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Abstract—In this paper, we present an asymptotic analysis
of the behavior of a network where the mobile terminals are
considered to be battery-powered devices provided with energy
harvesting capabilities. The asymptotic analysis is based on a
multiuser MIMO resource allocation strategy where the battery
status of the mobile terminals are considered explicitly in the
proposed allocation policy. We provide some numerical results
and analytic expressions of the expected value of the data rates
and the battery levels for different decoding power consumption
models when convergence is attained.

I. INTRODUCTION

In the last years, there has been a considerable expansion
of wireless networks jointly with a continuous increase of
the number of users. This expansion and the fact that newer
applications require higher data rates, involve a need for a
substantial increase of system capacity. In wireless networks,
this capacity increase is technically challenging since the
resources to be shared among users are limited. At the same
time, in order to be more efficient, cell radii coverage are
becoming shorter (such as in picocells and femtocells in
cellular environments). Due to such short distances between
transmitters and receivers, the radiated powers can be com-
parable or even lower than the powers consumed by the radio
frequency (RF) chains and the baseband stages [1], [2].

On the other hand, it is also important to emphasize that
one of the current limiting factors of today’s technology
is the short lifetime of the batteries. Due to such short
lifetimes, the high data rates needed by the terminals entail
situations where the users run out of battery noteworthy fast.
In wireless sensors networks this can be a serious issue,
since such sensors are placed in locations that cannot be
accessed to replace their batteries. In cellular environments,
the telecommunication providers has put a lot of attention
on providing good services with enhanced coverage, but this
will not be translated into an added value if the users cannot
make use of them due to battery limitations.

Within this framework, the current work on energy har-
vesting (a technological solution to collect energy from the
environment to recharge the batteries) is emerging [3], [4].
This suggests that new strategies for allocating the radio
resources should be developed, considering explicitly such
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battery-related aspects, i.e., the harvesting capabilities and
the battery status of the terminals.

In classical precoder design strategies for multi-antenna
multi-input multi-output (MIMO) systems, a given objective
function is optimized subject to some constraints typically
considering only the radiated power. In our previous works
[5], [6], we considered the design of a resource allocation
policy in a multiuser (MU) broadcast system incorporating
the idea that the nodes are battery-limited devices provided
with energy harvesting capabilities and considering explicitly
the power needed for decoding the received data. Thus, the
information concerning the battery levels played an explicit
role and had an impact on the design. The goal of this
paper is to study the asymptotic behavior of such strategies
and obtain analytic expressions for the data rates and the
battery levels when the allocation algorithm is in steady state
(i.e., temporal convergence has been attained), providing an
insight into the inherent trade-offs of the parameters involved
in the execution of the algorithm.

The remainder of this paper is organized as follows.
In section II, we describe the system model. Section III
presents a review of the resource allocation strategy under
study. Section IV addresses the different asymptotic behav-
iors encountered in such policy and section V provides an
analytic characterization of it. In section VI, we present
some numerical results and, finally, conclusions are drawn
in section VII.

II. SYSTEM MODEL

Let us consider a set of K users indexed by k ∈ K �
{1, . . . ,K}. We focus on a MU-MIMO broadcast scenario
where the k-th receiver has nRk

antennas and the base station
(BS) has nT antennas. We index frames by t ∈ T �
{1, . . . , T} with a duration of Tf seconds each. We consider
that the channels remain constant within a frame and change
between consecutive frames. All the receivers in the system
have a battery whose level decreases accordingly when the
user receives and decodes data. We will assume throughout
the paper that the battery size is infinite for all users, i.e.,
Ck

max =∞, ∀k. The terminals are also able to recharge their
batteries by means of collecting energy dynamically from the
environment with the help of a harvesting source. Let Ek

h(t)
be the energy harvested in Joules by the k-th user during the
t-th frame. Accordingly, the battery level of the k-th user at
the beginning of the t+ 1-th frame is, thus, denoted as

Ck(t+ 1) = Ck(t)− TfPtot,k(Rk(t)) + Ek
h(t), (1)
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where Rk(t) is the rate allocated to such user during the
t-th frame and Ptot,k(Rk(t)) is the power spent for de-
coding the message. The power consumed by the receiver
Ptot,k(Rk(t)) is modeled as the power consumed by the
front-end P rx

c plus the power consumed by the decoding
stage Pdec,k(Rk(t)): Ptot,k(Rk(t)) = Pdec,k(Rk(t)) + P rx

c .
Note that the decoding power Pdec,k(Rk(t)) (and, thus,
also the global power Ptot,k(Rk(t))) depends increasingly
on the rate Rk of the communication. In [5], the authors
presented different models for Pdec,k(Rk(t)), but, for the
sake of generality, we consider it as a general function for
the moment in this paper.

In a given frame, the transmitter needs to allocate a given
finite amount of resources among the users. The precoder
and the power to be assigned to each user are computed
according to the technique presented in our previous work
[5], [6]. In the next section, we will present a summary of
this resource allocation strategy.

The main idea of this paper is to study and characterize
analytically and numerically the asymptotic behavior of the
resource allocation strategy presented in [5], [6]. In those
papers, we only focused on the transient period of the
allocation strategy, but for long transmissions, it is even more
important to study the asymptotic steady-state behavior once
temporal convergence has been attained. In that sense, we
will characterize the asymptotic behavior of the data rate
and the battery levels of the users in the system.

III. SUMMARY OF THE RESOURCE ALLOCATION
STRATEGY

In this section, we provide a summary of the main ideas
of the resource allocation based on [5] whose asymptotic
behavior will be studied later in this paper. The signal model
for the received signals for the k-th user at the n-th time
instant within the t-th frame is

yk(n, t) = Hk(t)
K∑
j=1

Bj(t)xj(n, t) + nk(n, t), (2)

where yk(n, t) ∈ C
nRk

×1 is the received vector, xk(n, t) ∈
C

nSk
×1 is the Gaussian data vector, Hk(t) ∈ C

nRk
×nT is

the MIMO channel matrix from the BS to the k-th user,
and Bk(t) ∈ C

nT×nSk is the precoder matrix of user k,
being nSk

the number of streams. The transmit covariance
matrix for user k is Qk(t) = Bk(t)Bk(t)

H assuming that
E
[
xk(n, t)xk(n, t)

H
]
= InSk

. Finally, nk(n, t) ∈ C
nRk

×1 is
the Gaussian noise with E

[
nk(n, t)nk(n, t)

H
]
= σ2InRk

.
Since the terminals are battery-limited, the resource allo-

cation strategy will only allow each user to spend (at frame
t) a given fraction of the available battery level for decoding
the message, which is formulated as:

Ek
g (t) = αkCk(t), 0 ≤ αk ≤ 1, (3)

which, in turn, implies that

Tf ·
(
Pdec,k(Rk(t)) + P rx

c

)
≤ Ek

g (t). (4)

Note that αk is a constant whose value impacts on the final
performance as discussed in [6]. The value of αk can be
optimized. Such value depends on the harvesting intensity,
among other parameters [6]. The previous relation (4) can
also be written in terms of an equivalent upper bound on the

maximum data-rate, Rk(t) ≤ Rmax,k(Ck(t)), where

Rmax,k(Ck(t)) = Pdec,k
−1

(
Ek

g (t)

Tf
− P rx

c

)
. (5)

Now, we formulate the resource allocation strategy as
the following convex optimization problem (where we have
omitted the time dependence t to simplify the notation):

maximize
{Rk}, {Qk}

K∑
k=1

Rk (6)

subject to C1 :
K∑

k=1

Tr(Qk) ≤ PT

C2 :−log2det
(

I +
HkQkHH

k

σ2

)
+Rk ≤ 0, ∀ k

C3 : Rk ≤ Rmax,k(Ck), ∀ k
C4 : HkQjHH

k = 0, ∀ k, ∀ j, k �= j

where PT represents the maximum total radiated power at
the BS. Notice that C4 forces the precoder design to follow
a block-diagonalization (BD) strategy [7]. The obtained
precoder matrix is given by

Bk = VkP
1/2
k ∈ C

nT×nSk , (7)

where Vk = Ṽ
(0)

k V
(1)
k , being Ṽ

(0)

k and V
(1)
k two matrices

obtained from the BD procedure (see [5] and [7] for more
details) and Pk is a diagonal matrix with entries

p�i,k =

(
1− β�

k

μ� ln(2)
− σ2

λ2
i,k

)+

, i = 1, · · · , nSk
, (8)

where (x)+ = max(0, x), βk and μ are Lagrange multipliers
[8], and λ2

i,k is the eigenvalue of the equivalent channel gain
after applying BD. In [5], we proposed an optimum iterative
algorithm for computing the powers given in (8). Finally, the
resulting data rate of user k is

R�
k =

nSk∑
i=1

log2

(
1 +

1

σ2
p�i,kλ

2
i,k

)
. (9)

So far we have presented the resource allocation strategy
that is to be applied at a given frame. However, as com-
mented before, we consider a transmission throughout T
consecutive frames. As a consequence, the BS has to solve
the allocation problem (6) T times and perform an update
of the batteries according to (1), in order to compute the
value of Rmax,k needed for the constraint C3. The time-
evolving algorithm considering the allocation strategy and
the updates is presented in Table I. In the next section, we
will characterize the asymptotic temporal behavior of such
algorithm.

IV. ASYMPTOTIC ANALYSIS

In this section we will study the asymptotic behavior of
the rates and the batteries of the users considering that the
transmission is sufficiently long to attain convergence. The
values of the data rates and the battery levels at each particu-
lar frame are obtained from algorithm in Table I. Notice that,
since the battery levels depend upon the harvesting process,
which is a stochastic process, and the rates are obtained as
the solution of problem (6), where some of the constraints
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TABLE I
RESOURCE ALLOCATION AND BATTERY UPDATE

1: set t = 1 and initial energies:
Ek

g (t) = αkCk(t), ∀k
2: solve optimization problem (6) and obtain:

R�
k(t),B�

k(t), ∀k
3: set battery level according to data rate used and harvesting:

Ck(t+ 1) = Ck(t)− TfPtot,k(Rk(t)) + Ek
h(t), ∀k

4: update energies and maximum rates of users:
Ek

g (t+ 1) = αkCk(t+ 1), ∀k
Rmax,k(t+ 1) = P−1

dec,k

(
Ek

g (t+1)

Tf
− P rx

c

)
, ∀k

5: set t = t+ 1 and go to step 2

are given by Rmax,k, (and, therefore, depend on the battery
levels), then, both the battery levels and the rates are also
stochastic processes.

In this work and in our previous work [6], we consider
the harvesting to be stationary and ergodic. If fact, we model
the harvesting as a discretized energy packet arrival process,
where each energy packet contains a finite amount of Joules.
This behavior can be modeled by means of a Bernoulli
process (or, in a more general sense, through a Markov
chain [9]). Therefore, the values of Ek

h(t) over frames are
i.i.d., with only two possible outcomes at a given frame, i.e.,
Ek

h(t) ∈ {0, Ek}, where the outcomes 0 and Ek are obtained
with probability 1 − pk and pk, respectively, being Ek the
amount of Joules contained in an energy packet. However, as
we will show later, even if the harvesting is stationary, that
does not imply that the batteries are stationary. In any case,
we are not interested in the stationarity of the process, but we
seek to characterize the mean convergence1 of the rates and
the batteries. Given that, let us present the following result:

Lemma 1. In the steady state regime (i.e., as t→∞), we
have that lim

t→∞E[Rk(t)] = ϕk, where ϕk is a constant such
that 0 ≤ ϕk <∞.

Intuition behind the proof: The idea behind the proof
is to note that the rates Rk(t) are the solution of the
optimization problem (6) where there is a maximum power
constraint, C1, that implies that Rk(t) < ∞ and, therefore,
E[Rk(t)] < ∞. Moreover, as the rates depend on the
harvesting process, which is stationary, E[Rk(t)] will not
oscillate with time (see section VI). A more formal proof of
the convergence is out of the scope of this paper.

Thus, from previous lemma, we will assume throughout
the paper that the rates converge in mean. Of course, the
instantaneous value of Rk(t) depends on the current channel
and battery level and, thus, Rk(t) will show some random
fluctuations throughout time. Unfortunately, the mean con-
vergence of the battery depends upon several parameters, not
just the radiated power and the harvesting. As a consequence,
there is not a simple relation between the convergence of
the rates and the batteries. Before analyzing the battery
convergence, let us present another interesting result:

Lemma 2. The stochastic variable Rmax,k(t) can only
converge to the allocated rates, lim

t→∞E[Rmax,k(t)] =

lim
t→∞E[Rk(t)], or diverge lim

t→∞E[Rmax,k(t)] =∞.
Proof: We develop the proof for one particular user

1Throughout the paper, we will say indistinctly mean convergence and
convergence but, formally speaking, we refer to mean convergence if not
stated otherwise.

k, but it can be extended to the rest of the users. Let us
consider that the rate has converged to a given constant,
E[Rk(t)] = ϕ. Let us assume that there is a gap between
E[Rmax,k(t)] and E[Rk(t)], i.e., E[Rmax,k(t)]−E[Rk(t)] =
κ, where κ > 0

(
notice that a negative value of κ is not

possible due to constraint C3). Then, since E[Rmax,k(t)]
is constant, it implies that the battery has also converged,
i.e., E[Ck(t + 1)] = E[Ck(t)]. Hence, from (1), we have
that E[TfPtot,k(Rk(t))] = E[Ek

h(t)], but since E[Rk(t)] <
E[Rmax,k(t)], constraint C3 is not active and the optimum
data rates are the ones obtained from the classical water-
filling policy. However, as the rates computed from the
water-filling have no relation with the harvesting process, the
probability of such event is 0, which leads to a contradiction.
Thus, E[Rmax,k(t)] may decrease until convergence with
E[Rk(t)] or diverge.

Based on the same principle presented in the previous
lemma, we are able to define three regions of different
asymptotic behaviors that are based on the battery conver-
gence. Let us assume that the algorithm is already in steady
state and that the rates have converged, i.e., t → ∞. Then,
we define the following three regions:

Definition 1. (Region 1 - R1) This region is de-
fined such that E[TfPtot,k(Rk(t))] < E[Ek

h(t)], ∀k. In
such case, the batteries keep increasing as t increases,
i.e., E[Ck(t+ 1)] > E[Ck(t)] and, thus, lim

t→∞E[Ck(t)] =

∞, ∀k. In fact, lim
t→∞E[Rmax,k(t)] = ∞, and, as a

consequence, the rates Rk(t) are only limited by the
transmission power PT . This means that the optimum
rates are obtained by means of classical water-filling pol-

icy given by R�
k =

∑nSk
i=1 log2

(
c
λ2
i,k

σ2

)+

, where c fulfills∑
i,k

(
c− σ2

λ2
i,k

)+

= PT . However, in reality, the batteries
have a finite size and, in this case, they would grow until
they reach their maximum capacity.

Definition 2. (Region 3 - R3) This region is defined
such that E[TfPtot,k(Rk(t))] = E[Ek

h(t)], ∀k, which means
that all the batteries have converged to a finite value. As
expressed in Lemma 2, the batteries may increase or decrease
until E[Rmax,k(t)] converges to E[Rk(t)]. This is the most
interesting region since it captures the behavior of a battery-
limited network.

Let us present the following result concerning region 3:
Lemma 3. Let the harvesting intensity be finite, i.e.,

E[Ek
h(t)] <∞ and let the algorithm be in steady state (t→

∞). If PT →∞, then lim
t→∞E[Rk(t)] = lim

t→∞E[Rmax,k(t)].
Proof: The proof follows directly from Lemma 2 and

Definition 2.
Definition 3. (Region 2 - R2) This region is an interme-

diate region where E[TfPtot,k(Rk(t))] < E[Ek
h(t)] may be

true for some users and E[TfPtot,k(Rk(t))] = E[Ek
h(t)] may

be true for other users. Hence, some users will experience
a battery divergence, while others will experience a battery
convergence. This means that, within this region, there are
users behaving as being in R1 and others in R3.

The three regions are represented in Fig. 1 and Fig. 2. The
setting of the simulation is: T = 400 for which we observe
that the rates have already converged, the decoder power
consumption model is linear with constant νk = 15000 (see
(10) in section V), αk = 0.1, the harvesting intensity is

3
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pk = 0.5, the energy packet is Ek = 100 Joules, and
there are three users with initial batteries C1(0) = 3000
J, C2(0) = 6000 J, and C3(0) = 1500 J [5]. The channel
matrices are generated randomly with i.i.d. entries distributed
according to CN (0, 1). In Fig. 1, the green curve repre-
sents a system where the initial batteries are infinite, i.e.,
Rmax,k(t) = ∞, ∀t, k. (classical water-filling policy). The
blue curve results from the application of the algorithm from
Table I. As we can see, in R1 the optimum expected rates are
the same as the ones obtained from classical water-filling,
which means that the network is limited by the radiated
power and not by the energy available at the batteries of the
receivers. Fig. 2 depicts the evolution of the expected value of
the batteries. Notice that the batteries in R1 should diverge,
as stated in Definition 1, but as the number of simulated
frames is T = 400, the obtained battery levels are finite.

From the definitions of the regions, we see that the thresh-
olds between regions depend on the harvesting of the users.
In the previous two figures we considered that the users were
provided with the same energy harvesting source. Fig. 3 and
Fig. 4 depict the expected value of the rates and the batteries
where users are provided with different energy harvesting
sources. By considering different harvesting sources among
users (different energy packet sizes Ek), the three regions
have been modified accordingly.

V. ANALYTIC CHARACTERIZATION

In the previous section, we studied the asymptotic analysis
of the algorithm in Table I. We presented under what condi-
tions the rates and the batteries converge and we discussed
the different asymptotic behaviors that are possible in these
networks. In addition, in this section we characterize the
asymptotic behavior analytically for a concrete decoding
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power consumption model. This would allow us to determine
what the values of the rate and the battery level would be as a
function of the initial conditions, the harvesting capabilities,
the transmitted power, and the value of αk.

As we discussed before, in R1 the batteries diverge and
the rates are the ones obtained from classical water-filling
policy, regardless of the decoder being used. Therefore, we
only have to characterize R3, as R2 is a combination of R1
and R3 with an intermediate behavior.

In our previous works, we considered two different models
for the decoder consumption function Pdec,k(Rk(t)): a linear
model and an exponential model. The motivations behind
these models can be found in [5]. In the following, we
derive some expressions for the asymptotic values and for
the specific decoding model.

A. Linear decoder consumption model
The linear decoder consumption can be modeled as

Pdec,k(Rk(t)) = νkRk(t), (10)

where νk models the decoder efficiency. Let us present some
interesting asymptotic results concerning this model.

Lemma 4. The expected value of the data rate in con-
vergence, lim

t→∞E[Rk(t)], does not depend on αk or on the
initial battery level Ck(0).

Proof: since we are in R3, the battery has con-
verged as t → ∞, i.e., E[Ck(t + 1)] = E[Ck(t)]. Then,
E[TfPtot,k(Rk(t))] = E[Ek

h(t)] holds. By just replacing the
model introduced before, we end up with

lim
t→∞E[Rk(t)] = P−1

dec,k

(
E[Ek

h(t)]− P rx
c Tf

Tf

)

=
pkEk − P rx

c Tf

νkTf
, (11)
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and this concludes the proof.
In case that the users are provided with the same har-

vesting source and the same decoder, they end up with the
same expected rate. Then, the expected sum rate in con-
vergence is just lim

t→∞E[SR(t)] = lim
t→∞E

[∑K
k=1 Rk(t)

]
=

K(pE−P rx
c Tf )

νkTf
. Now, let us present a result concerning the

value of the battery:
Lemma 5. The expected value of the battery in conver-

gence, lim
t→∞E[Ck(t)], does not depend on the initial battery

level Ck(0).
Proof: as we are in R3, E[Rk(t)] = E[Rmax,k(t)] holds.

From Lemma 4 and (5), we obtain the value of the battery
in convergence:

lim
t→∞E[Ck(t)] =

E[Ek
h(t)]

αk
=

pkEk

αk
, (12)

which concludes de proof.
Interestingly, the value of the battery in convergence only

depends on the harvesting source and the value of αk. Thus,
the total battery reduction from initial conditions considering
the whole transmission would be

∑K
k=1 Ck(0)−

∑K
k=1

pkEk

αk
.

B. Exponential decoder consumption model

The exponential decoder consumption can be modeled as

Pdec,k(Rk(t)) = c1kec2kRk(t), (13)

where c1k and c2k model the decoder efficiency. Let us
present some interesting asymptotic results concerning this
model.

Lemma 6. The expected value of the data rate in conver-
gence, lim

t→∞E[Rk(t)], does not depend on the initial battery
level Ck(0).

Proof: since we are in R3, the battery has converged,
i.e., E[Ck(t + 1)] = E[Ck(t)]. Then, E[TfPtot,k(Rk(t))] =
E[Ek

h(t)] holds, which proves that the final rate does not
depend on the initial battery value. In addition, we can find an
upper-bound for the final average rate. Since Pdec,k(Rk(t))
is a convex function, we can apply Jensen’s inequality2 [10]
and obtain the following upper bound on the expected rate:

E[Rk(t)] ≤ P−1
dec,k

(
E[Ek

h(t)]− P rx
c Tf

νkTf

)

≤ 1

c2,k
ln

(
pkEk − P rx

c Tf

c1,kTf

)
, (14)

which concludes the proof.
Unfortunately, we can not provide an exact analytic result

for the value of the battery in convergence if the receivers’
decoding consumption is modeled with the exponential func-
tion.

VI. SIMULATION RESULTS

In this section we present some numerical results that
support the analytic results derived in the previous sections.
For the simulations, we consider a scenario with a BS with
nT = 6 antennas and K = 3 receivers with nRk

= 2
antennas each. The front-end power consumption at the
receiver is P rx

c = 0.2 W. The maximum available power
at the BS is PT = 5 W. We assume a normalized noise

2Jensen’s inequality states that if X is a random variable and ϕ is a
convex function, then ϕ(E[X]) ≤ E[ϕ(X)].
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Fig. 6. Evolution of the battery levels for different type of decoder power consumption models.

power given by σ2 = 1 W and a frame duration equal to
Tf = 1 ms. For simplicity, the probability of energy packet
arrival is pk = 0.5, ∀k, the energy packet size is Ek = 100
J (all users are provided with the same energy harvesting
source) and αk = 0.5, ∀k. This configuration yields to a
battery-limited scenario, i.e., all users lie in region 3. The
channel matrices are generated randomly with i.i.d. entries
distributed according to CN (0, 1). The initial battery levels
are 6000, 3000, and 1500 Joules. The type of decoder and the
decoder efficiencies are denoted on the title of the figures. All
figures are averaged over 1000 channel and 1000 harvesting
realizations.

Fig. 5 shows the evolution of the data rates. As we can
see, for a given number of frames, the convergence time
depends on the specific decoder and the decoder efficiency.
If we compute the asymptotic expected rate using equation
(11) for the linear decoder with the corresponding simulation
parameters, we obtain lim

t→∞E[Rk(t)] = 5 bits/s/Hz and
lim
t→∞E[Rk(t)] = 3.3 bits/s/Hz for the efficiencies νk =

10000 and νk = 15000, respectively. We are able to verify
that result from the corresponding figures. Focusing on the
exponential decoder, if we compute the upper bound given
by (14), we obtain lim

t→∞E[Rk(t)] ≤ 5.3 bits/s/Hz and
lim
t→∞E[Rk(t)] ≤ 7 bits/s/Hz, so there is approximately 0.3

bits/s/Hz of difference with the value obtained in the figures.
Fig. 6 presents the evolution of the battery levels for the

same decoders and decoder efficiencies. We can also verify
the analytic result presented in (12) for the linear decoder,
which is lim

t→∞E[Ck(t)] = 100 J.

VII. CONCLUSIONS

In this paper, we have presented an asymptotic analysis
of the behavior of a network where the mobile terminals

have been considered to be battery-powered devices provided
with energy harvesting sources. The asymptotic analysis has
been based on a resource allocation strategy presented in
a previous work. In such work, the key point was that the
battery status of the users was taken into account explicitly
in the proposed policy. In this paper, we have obtained some
analytic expressions for the asymptotic values of the data
rates and the batteries that the resource allocation policy
is able to provide for sufficiently long transmissions under
some harvesting conditions and the specific decoder power
consumption.
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