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Penalized functional spatial regression

M. Carmen Aguilera-Morillo, Maŕıa Durbán and Ana M. Aguilera

June 18, 2015

Abstract

This paper is focus on spatial functional variables whose observa-
tions are realizations of a spatio-temporal functional process. In this
context, a new smoothing method for functional data presenting spa-
tial dependence is proposed. This approach is based on a P-spline
estimation of a functional spatial regression model. As alternative to
other geostatistical smoothing methods (kriging and kernel smooth-
ing, among others), the proposed P-spline approach can be used to
estimate the functional form of a set of sample paths observed only at
a finite set of time points, and also to predict the corresponding func-
tional variable at a new location within the plane of study. In order
to test the good performance of the proposed method, two simulation
studies and an application with real data will be developed and the
results will be compared with functional kriging.

Keywords: Functional data, functional spatial regression, P-splines.

1 Introduction

This work is focused on the estimation of functional data with spatial de-
pendence. This problem has been approached by different authors in the
context of geostatistical techniques. The first notions about this topic can
be found in Goulard and Voltz (1993), where multivariate approaches were
used to predict curves at unvisited spatial sites. A more recent collection of
geostatistical tools for spatial functional data can be seen in Giraldo (2009);
Delicado et al. (2009). In general, the most used technique to predict func-
tional data with spatial dependence is functional kriging. In Giraldo et al.
(2010) a continuous time-varying kriging was proposed and applied to en-
vironmental data. A formal version of ordinary kriging for functional data
(OKFD) was developed by Giraldo et al. (2011), and implemented in the R
package geofd. Recently, a universal kriging predictor for functional data with
spatial dependence belonging to a Hilbert space was proposed in Menafoglio
et al. (2013).

In the context of spatial data an alternative to geostatistical techniques
are the spatial regression models. A popular approach consists of using
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Penalized-splines (Eilers and Marx, 1996). They are based on the use of
a rich basis for regression and a penalty (based on differences of adjacent
coefficients) to control the smoothness of the fit. This methodology has been
successfully applied to both, functional and spatial data in different contexts.
In functional data analysis P-splines were used for smoothing the sample
curves (Aguilera and Aguilera-Morillo, 2013a) and estimating different FDA
models as PCA (Aguilera and Aguilera-Morillo, 2013b) or functional regres-
sion (Marx and Eilers, 1999; AguileraMorillo et al., 2013, among others). In
the case of spatial data, Lee and Durban (2009) and Ugarte et al. (2009)
used P-splines for smoothing spatially correlated count data, Lee and Dur-
ban (2011) extended their use to the case of spatio-temporal data, and more
recently, Sangalli et al. (2013) proposed a spatial regression model for data
distributed over irregularly shaped spatial domains.

Our aim is to use spatial smoothing regression techniques within a func-
tional data approach to provide a new method to estimate (or predict at
unvisited sites) functional data with spatial dependence. From the formal
definition of spatio-temporal functional data, which is given in Section 2, a
spatial regression model is extended to the functional context in Section 3.
The idea is to consider the functional regression model for functional re-
sponse and scalar covariates (Faraway, 1997; Ramsay and Silverman, 2005;
Chiou et al., 2004) by using the spatial information as regressors. So, a
mixture of functional regression model for functional response and spatial
regression will yield the proposed functional spatial regression model. In
practice, functional data are usually observed with some error or noise. To
overcome this problem, Ramsay and Silverman (2005) considered a penal-
ized version of functional regression for functional response by introducing
a continuous penalty (based on the second order squared derivatives of the
parameter functions) in the least squares fitting, and Reiss et al. (2010) used
a penalized generalized least squares criterion based on basis representation.
In this paper, we will adapt the idea developed in Eilers et al. (2006), and
combine the two-dimensional penalty used for spatial regression with the one
proposed in Ramsay and Silverman (2005) to obtain a three dimensional P-
spline penalty. Hereinafter, this method will be called penalized functional
spatial regression model (PFSRM).

Finally, the proposed PFSRM is compared with OKFD in two simula-
tion studies in Sect. 5. An application to the Canadian maritime weather
data is presented in Section 6. Canadian maritime weather is a well known
example of functional data, which in most cases have been consider as a
set of independent curves related to daily temperature and precipitation at
35 different locations in Canada averaged over 1960 to 1994 (Ramsay and
Silverman, 2005). But this is a clear example of functional data presenting
spatial dependence and in this sense was studied in Delicado et al. (2009);
Menafoglio et al. (2013). The conclusions about these studies in Section 7
close the paper.
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2 Basis expansion of spatio-temporal func-

tional data

In this work, we are focus on spatial functional variables whose observations
are realizations of a spatio-temporal stochastic process (Delicado et al., 2009)
given by {

X (s, t) : s ∈ S ⊆ R2, t ∈ T ⊆ R
}
, (1)

where s = (u, v) is a generic data location in the spatial domain S = U × V,
U, V and T are real intervals, and for each fixed spatio-temporal position
(s, t), X (s, t) is a real random variable defined on a probabilistic space
(Ω,A, P ) .

Let us suppose that the realizations of this spatio-temporal process are
square integrable functions on the spatio-temporal domain U × V × T, so
that each sample function x(s, t) belongs to the Hilbert space L2 (U × V × T )
defined by

L2 (U × V × T ) =

{
f : U × V × T −→ R :

∫
U

∫
V

∫
T

f 2 (u, v, t) du dv dt < ∞
}
,

with the usual scalar product given by

⟨f, g⟩ =
∫
U

∫
V

∫
T

f (u, v, t) g (u, v, t) du dv dt, ∀f, g ∈ L2 (U × V × T ) .

In general, the spatio-temporal process given by (1) can be seen as a
functional random variable on the space L2 (U × V × T )

X : Ω → L2 (S × T )
ω → Xw : S × T → R

(s, t) → Xw (s, t) .

Then, for each fixed location s ∈ S, the realizations of the this spatio-
temporal process x(s, .) are square integrable functions on the temporal do-
main T. That is, each sample curve x(s, .) belongs to the Hilbert space L2 (T )
defined by

L2 (T ) =

{
f : T −→ R :

∫
T

f 2 (t) dt < ∞
}
,

with the usual scalar product given by

⟨f, g⟩ =
∫
T

f (t) g (t) dt, ∀f, g ∈ L2 (T ) .

On the other hand, for each fixed time point t ∈ T, the realizations of this
spatio-temporal process x(., t) are square integrable functions on the spatial
domain S = U×V. That is, each sample surface x(., t) belongs to the Hilbert
space L2 (U × V ) defined by

L2 (U × V ) =

{
f : U × V −→ R :

∫
U

∫
V

f 2 (u, v) dudv < ∞
}
,
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with the usual scalar product given by

⟨f, g⟩ =
∫
U

∫
V

f (u, v) g (u, v) du dv, ∀f, g ∈ L2 (U × V ) .

In practice, spatio-temporal data are observed at a finite set of spatial
locations {si = (ui, vi) : i = 1, . . . , n} and a finite set of time points {tj :
j = 1, . . . ,m} that could be fixed or random. Then, the sample information
is given by a matrix Y = (yij)n×m with yij being the observed value of the
spatio-temporal functional variable at location si and time point tj. Because
of this, the first step in FDA is to reconstruct the true functional form of
data from discrete spatio-temporal observations.

In this section, we extend the usual basis expansion approach for repre-
senting curves to the case of spatio-temporal functions that depend on three
continuous arguments.

Let us consider three univariate basis
{
ϕT
h (t) : t ∈ T ;h = 1, . . . , p

}
,{

ϕU
k (u) : u ∈ U ; k = 1, . . . , q

}
and

{
ϕV
l (v) : v ∈ V ; l = 1, . . . , r

}
. Then, we

assume that the realizations of the spatio-temporal functional variable X
belong to the qrp−dimensional tensor function space generated by the basis{

ϕU
k (u)ϕ

V
l (v)ϕ

T
h (t) : k = 1, . . . , q; l = 1, . . . , r;h = 1, . . . , p

}
.

That is,

x(s, t) =

q∑
k=1

r∑
l=1

p∑
h=1

aklhϕ
U
k (u)ϕ

V
l (v)ϕ

T
h (t). (2)

This means that for all spatial locations, the associated sample curves belong
to the finite-dimension space generated by the basis

{
ϕT
h : h = 1, . . . , p

}
, so

that they admit the basis expansion

x(s, .) =

p∑
h=1

ah(s)ϕ
T
h ,

where the basis coefficients are realizations of a multivariate spatial process
given by

ah(s) =

q∑
k=1

r∑
l=1

aklhϕ
U
k (u)ϕ

V
l (v).

For each time point, the associated sample surfaces belong to the tensor
function space generated by the basis

{
ϕU
k ϕ

V
l : k = 1, . . . , q; l = 1, . . . , r

}
so

that can be expressed as

x(., t) =

q∑
k=1

r∑
l=1

akl(t)ϕ
U
k ϕ

V
l

where the basis coefficients are realizations of a multivariate stochastic pro-
cess given by

akl(t) =

p∑
h=1

aklhϕ
T
h (t).
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Then, the matrix X = (xij)n×m whose entries are the values of the spatio-
temporal functional variable X at the sampling points is given by

xij = x(si, tj) =

q∑
k=1

r∑
l=1

p∑
h=1

aklhϕ
U
k (ui)ϕ

V
l (vi)ϕ

T
h (tj),

that can be equivalently written in matrix form as

X =
(
ΦU ⊙ ΦV

)
AΦT ′

, (3)

where ΦU = (ΦU
ik)n×q with ΦU

ik = ϕU
k (ui), Φ

V = (ΦV
il )n×r with ΦV

il = ϕV
l (vi),

ΦT = (ΦT
jh)m×p with ΦT

jh = ϕT
h (tj), A =

(
a(kl)h

)
qr×p

is the matrix compris-

ing the basis coefficients and ⊙ denotes the row-wise Khatri-Rao product

Rao and Rao (1998) so that ΦU ⊙ ΦV =
((

ΦU ⊙ ΦV
)
i(kl)

)
n×qr

with entries(
ΦU ⊙ ΦV

)
i(kl)

= ϕU
k (ui)ϕ

V
l (vi).

Taking into account the following property (Harville, 1997)

vec(ABC) = (C ′ ⊗ A)vec(B),

with ⊗ denoting the Kronecker product, the matrix expression (3) can be
vectorized as

vec(X) =
(
ΦT ⊗

(
ΦU ⊙ ΦV

))
vec(A).

Once the basis coefficients in A are estimated from the discrete observations
yij, the spatio-temporal functional variable can be estimated at unobserved
locations and times (s0, t0) by using the model

x̂(s0, t0) =

q∑
k=1

r∑
l=1

p∑
h=1

âklhϕ
U
k (u0)ϕ

V
l (v0)ϕ

T
h (t0).

This way, we can obtain the complete curve of temporal evolution of the
variable for not sampled geographical locations, and the complete surface of
spatial evolution of the variable for any time point in the temporal domain.

3 Penalized functional spatial regression model

Let us suppose that we have a sample of non-independent functions (spatial
dependence) {yi(t) : t ∈ T, i = 1, . . . , n} given by

yi(t) = x(si, t) + ϵi(t),

which have been observed with error at a finite set of time points {tj : j =
1, . . . ,m} for each geographical location si. That is, the sample observations
are given by

yij = yi(tj) = x(si, tj) + ϵi(tj), i = 1, . . . , n; j = 1, . . . ,m.
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In this work we propose to estimate the basis coefficients in Equation (2)
by introducing the spatial variability through the following functional spatial
regression model:

y(t) = Zα(t) + ϵ(t), ∀t ∈ T, (4)

where y(t) = (y1(t), . . . , yn(t))
′ is the vector of response functions, Z =

(zik)n×qr = ΦU ⊙ ΦV is the two dimensional B-spline basis for the geograph-
ical position, α(t) = (α1(t), . . . , αqr(t))

′ is the vector of parameter functions
to be estimated and ϵ(t) = (ϵ1(t), . . . , ϵn(t))

′ the vector of error terms.
Let us assume a basis representation for the functional response

y(t) = CθT (t), with C = (cij)n×s being the matrix of basis coefficients and
θT (t) = (θT1 (t), . . . , θ

T
s (t))

′ the vector of basis functions, and a basis rep-
resentation for the the functional parameters α(t) = AϕT (t), where A =
(a(kl)h)qr×p is the matrix of basis coefficients and ϕ(t)T = (ϕT

1 (t), . . . , ϕ
T
p (t))

′

is the vector of basis functions. Then, the model given in Equation (4) can
be rewritten as follows

CθT (t) = ZAϕT (t) + ϵ(t), ∀t ∈ T.

In order to estimate this model in an accurate way, a roughness penalty is
introduced in the least squares fitting criterion, so that

PSSE(y, α) =

∫
(CθT (t)− ZAϕT (t))′(CθT (t)− ZAϕT (t))dt+

+ PENT
d + PENU,V

d , (5)

where PENT
d denotes the d-order penalty for the time and PENU,V

d is the
d-order penalty for the space. Both penalties can be expressed in terms of
d-order difference operators ∆d (Eilers et al., 2006), so that

PENT
d = vec(A)′[λ1(∆

T ′

d ∆T
d ⊗ Iq ⊗ Ir)]vec(A)

PENU,V
d = vec(A)′[λ2(Ip ⊗∆U ′

d ∆U
d ⊗ Ir) + λ3(Ip ⊗ Iq ⊗∆V ′

d ∆V
d )]vec(A).

In this context, ∆T
d ,∆

U
d ,∆

V
d are matrices of d-order differences, λ1, λ2, and

λ3 are the smoothing parameters and the operator vec(A) creates a column
vector from any matrix A by stacking the column vectors of A.

Interchanging the integration and summation operations implied by the
matrix products, and taking into account the following properties (Harville,
1997)

vec(A)′(D ⊗B)vec(C) = trace(A′BCD′) (6)

trace(A′AB) = trace(ABA′),

the equation (5) can be re-written as

PSSE(y, α) = trace(C ′CΨθT θT ) + trace(Z ′ZAΨϕTϕT

A′) (7)

− 2trace(AΨθTϕT

C ′Z) + λ1trace(A(∆
T ′

d ∆T
d )A

′)

+ λ2trace(A
′(∆U ′

d ∆U
d ⊗ Iq)A) + λ3trace(A

′(Iq ⊗∆V ′

d ∆V
d )A),
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with ΨθT θT =
∫
θT θT , ΨϕTϕT

=
∫
ϕTϕT , and ΨθTϕT

=
∫
θTϕT being the inner

product matrixes according to the different basis functions. Next step is to
compute the derivatives of Equation (7) with respect to A. By considering
some matrix algebra properties Harville (1997) (see Appendix for more de-
tails), we can see that A satisfies the matrix system of linear equations given
by

Z ′ZAΨϕTϕT

+λ1A(∆
T ′

d ∆T
d )+λ2(∆

U ′

d ∆U
d ⊗Ir)A+λ3(Iq⊗∆V ′

d ∆V
d )A = Z ′CΨ′θTϕT

.
(8)

In order to get the solution to A, the Kronecker product is used to express
Equation (8) in conventional matrix algebra (see Appendix for more details),
so that Equation (8) can be re-written as follows[

ΨϕTϕT ⊗ (Z ′Z) + PENT,U,V
d

]
vec(A) = vec(Z ′CΨ′θTϕT ′

),

where PENT,U,V
d is a P-spline penalty developed by Eilers et al. (2006), which

is given by

PENT,U,V
d = λ1

(
△T ′

d △T
d ⊗ Iq ⊗ Ir

)
+ λ2

(
Ip ⊗△U ′

d △U
d ⊗ Ir

)
+

+ λ3

(
Ip ⊗ Iq ⊗△V ′

d △V
d

)
.

Finally, A is given by

vec(A) =
[
ΨϕTϕT ⊗ (Z ′Z) + PENT,U,V

d

]−1

vec(Z ′CΨ′θTϕT

).

4 Smoothing parameters selection

The three smoothing parameters involved in this problem (λ1, λ2, λ3) are
simultaneously selected by minimizing the following generalized cross valida-
tion error

GCV E(λ1, λ2, λ3) =

∑n
i=1 SSEi

(n− trace(H))2
,

where

SSEi =
m∑
j=1

(y(si, tj)− ŷ(si, tj))
2

and

H = (ΦT ⊗ Z)
[
ΨϕTϕT ⊗ (Z ′Z) + PENT,U,V

d

]−1

(ΦT ′ ⊗ Z ′),

with PENT,U,V
d being the three-dimensional P-spline penalty of order d de-

scribed above.
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5 Simulation studies

In order to check the forecasting performance of the proposed penalized func-
tional spatial regression model (PFSRM) two different simulation studies
have been considered. The first one considers non equally spaced spatial lo-
cations and random errors added only at the time dimension. The second one
was simulated into a grid of equally spaced spatial sites and random errors
were added at the two dimensions (space and time). In addition, the pre-
dictions are compared with the ones given by ordinary kriging for functional
data (OKFDA).

For each of the proposed methods, a leave one out cross validation pro-
cedure is proposed to predict each curve at each spatial site, so that the
integrated squared error with respect to the original data can be computed
as

ISEi

∫
T

(x(si, t)− ŷ(−i)(si, t))
2dt, i = 1, . . . , n,

with ŷ(−i)(si, t) being the predicted curve at location si when the observation
y(si, t) is not in the sample, and n the number of spatial sites. Let us observe
that in the applications with real data, the ISEs must be computed with
respect to the basis expansion of y(si, t) estimated from the observed data.

5.1 Simulation study I

This simulation study was first considered in Giraldo et al. (2012). In our
case, 225 sites were fixed in a grid according to the coordinates u = v =
(−20,−16,−15,−10,−8, −5,−1, 1, 2, 6, 10, 12, 15, 16, 20), on which a set of
spatially correlated functional data were simulated at 365 equally spaced
time points according to the model

Y (si, t) =
15∑
k=1

ak(si)ϕk(t) + ϵi(t), i : 1, . . . , 225,

where ϕ(t) = (ϕ1(t), . . . , ϕ15(t)) is a cubic B-spline basis, and each coeffi-
cient ak is a realization of a Gaussian random field whose covariance struc-
ture is defined according to the exponential model C(h) = 2exp(−h

8
), where

h = ∥si − sj∥, (i, j = 1, . . . , 225) is the Euclidean distance between two sites
si and sj. Finally, ϵi(t) is a random error for each t, with t = 1, . . . , 365,
simulated according a distribution N(0,0.09). The simulated data sets, with
and without noise, can be seen in Figure 2. The spatial sites are shown in
Figure 1.

The first step was to approximate the sample paths by using regression
splines in terms of a basis defined on 40 equally spaced knots. Due to a P-
spline penalty is considered for fitting the model, the selection of the number
of basis knots in this part of the problem is not too relevant, only a large
number of equally spaced knots is needed to get a good fit (Ruppert, 2002).
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Figure 1: Simulation I: Spatial sites.
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Figure 2: Simulation I: Simulated data without noise (left) and simulated
data by adding a random error (right).
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Mean s.d. Median Min Max Sum
OKFD 80.09 46.39 68.02 15.33 282.80 18019.13
PFSRM 73.08 42.34 65.08 6.67 268.50 16443.95

Table 1: Simulation I: Summary of ISE’s from the cross validation predic-
tions.

In order to check the good performance of the proposed methods, a leave
one out cross validation procedure was carried out to obtain the predicted
curve at each unvisited spatial site. These predictions are shown in Figure
3. In general, both methods provide good predictions of the true curves,
with PFSRM providing the most accurate ones. For two particular cases,
the simulated data (with and without noise, grey and black, respectively)
together with the predicted curves by OKFD (blue) and PFSRM (red) can
be seen in Figure 4. The proposed method PFSRM provides the best results
since OKFD loses the trend of the true curves and achieves to non-smooth
estimations. On the other hand, the mean functions of the predictions are
quite similar in both cases (see Figure 5). However, taking into account the
distribution of the ISEs, the differences between the two methods are evident.
In Table 1 the main statistics revel that PFSRM provides the lowest ISEs.
In Figure 6 the box plots related to the ISEs from OKFD and PFSRM are
shown. It is clear that the proposed method presents less variability in its
estimations, coming down the median with respect to the OKFD.

5.2 Simulation study II

Now we consider a grid of 225 equally spaced sites which are shown in Figure
8 (top), and a set of 100 equally spaced times at the interval [0, 1]. The idea
is to simulate a set of spatially correlated functional data according to the
model

Y (s, t) = [af1(s, t) + bf2(s, t)− 0.5] sin (cπ ∗ t− 0.2) + ϵ1(t) + ϵ2(s),

where

f1(s, t) = e

(
−(u−0.2)2

5
− (v−0.5)2

3
− (t−0.5)2

4
−1

)
,

f2(s, t) = e

(
− (u−0.3)2

4
− (v−0.7)2

2
− (t−0.4)2

6

)
,

a = 1, b = 0.9, c = 1.2, ϵ1(t) are independent random error at each t
(t = 1, . . . , 100) (for each spatial location si = (ui, vi), i = 1, . . . 225) sim-
ulated according to the distribution N(0, σϵ1), and ϵ2(s) is for each fixed
s, t = 1, . . . , 100 a Gaussian random field for the given covariance pa-
rameters (σ2

ϵ2
, ϕ = 0.1), so that the covariance function can be written as

C(h) = σ2
ϵ2
× ρ(h), being ρ(h) a positive definite correlation function given

by ρ(h) = exp(−(h/ϕ)2) and h the distance between two spatial locations.
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Figure 3: Simulation I: Predicted curves by using OKFD and PFSRM.
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Figure 4: Simulation I: Predictions of two sample curves.

For σ2
ϵ1

= 0.01 and σ2
ϵ2

= 0.05 the simulated sample paths can be seen in
Figure 8. The spatial locations are displayed in Figure 7.

The initial approximation of the sample curves was carried out by using
regression splines in terms of a basis defined on 20 equally spaced knots.

In this study the differences between the two methods are more evident
than in the first simulation study. According to the predictions obtained with
each method (see Figure 9), in both cases the noise was not totally avoided.
But it is clear that OKFD loses the trend of the original data, providing in
some cases, predictions far from the true ones. On the other hand, PFSRM
achieves predictions with similar slope to the original data. In Figure 10
two of the predicted curves for each method are shown. In both cases the
predictions from OKFD are noisy and far from the true ones. The mean
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Figure 5: Simulation I: Mean function of the predictions and point wise
confidence bands according to the mean ± 2s.d. by OKFD (left) and PFSRM
(right).
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Figure 6: Simulation I: Box plot related to the ISE of the predictions.
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Figure 8: Simulation II: Simulated data without noise (left) and simulated
data with noise (right).

functions for the predicted curves, displayed in Figures 11 and 12 (left), do
not show clearly these differences. But the summary of statistics in Table
2 and the box plots of the ISEs in Figure 12 highlight the great differences
between them. OKFD and PFSRM have similar median, but its variability
is completely different. Therefore, we can conclude that PFSRM provides
the best results under both scenarios.

6 Application to Canadian maritime weather

data

In this study we use averages (over 30 years) of daily temperature curves
observed at 35 Canadian Maritime weather stations. This is a clear example
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Figure 9: Simulation II: Predicted curves by using OKFD and PFSRM.
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Figure 10: Simulation II: Predictions of two sample curves.

Mean s.d. Median Min Max Sum
OKFD 0.2997 0.3305 0.2017 0.0410 2.3950 67.4437
PFSRM 0.2399 0.0924 0.2248 0.0754 0.5834 53.9865

Table 2: Simulation II: Summary of ISE’s from the cross validation predic-
tions.
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Figure 11: Simulation II: Mean function of the predictions and point wise
confidence bands according to the mean ± 2s.d. by OKFD (left) and PFSRM
(right).
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Figure 12: Simulation II: Mean curves of the predictions joint to the true
mean function of the simulated smoothed data (left) and box plot related to
the ISE of the predictions (right).
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Figure 13: Application: Averages (over 30 years) of daily temperature curves
observed at 35 Canadian Maritime weather stations.

of functional data presenting spatial dependence, since curves located at
closer geographical locations will be similar to other there are further apart.
The raw data set together with the map with the geographical locations are
shown in Figure 13.

The first step for both methods is to consider the basis representation of
the raw sample paths in terms of cubic B-spline basis functions. In order to
get more general conclusions, different number of basis functions have been
considered for the initial basis representation of the sample paths, exactly 33
(Case 1) and 65 (Case 2). The regression splines fitted in the two cases are
displayed in Figure 14.

In order to get the predicted curve on each geographical site a leave-one-
out cross validation procedure was carried out. The predicted curves obtained
by OKFD and PFSRM next to their mean curve and point wise confidence
bands (according to the mean ± two times the standard deviation) can be
seen in Figure 15. In both cases (Case 1 and Case 2), the spatial basis is made
by considering 6 knots for each marginal basis. It can be seen that when the
dimension of the basis for fitting the regression splines increases (Case 2), the
predictions provided by OKFD are more noisy than in Case 1. By contrast,
PFSRM provides similar predictions independently of the number of basis
functions used to fit the initial regression splines. In that sense, PFSRM
is more robust than OKFD with respect to the dimension of the initial B-
spline expansions in the time domain. This is an important advantage of our
method, since the selection of the number of initial bases is not as relevant as
in functional kriging. For two Canadian Maritime provinces, the predicted
temperature curves by OKFD (blue) and PFSRM (red) are plotted together
with the observed temperature curves in Figure 16. Independently of the
basis dimension, PFSRM provides smoother and more accurate predicted
curves than OKFD and also maintains the trend of the raw data.
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Figure 14: Application: Regression splines fitted from the temperature raw
data by using 33 and 65 cubic B-spline basis functions (Case 1 and 2, respec-
tively).

Case 1 Case 2
OKFD PFSRM OKFD PFSRM

Median 320.1 244.5 253.4 240.1
Mean 391.2 307.8 299.5 309.2
s.d. 308.4 181.2 178.4 186.8

Table 3: Application: The median, the mean and the standard deviation of
the SSEs (with respect to the observed data) obtained in the cross validation
for Cases 1 and 2.

In order to compare the prediction ability of the two methods, the box
plots related to the SSE’s (with respect to the observed data) obtained by
cross validation for Cases 1 and 2 can be seen in Figure 17. Also, the mean,
the standard deviation and the median of the 35 SSE’s are summarized in
Table 3. Again, independently of the dimension of the basis used in the
initial regression splines, the lowest values of the Median of the SSE’s are
always obtained by PFSRM.

7 Conclusions

The aim of this paper is to provide a new tool to predict spatially dependent
functional data as alternative to the geostatistical techniques, such as func-
tional kriging. From a formal definition of spatio-temporal functional data,
which was presented in Section 2, a penalized estimation of a functional
spatial regression model has been proposed in this paper, by introducing a
three-dimensional P-spline penalty at the least squares fitting criterion (Sec-
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Figure 15: Application: Predicted curves (grey) by OKFD (at the top) and
PFSRM (at the bottom) from the regression splines of the temperature raw
data (using 33 (Case 1) and 65 (Case 2) cubic B-spline basis functions) join
to its mean curve (blue and red line) and the point wise confidence bands
according to the mean ± two times the standard deviation (black and dashed
line).
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Figure 16: Application: The predicted curve by OKFD (blue) and PFSRM
(red) from the regression splines of the temperature raw data (using 33 (Case
1) and 65 (Case 2) cubic B-spline basis functions) and the observed temper-
ature curve (black) in two of the 35 Canadian Maritimes provinces.
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Figure 17: Application: Box plots related to the SSEs (with respect to the
raw data) obtained in the cross validation for Cases 1 and 2.
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tion 3).
In order to compare the proposed method with functional kriging on

different scenarios, two different simulation schemes have been carried out.
The first considers non equally spaced spatial locations and random errors
added only at the time dimension. The second one was simulated into a
grid of equally spaced spatial sites and random errors were added at all
dimensions (space and time). Also, an application to real data has been
presented taking into account two cases: Case 1 and Case 2, where 33 and
65 basis functions were respectively used to fit the initial regression splines.
From the two simulation studies, it is clear that PFSRM provides the most
accurate predictions with less variability and coming down the ISEs median
with respect to OKFD. The second simulation study highlights the differences
according to the variability in their predictions, so that OKFD loses the trend
of the original data by providing predictions that, in some cases, are far from
the true. The application revels that PFSRM is more robust that OKFD,
in the sense that the last one is quite sensitive to the number of the basis
function to be used in the initial fit of the functional data (a lower number
of basis functions leads to worse predictions with higher ISEs).

Summarizing, we can be concluded that the proposed PFSRM is a ro-
bust and a computationally efficient alternative to the existing geostatistical
techniques in order to predict functional data with spatial dependence.
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Appendix

Derivatives of Equation (7) with respect to A
By considering the following properties (Harville, 1997)

∂trace(XAX ′)

∂X
= X(A+ A′) (9)

∂trace(X ′AX)

∂X
= (A+ A′)X (10)

∂trace(XA)

∂X
= A′ (11)

we have that

∂trace(C ′CΨθT θT )

∂A
= 0

∂trace(Z ′ZAΨϕTϕT
A′)

∂A

(9)
= Z ′ZA(ΨϕTϕT

+Ψ′ϕTϕT

)

(symmetry)
= 2Z ′ZAΨϕTϕT

∂ − 2trace(AΨθTϕT
C ′Z)

∂A

(11)
= −2Z ′CΨ′θTϕT

∂λ1trace(A(∆
T ′

d ∆T
d )A

′)

∂A

(9)
= 2λ1A(∆

T ′

d ∆T
d )

∂λ2trace(A
′(∆U ′

d ∆U
d ⊗ Ir)A)

∂A

(10)
= 2λ2(∆

U ′

d ∆U
d ⊗ Ir)A

∂λ3trace(A
′(Iq ⊗∆V ′

d ∆V
d )A)

∂A

(10)
= 2λ3(Iq ⊗∆V ′

d ∆V
d )A.

Then, A satisfies the matrix system of linear equations given by

Z ′ZAΨϕTϕT

+λ1A(∆
T ′

d ∆T
d )+λ2(∆

U ′

d ∆U
d ⊗Ir)A+λ3(Iq⊗∆V ′

d ∆V
d )A = Z ′CΨ′θTϕT

.

Using the Kronecker product to express Equation (8) in con-
ventional matrix algebra

vec(Z ′ZAΨϕTϕT

)
(6)
= (ΨϕTϕT ⊗ (Z ′Z))vec(A)

vec(λ1A(∆
T ′

d ∆T
d )) = vec(λ1(Iq ⊗ Ir)A(∆

T ′

d ∆T
d ))

(6)
= λ1(∆

T ′

d ∆T
d ⊗ Iq ⊗ Ir)vec(A)

vec(λ2(∆
U ′

d ∆U
d ⊗ Ir)A) = vec(λ2(∆

U ′

d ∆U
d ⊗ Ir)AIp)

(6)
= λ2(Ip ⊗∆U ′

d ∆U
d ⊗ Ir)vec(A)

vec(λ3(Iq ⊗∆V ′

d ∆V
d )A) = vec(λ3(Iq ⊗∆V ′

d ∆V
d )AIp)

(6)
= λ3(Ip ⊗ Iq ⊗∆V ′

d ∆V
d )vec(A).
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Then, Equation (8) can be re-written as follows[
ΨϕTϕT ⊗ (Z ′Z) + PENT,U,V

d

]
vec(A) = vec(Z ′CΨ′θTϕT

).
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