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Abstract

Identifying the decisive matches in international football tournaments is of

great relevance for a variety of decision makers such as organizers, team

coaches and/or media managers. This paper addresses this issue by ana-

lyzing the role of the statistical approach used to estimate the outcome of the

game on the identification of decisive matches on international tournaments

for national football teams. We extend the measure of decisiveness proposed

by Geenens (2014) in order to allow to predict or evaluate the decisive matches

before, during and after a particular game on the tournament. Using infor-

mation from the 2014 FIFA World Cup, our results suggest that Poisson and

kernel regressions significantly outperform the forecasts of ordered probit mod-

els. Moreover, we find that although the identification of the most decisive

matches is independent of the model considered, the identification of other

key matches is model dependent. We also apply this methodology to identify

the favorite teams and to predict the most decisive matches in 2015 Copa

America before the start of the competition. Furthermore, we compare our

forecast approach with respect to the original measure during the knockout

stage.

Keywords: Decisive game, Entropy, Poisson model, Kernel regression, Ordered

probit model.
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1 Introduction

International football competitions are events of a great social and economic interest.

In particular, the World Cup, which takes place every four years, is the most widely

viewed and followed sporting event in the world. Other competitions at continental

level, such as the European Cup and the Copa America, have an important impact

in the countries involved, where many people stop their usual daily activities when

their teams are playing. Therefore, assessing game decisiveness in the competition

is of great relevance for organizers, team coaches and media managers, as well as

other interested parties.

The concept of decisiveness of a game has a long tradition in the sports eco-

nomics literature, see for example Schilling (1994), Audas et al. (2002), Scarf and

Shi (2008), Goossens et al. (2012), among many others. A highly insightful, critical

discussion of this issue, as well as the presentation of a new indicator of game de-

cisiveness that overcomes some of the most important drawbacks of these previous

approaches can be found in Geenens (2014). Under Geenens’ approach, a game can

be considered as decisive if it has a significant impact on the whole tournament

entropy instead of focusing only on the effect on the probabilities assigned to the

different possible results of a single game. Although the evaluation of match deci-

siveness in a tournament depends on the probability model considered, this issue

has not been properly explored.

Starting from Moroney (1956), many models for predicting football results have

been developed. A number of approaches, stemming from Maher (1982) concen-

trate on predicting the scores of the individual teams in a match based on Poisson

regression, see e.g. Dyte and Clarke (2000) and Suzuki et al. (2010). A recent and

relevant contribution in this field was proposed by Groll et al. (2015) who, as we

also do in this article,fit separate Poisson regression for goals scored and conceded in

football World Cup competitions. Our approach shares some similarities with this

paper although Groll et al. (2015) focuses on forecasting match results whereas our

main interest is not on forecasting but on identifying decisive matches.

In contrast to the Poisson based models, alternative approaches have been de-

veloped to try to predict the result of a football match (win, draw or loss for a given

team), instead of the goals scored. Important examples of models of this type are

probit regression, see Kuypers (2000) and Scarf and Shi (2008) or kernel regression,

Geenens (2014). In this article we shall also consider these models and compare them

to the Poisson based approaches in terms of their predictions of match decisiveness.

This paper studies the identification of decisive matches in an international foot-
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ball tournament at different stages of the competition. Although having early access

to this information is especially useful for a decision maker, its estimation requires

considering a large combination of game fixtures which cannot be analytically treated

in many instances. Two additional contributions of this paper to the existing lit-

erature are that, as far as we are aware, this is the first paper that evaluates the

implications of the econometric model on the identification of decisive matches and

check how this evaluation depends on the forecasting period. If model specification

matters, the analysis of games should only be considered under the most accurate

statistical framework. We compare a number of variants of the Poisson, probit

and kernel based models which incorporate both Bayesian and classical estimation

approaches. Also we allow the possibility of taking unobserved, heterogeneous ef-

fects for different groups of games into account. Additionally, the forecasts of the

matches are carried out modifying the ability of the teams using a Canonical Cor-

relation Analysis (CCA) maximizing the correlation between the FIFA rating with

a new set of variables.

Our evaluation of the forecasting performance of the different models in WC2014

indicates that Poisson model and kernel regression significantly outperform the pro-

bit model. An advantage of Poisson regression models is that these are based on a

much richer information set (goals scored and conceded, venue effect, etc.) and can

implement tie-break criteria such as goal difference, as they take into account goals

scored by each team, which cannot be accounted for by kernel or probit regression

approaches. The selection of the forecasting model has important implications for

the determination of decisive matches in the competition, above all, in the identi-

fication of matches of intermediate relevance. Additionally, the time information

used in the forecast model has a very important effect. We also apply this method-

ology to identify the key matches and the favorites to win the 2015 Copa America

(CA2015).

The rest of this article is structured as follows. The following Section presents

the main groups of models we use to forecast football results. Then, in Section 3 we

explain the concept of match decisiveness used in this article following from Geenens

(2014) and we consider the measure for the forecasting case. The estimation of the

different groups of models and a comparison of the forecasting performance follows

in Section 4. We identify the most decisive games for the WC2014 and CA2015

under the different models in Section 5. Some concluding remarks follow in Section

6.
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2 Probabilistic models for predicting football re-

sults

Here we briefly describe some of the most popular statistical models for predicting

football results.

2.1 Poisson model

Poisson models have been successfully used in the sports literature for football results

prediction. In particular, Dixon and Coles (1997) used Poisson regression to model

results in the English Premier League from 1992 to 1995 and Dyte and Clarke (2000)

modeled the 1998 FIFA World Cup using an approach which is similar to that which

we outline below. Also, Suzuki et al. (2010) used Bayesian methods to predict the

results of the 2006 Football World Cup using expert information.

Here, we consider a sample of K games, so that, the number of goals scored by

team, T , against an opposing team, O, in game k, is Poisson distributed, yT,k ∼
Poisson(λT,k), with mean parameter, λT,k, for k = 1, ..., K, which follows the log-

linear dependence relationship below:

log(λT,k) = β0 + βAT
xAT ,k + βAO

xAO,k + βHT
xHT ,k + βNT

xNT ,k, (1)

where xAT ,k represents the “ability” of team T , xAO,k is the ability of the opposing

team, xHT ,k indicates if team T plays at home and xNT ,k if they play at a neutral

ground. The parameters βAT
, βAO

, βHT
and βNT

are coefficients that express the

relationship between the explanatory variables and λT,k and β0 is a constant term.

Equation (1) is called the log link-function and the parameters can be estimated by

maximum likelihood estimation (MLE); see e.g. Winkelmann (2000), Hilbe (2014)

for reviews of the literature on Poisson regressions. Henceforth, we denote this model

by PO.

A Bayesian counterpart of this model can be defined by assuming a normal prior

distribution for the regression coefficients as follows

β ∼ N(µβ, Vβ), (2)

where β = (β0, βAT
, βOT

, βHT
, βNT

)
′
, µβ is the prior mean and Vβ is the prior variance.

Estimation for this model is carried out generating a sample from the posterior

parameter distribution using a random walk Metropolis algorithm; see Martin et al.

(2011). We denote this model by BP.
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Finally, we also consider a hierarchical Bayesian Poisson model (HBP) to account

for the heterogeneity of the different games 1 by defining the following, mixed link-log

function

log(λT,ki) = XT,kiβ + X̃T,kibT,ki + εT,ki , (3a)

bT,ki ∼ Nq(0, Vb), (3b)

where the λT,ki , and the random error, εT,ki , distributed Np(0, σ
2IKi

), are vectors

of games with length Ki, for i = 1, . . . , g, where g is the number of formed groups

or nestings. The matrix of covariates is XT,ki = (XAT,ki
, XOT,ki

, XHT,ki
, XNT,ki

) and

β is normally distributed as in equation (2), measuring the fixed effects. On the

other hand, the design matrix is X̃T,ki and bT,ki measures subject-specific random

effects. Note that this vector captures marginal dependence among the observations

on the ith unit. In practice, we assume X̃T,ki = XT,ki , so that we have g = two

groups of games corresponding to official competitions and friendlies respectively.

We might reasonably expect differences between these two categories, as friendly

games are often taken less seriously than competition games by the participating

teams and are used, for example to try out new players, whereas in serious games,

the strongest teams are generally selected. The hierarchical dependence is completed

supposing σ2 ∼ Inverse-Gamma(υ, 1/δ) and Vb ∼ Inverse-Wishart(u, uU) as (semi-

conjugate) priors. Estimation for this model is carried out by generating a sample

from the posterior parameter distribution via Markov Chain Monte Carlo (MCMC)

techniques following Chib and Carlin (1999).

We obtain the win, draw and loss probabilities for team T against team O in

game k, say pWT ,k, pD,k and pLT ,k respectively, following the procedure given by Dyte

and Clarke (2000) and Suzuki et al. (2010).

Following Dyte and Clarke (2000) and Suzuki et al. (2010), we can obtain the

win, draw and loss probabilities, say pWT ,k, pD,k and pLT ,k respectively for team T

1Note that the mean in the Poisson models also can be expressed as a function of the teams.
We use this notation in terms of the games, k, for convenience.
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against team O in game k as:

pW,k =
∞∑

iT =1

iT−1∑
iO=1

P (yT,k = iT )P (yO,k = iO), (4a)

pD,k =
∞∑

iT =1

P (yT,k = iT )P (yO,k = iT ), (4b)

pL,k =
∞∑

iO=1

iO−1∑
iT =1

P (yT,k = iT )P (yO,k = iO), (4c)

where iT and iO are all possible scored goals for each team, where P (yT,k = iT ) and

P (yO,k = iO)2 represent the Poisson probabilities of goals scored (with λT,k and λO,k

as means) for each team.

Alternative, Poisson regression based models could also be considered. Firstly,

one possibility is to use a zero-inflated model to account for a possibly larger num-

bers of games where a team does not score than would be expected under Poisson

regression. Secondly, we might expect that numbers of goals scored by the two

opposing teams in a game to be independent. This might suggest applying a corre-

lated regression model following e.g. McHale and Scarf (2011). In our later examples,

some brief comments on these models are given, although in our examples, there

does not seem to be any clear evidence that they improve on the simpler approaches

introduced above.

2.2 Ordered Probit model

Ordered probit (OP) models have been used to model football results by Audas

et al. (2002) and Tena and Forrest (2007) among others. Scarf and Shi (2008) use

classical OP models to evaluate game decisiveness in the English Premier League.

In contrast to the Poisson models, an OP model directly estimates the win, draw

and loss probabilities in a game.

The OP model is defined as follows. Let Pk = 1 (0, −1) represent the event that

team T wins (draws, loses) a game against opponent O in game k. Then following

Scarf and Shi (2008) the match outcome, Pk, is modelled as:

Pk =


1(win) if c1 + εk 6 βAD

xAD,k + βHT
xHT ,k,

0(draw) if c−1 + εk < βAD
xAD,k + βHT

xHT ,k 6 c1 + εk,

−1(loss) if βAD
xAD,k + βHT

xHT ,k < c−1 + εk,

(5)

2Note that by the HBP model the probabilities must be pWT ,ki , pD,ki and pLT ,ki , such that we

have a Ki × 3 matrix of probabilities given by P = (pW,ki , pD,ki , pL,ki)
′
.

6



where xAD,k = xAT ,k − xAO,k, is the “ability difference” between the teams T and O

in match k, βAD
is its associated coefficient, and xHT ,k and βHT

are defined as in the

Poisson regression models described previously. c1 + εk is a random cut-off point

for winning with fixed component, c1, and a random component, εk ∼ N(0, 1) and

c−1 + εk is a random cut-off point for losing. Therefore, Pk, can be expressed as a

multinomial distribution with three categories given by

pW,k = Pr(Pk = 1) = Φ(βAD
xAD,k + βHT

xHT ,k − c1), (6a)

pD,k = Pr(Pk = 0) = Φ(βAD
xAD,k + βHT

xHT ,k − c−1)−

Φ(βAD
xAD,k + βHT

xHT ,k − c1), (6b)

pL,k = Pr(Pk = −1) = 1− Φ(βAD
xAD,k + βHT

xHT ,k − c−1), (6c)

where Φ(·) is the cumulative distribution function of the standard normal distri-

bution. We can estimate the parameters via maximum likelihood; see McCullagh

(1980). This model will be denoted by OP.

A Bayesian extension of OP can be obtained using expression (2) as prior dis-

tribution but now for β = (βAD
, βHT

). Additionally we assume that c−1 ∼ N(0, a0)

and c1 = c−1 + cr where cr ∼ Gamma(a1, a1) as prior distributions of the cut-off

parameters where a1 > a0. Inference can be carried out using MCMC techniques,

using the approach presented by Lancaster (2014). This model will be denoted by

BOP.

2.3 Kernel regression

In our final approach, following the notation of Geenens (2014), we estimate the

win, draw and loss probabilities pW,k, pD,k and pL,k nonparametrically using kernel

regression (KE), as follows:


p̂(χ)W,k

p̂(χ)D,k

p̂(χ)L,k

 =

∑K
k=1 κ

(
χ−xAD,k

b

)
Z

(W )
k

Z
(D)
k

Z
(L)
k

+
∑K

k=1 κ
(
χ+xAD,k

b

)
Z

(W )
k

Z
(D)
k

Z
(L)
k


∑K

k=1 κ
(
χ−xAD,k

b

)
+
∑K

k=1 κ
(
χ+xAD,k

b

) , (7)

where Zk = (Z
(W )
k , Z

(D)
k , Z

(L)
k )

′
is the vector of 0/1 indicator variables such that

Z
(W )
k + Z

(D)
k + Z

(L)
k = 1, κ represents a Gaussian weight function and b is the

bandwidth selected according to the criterion of Wand and Jones (1995). The

ability difference, xAD,k, is defined as in the ordered probit models and χ is a grid

of ability differences.
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Geenens (2014) uses the KE model for predicting the results of the 2012 Euro

Cup and note that −xAD,k represents the inverse of the ability difference, which

guarantees the symmetry in the estimation of the probabilities. This model only

depends on the ability difference, however in order to make it comparable with the

other, previously mentioned specifications, we estimate two different models: one in

which there are only home and away teams and a second, in which there are only

neutral teams.

3 Measuring game decisiveness

Here, we consider the approach developed by Geenens (2014) based on the entropy

principle. In this way, we can define the most decisive game of a competition as

“the game that has most influence in the eventual victory in the tournament”.3

To formally define this idea, let pjht = P(Vjh|ξt) be the final victory probability

of the team j at time h conditional on (pre tournament games and the history of all

matches played in the tournament up to time), t, say ξt, for t ∈ {0, 1, ..., h}. In our

case, the final victory probabilities depend on t, such that, we can estimate them at

any time before, or during game h . For simplicity of notation, assuming there are

N teams in the tournament and t = h; after the time h, the entropy is given by:

eh = −
N∑
j=1

pjhlog2pjh. (8)

Minimum entropy or maximum information occurs when some pjh = 1 while the

others are 0 so that the result of the game is certain. In this case, eh = 0. On the

contrary, maximum entropy is when all probabilities pjh are equal to 1/N so that

there is maximum uncertainty4. In the following, we use capital letters to refer to

the random entropy, Eh = (e(Wh), e(Dh), e(Lh)). Then, e(Wh), e(Dh) and e(Lh) are the

resulting values of the tournament entropy when the match outcome, h, has not

3Bojke (2007) and Koning (2007) propose an alternative definition of game decisiveness ap-
plied to the English and the Dutch leagues respectively that evaluates the importance of a match
not only on the probability of obtaining the final victory but also on intermediate targets such
as the probability of promotion in the English 1 or the probability of qualifying for different Eu-
ropean tournaments in the Dutch league. However, in our particular case, this approach is not
considered as it is difficult and subjective to define these intermediate targets for national teams
in international competitions where only the final gets a prize.

4Note that we follow Lesne (2014) in setting the base of the logarithm to 2 in (8) and it is
shown there that this formula inherits who usual mathematical properties of the Shannon entropy
(based on the natural logarithm). Geenens (2014) normalizes the entropy to measure between 0
and 1 and uses a logarithm base equal to the number of teams in the competition. However, as
the author mentions, this fact is not important.
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been observed, such that we consider the three possible outcomes.

According to the definition of decisive game, we are interested in the game which

most changes the entropy during the competition. Therefore, we propose the fol-

lowing measures for h = 1, . . . , n:

dt,h= E(|Eh − Eh−1||ξt) for t = 0, . . . , h− 2, (9a)

dh−1,h= E(|Eh − eh−1||ξh−1), (9b)

dh,h= |eh − eh−1|. (9c)

These measures are the forecast versions of those proposed by Geenens (2014) and

show how eh or Eh change given the history of previously played matches, which

can include time h of the actual tournament. The main difference of these equa-

tions defined in (9) with respect to Geenens (2014) is that our decisiveness measure

depends on t, i.e., the history of games which determines the estimation of the final

victory probabilities. Computationally, this require a different estimation procedure

for each case, which is described in subsection 4.2. In other words, the measures

given by (9) indicate the absolute variation of the uncertainty in the final victory

possibilities in the tournament as a consequence of the result in a single match,

using information before, during and after time h of the competition. Explicitly, the

calculation when t = h− 1 is as follows:

dh−1,h = |e(Wh)− eh−1|P(Wh|ξh−1) + |e(Dh
)− eh−1|P(Dh|ξh−1) + |e(Lh)− eh−1|P(Lh|ξh−1),

where e(Wh , e(Dh) and e(Lh) are the components of the random entropy vector previ-

ously defined in time h for team T given the information up to time h− 1, so that,

P(Wh|ξh−1), P(Dh|ξh−1) and P(Lh|ξh−1) represent the win, draw and loss probabil-

ities for time h. When t = h, we already know which games will be played and,

therefore, we do not need to estimate random entropies and in this case we write dh

instead of dh,h.

Note that dt,h is most sensitive when the teams at the time t have similar prob-

abilities and high chances of final victory in the tournament or when the final result

at time h is a surprise. Additionally, we expect that games in a decisive stage (final

game of the group or knockout stage) have more impact in the change of the entropy.

Interestingly, the proposed measure only depends on the probabilistic model so that

matches that, in principle, do not attract the focus of the media could have a great

impact on the probability of success of the other teams in the tournament.
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4 Tournament prediction: 2014 FIFA World Cup

In this Section we present the tools and methods used for the prediction of the

WC2014 for each one of the models described in Section 2.

4.1 Basic model and modified FIFA rating

The WC2014 took place at several venues across Brazil from 12 June - 13 July

2014, with 32 national teams competing in a total of 64 matches. Following FIFA

rules, the traditional World Cup format consists of two rounds: a group stage and a

knockout stage. The group stage is carried out by dividing the 32 teams into eight

groups of four, where the members of each group compete among themselves in a

round-robin tournament. The two highest finishing teams in each group advance to

the knockout stage. Teams are awarded three points for a win and one for a draw.

The tie-break rules are a) greatest number of points obtained in all group matches,

b) goal difference in all group matches and c) greatest number of goals scored in all

group matches. There are extra tie break rules, but in the simulation of WC2014

we do not consider them5. In the knockout stage there are four rounds (round of 16,

quarter-finals, semi-finals, and the final), with the losing team eliminated at each

stage.

To estimate the parameters of the models described in Section 2, we use in-

formation from K = 821 games played during the year before the WC2014. For

the difference of ability measures, we consider the FIFA/Coca-Cola World Ranking6

according to the points obtained at the time of the game. For the estimation of

the BOP model, the difference in ability is scaled so that the ability difference has

zero mean with unit variance, which is necessary to allow for convergence in the

estimation, for more details, see Lancaster (2014).

Table 1 shows the estimation results for the models and we can observe that PO

and BP present similar results, unlike HBP, where the results vary slightly given that

we consider the heterogeneity between official games. In particular, (examining the

signs of the model coefficients) it can be observed that playing at home is more

advantageous than playing at a neutral ground. As this is a log-linear relationship,

the marginal effect on the mean parameter λT,k of the home effect is 0.49 while the

neutral effect is 0.28 (PO model). The estimated signs of the model parameters

are also as expected in the ordered probit model. In particular, there is a slightly

5See Article 41 of the Regulations, 2014 FIFA World Cup Brazil, download-
able in http://resources.fifa.com/mm/document/tournament/competition/01/47/38/17/

regulationsfwcbrazil2014_update_e_neutral.pdf.
6http://www.fifa.com/fifa-world-ranking/

10

http://resources.fifa.com/mm/document/tournament/competition/01/47/38/17/regulationsfwcbrazil2014_update_e_neutral.pdf.
http://resources.fifa.com/mm/document/tournament/competition/01/47/38/17/regulationsfwcbrazil2014_update_e_neutral.pdf.
http://www.fifa.com/fifa-world-ranking/


positive relationship in the difference of teams abilities and a strong positive effect

of the home coefficient.

Table 1 about here

We also fitted the zero-inflated model, outlined at the end of Section 2.1, to

this data set. In terms of significance the traditional PO model gave better results

given than the zero-inflated model as in this second case, only the ability measures

are significant at 10% while in the PO model, all coefficients are significant at 1%

with the exception of the intercept. The adjusted R2 values are very similar, 0.83

for the PO model and 0.82 for the zero-inflated model. More importantly, the

sample proportion of teams scoring zero goals in the FIFA World Cup matches was

around 33%, and the mean number of goals scored per team was 1.27. The simple

probability of observing zero events in a Poisson (1.27) model is around 28% which

is relatively similar to the observed proportion and does not suggest much evidence

in favor of a zero inflated model.

In order to evaluate the independence assumption inherent in the basic Poisson

model, we also calculated linear (Kendall) correlations for nine ability groups of

games in our sample size following a suggestion of McHale and Scarf (2011). The

results indicate that only in a one group, between the games where the teams have

ability differences between -328 and -180 (T with respect to O), does there appear

to be a significant correlation coefficient of 0.24 and p value of 0.01. Therefore,

there seems to be little evidence of correlation overall and this suggests that it is

reasonable to use the standard Poisson regression model.

Figure 1 plots the estimation results of the KE considering the home and neutral

effects. The top panel presents the estimation when the teams played as local (and

visitor) in a total of 593 games and, we can see how the win probability increases as

the difference in FIFA rating increases. The counterpart is the loss probability. The

draw probability increases when the difference in FIFA rating tends to zero. The

bottom panel shows the results considering the 228 games played in neutral venues

and it is interesting given that the draw probability increases if the difference in FIFA

rating is weakly large. For example, in November 11, 2013, Argentina vs Ecuador

had a FIFA rating of 1,266 and 862 respectively, the venue was New York, USA, and

the final result was 1-1. Note that the difference in FIFA rating is 404. On the other

hand, the game played between Norway and Poland in January 18, 2014 with venue

Abu Dhabi, where the FIFA rating were of 558 and 461 respectively (i.e. a difference

of 97 points), the final result was 0-3. This can imply that when the ability between
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the teams is weakly large, the weaker team takes a defensive strategy while if the

ability difference is similar, the teams play with a more offensive system. Note that

the home effect for the win and loss probabilities are almost indistinguishable with

respect to the neutral venue case.

Figure 1 about here

FIFA rankings might not include all relevant information about national teams

abilities. They have been criticised, for example by McHale and Davies (2007),

for not giving more weight to recent information on past results. Moreover, the

elaboration of this index requires the use of subjective elements to compare games

from different national tournaments.

We make use of this index as it allows to compare our paper with two recent

and relevant contributions to our research that also consider official rankings for

teams based on past performance. In particular, Groll et al. (2015) and Geenens

(2014) make use FIFA and the UEFA rankings as ability measures for the WC2014

and the UEFA Euro 2012 respectively. However, we also complement this variable

with additional information from the betting market in the forecasting exercise, an

additional ability measure, the current market value of the national teams and the

historical behavior in the competition. Specifically, we use the expected payout

by bookmakers of bet3657 (19 May 2014), FIFA rating (June 2014), ELO rating8

(June 2014), market value of the national teams9 (June 2014), historical percentage

(1930-2010)10 (Reached points)/(Possible points).

Our new measure is obtained using CCA which is an exploratory statistical

method to highlight correlations between two data sets acquired in the same exper-

imental units; such that we calculate a new variable that maximizes the correlation

between the linear combinations, a and b, of the FIFA rating (Y ) and the rest of

variables (X) respectively. The optimization problem is as follows

ρ1 = max cor
a,b

(Xa, Y b) subject to Var(Xa) = Var(Y b) = 1.

For more details see Leurgans et al. (1993) or Gonzalez et al. (2008), among many

others. In this way we normalize each one of the variables previously described

and the first canonical variable respect to FIFA rating is used to build the ability

7http://www.bet365.com
8http://www.eloratings.net/world.html
9http://www.transfermarkt.com

10http://www.fifa.com/worldfootball/statisticsandrecords/tournaments/worldcup/

alltimerankings.html
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measure.

Note that Dyte and Clarke (2000) manually adjust the FIFA rating to obtain

more accurate predictions for the 1998 FIFA World Cup and Zeileis et al. (2014)

generate a “log-ability” measure using information from 22 betting houses for the

WC2014. Our alternative measure can be interpreted as the linear combination of

variables that has the highest correlation with the FIFA rating.11

4.2 Tournament simulation

Koning et al. (2003) present an excellent survey about the implications of simulation

models for football championships. Here we consider simulation of the tournament

is carried out using 5,000 replicates of the competition for the models considered

in Section 2. For PO, BP and HBP it is possible to generate two Poisson random

variables for every game, and simulate the results of the entire tournament, see Dyte

and Clarke (2000), Suzuki et al. (2010), among many others. For the OP and KE

models we use the win, draw and loss probabilities in each game, k, randomly taking

a possible result. An advantage of Poisson models is that we can implement the tie-

breaker criteria commented in the previous subsection. For the other cases, when

teams finish level on points at the top of a group, we randomly select the team to

continue to the knockout stage. Explicitly, for each the PO model in each replication

we estimate the ranking in each group, considering, for the Poisson regression models

the traditional tie-breaker criteria: points, difference of goals and goals to favour.

For the OP and KE models we consider the expected values of the points given by

Prpoints,k = 3PW,k + PD,k. As a final tie-break criterion, random selection of a team

is used when two (or more) teams are tied according to the previously commented

criteria. In the knockout stage, we only considered the probability of continuing

in the tournament, by splitting the draw probability equally between the teams

equally. This corresponds to assuming that in the case of a draw, then, for example,

there is a penalty shoot out where both teams have an equal probability of success.

We summarize the simulation procedure for the entropy computation as follows:

• When 0 ≤ t < h−2, we carry out 5,000 replicates and estimate e0. We estimate

the forecast P(Wh|ξt), P(Dh|ξt) and P(Lh|ξt) for a fixed 0 ≤ t < h − 2. For

h = 1, We estimate the random entropy E1 and dt,1 using 5,000 replicates. We

repeat the procedure for h = 2, . . . , n considering 5,000 replicates in each h.

11The proposed modification of the FIFA rating improves the estimation of the initial final
victory probabilities given that, they are more correlated with the final positions of the WC2014
than the standard rating. Moreover, our models give statistically equal results with respect to
Table 6 and Table 9 from Groll et al. (2015).
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• When t = h− 1, we carry out 5,000 replicates and estimate e0. For h = 1, we

estimate the forecast P(W1|ξ0), P(D1|ξ0) and P(L1|ξ0), the random entropy

E1 and d0,1 using 5,000 replicates. We update the forecasts and estimate

eh−1, the random entropy Eh and dh−1,h using 5,000 replicates in each h for

h = 2, . . . , n, .

• When t = h, we carry out 5,000 replicates and estimate e0. Given the result in

h = 1, we estimate e1 also using 5,000 replicates and estimate d1. We repeat

the procedure for h = 2, . . . , n.

Note that 0 ≤ t < h− 2 and we wish to evaluate the importance of a future and

unknown game of the schedule competition (for example, a particular game of the

knock-out stage), the calculation of the entropies only considers the case when the

game may happen according to the probabilities estimated for each model. In other

words, it is possible that we cannot evaluate the decisive measure of unexpected

results in games which do not occur in the simulations. Geenens (2014) considered

an alternative using exact probabilities of the schedule for all possible combinations

of games. However the simulations carried out in this work typically produce the

more likely scenarios in the competition and more realistic knock-out games.

Table 2 presents the final victory probabilities for each national team before

starting the WC2014 and we note that all models indicate that the favorites to

win were Brazil, Spain, Germany and Argentina. Note also how the championship

winning probability co-varies with the ability measure. Moreover, we can see that

the results of the KE model slightly differ from those of the other models in terms

of the final victory probability. This fact is attributed to the situation explained

in subsection 4.1, i.e., that the home effect seems not to have a strong impact.

Note that this table presents pj0 but is constructed with P(Wh|ξ0), P(Dh|ξ0) and

P(Lh|ξ0). The accuracy of the models are carried out game by game and it is not

necessarily the most accurate model that is the best predictor of the winner of the

WC2014.

Table 2 about here

It is also necessary to compare the quality of the forecasts provided by the dif-

ferent models. To do this, we apply the logarithmic scoring rule (LSR) as suggested

by Bickel (2007)12. In order to compare the predictive quality of two different fore-

12See e.g. Boero et al. (2011) for a definition of the logarithmic score. This rule is used to
compare the quality of probability forecasts under different models. The preferred model should
have the lowest logarithmic score.
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casting methods, we also adapt the Wald-type statistic given by Boero et al. (2011);

see also Giacomini and White (2006). For a sample size of n games, we construct

the test statistic

T = n

(
n−1

n∑
h=1

mh∆Lh

)′
Ω−1

(
n−1

n∑
h=1

mh∆Lh

)
= nΥ

′
Ω−1Υ, (10)

where mh is a vector of test functions, ∆Lh is the difference in the values of the

logarithmic scores of the two models in the game h and Ω = n−1ΥΥ
′
, is a matrix that

consistently estimates the variance of Υ. Under the null hypothesis that both models

are equally good predictors, it is known that T tends to χ2
1 as n→∞, which gives

the “unconditional” test of equal performance, introduced in Boero et al. (2011). We

can conclude that a particular model (A) outperforms another (B) when we reject

the null hypothesis and the area of the density of ∆L = (∆L1A−∆L1B, . . . ,∆LnA−
∆LnB)′ indicating the mass of the distribution is more inclined to left or right. For

example, if ∆L is a loss function between models A and B, if its density mass is

leaning to left, model A outperforms model B.

Table 3 presents the results of the LSR for each game for each model. The bold

letters show the games considered by the estimation of the Wald-test. We observed

that the different statistical models did not provide significantly different forecasts

in many games. For example, all models forecast that Brazil should beat Cameroon

in the group stage round. Therefore, in a second step we asses the performance of

prediction models in a group of key games, i.e., the 23 games involving tournament

favorites where the predicted result did not occur, according to the betting house

bet365, plus 9 randomly selected games to give 50% of the total games in the

tournament. Brazil vs Mexico is the game with highest LSR for the PO, BP and

OP models and Spain vs Chile for the KE and finally, Costa Rica vs England for the

BOP. On the other hand, for all models the game with the lowest LSR is Cameroon

vs Brazil.

Table 3 about here

Table 4 shows the results of the estimates of the Wald-test to compare different

pairs of models. We can observe that the PO model Poisson regression models (PO

and BP) and the KE model outperform the OP model ordered probit models and

the hierarchical model in terms of predictive ability.

Table 4 about here
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Table 5 we present the results of the model selection procedure described previ-

ously. For example, comparing the PO and OP model, more than half (54%) of the

mass of the distribution is on the left, indicating that PO outperforms here. One

reason for the worse performance of OP models may be that these do not take into

account that many World Cup games are played in neutral venues, a situation that

is accounted for by the Poisson models. An extra-advantage of Poisson regression is

that we can also predict the number of goals, generating more explicit information

about the tournament.

Table 5 about here

These results impact on the entropy given by the expression (8) because the

differences in the probabilities for each method directly affect the uncertainty dis-

tribution of the final victory possibilities. To analyze these implications we carry

out Tukey’s HSD (honest significant difference) test for the mean of eh according

to each method, where the null hypothesis indicates that the difference of means

is equal, see Miller (1981). Table 6 shows that the Poisson regression models have

similar outcome uncertainty as measured by the entropy coefficient, as do the HBP

and the Ordered Probit models, however only 5 out of 15 models are statistically

equal at 1%, (6 out of 15 at 5% and 7 out of 15 at 10%) clearly indicating that there

are differences in the uncertainty according to each method.13

Table 6 about here

5 Identifying and predicting decisive games

In this Section we use the definition of decisive games described in Section 3 to

determine the most decisive matches in the WC2014 and also for the CA2015 from

12 June to 4 July 2015. According to the definition of decisive games, for the

WC2014 we consider the observed entropy, dh, based on all games played, while for

the CA2015 we use d0,h and dt,h, that are a predictive measures of game decisiveness

before the competition starts and during the tournament.

13This test only implies that the average entropy for each model is equal or different. If the
means of the entropies are unequal, the models have different central values of the estimated
entropy. This does not necessarily indicate different decisiveness measures in all games for each
model.
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5.1 2014 FIFA World Cup: identifying decisive games

The WC2014 was won by Germany and prior to the tournament, Brazil, Spain Ger-

many and Argentina were predicted to be the most probable tournament winners,

so, it might be reasonably expected that games involving these teams would cause

the biggest changes in the entropy of the championship distribution. Furthermore,

those games that help these teams to advance in the tournament may be decisive

matches. On the other hand in the later rounds of the competition, we would expect

that the remaining teams’ ability levels would be similar, increasing the uncertainty

in predicting match results. Table 7 shows the estimates of dh for each of the models

used and we can observe how games in the knockout stage present higher decisive-

ness values as we expected. Although, it seems obvious that games at the later stage

of the competition are more decisive. This type of analysis allows us to compare de-

cisiveness among games in the same stage of the tournament. In bold, we illustrate

the maximum entropy games for each model and it can be noted that in all cases,

these are games with at least one of the top ten teams.

Table 7 about here

For the PO model the most decisive game is Brazil vs Germany, followed by

Netherlands vs Argentina, Brazil vs Colombia, Brazil vs Chile and Spain vs Nether-

lands. These results would appear very natural. Brazil vs Germany resulted in

a famous (and unexpected) 1-7 victory for Germany, see games14, Netherlands vs

Argentina was the other semi-final and the next three games, all from the knockout

stage, were decisive in determining the progression (or not) of some of the pre-

tournament favorites, and in particular, Spain vs Netherlands was the first surprise

of the WC 2014 resulting in a loss for Spain, the winner of the previous World Cup.

Another interesting game is Spain vs Chile, that lead to the elimination of Spain

from the tournament and to Chile reaching the knockout stage.

The results for the KE model are very similar in that the most decisive games are

Brazil vs Germany, Netherlands vs Argentina, Brazil vs Colombia, Brazil vs Chile,

France vs Germany and Argentina vs Belgium. Also, for BP and BOP the most

decisive game is the Netherlands vs Argentina and for the OP is Brazil vs Germany.

Note that under all models, the top two decisive games, not necessarily in that

order, are the semi-final encounters Brazil vs Germany and Netherlands vs Ar-

gentina. Furthermore, the PO and KE models all classify the matches Brazil vs

Chile and Brazil vs Colombia in third and fourth places (in different orders accord-

14http://en.wikipedia.org/wiki/Brazil_v_Germany_(2014_FIFA_World_Cup)
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ing to the individual model). Therefore, we might conclude that the model used is

not very important for identifying the ex post most decisive games, but is influential

in identifying games of relatively high influence in determining the outcome of the

tournament. Figure 2 illustrates this issue.Although the final or semi finals could be

deemed as decisive even without using any sophisticated analysis, the chosen econo-

metric specification is relevant to estimating the decisiveness order of other games

for which their relevance is not so clear a priori. Figure 2 illustrates important

discrepancies in decisiveness rankings under different econometric specifications.

Figure 2 about here

In the following subsection we use the PO and KE models (which were selected

as the best performing over WC2014) to predict the CA2015 and the most decisive

games in this tournament.

5.2 2015 Copa America: predicting which games will be

decisive

Here, we used the same parameter estimation and team ability estimation proce-

dure as for WC2014, but now incorporating into the database information up to

March 23, 2015, a total of 1,442 matches. Table 8 denotes the predictive percentage

probabilities of final victory for each team for both models and we can observe how

Argentina, Brazil, Colombia and Chile are the favorites to win the competition.

Note how for the PO model the home effect is so important that it gives Chile the

same probability of final victory as Colombia. A different conclusion was obtained

from the KE model, which as for the WC2014, gives less advantage to the home

team in the tournament than the PO model.

Table 8 about here

It is natural to expect that matches involving the tournament favorites would

be the most decisive games. Table 9 presents the predictions for the most deci-

sive matches under both models. For PO the most decisive match is Argentina vs

Uruguay “el Clásico de Rio de la Plata” which involves the two teams with most

Copa America victories (14 and 15 respectively) followed by Colombia vs Peru, then

Brazil vs Venezuela and at more distance Argentina vs Jamaica and Mexico vs Bo-

livia. In these last two cases, the estimated decisiveness measures are very similar

to those of the games Chile vs Ecuador and Brazil vs Colombia which might also be
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expected to be important in determining the final tournament result.

Table 9 about here

It might seem surprising that the game Brazil vs Colombia is not identified as

one of the top five decisive games by the PO (or KE) model. One interpretation of

this is that both teams are expected to qualify for the second round regardless of the

result in this game and we can note that the appearance of Colombia vs Peru and

Brazil vs Venezuela can be interpreted as suggesting that an upset in these games

would probably lead to one of the tournament favorites failing to qualify for the

second round.

For the KE model, Colombia vs Peru gains the highest decisiveness ranking

(0.0732) with a large difference to the second ranked game, Argentina vs Uruguay

(0.0396). A natural interpretation of this is that probably, Colombia has a large

chance of being eliminated if they lose this game (they also play Brazil in the qual-

ifying group) and that if they do, they would have good chances of a final victory.

The third to fifth ranked games are Colombia vs Venezuela, Mexico vs Ecuador and

Argentina vs Paraguay, all with similar rankings to Argentina vs Uruguay match and

very closely followed by Chile vs Bolivia, just outside the top five. Other matches

are ranked much lower in decisiveness. Note that under the KE model Colombia

is the third favorite to win the competition and similar to the situation for the PO

model, an upset in the match against Peru could well lead to their elimination from

the tournament.

The same two matches, Argentina vs Uruguay and Colombia vs Peru are clas-

sified as the ex ante, top two decisive games by both models (although in different

orders) although there are differences for games of intermediate decisiveness, similar

to the results for the WC2014.

To exemplify the difference between our forecast approach with respect to the

Geenens’ procedure in order to identify the decisive games, we compute decisiveness

measures during the competition using two ways: 1) estimating the probabilities of

the schedule competition using 0 < t ≤ h− 1 and 2) the probabilities of P(Wh|ξn),

P(Dh|ξn) and P(Lh|ξn). In other words, we estimate the probabilities of the deci-

siveness measures using forecasts of the matches results as we have proposed, and

additionally, we compute the probabilities of the schedule competition using the

information of the CA2015, similar to the empirical application for the UEFA Euro

2012 carried out by Geenens (2014). Both approaches are implemented for the PO

model on the knock-out stage.
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Table 10 shows the results for the forecast approach for t = 18, . . . , 24. In the

quarter-finals the most decisive game is Argentina vs Colombia for t = 18, . . . , 20

and in semis this is Chile vs Peru for t = 18, . . . , 22. The most decisive game in the

knock-out stage is always Chile vs Argentina.

Table 10 about here

In Table 11, using the estimation of the probabilities with information from

after the competition, for t = 18, Chile vs Uruguay is the most decisive game in the

quarters and Argentina vs Colombia for t = 19, 20. In the semi-finals Chile vs Peru

is the most decisive game for t = 18, . . . , 22.

Table 11 about here

Obviously, when we use these models to forecast future results, the games that

are predicted to be the most decisive are those involving teams with higher prior

chances of final victory. Otherwise, when we fit the model to the set of games in

the competition after this has finished, the most decisive games are those involving

the eventual finalists.

6 Concluding remarks

In this paper, we analyzed the way in which the identification of decisive matches

in international tournaments such as the 2014 FIFA World Cup and the 2015 Copa

de America depends on the statistical approach used to estimate the outcome of the

game. In terms of forecasting we found that Poisson models and kernel regression are

not significantly different and that they both outperformed ordered probit models

on these data sets.

Based on 5,000 replicates of the 2014 FIFA World Cup we observed that the

ex-post identification of the first two most decisive matches does not depend on

the model used, but that identification of other key matches varies substantially

according to the model considered. In this aspect, the key matches selected by the

Poisson and kernel regression models seem to be most in line with what we would

expect from a football viewpoint, whereas the ordered probit models generate some

more unexpected results. In a similar way, from a predictive viewpoint, both Poisson

and kernel regression models suggest that the same two games will be the most

decisive in the 2015 Copa America although decisiveness rankings lower down differ

between models.
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One interesting area for further study would be to try to identify when the

estimated decisiveness scores for different games indicate that one game is signif-

icantly more important than another, or when similar decisiveness scores suggest

that matches are of approximately equal decisiveness.
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Figure 1: KE estimates of the p̂(χ)W , p̂(χ)D and p̂(χ)L probabilities as function of
differences of FIFA ratings through of 821 games and 821 “pseudo-games”. The
top panel shows the 1,186 games between “home” and “visitor” teams. The bottom
panel shows the 456 games between ”neutral” teams. The horizontal points indicates
the observed results: 0 when the “Team T” loses and 1 when the “Team T” wins.

Table 1: Parameter estimates of the Poisson models and ordered probit models. For
the BP, HBP and BOP we consider the median of the posterior distributions.

Poisson models

Model β0 βAT
βAO

βHT
βNT

b0 bAT
bAO

bHT
bNT

PO -0.0784 0.0012 -0.0011 0.3839 0.2184
BP -0.0769 0.0012 -0.0011 0.3830 0.2164

HBP -0.1386 0.0011 -0.0011 0.4013 0.2573 0.0005 0.0001 0.0000 0.0003 -0.0002

Ordered probit models
Model βAD

βHT
c1 c−1

OP 0.002 0.305 -0.465 0.348
BOP 0.683 0.323 0.118 0.844
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Table 2: Prior win probabilities for each model, pj0, for the 2014 FIFA World Cup
using 5,000 replicates. The teams are ordered according to the final position in the
competition.

Final pos. Team Ability PO BP BHP OP BOP KE
1 Germany 1312.15 0.1338 0.1314 0.1380 0.1216 0.2562 0.1600
2 Argentina 1203.86 0.0786 0.0748 0.0692 0.0762 0.0944 0.1006
3 Netherlands 1149.2 0.0298 0.0368 0.0308 0.0268 0.0130 0.0408
4 Brazil 1421.82 0.3868 0.3956 0.4244 0.4152 0.3144 0.1870
5 Colombia 1042.54 0.0198 0.0196 0.0176 0.0202 0.0092 0.0314
6 Belgium 910.93 0.0078 0.0108 0.0074 0.0090 0.0046 0.0158
7 France 989.15 0.0174 0.0148 0.0158 0.0136 0.0052 0.0268
8 Costa Rica 743.2 0.0008 0.0008 0.0010 0.0004 0.0000 0.0018
9 Chile 1036.75 0.0128 0.0096 0.0108 0.0126 0.0024 0.0212
10 Mexico 910.07 0.0050 0.0062 0.0046 0.0054 0.0018 0.0118
11 Switzerland 916.99 0.0094 0.0092 0.0056 0.0114 0.0022 0.0156
12 Uruguay 1030.87 0.0162 0.0156 0.0148 0.0168 0.0056 0.0302
13 Greece 898.01 0.0048 0.0038 0.0042 0.0048 0.0012 0.0080
14 Algeria 632.79 0.0006 0.0000 0.0000 0.0002 0.0000 0.0006
15 United States 969.5 0.0124 0.0100 0.0084 0.0104 0.0076 0.0176
16 Nigeria 801.91 0.0020 0.0026 0.0014 0.0024 0.0000 0.0048
17 Ecuador 913.9 0.0054 0.0080 0.0054 0.0064 0.0022 0.0134
18 Portugal 1078.35 0.0278 0.0282 0.0232 0.0194 0.0504 0.0304
19 Croatia 874.37 0.0032 0.0048 0.0040 0.0038 0.0000 0.0044
20 Bosnia and Herzegovina 845.47 0.0036 0.0044 0.0026 0.0040 0.0004 0.0056
21 Ivory Coast 884.12 0.0064 0.0046 0.0034 0.0030 0.0016 0.0094
22 Italy 992.63 0.0112 0.0114 0.0122 0.0104 0.0014 0.0224
23 Spain 1366.74 0.1566 0.1498 0.1600 0.1684 0.1994 0.1700
24 Russia 735.42 0.0130 0.0120 0.0080 0.0088 0.0096 0.0164
25 Ghana 937.52 0.0010 0.0004 0.0006 0.0010 0.0004 0.0028
26 England 1089.38 0.0296 0.0306 0.0238 0.0250 0.0164 0.0406
27 South Korea 673.9 0.0008 0.0004 0.0004 0.0004 0.0000 0.0016
28 Iran 760.96 0.0016 0.0024 0.0006 0.0004 0.0002 0.0046
29 Japan 780.85 0.0016 0.0010 0.0016 0.0014 0.0002 0.0024
30 Australia 728.43 0.0000 0.0004 0.0000 0.0006 0.0000 0.0010
31 Honduras 651.08 0.0002 0.0000 0.0002 0.0000 0.0000 0.0006
32 Cameroon 566.13 0.0000 0.0000 0.0000 0.0000 0.0000 0.0004
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Table 3: LSR for each model for the schedule of the 2014 FIFA World Cup. Bold
letters indicate the games considered for the Wald-test. h represents the order of
each game. Games 1 - 48 are the round stage. Games 49 - 62 are of knockout stage.
h Stage Team T Team O PO BP HBP OP BOP KE
1 A Brazil Croatia 0.62 0.60 0.51 0.33 0.18 0.82
2 A Mexico Cameroon 1.14 1.16 1.11 0.93 0.89 1.17
3 B Spain Netherlands 2.28 2.32 2.26 2.64 2.18 2.55
4 B Chile Australia 1.22 1.20 1.15 0.99 1.02 1.16
5 C Colombia Greece 1.52 1.51 1.44 1.41 1.79 1.38
6 D Uruguay Costa Rica 2.50 2.50 2.54 3.07 2.66 2.77
7 D England Italy 2.08 2.03 1.99 2.32 1.52 2.09
8 C Ivory Coast Japan 1.57 1.57 1.57 1.50 2.06 1.46
9 E Switzerland Ecuador 1.77 1.80 1.78 1.79 2.64 1.70
10 E France Honduras 1.14 1.15 1.12 0.91 0.95 1.14
11 F Argentina Bosnia and Herzegovina 1.11 1.14 1.06 0.87 0.89 1.11
12 G Germany Portugal 1.31 1.34 1.24 1.18 1.35 1.28
13 F Iran Nigeria 2.11 2.12 2.21 1.96 2.55 2.27
14 G Ghana United States 1.34 1.37 1.29 1.28 0.39 1.29
15 H Belgium Algeria 1.28 1.28 1.19 1.03 1.19 1.20
16 A Brazil Mexico 3.08 3.07 3.34 3.73 4.56 2.62
17 G Russia South Korea 2.22 2.21 2.40 2.29 2.30 2.22
18 B Australia Netherlands 1.00 1.03 0.93 0.88 0.13 1.07
19 B Spain Chile 2.64 2.61 2.64 3.11 3.06 2.92
20 A Cameroon Croatia 1.19 1.18 1.16 1.10 0.27 1.19
21 C Colombia Ivory Coast 1.50 1.48 1.43 1.30 1.76 1.36
22 D Uruguay England 1.96 1.97 1.90 1.96 3.13 1.96
23 C Japan Greece 2.19 2.14 2.24 2.06 3.07 2.28
24 D Italy Costa Rica 2.41 2.41 2.40 2.90 2.32 2.61
25 E Switzerland France 1.66 1.65 1.62 1.81 0.82 1.56
26 E Honduras Ecuador 1.29 1.33 1.25 1.21 0.34 1.22
27 F Argentina Iran 0.97 0.97 0.88 0.70 0.63 1.04
28 G Germany Ghana 2.83 2.81 3.07 3.25 4.22 1.99
29 F Nigeria Bosnia and Herzegovina 1.89 1.91 1.88 1.95 3.01 1.93
30 H Belgium Russia 1.89 1.87 1.83 1.82 2.96 1.90
31 H South Korea Algeria 1.91 1.88 1.90 2.13 1.22 1.91
32 G United States Portugal 2.17 2.13 2.33 1.99 2.88 2.27
33 B Netherlands Chile 1.57 1.58 1.49 1.48 1.98 1.44
34 B Australia Spain 0.67 0.69 0.63 0.52 0.02 0.92
35 A Cameroon Brazil 0.29 0.29 0.22 0.15 0.00 0.64
36 A Croatia Mexico 1.76 1.73 1.69 1.81 0.95 1.64
37 D Italy Uruguay 1.71 1.72 1.65 1.84 0.96 1.64
38 D Costa Rica England 2.36 2.36 2.58 2.37 4.99 2.11
39 C Japan Colombia 1.29 1.30 1.21 1.26 0.36 1.15
40 C Greece Ivory Coast 1.77 1.81 1.75 1.73 2.61 1.79
41 F Nigeria Argentina 1.04 1.03 0.97 0.88 0.14 1.11
42 F Bosnia and Herzegovina Iran 1.65 1.62 1.57 1.54 2.23 1.46
43 E Honduras Switzerland 1.26 1.29 1.23 1.24 0.33 1.17
44 E Ecuador France 2.12 2.12 2.27 2.05 2.69 2.24
45 G Portugal Ghana 1.16 1.15 1.08 0.89 0.91 1.20
46 G United States Germany 1.13 1.14 1.05 1.06 0.21 1.14
47 H South Korea Belgium 1.36 1.33 1.28 1.27 0.40 1.24
48 H Algeria Russia 2.28 2.28 2.43 2.43 4.41 2.17
49 R16 Brazil Chile 0.55 0.55 0.50 0.33 0.33 0.69
50 R16 Colombia Uruguay 1.36 1.38 1.36 1.29 2.18 1.42
51 R16 Netherlands Mexico 0.95 0.95 0.94 0.76 1.00 0.84
52 R16 Costa Rica Greece 1.70 1.72 1.74 1.73 3.62 1.85
53 R16 France Nigeria 1.05 1.03 1.02 0.88 1.20 0.95
54 R16 Germany Algeria 0.42 0.42 0.37 0.23 0.08 0.38
55 R16 Argentina Switzerland 0.91 0.89 0.85 0.65 0.84 0.79
56 R16 Belgium United States 1.49 1.48 1.54 1.49 2.68 1.60
57 QF France Germany 0.84 0.83 0.81 0.76 0.14 0.74
58 QF Brazil Colombia 0.55 0.57 0.52 0.35 0.33 0.72
59 QF Argentina Belgium 0.87 0.88 0.85 0.66 0.77 0.78
60 QF Netherlands Costa Rica 0.72 0.74 0.68 0.51 0.46 0.62
61 SF Brazil Germany 2.01 2.02 2.08 2.47 1.74 1.67
62 SF Netherlands Argentina 1.27 1.29 1.27 1.36 0.64 1.17
63 3P Brazil Netherlands 2.51 2.48 2.59 3.05 2.82 2.03
64 1P Germany Argentina 1.19 1.19 1.18 1.05 1.58 1.08
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Figure 2: Scatter plot between the Rankings of the decisiveness measures dh,h of the
WC2014 for each pair of models. The black line indicates an angle of 45 degrees
and the dotted line the equation line obtained by linear regression.

Table 4: Wald-tests for the LSR for each pairs of models.

Models LSR (Wald stat.) Outperformance
PO–BP 0.14 -

PO–HBP 1.75 -
PO–OP 3.36* PO

PO–BOP 5.38** PO
PO–KE 1.01 -

BP–HBP 1.68 -
BP–OP 3.31* BP

BP–BOP 5.39** BP
BP–KE 0.98 -

HBP–OP 2.02 -
HBP–BOP 5.43** HBP
HBP–KE 1.73 -
OP–BOP 2.90* OP
OP–KE 3.42* KE

BOP–KE 5.41** KE
** 5% Sig.
*10% Sig.
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Table 5: Density area for each different model according to Wald test.

Model A Model B Area A Area B
PO OP 0.538 0.462
PO BOP 0.622 0.378
BP OP 0.529 0.471
BP BOP 0.620 0.380

HBP BOP 0.618 0.382
OP BOP 0.580 0.420
OP KE 0.412 0.588

BOP KE 0.391 0.609

Table 6: Tukey’s HSD (honest significant difference) test for the means of eh for each
pairs of models. We present the difference of means, the lower and upper intervals
and the p value of the test.

Models Difference Lower Upper P value
HBP-BOP 0.024 -0.013 0.061 0.427
OP-BOP 0.041 0.005 0.078 0.017
PO-BOP 0.059 0.022 0.095 0.000
BP-BOP 0.061 0.024 0.097 0.000
KE-BOP 0.192 0.156 0.229 0.000
OP-HBP 0.017 -0.019 0.054 0.752
PO-HBP 0.035 -0.002 0.072 0.075
BP-HBP 0.037 0.000 0.073 0.050
KE-HBP 0.169 0.132 0.205 0.000
PO-OP 0.017 -0.019 0.054 0.753
BP-OP 0.019 -0.017 0.056 0.663
KE-OP 0.151 0.114 0.188 0.000
BP-PO 0.002 -0.035 0.039 1.000
KE-PO 0.134 0.097 0.171 0.000
KE-BP 0.132 0.095 0.169 0.000
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Table 7: Decisiveness measure, dh, for each game and each model in the 2014 FIFA
World Cup. Bold letters indicate the top ten most important games according to
each model. Games 35- 48 are played at the same time. Games 49 - 62 are from the
knockout stage.
h Stage Team T Team O PO BP HBP OP BOP KE
1 A Brazil Croatia 0.0330 0.0392 0.0487 0.0533 0.0514 0.0018
2 A Mexico Cameroon 0.0026 0.0462 0.0232 0.0510 0.0399 0.0429
3 B Spain Netherlands 0.1119 0.0943 0.1259 0.1109 0.1555 0.1145
4 B Chile Australia 0.0004 0.0402 0.0041 0.0203 0.0282 0.0148
5 C Colombia Greece 0.0189 0.0492 0.0013 0.0224 0.0216 0.0088
6 D Uruguay Costa Rica 0.0606 0.0047 0.0112 0.0150 0.0404 0.0212
7 D England Italy 0.0360 0.0259 0.0821 0.0575 0.0052 0.0437
8 C Ivory Coast Japan 0.0041 0.0519 0.0308 0.0262 0.0120 0.0064
9 E Switzerland Ecuador 0.0017 0.0366 0.0041 0.0249 0.0137 0.0119
10 E France Honduras 0.0398 0.0365 0.0836 0.0270 0.0033 0.0023
11 F Argentina Bosnia and Herzegovina 0.0176 0.0666 0.0627 0.0594 0.0014 0.0559
12 G Germany Portugal 0.0816 0.0246 0.0381 0.0166 0.0864 0.0125
13 F Iran Nigeria 0.0387 0.0320 0.0291 0.0139 0.0017 0.0193
14 G Ghana United States 0.0045 0.0441 0.0754 0.0393 0.0087 0.0113
15 H Belgium Algeria 0.0044 0.0157 0.0146 0.0869 0.0084 0.0193
16 A Brazil Mexico 0.0132 0.0638 0.0241 0.0121 0.0031 0.0281
17 H Russia South Korea 0.0267 0.0969 0.0233 0.0070 0.0423 0.0038
18 B Australia Netherlands 0.0560 0.0122 0.0850 0.0346 0.0000 0.0225
19 B Spain Chile 0.1108 0.0811 0.0993 0.1521 0.2079 0.0999
20 A Cameroon Croatia 0.0077 0.0014 0.0229 0.0129 0.0345 0.0103
21 C Colombia Ivory Coast 0.0033 0.0410 0.0537 0.0004 0.0401 0.0146
22 D Uruguay England 0.0045 0.0060 0.0117 0.0375 0.0815 0.0363
23 C Japan Greece 0.0096 0.0027 0.0305 0.0383 0.0054 0.0284
24 D Italy Costa Rica 0.0098 0.0234 0.0318 0.0370 0.0213 0.1042
25 E Switzerland France 0.0153 0.0058 0.0198 0.0170 0.0325 0.0430
26 E Honduras Ecuador 0.0273 0.0092 0.0175 0.0025 0.0608 0.0484
27 F Argentina Iran 0.0611 0.0447 0.0350 0.0321 0.0575 0.0519
28 G Germany Ghana 0.0174 0.0561 0.0240 0.0211 0.0516 0.0129
29 F Nigeria Bosnia and Herzegovina 0.0010 0.0156 0.0012 0.0044 0.0052 0.0051
30 H Belgium Russia 0.0098 0.0623 0.0446 0.0133 0.0001 0.0070
31 H South Korea Algeria 0.0067 0.0430 0.0564 0.0340 0.0073 0.0215
32 G United States Portugal 0.0798 0.0931 0.0874 0.0029 0.0711 0.1027
33 B Netherlands Chile 0.0298 0.0693 0.0922 0.1278 0.0917 0.0404
34 B Australia Spain 0.0332 0.0135 0.0683 0.0560 0.0134 0.0025
35 A Cameroon Brazil 0.0469 0.0145 0.0397 0.0877 0.0224 0.0044
36 A Croatia Mexico 0.0603 0.0729 0.0312 0.0029 0.0242 0.0246
37 D Italy Uruguay 0.0258 0.0896 0.0619 0.0091 0.0276 0.0464
38 D Costa Rica England 0.0255 0.0265 0.0038 0.0421 0.0036 0.0174
39 C Japan Colombia 0.0939 0.0278 0.0426 0.0272 0.0220 0.0280
40 C Greece Ivory Coast 0.0536 0.0024 0.0227 0.0492 0.0428 0.0100
41 F Nigeria Argentina 0.0025 0.0175 0.0347 0.0044 0.0243 0.0015
42 F Bosnia and Herzegovina Iran 0.0025 0.0083 0.0242 0.0024 0.0296 0.0206
43 E Honduras Switzerland 0.0388 0.0271 0.0454 0.0291 0.0168 0.0152
44 E Ecuador France 0.0402 0.0198 0.0336 0.0468 0.0145 0.0062
45 G Portugal Ghana 0.0343 0.0118 0.0189 0.0093 0.0020 0.0065
46 G United States Germany 0.0143 0.0245 0.0422 0.0262 0.0097 0.0038
47 H South Korea Belgium 0.0068 0.0408 0.0066 0.0461 0.0284 0.0089
48 H Algeria Russia 0.0387 0.0612 0.0492 0.0461 0.0943 0.1182
49 R16 Brazil Chile 0.3289 0.2906 0.3137 0.3018 0.1006 0.2361
50 R16 Colombia Uruguay 0.0208 0.0366 0.0133 0.0387 0.0132 0.0528
51 R16 Netherlands Mexico 0.0699 0.0681 0.0692 0.0560 0.0060 0.1245
52 R16 Costa Rica Greece 0.0388 0.0079 0.0329 0.0000 0.0479 0.0606
53 R16 France Nigeria 0.0446 0.0407 0.0213 0.0152 0.0416 0.0040
54 R16 Germany Algeria 0.0001 0.0370 0.0456 0.0304 0.0557 0.0765
55 R16 Argentina Switzerland 0.1071 0.0735 0.0503 0.0994 0.0340 0.0913
56 R16 Belgium United States 0.0287 0.0462 0.0132 0.0197 0.0711 0.0637
57 QF France Germany 0.0995 0.1146 0.0722 0.0671 0.0187 0.2074
58 QF Brazil Colombia 0.2281 0.2450 0.2677 0.2855 0.0981 0.2418
59 QF Argentina Belgium 0.0962 0.0878 0.0650 0.0656 0.1310 0.1269
60 QF Netherlands Costa Rica 0.0234 0.0093 0.0084 0.0003 0.0495 0.0495
61 SF Brazil Germany 0.3959 0.3785 0.3187 0.3682 0.4219 0.5700
62 SF Netherlands Argentina 0.3930 0.4004 0.3901 0.3670 0.4286 0.3965
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Table 8: pj0 for the 2015 Copa America for PO and KE models.

Team Rating PO KE
Argentina 1501.99 0.3080 0.3000

Bolivia 416.20 0.0000 0.0018
Brazil 1489.78 0.2630 0.2600
Chile 1111.95 0.1590 0.1012

Colombia 1316.10 0.1640 0.1536
Ecuador 955.10 0.2900 0.5380
Jamaica 315.76 0.0000 0.0000
Mexico 1025.88 0.0370 0.0642

Paraguay 432.45 0.0000 0.0006
Peru 642.74 0.0000 0.0072

Uruguay 1003.04 0.0390 0.0550
Venezuela 538.00 0.0010 0.0026

Table 9: Decisiveness measure, d0,h, for PO and KE models in the 2015 Copa Amer-
ica (group stage). Bold numbers indicate the top five most important games accord-
ing to each considered model.

h Group Team T Team O PO KE
1 A Chile Ecuador 0.0239 (6) 0.0297 (7)
2 A Mexico Bolivia 0.0241 (5) 0.0291 (8)
3 B Uruguay Jamaica 0.0202 (9) 0.0265 (12)
4 B Argentina Paraguay 0.0200 (10) 0.0363 (6)
5 C Colombia Venezuela 0.0051 (18) 0.0369 (3)
6 C Brazil Peru 0.0183 (12) 0.0227 (14)
7 A Ecuador Bolivia 0.0200 (11) 0.0212 (15)
8 A Chile Mexico 0.0180 (13) 0.0147 (17)
9 B Paraguay Jamaica 0.0144 (16) 0.0282 (10)
10 B Argentina Uruguay 0.0554 (1) 0.0396 (2)
11 C Brazil Colombia 0.0235 (7) 0.0287 (9)
12 C Peru Venezuela 0.0122 (17) 0.0137 (18)
13 A Mexico Ecuador 0.0148 (15) 0.0366 (4)
14 A Chile Bolivia 0.0208 (8) 0.0363 (5)
15 B Uruguay Paraguay 0.0168 (14) 0.0266 (11)
16 B Argentina Jamaica 0.0270 (4) 0.0242 (13)
17 C Colombia Peru 0.0520 (2) 0.0732 (1)
18 C Brazil Venezuela 0.0366 (3) 0.0170 (16)

Table 10: Decisiveness measures of the games of the knock-out stage for PO model.
h Round Team 1 Team 2 d18,h d19,h d20,h d21,h d22,h d23,h d24,h

19 QF Chile Uruguay 0.2330 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
20 QF Bolivia Peru 0.0345 0.0350 0.0000 0.0000 0.0000 0.0000 0.0000
21 QF Argentina Colombia 0.2820 0.2669 0.2683 0.0000 0.0000 0.0000 0.0000
22 QF Brazil Paraguay 0.0677 0.0677 0.0618 0.0668 0.0000 0.0000 0.0000
23 SF Chile Peru 0.4360 0.4161 0.4364 0.4074 0.1701 0.0000 0.0000
24 SF Argentina Paraguay 0.0470 0.0539 0.0593 0.0413 0.0997 0.1097 0.0000
25 1P Chile Argentina 0.9666 0.9630 0.9631 0.9607 0.9689 0.9682 0.9648
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Table 11: Decisiveness measures of the games of the knock-out stage for PO model
using the estimated probabilities of the schedule tournament with information after
of the competition.

h Round Team 1 Team 2 d18,h d19,h d20,h d21,h d22,h d23,h d24,h
19 QF Chile Uruguay 0.5678 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
20 QF Bolivia Peru 0.0466 0.0651 0.0000 0.0000 0.0000 0.0000 0.0000
21 QF Argentina Colombia 0.1309 0.1236 0.1549 0.0000 0.0000 0.0000 0.0000
22 QF Brazil Paraguay 0.1145 0.0825 0.0975 0.0929 0.0000 0.0000 0.0000
23 SF Chile Peru 0.2161 0.2118 0.2180 0.2023 0.3669 0.0000 0.0000
24 SF Argentina Paraguay 0.0220 0.0335 0.0365 0.0073 0.1804 0.1710 0.0000
25 1P Chile Argentina 0.8135 0.8003 0.8100 0.8052 0.7977 0.8200 0.8169
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