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In this paper, a novel approach, based on data fusion for pedes-
trian detection is presented. It makes use of state of the art pedes-
trian detection algorithms for both laser scanner and computer 
Abstract: Road safety applications demand the most reliable sensor systems. In recent 
years, the advances in information technologies have led to more complex road safety 
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1. Introduction

Most of the accidents in roads are connected with human
errors. Wrong decision making or driver inattentions are the two
main errors that cause traffic accidents. These kind of errors are
related to human nature and cannot be eliminated, although
efforts can be made to decrease them. Recent researches in Intelli-
gent Vehicles have focused on using the advances in information
technologies to prevent these errors. One example of these kind
of applications are the Advanced Driver Assistance Systems
(ADAS), which try to warn driver in case of hazardous situations.

Sensor trustability is one of the main issues when dealing with
road safety applications. The ADAS systems need the most reliable
set of sensors to fulfill the requirements of these demanding appli-
cations. Thus, to accomplish such a difficult task, it is mandatory to
combine different information sources so we can overcome the
limitations of each independent sensor. Here is where context
vision and Joint Probabilistic Data Association (JPDA) for data asso-
ciation, which was specially adapted to be used in a real time auto-
motive environment. The application also takes advantage of some 
available contextual information, (including static knowledge as 
well as some online information). Thus, by combining a strong 
association technique and context information, classical ADAS 
detection is enhanced. Three main sensors were used for this 
application:

Laser scanner. Recent researches have focused on the use of 
this well-known sensor in automotive applications. Its robust-
ness and reliability has been proved in different test and con-
tests (e.g. DARPA Grand and Urban Challenge) (Defense & 
Agency, 2006; Iagnemma & Buehler, 2006; Buehler et al., 
2005; Iagnemma and Buehler, 2007.
Computer vision. It is a common topic in Intelligent Vehicles 
research, and nowadays it can be found in commercial systems. 
Inertial sensor. It is an improved GPS with inertial correction 
that allows accurate estimation, not only of position and veloc-
ity, but also of Euler angles, acceleration, etc. This information 
wledge 



2. Sensor fusion in vehicles. State of the art

Fusion approaches in vehicle safety can be divided in relation to
the processing architecture employed. In Intelligent Vehicle appli-
cations, this is usually the way of dividing them. Most of these
approaches take advantage of complementary properties of the
available sensors mainly at fusion level 1 (Object Assessment),
focusing on the detection and tracking of the different actors
involved in road environments:

In feature vector fusion approaches, some preprocessing is 
performed for each sensor to create a set of features for each one. 
These individual sets are combined to create a compound set that is 
used to perform the obstacle detection and classification. In 
Premebida, Ludwig, Silva, and Nunes (2010) and Premebida, 
Ludwig, and Nunes (2009)features are extracted for each sensor 
independently and a new data set is created; authors present dif-
ferent approaches whether combining or not the different features 
of the different sensors and comparing results. The final classifica-
tion after fusion is compared with alternative methods such as 
Naïve Bayes, Gaussian Mixture Models, Neural Networks. In Zhao, 
Chen, Zhuang, and Xu (2014) multiple feature fusion is performed, 
based on different feature extraction approach for vision 
approaches i.e. Support Vector Machine (SVM), Naïve Bayesian and 
Minimum Distance Classifier.

Decentralized fusion architecture based approaches perform 
detections and classifications for each sensor independently and 
a final stage combines the detections according to the certainty of 
the detections and sensors trustability. Spinello and Siegwart 
(2008) uses Adaboost vision based pedestrian detection and Gauss-
ian Mixture Model classifier (GMM) for laser scanner based pedes-
trian detection, finally a Bayesian decisor is used to combine 
detections of both subsystems. In Premebida et al. (2009) pedestri-
ans are detected by a laser scanner using multidimensional fea-
tures that describe the geometrical properties of the detections, 
and features of Histograms of Oriented Gradients (HOG) with 
SVM classification for computer vision based pedestrian detection; 
Bayesian modeling approach is used for the final fusion. Premebida 
and Nunes (2013) takes advantage of lidar ROI detection, computer 
vision and contextual information from digital map to provide high 
level fusion based on a Bayesian approach.

Generally, data fusion approaches among Intelligent Vehicles 
researches use data from laser scanner to detect regions of interest 
(ROI), and computer vision to classify among different obstacles 
that can be found. Such as Ludwig, Premebida, Nunes, and Ara 
(2011) where HOG features combined with SVM approach provide 
pedestrian detection and Pérez Grassi, Frolov, and Puente León 
(2010) based on Invariant Features, again with SVM, to perform 
the vision based pedestrian detection. These approaches take 
advantage of the trustability of the laser scanner for obstacle detec-
tion but fusion is limited to speed up the process by detecting 
robust ROIs. Thus, the information added by the fusion process is 
limited and it could barely be considered real data fusion.

Some other fusion approaches in the scope of the Intelligent 
Transport Systems researching field take advantage of different 
sensors’ properties in systematic approaches, although no expli-cit 
data fusion processes or algorithms are included in the works: 
Broggi, Cerri, Ghidoni, Grisleri, and Jung (2008) uses information 
from laser scanner to search those zones of the environment where 
pedestrians could be located and visibility is reduced (e.g. space 
between two vehicles) and performs detec-tions using a vision 
approach. In Bohmlander, Doric, Appel, and Brandmeier (2013) 
mono camera and a capacitive sensor are used for pedestrian 
detection, and in Garcia, Cerri, Broggi, de la Escalera, and Armingol 
(2012) radar and computer vision by means of featured based 
optical flow, are used for vehicle over-taking detection.
Fusion is also widely used for vehicle positioning, based on the 
fusion of different positioning and tracking techniques, such as 
GPS, inertial measurements and odometry. By fusing GPS signal 
with inertial measurements, problems regarding to GPS signal loss 
can be overcome, improving the precision of the positioning sys-
tems, as presented on Bhatt, Aggarwal, Devabhaktuni, and 
Bhattacharya (2014) and Martí et al. (2012).

Within the scope of data fusion, target tracking is one of the 
main aspects, several works have been presented that enhance 
the detections by the use of advance tracking procedures in Intel-
ligent Transport Systems (ITS) and expert systems researching 
fields. By combining strong classification algorithms and trustable 
tracking procedures, reliable pedestrian detection can be 
performed: In Li, Xu, Goodman, Xu, and Wu (2013) background-
foreground identifications enhances the detection, the later combi-
nation with Camshift tracker and a Kalman Filter (KF) allows 
trustable pedestrian detection and tracking. In Fan, Mittal, 
Prasad, Saurabh, and Shin (2013) deformable part models and KF 
are used for visual based pedestrian detection and tracking with 
JPDA association technique. In Schneider and Gavrila (2013) com-
parative between Extended KF and Interacting Multiple Models 
(IMM) tracking methods is provided for stereovision based pedes-
trian detection. Works presented on Sánchez, Patricio, García, and 
Molina (2009) and Gómez-Romero, Patricio, García, and Molina 
(2011)provide tracking procedures for surveillance applications, 
taking advantage of the context information in complex scenarios.

Context information can aid safety applications by both adding 
inference development (i.e. checking the consistence of the detec-
tions with the previously defined model) and adding explanatory 
aspects when the inference is consistent with the context. Some 
works commented before already take advantage of this useful 
information for pedestrian detection based on digital maps 
(Premebida & Nunes, 2013), video surveillance applications 
(Sánchez et al., 2009; Gómez-Romero et al., 2011) or for vehicle 
positioning (Martí et al., 2012). This work uses contextual informa-
tion to complete the available sensor data, representing accurately 
the current situation of the vehicle and the objects surrounding it, 
affecting to the predictable behavior of the driver according to the 
safety regulations.

Finally it is important to remark that traffic and road safety 
applications are common topic within expert systems, the avail-
ability of modern IT technologies allows the development of mod-
ern and advance algorithms that make use of the these advances to 
prevent road accidents or mitigate its consequences: In Castro, 
Delgado, Medina, and Ruiz-Lozano (2011) an expert system based 
on fuzzy logic is presented, designed specifically to avoid pedes-
trian accidents. Guo, Ge, Zhang, Li, and Zhao (2012) presents an 
Adaboost and SVM based system for pedestrian detection. In 
Conesa, Cavas-Martínez, and Fernández-Pacheco (2013) vehicles 
driving in opposite direction are detected by means of agent based 
architecture. In Jo, Lee, Park, Kim, and Kim (2014) driver drowsi-
ness is analyzed by means of the used of driver specific biological 
measurements and computer vision based algorithms for eye state 
and blinking detection. Finally authors in Abellán, López, and De 
OñA (2013) provide an algorithm to analyze and identify the sever-
ity of the accidents using decision trees.

In this work, a fusion-based expert system for pedestrian detec-
tion and danger avoidance is presented. Previous works, com-
mented above, are particular solutions developed for specific
sensor inputs not taking advantage of all the contextual knowl-
edge. Furthermore, present work tries to focus on a system-level
approach, making use of information and processes performed at
different levels, and taking into account the final application of
the fusion process. All these aspects are not common among ITS
researches. Finally, the model makes use of a JPDA approach for
multiple sensors, able to overcome difficult situations in the data
2



association technique. Although JPDA (Bar-Shalom & Li, 1995; 
Blackman & Popoli, 1999) algorithm is not a recent algorithm in the 
fusion field, successfully used on previously presented works, such 
as Fan et al. (2013), it represents a step forward in data fusion on 
ITS, overcoming some of the problems of the classical associa-tion 
techniques (Musleh, García, Otamendi, Armingol, & De La Escalera, 
2010; Garcia, de la Escalera, Armingol, Herrero, & Llinas, 2011).

3. General description

System architecture is based on a decentralized scheme, where
each sensor (scanner laser and computer vision) performs inde-
pendent detections. Later fusion method performs plot-to-track 
fusion combining the information of both subsystems to give a 
more robust and reliable detections. Inertial system is used in level 
0 to compensate the movement of the vehicle when using laser 
scanner and in level 2 and 3 is combined with context information 
to provide danger estimation of the different pedestrian detected. 
In Fig. 1, system architecture is presented. The nature and the 
requirements of the application demand a multilevel approach that 
can give a complete solution to the safety application. Data fusion 
levels definition can be found in Hall and Llinas (2001):

In level 0 inertial measurements are used to compensate the
movement of the vehicle during the laser scan and also to avoid
unreliable reading (for instance while significant movement in
the pitch angle due to obstacles). Besides, data alignment with
video input is performed using pin-hole model to transform
laser scanner coordinates to vision coordinates. This allows
avoiding false positives in the camera approach and increases
the efficiency of the vision system by reducing the search space
in the image for obstacles detected by the laser.
Level 1 First, each sensor performs classification. A later fusion
approach combines the systems’ detection in a plot-to-track
Fig. 1. Overall System Diagram with JDL levels correspondence. The process diagram
information sources used.
approach and performs tracking algorithm. Here, some context
information is used to help in the classification, e.g. pedestrian
size.
Level 2 and 3 Interactions and situation assessment are made
using detection tracks; context information is augmented with
the information of the inertial system that provides information
about the movement of the vehicle.

Vision approaches have proved to be very robust for pedestrian 
detection in the latest years. But computer vision has a limited field 
of view and it is strongly affected by weather conditions (e.g. snow, 
dust, solar reflections, etc.). The present approach tries to take 
advantage of different information sources available (com-puter 
vision, inertial system, laser scanner and context) to add robustness 
to the classic computer vision based approaches. Pedes-trian 
detection is performed by the two main sensors (laser scan-ner and 
computer vision) independently; thus, as both sensors have 
different field of view, different detection zones can be found. A 
fusion zone where both sensors are available is created, and a single 
sensor zone where only the laser scanner can be used is also 
created (Fig. 2). In this way, thanks to the laser scanner pedestrian 
detection subsystem, the pedestrians can be found even when they 
are out of the camera field of view or when weather conditions or 
system failure makes impossible the computer vision detection, 
adding robustness and reliability to the system. In the fusion zone, 
the redundant pedestrian detection helps to provide a more robust 
detection preventing false positives and decreasing the amount of 
misdetections.

In order to give situation awareness for a complete system-level
approach, danger estimation was performed accordingly to the dif-
ferent danger zones created. Here is where context takes a relevant
role in the application, since vehicle movement information,
pedestrian detection and other relevant information (e.g. vehicle
mass, braking distance, response time, etc.) are integrated in a
common reasoning framework to obtain pedestrian danger
shows the different tasks involved in any of the levels, with the corresponding
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Fig. 3. Test platform IVVI 2.0 (Intelligent Vehicle based on Visual Information 2.0).
estimation and relevant distances. These relevant distances are
braking distance and response distance. The former is the time
elapsed until vehicle completely stops, and the latter is the mean
response time of the driver to an external stimulus. These relevant
distances are used to create three danger regions, where pedestrian
detection is situated: safe region, danger region and imminent col-
lision region. According to the zone where a given pedestrian is
located, different actions should be performed.

Tests were performed in the test platform IVVI 2.0 (Fig. 3), prop-
erty of the Intelligent Systems Lab of University Carlos III of 
Madrid.

In Section 4, pedestrian detection subsystems and data align-
ment are explained. In Section 5, the tracking process is detailed 
together with the fusion algorithm. Section 6 depicts the fusion 
levels 2 and 3, giving description of the relevant distances taken 
into account for danger estimation. Finally, test results and conclu-
sion are given in Sections 7 and 8 respectively.

4. Pedestrian detection and data alignment

As it was previously mentioned, Intelligent Vehicles fusion
approaches are mainly focused on levels 0 and 1, but they rarely
present a systematic description of fusion processes accordingly
to JDL Fusion model. This works tries to give a complete applica-
tion that takes into account all the levels of the Fusion process.
In this section, Level 0 of data fusion is going to be detailed.

First, pedestrian detection system is described for each subsys-
tem. Later, procedures to extrapolate laser scanner detections to
computer vision coordinate system are detailed. Finally, all these
detections should be extrapolated to vehicle coordinates system
that is the front part of the vehicle.

4.1. Laser scanner pedestrian detection

The laser scanner was mounted in the bumper of the test plat-
form IVVI 2.0 (Fig. 4). The model selected for this application was a 
single layer laser scanner from SICK, model: LMS 291-S05. This 
laser scanner provides angular resolution of 0.25�, a field of view of 
100� and a detection distance up of 82 m.
Fig. 2. Detection zones according to the different fields of view of the different
subsystems.
Pedestrian detection algorithm is composed by two stages. First,
obstacle segmentation and shape estimation is performed. Obsta-
cle classification is performed in the next stage, taking into account
the shape estimated in the previous stage.

4.1.1. Obstacle segmentation and shape estimation
Laser scanner provides 401 detection points per scan, each one

of them with a given time delay respect to the others. Thus, after
data are received from the laser scanner, the movement of the
vehicle should be compensated using the information given by
the inertial system MTI-G. Euler angles, displacement and velocity
should be taken into account in order to avoid deformation of the
reconstructed shapes.

Laser scanner is also very sensitive to pitching movements, so it
is mandatory to check if there is a pitching movement that would
make impossible the detections. In these situations, the laser scan-
ner pedestrian detection is disconnected so the detection is per-
formed based on computer vision system.

4.1.2. Movement compensation
Errors due to strong pitching movements are avoided using the

inertial system. Pitch movement is checked and when a strong
pitching movement is detected, laser scanner detection is disabled
to avoid misdetections and errors.
Fig. 4. Platform IVVI 2.0 with the laser scanner mounted in the front bumper and
the computer camera system in the windshield.
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Euler angles computed by the inertial system are used to correct 
the displacement of the measures due to the movement of the 
vehicle. Eq. (1) depicts the compensation with the rotation and 
translation matrixes needed to correct this movement. This way, 
the points are referenced to the position of the last point received 
(Fig. 5(a)).
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Fig. 5. Vehicle movement compensation and data alignment. (a) Shows the detection poin
Shows the shape reconstructed after the movement compensation. (c) Shows the final ali
to color in this figure legend, the reader is referred to the web version of this article.)
in Eq. (1) Dd, Du and Dh corresponds to the increment of the Euler 
angles roll, pitch and yaw respectively for a given period of time Ti. 
Coordinates (x, y, z) and (x0, y0, z0) are the Cartesian coordinates of a 
given point after the vehicle movement compensation. R is the rota-
tion matrix, Tv is the translation matrix according to the movement 
of the test vehicle, and T0 is the translation matrix according to the 
position of the laser and the inertial sensor.

The point clouds are clustered using Euclidean distance and a 
threshold that is dependent on the distance to the laser scanner 
(Eq. (2)).

th ¼ th0 þ K � dist ð2Þ

Thus, for a given point pi, defined by its coordinates (xi,yi), belongs
to a segment Sj if there is a point pj included on this segment that
satisfies:

piðxi; yiÞ 2 Sj ! f9½pjðxj; yjÞ 2 Sj� : dðpj;piÞ < thg ð3Þ

A new segment is created if a given point is not included in any seg-
ment. Finally, a filtering mechanism eliminates all the single point
segments, considered false detections from the laser scanner.

Finally, after clustering, the shapes of the different obstacles are 
estimated using polylines (Fig. 5(b)). The idea of polylines consists 
of a recursive method that estimates the shape of a given obstacle
ts, in blue before the vehicle movement compensation and red for compensated. (b)
gnment of the laser scanner data and the image. (For interpretation of the references
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by merging the points included in a given segment with straight
lines.

In a given segment, the first and last point are merged by a 
straight line (Fig. 6(a)).

Next step consists of selecting the next point in the segment. If 
the distance from this point to the line is lower than a threshold, 
two new lines are created from the first point to the selected one 
and from it to the last one Fig. 6(b) and (c). Otherwise the point is 
not connected by any line.

A new point is selected to check the distance to the closest poly-
line and the previous step is repeated until all the points are 
checked (Fig. 6).

This process is presented for its use in automotive applications 
in Broggi et al. (2008). Its main drawback is that it is dependent on 
the threshold for an accurate shape reconstruction, although the 
threshold strategy can be used to configure the precision of the 
reconstruction. Thus, for an accurate detection where the original 
shape is important, it can be chosen a low threshold. On the other 
hand, when dealing with bigger distances, or low detail of the 
reconstruction is less important, the threshold can be increased 
allowing the algorithm to focus on the general shape or skeleton of 
the shape. For the present application, the higher threshold allows 
to create a general pattern for the leg movement. Other approaches 
(Shao et al., 2007; Xavier, Pacheco, Castro, Ruano, & Nunes, 2005) 
are based on closer distances where a higher amount of points 
allows statistical differentiation. As it is shown in Fig. 7, the 
polyline pattern obtained for the case of pedestrians is less var-
iable in relation to the distance when the threshold selected is high. 
Thus, for the present approach, high threshold was used to avoid 
variations of the polylines for pedestrians due to the dis-tance. 
Besides, as this approach does not pay attention to the details, it is 
not dependant on the shoes or even the clothes that the pedestrian 
is using (e.g. skirts, trousers, etc.). On the other hand, the simplicity 
of the reconstructions leads to misdetections. To solve this, a 
tracking stage was added in at low level to analyze the movement 
of the pedestrian along time e.g. velocity, changes in the shape, 
impossible movements, etc.

4.1.3. Obstacle classification
Pedestrian classification is performed in two steps, taking into

account a priori context information. First, obstacles with a size
proportional to a pedestrian are selected among the different
Fig. 6. Polyline creation process. (a) Segment without polyline. (b) Segment with
first polyline. (c) A new point is added to the polyline creation process and (d) the
final shape estimation.
obstacles and then the shape of the polyline is checked against a
typical pedestrian pattern. It has to be remarked that the purpose
of this approach is to detect single pedestrians. Further approaches,
already under development, deals with groups of pedestrians.

4.1.3.1. Contextual knowledge for pedestrian detection. The pedes-
trian size that was used in the present application to select possible 
pedestrians is based on the model of human body (Skehill, Barry, & 
Mcgrath, 2005; Highway Capacity Manual, 2000) that models 
human body as an ellipse. In Skehill et al. (2005) an study of the 
physical dimension of human being is detailed. It is usually 
accepted that physical dimension for pedestrian was given in the 
early 70s in Highway Capacity Manual (2000) and are correspond-
ing to an ellipse whose two main axes are (57.9 cm � 33 cm); that 
ellipse includes the body of a dressed human being. Other 
researches Still (2000) uses worldwide anthropological studies to 
conclude that this ellipse is (45.58 cm � 28.20 cm). Finally both 
Skehill et al. (2005) and Highway Capacity Manual (2000) conclude 
that this dimension is (0.6 � 0.5). In this work, the latter assump-
tion will be the model used to perform the pedestrian detection.

Finally, a study of the different patterns given by pedestrians 
was performed, giving the conclusions found in Fig. 4.

4.1.3.2. Pattern matching. In this pattern, three polylines are pre-
sented, and the angles that connects the polylines are included
within the limits of 0; p2

� �
.

A pattern matching process computes the two angles and gives 
a similarity score where 1 means 100% match (see Fig. 8)

Similarity ¼ 2h1

p
� 2h2

p
; ð4Þ

where h1 and h2 are the angles that connect two consecutive lines.
This similarity is computed among any two consecutive

polylines that represent the shape of the pedestrian. If the result
is bigger than a given threshold the obstacle is considered to be a
pedestrian.

It is assumed that the previous pattern is very common when
dealing with laser scanner, thus false positives are expected. To
overcome this problem, a low level tracking stage was created. This
stage allows tracking the movement of pedestrians along time to
remove false detections, and checking whether the pedestrian is
performing unexpected movement or if the size of the pedestrians
changes and it does not fulfill the human being constraints. It is
based on KF with constant velocity model. The new detections
are searched within a window whose size depends on the size of
the pedestrians.

Finally, the correlation with previous detections from the laser
scanner tries to check if we are dealing with the same segment,
or if the segment changed its size. This correlation is also very
helpful to overcome the problem of two detections within the
same window.

The algorithm for obstacle correlation is based on the size of the 
object found (Eq. (5)). It is remarkable that most of the features 
used for this correlation were based on the internal points and 
the distances in x coordinate. Y coordinates are subject to a higher 
variability due to frequent occlusions:

Corr ¼ c1N þ c2 widthþ c3dþx þ c3d�x þ c4rþ c5dþ c6q; ð5Þ

where ci represents the weight for a given parameter, N is the med-
ium number of points, width is the size of the obstacle, r is the stan-
dard deviation of the points to the center of the obstacle q. Is the
radius of the circle surrounding the obstacle and d is the distance
to the estimation of the KF. Finally dþx; d�x are the number of points
to the left or to the right of the center.

The correlation value used in Eq. (5) is also used to eliminate 
tracked pedestrians with high variability.
6



Fig. 7. Representation of the polyline creation according to the thresholds. (a) Representation of the detection points according to the pedestrian legs, black dots represent
laser scanner detections. (b) Polyline reconstruction with low thresholds for both segment creation and polyline creation. (c) Polyline reconstruction with low thresholds for
polyline creation and high threshold for segment creation. (d)Polyline reconstruction with high thresholds for both segment creation and polyline creation. (1) Example at
closest distance (more detection points). (2) Example for long distance (less detection points).

Fig. 8. (a) Pattern for pedestrian detection. (b) Different examples of different patterns given by pedestrians with different leg positions.
The final classification is provided taking into account the last
ten detections by a voting scheme. The voting scheme tries to over-
come the limitations in the information provided by a single scan
by taking into account the last 10 detections:

Vi ¼ diNi; ð6Þ

where Vi is the weight of each kind of obstacle and di is the weigh
considered for the given kind of obstacle, and finally Ni is the num-
ber of votes for each type of obstacle. The kind of obstacle with
higher Vi is the final selection for each obstacle.
4.2. Vision based pedestrian detection

Vision based pedestrian detection is based on the HOG descrip-
tor and SVM classification (Dalal & Triggs, 2005). This classification 
requires a high computational cost, thus ROI detection is per-
formed before. This approach uses the laser scanner detections 
and the field of view of the camera to reduce the amount of data 
to process in the image; thus, only obstacles given by the laser 
scanner and extrapolated to the image are processed to check 
whether they are pedestrians or not.

Before ROI detection, some data alignment should be performed
since sensors do not share the same coordinate system.

It is interesting to notice that this system can work in two con-
figurations: based only in computer vision, or together with the
information provided by the laser scanner. The latter allows the
system to reduce false positives, since only obstacles detected by
the laser scanner are used for computer vision detection. In this
way, errors or multiple detections are reduced since only regions
with obstacles in are taken into account. In extreme situations
where the laser scanner is not available, i.e. strong pitching move-
ments, the camera is still able to work using the pin-hole model to
estimate the distance. Furthermore, in normal conditions, the laser
scanner represents a very accurate sensor to estimate the distance
to the obstacle. It is important to remark that here, the region of
interest provided by the laser scanner corresponds to those obsta-
cles with sizes similar to pedestrians, and the pedestrians classifi-
cation presented is an independent process. Fusion of the
classifications of each sensor independently will be explained in
further sections.

Space alignment was performed taking into account the pin-
hole model and using the rotation matrix. Both coordinate frames 
of the two different subsystems were translated to the reference 
point of the vehicle which is the central point of the front bumper 
(Fig. 9).

To perform this coordinate change, transformation and rotation
matrix should be used,

xv

yv

zv

264
375 ¼ Ri

xi

yi

zi

264
375þ Ti

0B@
1CA; ð7Þ
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where Ti is the translation matrix and Ri the rotation matrix that
corresponds whether to the laser or the camera (Ri or Rv). These
rotation matrixes are equivalent to the rotation matrix used in Eq.
(1) but in this cases Euler angles corresponds to the angular
deviation among coordinates system of the camera and of the laser
scanner with respect to the vehicle coordinate system. Ti is equiva-
lent to the displacement in cartesian coordinate system for each
sensor (Tl for the laser and Tc) for the camera:

k

u

v
1

264
375 ¼ f 0 u0

0 f v0

0 0 1

264
375 xc

zc

yc

264
375 ð8Þ

where u, v are the image coordinates in pixels, f the focal distance
and (xc,yc,zc) the cartesian coordinates of the image detections in
the image coordinate system. u0 and v0 are the coordinates of the
center of the image.

Eqs. (7) and (8) were also used to transform ROIs detections 
from laser scanner space to camera space to perform vision based 
classification. This way, data association from both sensors is 
implicit since they perform classification for each sensor for the 
given obstacles detected by the laser scanner (Fig. 10).

Finally, once the bounding boxes provide the region of interest, 
the HOG features algorithm perform the pedestrian detection based 
on the HOG features algorithm presented in Dalal and Triggs (2005).

The theory after the HOG feature description is based on local 
appearance and shape of all objects in an image, which can be 
described by the distribution of intensity gradients or edge direc-
tions. The implementation divides the image into small-connected 
regions (cells) that can have different shapes (circles or squares). 
For each cell a histogram of gradient directions (or edge orienta-
tions) for the pixels within the cell is compiled (Fig. 11(c)). These 
cells are later divided into blocks. These blocks represent the 
descriptor of the image, with different regions. Regions can over-
lap, thus some cells can belong to more than one block. The final 
descriptor is the normalized histogram of the cells belonging to all 
the blocks that represent the image.

These descriptors are trained according to a database of images, 
to select those regions of the image having more weights to differ-
entiate a pedestrian, and this process is performed by a Support 
Vector Machine (SVM) classifier. SVM is a binary classifier that 
looks for the optimal hyperplane for a decision function. It is a 
machine-learning algorithm widespread in computer vision 
approaches. Fig. 11(c) depicts the HOG features for a given bound-
ing box.
Fig. 9. Different coordinate system (xc,yc,zc) are camera coordinate system, (xl,yl,zl)
is the laser coordinate system, and (xv,yv,zv) is the coordinate system. Coordinates
(u,v) are the image coordinates.
5. Fusion system

The sensor fusion algorithms (fusion at JDL level 1) are detailed
here, including an extensive explanation of the estimation filter
used to track the movement of the pedestrians found. Plot to track
configuration is detailed paying attention to track creation and
deletion policy as well as to data association and gating
procedures.

5.1. Estimation filter

Thanks to the high update rate of the laser scanner, KF was con-
sidered to be a reliable choice for pedestrian tracking in the road 
environment. We used a model similar to Kohler (1997) to track 
pedestrians assuming constant velocity and modeling accelera-
tions as system process noise.

5.2. JPDA for data association

Data association is based on JPDA, adapted to the problem of
pedestrian detection with laser and camera.

First, a squared-gates approach is used to perform gating (9):

KGlrr ð9Þ

where rr is the residual standard deviation and KGl is a empirically
chosen constant.Next step is the association process, it is performed
based on JPDA approach, adapted to this specific application.

JPDA is a well-known association technique (Blackman, 1986; 
Blackman & Popoli, 1999). Its probabilistic approach helps to obtain 
better results when dealing with specifically difficult situa-tions 
than the classic approach based on Global Nearest Neighbors.

m
The joint association probability, defined in (10), represents the 

probability of a joint association event hkj 
that associated measure-

ment m to track j at a time k:

PðhjZkÞ ¼ PM�n
D ð1� PDÞnPmk�ð1�MÞ

FA

Ymk

j¼1

gi;j; ð10Þ

where gi,j is defined assuming a 2 dimensional Gaussian association
likelihood, for all the measurements to the target:

gi;j ¼
1

ð2pÞN=2 ffiffiffiffiffiffiffiffi
jSijj

p e�
d2

i;j
2 ; ð11Þ

where di,j is the Euclidean distance between the prediction and the
observation. Si,j is the residual covariance matrix. Assuming inde-
pendence of errors in Cartesian coordinates, we would haveffiffiffiffiffiffiffiffi
jSijj

p
¼ rxry and N = 2.

Finally, all the association hypotheses are weighted in the
updating stage of the KF. The innovation is calculated using all pos-
sible combinations, weighted accordingly to the association likeli-
hood values:

Ik ¼
Xm

i¼1

PðhjZkÞ Zi;k � Hk
bXkjk�1

� �h i
; ð12Þ

where Ik is the innovation for the KF of a given track.
In certain situations, the previous algorithm can lead to unsta-

ble behaviors. When several tracks compete for a single observa-
tion, the clutter (no assignment) is the most powerful option due
to the weight of the joined probabilities of the other options, differ-
ent from the joint to be calculated. To overcome this problem, any
associated track-new detection pair is eliminated from the assigna-
tion process after it is assigned. Thus, in further assignments all the
joined probabilities are recalculated with the remaining tracks and
detections. This way, the problem is avoided by eliminating the
weight of the already assigned solutions in subsequent
8



Fig. 10. Laser scanner ROI detection with the different coordinate system of the different sensors highlighted in the image (u,v) for image space and (x,y,z) for laser scanner.
(a) Shows the laser scanner detections in the image coordinate system. (b) Shows the boxes that represent the ROIs.

Fig. 11. Visual pedestrian detection. (a) Region of interest calculation with the distance to the obstacle in meters indicated in cartesian coordinates. (b) The detected
pedestrian highlighted. (c) The HOG features description of the bounding box, with the histogram of gradients represented by lines included in the cells, whose length and
intensity are equivalent to the strength of the given gradients.
assignations. In the case of several tracks pointing to a single obser-
vation, this solution would first assign clutter to the less probable
detection and eliminate the weight of this detection in subsequent
assignations, until one of them is selected as more likely than the
clutter. Different tests proved both the stability of the system,
and that the computational cost added due to the necessity to
recalculate the joining probabilities is negligible.

The solution based on a JPDA approach, adapted to this specific
road safety application, helped to overcome difficult situations
originated due to the specific nature of the sensors used, some of
them are:
5.2.1. Clustering errors
These errors are produced due to the difficulty to separate close 

pedestrians by the laser scanner algorithm (Fig. 12(a)). JPDA deals 
with this problem better than other approaches. In these situations 
the two pedestrians tracked use the single detection, when they
are not differentiated, to update the KF. Thus the estimation pro-
cess suffers no degradation.

5.2.2. Double detections
This error can be produced by two factors: The distance from 

the laser scanner to the camera can produce that several detections 
from the laser scanner fall in the same location within the camera 
plane, or due to clustering errors of the laser scanner that creates 
several ROIs including the same pedestrian, e.g. dust of rain. In 
these situations, no new track would be created, since in most of 
the situations both detections falls into the gate of the pedestrian 
track. Furthermore, the effect of the misdetection in the updating 
process is negligible, because its probability would be lower, so 
its weigh in Eq. (12) will be minor.

5.2.3. Occlusions or crossings
On this typical problem, the single detection given when one 

pedestrian is occluded by another one (Fig. 12(b)) can be used to
9



update the estimation filter of both pedestrians. Thus the tracking
would not suffer any variation by this misdetection.
5.3. Track management

Track creation and deletion policy follows a logic that was set
empirically. According to the detection zone where a pedestrian
is found, different policies are applied. Also zone switching should
be taken into account. The following table depicts the logic
followed to track creation and deletion.

Table 1 depicts the track management logic according to the 
region where the laser scanner is located. The values of NDS, NCS, 

NCF and NDF vary according to the danger region where the pedes-
trian is located according to the movement of the vehicle. Thus, 
when the vehicle is closer, the risk involving any of the consoli-
dated tracks is higher. Thus, the higher the danger, the higher 
the values of these parameters.

Another aspect that has to be managed is when a track changes
the sensor zones: If a track switches from laser scanner to fusion
zone, any track is considered not consolidated, thus vision should
corroborate the detections from laser scanner in the single sensor
zone. On the other hand, when the tracks change from fusion zone
to single laser scanner zone, no changes are performed; consoli-
dated or not, the track maintains its status, and only the updating
policy changes.

The use of consolidated and non consolidated tracks adds 
robustness to the system. Only consolidated tracks are considered 
trustable detections, thus they are the only ones reported. This 
way, false positives, mainly from laser scanner, are discarded 
because detections that are not corroborated by the vision system 
are not reported. Furthermore, the use of both sensors allows that, 
once a track has been consolidated and a pedestrian has been 
detected, he can be tracked even if he becomes undetectable by 
one of the subsystems (e.g. he goes out of the camera field of view). 
These implications of the data fusion algorithm are proved in Sec-
tion 7 where the different tests performed are detailed. The results 
of the fusion algorithm obtained enhance the basic performances 
of the different sensors independently.
6. Danger estimation

In Section 2, we presented the state of the art in pedestrian
detection systems for road safety applications. They are mainly
focused on low-level fusion, while other processes in higher fusion
levels are scarcely detailed. In this section, situation and threat
assessment are intended, using context information to augment
the capacity of the system, creating a reliable and robust applica-
tion. Context information used is related to vehicle safety informa-
tion that allows not only to detect the pedestrians in the
Fig. 12. Clustering errors (
surroundings, but also to estimate the danger of any of the given
detections.

Before giving an estimation of the danger that involves any detec-
tion, two distances should be taken into account: braking distance
and response distance. These distances represent context informa-
tion that should be taken into account to calculate the danger that
any detection involves. The former represents the space elapsed
before the vehicle is completely stopped, thus collision with any
pedestrian farther than this distance can be totally avoided by stop-
ping the vehicle. The latter represents the distance covered in the
time elapsed until the driver responds to a given stimulus.

These distances are not the only context information used in
this danger estimation. Other information relative to vehicle safety
is necessary to calculate this danger. Response time for drivers and
some traffic accident reconstruction mathematics are two exam-
ples of the context information necessary for danger estimation
that will be explained in this section.

6.1. Response distance

Researches generally accept response time up to 0.66 s, as it 
was showed by Johansson and Rumar (1971). In this article, 
authors calculated this mean response time for human beings 
when driving by means of an auditory stimulus. Other authors in 
recent works have made similar tests with similar results 
(Makishita & Matsunaga, 2008). Thus, response distance is the dis-
tance that a vehicle with a given velocity would cover during the 
response time.

6.2. Braking distance

It is the distance, in meters, that the vehicle would cover until it 
completely stops. Many different variables would affect this calcu-
lation. This approach uses basic traffic accident reconstruction 
mathematics (Collins, 1979) based on the worst case scenario, i.e. 
when the vehicle is fully loaded. Weather may also vary the condi-
tions (e.g. road friction coefficient). Here some on-line contextual 
information provided by the inertial device could be useful, such as 
the temperature measurement.

In traffic accident reconstruction, worst case scenario means 
that only front wheels are blocked when braking, this fact displaces 
the weight of the car to the front of the vehicle. This weight dis-
placement is represented as a change in the friction coefficient; this 
change is depicted in Eq. (13):

¢ ¼ b2

L� hl
; ð13Þ

where ¢ is the corrected and l the real friction coefficient, b2 is the
distance to the rear axis form the mass center, L is the length of the
vehicle and h is the height of the mass center. Mass center has to be
a) and occlusions (b).
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Table 1
Track management logic.

Single sensor zone Fusion zone

Track creation Every new track is considered consolidated after NCS

consecutive positive detections.
Every new track is considered consolidated when both subsystems
give positive detection.

Track deletion Not consolidated. If there are not NCS consecutive scans the
track is deleted. Consolidated. After NDS no updates.

Not consolidated. If there is not match after NCF consecutive scans
the track is deleted. Consolidated. After NDF no updates.

Track maintenance Laser scanner track matching. Track matching with any of the sensors.

Table 2
Relation between danger regions and relevant distances.

From To

Safe region Infinite Braking distance
Danger region Braking distance Response distance
Imminent Collision region Response distance 0 m
calculated, but several authors (Collins, 1979) give an approxima-
tion of 0.4 the height of the vehicle that was used for this applica-
tion. Using this approximation, the distance of the vehicle to 
completely stop is shown in Eq. (14):

dstopping ¼
v2

¢lg
; ð14Þ

where v represents the velocity of the test vehicle and g the gravity
acceleration.

But Eq. (14) is not the braking distance, since the response time 
presented before should be taken into account because it is the 
time before the driver starts pressing the braking pedal (15).

dbraking ¼ vtresponse þ dstopping : ð15Þ
Table 3
Results for the computer vision-based pedestrian detection, with the laser based
obstacle segmentation.

% Of positive detection % Of false positives (per frame)

Test 78.01 5.19
Interurban 73.19 3.91
Urban 70.72 6.72
Total 73.97 5.27

Table 4
Laser Scanner pedestrian detection performance.

% Of positive detection % Of false positives (per frame)

Test 79.71 6.23
Interurban 70.35 16.96
Urban 73.61 16.72
Total 74.56 13.3
6.3. Danger regions

Danger regions are created according to the previous relevant 
distances. These regions help the system to evaluate the danger 
degree associated to a given detection. Each one of the regions is 
created according to the different actions to perform in case that 
a pedestrian is found in the region. Table 2 depicts the relation 
between the zones and the distances.

Safe region detections are those pedestrians that are in a dis-
tance far enough to warn the driver and completely stop the vehi-
cle before hitting the pedestrian. Danger region represents the
region where it is possible to warn the driver before hitting the
pedestrian, but the vehicle is not going to be able to stop on time
before hitting him. Finally, imminent collision region is the region
in the environment where it is not possible to warn the driver with
time in advance that allows him to react, nor stop the car before
colliding with the pedestrian. Furthermore, the previous section
explained that these regions are very important in the tracking
process since they are used to determine the thresholds for track
creation and deletion process. The risk associated to a detection
in the imminent collision zone is higher than the risk involving
the other two regions. This way, context plays an important role
in the tracking stage, enhancing the detection and maintenance
of the relevant tracks. This solution can defined as part of level 4
solution, since the detection and tracking of the pedestrians are
enhanced thanks to the information obtained in the lower levels.

Finally, it is important to remark that the scope of this applica-
tion is to detect and warn drivers, giving estimation of the danger
involved in the detections. Thus, it is out of the scope the actions to
perform in any of the detected cases. Further works should deal
with this issue but a first approximation should involve:

Safe region: These detection involve no imminent danger, thus
some visual or acoustic warning may be enough, paying atten-
tion to not to saturate the driver with irrelevant information.
Danger region: Here it is important to warn both, driver and
pedestrian to try to avoid the possible collision. Recent works
try to determine the safest trajectory to perform automatic
avoiding maneuvers, allowing the vehicle to take control over
the driver and prevent to harm pedestrians.
Imminent collision region: Here the only action to take is to
trigger any automatic measure available in order to mitigate
the harm to be produced to the pedestrian.

6.4. Danger estimation

Taking previous regions as reference and with the purpose of
giving danger estimation to upper layer applications that have to
deal with the previously presented situation, a danger estimation
function was created. The idea is to give an estimation of the dan-
ger involving any detection. The estimation should grow exponen-
tially the closer the pedestrian is to the vehicle. Furthermore, two
values should be taken as reference: In the border between safe
region and danger region (braking distance) this estimation should
be bigger than 0.5 (it was chosen 0.6); second a priori assumption
was that at 0 distances this function should be 1. Taking all these
considerations into account following function was created:

f ðrÞ ¼ e�kðr�drÞ ; for 80 P r P dr ;

1; for dr > r P 0;

(
ð16Þ

where r is the distance of the pedestrian to the vehicle, dr is the dis-
tance that the vehicle covers during the reaction time, and k was a
value to calculate that would assure the previously presented
assumptions (17):

e�kðdb�drÞ ¼ 0:6; thus

k ¼ � ln 0:6
ðdb � drÞ

;
ð17Þ

where db is the braking distance.
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Fig. 13. Positive detections examples. Blue boxes represent laser scanner positive detections. Red boxes the image positives. Also laser scanner polyline reconstructions are
showed in the image. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 14. Example of misdetections of the camera due to multiple ROIs pointing to a single pedestrian. Two laser scanner points to the pedestrian, thus both of them return
positive detections. In these situations it could be considered a positive detection by the basic HOG feature approach, although they were considered misdetections of the
vision system in the present approach that uses laser scanner ROI detection.

Table 5
Overall results, for all the sequences, including low level (laser scanner and camera
algorithms) and the fusion procedure (JPDA) compared with other approaches (GNN).

% Of positive detections % False positives (per frame)

Camera 73.97 5.27
Laser scanner 74.56 13.3
Fusion (GNN) 79.62 2.21
Fusion (JPDA) 82.29 1.11
7. Results

Experiments were performed in more than 50 sequences in dif-
ferent scenarios, including more than 10,000 frames with pedestri-
ans involved. They were divided into three kinds of scenarios:
controlled environment, urban scenarios and interurban scenarios.
The former represents the less challenging scenarios, typically
parking lots, with the vehicle stopped, and single pedestrians per-
forming lateral and vertical movements. Interurban scenarios are
more challenging scenarios with several pedestrians in real traffic
situations. Finally, urban scenarios represent the most challenging
situations with a higher number of pedestrians and other obstacles
that makes detection and classification tasks extremely difficult.

Tests focused on two main points. The first one was checking
the viability of the low level approaches; the different low level
algorithms were checked in the different scenarios separately;
later in subsequent tests these low level algorithms were com-
pared with the fusion system to check the improvement intro-
duced by the fusion process. The second set of tests was
performed to check the behavior of the fusion algorithm. The per-
12



Fig. 15. Example of the performance of the algorithms GNN and JPDA, with the same sequence, with two pedestrians walking very close to each other. (�) Represent
actualized tracks, and (�) represents non actualized tracks.

Fig. 16. Results for the tracking of the pedestrians, where two pedestrians crossing are tracked. Dots represent normal detections. Crosses represent detections where the
track is not actualized. The vehicle was moving at 20 km/h and stops before the pedestrians.
formance of the fusion process was studied, including an extended
comparison with other fusion processes based on Global Nearest
Neighbors (GNN). In this way, it is possible not only corroborating
the improvement that fusion can provide to the classic ADAS
systems based on single sensor approaches, but also helping to
understand the performance of the novel fusion procedure
presented in this paper.

7.1. Low level algorithms

Results for the tests for the low level algorithms are depicted in 
Tables 3 and 4, and some examples are shown in Fig. 13.

Given the results, some conclusions can be obtained from the
low level approaches:
� Laser scanner is a novel approach giving very good perfor-
mance, although the results obtained lack reliability since a per-
centage of 13.3% of false positives means that less than every
ten frames a false positive is given. Consequently, false positives
are frequent.
� Performance of the computer vision system is high and reliable,

mainly in more structured scenarios, but in more complex sce-
narios such as urban environment, this reliability decreases
mainly due to the abundant information present in this envi-
ronment that can lead to misdetection.
It has to be remarked that the system setup was performed taking
into account these situations, i.e. the threshold for positive detec-
tion of the computer vision was increased to add reliability to the
detections of the laser scanner during the fusion process.
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Fig. 17. Test scenario, with a pedestrian crossing the road.
� False positives provided by the camera were mainly unrelated
to the HOG features algorithm presented in chapter 4, but 
related to the nature of the entire algorithm that was based 
on the ROIs selected by the laser scanner. As explained before, 
The ROIs are chosen according to the lectures form the laser; 
thus, if a spurious observation is returned by the laser, and a 
pedestrian is included in more than one ROI, all of them are 
going to be considered pedestrian, and as a result a false posi-
tive is returned. Although they could be considered positive 
detection for the computer vision algorithm itself, the approach 
provided here is based on both sensors, and therefore, they 
were included in false positive detection (Fig. 14).

7.2. Tracking and fusion

After single-sensor tests, the fusion system was studied using 
the same sequences indicated above. Besides individual sensor 
performance, a GNN implementation based on the one presented 
in Garcia et al. (2011) was used for comparison. This way the per-
formance of the system was tested, not only in relation to the iso-
lated sensors but also to the effect of other data association 
approaches. Results are depicted in Table 5.

The improvement of the algorithms with respect to the 
perfor-mance of the low level approaches is shown in Table 5. 

This shows

(a)
Fig. 18. (a) Danger estimation versus velocity, based on different cases, where pedestrian
distance to the detected pedestrian, based on different situation, with vehicle velocity f
that the JPDA approach used in this paper represents an improve-
ment to the basic association based on GNN. The improvement that 
JPDA represents with respect to GNN is related to the better behav-
ior of the algorithm in specifically difficult situations (i.e. clustering 
errors, double detections and occlusions).

Figs. 15 and 16 depicts two examples of sequences.
Fig. 15 provides a comparison of two algorithms that ran in the 

same sequence, one used GNN approach and the other one used 
JPDA. In this sequence, two pedestrians are walking toward the 
vehicle (Fig. 12(a)).Differences are highlighted in red. The overall 
performance is better in the case of JPDA, providing tracking for 
longer time, even in this extremely difficult situation.

Fig. 16 depicts another complex situation with crossing pedes-
trians involved. In this case, even with occlusions all the pedestri-
ans are able to be tracked during the entire sequence.

With the provided results, the enhanced performance of the 
system, compared to the low level approaches, and to other data 
fusion algorithms, is proved. By combining laser scanner with the 
vision based approach, the reliability of the overall system is 
increased. It can be done thanks to the laser scanner based obstacle 
detection, and by requiring both sensors to confirm a given detec-
tion. Finally it was also proved that JPDA can improve performance 
in highly complex situations.
7.3. Danger estimation tests

Danger estimation algorithms were tested, based on a pedes-
trian crossing scenario (Fig. 17). The context information used 
was based on the on-line information of the vehicle, using the 
GPS-INS system and the information of the test platform (e.g. mass 
center and dimensions).

Fig. 18 depicts the different results of the test with the estima-
tion values according to the velocity of the test vehicle and the dis-
tance to the detected pedestrian. As the scope of the application is 
urban scenarios, where pedestrians are commonly found, test per-
formed were based on specific scenarios where velocity is limited 
to 40 km/h, and distances are smaller (less than 40 m).

Finally, Fig. 19 shows the evolution of the estimation according 
to these values, proving the utility of the danger estimation. It 
provides a fast way to represent the danger that involves any 
detection according to the context information.
(b)
is located at distances from 5 to 30 m form the vehicle. (b) Danger estimation versus
rom 5 km/h to 40 km/h.
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Fig. 19. Danger estimation evolution according to the two on-line variables (i.e. distance to the pedestrian and vehicle velocity).
8. Conclusions

A novel fusion approach for pedestrian detection in road safety
application has been presented. Results have proved that, by add-
ing laser scanner pedestrian detection and context information,
both performance and trustability are increased, fulfilling the
demanding requirements of these applications. The presented
work gives a solution based on processes performed at different
JDL levels.

The sensor fusion tests provided compare two data association
techniques, the method proposed in the contribution (consisting in
a JPDA approach) gave more reliable results than classic GNN.

Context aids at level 2 and level 3 have been also presented, giv-
ing a novel solution that takes advantage of the available informa-
tion and knowledge, to provide a new context based danger
estimation. Thus, by fusing three sensors and context information,
trustable pedestrian detection is provided and danger associated to
these detections is estimated.

Enhancement of the classic ADAS system was achieved thanks
to the use of laser scanner, a proved trustable tool in novel road
applications, for the ROI detection and independent pedestrian
identification. Thus the presented algorithm provided more reli-
able and robust detection thanks to this high level fusion process.
Besides, the independent detection, provides back up detection in
case one of the sensors is temporary unavailable. The JPDA algo-
rithm tested, proved to be more reliable in specific stress condi-
tions, such as crossing or occlusions, improving the classical
performance of pedestrians tracking algorithms. Finally the danger
identification, allows to focus the attention in those pedestrians
that may interfere in the driving process.

The main drawback of the presented work relies in the costs of
the technologies and its high computational requirements. Laser
scanner technologies are still too expensive to be included in com-
mercial vehicles, although in latest years the increasing interest of
the scientific community have lead to more robust and interesting
applications that may provide added value worth to be included in
commercial vehicles. Regarding to the computational costs, mod-
ern parallel processing techniques and powerful computers can
allow to provide a real time application.

Based on the aforementioned points, the presented work repre-
sents a step forward in pedestrian detection for ADAS systems in
three fronts. First providing a multi level approach that integrates
low levels (pedestrian detection and tracking) with high levels (sit-
uation analysis and danger estimation). By this multilevel
approach, a full expert system, able to detect and identify the dan-
ger situations is provided. Second adding context information,
which plays an important role for correct situation awareness that
could prevent road accidents, enhancing the pedestrian detection
and danger estimation with expert information, able to adapt the
system performance to the specific application of road safety.
Finally by adapting a powerful association technique (JPDA) for
its use as data fusion technique for road safety. Proving advance
performance under the most demanding situations: i.e. occlusions
and misdetections.

By means of the data fusion algorithm presented, computer
vision detection has been enhanced, providing reliable and trust-
able detection with danger estimation. Although vision approaches
for pedestrian detection have proved to be a very useful applica-
tion, ready for commercial application, most of the previous inte-
gration approaches try to speed up this detection by using ROIs
given by a laser scanner. The presented fusion algorithm goes
beyond this point, providing improved detection in two ways: By
reducing the false positive rate by creating regions of interest
based on a reliable laser scanner system and by providing a laser
scanner pedestrian detection. The latter allows using the system
in situations where computer vision is not available. Finally it is
important to remark that the presented work provides a unique
and novel multilevel expert solution taking advantage of the most
powerful data fusion techniques.

Further steps are under consideration and may extend context-
based fusion to augment the performance of the fusion process by
adapting the procedures to the real time information (which is
labeled as ‘‘level 4’’ fusion accordingly to JDL model). This adapta-
tion may take under consideration the available context informa-
tion. Furthermore, these next steps will take advantage of
available information thanks to the new technologies, such as dig-
ital maps and driver identification. New and advance expert sys-
tem, able to adapt the danger estimation to the real situation of
the vehicle and the driver needs will be created, reducing the stress
to the driver by the identification of those pedestrians that may
interfere with the trajectory of the vehicle, and adapting the
response of the system to the driver state.
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