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Abstract 

This paper deals with mixed convection of Casson fluid which flows over a 

heated surface that has been stretched exponentially. The governing equations that 

govern the fluid flow are reduced to ordinary differential equations by imposing 

suitable similarity variables.  Numerical computational was carried out to solve for 

the f “(0) and θ (0) for some arbitrary values of the mixed convection parameter λ, 

Biot number Bi and Newtonian fluid parameter β when Pr =7. 
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I.   Introduction 

The science of non-Newtonian fluid flow over stretching sheet has gained 

enormous highlight due to its occurrence in many industry and manufacturing 

processes. The nature of the stretching depends on the desired final output. 

Sometimes, the sheet either be stretched or shrunk. Many initiatives have been taken 

into study; i.e sheet being stretched linearly, exponentially, quadratically and etc. 

Nadeem et al. (2012) considered magnetohydrodynamic (MHD) boundary layer flow 

of a Casson fluid over an exponentially permeable shrinking sheet which is later 

extended by Reddy (2016) who investigated convective boundary layer flow of 

Casson fluid flow past an exponentially inclined permeable stretching surface. 

Nonlinear stretching sheet of thin flim flow of Casson fluid was considered by Singh 

and Dandapat (2015) with uniform magnetic field effect.   

The nature of mixed convection which encountered in industrial applications has 

catches attentions among researchers. Mixed convection stagnation-point flow of an 

incompressible Casson fluid over a stretching sheet under convective boundary 

conditions was considered by Hayat et al. (2012).  Sharada and Shankar (2015) dealt 

with Soret, Dufour, thermal radiation and chemical reaction effects on MHD mixed 

convection flow of a Casson fluid over an exponentially stretching sheet, while 

Ahmad et al. (2016) discussed mixed convection of MHD Jeffry fluid flow over an 
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exponentially stretching sheet. However the studies by Sharada and Shankar (2015) 

and Ahmad et al. (2016) were limited to prescribed surface temperature. To the best 

knowledge of the authors’, mixed convection of Casson fluid over an exponentially 

stretching sheet with Newtonian heating has never been considered before. Hence, 

this study is aim to fill in the gap.  

Problem Formulation 
Consider a mixed convection boundary layer flow of Casson fluid over a vertical flat 

sheet. The sheet is heated due to Newtonian heating and flow is generated by 

stretching the sheet of velocity   L/x

ow
eUxu  , where 

o
U  is the reference velocity and 

L is the reference length. The ambient temperature of Casson fluid is assumed to be 

constant at

T . Let x- and y-axis be the axes along the continuous sheet and 

perpendicular to it, respectively. Invoking Boussinesq and boundary layer 

approximations, the motion of the flow are: 
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where u and v are the velocity along x- and y-directions, respectively.   is the 

kinematic viscosity of the fluid,   is the Casson fluid parameter, g is the 

gravitational acceleration, βT is the thermal expansion coefficient, T is the fluid 

temperature within the boundary layer, α is the thermal diffusivity of the fluid and hs 

is the convective heat transfer coefficient. For the sake of similarity solution, the heat 

transfer parameter for Newtonian heating is assumed as L/x

s
ehh 2

0
 , where 

0
h  is 

constant.  

II.   Methods 

The governing Eqs. (1)-(3), subject to the boundary condition (4) can be 

expressed in a simpler form by introducing the following transformation (El Aziz 

2009, Sharada and Shankar 2015): 
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where η is the similarity variable, f (η) and θ (η) are the dimensionless stream 

function and dimensionless temperature, respectively, and prime denotes 

differentiation with respect to η. From (5), we get 
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Putting (6) into Eq. (1) – (4), Eq. (1) is automatically satisfied and Eqs. (2) - (4) 

reduced to 
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with boundary conditions 
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conjugate parameter for the Newtonian heating. It should be pointed out that the flow 

is dominated by forced convection if λ = 0 whilst λ > 0 and λ < 0 corresponds to 

assisting and opposing flow, respectively.  

Numerical Methods 

Eqs. (7) - (8) subject to (9) were solved using Keller box method for some arbitrary 

values of non-Newtonian fluid parameter β, mixed convection parameter λ and 

Newtonian heating parameter given by Biot number Bi. There are four steps required 

using this method as detailed out by Cebeci and Bradshaw (1988), i.e: 

(i) Reduce (7) and (8) to first-order system. 
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Rewriting (11), 
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(iii) Linearize (12) using Newton’s method by introducing the following iterations 
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(iv) Solve Eq. (14) by block-tridiagonal elimination technique. Three cases were 

considered; i.e j = 1, j = J – 1 and j = J which later can be written in vector-

matrix form as 
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Eq. (15) was solved using block elimination method.  The problem was coded in 

Matlab software and two quantities of interest; i.e  0f   and  0  were generated 

from the program.  

 

III.     Results and Discussion 

The effect of Newtonian heating which is given by the parameter Bi is seen to give 

outstanding impact towards  0f   and  0  as depicted in Fig. 1(a) and (b), 

respectively. The increment of Bi number increases both  0f   and  0  except when 

the flow is dominated by forced convection (λ = 0). This is expected due to the 

absence of λ in Eq. 7 which reflects the independency of fluid flow towards the 

thermal flow and causing fixed  0f  . Furthermore, as λ > 0 and Bi increases,  0f  is 

getting higher. However, this scenario does not hold for  0 . The impact of mixed 

convection parameter λ on  0  is very much profound for Bi >> 0.9 and no 

remarkable change for Bi << 0.9. Arbitrary values of λ in the absence of Bi number 

(Bi = 0) causing the  0f  remains fixed at certain value of  0f  , and the surface 

temperature  0 = 0 due to no heating at the sheet.  The effect of non-Newtonian 

fluid (Casson fluid) given by β is found to give interesting behaviors to the  0f   and 

 0 . At fixed λ and Bi < Bic,  0f   is higher for Casson fluid (β = 2) as compared to 

Newtonian fluid (β = ∞) and opposite phenomenon occur beyond this value; i.e Bi > 

Bic. It should be stressed out that Bic decreases as λ increases.  This condition does not 

hold for  0 . The determination of  0  is very much depends on λ and β.  For λ = 1, 

there is no effect of β onto  0  is seen. However for λ >> 1,  0 is found to be higher 

when the flow is dominated by Casson fluid (β = 2) which contradict the behavior of 

 0  for λ << 1.                             

Figs. 2-3 are depicted to further visualize the effect of mixed convection parameter 

λ onto  0f   and  0 , respectively, for several values of Bi number and for the case 

of Newtonian fluid (β = ∞) and Casson fluid (β = 2). Here, we employ both values of 

λ, i.e λ   0 and λ < 0. For λ = 0, the fluid flow is no longer influenced by Bi number 

which results of fixed  0f  . 
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    (b) 

 
 

Fig. 1. (a)  0f   and (b)  0  for various values of Bi and  0  

 

For λ >> 0 (assisting flow), the increment of λ is found to increase  0f   and 

decrease  0  as potrayed in Figs. 2a and 3a. This is in line with the results obtained 

in Fig. 1. However, the effect of λ on  0  is very much profound for higher value of 

Bi number (Bi = 1.5) in comparison to smaller values of Bi number; i.e Bi = 1.2 and 

Bi = 0.9 due to the abrupt decrement of  0 . This is projected as mixed convection 

parameter λ very much affecting the fluid flow as compared to the thermal flow. The 

presence of Bi number changes the thermal flow due to the heating at the surface.  

The effects of Newtonian and Casson fluid also can be seen from these figures. The 

property of the fluid is found to give different characteristics towards the  0f   and 

 0  at certain value of λc. 

  Figs. 2b and 3b depicted the behavior of  0f   and  0  for λ < 0, respectively. 

Here, contrary scenarios occurred as for the  0f  and  0  when λ ≥ 0 (figs. 2a and 
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3a). It should be pointed out that both  0f   and  0  are limited to certain negative 

values of λ subject to the Bi number and β under consideration. For instance, the 

smaller the Bi number, the wider the range of λ can be computed. Also, it is worth 

mentioning that this value can be improved by imposing Casson fluid (β = 2) instead 

of non-Newtonian fluid (β = ∞).    

(a)  

 

(b)  

Fig. 2.  Influence of Bi number onto  0f   when 

(a) λ > 0  and (b) λ < 0 

 

-1.5

-0.5

0.5

1.5

2.5

0 2 4

f
" 

(0
)

λ

β = ∞

β = 2

Bi = 

1.2

Bi = 

0.9

Bi = 

1.5

λ

c

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

-4 -3 -2 -1 0

f
" 

(0
)

λ

β = ∞

β = 2 Bi = 

1.2Bi = 

0.9

Bi = 

1.5



 

 

 

 

Copyright reserved © J.Mech.Cont.& Math. Sci., Special Issue-1, March (2019)  pp 203-214 

213 
 

 

 
Fig. 3. Influence of Bi number onto  0  when 

(a) λ > 0  and  (b) λ < 0 

 

 

IV.   Conclusions 

Numerical solution for the mixed convection Casson fluid over an 

exponentially stretching sheet with Newtonian heating is considered. Various 

arbitrary values of the mixed convection λ, Bi number for both Newtonian and Casson 

fluid towards  0f   and  0 are depicted in form of graphs.  The increment of λ (λ >> 

0) contributes to increment of  0f   and decrement of  0  (only at high value of Bi 

number). Limited solutions were obtained for λ << 0. Bi number is expected to 

increase both  0f   and  0  except for λ= 0.  
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