, . . . , 0s

a.e. in p0, 1q.

(c) There exist cj,lj P Aa, j “ 1, 2, . . . , s; lj “ 1, 2, . . . , r
rj

, such that the sequence�
Urkcj,lj

(
kPZ; j“1,2,...s; lj“1,2,..., r

rj

is a frame for Aa, and for any x P Aa the

expansion

x “
sÿ

j“1

r
rjÿ

lj“1

ÿ
kPZ

Ljx
`
σj ` rk ` rjplj ´ 1q˘Urkcj,lj (4.40)

holds.
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(d) There exists a frame
�
Cj,lj ,k

(
kPZ; j“1,2,...s; lj“1,2,..., r

rj

for Aa such that, for each

x P Aa the expansion

x “
sÿ

j“1

r
rjÿ

lj“1

ÿ
kPZ

Ljx
`
σj ` rk ` rjplj ´ 1q˘ Cj,lj ,k in H

holds.

Proof. The proof is analogous to that in Theorem 4.2.

4.4 Time-jitter error: irregular sampling in Aa

A close look to Section 4.3 shows that all the regular sampling results have been

proved without the formalism of a continuous group of unitary operators tU tutPR in H:

we have only used the integer powers tUnunPZ which are completely determined from

the unitary operator U . However, if we are concerned with the jitter-error in a sampling

formula as (4.11), the group of unitary operators tU tutPR becomes essential. Let T be

the infinitesimal generator of this continuous group with domain DT (see Appendix

B). Here, we dispose of a perturbed sequence of samples

tpLjxqprm ` εmjqumPZ; j“1,2,...,s ,

with errors εmj P R, for the recovery of x P Aa. By using (4.4) and (4.3) we obtain:

Ljxprmq “ @
F, gjpwq e2πirmw

D
L2p0,1q

and

Ljxprm ` εmjq “ @
F, gm,jpwq e2πirmw

D
L2p0,1q ,

where the functions

gjpwq :“
ÿ
kPZ

Ljapkq e2πikw and gm,jpwq :“
ÿ
kPZ

Ljapk ` εmjq e2πikw ,

belong to L2p0, 1q. Let Gpwq be the s ˆ r matrix given in (4.6), associated with the

functions gj , j “ 1, 2, . . . , s. In the case that 0 ă αG ď βG ă 8, the sequence�
gjpwq e2πirmw

(
mPZ; j“1,2,...s

is a frame for L2p0, 1q with optimal frame bounds αG{r and βG{r. Thus, as in [42],

we can see the sequence�
gm,jpwq e2πirmw

(
mPZ; j“1,2,...s

in L2p0, 1q
as a perturbation of the above frame.
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The time-jitter error sampling expansion

Given an error sequence ε :“ tεmjumPZ; j“1,2,...,s, assume that the operator

Dε : �2pZq ÝÑ �2spZq
c “ tclulPZ ÞÝÑ Dε c :“

`
Dε,1 c, . . . , Dε,s c

˘
,

is well-defined, where, for j “ 1, 2, . . . , s,

Dε,j c :“
! ÿ

kPZ

“
Ljaprm ´ k ` εmjq ´ Ljaprm ´ kq‰ck)

mPZ
. (4.41)

The operator norm (it could be infinity) is defined as usual

}Dε} :“ sup
cP2pZqzt0u

}Dε c }2spZq
}c }2pZq ,

where }Dε c }22spZq :“
řs

j“1 }Dε,j c }22pZq for each c P �2pZq.

Theorem 4.8. Assume that for the functions gj , j “ 1, 2, . . . , s, given in (4.5) we have
0 ă αG ď βG ă 8. Let ε :“ tεmjumPZ; j“1,...,s be an error sequence satisfying
the inequality }Dε}2 ă αG{r. Then, there exists a frame tCε

j,mumPZ; j“1,2,...,s for Aa

such that, for any x P Aa, the sampling expansion

x “
sÿ

j“1

ÿ
mPZ

Ljxprm ` εmjqCε
j,m in H , (4.42)

holds. Moreover, when r “ s the sequence tCε
j,mumPZ; j“1,2,...,s is a Riesz basis for

Aa, and the interpolation property pLl C
ε
j,nqprm ` εmjq “ δj,l δn,m holds.

Proof. We already know that the sequence
�
gjpwq e2πirmw

(
mPZ; j“1,2,...s

is a frame (a

Riesz basis if r “ s) for L2p0, 1q with optimal frame (Riesz) bounds αG{r and βG{r.

For any

F pwq “
ÿ
lPZ

al e
2πilw in L2p0, 1q
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we haveÿ
mPZ

sÿ
j“1

ˇ̌@
gm,jp¨q e2πirm¨ ´ gjp¨q e2πirm¨, F p¨qD

L2p0,1q
ˇ̌2

“
ÿ
mPZ

sÿ
j“1

ˇ̌@ ÿ
kPZ

`
Ljapk ` εmjq ´ Ljapkq˘e2πiprm´kq¨, F p¨qD

L2p0,1q
ˇ̌2

“
ÿ
mPZ

sÿ
j“1

ˇ̌@ ÿ
kPZ

`
Ljaprm ´ k ` εmjq ´ Ljaprm ´ kq˘e2πik¨, F p¨qD

L2p0,1q
ˇ̌2

“
ÿ
mPZ

sÿ
j“1

ˇ̌ ÿ
kPZ

`
Ljaprm ´ k ` εmjq ´ Ljaprm ´ kq˘ ak ˇ̌2

“
sÿ

j“1

}Dε,jtalulPZ}22pZq ď }Dε}2}talulPZ}22pZq “ }Dε}2}F }2L2p0,1q .

(4.43)

By using Lemma A.8, about perturbation of frames, we obtain that the sequence�
gm,jpwq e2πirmw

(
mPZ; j“1,2,...s

is a frame for L2p0, 1q (a Riesz basis if r “ s). Let

thε
j,mumPZ; j“1,2,...,s be its canonical dual frame. Hence, for any F P L2p0, 1q

F “
ÿ
mPZ

sÿ
j“1

@
F p¨q, gm,jp¨q e2πirm¨D

L2p0,1q h
ε
j,m

“
ÿ
mPZ

sÿ
j“1

Ljxprm ` εmjqhε
j,m in L2p0, 1q .

Applying the isomorphism TU,a, one gets (4.42), where Cε
j,m :“ TU,a

`
hε
j,m

˘
for m P Z

and j “ 1, 2, . . . , s. Since TU,a is an isomorphism between L2p0, 1q and Aa, the

sequence tCε
j,mumPZ; j“1,2,...,s is a frame for Aa (a Riesz basis if r “ s). The interpo-

latory property in the case r “ s follows from the uniqueness of the coefficients with

respect to a Riesz basis.

As we pointed out at the end of the subsection 2.4.2 sampling formulae like (4.42)

are useless from a practical point of view: it is impossible to determine the involved

frame tCε
j,mumPZ; j“1,2,...,s. However, in order to recover x P Aa from the sequence

of samples
�pLjxqprm` εmjq(

mPZ; j“1,2,...,s
we should implement a frame algorithm

in �2pZq, like we already did in Subsection 2.4.3. The interested reader can also check

Ref. [42]; another possibility is given in Ref. [2].

In order to prove the existence of sequences ε :“ tεmjumPZ; j“1,...,s such that

}Dε}2 ă αG{r we need some results from the group of unitary operators theory (see

Appendix B).
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On the existence of sequences ε such that }Dε}2 ă αG{r

Assuming that bj P DT , j “ 1, 2, . . . , s, the functions Ljaptq, j “ 1, 2, . . . , s, are

continuously differentiable on R. According to Stone’s theorem, T is the self-adjoint

operator such that U t “ eitT with domain DT . If, for instance, we demand in addition

that, for each j “ 1, 2, . . . , s , there exists ηj ą 0 such that

pLjaq1ptq “ Op|t|´p1`ηjqq whenever |t| Ñ 8 , (4.44)

then we can find a finite bound for the norm }Dε}2. Indeed, for j “ 1, 2, . . . , s and

n,m P Z denote

d
pjq
m,k :“ Ljaprm ´ k ` εm,jq ´ Ljaprm ´ kq .

Taking into account (4.41), for any sequence c “ tckukPZ P �2pZq we have

}Dεc}22spZq “
sÿ

j“1

ÿ
mPZ

ˇ̌̌̌ ÿ
kPZ

d
pjq
m,k ck

ˇ̌̌̌2
ď

sÿ
j“1

ÿ
mPZ

ÿ
l,kPZ

|dpjqm,lcld
pjq
m,kck|

“
sÿ

j“1

ÿ
l,kPZ

|cl| |ck|
ÿ
mPZ

|dpjqm,ld
pjq
m,k|

ď
sÿ

j“1

ÿ
l,kPZ

|cl|2 ` |ck|2
2

ÿ
mPZ

|dpjqm,ld
pjq
m,k|

“
sÿ

j“1

ÿ
lPZ

|cl|2
ÿ

k,mPZ
|dpjqm,ld

pjq
m,k| .

(4.45)

Under the decay conditions (4.44), for |γ| ď 1{2 we define the continuous functions,

MpLjaq1 pγq :“
ÿ
kPZ

max
tPrk´γ,k`γs

|pLjaq1ptq| ,

and

NpLjaq1 pγq :“ max
k“0,1,...,r´1

ÿ
mPZ

max
tPrrm`k´γ,rm`k`γs

|pLjaq1ptq| .

Notice that NpLjaq1 pγq ď MpLjaq1 pγq and for r “ 1 the equality holds.

Theorem 4.9. Given an error sequence ε :“ tεmjumPZ; j“1,...,s, define the constant
γj :“ supmPZ |εmj | for each j “ 1, 2, . . . , s. Then, the inequality

}Dε}2 ď
sÿ

j“1

γ2
j NpLjaq1 pγjqMpLjaq1 pγjq

holds. As a consequence, condition
sÿ

j“1

γ2
j NpLjaq1 pγjqMpLjaq1 pγjq ă αG

r
(4.46)
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ensures the hypothesis }Dε}2 ă αG{r on Theorem 4.8.

Proof. For each j “ 1, 2, . . . , s , the mean value theorem gives

sup
dPr´γj ,γjs

ÿ
nPZ

|Ljapn ` dq ´ Ljapnq| ď γj MpLjaq1 pγjq , (4.47)

and

sup
k“0,1,...,r´1
tdnuĂr´γj ,γjs

ÿ
nPZ

|Ljaprn ` k ` dnq ´ Ljaprn ` kq| ď γj NpLjaq1 pγjq . (4.48)

Thus, using (4.47) and (4.48), inequality (4.45) becomes

}Dεc}22spZq ď
sÿ

j“1

ÿ
lPZ

|cl|2
ÿ

k,mPZ
|dpjqm,ld

pjq
m,k|

ď
sÿ

j“1

ÿ
lPZ

|cl|2
ÿ
mPZ

|dpjqm,l| γj MpLjaq1 pγjq

ď
sÿ

j“1

ÿ
lPZ

|cl|2 pγjq2 MpLjaq1 pγjqNpLjaq1 pγjq

“ }c}22pZq
sÿ

j“1

γ2
j NpLjaq1 pγjqMpLjaq1 pγjq ,

(4.49)

which concludes the proof.

Condition (4.46) can be improved in the following sense. Define for |γ| ă 1{2 the

following functions:

ĂMa,bj pγq :“
ÿ
nPZ

max
tPr´γ,γs

|Ljapn ` tq ´ Ljapnq| ,

and rNa,bj pγq :“ max
k“0,1,...,r´1

ÿ
nPZ

max
tPr´γ,γs

|Ljaprn ` k ` tq ´ Ljaprn ` kq| .

Notice that rNa,bj pγq ď ĂMa,bj pγq and for r “ 1 the equality holds. Moreover, assum-

ing, for instance, that the continuous functions Ljaptq :“ xa, U tbjy, j “ 1, 2, . . . , s,

satisfy a decay condition like

Ljaptq “ O
`|t|´p1`ηjq˘ when |t| Ñ 8 for some ηj ą 0 ,

we may deduce that the functions rNa,bj pγq and ĂMa,bj pγq are continuous near to 0.

Notice that in this case the elements bj are not necessarily in the domain DT of T .
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Proceeding as above (see (4.49)), one easily proves that

}Dε}2 ď
sÿ

j“1

ĂMa,bj pγjq rNa,bj pγjq

where γj :“ supmPZ |εm,j | for each j “ 1, 2, . . . , s. Thus, the condition

sÿ
j“1

ĂMa,bj pγjq rNa,bj pγjq ă αG

r

implies that the thesis of Theorem 4.9 also holds.

4.4.1 Studying the perturbed sequence
�
Urk`εkj bj

(
kPZ; j“1,2,...s

In so far of this section we did not study the sequence
�
Urk`εkj bj

(
kPZ; j“1,2,...s

directly, this is because the sequence
�
Urkbj

(
kPZ; j“1,2,...s

is not necessarily a frame

for the entire Hilbert space H, moreover, its perturbed sequence does not necessarily

belong to the subspace Aa, that is the reason that Theorem A.8 cannot be applied to

these sequences. To avoid these problems we have used the isomorphism TU,a to move

our analysis to the space L2p0, 1q.

Nevertheless, given an error sequence ε :“ tεkjukPZ; j“1,2,...s, there is something

that we can say about the perturbed sequence
�
Urk`εkj bj

(
kPZ; j“1,2,...s

.

Let iT be the infinitesimal generator of the continuous group of unitary operators

tU tutPR (see Appendix B). Then bj will belong to the domain DT of T whether the

condition ż 8
´8

w2d}Ewbj}2 ă 8

is satisfied (see Theorem B.1 and Theorem B.2). Here tEwuwPR is the resolution of

the identity associated to the self-adjoint operator T .

Theorem 4.10. Assume that for certain bj P DT , j “ 1, 2, . . . , r, the sequence
tUkrbjukPZ; j“1,2,...,r is a Riesz basis for Aa with Riesz bounds
0 ă AΨ ď BΨ ă 8. For a sequence ε :“ tεkjukPZ; j“1,2,...,r of errors, let R be
the constant given by

R :“ }ε}2 max
j“1,2,...,r

!ż 8
´8

w2d}Ewbj}2
)
,

where }ε} denotes the �2r-norm of the sequence ε.

If R ă AΨ , then the perturbed sequence tUkr`εkj bjukPZ; j“1,2,...,r is a Riesz se-
quence in H with Riesz bounds AΨ

`
1 ´ a

R{AΨ

˘2
and BΨ

`
1 ` a

R{BΨ

˘2
.
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Proof. By using inequality (B.2) we haveˇ̌̌
xx, Ukrbj ´ Ukr`εkj bjy

ˇ̌̌
“
ˇ̌̌ ż 8
´8

e´ikrwdxEwx, bjy ´
ż 8
´8

e´ikrw´iεkjwdxEwx, bjy
ˇ̌̌

“
ˇ̌̌ ż 8
´8

e´ikrwp1 ´ e´iεkjwqdxEwx, bjy
ˇ̌̌

“
ˇ̌̌ ż 8
´8

eikrwp1 ´ eiεkjwqdxEwbj , xy
ˇ̌̌

ď }x}
dż 8

´8
|1 ´ eiεkjw|2d}Ewbj}2

ď }x}
dż 8

´8
w2|εkj |2d}Ewbj}2

“ |εkj |}x}
dż 8

´8
w2d}Ewbj}2 .

Hence,

rÿ
j“1

ÿ
kPZ

|xx, Ukrbj ´ Ukr`εkj bjy|2 ď }x}2
rÿ

j“1

ÿ
kPZ

´ ż 8
´8

w2d}Ewbj}2
¯

|εkj |2

ď }x}2 max
j“1,2,...,r

!ż 8
´8

w2d}Ewbj}2
) rÿ

j“1

ÿ
kPZ

|εkj |2

Hence, Lemma A.8 and Theorem 15.3.2 in [25] give the desired result.

4.5 The case of multiple generators

The case of L generators can be analogously derived. Indeed, consider the U -

invariant subspace generated by a :“ ta1, a2, . . . , aLu Ă H, i.e.,

Aa :“ span
�
Unal, n P Z; l “ 1, 2. . . . , L

(
.

Assuming that the sequence tUnalunPZ; l“1,2,...,L is a Riesz sequence in H, the U -

invariant subspace Aa can be expressed as

Aa “
! Lÿ

l“1

ÿ
nPZ

αl
n U

nal : tαl
nunPZ P �2pZq; l “ 1, 2. . . . , L

)
.

The sequence tUnalunPZ; l“1,2,...,L can be thought as an L-dimensional stationary se-

quence. Its covariance matrix Rapkq is the L ˆ L matrix

Rapkq “
”
xUkam, anyH

ı
m,n“1,2,...,L

, k P Z .
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Its admits the spectral representation [72]:

Rapkq “ 1

2π

ż π

´π

eikθdμapθq , k P Z .

The spectral measure μa is an L ˆ L matrix; its entries are the spectral measures

associated with the cross-correlation functions Rm,npkq :“ xUkam, anyH. It can be

decomposed into an absolute continuous part and its singular part. Thus we can write

dμapθq “ Φapθqdθ ` dμs
apθq .

In case that the singular part μs
a ” 0, the hermitian L ˆ L matrix Φapθq is called the

spectral density of the sequence tUnalunPZ; l“1,2,...,L. The following theorem holds:

Theorem 4.11. Let tUnalunPZ; l“1,2,...,L be a sequence obtained from an unitary op-
erator in a separable Hilbert space H with spectral measure dμapθq “ Φapθqdθ `
dμs

apθq, and let Aa be the closed subspace spanned by tUnalunPZ; l“1,2,...,L. Then the
sequence tUnalunPZ; l“1,2,...,L is a Riesz basis for Aa if and only if the singular part
μs

a ” 0 and

0 ă ess inf
θPp´π,πq

λmin

“
Φapθq‰ ď ess sup

θPp´π,πq
λmax

“
Φapθq‰ ă 8 . (4.50)

Proof. For a fixed �2L-sequence c :“ tclnunPZ; l“1,2,...,L we have

››› Lÿ
l“1

ÿ
kPZ

clkU
kal

›››2 “
Lÿ

i,j“1

ÿ
mPZ

ÿ
nPZ

cimc̄jmxUmai, U
najy

“
Lÿ

i,j“1

ÿ
mPZ

ÿ
nPZ

cimc̄jn
1

2π

ż π

´π

eimθe´inθdμai,aj pθq

“ 1

2π

ż π

´π

ÿ
mPZ

ÿ
nPZ

pcm eimθqJdμapθqc̄n e´inθ ,

(4.51)

where ck “ pc1k, c2k, . . . , cLk qJ for every k P Z.

First we show that if the measure μa is not absolutely continuous with respect to

Lebesgue measure then tUnalunPZ; l“1,2,...,L is not a Riesz basis for Aa. Indeed, if

the spectral measure μa is not absolutely continuous with respect to Lebesgue measure

λ then there exists i P t1, 2, . . . , Lu such that the positive spectral measure μai,ai

is not absolutely continuous with respect to Lebesgue measure; this comes from the

fact that, if any spectral measure in the diagonal μaj ,aj is absolutely continuous with

respect to Lebesgue measure, the same occurs for each measure μaj ,ak
with k ‰ j

(see [14, p. 137]). Then, μai,ai
pBq ą 0 for a (Lebesgue) measurable set B Ă p´π, πq

of Lebesgue measure zero. Bearing in mind that every measurable set is included in

a Borel set, actually an intersection of a countable collection of open sets, having the
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same Lebesgue measure (see [88, p. 63]), we take B to be a Borel set. Moreover, since

every finite Borel measure on p´π, πq is inner regular (see [88, p. 340]) we may also

assume that B is a compact set. For any ε ą 0 there exists a sequence of disjoint open

intervals Ij Ă p´π, πq such that

B Ă
8ď
j“1

Ij and

8ÿ
j“1

λpIjq ď λpBq ` ε “ ε

(see [88, pp. 58 and 42]). Since B is compact we may take the sequence to be finite.

Hence, for every N P N there exist open disjoint intervals IN1 , IN2 , . . . , INjN in p´π, πq
such that

B Ă
jNď
j“1

INj and

jNÿ
j“1

λpINj q ď 1

3N
.

Besides,
řjN

j“1 μai,ai
pINj q ě μai,ai

pBq. Consider the function gN : p´π, πq Ñ R,

where gN “ 2N{2χŤjN
j“1 IN

j

, that satisfies

}gN }22 “ 2N
jNÿ
j“1

λpINj q ď 2N

3N
ă 1 .

We modify and extend each gN to obtain a 2π-periodic function fN : R ÝÑ R such

that fN and its derivative are continuous on R, }fN }22 ď 1 and fN pθq “ gN pθq for ev-

ery θ P ŤjN
j“1 I

N
j . Let

ř
k c

N
k eikθ be the Fourier series of fN . First, by using Parseval’s

identity we have

}cNk }22 “ 1

2π
}fN }22 ď 1

2π
for every N P N ,

so that tcNu8N“1 is a bounded sequence in �2pZq. Besides, the regularity of each fN
ensures that each Fourier series converges uniformly to fN . Therefore each seriesř

k c
N
k eikθ converges to fN in L2

μai,ai
p´π,πq and consequently,›››ÿ

k

cNk eikθ
›››2
L2

μai,ai
p´π,πq

“
ż π

´π

|fN |2dμai,ai
ě
ż π

´π

|gN |2dμai,ai

“ 2N
jNÿ
j“1

μai,aipINj q ě 2Nμai,aipBq .

For every cN P �2pZq we consider the �2L-sequence tcNl
n unPZ; l“1,2,...,L given by

cNi
n “ cNn and cNl

n “ 0 if l ‰ i. Substituting each tcNl
n unPZ; l“1,2,...,L in (4.51)

we have that ››› Lÿ
l“1

ÿ
kPZ

cNl
k Ukal

›››2 “ 1

2π

ż π

´π

ˇ̌̌ ÿ
kPZ

cNk eikθ
ˇ̌̌2
dμai,ai

pθq
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tends to infinity with N , so tUnalunPZ; l“1,2,...,L cannot be a Bessel sequence,

therefore, not a Riesz basis.

For the remainder of the proof we assume that the singular part μs
a ” 0 and that

dμapθq “ Φapθqdθ. Then (4.51) yields that

››› Lÿ
l“1

ÿ
kPZ

clkU
kal

›››2 “ 1

2π

ż π

´π

` ÿ
mPZ

cm eimθ
˘J

Φapθq
ÿ
nPZ

cn einθdθ . (4.52)

We have to show that tUnalunPZ; l“1,2,...,L is a Riesz basis for Aa if and only if (4.50)

holds. The Rayleigh-Ritz theorem (see [64, p. 176]) provides the inequalities

λmin

“
Φapθq‰ˇ̌ ÿ

kPZ
ck e

ikθ
ˇ̌2 ď ` ÿ

mPZ
cm eimθ

˘J
Φapθq

ÿ
nPZ

cn einθ

ď λmax

“
Φapθq‰ˇ̌ ÿ

kPZ
ck e

ikθ
ˇ̌2

and taking into account (4.52) we have

1

2π

ż π

´π

λmin

“
Φapθq‰ˇ̌ ÿ

kPZ
ck e

ikθ
ˇ̌2
dθ ď

››› Lÿ
l“1

ÿ
kPZ

clkU
kal

›››2
ď 1

2π

ż π

´π

λmax

“
Φapθq‰ˇ̌ ÿ

kPZ
ck e

ikθ
ˇ̌2
dθ ,

so that

ess inf
θPp´π,πq

λmin

“
Φapθq‰ Lÿ

l“1

ÿ
kPZ

|clk|2 ď
››› Lÿ
l“1

ÿ
kPZ

clkU
kal

›››2
ď ess sup

θPp´π,πq
λmax

“
Φapθq‰ Lÿ

l“1

ÿ
kPZ

|clk|2 .

Therefore (4.50) implies that tUnalunPZ; l“1,2,...,L is a Riesz basis for Aa.

Conversely, if tUnalunPZ; l“1,2,...,L is a Riesz basis for Aa then there exist con-

stants 0 ă A ď B ă 8 such that

A
Lÿ

l“1

ÿ
kPZ

|clk|2 ď
››› Lÿ
l“1

ÿ
kPZ

clkU
kal

›››2 ď B
Lÿ

l“1

ÿ
kPZ

|clk|2 (4.53)

for every �2L-sequence c :“ tclnunPZ; l“1,2,...,L. Let us prove that

A ď ess inf
θPp´π,πq

λmin

“
Φapθq‰ ď ess sup

θPp´π,πq
λmax

“
Φapθq‰ ď B . (4.54)
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Proceeding by contradiction, if (4.54) would not hold, then

A ď λmin

“
Φapθq‰ ď λmax

“
Φapθq‰ ď B

does not hold on a subset of p´π, πq with positive Lebesgue measure. In case the

set ΓB :“ tθ P p´π, πq : λmax

“
Φapθq‰ ą Bu has positive Lebesgue measure we

introduce the Fourier expansion of the function F P L2
Lp´π, πq (L2

Lp´π, πq denotes

the usual product Hilbert space L2p´π, πq ˆ ¨ ¨ ¨ ˆ L2p´π, πq (L timesq) in (4.52),

where F pθq “ Xpθqχ
ΓB

pθq and Xpθq is an eigenvector of norm 1 associated with the

biggest eigenvalue of Φapθq. We get››› Lÿ
l“1

ÿ
kPZ

clkU
kal

›››2 “ 1

2π

ż
ΓB

λmax

“
Φapθq‰dθ ą 1

2π

ż
ΓB

Bdθ

which contradicts the right inequality in (4.53) for such a Fourier expansion. Whenever

Lebesgue measure of the set ΓB is zero then we proceed in a similar way with the set

of positive Lebesgue measure ΓA :“ tθ P p´π, πq : λmin

“
Φapθq‰ ă Au.

The above proof is similar to that of Lemma 2 in [86], except we do not exclude

the case in which the singular measure is atomless. Another characterization for being

tUnalunPZ; l“1,2,...,L a Riesz basis for Aa can be found in [5].

As a final remark we can also mention that authors in [86] also stated a neccesary

and sufficient condition in order to be the sequence tUnalunPZ; l“1,2,...,L a frame se-

quence in H. Namely, the singular measure μs
a ” 0 and there exist positive constants

A, B such that

A ď λmpθq ď B, for θ P p´π, πqz Im
for each m “ 1, 2, . . . , L, where λmpθq is the m-th eigenvalue of Φapθq and Im :“
tθ P p´π, πq : λmpθq “ 0u.

The resulting regular sampling formulas

As in the one-generator case, the space Aa is the image of the usual product Hilbert

space L2
Lp0, 1q by means of the isomorphism TU,a : L2

Lp0, 1q ÝÑ Aa, which maps the

orthonormal basis te´2πinwelunPZ; l“1,2,...,L for L2
Lp0, 1q (here, teluLl“1 denotes the

canonical basis for CL) onto the Riesz basis tUnalunPZ; l“1,2,...,L for Aa, i.e.,

TU,aF :“
Lÿ

l“1

ÿ
nPZ

@
Fk, e

2πin¨D
L2p0,1q U

nal “
Lÿ

l“1

ÿ
nPZ

αl
n U

nal , (4.55)

where F “ pF1, F2, . . . , FLqJ P L2
Lp0, 1q.

Here, for F P L2
Lp0, 1q and N P Z the U -shift property reads:

TU,a

`
Fe2πiNw

˘ “ UN
`
TU,aF

˘
. (4.56)
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Concerning the representation of an U -system Lb, for x P Aa we have

Lbxptq “ xx, U tbyH “
Lÿ

l“1

ÿ
nPZ

αl
n xU tb, UnalyH

“
Lÿ

l“1

A
Fl,

ÿ
nPZ

xU tb, UnalyH e2πinw
E
L2p0,1q

“ @
F,Kt

D
L2

Lp0,1q ,

where TU,aF “ x, F “ `
F1, F2, . . . , FL

˘J P L2
Lp0, 1q, and the function

Ktpwq :“
´ ÿ

nPZ
Lba1pt ´ nq e2πinw, . . . ,

ÿ
nPZ

LbaLpt ´ nq e2πinw
¯J

belongs to L2
Lp0, 1q. In particular, given s U -systems Lj :“ Lbj associated with bj P

H, j “ 1, 2, . . . , s, we get the expression for the samples:

Ljxprmq “ @
F,gjpwq e2πirmw

D
L2

Lp0,1q for m P Z and j “ 1, 2, . . . , s , (4.57)

where TU,aF “ x and

gjpwq :“
´ ÿ

kPZ
Lja1pkq e2πikw, . . . ,

ÿ
kPZ

LjaLpkq e2πikw
¯J P L2

Lp0, 1q .

As in the one-generator case the sequence
�
gjpwq e2πirmw

(
mPZ; j“1,2,...s

should be

studied in L2
Lp0, 1q. Consider the s ˆ rL matrix of functions in L2p0, 1q

Gpwq : “

»—————–
gJ1 pwq gJ1 pw ` 1

r q ¨ ¨ ¨ gJ1 pw ` r´1
r q

gJ2 pwq gJ2 pw ` 1
r q ¨ ¨ ¨ gJ2 pw ` r´1

r q
...

...
. . .

...
gJs pwq gJs pw ` 1

r q ¨ ¨ ¨ gJs pw ` r´1
r q

fiffiffiffiffiffifl

“
„
gJj

´
w ` k ´ 1

r

¯j
j“1,2,...,s
k“1,2,...,r

(4.58)

and its related constants

αG : “ ess inf
wPp0,1{rq

λminrG˚pwqGpwqs,

βG : “ ess sup
wPp0,1{rq

λmaxrG˚pwqGpwqs .

In [45, Lemma 2] one can find the proof of the following lemma (see also Lemma 2.3):
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Lemma 4.7. Let gj be in L2
Lp0, 1q for j “ 1, 2, . . . , s and let Gpwq be its associated

matrix given in (4.58). Then, the following results hold:

(a) The sequence
�
gjpwq e2πirnw(

nPZ; j“1,2,...,s
is a complete system for L2

Lp0, 1q if
and only if the rank of the matrix Gpwq is rL a.e. in p0, 1{rq.

(b) The sequence
�
gjpwq e2πirnw(

nPZ; j“1,2,...,s
is a Bessel sequence for L2

Lp0, 1q if
and only if gj P L8L p0, 1q (or equivalently βG ă 8). In this case, the optimal
Bessel bound is βG{r.

(c) The sequence
�
gjpwq e2πirnw(

nPZ; j“1,2,...,s
is a frame for L2

Lp0, 1q if and only if
0 ă αG ď βG ă 8. In this case, the optimal frame bounds are αG{r and βG{r.

(d) The sequence
�
gjpwq e2πirnw(

nPZ; j“1,2,...,s
is a Riesz basis for L2

Lp0, 1q if and
only if is a frame and s “ rL.

In case that the sequence
�
gjpwq e2πirnw(

nPZ; j“1,2,...,s
is a frame for L2

Lp0, 1q
(here, necessarily s ě rL), a dual frame is given by�

rhjpwq e2πirnw(
nPZ; j“1,2,...,s

,

where the functions hj , j “ 1, 2, . . . , s, form an L ˆ s matrix

hpwq :“ “
h1pwq,h2pwq, . . . ,hspwq‰

with entries in L8p0, 1q, and satisfying“
h1pwq,h2pwq, . . . ,hspwq‰Gpwq “ “

IL,OLˆpr´1qL
‰

a.e. in p0, 1q

(see Ref. [45] for the details). That is, the matrix hpwq is formed with the first L rows of

a left-inverse of the matrix Gpwq having essentially bounded entries in p0, 1q. In other

words, all the dual frames of
�
gjpe2πirnwq(

nPZ; j“1,2,...,s
with the above property are

obtained by taking the first L rows of the rL ˆ s matrices given by

HUpwq :“ G
:pwq ` Upwq“Is ´ GpwqG:pwq‰ ,

where G:pwq denotes the Moore-Penrose pseudo inverse, and Upwq denotes any rLˆs
matrix with entries in L8p0, 1q.

Thus, any F P L2
Lp0, 1q can be expanded as

F “
sÿ

j“1

ÿ
nPZ

@
F,gjpwq e2πirnwD

L2
Lp0,1q rhjpwq e2πirnw in L2

Lp0, 1q .
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Applying the isomorphism TU,a and taken into account (4.57), for each

x “ TU,aF P Aa we get the sampling expansion

x “
sÿ

j“1

ÿ
nPZ

LjxprnqUrn
“
TU,aprhjq‰

“
sÿ

j“1

ÿ
nPZ

LjxprnqUrncj,h in H ,

where, for each j “ 1, 2, . . . , s, the element cj,h “ TU,aprhjq P Aa, and the sampling

sequence tUrncj,hunPZ; j“1,2,...,s is a frame for Aa.

Proceeding as in Section 4.3, it is straighforward to state and prove, in a similar

way, the corresponding results.



A
Frames in Hilbert spaces

This appendix is devoted to state the main definitions and results concerning frame

theory in a separable Hilbert space. Most of them have been used along the memory,

for the proofs and details the reader can check, for instance, Refs. [23, 25, 26, 49, 57,

58, 122].

Let X be a normed vector space, with norm denoted by } ¨ }. A sequence txku8k“1

in X

• converges to x P X if

}x ´ xk} ÝÑ 0 for k ÝÑ 8;

• is a Cauchy sequence if for each ε ą 0 there exists N P N such that

}xk ´ xl} ă ε whenever k, l ě N.

A convergent sequence is always a Cauchy sequence, but the opposite is not true in

general. The spaces in which these two properties are equivalent are called Banach

spaces. An important class of Banach spaces is the Lp-spaces, 1 ď p ď 8. L8pRq is

the space of essentially bounded measurable functions f : R Ñ C, equipped with the

supremum-norms, for 1 ď p ă 8, LppRq is the space of functions f for which |f |p is

integrable with respect to the Lebesgue measure:

LppRq :“
!
f : R Ñ C|f is measurable and

ż 8
´8

|fpxq|pdx ă 8
)
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The norm on LppRq is

}f} “
´ ż 8

´8
|fpxq|pdx

¯1{p

A vector space X with an inner product x¨, ¨y can be equipped with the norm

}x} :“ axx, xy, x P X

A vector space with inner product, which is a Banach space with respect to the induced

norm, is called a Hilbert space. The standard examples are the spaces L2pRq and

�2pZq, L2pRq is defined as the space of complex-valued functions, defined on R which

are square integrable with respect to Lebesgue measure:

L2pRq :“
!
f : R Ñ C|f is measurable and

ż 8
´8

|fpxq|2dx ă 8
)

This space is a Hilbert space with respect to the inner product

xf, gy “
ż 8
´8

fpxqgpxqdx, f, g P L2pRq.

The discrete version of L2pRq is �2pZq, the space of square summable scalar sequeces

on Z:

�2pZq :“
!

txkukPZ Ď C|
ÿ
kPZ

|xk|2 ă 8
)
.

with the inner product

xtxku, tykuy “
ÿ
kPZ

xkyk.

Perhaps the most important concept in the analysis of vector spaces is the concept

of basis. The idea is to consider a family of elements such that any vector on the given

space can be expressed in a unique way as a linear combination of these elements.

Definition A.1. Let X be a Banach space. A sequence of vectors tekukPZ belonging to
X is a (Schauder) basis for X if, for each f P X , there exist unique scalar coefficients
tckpfqukPZ such that

f “
ÿ
kPZ

ckpfqek. (A.1)

Henceforth, we are going to focus our attention on Hilbert spaces. Let us start with

the definition of a sort of sequences with an important role in the memoir.

Definition A.2. A sequence tfkukPZ in H is called a Bessel sequence if there exists a
constant B ą 0 such thatÿ

kPZ
|xf, fky|2 ď B}f}2 for all f P H . (A.2)
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Every number B satisfying (A.2) is called a Bessel bound for tfkukPZ.

Theorem A.1. Let tfkukPZ be a sequence in H. Then tfkukPZ is a Bessel sequence
with Bessel bound B if and only if

T : tckukPZ ÞÝÑ
ÿ
kPZ

ckfk

is a well-defined bounded operator from �2pZq into H and }T } ď ?
B.

Among all the bases for a Hilbert space, the most famous ones are the so called

orthonormal bases. They are the abstract counterpart of canonical bases on C
n and

they have been widely used in many branches of mathematics and physics.

Definition A.3. A sequence tekukPZ in H is an orthonormal system if

xek, ejy “ δk,j .

An orthonormal basis is an orthonormal system tekukPZ which is a basis for H.

The next theorem gives equivalent conditions for an orthonormal system to be an

orthonormal basis.

Theorem A.2. For an orthonormal system tekukPZ, the following are equivalent:

(i) tekukPZ is an orthonormal basis.

(ii) f “ ř
kPZxf, eky, for all f P H.

(iii) xf, gy “ ř
kPZxf, eky xek, gy, for all f, g P H.

(iv)
ř

kPZ |xf, eky|2 “ }f}2, for all f P H.

(v) spantekukPZ “ H.

(vi) If xf, eky “ 0, for all k P Z, then f “ 0.

It is well known that having one orthonormal basis, the rest of them can be obtained

by applying an unitary operator to the given basis; the following definition appears by

weakening this unitary condition on the operator:

Definition A.4. A Riesz basis for H is a family of the form tRekukPZ, where tekukPZ
is an orthonormal basis for H and R : H Ñ H is a bounded bijective operator.

It is easy to check that Riesz bases are actually bases.
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Theorem A.3. If tfkukPZ is a Riesz basis for H, there exists a unique sequence tgkukPZ
in H such that

f “
ÿ
kPZ

xf, gkyfk, for all f P H.

tgkukPZ is also a Riesz basis, and tfkukPZ and tgkukPZ are biorthogonal.

The next theorem gives equivalent conditions for a sequence being a Riesz basis.

Theorem A.4. For a sequence tfkukPZ in H, the following conditions are equivalent:

(i) tfkukPZ is a Riesz basis.

(ii) tfkukPZ is complete in H, and there exist constants A,B ą 0 such that for every
finite scalar sequence tcku one has

A
ÿ

|ck|2 ď
›››ÿ ckfk

›››2 ď B
ÿ

|ck|2. (A.3)

(iii) tfkukPZ is complete and its Gram matrix rxfk, fjysj,kPZ defines a bounded, in-
vertible operator on �2pZq.

(iv) tfkukPZ is a complete Bessel sequence, and it has a complete biorthogonal se-
quence tgkukPZ which is also a Bessel sequence.

A sequence satisfying condition (A.3) for all finite sequences tckukPZ is called a

Riesz sequence. A Riesz sequence tfkukPZ is a Riesz basis for spantfkukPZ.

If tfkukPZ is a Riesz basis, numbers A,B ą 0 which satisfy (A.3) are called lower

Riesz bounds and upper Riesz bounds respectively. They are clearly not unique, and

we define the optimal Riesz bounds as the largest possible value for A and the smallest

possible value for B. The optimal Riesz bounds are characterized in the following

theorem:

Theorem A.5. Let tfkukPZ “ tRekukPZ be a Riesz basis for H, and let G be the Gram
matrix. Then the optimal Riesz bounds are

A “ 1

}R´1}2 “ 1

}G´1} and B “ }R}2 “ }G}.

The main property of a basis in a Hilbert space is that every vector f P H can

be expressed as an infinite linear combination of the elements of the basis, that is, an

expansion of the form (A.1). We are ready to introduce the concept of frame.

A frame is again a family of vectors which allows also to write every f P H as

(A.1), however, the corresponding coefficients are not necessarily unique. This fact,

instead of being a drawback is a very useful property, both for practical and theoretical

purposes.
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Definition A.5. A sequence tfkukPZ of elements in H is a frame for H if there exist
constants A,B ą 0 such that

A}f}2 ď
ÿ
kPZ

|xf, fky|2 ď B}f}2, for all f P H. (A.4)

The numbers A,B are called frame bounds. Obviously they are not unique, the

optimal upper frame bound is the infimum over all upper frame bounds, and the optimal

lower frame bound is the supremum over all lower frame bounds.

It is easy to see that every frame is a Bessel sequence and a complete system in H.

If we can choose A “ B in (A.4), then the frame is called tight. A frame is said to be

exact if it ceases to be a frame when an arbitrary element is removed.

Theorem A.1 assures us that

T : �2pZq ÝÑ H, T tckukPZ “
ÿ
kPZ

ckfk (A.5)

is well-defined and bounded operator with }T } ď ?
B; T is called the pre-frame oper-

ator or the synthesis operator. The adjoint of T is given by

T˚ : H ÝÑ �2pZq, T˚f “ txf, fkyukPZ. (A.6)

T˚ is called the analysis operator. By composing T and T˚, we obtain the frame

operator

S : H ÝÑ H, Sf “
ÿ
kPZ

xf, fkyfk. (A.7)

The most important properties of the operator S are collected in the following

proposition:

Proposition A.1. Let tfkukPZ be a frame for H, then we have

(i) S is positive, self-adjoint, invertible and bounded with }S} ď ?
B.

(ii) The sequence tS´1fkukPZ is also a frame for H with bounds B´1, A´1. This
frame is called canonical dual frame of tfkukPZ, and its frame operator is S´1.

(iii) For any f P H we have

f “
ÿ
kPZ

xf, fkyS´1fk “
ÿ
kPZ

xf, S´1fkyfk. (A.8)

Given a frame for H the so called frame algorithm allow us to recover any f P H
from the operator Af :“ 2

A`BSf.
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Proposition A.2. Any f P H can be approximate by the sequence tgnu8n“1 generated
in the following recursive way:#

g1 “ Af

gn “ gn´1 ` Apf ´ gn´1q n ě 2.

The speed of convergence depends on B ´ A; thus, the closer frame bounds the

faster is the algorithm.

The equation (A.8) assures us that the bounded operator T is also surjective, this

actually characterizes frames:

Theorem A.6. A sequence tfkukPZ is a frame in H if and only if the synthesis operator
T is bounded and surjective.

Given a frame tfkukPZ in H, it is known that the sequence txf, S´1fkyukPZ has

the minimal �2-norm among all the sequeces tckukPZ such that f “ ř
kPZ ckfk.

Proposition A.3. Assume that tfkukPZ in H, is an overcomplete (not exact) frame.
Then there exist frames tgkukPZ ‰ tS´1fkukPZ for which

f “
ÿ
kPZ

xf, gkyfk, for all f P H.

The sequence tgkukPZ is called a dual frame of tfkukPZ.

The following important proposition has been widely used on the work:

Proposition A.4. Assume that tfkukPZ and tgkukPZ are Bessel sequences in H. Then
the following are equivalent:

(i) f “ ř
kPZxf, gky fk, for all f P H.

(ii) f “ ř
kPZxf, fky gk, for all f P H.

(iii) xf, gy “ ř
kPZxf, fky xgk, gy, for all f, g P H.

In case that equivalent conditions are satisfied, tfkukPZ and tgkukPZ are dual frames
for H.

Next result collects several conditions for a frame being a Riesz basis:

Theorem A.7. Let tfkukPZ be a frame for H. Then the following are equivalent.

(i) tfkukPZ is a Riesz basis for H.

(ii) tfkukPZ is an exact frame.
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(iii) tfkukPZ is minimal.

(iv) tfkukPZ has a biorthogonal sequence.

(v) tfkukPZ and tS´1fkukPZ are biorthogonal.

(vi) tfkukPZ is ω-independent.

(vii) If
ř

kPZ ckfk “ 0 for some tckukPZ P �2, then ck “ 0, for all k P Z.

(viii) tfkukPZ is a basis.

So far we have not defined minimality and ω-independence properties:

Definition A.6. Let tfkukPZ be a sequence in H. We say that

(i) tfkukPZ is linearly independent if every finite subset of tfkukPZ is linearly inde-
pendent.

(ii) tfkukPZ is ω-independent if whenever the series
ř

kPZ ckfk is convergent and
equal to zero for some scalar coefficients tckukPZ, then necessarily ck “ 0 for
all k P Z.

(iii) tfkukPZ is minimal if fj R spantfkuk‰j , for all j P Z.

It can be prove that minimality implies w-independence and w-independence im-

plies linear independence, but the opposite implications are not valid.

Finally, we include an important result concerning perturbation of frame, which

indeed was used more than once in the work:

Theorem A.8. Let tfkukPZ be a frame for H with bounds A,B, and let tgkukPZ be a
sequence in H. If there exists a constant R ă A such thatÿ

kPZ
|xf, fk ´ gky|2 ď R}f}2, for all f P H,

then tgkukPZ is a frame for H with bounds

A
´
1 ´

c
R

A

¯2

, B
´
1 `

c
R

A

¯2

If tfkukPZ is a Riesz basis, then tgkukPZ is a Riesz basis.





B
Continuous group of unitary operators

In Chapter 4 we use properties of the continuos group of unitary operators; we

include here some of the main definitions and theorem from the theory of self-adjoint

operators which naturally lead us to the fundamental result: the Stone’s theorem [95].

For the details the reader can check, for instance, Refs.[4, 14, 89, 114, 120].

Definition B.1. A resolution of the identity is a one-parameter family of projection
operators tEtutPR in H such that

(i) E´8 :“ lim
tÑ´8Et “ OH, E8 :“ lim

tÑ8Et “ IH,

(ii) Et` “ Et for any ´8 ă t ă 8,

(iii) Er Es “ Et where t “ mintr, su.

For every f P H define

ρf ptq “ xf,Etfy “ }Etf}2, t P R

The function ρ : R Ñ R is obviously bounded, non-decreasing and right continu-

ous; limtÑ´8 ρf ptq “ 0, limtÑ8 ρf ptq “ }f}2.
A function u : R Ñ KpR orCq is said to be E-measurable if it is ρf -measurable for

every f P H. Non-trivial examples of E-measurable functions are all continuous func-
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tions, all step functions, and all functions that are pointwise limits of step functions; all

Borel measurable functions are E-measurable.

Theorem B.1. Let tEtutPR be a resolution of the identity on the Hilbert space H, and
let u : R Ñ K be an E-measurable function. Then the formulae

DpÊpuqq “ tf P H :

ż 8
´8

|uptq|2dρf ptq ă 8u

Êpuq “
ż 8
´8

uptqdρf ptq for f P DpÊpuqq

define a normal operator Êpuq on H, the last equation justifies the notation

Êpuq “
ż 8
´8

uptqdEt (B.1)

Next result shows that every self-adjoint operator can be expressed as B.1 and there

exists exactly one such representation with the identity function id i.e., uptq “ t.

Theorem B.2. For every self adjoint operator T on the Hilbert spaces H there exist ex-
actly one resolution of the identity tEtutPR for which T “ Êpidq; in another notation,
T “ ş8

´8 t dEt.

Henceforth we shall see one of the main consequences of the theory of self-adjoint

operators, the Stone’s theorem [95].

Definition B.2. In a Hilbert space H, a family tBtutPR of bounded operators is called
a one-parameter group if

(i) B0 “ I ,

(ii) Bs`t “ BsBt for all s, t P R.

The one-parameter group tBtutPR is said to be strongly continuous if the function

Bp¨qf : R ÝÑ H
t ÞÝÑ Btf

is continuous for every f P H. Let tBtutPR be a one-parameter group of operators in

H. The operator A defined by the formulae

DpAq “
!
f P H : lim

tÑ0

1

t
pBt ´ Iqf exists

)
,

Af “ lim
tÑ0

1

t
pBt ´ Iqf for f P DpAq

is called the infinitesimal generator of tBtutPR.
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Theorem B.3. Let T be a self-adjoint operator on the Hilbert space H, with spectral
family tEtutPR, and let

U t “ eitT “
ż 8
´8

eits dEs for t P R.

Then tU tutPR is a strongly continuous (one-parameter) unitary group. The infinitesi-
mal generator is iT . We have U tf P DpT q for all f P DpT q and t P R.

Actually, every strongly continuous (one-parameter) unitary group can be repre-

sented in this form (Stone’s theorem):

Theorem B.4. tU tutPR be a strongly continuous (one-parameter) unitary group on the
Hilbert space H. Then there exists a uniquely determined self-adjoint operator T on
H for which

U t “ eitT for all t P R.

If H is separable, then strong continuity can be replace by weak measurability, i.e., it
is sufficient to require that the function

xf, U p¨qgy : R ÝÑ C

t ÞÝÑ xf, U tgy
is measurable (with respect to Lebesgue measure on R) for all f, g P H.

Furthermore, for any f P DpT q we have that lim
tÑ0

U tf ´ f

t
“ iTf and the operator

iT is the infinitesimal generator of the group tU tutPR. For each f P DpT q, U tf is a

continuous differentiable function of t. Here U t “ eitT again means that

xU tf, gy “
ż 8
´8

eistdxEsf, gy , t P R ,

where f P DpT q and g P H.

Finally, we include a result taken from [4, vol.2; p. 24]: For f P DT and g P H, the

inequality ˇ̌̌ ż 8
´8

ϕpsqdxEsf, gy
ˇ̌̌

ď }g}
dż 8

´8
|ϕpsq|2dxEwf, fy, (B.2)

holds, where ϕ is a real or complex function which is continuous in R with the possible

exception of a finite number of points.
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On the separable Hilbert space of square integrable functions L2pRq we can define

the shift-invariant subspaces V 2
ϕ in the following way

V 2
ϕ :“ spanL2pRq

�
ϕpt ´ nq, n P Z

(
where ϕ P L2pRq is a fixed function. If the sequence tϕpt´nqunPZ is Riesz sequence,

i.e. a Riesz basis for V 2
ϕ then this space can be expressed as

V 2
ϕ “

! ÿ
nPZ

anϕpt ´ nq : tanu P �2pZq
)
.

Taking the function ϕptq “ sincptq, the space V 2
ϕ coincides with the Paley-Wiener

space PWπ of band limited functions to the interval r´π, πs via Whittaker-Shannon-

Kotel’nikov sampling theorem:

PWπ “
! ÿ

nPZ
an sincpt ´ nq : tanu P �2pZq

)
.

Furthermore, the coefficients tanunPZ of f P PWπ are precisely the samples of the

function at the integers numbers tfpnqunPZ.

Sampling in shift-invariant spaces V 2
ϕ has been profusely studied in the late years,

Refs. [8, 6, 11, 13, 24, 109, 113, 118, 119, 124]. One can take into account the case

of multiple generators and instead of sampling at Z consider the several dimensions

framework, i.e., signals are functions defined on R
d with samples taken at a lattice of

the form MZ
d, where M is a non singular matrix with integers entries. In Chapter

2 we obtain sampling results in this setting. Our main technique was to consider a

Fourier type duality via an isomorphism between the spaces L2
rr0, 1qd and V 2

Φ , where

Φ :“ tϕ1, ϕ2, . . . , ϕru is the set of generators.

The main results in Chapter 2 were:

• Having as data a sequence of samples tLjfpMαquαPZd; j“1,2,...,s where Lj are
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convolution systems acting on the signals; for any f P V 2
Φ we obtained a sam-

pling expansion of the form

f “
sÿ

j“1

ÿ
αPZd

pLjfqpMαqSjp¨ ´ Mαq in L2pRdq ,

where tSjp¨ ´ MαquαPZd; j“1,2,...,s is a frame for V 2
Φ .

• For practical purposes good properties for the sequence of reconstruction func-

tions tSjuj“1,2,...,s are to be compact supported or to have exponential decay.

Necessary and sufficients conditions were obtained for both cases.

• We analized the time-jitter error case, i.e., samples affected by an error sequence

ε :“ tεj,αuαPZd; j“1,2,...,s; in this framework we obtained conditions that make

possible the recovery of the signals by means of an expansion like

fptq “
sÿ

j“1

ÿ
αPZd

`
LjfqpMα ` εj,αqSε

j,αptq , t P R
d .

• In the above formula the reconstruction functions Sε
j,α are imposible to deter-

mine because they depend on the error sequence; to overcome this problem frame

algorithm was implemented.

In Chapter 3 we focused our attention to the spaces Lp
νpRdq composed by functions

f such that νf belongs to LppRdq. The weight function ν controls the decay or growth

of the signals; weight functions are well-known and widely used in many topics of

sampling theory and time-frequency analysis.

We formally define the weighted multiple generated shift-invariant space V p
ν pΦq as

V p
ν pΦq :“

! rÿ
j“1

ÿ
αPZd

ajpαqφjpt ´ αq : tajpαquαPZd P �pνpZdq, j “ 1, 2, . . . , r
)
.

Commonly it is assumed that the sequence tφjp¨ ´ αquαPZd; j“1,2,...,r is a Riesz ba-

sis for V p
ν pΦq. Here we assume a more general condition: the sequence tφjp¨ ´

αquαPZd; j“1,2,...,r is a p-frame for V p
ν pΦq; this guarantees the closedness of V p

ν pΦq
but we lose the uniqueness on the coefficients tajpαqu in the above representation.

We obtained the sampling formula

f “
sÿ

l“1

ÿ
αPZd

pLlfqpMαqSlp¨ ´ Mαq ,

valid for any f P V p
ν pΦq.
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Two types of convolution systems were taken into account: those obtained by con-

volution with functions locally in L8ν pRdq and globally in L1
νpRdq and the ones where

the impulse response is a translated Dirac delta.

On the other hand, we can see the mentioned V 2
ϕ shift-invariant spaces as

V 2
ϕ “

! ÿ
nPZ

an T
nϕ : tanu P �2pZq

)
,

where T is the shift-operator T : fptq ÞÑ fpt ´ 1q; this operator is unitary on L2pRq.

The replacement of T by an unitary operator U and L2pRq by an abstract Hilbert space

H lead us to the U -sampling theory, which was the subject of the last chapter.

In this new setting the samples were generalized via Ljxprnq :“ xx, UrnbjyH
where bj P H and r P N is the fixed sampling period. In the regular U -sampling

case we take in consideration the discrete group of unitary operators tUnunPZ whilst if

we want to deal with time-jitter error or asymmetric sampling problems the use of the

continuous group of unitary operators tU tutPR becomes essential.

We collect here the main results of Chapter 4:

• For a fixed a P H, provided that tUnaunPZ is a Riesz sequence we identify the

space Aa :“ span
�
Una, n P Z

(
as

Aa “
! ÿ

nPZ
αn U

na : tαnunPZ P �2pZq
)
.

The characterization of the sequence tUnaunPZ as a Riesz basis for Aa was done

in the multiple generator case.

• We obtained, for any x P Aa, an expansion

x “
sÿ

j“1

ÿ
kPZ

LjxprkqUrkcj in H ,

where the sequence
�
Urkcj

(
kPZ; j“1,2,...s

is a frame for Aa.

• The above expansion was also obtained from a different point of view involving

the shift and decimation operators.

• We obtained a sampling exansion in the asymmetric U -sampling framework, i.e.,

we can recovered any x P Ac from the sequence of asymmetric samples (taken

with different sampling periods rj)�
Ljxpσj ` rjmq(

mPZ; j“1,2,...s
.

Here, the σj’s are real numbers; as we have mentioned we consider U included

in a continuous group of unitary operators.
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• Having in mind this later fact, we considered samples affected by a sequence of

errors ε :“ tεmjumPZ; j“1,2,...,s,

tpLjxqprm ` εmjqumPZ; j“1,2,...,s .

We obtained conditions on the error sequence to ensure the existence of a frame

tCε
j,mumPZ; j“1,2,...,s for Aa such that, for any x P Aa, the sampling expansion

x “
sÿ

j“1

ÿ
mPZ

Ljxprm ` εmjqCε
j,m in H ,

holds.

• Finally, the case of sampling in U invariant subspaces with several generators

Aa “
! Lÿ

l“1

ÿ
nPZ

αl
n U

nal : tαl
nunPZ P �2pZq; l “ 1, 2. . . . , L

)
,

was also considered.

Some future work

Now, we propose some possible extensions that we have in mind for the future

work:

To carry out a deeper study of the weigthed sampling framework

Concerning the work made in Chapter 3 it is worth to point out that in our opinion

there are aspects that can be developed or improved. For instance, we can study the

existing reconstruction procedures and adapt them to our framework, also take into

account the irregular possibility could provide new results. Furthermore, we could

consider different weight functions in both, analysis and synthesis processes.

U -irregular sampling: the general case

Having in mind the results obtained in Chapter 4 we can consider a non-uniform

sampling set of points ttnunPZ in R, and try to recover any x P Aa from the sequence

of non-uniform samples�
Lj xptnq :“ xx, U tnbjy(

nPZ; j“1,2,...s
,

where tbjuj“1,2,...,s are s fixed vectors in H. Conditions on this sequence should be

found to make possible the reconstruction.
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Suppose that the sequence ttnunPZ satisfies the following stability condition: There

exist positive constants c and C such that

c}x}2 ď
ÿ
j“1

ÿ
nPZ

|xx, U tnbjy|2 ď C}x}2 for all x P Aa . (B.3)

Via the isomorphism TU,a (our Fourier type duality) given by

TU,a : L2p0, 1q ÝÑ Aa

F “
ÿ
nPZ

αn e
2πinw ÞÝÑ x “

ÿ
nPZ

αn U
na .

the above inequalities are equivalent to the new inequalities in L2p0, 1q:

rc}F }2 ď
ÿ
j“1

ÿ
nPZ

|xF,Kj
tny|2 ď rC}F }2 for all F P L2p0, 1q ,

where the function Kj
tnpwq :“ ř

kPZxU tnb, UkayH e2πikw P L2p0, 1q.

The above inequalities imply that the sequence tKj
tnunPZ; j“1,2,...s is a frame for

L2p0, 1q; taking for instance its canonical dual frame tGj
tnunPZ; j“1,2,...s we get

F “
sÿ

j“1

ÿ
nPZ

Lj xptnqGj
tn in L2p0, 1q .

By applying T ´1
U,a we finally obtain the expansion

x “
sÿ

j“1

ÿ
nPZ

Lj xptnq T ´1
U,a

`
Gj

tn

˘
in Aa .

The challenge problem is to find conditions (necessary and sufficient) on the sequence

ttnunPZ in order to satisfy inequalities (B.3). A possible strategy to get that is to trans-

fer the non-uniform sampling conditions used in the mathematical literature for shift-

invariant spaces V 2
ϕ to the corresponding functions tKj

tnunPZ; j“1,2,...s in L2p0, 1q.

Sampling in finite U -invariant subspaces with multiple generators

Recently, authors in [51] have derived a sampling theory for finite dimensional

U-invariant subspaces of a separable Hilbert space H. In Chapter 4 it was assumed

that the stationary sequence tUnaunPZ in H has infinite different elements. It could

happen that for some a P H there exists N P N such that UNa “ a, i.e., 1 is an

eigenvalue of the unitary operator UN with eigenvector a. In this case, Aa is just the

finite dimensional subspace of H spanned by the set ta, Ua, U2a, . . . , UN´1au. An

important example is given by the finite space of N -periodic sequences txpnqunPZ in
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C with the usual inner product xx, yy “ řN´1
n“0 xpnq ypnq; the unitary operator is the

usual shift operator, and the U -systems are periodic convolutions.

Concretely we can consider a “ pa1, a2, . . . , aLq P HL and N1, N2, . . . , NL P N

such that for the unitary operator U the relations UNiai “ ai for i “ 1, 2, . . . , L are

satisfied and studied the space

Aa :“ span

$’’’&’’’%
a1, Ua1, . . . , U

N1´1a1
a2, Ua2, . . . , U

N2´1a2
...

aL, UaL, . . . , U
NL´1aL

,///.///- ;

in case of linear independence of these vectors the space Aa can be written as

Aa “
#
x “

Lÿ
i“1

Ni´1ÿ
ki“0

ci,ki
Ukiailoooooooomoooooooon

xi

+
.

Now for each i from 1 to L, choose ri P N a divisor of Ni. Then, we consider the

sequence of samples of x “ x1 ` x2 ` ¨ ¨ ¨ ` xL P Aa given by�
Lj xipriniq

(
j“1,2,...,s; i“1,2,...,L;ni“1,2,...,li´1

where li “ Ni{ri for i “ 1, 2, . . . , L.

The goal is to find vectors c1, c2, . . . , cs P Aa such that the sequence�
Urnicj

(
j“1,2,...,s; i“1,2,...,L;ni“1,2,...,li´1

is a frame for Aa and the following expansion is satisfied

x “
sÿ

j“1

Lÿ
i“1

li´1ÿ
ni“0

Lj xipriniqUrnicj , for any x P Aa .

The main idea would be identify, via an appropriate isomorphism, the spaces C
N1 ˆ

C
N2 ˆ ¨ ¨ ¨ ˆ C

NL and Aa.
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