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Abstract

This dissertation is mainly motivated by the problem of statistical modeling via a specific
point process, namely, the Batch Markovian arrival processes. Point processes arise in a wide
range of situations of our daily activities, such as people arriving to a bank, claims of an
insurance company or failures in a system. They are defined by the occurrence of an event at
a specific time, where the event occurrences may be understood from different perspectives,
either by the arrival of a person or group of people in a waiting line, the different claims
to the insurance companies or failures occurring in a system. Point processes are defined in
terms of one or several stochastic processes which implies more versatility than mere single
random variables, for modeling purposes.

A traditional assumption when dealing with the analysis of point processes is that the oc-
currence of events are independent and identically distributed, which considerably simplifies
the theoretical calculations and computational complexity, and again because of simplicity,
the Poisson process has been widely considered in stochastic modelling. However, the in-
dependence and exponentiability assumptions become unrealistic and restrictive in practice.
For example, in teletraffic or insurance contexts it is usual to encounter dependence amongst
observations, high variability, arrivals occurring in batches, and therefore, there is a need of
more realistic models to fit the data.

In particular, in this dissertation we investigate new theoretical and applied properties
concerning the (batch) Markovian arrival processes, or (B)MAP, which is well known to be
a versatile class of point process that allows for dependent and non-exponentially distributed
inter-event times as well as correlated batches. They inherit the tractability of the Poisson
processes, and turn out suitable models to fit data with statistical features that differ form the
classical Poisson assumptions. In addition, in spite of the large amount of works considering
the BMAP, still there are a number of open problems which are of interest and which shall
be considered in this dissertation.

vi



Abstract vii

This dissertation is organized as follows. In Chapter 1, we present a brief theoretical
background that introduces the most important concepts and properties that are needed to
carry out our analyses. We give a theoretical background of point processes and describe
them from a probabilistic point of view. We introduce the Markovian point processes and
its main properties, and also provide some point process estimation backdrop with a review
of recent works.

An important problem to consider when the statistical inference for any model is to be
developed is the uniqueness of its representation, the identifiability problem. In Chapter 2
we analyze the identifiability of the non-stationary two-state MAP. We prove that, when
the sample information is given by the inter-event times, then, the usual parametrization of
the process is redundant, that is, the process is nonidentifiable. We present a methodology
to build an equivalent non-stationary two-state MAPs from any fixed one. Also, we provide
a canonical and unique parametrization of the process so that the redundant versions of the
same process can be reduced to its canonical version.

In Chapter 3 we study an estimation approach for the parameters of the non-stationary
version of the MAP under a specific observed information. The framework to be considered is
the modelling of the failures of N electrical components that are identically distributed, but
for which it is not reasonable to assume that the operational times related to each component
are independent and identically distributed. We propose a moments matching estimation
approach to fit the data to the non-stationary two-state MAP. A simulated and a real data
set provided by the Spanish electrical group Iberdrola are used to illustrate the approach.

Unlike Chapters 2 and 3, which are devoted to the Markovian arrival process, Chapters
4 and 5 focus on its arrivals-in-batches counterpart, the BMAP. The capability of modeling
non-exponentially distributed and dependent inter-event times as well as correlated batches
makes the BMAP suitable in different real-life settings as teletraffic, queueing theory or
actuarial contexts, to name a few. In Chapter 4 we analyze the identifiability issue of the
BMAP. Specifically, we explore the identifiability of the stationary two-state BMAP noted
as BMAP2(k), where k is the maximum batch arrival size, under the assumptions that both
the inter-event times and batches sizes are observed. It is proven that for k ≥ 2 the process
cannot be identified. The proof is based on the construction of an equivalent BMAP2(k) to
a given one, and on the decomposition of a BMAP2(k) into k BMAP2(2)s.

In Chapter 5 we study the auto-correlation functions of the inter-event times and batch
sizes of the BMAP. This chapter examines the characterization of both auto-correlation
functions for the stationary BMAP2(k), for k ≥ 2, where four behavior patterns are identified
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for both functions for the BMAP2(2). It is proven that both auto-correlation functions
decrease geometrically as the time lag increases. Also, the characterization of the auto-
correlation functions has been extended for the general BMAPm(k) case, m ≥ 3.

To conclude, Chapter 6 summarizes the most significant contributions of this dissertation,
and also give a short description of possible research lines.



Resumen

Esta tesis está motivada por el problema de modelización estad́ıstica mediante un tipo es-
pećıfico de procesos puntuales, los procesosde llegada Markovianos en tandas. Los procesos
puntuales surgen en una gran variedad de situaciones de la vida real, como las personas que
llegan a un banco, reclamaciones en compañ́ıas de seguro o fallos en un sistema. Los pro-
cesos puntuales se definen como la ocurrencia de eventos en diferentes instantes temporales,
donde las ocurrencias de eventos se pueden entender desde diferentes perspectivas, llegadas
de personas o un grupo de personas a una cola, las distintas reclamaciones en una compañ́ıa
de seguros o los fallos que ocurren en un sistema. Los procesos puntuales se definen en
términos de uno o varios procesos estocásticos lo que implica más versatilidad, en términos
de modelización, que la que se obtiene mediante variables aleatorias que no consideren la
dimensión temporal.

Una suposición tradicional en la literatura al estudiar y analizar procesos puntuales es
que los tiempos entre la ocurrencia de eventos son independientes e idénticamente distribui-
dos, lo que simplifica considerablemente los cálculos teóricos y la complejidad computacional.
Adicionalmente, por simplicidad, el proceso de Poisson ha sido ampliamente considerado en
modelización estocástica. Sin embargo, las suposiciones de independencia y exponenciabili-
dad son poco realistas en la práctica. Por ejemplo, en el contexto teletráfico o de seguros es
usual encontrar dependencia entre las observaciones, alta variabilidad, llegadas que ocurren
en tandas, por lo que hay una necesidad de ajustar los datos a modelos más reales.

En particular, en esta tesis investigamos nuevas propiedades teóricas y aplicadas sobre
los procesos de llegada Markovianos (en tanda), denotados (B)MAP, que son conocidos
por ser procesos puntuales versátiles que permiten la dependencia y no-exponenciabilidad
de los tiempos entre eventos, aśı como la correlación entre las tandas. Ya que heredan la
manejabilidad de los procesos de Poisson, son procesos adecuados para ajustar datos con
caracteŕısticas estad́ısticas que difieren de los supuestos clásicos de Poisson. Además, a
pesar de la gran cantidad de trabajos que consideran los BMAP, todav́ıa hay una serie de

ix



Resumen x

problemas abiertos que son de interés y que serán considerados en esta tesis.

La estructura de esta tesis es la siguiente. En el Caṕıtulo 1, se presenta una breve
revisión teórica que introduce las definiciones y propiedades más importantes necesarias
para el desarrollo de nuestros análisis. Se definen los procesos puntuales y se describen
desde un punto de vista probabiĺıstico. Se introducen los procesos puntuales Markovianos
y sus propiedades principales, además se proporciona una revisión de la literatura sobre la
estimación de los procesos puntuales.

Un problema importante a considerar cuando se quieren desarrollar métodos de inferencia
sobre cualquier modelo es la unicidad de su parametrización, o alternativamente, el problema
de identificabilidad. En el Caṕıtulo 2 estudiamos el problema de identificabilidad del MAP
no estacionario con dos estados. Se demuestra que, cuando la información muestral está
dada por los tiempos entre eventos, entonces, la parametrización usual del proceso es redun-
dante, esto es, el proceso es no-identificable. Se presenta un procedimiento para construir
un MAP no estacionario con dos estados equivalente a uno fijo. Además, se proporciona una
parametrización canónica y única del proceso, de manera que las versiones redundantes o
equivalentes de un mismo proceso se pueden reducir a su versión cnónica.

En el Caṕıtulo 3 se estudia un método de estimación para los parámetros del MAP no
estacionario con dos estados. El esquema que se considerará es la modelización de los fallos
de N componentes eléctricos que son idénticamente distribuidos, pero que no es razonable
considerar que los tiempos operacionales asociados a cada componente son independientes
ni idénticamente distribuidos. Se propone un método de igualdad de momentos para ajustar
datos a un MAP no estacionarios con dos estados. Se presenta un ejemplo simulado y un
ejemplo con datos reales proporcionados por la compañ́ıa eléctrica Iberdrola para ilustrar la
metodoloǵıa propuesta.

A diferencia de los caṕıtulos 2 y 3, que están dedicados a los procesos de llegada Marko-
vianos, los caṕıtulos 4 y 5 se centran en su generalización para considerar llegadas en tandas,
el BMAP. La capacidad de modelar tiempos entre eventos dependientes y no-exponenciales,
aśı como llegadas en tandas correladas, hace que los BMAP sean modelos apropiados en
problemas de la vida real, como en contextos teletráficos, de teoŕıa de colas o actuariales,
entre otros. En el Caṕıtulo 4 se explora la identificabilidad para el BMAP estacionario de 2
estados, BMAP2(k), donde k es el tamaño máximo de las tandas, bajo la suposición de que
los tiempos entre eventos y los tamaños de las tandas son los datos observados. Se demuestra
que para k ≥ 2 el proceso no es único. La demostración se basa en la construcción de un
BMAP2(k) equivalente a uno fijo, y en la descomposición de un BMAP2(k) en k BMAP2(2)s.
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En el Caṕıtulo 5 se estudia las funciones de autocorrelación para los tiempos entre-eventos
y las llegadas en tanda del BMAP. Además, también se examina la caracterización de ambas
funciones de autocorrelación para el BMAP2(k), k ≥ 2, estacionario, donde se identifican
cuatro patrones para el BMAP2(2). Se demuestra que ambas funciones de autocorrelación
decrecen geométricamente. Finalmente, se extiende la caracterización de las funciones de
autocorrelación para el caso general BMAPm(k), m ≥ 3.

Finalmente, en el Caṕıtulo 6 se resumen las contribuciones más importantes de esta tesis
y futuras ĺıneas de investigación.
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Chapter 1

Introduction

This chapter introduces point processes and the main properties concerning the (Batch)
Markovian arrival process, the model we focus on in this dissertation. Some real data ex-
amples from the insurance and reliability contexts are shown to motivate the considered
research. Special emphasis is put on the description of the phase-type distribution as well
as the Markovian renewal theory, both needed to later define the BMAP. Finally, the chap-
ter provides a review of the classic statistical estimation approaches for inference of point
processes, where the identifiability issue is of crucial importance.

1.1 Point processes and real data

Point processes are defined as the occurrence of events at different instant epochs, where the
occurrence of event is defined depending on the context. For example, in teletraffic an event
may denote the arrival of a packet of bytes; in insurance it may indicate the occurrence of
any type of risk; in reliability, an event may be understood as a failure system and in queuing
theory, the arrival of a customer. Some real data examples of these situations are presented
next. From the teletraffic context, the publicly available Bellcore LAN trace files, named
BC-pAug89 are found in

http://ita.ee.lbl.gov/html/contrib/BC.html.

The data file consists of two columns in ASCII format, where the first column gives the
time in seconds of the packet arrival, and the second column gives the Ethernet data length

1
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CHAPTER 1. INTRODUCTION 2

in bytes, shown in Figure 1.1 for the first 100 packet arrivals. The trace began at 11:25
on August 29, 1989, and ran for about 3142.82 seconds (until 1,000,000 packets had been
captured) at the Bellcore Morristown Research and Engineering facility. The next example is
from an insurance context: a total of 600 claims and their corresponding amounts, provided
by the insurance department of an international commercial company (see Vilar et al. [104]),
shown in Figure 1.2. Finally, consider an example from a reliability context: the failure times
of 926 energy generators (electrical components) provided by the Spanish private electrical
utility company, Iberdrola, shown in Figure 1.3.
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Figure 1.1: Arrival time of 100 packets.

0 100 200 300 400 500 600
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 104 Insurance data set

Claim time

C
la

im
 s

iz
e

Figure 1.2: Occurrence time of 600 claims.
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Figure 1.3: Occurrence time of 926 failures of an electrical component.
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Consider the problem of statistically modeling real inter-event times. Then, the Poisson
process could be thought as a first approach because of its tractability. However, the hypoth-
esis of independent and exponentially distributed inter-event times might not be realistic in
practice, as the following set of figures illustrates
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Figure 1.4: Packets interarrival times QQ-
plot.
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Figure 1.5: Claim sizes empirical ACF.

0 100 200 300 400 500 600
−100

0

100

200

300

400

500

600

700

Quantiles of exponential Distribution

Q
ua

nt
ile

s 
of

 In
pu

t S
am

pl
e

QQ Plot of inter−failures vs. Exponential

0 100 200 300 400 500 600
−100

0

100

200

300

400

500

600

700

Quantiles of exponential Distribution

Q
ua

nt
ile

s 
of

 In
pu

t S
am

pl
e

QQ Plot of inter−failures vs. Exponential

Figure 1.6: Reliability data set. Left panel: QQ-plot of the inter-failures until the first
failure. Right panel: QQ-plot of the inter-failures between the first and second failures.

Figure 1.4 shows the QQ-plot of the packet interarrival times from the teletraffic example,
in comparison with that of an exponential distribution. It is clear that the exponential distri-
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bution would not provide a good fit for the data. Let us analyze Figure 1.5 which depicts the
empirical auto-correlation function for the amount of the claims, from the insurance example
data set. We can observe that the claim sizes has a correlated structure, in consequence,
a model that assumes independence between the data would not be appropriate. Finally,
in Figure 1.6, the left and right panels depict the QQ-plots of the inter-failure times until
the first failure and between the first and second failures (of all the generators) respectively,
compared to an exponential distribution. As before, the exponential distribution does not
perform well. As the previous examples in different contexts have shown, there is a need for
appropriate point processes that properly captures these statistical features.

Regarding statistical dependence properties and non-exponentiability of the data, the
(Batch) Markovian arrival processes, (B)MAP ([62, 75]), play an important part in the
stochastic modeling world, from both a theoretical and a practical point of view, since it
allows for dependent and non- exponentially distributed inter-event times. In addition,
it may also include (correlated) event occurrences in batches. This versatility makes the
(B)MAP a suitable point process for modeling real-life situations and indeed, there is a large
amount of works dealing with both theoretical and applied aspects of the process. In this
dissertation we aim to explore theoretical and applied properties concerning the (B)MAP.

1.2 Point processes

In this section a formal definition of point processes is given as well as the description of the
elements in the stochastic theory needed to define the (B)MAP.

A point process is a random sequence of epochs at which a certain event occurs. Figure 1.7
illustrates how a point process behaves, where {Sn, n ≥ 1}, with S0 = 0, denote an increasing
sequence of random variables that represent the time of the n-th event occurrence (or epoch
times), where simultaneous occurrences of groups or batches are allowed. The elapsed time
between Sn−1 and Sn is denoted by Tn, i.e., the random variable Tn = Sn − Sn−1 represents
the inter-event times. The variable Sn can be written as a function of Tn, as

Sn =
n∑
i=1

Ti.

A point process can also be specified by the counting process {N(t), t ≥ 0}, which is
a random variable that represents the number of events that have occurred in the interval
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Figure 1.7: Point process where Sn are the event occurrence times and Tn its inter-event
times. The values bi denotes the batch size of the i-th event occurrence.

(0, t], that is,
N(t) = max{n : Sn ≤ t} t ≥ 0.

Note that,
{Sn ≤ t} if and only if {N(t) ≥ n}, for n, t ≥ 1,

that is, {Sn ≤ t} is the occurrence of the n-th event at most at time t, which implies that
the number of events is n at time t, therefore {N(t) ≥ n}. The converse is direct. Then, a
point process can be specified by the times of the event times, the inter-event times or by
the counting process. Specifying one, generally, the other can be specified as well.

1.2.1 Renewal Process

Renewal process are an important type of point processes for which the sequence of inter-
event times are independent and identical distributed random variables, with an arbitrary
distribution. That is, the event occurrence process, Sn, is a sum of non-negative i.i.d. random
variables (the inter-event times). These processes are called renewal process because the
process probabilistically starts over at each event occurrence, independently of the past.
One of the main reasons to study renewal processes is that many complicated processes
have randomly occurring instants at which the system returns to a state probabilistically
equivalent to the starting state. These renewal epochs allow us to separate the long-term
behavior of the process that can be studied through renewal theory from the behavior within
each renewal period. Let us recall that a counting process is said to possess independent
increments if the number of occurrences that occur in disjoint time intervals are independent.
It is said to possess stationary increments if the distribution of the number of events that
occur in any interval of time depends only on the length of the time interval. The most
common and well known counting process is the Poisson process defined as,



CHAPTER 1. INTRODUCTION 6

Definition 1.1. A counting process {N(t), t ≥ 0} is called a Poisson process if

1. N(0) = 0.

2. {N(t), t ≥ 0} has the independent increment property.

3. P [N(s + t) − N(s) = n] = (λt)n
n! e−λt, for n ≥ 0. That is, the number of event

occurrences in any interval of length t has a Poisson distribution with mean λt.

Condition 3 implies that the distribution of N(s, s + t) is independent from t, that is,
the process {N(t), t ≥ 0} has stationary increments. It also indicates that λ is the expected
number of events per unit time in the Poisson process. The events in a Poisson process are
called arrivals, therefore λ is called the arrival rate of the process. If the parameter λ is
independent of time, the Poisson process is called a homogeneous Poisson process. On the
contrary, if λ is a function of time, λ(t), then such processes are called non-homogeneous
Poisson process. In this dissertation we are mainly concerned with homogeneous processes.
For a Poisson process, let the random variable Tn be defined as before, the sequence of inter-
event times. The following result determines the distribution of Tn (see Chapter 9, Ross
[99]).

Proposition 1.1. The inter-event times {Tn, n ≥ 1} are independent and identically dis-
tributed exponential random variables, with mean 1/λ.

The assumption of independent and identically distributed exponential inter-event times
is highly restrictive in practice. For this reason, Neuts [74] developed the theory of phase-type
distributions, which are presented as a natural generalization of the exponential distribution.

1.2.1.1 Phase-type distributions

Phase-type renewal processes are renewal processes for which the sequence of inter-event
times are independent and identical distributed phase-type random variables. Phase-type
(PH ) distributions play an important role when defining the process that is going to be
developed in this dissertation, the (B)MAP. The continuous PH -distributions are a general-
ization of the exponential distribution and define a more versatile class of distributions. They
were introduced by Neuts [74] as an alternative distribution when the Poisson/exponential
distributions are not appropriate models.
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The main purpose of using Poisson/exponential distributions in modeling is due to their
memoryless property, which leads to tractable results. PH -distributions generalize the ex-
ponential distribution and constitute a flexible class of probability models. They have
been widely used in practice in many areas, since they are analytically and algorithmi-
cally tractable models. For example, in reliability (see Montoro-Cazorla et al. [68] and Peng
et al. [82]), in queueing theory (see Chakravarthy and Neuts [18] and Kim et al. [50]), and
in healthcare (see Marshall et al. [66] and Gillespie et al. [33]). Let us recall the exponential
distribution definition and its main properties.

Definition 1.2. Let X be a non-negative random variable. X is an exponential random
variable with parameter λ > 0, if its cumulative distribution function is given as

FX(t) = P [X ≤ t] = 1− exp(−λt) = 1−
∞∑
n=0

(−λ)ntn
n! , t ≥ 0.

The parameter λ > 0 is the arrival rate of the Poisson process. The most important
property of the exponential distribution is that it is the only continuous distribution with
the memoryless property:

P [X > t+ s|X > t] = P [X > s], t, s ≥ 0,

which states that the chance of an event occurring does not depend on the elapsed time. It
is because of the memoryless property that Markov processes are used as models.

A PH -distribution can be described as a mixture of exponential distributions, each repre-
senting a phase (or state), with or without the same rate parameter. Consider a process with
m phases, after it starts in phase i (for i = 1, . . . ,m), the processes jumps to phase j (for
j = 1, . . . ,m), and so on until the transitions stop and the process ends, with an exponen-
tially distributed sojourn time in each phase. The PH random variable is described as the
total time spent jumping through the exponential phases until the process ends. Following
He [36], an algebraic definition of the PH -distribution is as follows.

Definition 1.3. Let X be a non-negative random variable. X is is said to be PH-distributed,
represented as (α, T ), if its cumulative distribution function is given as

FX(s) = P [X ≤ s] = 1−αeTse = 1−α
( ∞∑
n=0

sn

n!T
n

)
e, for s ≥ 0,

where

i) e is a column vector of ones.



CHAPTER 1. INTRODUCTION 8

ii) α = (α1, α2, . . . , αm) is a row vector of order m > 0 (phases), where αi ≥ 0 and αe = 1.

iii) T is an m×m matrix that satisfies

(a) (T )ii < 0,

(b) (T )ij ≥ 0,

(c) all row sums are non-positive, and

(d) T is invertible

Some basic distributional characteristics of a PH -random variable X with representation
(α, T ), are

1. The density function is,

fX(s) = αeTs(−Te), s ≥ 0.

2. The Laplace transform is

f ∗X(s) = α (sI − T )−1 (−Te), s ≥ 0, where I is the identity matrix.

3. The i-th moment is given by,

E
(
X i
)

= i!α (−T )−i e, i ≥ 1.

Some special cases of the continuous PH -distributions are,

1. The exponential distribution is a PH -distribution, where α = 1, T = −λ and m = 1.

2. The Erlang distribution. Let X1, . . . , Xn be independent with Xi ∼ exp(λ). Then
X1 + . . .+Xn is PH -distributed with α = (1, 0, . . . , 0), and

T =


−λ λ 0 . . . 0 0
0 −λ λ . . . 0 0
. . . . . . . . . . . . . . . . . .

0 0 0 0 0 −λ

 .
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3. The Hypoexponential distribution or generalized Erlang distribution. Let X1, . . . , Xm

be independent with Xi ∼ exp(λi). Then X1 + . . . + Xn is PH -distributed with
α = (1, 0, . . . , 0), and

T =


−λ1 λ1 0 . . . 0 0

0 −λ2 λ2 . . . 0 0
. . . . . . . . . . . . . . . . . .

0 0 0 0 0 −λm

 .

4. The hyper-exponential distribution. LetX1, . . . , Xm be independent withXi ∼ exp(λi),
and let fi denote the corresponding exponential density. Let

f =
m∑
i=1

αifi, where αi > 0,
m∑
i=1

αi = 1.

Then, the random variable that defines f is PH -distributed with α = (α1, α2, . . . , αm),
and

T =


−λ1 0 0 . . . 0 0

0 −λ2 0 . . . 0 0
. . . . . . . . . . . . . . . . . .

0 0 0 0 0 −λm

 .

Continuous PH -distributions are a versatile and large class of distributions, with several
important properties.

Theorem 1.1. The class of PH-distributions is dense (in the sense of weak convergence) in
the class off all positive-valued distributions.

Theorem 1.1 implies that for every positive-valued distribution F , there is a sequence of
PH -distributions which converges weakly to F . For a proof of Theorem 1.1, see Theorem
4.2 (page 84) of Asmussen [4]. Stochastic models that assume the exponential distribution
have explicit solutions, and can be extended through the PH -distribution without loosing
computational tractability. PH -distributions can also be defined with matrix representations
and Markov chains, allowing a probabilistic interpretation, which introduces the use Markov
models in the modeling framework, as we shall see later on. For further properties regarding
the PH -distribution, we refer the reader to the works of Asmussen [4], Breuer and Baum
[10], He [36] and Latouche and Ramaswami [54].
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As commented previously, the assumption of independent and identically distributed
exponential inter-event times is restrictive in practice. In this section the exponential dis-
tribution was generalized to PH -distributions. Next, the independence assumption of the
inter-event times is extended by means of the Markov process.

1.2.2 Markov chains and Markov processes

Consider a stochastic process {X(t), t ∈ T }, whose values or states are elements of a state
space S and T denotes time. Then {X(t), t ≥ 0} is a Markov process if it satisfies the
Markov property, which states: if for any 0 ≤ t0 ≤ . . . ≤ tk ≤ tk+1 and xl ∈ S,

P [X(tk+1) = xk+1|X(tk) = xk, . . . , X(t0) = x0] = P [X(tk+1) = xk+1|X(tk) = xk],

which means that given the present state of the process xk at time tk and all the previous
states, the future state xk+1 depends only on the present state xk and is independent from
the past. That is, if we know the state of the stochastic process at a specific time, then
we are able to predict future stochastic behavior. This makes the Markov processes helpful
tools to stochastically model many real life problems. The Markov processes are classified
according to the nature of the time parameter T and the nature of the state-space S. In
this dissertation we will deal with Markov processes with discrete state-space S; and with
a discrete and continuous parameter T which we define in the following subsections. We
are considering Markov processes whose state of {X(t)} does not depend on the time unit
t, then the process {X(t)} is said to have homogeneous transition probabilities.

1.2.2.1 Discrete time Markov Process

Consider a discrete-time stochastic process {Xn, n = 0, 1, 2, . . .}, where Xn = i denotes that
the process is in state i at a discrete time n. Then {Xn, n ≥ 0} is a discrete time-homogeneous
Markov Process, known as Markov chain, if the following holds

P [Xn+1 = j|Xn = i,Xk = xk, 0 ≤ k ≤ n− 1] = P [Xn+1 = j|Xn = i] = pij,

for all non-negative integer j, i, xk, 0 ≤ k ≤ n − 1 and all n ≥ 0. The previous property
states that knowing the state of Xn, the future states of Xn+1 do not depend on the previous
states Xk for 0 ≤ k ≤ n− 1, but only on the present state. The state transition probability
pij satisfies,
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1. pij ≥ 0,

2. ∑∞j=0 pij = 1, for i = 0, 1, . . ..

The matrix P defined from the transition probabilities {pij}, is called the transition
probability matrix, and is given by

P =



p00 p01 . . . p0j . . .

p10 p11 . . . p1j . . .
... ... . . .

... . . .

pi0 pi1 . . . pij . . .
... ... . . .

... . . .


.

The matrix P is a stochastic matrix, since for any row i, ∑∞j=0 pij = 1 holds. Let p(n)
ij

denote the probability that the process goes into state j from state i after n transitions, that
is

p
(n)
ij = P [Xm+n = j|Xm = i],

p
(0)
ij =

1 i = j

0 i 6= j
,

p
(1)
ij = pij.

Then, the Chapman-Kolmogorov equations state that for all n ≥ 1,

p
(n)
ij =

∞∑
k=0

p
(r)
ik p

(n−r)
kj , 0 ≤ r ≤ n,

which in matrix form is, let P (n) denote the matrix of n-step transition probabilities p(n)
ij .

Then,
P (n) = {p(n)

ij } = P (1)P (n−1) = PP (n−1) = . . . = P n.

A Markov chain is fully characterized by the transition probability matrix P and an
initial probability vector

αi = P [X0 = i], where
∞∑
i=0

αi = 1.
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Therefore, the probability that the process is in state j at the n-th transition, denoted by
α

(n)
j = P [Xn = j], for all n ≥ 0, is given by,

α
(n)
j =

∞∑
i=0

P [Xn = j,X0 = i]P [X0 = i] =
∞∑
i=0

p
(n)
ij αi, for j ≥ 0.

Let T be the time of first visit to state i. State i is called recurrent if P (T < ∞|X0 =
i) = 1; otherwise, if P (T = +∞|X0 = i) > 0,then i is called transient. A recurrent state
i is called null recurrent if E(T |X0 = 1) = ∞; otherwise, it is called positive recurrent.
A recurrent state i is said to be periodic with period d if d ≥ 2 is the largest integer for
which P (T = nd for some n ≥ 1|X0 = 1) = 1; otherwise, if there is no such d ≥ 2, i is
called aperiodic.A Markov chain is said to be irreducible if and only if all states can be
reached from each other. If a Markov chain is irreducible, it can be shown that all states
are positive recurrent, or that all states are transient. Positive recurrent, aperiodic states
are called ergodic. Finally, the next result presents the so-called stationary (or steady-state)
probability vector.

Theorem 1.2. For a finite, irreducible and aperiodic Markov chain, the limit

lim
n→∞

P n = eπ

exists, where P is the transition probability matrix of the Markov chain. π = (π1, π2, ...) is
the unique stationary probability vector that satisfies

π = πP and πe = 1,

where e is a vector of ones.

This section dealt with Markov processes that evolved through a discrete time. The next
section considers continuous-time Markov Processes, for which transitions can occur at any
time along a continuous interval.

1.2.2.2 Continuous-time Markov Process

A continuous-time stochastic process {X(t), t ≥ 0} is a continuous-time Markov Process
with discrete state-space, if the following holds

P [X(t+ s) = j|X(s) = i,X(u) = u, 0 ≤ u ≤ s] = P [X(t+ s) = j|X(s) = i] = pij(t)
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for all s, t ≥ 0 and non-negative integers i, j, x(u), 0 ≤ u ≤ s. In other words, knowing the
state of X(s), the future states of X(s+ t) does not depend on the previous states X(u) for
0 ≤ u ≤ s, and depends only on the present state. Let pij(t) be the probability that the
Markov process will be in state j, given that it departs from state i, after some additional
time t. The quantity pij(t) is called the transition probability function, and satisfies

1. 0 ≤ pij(t) ≤ 1,

2. ∑j pij(t) = 1,

3. pij(t + s) = ∑
k pik(t)pkj(s). This equation is the Chapman-Kolmogorov equation for

the continuous-time Markov Process.

The matrix P (t) = {pij(t)} is called the transition probability matrix at time t. Then,
the Chapman-Kolmogorov equation can be rewritten as

P (t+ s) = P (t)P (s).

When the process enters state i, it spends an amount of time in that state, called holding
time or sojourn time, denoted by Hi. Then, due to the Markovian property, the following
holds

P [Hi > s+ t|Hi > s] = P [Hi > t], s, t ≥ 0.

So Hi is memoryless, hence Hi s exponentially distributed with mean 1/λi. At the end of a
sojourn time in state i, the process makes a transition to another state j with probability
pij. Since the mean of Hi is 1/λi, λi represents the rate at which the process leaves state i,
and λipij denotes the rate when in state i, the process makes a transition into state j.

Define the following matrix Q = {qij}i,j∈S , where

qij =

−λi i = j

λipij i 6= j
.

Proposition 1.2. Let P (t) be the probability transition matrix of a continuous-time Markov
process. Then the infinitesimal generator Q exists and is defined as,

lim
t→0

P (t)− I
t

= Q,

and moreover, for t ≥ 0,
P (t)
dt

= QP (t) = P (t)Q. (1.1)
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Remark 1.1. The infinitesimal generator Q plays the same role as the transition matrix
P of the discrete-time Markov chains. They are often also referred to as the rate matrix or
intensity matrix of the Markov process.

Since the state-space is assumed to be finite, then from the previous result, (1.1), it
follows that

P (t) = eQt.

Every continuous-time Markov process has an associated embedded discrete-time Markov
chain. If we consider the continuous-time Markov process {X(t), t ≥ 0} only at the instants
upon which a state transition occurs, and we number these moments t0, t1, t2,. . .., then we
get a Markov chain {Xn, n ≥ 0}, whose value is the state of {X(t)} immediately after the
transition at time tn. The states of a Markov process can be classified by the classification
provided by the embedded Markov chain.

Definition 1.4. Let {X(t), t ≥ 0} be continuous-time Markov process, and let {Xn, n ≥ 0}
be its associated embedded discrete-time Markov chain.

1. {X(t)} is irreducible if and only if {Xn} is irreducible.

2. A state i is recurrent/transient for {X(t)} if and only if it is recurrent/transient for
{Xn}.

The following result establishes the limiting probability of an irreducible and positive
recurrent Markov process.

Theorem 1.3. Let {X(t), t ≥ 0} be an irreducible and positive recurrent Markov process,
then there exists

πj = lim
t→∞

P [X(t) = j], for all j

and it is independent of the initial state. π = (π1, π2, ...) is the unique stationary probability
vector that satisfies

πQ = 0 and πe = 1.

1.2.3 Markov Renewal Processes

A stochastic process that combines renewal processes and Markov chains is called a Markov
Renewal process. Consider a stochastic process in which the transition from state to state
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occurs according to a Markov chain, and the time between two successive state transitions is
a random variable, whose distribution is not always exponential and depends on the current
state as well as the successive transition state.

Define a stochastic process {Xn, n ≥ 0}, with state space S, and a random variable Sn
that denotes the time of the n-th event occurrence (S0 = 0) at which the process transitions
from one state to the other. Xn denotes the state of the process at time Sn.

Definition 1.5. The bivariate stochastic process {(Xn, Sn), n ≥ 0} is called a Markov re-
newal process with state space S if

P [Xn+1 = j, Sn+1 − Sn ≤ t|X0, X1, . . . , Xn = i;S0, S1, . . . , Sn]
= P [Xn+1 = j, Sn+1 − Sn ≤ t|Xn = i] ≡ Ki,j(t)

for n, t ≥ 0 and i, j ∈ S.

The values Ki,j(t) define the probability that the next arrival occurs within time t and
that the next state is j (given it starts in state i). The matrix K(t) = {Ki,j(t)} is known as
the semi-Markov kernel of the Markov renewal process {Xn, Sn}. Define

P ?
i,j = lim

t→∞
Ki,j(t) = P [Xn+1 = j|Xn = i] (1.2)

Proposition 1.3. {Xn, n ≥ 0} is a Markov chain with state space S and transition proba-
bility matrix P ? = {P ?

i,j} given by (1.2).

Let {Y (t)} with state space S, denote the state of the process at time t, defined by

Y (t) = Xn, Sn ≤ t < Sn+1

is called a semi-Markov process. The Markov chain {Xn} is said to be an embedded Markov
chain, a process that governs transitions between states. Note that

Ki,j(t) = P [Xn+1 = j, Sn+1 − Sn ≤ t|Xn = i]
= P [Sn+1 − Sn ≤ t|Xn = i,Xn+1 = j]P [Xn+1 = j|Xn = i]

Since P [Xn+1 = j|Xn = i] = P ?
i,j, define Gi,j(t) as the conditional probability that the

time spent in state i given that the next transition is to state j is less than or equal to t,
that is

Gi,j(t) = P [Sn+1 − Sn ≤ t|Xn = i,Xn+1 = j].
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If we assume that P ?
i,j = 0 for some (i, j) then Ki,j(t) = 0, for all t, and Gi,j(t) = 1.

Then, for P ?
i,j > 0

Gi,j(t) = Ki,j(t)
P ?
i,j

.

This provides an important result regarding the structure of {Xn, Tn}.

Proposition 1.4. For any integer n ≥ 1 and u1, u2, . . . , un n real numbers, we have:

P (T1 − T0 ≤ u1, . . . , Tn − Tn−1 ≤ un|X0, . . . , Xn) = GX0,X1(u1)GX1,X2(u2) . . . GXn−1,Xn(un),

that is, the n random variables T1 − T0, T2 − T1 . . . , Tn − Tn−1 are conditionally independent
given X0, . . . , Xn.

For a more extensive literature on Markov Renewal processes, we refer the reader to
Breuer and Baum [10], Ibe [81] and Nakagawa [73].

Now that the assumptions of independent and identically distributed exponential inter-
event times have been relaxed by generalizing the exponential distributions with phase-type
distributions and the independence among inter-event times via the Markov processes, a new
model with non-exponential and dependent inter-event times is introduced next.

1.2.3.1 The Markovian Arrival Process

The Markovian Arrival Process (MAP) is a matrix generalization of the Poisson point process
(defined in Section 1.2.1) which inherits the tractability of the Poisson model and, at the same
time, extends its capabilities. They were introduced by Neuts [75] as a versatile Markovian
point process, allowing for non-exponential and dependent event occurrence times. However,
the current matrix description of a MAP arises in Lucantoni [61], providing a convenient and
more tractable representation of the process. The MAPs are versatile point processes (the
stationary MAP is dense in the class of point processes, see Asmussen and Koole [2]) which
maintain the tractability of the Markovian structure and therefore they have been widely
considered in a number of real-life contexts where dependent arrivals are commonly observed.
For example, in reliability (Montoro-Cazorla et al. [67, 69, 71, 72]); in teletraffic (Kang [47],
Casale et al. [14], Tseng and Wang [103]); insurance (Landriault and Shi [53], Li and Ren [60]
and weather forecasting (Ramı́rez-Cobo et al. [89]). One of the most important applications
of the MAP is in queuing theory, because it provides a way to model more complex arrival
systems.
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Consider a Poisson process with arrival rate λ. If N(t) is the number of events in (0, t],
then {N(t)}t≥0 is a Markov process on the state space {i : i ≥ 0} with infinitesimal generator
of the form

QPOISSON =



d0 d1 0 0 0 0 · · ·
0 d0 d1 0 0 0 · · ·
0 0 d0 d1 0 0 · · ·
0 0 0 d0 d1 0 · · ·
· · · · · · · · · · · · · · · · · · ·


where, d0 = −λ and d1 = λ.

The m-state MAP, denoted MAPm, is constructed by generalizing the above Poisson
process to allow for non-exponential times between event occurrences, but still preserving
an underlying Markovian structure. To accomplish this, consider a 2-dimensional Markov
process {J(t), N(t)} on the state space {(i, j) : i ≥ 0; 1 ≤ j ≤ m}, with infinitesimal
generator QMAP having the structure

QMAP =



D0 D1 0 0 0 0 · · ·
0 D0 D1 0 0 0 · · ·
0 0 D0 D1 0 0 · · ·
0 0 0 D0 D1 0 · · ·
· · · · · · · · · · · · · · · · · · ·


,

where D1 is a non-negative m × m matrix, D0 has negative diagonal elements and non-
negative off-diagonal elements. The process J(t) represents an irreducible and continuous
Markov process with state space S = {1, . . . ,m} and generator matrix D. The process
{N(t), t ≥ 0} counts the number of events in the interval (0, t]. The MAPm behaves as
follows: the initial state i0 ∈ S is generated according to an initial probability vector
α = (α1, . . . , αm) and at the end of an exponentially distributed sojourn time in state i,
with mean 1/λi, two types of transitions can occur. On one hand, with probability pij0,
there will be a transition from one state to another (necessarily different), and no event
occur. On the other hand, with probability pij1, there will be a transition from one state to
another (possibly the same), and an event occurs. The transition probabilities satisfy

m∑
j=1,j 6=i

pij0 +
m∑
j=1

pij1 = 1, for all i ∈ S.

When m = 2, we have a two-state MAP, denoted by MAP2. Figure 1.8 illustrates the
different transitions that can occur in this process by means of a transition diagram.
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Figure 1.8: Transition diagram for the MAP2. 0 and 1 illustrate moves without and with
arrivals, respectively.

A MAPm can thus be expressed in terms of {α,λ, P0, P1} where λ = (λ1, . . . , λm) and
P0, P1 are m×m transition probability matrices with elements pij0 (i 6= j) and pij1, respec-
tively. Instead of transition probability matrices, any MAPm can be also characterized by
M = {α, D0, D1}, with elements given by

(D0)ii = −λi, i ∈ S,
(D0)ij = λipij0, i, j ∈ S, i 6= j, (1.3)
(D1)ij = λipij1, i, j ∈ S,

where D0 and D1 are m×m rate matrices governing the transitions without and with event
occurrences, respectively. The definition of the rate matrices implies that D = D0 +D1 is the
infinitesimal generator of the underlying Markov process J(t). The matrix D0 is assumed
to be non-singular and the transition times are finite with probability 1. This implies that
the point process does not terminate. The role of the states in this model is to provide
inter-event times distributed as a random sum of non-identical exponentials. The stationary
probability vector of the Markov process with generator D is π= (π1, . . . , πm), which satisfies

πD = 0, πe = 1.

Thus, πi represents the stationary probability that the process is in state i, for i ∈ S. The
constant λ∗ is called the fundamental arrival rate and represents the expected number of
event occurrences per unit of time of the MAPm. It verifies

λ∗ = πD1e
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The PH -renewal processes and some non-renewal processes, as the Markov modulated
Poisson process (MMPP) are well known special cases of the MAP. They are defined as
follows:

1. A renewal process in which the inter-event times have a PH -distribution is called a PH -
renewal process. The PH -renewal processes contains many familiar arrival processes
including the Erlang and the hyperexponential arrival process. A PH -renewal process
with representation (α, T ) is defined in an analogous way to the MAPm, except that
at an event occurrence, the new state of the Markov process is chosen according to the
probability vector α, which is independent of the state from which an event occurred.
In other words, a phase type renewal process is a MAPm with D0 = T and D1 = −Teα.
Therefore, in this case, the matrix D describes the Markov chain, obtained by resetting
the original chain instantaneously using the same initial probabilities, whenever an
event into the state occurs.

2. The Markov modulated Poisson process (MMPP) is a doubly stochastic Poisson process
whose arrival rate is determined by a continuous time Markov process with a finite
number of states, {J(t), t ≥ 0}. The arrival rate therefore takes on only m values
λ1, . . . , λm and is equal to λj whenever J(t) = j. If the Markov process has infinitesimal
generatorR and if Λ =diag(λ1, . . . , λm) then we have (in the MAP notation)D0 = R−Λ
and D1 = Λ. The Markov modulated Poisson process turns out to be a simplified MAP
where arrivals only occur in transitions to the same state.

Several important properties of the MAPm are reviewed in this Section. The first property
concerns Markov renewal theory (see Chakravarthy [16]). Let Xn be the state of the under-
lying Markov process J(t) at the time of the n-th event occurrence, and Tn the time between
the (n− 1)-th and the n-th occurrences, then {Xn, Tn}∞n=1 is a Markov renewal process with
semi-Markovian kernel given by∫ t

0
eD0tD1dt = (I − eD0t)(−D0)−1D1.

In particular, {Xn}∞n=1 is a Markov chain whose transition probability matrix P ? is a
irreducible stochastic matrix given by

P ? = (−D0)−1D1. (1.4)

The stationary probability vector φ of the Markov chain {Xn}∞n=1 is defined as

lim
n→∞

α(P ?)n = φ,
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which can be calculated solving the equation φP ? = φ.

If α = φ, where φ = (πD1e)−1πD1 (see Chakravarthy [16]), then the stationary version
of the MAPm is obtained. In what follows, we define the MAPm descriptors for the non-
stationary version. Let the random variable Ti denote the time between the (i − 1)-th and
i-th event occurrences in a non-stationary MAPm. The sequence of random variables {Ti}i≥1

are not identically distributed. They follow a PH -distribution with representation {αi, D0}
(see Chakravarthy [16] and Latouche and Ramaswami [54]), where

αi = α (P ?)i−1 ,

with cumulative distribution given by

FTi
(t) = 1−αieD0te., for t ≥ 0. (1.5)

The moments of Ti can be computed as

µi,m = E (Tmi ) = m!αi (−D0)−m e. (1.6)

In addition, the auto-correlation function in the stationary version is given by

ρ(T1, Tn) = µπ [(−D0)−1D1]n−1 (−D0)−1e− µ2

σ2 ,

where µ and σ2 are the mean and variance of the process in its stationary version. Finally,
the Laplace-Stieltjes transform of the n first consecutive inter-event times of a non-stationary
MAPm is given by

f ∗T1,...,Tn
(s1, . . . , sn) = α(s1I −D0)−1D1 . . . (snI −D0)−1D1e. (1.7)

The stationary counterparts of (1.5), (1.6) and (1.7), are easily derived by substituting αi
or α, by φ, as the probability vector of the underlying Markov process J(t). In the stationary
version, the random variables {Ti}i≥1 are identically distributed and T ∼ PH (φ, D0).

Concerning the counting process {N(t), t ≥ 0}, define P (n, t) = {Pij(n, t)}n∈N,t≥0, as
the m×m matrices whose (i, j)-th element is given by

Pij(n, t) = P (N(t) = n, J(t) = j | N(0) = 0, J(0) = i) , (1.8)

for 1 ≤ i, j ≤ 2. That is, the matrix P (n, t) represents the conditional probability of n event
occurrences in the interval (0, t] and the underlying Markov process is in state j at time t,
given that at time 0 there have been no events and the state is i. Then,

P (N(t) = n | N(0) = 0) = αP (n, t)e, (1.9)
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and the expected number of event occurrences at time t, E (N(t) | N(0) = 0), is computed
from the first factorial moment of the counting process,

M1(t) =
∞∑
n=0

nP (n, t), (1.10)

where more details can be found in Chakravarthy [16] and Neuts and Li [77].

1.2.3.2 The Batch Markovian Arrival Process

In many contexts, it is not uncommon that the events occur in groups, that is, several
simultaneous events may occur at the same time. In this setting, Lucantoni [62] proposed
the Batch Markovian Arrival Process (BMAP), which is a generalization of the MAP that
allows for correlated batch event occurrences. As with the MAP, the stationary BMAPs
are capable of approximating any stationary batch point process (see Asmussen and Koole
[2]), which suggests the versatility and range of applications of such processes. For a recent
account of the literature on BMAPs applications, we refer the reader to Bookbinder et al.
[8]; Falin [28]; Gómez-Corral and Economou [35]; Heckmüller and Wolfinger [40]; Kim et al.
[48]; Kim and Kim [49]; Kim et al. [50]; Klemm et al. [51]; Niyato et al. [78].

To motivate the BMAP, consider a Poisson process with batch (group) arrivals. Let the
rate of the Poisson process be λ and the probability that the batch size equals k be pk, k ≥ 1.
If N(t) is the number of arrivals in (0, t], then {N(t)}t≥0 is then a Markov process on the
state space {i : i ≥ 0} with infinitesimal generator of the form

QB−POISSON =



d0 d1 d2 d3 · · · · · ·
0 d0 d1 d2 · · · · · ·
0 0 d0 d1 · · · · · ·
0 0 0 d0 · · · · · ·
· · · · · · · · · · · · · · · ·


where, d0 = −λ and dk = λpk for k ≥ 1. After an exponential sojourn (with mean λ−1) in
state i, the process jumps to state i+k with probability pk where the transition corresponds
to an arrival and k corresponds to the size of the batch.

The m-state BMAP with maximum batch arrival size k, defined as BMAPm(k), is con-
structed by generalizing the above batch Poisson process to allow for non-exponential times
between the arrivals of batches, but still preserving an underlying Markovian structure. To
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accomplish this, it is considered a two-dimensional Markov process {N(t), J(t)} on the state
space {(i, j) : i ≥ 0, 1 ≤ j ≤ m} with an infinitesimal generator QBMAP having the structure

QBMAP =



D0 D1 D2 D3 · · ·
0 D0 D1 D2 · · ·
0 0 D0 D1 · · ·
0 0 0 D0 · · ·
· · · · · · · · · · · · ·


,

where Dk, k ≥ 0 are m ×m matrices, D0 has negative diagonal elements and non-negative
off-diagonal elements, Dk, k ≥ 1, are non-negative, and Dg, defined by

Dg =
∞∑
k=0

Dk

is an irreducible infinitesimal generator. Analogous to the MAPm, the BMAPm(k) behaves
as follows: at the end of an exponentially distributed sojourn time in state i, with mean 1/λi,
two possible state transitions can occur. First, with probability pij0, j ∈ S, no arrival occurs
and the BMAPm(k) enters a different state j 6= i. On the other hand, with probability pijl,
1 ≤ l ≤ k, j ∈ S, there will be a transition to state j with a batch arrival of size l. The
transition probabilities satisfy

m∑
j=1,j 6=i

pij0 +
k∑
l=1

m∑
j=1

pijl = 1, for all i ∈ S.

Figure 1.9 illustrates by means of a transition diagram the different transitions that
can occur in the BMAP2(2). The values 0, 1 and 2 correspond to transitions with no
arrival, a single arrival or two arrivals, respectively. As the MAPm, the BMAPm(k) can be
expressed in terms of {λ, P0, P1, . . . , Pk} where λ = (λ1, . . . , λm) and P0, . . . , Pk are m×m
transition probability matrices with elements pij0 (i 6= j), pij1,...,pijk, respectively. Instead
of transition probability matrices, any BMAPm(k) can be also characterized by the rate
matrices B = {D0, D1, . . . , Dk} with elements given by

(D0)ii = −λi, i ∈ S,
(D0)ij = λipij0, i, j ∈ S, i 6= j, (1.11)
(Dl)ij = λipijl, i, j ∈ S, 1 ≤ l ≤ k.

The infinitesimal generator of the underlying Markov process J(t) is given by,

Q =
k∑
l=0

Dl, (1.12)
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Figure 1.9: Transition diagram for the BMAP2(2). 0 denotes moves without arrivals and 1
and 2 denotes moves with respective batch arrivals.

with stationary probability vector πBMAP = (πBMAP (1), . . . , πBMAP (m)), such that

πBMAPQ = 0, πBMAPe = 1.

The fundamental arrival rate for the BMAP is

λ?BMAP = πBMAP

k∑
l=1

lDle.

The BMAP includes well-known families of processes such as the Batch PH -renewal
processes and the Batch Markov Modulated Poisson process. Recall the definitions of PH -
renewal processes and the Markov Modulated Poisson process given in the previous subsec-
tion, then their batch counterparts may be defined as follows:

1. Batch PH -renewal processes. Let pk denote the probability that the batch size is k,
k ≥ 1. Then the batch PH -renewal processes is a BMAPm(k) with D0 = T and
Dk = pkT

0α, k ≥ 1, where T 0 = −Te.

2. Batch Markov Modulated Poisson process. Let pk denote the probability that the batch
size is k, k ≥ 1. Then the batch Markov Modulated Poisson process is a BMAPm(k)
with D0 = R− Λ, and Dk = pkΛ for k ≥ 1.

The properties of the BMAPm(k) are analogous to the ones given for the MAPm. Let

D =
k∑
l=1

Dl,
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then, the transition probability matrix P ? is a irreducible stochastic matrix given by

P ? = (−D0)−1D, (1.13)

whose stationary probability vector φBMAP is computed as,

φBMAP = (πBMAPDe)−1πBMAPD, (1.14)

(see Ramı́rez-Cobo et al. [87] for a proof).

Let the random variable Ti, i ≥ 1, denote the time between the (i − 1)-th and i-th
event occurrences in a non-stationary BMAPm(k), m, k ≥ 2. As in the MAPm, the sequence
of random variables {Ti}i≥1 are not identically distributed, but follow a PH -distribution
with representation {αi, D0}. Then the cumulative distribution and the moments of Ti are
computed as in (1.5) and (1.6), respectively. In addition, the auto-correlation function of
the inter-event times in the stationary version of the process is given by

ρ(T1, Tn) = µπBMAP [(−D0)−1D]n−1 (−D0)−1e− µ2

σ2 ,

where µ and σ2 are the mean and variance of the inter-event times. The Laplace transform
of the n first consecutive inter-event times of a non-stationary BMAPm(k), m, k ≥ 2, is given
by

f ∗T1,...,Tn
(s1, . . . , sn) = α(s1I −D0)−1D . . . (snI −D0)−1De.

Finally, the counting process {N(t), t ≥ 0} is defined analogously as in the case of the
MAP (see page 20).

For a thorough definition of the generalm−state BMAP we refer the reader to Chakravarthy
[15], Cordeiro and Kharoufeh [20] and Lucantoni [62, 63]. It is important to point out the
usefulness of the MAPs and BMAPs in queueing theory to model either the arrival process
or the service process. The literature on queueing systems using the MAP is quite exten-
sive. A detailed theoretical analysis of the single-server queue where the arrival process is
governed by a BMAP was first considered by Ramaswami [86]. Basic results for the steady-
state analysis of the MAP/G/1 queue are provided in Lucantoni [61]. Several variants of the
MAP/G/1 queue have been considered, for example, Gómez-Corral [34] and Li and Zhao
[58]. The BMAP/G/1 has been studied by Lucantoni [62, 63], where new results were ob-
tained and numerical algorithms leading to the computation of steady-state solutions, were
derived. Several variants of the BMAP/G/1 queue have been considered, for example, see
Ferng and Chang [29] and Li et al. [59].
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1.3 Statistical estimation of Point processes

In the previous sections realistic probabilistic models for inter-event time data were described.
In this section a review of the statistical estimation for such models is given.

As we have pointed out, point processes have the ability to describe a wide range of
situations, therefore they have gained widespread use in stochastic modelling. Therefore, it
is of interest to consider statistical inference for such models, a problem that has been less
addressed in the literature than more theoretically-based questions. Let us recall from Sec-
tion 1.2 that a point process can be specified by the event times, {Sn, n ≥ 1}, the inter-event
times, {Tn, n ≥ 1} or by the counting process {N(t), t ≥ 0}, hence, the observations of any
of such random processes will constitute the sample data for the statistical inference. The
formalization of the problem is stated next. Consider a sample of length n, X = (X1, . . . , Xn)
from a random variable X following a given probability model defined in terms of the pa-
rameters θ = (θ1, . . . , θk). The aim is to find point estimates of θ, θ̂, such that the model X
under θ̂ better fits the data. The most common techniques used in estimating general point
processes are the following,

1. Method of Moments. In this case, the estimates are the solution to the following system
of equations given by matching the theoretical moments with the sample moments. Let
us recall the j-th theoretical moment of a random variable is given by,

µj ≡ µj(θ) = E
(
Xj
)
, (1.15)

and the j-th sample moment is,

µ̂j = 1
n

n∑
i=1

Xj
i , (1.16)

then the parameter estimates, θ̂ is defined to be value of θ that solve the system of k
equations given by,

µi(θ̂) = µ̂i, 1 ≤ i ≤ k.

This method is also useful to obtain starting points for approaches that require iterative
numerical routines [105].

2. Least-squares. It is based on minimizing the squared discrepancies between observed
data and their expected values. Formally, consider the theoretical and sample moments
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defined in (1.15) and (1.16), then the objective is to find the parameter estimates, θ̂,
solving the following optimization problem

min
θ̂

∑
i∈M

(
βi
µi
µ̂i
− βi

)2
 ,

where M is a set of moments to be approximated and βi are optional weights.

3. Maximum likelihood. Suppose that X with density function f is observed, and define
the likelihood function by,

L(θ|X ) = f(X1, X2, . . . , Xn|θ),

and the log-likelihood function by log(L(θ|X )) = log(f(X1, X2, . . . , Xn|θ)). Then the
maximum likelihood approach is to find a set of parameter estimates, θ̂, that maximizes
the likelihood f(X|θ), that is, solve the following optimization problem,

θ̂ = arg max
θ
L(θ|X )

4. Expectation-Maximization (EM) approach. The EM algorithm (see Dempster [23]) is
an iterative method useful in problems with incomplete data. Each iteration of the
algorithm works in two steps, an expectation (E) and a maximization (M) step.

Suppose we have incomplete observed data X , and the whole data is given by the set
(X , T ), where T is a set of unobserved latent data. The algorithm is as follows: first
pick a starting value θ0. Now, for j ≥ 1 repeat steps 1 and 2 below until convergence.

(1) (E-step) Calculate
J(θ|θj) = E

(
log f(X , T |θ)|X ,θj

)
(2) (M-step) Find the parameter that maximizes

θj+1 = arg max
θ

J(θ|θj)

The E-step consists in finding the distribution of the unobserved data, given the
observed data set and the current value of the parameters θj, so that the M-step
reestimates the parameters with a maximum-likelihood approach.

We next review the statistical estimation for the point processes this dissertation deals
with, the (B)MAP. First, we have to point out that there are several issues to take into
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account when studying the estimation of these processes. These processes are complex
models that include transitions to states between event occurrences. However, in practice,
the only observable information are the inter-event times and the batch sizes, the underlying
Markov chain transitions are not available. Processes where the underlying Markov process
is not observable, but the sequence of observations is available, are called hidden Markov
models. Therefore, in the case of the (B)MAP, the observed data can be viewed as being
generated from a hidden Markov process, see [26]. The lack of identifiability is very common
when dealing with hidden Markov processes, and implies that different parametrizations
represent the same process; that is, they have the same likelihood function for any sequence
of inter-event times. Therefore, in the context of statistical inference, it is important to
obtain a unique parametrization of the model. Identifiability conditions for general hidden
Markov processes are studied in Backwell and Koopmans [6], Ito et al. [46], Leroux [56] and
Rydén [93]. In the literature, there are many works dedicated to the identifiability issue for
some cases of the MAP. It is well known that phase-type representations are not unique
(see O´ Cinneide [79]), however, since any two-state PH -distribution can be transformed
into an acyclic form PH -distribution (see [21]), and the canonical form is provided for the
acyclic phase type distributions (see [22]) of any order, it is shown that the two-state PH -
distribution has a canonical form. Also the three-state case canonical form has been provided
by Horváth and Telek [44], the case for m ≥ 4 is still an open research problem. It was shown
by Rydén [94] that the Markov modulated Poisson process (MMPP) can be identified up to
permutations of states. Ramı́rez-Cobo et al. [87] provided the conditions for which stationary
MAP2s are equivalent, and Bodrog et al. [7] provided a canonical and unique representation
of the stationary MAP2. An extensive description of identifiability will be given in Chapter
2 and Chapter 4.

A moment matching approach for estimating the MAP has been studied in Horváth and
Telek [43], Telek and Horváth [102], Eum et al. [27], Bodrog et al. [7], Casale et al [14], but
in these works the identifiability of the model was not considered (except in [102, 7]). The
EM algorithm has been proposed for inference of the MAP (see Asmussen et al [3], Rydén
[95], Klemm et al. [51] and Buchholz [11]) and for the BMAP (Breuer [9] and Okamura
et al. [80]), since it is a general method for computing maximum likelihood estimations
in statistical models in which there exist random variables which are not observable. A
maximum likelihood approach was tackled by Carrizosa and Ramı́rez [12] for the MAP. A
number of Bayesian approaches for estimating the MMPP can be found in the literature:
Scott [100] developed a Bayesian inference for the two-state MMPP and Fearnhead and
Sherlock [30] derived a Gibbs sampler that samples from the exact distribution of the hidden
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Markov chain in a MMPP. Bayesian inference for the MAP2 has been studied by Ramı́rez-
Cobo et al. [90], where different algorithms are proposed (Metropoling-Hastings within Gibbs
sampling) in which the unobserved data are partially reconstructed or not reconstructed at
all, in order to approximate the inter-event time distributions and estimate some identifiable
quantities.

1.4 Structure of this dissertation

This dissertation is composed of 6 Chapters. Chapter 1 presented the background that
introduces the most important concepts and properties that are needed to carry out our
analyzes. After providing a brief review of point processes and renewal processes, the gen-
eralization of the classical Poisson process assumptions to the phase-type distributions and
Markov processes was given. It was followed by a description of the MAP and BMAP and
its main properties. The chapter concludes with a review of the estimation procedures of
point processes and (B)MAPs that have been proposed in the literature.

The theoretical contributions of this thesis are developed in Chapters 2, 3, 4 and 5. The
results in Chapter 2 concern the identifiability of the non-stationary two-state MAP. It
is proven that the usual parametrization of the process is not unique, which means that
the process is nonidentifiable given the inter-event times. We propose a method to con-
struct non-stationary two-state MAPs from any fixed one. Finally, a canonical and unique
representation of the non-stationary two-state MAP is provided.

In Chapter 3, motivated by the unique canonical representation found in the previous
chapter, Rodŕıguez et al. [98] studied an estimation approach for the non-stationary two
state MAP. The data to be considered are the failures of N electrical components that are
assumed to be identically distributed, but for which it is not reasonable to assume that the
inter-failure times related to each component are independent nor identically distributed.
A moment matching estimation approach is proposed to fit the data via a non-stationary
two-state MAP. We also provide a simulated and a real data set provided by the Spanish
electrical group Iberdrola to illustrate our approach.

With the aim to extend the properties of MAPs to the BMAP, which introduces correlated
arrivals in batches, we consider the identifiability issue of the BMAP in Chapter 4 (see
Rodŕıguez et al. [97]). This chapter investigates the identifiability issue of the stationary
two-state BMAP noted as BMAP2(k), where k is the maximum batch arrival size, under



CHAPTER 1. INTRODUCTION 29

the assumptions that both the inter-event times and batches sizes are observed. We prove
that for k ≥ 2 the process cannot be identified. The proof is based on the construction of
an equivalent BMAP2(k) to a given one, and on the decomposition of a BMAP2(k) into k
BMAP2(2)s. We illustrate our findings with numerical examples.

The auto-correlation functions of the inter-event times and batch sizes of the BMAP are
studied in Chapter 5. This chapter examines the characterization of both auto-correlation
functions for the stationary BMAP2(k), for k ≥ 2, patterns of behavior are identified for
both cases for the BMAP2(2). It is proven that both auto-correlation functions decrease
geometrically as the time lag increases. Also, the characterization of the auto-correlation
functions has been extended for the general BMAPm(k) case, m ≥ 3.

Finally, in Chapter 6 we summarize the most significant contributions of this dissertation,
and also provide a short description of possible research lines.



Chapter 2

A canonical form for the
non-stationary MAP2

The Markovian Arrival Process (MAP) was introduced in Section 1.2.3.1 as a generalization
of the Poisson point process by allowing non-exponential and dependent inter-event times.
This makes the MAP a versatile and flexible option to model non-Poisson real data. The
MAP has been considered in several applied problems, for instance, in reliability, queueing
or teletraffic, we refer the reader to the works of Montoro-Cazorla et al. [67, 69], Okamura et
al. [80], Kang et al. [47], Casale et al. [14], Wu et al [106] and Ramı́rez-Cobo et al. [88, 89].

Real-life data observations usually correspond to inter-event times and both state transi-
tions and transitions where none event occurs remain unobserved. In this sense, data can be
viewed as being generated from a hidden Markov process, which is commonly characterized
by a lack of identifiability. The identifiability problem was introduced in Section 1.3, and it
occurs when the parameters of a model are not uniquely determined, in the sense that the
likelihood function is the same under at least two model representations. The identifiability
problem for general hidden Markov processes are studied in Blackwell and Koopmans [6], Ito
et al. [46], Leroux [56] and Rydén [93]. A few works have studied the identifiability issue for
some cases of MAPs. For example, the phase-type distributions lack a unique representa-
tion, see O´ Cinneide [79]. Also, He and Zhang [37, 38, 39] study the identifiability problem
of Coxian distribution, which is a phase-type related distribution. In contrast, Rydén [94]
showed that the Markov modulated Poisson process (MMPP) can be identified up to permu-
tations of states. To the best of our knowledge, identifiability for the non-stationary MAP
has not been considered before. However, Telek and Horváth [102] investigated a minimal
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representation for the stationary m-state MAP, and Bodrog et al. [7] provided a canonical
and unique representation for the stationary two-state MAP. Ramı́rez-Cobo et al. [87] pro-
vided a procedure to build infinite equivalent stationary two-state MAP for a given fixed one,
which states the conditions that two representations need to have in order to be equivalent.
Also Ramı́rez-Cobo and Lillo [91] partially solved the problem for the stationary three-state
MAP. Unlike the stationary version of the process, in the non-stationary MAP the inter-
event times are not identically distributed. This fact makes the non-stationary MAP to have
more applicability in terms of modeling than its stationary counterpart. In order to develop
an estimation method to fit the model to real data sets, a detailed examination of certain
properties of the process is needed. In particular, the identifiability of the process is crucial,
which, as previously commented, determines the possible multimodality of the likelihood
function.

In this chapter, we aim to contribute a detailed study of the identifiability problem for
the non-stationary two-state MAP (MAP2). In Section 2.1, we prove that the non-stationary
MAP2 is a non-identifiable process, we establish a methodology to construct equivalent non-
stationary MAP2s. In Section 2.2, following Bodrog et al. [7], we present a canonical, unique
representation of the process. In Section 2.3 we provide a moments based characterization
of the process. Finally, in Section 2.4 we give the conclusions.

2.1 Equivalent non-stationary MAP2

From now on, a non-stationary MAP2 will be represented by M = {α, D0, D1} where

α = (α, 1− α), D0 =
x y

z u

 , D1 =
w −x− y − w
v −z − u− v

 , (2.1)

and without loss of generality it is assumed that u ≤ x. According to (1.3)

x = −λ1, y = λ1p120, w = λ1p111,

z = λ2p210, u = −λ2, v = λ2p211.

Let π = (π, 1 − π) be the stationary probability of the underlying Markov process J(t)
of the non-stationary MAP2. If α = φ, where φ is the stationary probability vector of
the Markov chain related to transitions with event occurrences (φ = (πD1e)−1πD1, see
Chakravarthy [15]), then we have the stationary version of the MAP2.
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In practice, it is usual that only the inter-event times are observed when inference of the
process is considered. Therefore, our definition of identifiability is stated in the way specified
by Rydén [94] and Ramı́rez-Cobo et al. [87]; that is, in terms of the inter-event times
distribution.

Definition 2.1. The non-stationary MAP2 is a non-identifiable process if for any fixed
MAP2 with representation M, then there exists another MAP2 with different representation
M̃ such that

(T1, . . . , Tn) d=
(
T̃1, . . . , T̃n

)
, for all n ≥ 1, (2.2)

where Ti represents the time between the (i− 1)-th and i-th event occurrences in the MAP2

defined by M (similarly define T̃i).

Note that the equality in distribution (2.2) is equivalent to the equality of the Laplace
transforms defined in (1.7),

f ∗T ;α,D0,D1 (s1, . . . , sn) = f ∗T̃ ;α̃,D̃0,D̃1
(s1, . . . , sn) , for all n ≥ 1. (2.3)

We state that two MAP2s are equivalent if they posses the same Laplace transforms, that
is if (2.3) is satisfied.

The non-identifiability of the non-stationary MAPm is to be expected, since an important
subset of the non-stationary process has been proven to be non-identifiable, which is the
stationary MAPm, see Telek and Horváth [102]. However, our main interest resides in finding
the canonical form of the non-stationary MAP2 and the inference of its parameters. In order
to achieve this goal, we will examine in detail the identifiability issue of the process.

In the next result, we prove the non-identifiability of the non-stationary MAPm by means
of a similarity transform, which will be a useful tool in the following sections of this chapter.

Theorem 2.1. Consider two non-stationary MAPms, M and M̃. Then (2.3) holds if and
only if there exists an invertible matrix B whose row sums equal to one such that α̃ = αB−1,
D̃0 = BD0B

−1 and D̃1 = BD1B
−1.

Proof. Consider an arbitrary invertible matrix B such that Be = e. Then through a simi-
larity transform with B, a MAPm defined by the parameters {α̃, D̃0, D̃1}, where α̃ = αB−1,
D̃0 = BD0B

−1 and D̃1 = BD1B
−1, is equivalent to that defined by {α, D0, D1}. That is,

f ∗T ;α,D0,D1 (s1, . . . , sn) = αB−1B(s1I −D0)−1B−1BD1B
−1

× B(s2I −D0)−1B−1BD1B
−1

× . . . B(snI −D0)−1B−1BD1B
−1Be.
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Regrouping the factors in the above expression,

f ∗T ;α,D0,D1 (s1, . . . , sn) = αB−1(s1I −BD0B
−1)−1BD1B

−1

× (s2I −BD0B
−1)−1BD1B

−1

× . . . (snI −BD0B
−1)−1BD1B

−1Be

= f ∗T̃ ;α̃,D̃0,D̃1
(s1, . . . , sn) .

Assume that (2.3) holds. We know that the non-stationary MAP2 converges to its stationary
version. Telek and Horváth [102] (Theorem 3, page 1157) proved for the stationary version
that if (2.3) holds, then there exists an invertible matrix B such that D̃0 = BD0B

−1,
D̃1 = BD1B

−1 and Be = e, then this affirmation will also hold for the rate matrices in
the non-stationary version. It remains to prove that α̃ = αB−1. If D̃0 = BD0B

−1 and
D̃1 = BD1B

−1, then P̃ ? =
(
−D̃0

)−1
D̃1 = BP ?B−1.

Since (2.3) is satisfied, then the equality of the moments of the inter-event time occurrences
holds, that is, E (Tmi ) = E

(
T̃mi

)
, or equivalently, from (1.6)

αi (−D0)−m e = α̃i
(
−D̃0

)−m
e, for all i,m ≥ 1,

where αi = α (P ?)i−1 and α̃i = α̃
(
P̃ ?
)i−1

. Substituting D̃0 and D̃1 into the previous
expression,

α̃
(
P̃ ?
)i−1 (

−D̃0
)−m

e = α̃
(
BP ?B−1

)i−1 (
B(−D0)B−1

)−m
e

= α̃B (P ?)i−1B−1B (−D0)−mB−1e

= α̃B (P ?)i−1 (−D0)−m e,

therefore
α (P ?)i−1 (−D0)−m e = α̃B (P ?)i−1 (−D0)−m e, for all i,m ≥ 1. (2.4)

Assume now that the spectral decomposition of (−D0)−1 and P ? are given by

(−D0)−1 = V TV −1 and P ? = USU−1.

Then, substituting the spectral decompositions into (2.4) leads to

α (P ?)i−1 (−D0)−m e = α
(
USU−1

)i−1 (
V TV −1

)m
e

= αUSi−1U−1V TmV −1e

= α̃BUSi−1U−1V TmV −1e, for all i,m ≥ 1.
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Due to the fact that α, α̃, B and e are nonzero and D0 is an invertible matrix, then (2.4)
implies α = α̃B, and therefore α̃ = αB−1 .

Now that the non-identifiability of the MAPm has been proven, we proceed to study in
detail the consequences of such lack of identifiability in the case of m = 2. The most natural
approach to construct equivalent non-stationary MAP2s for any given one is to choose an
unknown invertible matrix B that satisfies Be = e and carry out a similarity transform.
But this technique may not generate a real non-stationary MAP2, in the sense that the
parameters of the process are not well-defined.

Example 2.1. Consider the non-stationary MAP2 given by

α = (0.0220, 0.9780), D0 =
−5.5123 5.5019

2.8913 −3.6643

 , D1 =
0.0009 0.0095

0.1105 0.6625

 ,
and the arbitrary invertible, stochastic matrix

B =
0.3 0.7

0.4 0.6

 .
From α̃ = αB−1, D̃0 = BD0B

−1 and D̃1 = BD1B
−1,

α̃ = (3.7805,−2.7805), D̃0 =
−5.8791 5.3349

2.8296 −3.2975

 , D̃1 =
1.3029 −0.1152

4.4041 −0.3836

 .
The equality (2.3) is satisfied. However, α̃ /∈ [0, 1], D̃1(1, 2) = −0.1152 � 0 and D̃1(2, 2) =
−0.3836 � 0, therefore the process defined by {α̃, D̃0, D̃1} is not a real non-stationary MAP2.

Example 2.2. Consider the non-stationary MAP2 given by

α = (0.6865, 0.3135), D0 =
−4.6962 4.2725

0.2059 −0.3985

 , D1 =
0.2746 0.1490

0.1091 0.0835

 ,
and the arbitrary invertible, stochastic matrix

B =
0.7 0.3

0.2 0.8

 .
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From α̃ = αB−1, D̃0 = BD0B
−1 and D̃1 = BD1B

−1,

α̃ = (0.9730, 0.0270), D̃0 =
−6.3094 5.9550
−1.4536 1.2148

 , D̃1 =
0.3082 0.0461

0.1888 0.0500

 .
The equality (2.3) is satisfied. However, D̃0(2, 1) = −1.4536 � 0 and D̃0(2, 2) = 0.0500 � 0,
therefore the process defined by {α̃, D̃0, D̃1} is not a real non-stationary MAP2.

Next we propose a procedure that shows how to build an infinite number of equivalent
non-stationary MAP2s for any given one. Different procedures to build infinite equivalent
stationary MAPs for a given fixed one are provided in the literature, for instance Telek and
Horváth [102] proceeded with an iterative numerical optimization method to find the matrix
B for the similarity transform for any m-state MAP, and Ramı́rez-Cobo et al. [87] provided
the conditions that two two-state stationary MAP representations need to satisfy in order
to be equivalent. The following Theorem details how to select the elements of an invertible
matrix B = [ω1 1−ω1;ω2 1−ω2] such that the similarity transform presented in Theorem
2.1 always produces a well-defined equivalent non-stationary MAP2.

Theorem 2.2. Consider a non-stationary MAP2, M, as in (2.1), and define

ε1 =
(u− x+ 2z)−

√
(u− x)2 + 4zy

2(u− x+ z − y) ,

ε2 =
(u+ z + w − v) +

√
(u+ z + v + w)2 − 4v(w + x+ y)

2(u− x+ z − y) ,

ε3 = − v

u+ z
,

ε4 = u− x− y
(u− x− 2y) ,

ε5 = − v

(x+ y + w − v) ,

ε6 = − v

x+ y
.

Without loss of generalization, assume that x < u and choose a value ω1 from

max{α, ε1, ε2, ε3} < ω1 < 1 if z + u 6= 0 and (u− x+ z − y) 6= 0, (2.5)
max{α, ε1, ε2} < ω1 < 1 if z + u = 0 and (u− x+ z − y) 6= 0, (2.6)
max{α, ε4, ε5, ε6} < ω1 < 1 if (u− x+ z − y) = 0. (2.7)
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Given ω1, define

κ1 = ω1(w − v) + v

ω1(u− x+ z − y)− z − u,

κ2 = ω1(z + u)− z
ω1(u− x+ z − y)− z + x

,

κ3 = −ω1(w − v) + v

x+ y
,

κ4 = ω1(x+ y)− y + u− x
u− y

.

Finally, choose ω2 from

0 < ω2 < min{α, ε1, ε2, κ1, κ2} if (u− x+ z − y) 6= 0. (2.8)
0 < ω2 < min{α, ε4, ε5, κ3, κ4} if (u− x+ z − y) = 0. (2.9)

Then, there exists an infinite number of MAP2s, M̃, given by α̃ = αB−1, D̃0 = BD0B
−1

and D̃1 = BD1B
−1, where

B =
ω1 1− ω1

ω2 1− ω2

 ,
such that (2.3) holds.

See Appendix 2.A for the proof.

Remark 2.1. We make some remarks regarding the denominator of ε4, ε5, ε6 and κ4 in the
case where (u− x+ z − y) = 0, or equivalently, when z = −u+ x+ y.

If x+ y = 0 then det(D0) = 0, in contradiction with the invertibility of D0. If u− y = 0,
then z = x < 0, which is not a well-defined MAP2, as it happens if u − x − 2y = 0, then
z = −y < 0. Finally, if x + y + w − v = 0, then v = x + y + w < 0, which again, is not a
well-defined MAP2.

We illustrate Theorem 2.2 by the following examples.

Example 2.3. Consider the non-stationary MAP2 given by

α = (0.2537, 0.7463), D0 =
−3.1255 0.4362

0.4877 −0.9687

 , D1 =
1.1284 1.5609

0.1526 0.3285

 .
where u− x+ z − y 6= 0. By Theorem 2.2, a value ω1 is chosen from

max{0.2537, 0.1781, 0.3978, 0.3171} < ω1 < 1.
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For example, consider ω1 = 0.4699. Then, a second value ω2 is chosen from

0 < ω2 < min{0.2537, 0.1781, 0.3978, 0.4024, 0.2771}.

For example, consider ω2 = 0.0125. Then

B =
0.4699 0.5301

0.0125 0.9875

 .
From α̃ = αB−1, D̃0 = BD0B

−1 and D̃1 = BD1B
−1,

α̃ = (0.5274, 0.4726), D̃0 =
−2.6042 1.0856

0.9812 −1.4900

 , D̃1 =
1.2946 0.2241

0.3464 0.1624

 .
which is a well-defined non-stationary MAP2 equivalent to {α, D0, D1}.

Example 2.4. Consider the non-stationary MAP2 given by

α = (0.6984, 0.3016), D0 =
−1.6255 1.5008

0.6235 −0.7481

 , D1 =
0.0673 0.0573

0.0545 0.0702

 .
where u− x+ z − y = 0. By Theorem 2.2, a value ω1 is chosen from

max{0.6984, 0.2935, 0.4873, 0.4371} < ω1 < 1.

For example, consider ω1 = 0.699. Then, a second value ω2 is chosen from

0 < ω2 < min{0.6984, 0.2935, 0.4873, 0.5091, 0.3160}.

For example, consider ω2 = 0.2455. Then

B =
0.6990 0.3010

0.2455 0.7545

 .
From α̃ = αB−1, D̃0 = BD0B

−1 and D̃1 = BD1B
−1,

α̃ = (0.9986, 0.0014), D̃0 =
−2.0243 1.8997

0.2247 −0.3493

 , D̃1 =
0.0724 0.0522

0.0596 0.0650

 .
which is a well-defined non-stationary MAP2 equivalent to {α, D0, D1}.



CHAPTER 2. CANONICAL FORM 38

2.2 Canonical parametrization of the non-stationary
MAP2

The canonical representation of a process is of great importance when dealing with practical
applications, for example, when the model is to be fitted to a real data. The existence of
a unique representation of the problem avoids the typical switching problems and lack of
convergence of the common statistical inference techniques, as the MLE, EM or Bayesian
approaches. The previous Section showed that the usual representation of the non-stationary
MAP2 as in (2.1) is not unique. In the case of the stationary case, Bodrog et al. [7] found
a unique, canonical representation that reduced the number of parameters from six to four.
Such canonical representation depends on the value of a parameter γ, which is the eigenvalue
different from 1 of P ?, the probability transition matrix defined by (1.4). The parameters
that defined the canonical version, {x0, y0, u0, v0}, are defined in terms of the first three
moments of the stationary inter-event time distribution (T ), µ1, µ2, µ3 and the lag-one
correlation coefficient ρ1, given by

µn = E (T n) = n!φ (−D0)−n e, for n = 1, 2, 3,

ρ1 = γ
µ2
2 − µ

2
1

µ2 − µ2
1
. (2.10)

The explicit expressions of {x0, y0, u0, v0} can be found in Bodrog et al. [7] (page 469).
They are obtained in terms of the three moments and the lag-one correlation coefficient,
{µ1, µ2, µ3, ρ1}, which characterize the stationary MAP2.

In this Section, we derive the canonical representation of the non-stationary version of
the MAP2. Such representation is given by five parameters, instead of the seven values that
characterized the MAP2 as in (2.1). Note that in the stationary case, the initial probability
(φ = (πD1e)−1πD1) is function of D0 and D1 while in the non-stationary case, the initial
probability (α) is a new parameter independent of the rate matrices.

The next Theorem provides our main result.

Theorem 2.3. The canonical representation for the non-stationary MAP2 is unique and
given by

αc = (α0, 1− α0), Dc
0 =

x0 y0

0 u0

 , Dc
1 =

−x0 − y0 0
v0 −u0 − v0

 , (2.11)

if γ > 0. On the other hand, for those non-stationary MAP2s such that γ ≤ 0, then the
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canonical form is

αc = (α0, 1− α0), Dc
0 =

x0 y0

0 u0

 , Dc
1 =

 0 −x0 − y0

−u0 − v0 v0

 , (2.12)

where u0 ≤ x0 < 0, y0, v0 ≥ 0, x0 + y0 ≤ 0 and u0 + v0 ≤ 0.

The initial probability α0 is defined as

α0 = −x0 − x0u0r1

u0 − y0 − x0
, (2.13)

where
r1 = α(−u− z + y + x) + z − x

xu− yz
.

Proof. Since the non-stationary MAP2 converges to its stationary version and its canonical
form is unique, then from Bodrog et al. [7] we have that {Dc

0, D
c
1} are well-defined rate

matrices.

Given the structure of the matrices {Dc
0, D

c
1} and the fact that any non-stationary MAP2,

M, defined as in (2.1), is equivalent to its non-stationary canonical representation, then the
equality of the moments of Ti and T ci holds,

αi (−D0)−m e = αci (Dc
0)−m e, for all i,m ≥ 1, (2.14)

where αi = α (P ?)i−1 and αci = α (P c)i−1 (being P c = (−Dc
0)−1Dc

1). Then, solving the
system (2.14), we obtain that, for z0 = 0, and for all y0 > 0,

F0 =



u0 = (u+x)−
√

(u−x)2+4yz
2 ,

x0 = (u+x)+
√

(u−x)2+4yz
2 ,

α0 = −x0−x0u0r1
u0−y0−x0

,

v0 = x0u0(u0(x−v−z+w)−(uw−xv−yv+zw+xu−yz))
(xu−yz)(y0+x0−u0) ,

w0 = x0((x0+y0)(u0(x−v−z+w)−xu+yz)−u0(uw−xv−yv+zw))
(xu−yz)(y0+x0−u0) ,

(2.15)

where the set F0 solves the system of equations given by (2.1). We point out that the set F0

is analogous to the results provided by Bodrog et al. [7]. Note that det(D0) = xu− yz 6= 0.

The equations defined by F0 are used to define α0, as stated in (2.13). It remains to prove
that 0 ≤ α0 ≤ 1. For the sake of brevity, it is given in Appendix 2.B.
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We have proven that the canonical representation of the non-stationary MAP2 (2.11) - (2.12)
is characterized by {α0, x0, y0, u0, v0} as in (2.15). We now proceed to prove the uniqueness
of this representation. Assume we have two equivalent canonical non-stationary MAP2,

M1 = {αc1, Dc
0,1, D

c
1,1},

M2 = {αc2, Dc
0,2, D

c
1,2},

in either canonical form (2.11)-(2.12). Note that their corresponding canonical stationary
versions, Ms

1 = {φc1, Dc
0,1, D

c
1,1} and Ms

2 = {φc2, Dc
0,1, D

c
1,2}, are also equivalent. As the

canonical representation for the stationary MAP2 is unique, then Ms
1 =Ms

2, that is,

φc1 = φc2,

Dc
0,1 = Dc

0,2, (2.16)
Dc

1,1 = Dc
1,2.

Let αc1 = (α0,1, 1 − α0,1). From (2.13), we can state that α0,1 is a function of r1 and the
parameter of Dc

0,1. Analogously with α0,2. From (2.16) and the fact that M1 and M2 are
equivalent, we have that

α0,1 = α0,1{r1;Dc
0,1} = α0,2{r1;Dc

0,2} = α0,2.

In consequence M1 = M2 = {αc, Dc
0, D

c
1}, concluding that the canonical representation of

the non-stationary MAP2, given by Theorem 2.3, is unique.

Some examples of the canonical representation are as follows,

Example 2.5. Consider the non-stationary MAP2 given by

α = (0.3022, 0.6978), D0 =
−5.2715 0.4225

2.5818 −6.5665

 , D1 =
1.2858 3.5632

3.2469 0.7378

 .
It can be seen that γ = −0.3168 < 0, therefore the second canonical form (2.12) is computed
as

αc = (0.5718, 0.4282), Dc
0 =

−4.6902 2.6175
0 −7.1478

 , Dc
1 =

 0 2.0726
5.1242 2.0236

 .
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Example 2.6. Consider the non-stationary MAP2 given by

α = (0.0334, 0.9666), D0 =
−0.9491 0.1360

2.2415 −3.4699

 , D1 =
0.6856 0.1275

0.9939 0.2345

 .
In this case γ = 0.0114 > 0 and hence, the first canonical form (2.11) is computed,

αc = (0.6825, 0.3175), Dc
0 =

−0.8335 0.7948
0 −3.5855

 , Dc
1 =

0.0386 0
2.7041 0.8815

 .

2.3 Characterization of the non-stationary MAP2

This section provides the starting point for the next chapter, which deals with the estimation
of the parameters of the canonical non-stationary MAP2 for a particular type of data set.
Following Bodrog et al. [7], in this section we characterize the non-stationary MAP2 in terms
of a set of moments.

As stated before, for a given stationary MAP2, Ramı́rez-Cobo et al. [87] provided an alter-
native method of characterizing the parameters of an equivalent stationary MAP2 (without
going through the similarity transform), following the conditions that two stationary MAP2

need to have in order to be equivalent. They stated that if (2.3) is satisfied for n = 1 and
n = 2, then it will hold for all n ≥ 3. This result will help us to find the set of moments
characterizing the non-stationary MAP2.

Following Ramı́rez-Cobo et al. [87] approach, for the non-stationary MAP2, we have that
the following equalities for n = 1 and n = 2 must hold,

f ∗T ;α,D0,D1 (s1) = f ∗T̃ ;α̃,D̃0,D̃1
(s1) ,

f ∗T ;α,D0,D1 (s1, s2) = f ∗T̃ ;α̃,D̃0,D̃1
(s1, s2) ,

or equivalently (from (1.7)),

sε+ ν

s2 + sβ + ν
= sε̃+ ν̃

s2 + sβ̃ + ν̃
, for all s, (2.17)

and

s1s2δ1 + s2δ2 + s1εν + ν2

s1
1s

1
2 + (s2

1 + s2
2)ν + (s2

1s2 + s1s2
2)β + (s1 + s2)βν + s1s2β2 + ν2 = (2.18)

s1s2δ̃1 + s2δ̃2 + s1ε̃ν̃ + ν̃2

s1
1s

1
2 + (s2

1 + s2
2)ν̃ + (s2

1s2 + s1s2
2)β̃ + (s1 + s2)β̃ν̃ + s1s2β̃2 + ν̃2

, for all s1 and s2,
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where ε, β, ν, δ1, δ2 (respectively ε̃, β̃, ν̃, δ̃1, δ̃2) are given by

ε = α(z + u− x− y)− (z + u),
β = −x− u, (2.19)
ν = xu− yz,
δ1 = α(z + u− x− y)(−z − u+ w − v) + (z + u− x− y)v + (z + u)2,

δ2 = α(x+ y − z − u)(uw − yv − xv + zw) + (x+ y − z − u)(xv − zw)− (u+ z)ν.

Ramı́rez-Cobo and Lillo [91] state that the equality (2.17) has one solution if the value τ ,
defined by

τ = ν + ε(ε− β),

is found to be different from zero. Otherwise, there will exist an infinite number of solutions
(see page 6 of [91] for the explicit expressions). Therefore, if τ 6= 0, we have that the equalities
of the Laplace transforms for n = 1 and n = 2, given by (2.17) and (2.18) respectively, will
hold if and only if

ε̃ = ε, β̃ = β, ν̃ = ν, δ̃1 = δ1, δ̃2 = δ2. (2.20)

We have introduced all the results needed to prove the next result. The following Propo-
sition provides the set of five moments that fully characterized the canonical non-stationary
MAP2. But first, recall that the moments of Ti are defined in (1.6), where

µi,m = E (Tmi ) = m!αi (−D0)−m e,

with αi = α (P ?)i−1.

Proposition 2.1. Consider two non-stationary MAP2s,M and M̃ defined as in (2.1), such
that τ 6= 0. The equality of the Laplace transforms (2.3) holds if and only if the following
equalities hold

r1(M) = r1(M̃),
r2(M) = r2(M̃),
r3(M) = r3(M̃), (2.21)
µ2(M) = µ2(M̃),
µ3(M) = µ3(M̃),
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where

r1(M) = µ1,1 = α (−D0)−1 e,

r2(M) = µ1,2

2 = α (−D0)−2 e,

r3(M) = µ1,3

3! = α (−D0)−3 e, (2.22)

µ2(M) = µ2,1 = α (P ?) (−D0)−1 e,

µ3(M) = µ3,1 = α (P ?)2 (−D0)−1 e,

r1(M̃), r2(M̃) r3(M̃), µ2(M̃), µ3(M̃) are defined analogously.

Remark 2.2. Notice that in the non-stationary case, the inter-event time distribution, Ti,
has a differently parametrize PH-distribution for each i ≥ 1, therefore we have no auto-
correlation function (and no ρ(1)), as in the case of the stationary MAP2, but instead the
correlations between Tis.

Proof. Assume that the equality of the Laplace transforms (2.3) holds for n = 1 and n = 2.
The expressions in (2.22) can be written in terms of (2.19) as,

r1(M) = β − ε
ν

,

r2(M) = βr1 − 1
ν

,

r3(M) = βr2 − r1

ν
, (2.23)

µ2(M) = βν − δ2

ν2 ,

µ3(M) = δ1(β − ε− µ2ν) + µ2ν(εβ − µ2εν + ν) + εβ(ε− β)
ντ

.

Therefore it can easily be checked that if (2.20) holds, then the equalities (2.21) will also
hold.

Consider now that the equalities given by (2.21) are satisfied. From the duality established
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in (2.23),

ε = β − r1ν, (2.24)

ν = r1β − 1
r2

, (2.25)

ν = r2β − r1

r3
, (2.26)

δ2 = βν − µ2ν
2, (2.27)

δ1 = µ3ν(ν + ε2 − εβ)− µ2ν(εβ − µ2εν + ν)− εβ(ε− β)
(β − ε− µ2ν) . (2.28)

Then, from (2.21) and the equality between (2.25) and (2.26), we obtain that

β = r3(M)− r1(M)r2(M)
r1(M)r3(M)− r2(M)2 = r3(M̃)− r1(M̃)r2(M̃)

r1(M̃)r3(M̃)− r2(M̃)2
= β̃ (2.29)

From (2.25) and (2.24) we obtain that ν = ν̃ and ε = ε̃. This, in combination with (2.27)
and (2.28) yields δ2 = δ̃2 and δ1 = δ̃1. Since (2.20) is satisfied, the equality of the Laplace
transforms (2.3) will hold for n ≥ 1.

Remark 2.3. In order to show that the set equations (2.23) and equations (2.28) and (2.29)
are well-defined, note that D0 is non-singular, which implies that ν 6= 0. Besides, since τ 6= 0,
then ντ 6= 0, which are the denominators of the set of expressions given in (2.23). Consider
now the denominator of (2.28), where

β − ε− µ2ν = ν(r1 − µ2)

= (y − u− z + x) [α(−xv + xu+ uw − yv − yz + zw)− zw + xv]
ν

,

since
τ = (y − u− z + x)

[
(y − u− z + x)α2 + (−x+ u+ 2z)α− z

]
6= 0,

which implies that (y−u−z+x) 6= 0. Also, [α(−xv + xu+ uw − yv − yz + zw)− zw + xv] 6=
0 is equivalent to

α 6= zw − xv
−xv + xu+ uw − yv − yz + zw

,

which is equivalent to α 6= φ, and this holds since in this work we focus on the non-stationary
version of the MAP2. Therefore β − ε− µ2ν 6= 0 always holds.

Finally, we prove that r1r3 − r2
2 6= 0, which is the denominator of (2.29), where

r1r3 − r2
2 = − τ

ν3 6= 0.
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Solving the system of equations given by (2.21), we have an alternative way of obtaining
the parameters of an equivalent non-stationary MAP2.

2.4 Chapter summary

We have examined the identifiability of the non-stationary MAP2 process in detail. The iden-
tifiability of the process is a crucial property, since it determines the possible multimodality
of the likelihood function. This fact has to be taken into consideration in order to develop
an estimation method to fit the model to real data sets.

In this chapter we prove that the m-state non-stationary MAP is non-identifiable. We
present a procedure that shows how to construct an equivalent non-stationary MAP2s to
any given fixed non-stationary MAP2, which is based on the definition of a similarity trans-
form matrix B. We also show that the non-stationary MAP2 is characterized by a set of
five moments. The main result of this chapter is the proof of the existence of a unique,
canonical representation for the non-stationary MAP2, which is a powerful result that eases
the estimation of the process parameters. We have illustrated our findings with numerical
examples as well.

Unlike the stationary version of the process, in the non-stationary MAP the inter-event
times are not identically distributed. This fact makes the non-stationary MAP to have more
applicability in terms of modeling than its stationary counterpart, as we will see in the
following Chapter.

Appendix

2.A Proof of Theorem 2.2

The similarity transform, α̃ = αB−1, D̃0 = BD0B
−1 and D̃1 = BD1B

−1, where B is given
as in Theorem 2.2 provides the following parameter values
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α̃ ≡ α− ω2

ω1 − ω2
,

ỹ ≡ −ω2
1(u− x+ z − y) + ω1(u+ 2z − x)− z

ω1 − ω2
,

z̃ ≡ (ω2
2(u− x+ z − y)− ω2(u+ 2z − x) + z)

ω1 − ω2
,

ṽ ≡ (−ω2
2(u− x+ z − y) + ω2(u+ z + w − v) + v)

ω1 − ω2
,

x̃ ≡ (ω1ω2(u− x+ z − y) + ω1(x− z)− ω2(z + u) + z)
ω1 − ω2

, (2.30)

ũ ≡ (−ω1ω2(u− x+ z − y)− ω2(x− z) + ω1(z + u)− z)
ω1 − ω2

,

w̃ ≡ (−ω1ω2(u− x+ z − y) + ω1(w − v) + ω2(z + u) + v)
ω1 − ω2

,

s̃1 ≡
(ω2

1(u− x+ z − y)− ω1(u+ z + w − v)− v)
ω1 − ω2

,

s̃2 ≡
−(−ω1ω2(u− x+ z − y) + ω2(w − v) + ω1(z + u) + v)

ω1 − ω2
,

where

s̃1 = (−x̃− ỹ − w̃),
s̃2 = (−z̃ − ũ− ṽ).

We start by proving that the set (2.30) is well-defined. Let us first assume that x < u. The
proof will be divided into two parts, one per each case (u−x+z−y) 6= 0 and (u−x+z−y) = 0.

If ω2 < α < ω1, then ω1 − ω2 > 0 and α̃ ∈ [0, 1] will hold for both cases. Consider first the
case (u− x+ z − y) 6= 0.

Since,

ω2 <
(u− x+ 2z)−

√
(u− x)2 + 4zy

2(u− x+ z − y) < ω1

it implies that ỹ > 0 and z̃ > 0.

In addition,

ω2 <
(u+ z + w − v) +

√
(u+ z + v + w)2 − 4v(w + x+ y)

2(u− x+ z − y) < ω1,

which implies that s̃1 > 0 and ṽ > 0.
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Moreover,

ω2 <
ω1(z + u)− z

ω1(u− x+ z − y)− z + x
< − ω1(x− z) + z

ω1(u− x+ z − y)− z − u,

which implies that x̃ < 0 and ũ < 0.

We now prove that w̃ > 0 and s̃2 > 0. By imposing the condition that

− v

u+ z
< ω1, (2.31)

when u+ z 6= 0, we obtain the following. If ω1(u− x+ z − y)− (w − v) > 0, then

ω1(u+ z) + v

ω1(u− x+ z − y)− (w − v) < ω2 <
ω1(w − v) + v

ω1(u− x+ z − y)− z − u,

which implies s̃2 > 0 and w̃ > 0. Now, if ω1(u− x+ z − y)− (w − v) < 0,

ω2 <
ω1(w − v) + v

ω1(u− x+ z − y)− z − u <
ω1(u+ z) + v

ω1(u− x+ z − y)− (w − v) ,

assures that s̃2 > 0 and w̃ > 0 are fulfilled. If z + u = 0 then it is not necessary to impose
condition (2.31).

It remains to prove that max{ε2, ε3, ε4} < 1 and 0 < min{ε1, ε2, κ1, κ2}.

If (u− x+ z − y) > 0, then

(2(u− x+ z − y)− (u− x+ 2z))2 = (u− x)2 + 4y(y − u+ x)
< (u− x)2 + 4yz,

(u− x+ 2z)2 = (u− x)2 + 4z(z + u− x)
> (u− x)2 + 4zy,

and

(2(u− x+ z − y)− (u+ z + w − v))2 = (u+ z + v + w)2 − 4v(x+ y + w)
−4(u− x+ z − y)(x+ y + w)

> (u+ z + v + w)2 − 4v(x+ y + w),
(u+ z + w − v)2 = (u+ z + v + w)2 − 4v(x+ y + w)− 4v(u− x+ z − y)

< (u+ z + v + w)2 − 4v(x+ y + w),
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which proves that 0 < ε1 < 1 and 0 < ε2 < 1. Now, if (u− x+ z − y) < 0,

(2(u− x+ z − y)− (u− x+ 2z))2 = (u− x)2 + 4y(y − u+ x)
> (u− x)2 + 4yz,

(u+ z + w − v)2 = (u+ z + v + w)2 − 4v(x+ y + w)− 4v(u− x+ z − y)
> (u+ z + v + w)2 − 4v(x+ y + w),

and

(2(u− x+ z − y)− (u+ z + w − v))2 = (u+ z + v + w)2 − 4v(x+ y + w)
−4(u− x+ z − y)(x+ y + w)

< (u+ z + v + w)2 − 4v(x+ y + w),
(u− x+ 2z)2 = (u− x)2 + 4z(z + u− x)

< (u− x)2 + 4zy,

then 0 < ε1 < 1 and 0 < ε2 < 1 are proven. In addition, ε3 < 1 since −z − u − v > 0.
Therefore, we obtain that {ε1, ε2, ε3} < 1 and {ε1, ε2} > 0.

Recall that

κ1 = ω1(w − v) + v

ω1(u− x+ z − y)− z − u,

κ2 = ω1(z + u)− z
ω1(u− x+ z − y)− z + x

.

If w − v ≥ 0, then ω1(w − v) + v > 0. If w − v < 0 then ω1(w − v) + v > 0 since ω1 < 1. In
addition, if (u − x + z − y) > 0 then ω1(u − x + z − y) − z − u > 0, since −z − u > 0. If
(u− x+ z − y) < 0,

ω1(u− x+ z − y)− z − u > (u− x+ z − y)− z − u = −x− y > 0.

Therefore, κ1 > 0. Finally, if (u−x+z−y) > 0, then ω1(u−x+z−y)−z+x < (u−y) < 0.
If (u− x+ z − y) < 0,

ω1(u− x+ z − y)− z + x < ε1(u− x+ z − y)− z + x =
(u+ x)−

√
(u− x)2 + 4zy
2 < 0,

and the fact that z + u < 0 and ω1 > ε1 > 0, we obtain that ω1(z + u) − z < 0, therefore
κ2 > 0.
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Continue with the case (u − x + z − y) = 0, or equivalently z = −u + x + y. Then (2.30)
becomes

ỹ ≡ ω1(x− u+ 2y) + u− x− y
ω1 − ω2

,

z̃ ≡ (−ω2(x− u+ 2y)− u+ x+ y)
ω1 − ω2

,

ṽ ≡ (ω2(x+ y + w − v) + v)
ω1 − ω2

,

x̃ ≡ (ω1(u− y)− ω2(x+ y)− u+ x+ y)
ω1 − ω2

, (2.32)

ũ ≡ (−ω2(u− y) + ω1(x+ y) + u− x− y)
ω1 − ω2

,

w̃ ≡ (ω1(w − v) + ω2(x+ y) + v)
ω1 − ω2

,

s̃1 ≡
(−ω1(x+ y + w − v)− v)

ω1 − ω2
,

s̃2 ≡
−(ω2(w − v) + ω1(x+ y) + v)

ω1 − ω2
.

Now,
ω2 <

u− x− y
(u− x− 2y) < ω1

implies that ỹ > 0 and z̃ > 0.

In addition,

ω2 < −
v

(x+ y + w − v) < ω1

implies that s̃1 > 0 and ṽ > 0.

Moreover,
ω2 <

ω1(x+ y)− y + u− x
u− y

<
ω1(u− y)− u+ x+ y

x+ y

implies that x̃ < 0 and ũ < 0.

We now prove that w̃ > 0 and s̃2 > 0. By imposing the condition that

− v

x+ y
< ω1,

we obtain the following. If (w − v) ≥ 0, then

ω2 <
ω1(w − v) + v

x+ y
<
ω1(x+ y) + v

w − v
,
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which implies s̃2 > 0 and w̃ > 0. Now, if (w − v) < 0,

ω1(x+ y) + v

w − v
< ω2 <

ω1(w − v) + v

x+ y
,

which assures that s̃2 > 0 and w̃ > 0 are fulfilled.

It remains to prove that max{ε4, ε5, ε6} < 1 and 0 < min{ε4, ε5, κ3, κ4}.

Since z = −u + x + y > 0, we have that u − x − y < 0 and u − x − 2y < 0. Moreover,
u−x−y > u−x−2y, which implies 0 < ε4 < 1. Since −x−y−w > 0, then x+y+w−v < 0.
In addition, −v > x + y + w − v0, which implies 0 < ε5 < 1. Furthermore, ε6 < 1 since
−z − u− v = x+ y − v > 0.

Recall that

κ3 = −ω1(w − v) + v

x+ y
,

κ4 = ω1(x+ y)− y + u− x
u− y

.

If w − v ≤ 0, then ω1(w − v) + v > 0, ω1 < 1. If w − v > 0 then ω1(w − v) + v > 0 since
ω1 > ε6. Therefore κ3 > 0, since x+ y < 0. Finally,

ω1(x+ y)− y + u− x < ε4(x+ y)− y + u− x = (u− x− y)(u− y)
u− x− 2y > 0,

since u− y < 0. Therefore κ4 > 0, which ends the proof.

2.B Proof of 0 ≤ α0 ≤ 1

The value of α0 is obtained from (2.13) as

α0 = −x0 − x0u0r1

u0 − y0 − x0
,

where
r1 = α(−u− z + y + x) + z − x

xu− yz
> 0. (2.33)

In order to show that 0 ≤ α0, it is sufficient to prove that−x0−r1(x0u0) < 0 and u0−y0−x0 <

0 or equivalently x0 + r1(x0u0) > 0 and −u0 + y0 + x0 > 0.

Consider the first expression x0 + r1(x0u0) > 0. Since x0 < 0, then

x0 + r1(x0u0) > 0⇔ (1 + r1u0) < 0⇔ r1 > −
1
u0

(u0 < 0).
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So, we have to prove that r1 > − 1
u0

. From (2.15),

−u0 =
−(u+ x) +

√
(u− x)2 + 4yz
2

>
−(u+ x) +

√
(u− x)2

2

= −(u+ x)− (u− x)
2 = −u.

Then
0 < −u < −u0. (2.34)

From (2.33),
r1 >

−x
xu− yz

. (2.35)

Combining (2.34) and (2.35),

r1(−u0) > r1(−u) > xu

xu− yz
> 1. (2.36)

Therefore, r1(−u0) > 1 if and only of r1 > − 1
u0

.

Second, consider y0 +x0−u0 > 0. We have that x0−u0 > 0 and y0 > 0, then y0 +x0−u0 > 0,
which implies that 0 ≤ α0.

We now proceed to prove that α0 ≤ 1, which is equivalent to

r1(x0u0) + u0 − y0 ≤ 0. (2.37)

Note that from (2.15),

−u0 =
−(u+ x) +

√
(u− x)2 + 4yz
2 ,

−x0 =
−(u+ x)−

√
(u− x)2 + 4yz
2 ,

therefore

xu− yz = x0u0, (2.38)
u+ x = u0 + x0. (2.39)

From Bodrog et al. [7] (see Definition 1),

x0 + y0 = x0 − (1− a)x0 = ax0, (2.40)
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where 0 ≤ a ≤ 1.

Then, by substituting (2.38, (2.39) and (2.40) in (2.37), we obtain

r1(x0u0) + u0 − y0 = α(−z − u+ x+ y) + z − x+ u+ x− x0 − y0

= α(−z − u+ x+ y) + z + u− x0 − y0

= −ε− ax0,

where
ε = α(z + u− x− y)− (z + u).

Therefore, (2.37) has been simplified to

− ε− ax0 ≤ 0. (2.41)

Since ε = α(z + u− x− y)− (z + u), we divide the proof into two cases: (z + u− x− y) ≤ 0
and (z + u− x− y) > 0.

Assume first that (z + u− x− y) < 0 is satisfied. Then,

− x− y ≤ ε ≤ −z − u. (2.42)

Hence, (2.41) and (2.42) lead to

−ε− ax0 ≤ x+ y − ax0 ≤ 0.

Therefore, in this case, we have to prove that

x+ y − ax0 ≤ 0. (2.43)

Since the parameter a depends on the sign of γ, which is the eigenvalue different from 1 of
P ? (recall that P ? = (−D0)−1D1). We consider both cases: γ ≤ 0 and γ > 0. We begin
with γ ≤ 0. Then,

a = −γ
p(1− γ)− ϕγ , (2.44)

where

p = −x0(xu− yz + uw − yv − xv + zw) + (xu− yz)(−z + x+ w − v)
u0(xu− yz + uw − yv − xv + zw) ,

γ = −(uw − yv − xv + zw)
xu− yz

, (2.45)

ϕ = x0

u0
.
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The parameter p is analogously defined in Bodrog et al. [7], but in this case it has been
rewritten according to our parametrization (2.1) and (2.11)-(2.12) (both definitions of p are
numerically consistent).

After some straightforward calculations,

ax0 = −γx0

p(1− γ)− ϕγ = −(uw − yv − xv + zw)
(−z + x+ w − v − x0) . (2.46)

Now

ax0 − (x+ y) = −(uw − yv − xv + zw)
(−z + x+ w − v − x0) − (x+ y)

= −(uw − yv − xv + zw)− (x+ y)(−z + x+ w − v − x0)
(−z + x+ w − v − x0)

= w(u+ z)− (x+ y)(−z + x+ w − x0)
(−z + x+ w − v − x0) .

Taking into account that (z + u− x− y) ≤ 0, x− x0 < 0 and x+ y < 0,

w(u+ z)− (x+ y)(−z + x+ w − x0) ≤ w(x+ y)− (x+ y)(−z + x+ w − x0)
= −(x+ y)(−z + x− x0)
< −(x+ y)(−z) ≤ 0.

On the other hand, since ax0 < 0 and γ < 0, then (−z + x+w− v − x0) < 0. Therefore we
conclude that (2.43) is satisfied.

We consider now the case γ > 0. Then,

a = 1
2ϕ

(
1 + ϕγ − p(1− γ)−

√
(1 + ϕγ − p(1− γ))2 − 4ϕγ

)
, (2.47)

where p, γ and ϕ are defined in (2.45).

As before, we performed the corresponding calculations, and obtained

ax0 = 1
2

(
(u+ z + v − w) +

√
(u+ z + v − w)2 − 4(uw − yv − xv + zw)

)
, (2.48)

which implies that,

ax0−(x+y) = 1
2

(
(u+ z + v − w)− 2(x+ y) +

√
(u+ z + v − w)2 − 4(uw − yv − xv + zw)

)
.
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Note that

(u+ z + v − w)− 2(x+ y) = (u+ z + v + w)− 2(x+ y + w), (2.49)
(u+ z + v − w)2 − 4(uw − yv − xv + zw) = (u+ z + v + w)2 − 4v(x+ y + w).(2.50)

If (u+ z + v−w)− 2(x+ y) ≥ 0, then (2.43) is fulfilled, since (2.50) is always non-negative.
Now, if (u+ z+ v−w)− 2(x+ y) < 0, then from (2.50) and the fact that (2.49) implies that
(u+ z + v − w) < 0, we obtain that

(u+ z + v − w)− 2(x+ y) +
√

(u+ z + v − w)2 − 4(uw − yv − xv + zw)

≥ (u+ z + v + w)− 2(x+ y + w) +
√

(u+ z + v + w)2

= (u+ z + v + w)− 2(x+ y + w) + |(u+ z + v + w)|
= (u+ z + v + w)− 2(x+ y + w)− (u+ z + v + w)
= −2(x+ y + w) ≥ 0,

concluding that (2.43) is also fulfilled.

Consider now the case (z + u− x− y) > 0. Then, similarly as in (2.42)

− x− y ≥ ε ≥ −z − u. (2.51)

Hence, from (2.41) and (2.51),

−ε− ax0 ≤ z + u− ax0 ≤ 0.

Therefore, in this case, we need to prove that

z + u− ax0 ≤ 0. (2.52)

As before, we will consider the cases γ ≤ 0 and γ > 0. Assume first that γ ≤ 0 and consider
a and x0 as defined in (2.44) and (2.46), respectively. Then

ax0 − (z + u) = −(uw − yv − xv + zw)
(−z + x+ w − v − x0) − (z + u),

= −v(x+ y)− (z + u)(−z + x− v − x0)
(−z + x+ w − v − x0) .

Taking into account that (z + u− x− y) ≥ 0, x− x0 < 0 and x+ y < 0, we have that

−v(x+ y)− (z + u)(−z + x− v − x0) < −v(x+ y)− (x+ y)(−z + x− v − x0)
= −(x+ y)(−z + x− x0)
< −(x+ y)(−z) ≤ 0.
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Since it was already checked that (−z + x+w− v− x0) < 0, we can conclude that (2.52) is
satisfied.

Assume now that γ > 0. As in the previous case, a and ax0 were defined in (2.47) and
(2.48), respectively.Then

ax0−(z+u) = 1
2

(
(u+ z + v − w)− 2(z + u) +

√
(u+ z + v − w)2 − 4(uw − yv − xv + zw)

)
.

In this case, note that

(u+ z + v − w)− 2(z + u) = (v − w − z − u), (2.53)
(u+ z + v − w)2 − 4(uw − yv − xv + zw) = (v − w − z − u)2 + 4v(u+ z − y − x).(2.54)

If (u+ z + v−w)− 2(z + u) ≥ 0, then (2.52) is fulfilled, since (2.54) is always non-negative.
Now, if (u+ z+ v−w)− 2(z+u) < 0, then from (2.54) and the fact that (2.53) implies that
(v − w − z − u) < 0, we obtain that

(u+ z + v − w)− 2(x+ y) +
√

(u+ z + v − w)2 − 4(uw − yv − xv + zw)

≥ (v − w − z − u) +
√

(v − w − z − u)2,

= (v − w − z − u) + |(u+ z + v + w)|,
= (v − w − z − u)− (u+ z + v + w) = 0,

concluding that (2.52) is also fulfilled.

We have that (2.41) is satisfied when (z + u − x − y) ≤ 0 and (z + u − x − y) > 0, which
implies that α0 ≤ 1 and the proof is completed.



Chapter 3

Failure modeling of an electrical
N-component framework by the
non-stationary MAP2

Electrical components are essential in everyday operations and life and it is crucial that
they do not fail, even though they can break or malfunction at any time. Reliability in this
context is described as the probability of a system or a component to function under stated
conditions for a specified period of time [45]. Failures can be caused by faults or errors
in the components that comprise the system, or alternatively, the structure that comprises
the component. They can be due to internal (wearing out of the mechanism) or external
factors (voltage, strength, vibrations, environmental conditions). When the lifetime and
deterioration of a system or a component is submitted to external failures, it is usually
referred as shock models, while we refer to wear models when the failures are due to internal
factors. As a failure occurs, a repair or replacement may take place in order that the
component goes back to functioning as soon as possible.

Reliability and maintenance policies of systems considering random component failure
have been widely studied in the literature, see [24, 31, 57, 68, 76, 82, 83, 101]. However,
the most common assumption is that failures occur independently and with the same distri-
bution, being the Poisson, renewal, or phase-type (PH ) renewal processes the usual arrival
processes used to model the fails. These assumptions are unrealistic in practice, since inter-
failures are usually correlated. Therefore, there is a need for suitable point processes that
properly fit the occurrence of failures.

56
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We will consider an N electrical component framework. These electrical components are
generators that are assumed to have the same structure, since they are all built in the same
way. The available data are the operational times of each component. After each failure
occurs, we assume instant repair times, which we believe to be a good approximation since
the repair times are very short. The aim is to determine (estimate) the process that governs
the functioning of each component which is the same for all the components. That is, we
have N independent samples of inter-failure times related to the same process. A similar data
structure has been considered in other works, for example, Fiondella et al. [32] analyzed the
system reliability of a system of N components considering correlated component failures
(CCF) under a multivariate Bernoulli distribution approach. Der Kiureghian and Song
[25] examined the reliability of a system of N two-state components by decomposing it
into a number of subsystems. The decomposition is combined with a linear programming
formulation, which allows for the computation of the system probability bounds for the
reliability analysis. More recently, Montoro-Cazorla and Pérez-Ocón [72] studied the failure
times of a cold standby N components system assuming that the occurrences of shocks
and repairs follow a stationary MAP processes. It is also remarkable that the introduced
data framework can be found in several other contexts where recurrent events occur, such as
medicine, where the components are the patients and the occurrences are the recurrent times
of an infection [1, 65]; or aeronautical engineering, where the failures of the air conditioning
system of each member of a fleet of airplanes are considered [85].

In this chapter, we consider a real data set with the previously described framework,
provided by Iberdrola, which is a private electrical utility company that supplies energy to
Spain. After analyzing the Iberdrola data set, we were able to verify that the operational
times associated with each generator cannot be assumed to be independent nor identically
distributed. Considering these properties and the fact that the components are assumed to
have the same structure, it is reasonable to assume that the failure times are derived from
the same process. It will be shown that an appropriate model to fit the operational times
is the non-stationary two-state MAP, whose matricial formulation enables the calculation of
significant quantities and probabilities of interest associated to the reliability of the system,
such as the cumulative distribution of the inter-failure times, the probabilities and expected
number of failures at a specific time t. Recently, the stationary MAP has been considered
in a reliability context to model the arrival of shocks in shock and wear systems, see [17,
69, 70, 71, 84]. To the best of our knowledge, and unlike its stationary counterpart (see
[12]), inference for the non-stationary MAP has not been considered before. Therefore, the
main objective of this chapter is to develop a parameter estimation approach for fitting the



CHAPTER 3. FAILURE MODELING OF THE THE NON-STATIONARY MAP 58

non-stationary two-state MAP (MAP2) to N sequences of operational times (inter-failure
times).

This chapter is organized as follows. Section 3.1 introduces the framework of the data
and the definition. Special emphasis is put on reviewing some performance measures of the
system as the cumulative distribution function and moments of the times between failures,
correlation between the times of consecutive failures or the probability of N failures at a
specific time t. Section 3.2 describes the considered parameter estimation methodology,
namely, a moments matching approach, which is illustrated with a simulation study in
Section 3.3. In Section 3.4 we apply the proposed algorithm to real failure times of N
electrical components in the Iberdrola dataset. Finally, in Section 3.5 we provide some
conclusions. Most of the results of this chapter can be found in Rodŕıguez, Lillo and Ramı́rez-
Cobo [98].

3.1 The model

We consider an N electrical component framework, each of them subject to failures. After
each failure, the component is instantly repaired, and we record the consecutive operational
times of each component. The aim is to estimate the performance of the system on base on
N real sequences of such operational times, t(1), . . . , t(N), where

t(1) =
(
t
(1)
1 , t

(1)
2 , . . . , t(1)

n1

)
,

t(2) =
(
t
(2)
1 , t

(2)
2 , . . . , t(2)

n2

)
, (3.1)

...
t(N) =

(
t
(N)
1 , t

(N)
2 , . . . , t(N)

nN

)
,

where ni denotes the size of the sample t(i), for i = 1, ..., N .

We assume that the N components are identical and the sequences of operational times
t(1), . . . , t(N), are mutually independent.

Let Tk be the random variable representing the operational time between the (k − 1)-th
and k-th failure of any given component. Unlike classical model assumptions, we cannot as-
sume that the random variables {Tk}k≥1 are uncorrelated, and then, we do not consider them
independent. Also, the random variables {Tk}k≥1 are not necessarily identically distributed.

In Chapter 2 we proved that the non-stationary MAP2 is not unique, and provided a
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canonical, unique representation of the non-stationary MAP2 in Theorem 2.3. For the sake
of simplicity, we rewrite them here. When γ > 0:

α = (α, 1− α), D0 =
x y

0 u

 , D1 =
−x− y 0

v −u− v

 . (3.2)

On the contrary, if γ ≤ 0, the canonical representation is given by

α = (α, 1− α), D0 =
x y

0 u

 , D1 =
 0 −x− y
−u− v v

 , (3.3)

where u ≤ x < 0, y, v ≥ 0, x+ y ≤ 0 and u+ v ≤ 0.

3.1.1 Performance of the system.

Most of the descriptors necessary to measure the performance of the system have been
introduced in the Section 1.2.3.1, defined in (1.5), (1.6), (1.9) and (1.10), which we proceed
to remember: the time between the (k − 1)-th and the k-th failures, Tk, is phased-type
distributed with representation {αk, D0}, where

αk = α (P ?)k−1 ,

which implies that the inter-failure times are not identically distributed. Then the cumulative
distribution function and moments of Tk are given by

FTk
(t) = 1−αkeD0te,

µk,m = E (Tmk ) = m!αk (−D0)−m e,

for m = 1, 2, . . . and where e represents a vector of ones. We point out that, given the
operational times as in (3.1), then each column of data t(1)

k , t
(2)
k , . . . , t

(N)
k are observations of

the random variable Tk: they represent times between the (k− 1)-th and k-th failures of the
first, second,... and N−th component. Therefore, the corresponding correlation function
between Tk and Tk+l, which shows that the inter-failure times are not independent, is given
in the next result.

Lemma 3.1. The correlation between Tk and Tk+l, for l = 2, 3, . . . is given by

corr (Tk, Tk+l) =

[
αk (−D0)−1 (P ?)l (−D0)−1 e

]
−
[
αk (−D0)−1 e

] [
αk+l (−D0)−1 e

]
√

2αk (−D0)−2 e−
(
αk (−D0)−1 e

)2
√

2αk+l (−D0)−2 e−
(
αk+l (−D0)−1 e

)2
.

(3.4)
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See Appendix 3.A for the proof. In addition, Eq. (3.4) shows that the inter-failure times
are not independent, which is another interesting property of the MAP.

Concerning the counting process {N(t), t ≥ 0}, recall that the probability of n failures
at time t is given by,

P (N(t) = n | N(0) = 0) = αP (n, t)e,

where the probability of n failures in the interval (0, t] is given by the matrix P (n, t), defined
in (1.8). And the expected number of failures at time t, E (N(t) | N(0) = 0), is computed
from the first factorial moment of the counting process,

M1(t) =
∞∑
n=0

nP (n, t).

A final remark concerning the difference between the non-stationary MAP2 and its sta-
tionary version needs to be made at this point. The non-stationary MAP2, represented by
{α, D0, D1}, converges to its steady-state version, {φ, D0, D1}, when t increases (or k →∞).
In this situation, the probability vector αk, converges to φ, the stationary probability vector
of P ?. In particular, in the stationary version of the process the sequence of times between
failures {Tk}k≥1 are identically distributed as a random variable T ∼ PH (φ, D0), and hence
if the steady-state MAP2 were considered instead, we could not assume in our model that
the random variables {Tk}k≥1 are not identically distributed.

3.2 Parameter estimation algorithm

In this section we present a method for estimating the parameters of the non-stationary
MAP2 described in (3.2)-(3.3) given a set of operational times t(1), . . . , t(N) as in (3.1). As it
was showed in Chapter 2, the non-stationary MAP2 is characterized by the set of moments
{µ1,1, µ1,2, µ1,3, µ2,1, µ3,1}, where µk,m = µk,m (α, x, y, u, v) is defined in (1.6). Therefore,
it seems reasonable to define a moment matching estimation approach where the population
moments µk,m are matched by their empirical counterparts µk,m, computed as

µk,m = 1
N

N∑
i=1

(
t
(i)
k

)m
. (3.5)

This leads to solve the nonlinear system of equations defined by

µ1,m (α, x, y, u, v) = µ1,m, m = 1, 2, 3,
µk,1 (α, x, y, u, v) = µk,1, k = 2, 3. (3.6)
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The previous problem may not have a feasible solution when real data are considered.
Therefore, in order to obtain an estimate, we follow Carrizosa and Ramı́rez (2012) [12], and
seek the model parameters fulfilling (3.6) as much as possible. Specifically, we propose to
solve the optimization problem

(P )



min δτ (α, x, y, u, v)
s.t. x, u ≤ 0,

y, v ≥ 0,
−x− y ≥ 0,
−u− v ≥ 0,
0 ≤ α ≤ 1,

where δτ (α, x, y, u, v) is the objective function given by

δτ (α, x, y, u, v) = τ


(
µ1,1 − µ1,1

µ1,1

)2

+
(
µ1,2 − µ1,2

µ1,2

)2

+
(
µ1,3 − µ1,3

µ1,3

)2

+

+
(
µ2,1 − µ2,1

µ2,1

)2

+
(
µ3,1 − µ3,1

µ3,1

)2
,

and τ > 0 is a penalty parameter that needs to be tuned. In our experience, we set τ = 1,
which seems to perform well in practice. Clearly, (α̂, x̂, ŷ, û, v̂) solves (3.6) if and only if it
is an optimal solution of (P ), whose optimal value is 0. Problem (P ) is solved in practice
with MATLAB using the command fmincon, which finds the minimum of a constrained
nonlinear multivariable function. Its default optimization methodology is based on a trust-
region-reflective algorithm (see [19], for instance).

Given the sample t(1), . . . , t(N), problem (P ) needs to be solved twice, one per each of the
two canonical representations (3.2) and (3.3). The estimated parameters under the model
with highest log-likelihood are selected, where the likelihood function for each sequence t(i),
i = 1, . . . , N , is given by

f(t(i)|D0, D1) = αeD0t
(i)
1 D1e

D0t
(i)
2 D1 . . . e

D0t
(i)
niD1e.

Therefore, from the assumption over the model, the log-likelihood of the sample is

log f(t(1), . . . , t(N)|D0, D1) =
N∑
i=1

log f(t(i)|D0, D1). (3.7)
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Once the parameters of the non-stationary MAP2 are inferred, it is straightforward to
obtain estimations of the quantities of interest concerning the counting process, namely, the
probability of N failures in (0, t] and the expected number of failures at time t.

The numerical computation of the matrices P (n, t) is based on the uniformization method
addressed in Neuts and Li [77], where the P (n, t) matrices can be written as

P (n, t) =
∞∑
r=0

e−λt
(λt)r
r! V (n, r), (3.8)

where λ is a constant such that λ ≥ maxj{−(D0)jj} and V (n, r) are 2×2 matrices recursively
computed as (see [77]):

S.1 Define
C0 = I + D0

λ
and C1 = D1

λ
.

S.2 Find the smallest index N for which ∑∞
n=N+1 e

−λt (λt)r

r! ≤ ε, where ε is a fixed tolerance
parameter.

S.3 For n = 0, V (0, 0) = I, P (0, t)← V (0, 0)e−λt .

S.4 For n ≥ 1, V (n, 0)← 0, P (n, t)← 0.

S.5 For 1 ≤ k ≤ N and 0 ≤ i ≤ k,

V (i, k) =
min{i,1}∑

j=max{0,i−(k−1)}
V (i− j, k − 1)Cj,

P (i, t) ← P (i, t) + V (i, k)e−λt (λt)
k

k! .

3.3 Numerical results

In this section, we perform a a couple of simulational studies in order to clarify the proposed
estimation approach.

Example 3.1. Consider a sample of operational times as in (3.1), simulated from the MAP2

defined by

α = (0.9252, 0.0748), D0 =
−0.683 0.0026

0 −34.6904

 , D1 =
 0 0.6804

34.5586 0.1318

 , (3.9)
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where N = 1000 and n1 = . . . = n1000 = 100.

The theoretical and sample moments are given by

(µ1,1, µ1,2, µ1,3, µ2,1, µ3,1) = (1.3927, 2.0370, 2.9823, 0.1053, 1.3829),
(µ1,1, µ1,2, µ1,3, µ2,1, µ3,1) = (0.1154, 0.1441, 0.1949, 1.4262, 0.1193).

The solution to problem (P ) under the first canonical form (3.2) was

α̂1 = (0.9219, 0.0781), D̂1
0 =

−0.73921 0.7392
0 −102.6784

 , D̂1
1 =

 0 0
9.0049 93.6735

 ,
with 95% confidence intervals given by

CI95%(α) = (0, 1), CI95%(x) = (−126.7766,−0.7252), CI95%(y) = (0.0001, 57.8303),
CI95%(u) = (−122.4563,−0.7230), CI95%(v) = (0.0001, 65.5339),

and estimated moments given by

(µ̂1,1, µ̂1,2, µ̂1,3, µ̂2,1, µ̂3,1) = (0.1154, 0.1441, 0.1949, 0.1284, 0.1284),

and objective function equal to δ1
τ = 0.8339.

On the other hand, the estimated MAP2 parameters under the canonical form (3.3) were

α̂2 = (0.9365, 0.0635), D̂2
0 =

−0.6801 0.0020
0 −42.1618

 , D̂2
1 =

 0 0.6781
42.1617 0.0001

 ,
with 95% confidence intervals given by

CI95%(α) = (0.01, 0.99), CI95%(x) = (−130.4271,−0.6800), CI95%(y) = (0.0001, 52.7877),
CI95%(u) = (−136.0214,−0.6801), CI95%(v) = (0.0001, 106.6294),

and estimated moments given by

(µ̂1,1, µ̂1,2, µ̂1,3, µ̂2,1, µ̂3,1) = (0.1156, 0.1379, 0.2020, 1.3789, 0.1193),

and objective function δ2
τ = 0.0043. In order to select the appropriate canonical from, the

log-likelihoods as in (3.7) were computed:

log f(t(1), . . . , t(1000)|D̂1
0, D̂

1
1) = −86085.2730, log f(t(1), . . . , t(1000)|D̂2

0, D̂
2
1) = −8126.3579,
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which provides strong evidence in favor of the estimate {α̂2, D̂2
0, D̂

2
1}. We calculated the

estimations of (3.9) under different values of τ .

Finally, in order to test the influence of the tuning parameter, τ , consider Table 3.1, which
shows the estimations of the parameters under different values of τ , τ ∈ {1, 10, 50, 100}. As
can be deduced, in this case and for this sample, the choice of τ is not relevant, with the
exception of τ = 50, which provides a solution with permuted states.

τ α̂2 D̂2
0 D̂2

1

1 (0.9365, 0.0635)
 −0.6801 0.0020

0 −42.1618

  0 0.6781
42.1617 0.0001


10 (0.9365, 0.0635)

 −0.6801 0.0020
0 −42.1607

  0 0.6781
42.1606 0.0001


50 (0.0635, 0.9365)

 −0.42.1609 0.1182
0 −0.6801

  0 42.0427
0.68 0.0001


100 (0.9365, 0.0635)

 −0.6801 0.0020
0 −42.1607

  0 0.6781
42.1607 0.0001



Table 3.1: Point estimates of the model parameters under an assortment of values of τ .

Example 3.2. In this example,unlike the previous one, we also illustrate the estimated
probabilities P (n, t) for n = 1, 3, 5.

Consider a sample of operational times as in (3.1), simulated from the MAP2 defined by

α = (0.3172, 0.6828), D0 =
−1.6290 0.1326

0 −5.0987

 , D1 =
 0 1.4964

4.6152 0.4835

 , (3.10)

where N = 1000 and n1 = . . . = n1000 = 200.

The theoretical and sample moments are given by

(µ1,1, µ1,2, µ1,3, µ2,1, µ3,1) = (0.3337, 0.1499, 0.0812, 0.4743, 0.3574),
(µ1,1, µ1,2, µ1,3, µ2,1, µ3,1) = (0.4731, 0.2653, 0.1602, 0.3641, 0.4590).
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The solution to problem (P ) under the first canonical form (3.2) was

α̂1 = (0.4202, 0.5798), D̂1
0 =

−1.5882 1.5882
0 −4.7951

 , D̂1
1 =

 0 0
1.4641 3.3311

 ,
with 95% confidence intervals given by

CI95%(α) = (0, 1), CI95%(x) = (−94.2810,−1.6122), I95%(y) = (1.1068, 67.6450),
CI95%(u) = (−92.9675,−1.6911), CI95%(v) = (0.0001, 69.0836),

and estimated moments given by

(µ̂1,1, µ̂1,2, µ̂1,3, µ̂2,1, µ̂3,1) = (0.4733, 0.2653, 0.1602, 0.6470, 0.6470),

and objective function equal to δ1
τ = 0.0262.

On the other hand, the estimated MAP2 parameters under the canonical form (3.3) were

α̂2 = (0.3819, 0.6181), D̂2
0 =

−1.5885 0.0552
0 −4.8025

 , D̂2
1 =

 0 1.5334
4.3226 0.4699

 ,
with 95% confidence intervals given by

CI95%(α) = (0.1949, 0.99), CI95%(x) = (−98.5473,−1.5887), CI95%(y) = (0.0543, 57.4087),
CI95%(u) = (−107.2629,−1.7151), CI95%(v) = (0.0001, 51.2046),

and estimated moments given by

(µ̂1,1, µ̂1,2, µ̂1,3, µ̂2,1, µ̂3,1) = (0.4731, 0.2653, 0.1602, 0.3641, 0.4590),

and objective function δ2
τ = 1.0464× 10−9. In order to select the appropriate canonical from,

the log-likelihoods as in (3.7) were computed:

log f(t(1), . . . , t(1000)|D̂1
0, D̂

1
1) = −4.1510×105, log f(t(1), . . . , t(1000)|D̂2

0, D̂
2
1) = −1.0013×1019,

which provides strong evidence in favor of the estimate {α̂2, D̂2
0, D̂

2
1}.

To illustrate the estimated probabilities of having n = 1, 3, 5 failures over time, we calculate
the matrices P (n, t) implementing the procedure introduced in Section 3.2, with a tolerance
parameter fixed as ε = 0.001. Figure 3.1 illustrates the values of the probabilities (1.9). The
solid and dashed lines show the theoretical probabilities of the original MAP2, {α, D0, D1},
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given in (3.10), and the estimated MAP2, {α̂2, D̂2
0, D̂

2
1} respectively, and the dotted line rep-

resents the empirical probabilities of the simulated data. We can observe that the estimating
procedure performs reasonably providing an acceptable fit for the given data.
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Figure 3.1: Estimated probabilities P (N(t) = n | N(0) = 0) for n = 1, 3, 5 and t > 0.

Example 3.3. In this example we discuss the computational cost of the proposed algorithm.
To such aim, consider Table 3.2, which depicts the computational times in seconds for N ∈
{50, 100, 500, 1000} and n ∈ {50, 100, 150, 200}. Note that for N = {50, 100} the execution
time tends to decrease as n increases, whereas for N = {500, 1000}, the execution time tends
to increase as n increases.

N

50 100 500 1000

n

50 141,7047 128,1592 143,5250 169,3486
100 132,1727 131,1166 123,7231 187,7061
150 131,8070 130,4978 143,5805 187,6100
200 131,9233 117,4214 161,2899 193,1425

Table 3.2: Computational times for (N, n), where N ∈ {50, 100, 500, 1000} and n ∈
{50, 100, 150, 200}.

To construct Table 3.2, we selected 600 randomly chosen starting points for which the stopping
criteria were established as follows:

1. MaxFunEvals. The bound on the number of function evaluations is fixed to 500.
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2. MaxIter. The bound on the number of solver iterations is set to 400.

3. TolFun. The lower bound on the change in the value of the objective function during
a step has been set to 1.000× 10−6.

4. TolX. The lower bound on the stepsize has been set to 1.000× 10−6.

5. TolCon. The upper bound on the magnitude of any constraint functions has been fixed
as 1.000× 10−6.

The computational times (and all calculations) were calculated using MATLAB R© version
7.1.0.246 (R14) on a PC with processor Intel Core i7-3537U, 2.5 GHz.

3.4 Illustration with a real data set

In this section we first show a numerical example of parameter estimation for a non-stationary
MAP2 from a real data set provided by the Spanish private electrical utility company, Iber-
drola. Second, we highlight important quantities regarding the counting process for the
estimated non-stationary MAP2, and third, we compare the obtained results with those
obtained by its stationary counterpart.

3.4.1 Data description

The electrical failure times provided by the company Iberdrola, are collected from an elec-
trical framework composed of 926 components that supply energy. The times in which the
components fail are recorded. These components are generators that are assumed to be
built in the same way; that is, they are structurally the same. If an electrical component
or generator fails it is repaired and restarted. The repair times are considered negligible in
comparison with the operational times.

The data presents an structure as in (3.1), where

N = 926,
min{n1, . . . , nN} = 1, (3.11)
max{n1, . . . , nN} = 42,
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where ni, for i = 1, ..., N , denotes the number of observed operational times of the i-th
component.

Consider the random variables {Tk}k≥1 with sample values given by {t(i)k }i∈{1,...,N}. Note
from (3.11) that not all {Tk}k≥1 will be characterized by a total of N = 926 sample values,
and in particular the random variables {Tk}k≥1, for k close to 42 will be characterized by few
samples, a fact that affects to the computation of empirical quantities, as will be seen. In
this work, components i ∈ {1, . . . , 926} for which ni < 3 (16 out of 926 components) will not
be considered in the estimation approach described in Section 3.2 since the corresponding
operational times for computing the sample moments (3.5) are missing.

The 926 components are considered to be equal, since the company states they are built
with the same structure. Therefore the assumption over the model described in Section 3.1
is fulfilled.

The correlation matrix of the random vector (T1, T2, . . . T42) was estimated. As com-
mented in Section 3.4.1 the sequences of sample values {t(i)k }i∈{1,...,N}, k ∈ {1, . . . , 42}, may
possess a length less than 926. In our experiment, only samples of length larger than 30 (a
total of 25 sequences out of 42) will be considered. This led to a final estimated correlation
matrix of size 25 × 25 (that is, the variables T26, . . . , T42 were not taken into account for
being characterized by a low number of sample data). We found that a total of 32 (out of
300) pairs (Tk, Tl), k, l ∈ {1, . . . , 25}, k < l, presented a correlation coefficient ranging in
[0.25, 0.7194]. In addition, 11 (out of 300) pairs had a correlation coefficient which ranged in
[−0.3266,−0.25]. These results provide evidence enough to consider a correlation structure.
Therefore, it is necessary to use a model to fit the data that allows dependent failures.

Finally, a Kolmogorov-Smirnov (K-S) test was performed to determine if the samples
{t(i)k }i∈{1,...,N} and {t(i)l }i∈{1,...,N}, for k, l ∈ {1, . . . , 42} and k < l, are drawn from the same
underlying continuous populations. As in the previous discussion, only samples of length
larger than 30 were considered for testing the equality in distribution. Our findings show that
the equality in distribution is rejected for the 52% of pairs of such samples, which implies
that the inter-failure times cannot be consider identically distributed nor independent.
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3.4.2 Performance estimation under the non-stationary MAP2

We show in this section how to fit the non-stationary MAP2 to the statistical pattern of the
data. The sample moments needed for estimating the model are

(µ1,1, µ1,2, µ1,3, µ2,1, µ3,1) = (79.226, 7.478× 103, 7.2911× 103, 69.0582, 67.5977).

The inference approach described in the previous section provided the following estimates
of the non-stationary MAP2 in the first canonical form:

α̂1 = (0.4608, 0.5392), D̂1
0 =

−0.2394 0.1345
0 −0.0104

 , D̂1
1 =

0.1049 0
0.0067 0.0037

 ,
with estimated moments given by

(µ̂1,1, µ̂1,2, µ̂1,3, µ̂2,1, µ̂3,1) = (78.8950, 7.535× 103, 7.2633× 103, 69.0864, 67.5712),

and objective function equal to δ1
τ = 9.0324× 10−5.

On the other hand, the estimated MAP2 parameters under the second canonical form
were

α̂2 = (0.8207, 0.1793), D̂2
0 =

−0.0104 0.0104
0 −16.5378

 , D̂2
1 =

 0 0
11.7651 4.7727

 ,
with estimated moments given by

(µ̂1,1, µ̂1,2, µ̂1,3, µ̂2,1, µ̂3,1) = (78.7930, 7.5583× 103, 7.2513× 103, 68.3119, 68.3119),

and objective function δ2
τ = 4.0324× 10−4. The log-likelihoods as in (3.7) were

log f(t(1), . . . , t(N)|D̂1
0, D̂

1
1) = −5.3790× 104, log f(t(1), . . . , t(N)|D̂2

0, D̂
2
1) = −5.7335× 104,

which provides evidence in favor of the estimate {α̂1, D̂1
0, D̂

1
1}.

Dashed line in Figure 3.1 depicts the estimated distribution functions of the random
variables T1, T2 and T3 under the non-stationary MAP2 (see 1.5), while the solid line shows
the empirical cdfs. It can be seen how the fit to the cdfs of the consecutive times between
failures looks reasonable. In order to validate the results, a χ2-goodness-of-fit was performed.
The obtained p−values, which are shown in Figure 3.1, imply that the null hypotheses cannot
be rejected at at 0.001 significance level.
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Figure 3.1: Estimated cdf (dashed line) under the non-stationary MAP2 versus the empirical
cdf (solid line) of the random variables T1 (time until the first failure, top panel), T2 (time
between the first and second failure, central panel), and T3 (time between the second and
third failure, bottom panel).
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We focus now on the quantities of interest associated to the counting process. Given the
selected estimate {α̂1, D̂1

0, D̂
1
1}, the algorithm to calculate the matrices P (n, t) introduced in

Section 3.2 is implemented, with a tolerance parameter fixed as ε = 0.001 (as in Example
3.2). Figure 3.2 shows the values of the probabilities (1.9) for an assortment of values (n, t),
n ∈ N and t > 0.
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Figure 3.2: Probabilities P (N(t) = n | N(0) = 0) for n ∈ N and t > 0.

Figure 3.3 shows the probabilities of having n = 1, 2, 3, 4, 5 failures over time. It can be
observed that the probability of having 1 failure is high at first, but then decreases slowly
over time. However, the probability of having 2, 3, 4 or 5 failures slowly increases. Finally,
Figure 3.4 depicts the expected number of failures at time t, E (N(t) | N(0) = 0), for a
sequences of times t > 0, and as expected, such value escalates as the time progresses.
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Figure 3.3: Probabilities P (N(t) = n | N(0) = 0) for n = 1, 2, 3, 4, 5 and t > 0.

⏐

Figure 3.4: Expected number of failures at time t, E (N(t) | N(0) = 0).

3.4.3 Comparison with the stationary MAP2

In this section we compare some of the previous results obtained under the non-stationary
MAP2 with those provided by its stationary counterpart. As commented at the end of
Section 3.1.1, the stationary version of the MAP2 turns out a less versatile process since the
sequence of random variables {Tk}k≥0 are assumed to be equally distributed as a random
variable T ∼ PH (φ, D0). From the discussion at the end of Section 3.4.1 about equality
in distribution, it is thus expected that the non-stationary MAP2 outperforms its stationary
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version when fitting the considered real data set.

The stationary MAP2 is completely characterized by the sequence {µ1, µ2, µ3, ρ1}, where
µm = E (Tm), m ∈ N, and ρ1 is the first-lag auto-correlation coefficient, see Bodrog et al.
[7]. Therefore, the approach described in Carrizosa and Ramı́rez-Cobo [12], based on the
matching of the population moments {µ1, µ2, µ3, ρ1} by their empirical estimates is applied.
A remark concerning the computation of the sample moments {µ1, µ2, µ3, ρ1} from a sample
as in (3.1) is needed at this point. Since in this case the variables {Tk}k≥0 are assumed to
be equally distributed, it is reasonable to estimate µm as

µm =
∑N
j=1

∑nj

i=1

(
t
(j)
i

)m
∑N
j=1 nj

,

that is, by considering all observations t(j)i generated from the same random variable T . In
the case of the considered real data set, the values

µ1 = 56.8406, µ2 = 8.2932× 103, µ3 = 1.956× 106

were obtained.

The computation of an empirical estimate of the first-lag auto-correlation coefficient is
not so straightforward. On one hand, a data structure as in (3.1) leads to N different
estimates of ρ1, and on the other hand, for those components i ∈ {1, . . . , N} for which ni

is small the computation of an estimate of ρ1 is not possible. In this work, two different
estimates for ρ1 were considered. First, denote by ρ̂1 the estimated first-lag auto-correlation
coefficient of the sample t(i) for which ni = max{n1, . . . , nN} (that is, the estimated ρ1 is
that of the longest sample t(i)). The second estimate of ρ1, noted as ρ̃1, is given by median
of the auto-correlation coefficients of the 1% of the longest samples t(i), i ∈ {1, . . . , N}. In
our real data base, the values

ρ̂1 = −0.2293, ρ̃1 = 0.1778

were obtained.

Under the choice ρ1 = ρ̂1, the fitted stationary MAP2 led to the estimated moments

(µ̂1, µ̂2, µ̂3, ρ̂1) =
(
56.8403, 8.2931× 103, 1.9597× 106, 0

)
Similarly, under the choice ρ1 = ρ̃1, the results were

(µ̂1, µ̂2, µ̂3, ρ̂1) =
(
56.09, 8.5231× 103, 1.9343× 106, 0.1776

)
.
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Note that under the first election of ρ1, the sample moments µm, m = 1, 2, 3, are correctly
matched; however, the estimate of the empirical first-lag auto-correlation coefficient is poor.
In the second case, the empirical first-lag auto-correlation coefficient is well fitted at the
expense of a poorer estimation of the sample moments. In order to analyze the cost of
considering the random variables {Tk}k≥0 as equally distributed, see Figure 3.5, which depicts
the empirical distribution function of the random variables T1, T2 and T3 (in solid line) and
the estimated counterparts by the stationary MAP2 under the two possible choices of ρ1,
ρ̂1 and ρ̃1 (in dotted and dashed lines, respectively). The three panels illustrate how the
stationary MAP2 performs poorly than the non-stationary version (see Figure 3.1), especially
in the case of T1, which clearly follows a different distribution from that of the stationary T .

3.5 Chapter summary

In this chapter we have presented a moments method estimation procedure to fit the non-
stationary second-order MAP to sequences of operational times of N electrical components
that are structurally equal. Unlike previous approaches, here the operational times are con-
sidered to be dependent and not identically distributed, an assumption which is realistic in
practice. We have also provided the correlation function for the presented data framework.
From the estimated parameters of the model, a number of key performance measures re-
garding the counting process, as the probability of N failures or the expected number of
failures at time t, are inferred. The suitability of our approach is illustrated by a simulated
example and a real data set example, with operational times provided by the Spanish elec-
trical group Iberdrola. The example highlights the superiority, in terms of modeling, of the
non-stationary MAP over its stationary version.

Appendix

3.A Proof of formula (3.4)

The correlation between Tk and Tk+l, is given by the following formula

corr(Tk, Tk+l) = E(TkTk+l)− E(Tk)E(Tk+l)
s.d.(Tk)s.d.(Tk+l)

, (3.12)
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where s.d. stands for standard deviation. We know from (1.6), that

E (Tk) = α (P ?)k−1 (−D0)−1 e, (3.13)
E
(
T 2
k

)
= 2!α (P ?)k−1 (−D0)−2 e

then

s.d(Tk) =
√
E (T 2

k )− E (Tk)2

=
√

2α (P ?)k−1 (−D0)−2 e−
(
α (P ?)k−1 (−D0)−1 e

)2
. (3.14)

To calculate E(TkTk+l), we follow page 83 of Rodŕıguez [96], where a close form expression
for the expectation of the product of two different phase type random variables is provided.
Then, using the parameters that define Tk, we obtain,

E(TkTk+l) = α(P ?)k−1 (−D0)−1 (P ?)l (−D0)−1 e. (3.15)

Finally, substituting (3.13), (3.14) and (3.15) in (3.12), we obtain (3.4).
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Figure 3.5: Empirical cdf of the random variables T1, T2 and T3 (in solid line in the top,
central and bottom panels, respectively) and the estimated counterparts by the stationary
MAP2 under the two possible choices of ρ1, ρ̂1 and ρ̃1 (in dotted and dashed lines, respec-
tively).



Chapter 4

Non-identifiability of the two-state
BMAP

The Batch Markovian Arrival Process (BMAP) was introduced in Section 1.2.3.2 as a gen-
eralization of the MAP process that allows for correlated batch event occurrences. Let us
recall it, the BMAPm(k) is a doubly stochastic process {J(t), N(t)}, where J(t) represents
an irreducible, continuous, Markov process with state space S = {1, . . . ,m} and N(t) is
a counting process where the transitions from (i, n) to (j, n + k0) correspond to batch ar-
rivals of size k0 ≤ k, i, j ∈ S. The BMAPm(k) can be characterized by rate matrices
B = {D0, D1, . . . , Dk} with matrices elements given by

(D0)ii = −λi, i = 1, 2,
(D0)ij = λipij0, i, j = 1, 2, i 6= j,

(Dl)ij = λipijl, i, j = 1, 2, 1 ≤ l ≤ k.

BMAPs are highly-parametrized models where, in practice, only inter-event times and
batch sizes are usually observed. Therefore, as discussed in Section 1.3 and Chapter 2 for
the MAP, which are BMAPs with arrivals of size 1, it is common to encounter identifiability
problems. In the context of BMAPs such a property may be formulated along the lines
of Rydén [94] or Ramı́rez-Cobo et al. [87]. Specifically, if Tn and Bn represent the time
between the (n − 1)-th and n-th event occurrences, and the batch arrival size of the n-th
event occurrence in a BMAP noted by B, then B is said to be non-identifiable if there exits
a differently parametrized BMAP, noted as B̃, such that

(T1, . . . , Tn, B1, . . . , Bn) d=
(
T̃1, . . . , T̃n, B̃1, . . . , B̃n

)
, for all n ≥ 1, (4.1)

77
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where d= denotes equality of joint distributions, and T̃n and B̃n represents the inter-event
times and batch sizes of the BMAP noted as B̃.

While performance analysis for models incorporating BMAPs is a well developed area,
less progress has been made on statistical estimation for such models (for estimation of the
MAP, see Kriege and Buchholz [52] and the references given there and Section 1.3). The
study of the identifiability is crucial when estimation of the process parameters is to be con-
sidered. In particular, the non-identifiability of a process has serious negative consequences:
the likelihood function has infinitely more global maxima and may be highly multimodal,
implying that standard methods (as the EM algorithm) will be strongly dependent on the
starting values, running the risk of getting stuck at a poor local maximum. However, nei-
ther of the previous studies considered the inclusion of batch arrivals, we refer the reader to
Section 1.3 and the introduction of Chapter 2 for more detail in this topic.

In this chapter we address the problem of identifiability of the stationary version of
the two-state BMAP, BMAP2(k), where k is the maximum batch arrival size. Under the
assumptions that the inter-event times and batch sizes are observed, we prove that the
stationary BMAP2(k) is a non-identifiable process for k ≥ 2. We also provide a method to
obtain an equivalent BMAP2(k) to a given one, considering the k BMAP2(2)s obtained as
combinations of the rate matrices defining the given BMAP2(k), for k ≥ 2.

This chapter is organized as follows. Section 4.1 contains some novel results concerning
the batches size distribution. In Section 4.2 our main result is stated and proved, namely,
the BMAP2(2) is a non-identifiable process. Section 4.3 generalizes the previous result to
the case k ≥ 3. Finally, in Section 4.4 we provide conclusions to this chapter. Most of the
results of this chapter can be found in Rodŕıguez, Lillo and Ramı́rez-Cobo [97].

4.1 Distributional properties of the batch arrival size

This section generalizes previous results on identifiability of MAPs to the case where, not only
the inter-event times but also batch arrivals are observed. As will be shown, our approach
involves looking at the distributional properties of the stationary batch arrival size, B.

First, the probability function of B is given by

P (B = l) = φ(−D0)−1Dle, for l = 1, . . . , k,

where (−D0)−1Dl is the transition probability matrix of arrivals of size equal to l.
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from which the moments of B are obtained as

E[Bn] = φ(−D0)−1D?
ne,

where D?
n = ∑k

l=1 l
nDl and φ = φBMAP is the stationary probability vector defined in (1.14)

as
φ = (πDe)−1πD,

where π = πBMAP is the stationary probability vector of the underlying Markov process
J(t).

Second, the joint moment generating function of the inter-event times and batch sizes in
the stationary version of the process, (T ,B) where T = (T1, . . . , Tn) and B = (B1, . . . , Bn),
is established by the next Lemma.

Lemma 4.1. The moment generating function of the n first inter-event times and batch
sizes of a stationary BMAP2(k) is given by

f ∗T ,B(s, z) = φ(s1I −D0)−1ξ(z1) . . . (snI −D0)−1ξ(zn)e, (4.2)

where s = (s1, . . . , sn), z = (z1, . . . , zn) and ξ(zi) = ∑k
l=1Dlz

l
i, for i = 1, ..., n.

See Appendix 4.A for the proof. The auto-correlation function of the batch sizes is
obtained as an immediate result of the previous Lemma.

Lemma 4.2. Let Bn represent the n-th batch event occurrence size in the stationary version
of the BMAP2(k). Then, the auto-correlation function, ρ(B1, Bn) is given by

ρ(B1, Bn) = φ(−D0)−1D?
1 [(−D0)−1D]n−2 (−D0)−1D?

1e− µ2
B

σ2
B

, (4.3)

where µB = E(B) and σ2
B = V ar(B).

See Appendix 4.B for the proof. The auto-correlation function of the time between the
(n− 1)-th and n-th event occurrences, in the stationary version ρ(T1, Tn), is given by,

ρ(T1, Tn) = µTπ [(−D0)−1D]n−1 (−D0)−1e− µ2
T

σ2
T

, (4.4)

where µT = E(T ) and σ2
T = V (T ) are the mean and variance of the inter-event times in

its stationary version. A detailed analysis for the correlation structure of (4.3) and (4.4) is
given in Chapter 5.

We should point out here that the lemmas previously stated also hold for the case of the
BMAPm(k), where m ≥ 2.
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4.2 Non-identifiability of the BMAP2(2)

As commented previously, the identifiability of a process is of critical importance when
inference is considered since the lack of a unique representation implies infinite solutions and
possibly non-convergence of the typical maximum likelihood approaches. In this section we
prove the non-identifiability of the stationary BMAP2(2), or in other words, the existence of
a differently parametrized representation of the process.

4.2.1 Preliminaries

Consider the non-identifiability definition given by (4.1). From now on, the notation B ≡ B̃
will be used to represent equivalence between two given BMAP2(k)s with representations
B and B̃. Note that the equality in distribution (4.1) is equivalent to the equality of the
moment generating functions defined in (4.2),

f ∗T ,B(s, z) = f ∗
T̃ ;B̃(s, z), (4.5)

for all s = (s1, . . . , sn), z = (z1, . . . , zn) and all n ≥ 1. As will be seen, the proof for the non-
identifiability of the BMAP2(2) consists on the existence of infinite solutions to the system
of equations given by (4.1) in terms of the Laplace transforms.

From now on, a stationary BMAP2(2) will be represented by B = {D0, D1, D2} where

D0 =
x y

r u

 , D1 =
w m

v q

 , D2 =
n −x− y − w −m− n
t −r − u− v − q − t

 , (4.6)

where without loss of generality it is assumed that x ≤ u. According to (1.11),

x = −λ1, y = λ1p120, w = λ1p111, m = λ1p121, n = λ1p112,

r = λ2p210, u = −λ2, v = λ2p211, q = λ2p221, t = λ2p212.

The stationary probability distribution φ = (φ, 1− φ) is computed from (1.14) in terms
of the model parameters as

φ = rn+ rw − xt− xv
ux− yr + rn+ rw − xt− xv − yt− yv + un+ uw

.

Given a BMAP2(2) defined by B = {D0, D1, D2}, then it is clear that M = {R0 =
D0, R1 = D1 + D2} defines a MAP2, where ocurrences of batches 1 or 2 are considered as
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being equal, that is

R0 = D0 =
x y

r u

 , R1 = D1 +D2 =
w + n −x− y − w − n
v + t −r − u− v − t

 . (4.7)

From now on, a MAP2 as in (4.7) constructed from a BMAP2(2) defined by B =
{D0, D1, D2}, will be called underlying MAP2 to a given BMAP2(2). Assume we look for a
BMAP2(2) defined by B̃ = {D̃0, D̃1, D̃2} that is equivalent to B according to Definition 4.1.
In particular the equality

(T1, . . . , Tn) d= (T̃1, . . . , T̃n), for all n ≥ 1,

must hold, and therefore the underlying MAP2 defined by M̃ = {R̃0 = D̃0, R̃1 = D̃1 + D̃2}
must be equivalent to M, according to Definition 1 in Ramı́rez-Cobo et al. [87]. Our proof
for the non-identifiability of the BMAP2(2) will rely on this result about the equivalence of
the underlying MAP2s. In particular, in order for two BMAP2(2)s, B and B̃, to be equivalent,
the equality in distribution

T1
d= T̃1,

must hold, or equivalently,

s(α + γ) + η

s2 + sυ + η
= s(α̃ + γ̃) + η̃

s2 + sυ̃ + η̃
for all s, (4.8)

where α, γ, η, υ (respectively α̃, γ̃, η̃, υ̃) are given by

α = φ(m+ w − v − q) + (v + q),
γ = φ(−m− w − x− y + q + u+ v + r)− (q + u+ v + r), (4.9)
η = xu− yr,
υ = −u− x.

Define the value of τ as
τ = η + (α + γ)(α + γ − υ). (4.10)

Ramı́rez-Cobo and Lillo [91] determined that (4.8) holds if and only if
−1 0 0
−υ α + γ −1
−η η α + γ − υ



α̃ + γ̃

υ̃

η̃

 =


−α− γ
−η
0

 (4.11)
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where τ is the determinant of the coefficient matrix associated to the linear system (4.11).
Then, if τ 6= 0, the system (4.11) possesses a unique solution given by

α̃ + γ̃ = α + γ, η̃ = η, υ̃ = υ.

Otherwise, we have that η = (α+γ)(υ−α−γ), and there are infinite solutions, specified by

α̃ + γ̃ = α + γ, η̃ = (α + γ)(υ̃ − α− γ), for υ̃ > 0.

In Ramı́rez-Cobo et al. [87], a procedure to construct an equivalent MAP2 to a differently
parametrized given MAP2 is provided, under the assumption that the MAP2 parameters
satisfy τ 6= 0. In this work we focus on BMAP2(2)s for which their underlying MAP2s also
satisfy τ 6= 0. It can be proven that if τ = 0, then the inter-event times (T1, T2, . . . , Tn, . . .) are
independent and identically PH -distributed random variables with representation {φ, D0}.
Since the identifiability of the PH -distribution has been widely studied in the literature
(see O´ Cinneide [79] or Rydén [94]) and the independence of the inter-event times may be
seen not interesting from a modeling viewpoint, then for the sake of abbreviation we do not
consider such cases.

Consider now the equality (4.1) for n = 1, which from Lemma 4.1 is equivalent to

φ(sI −D0)−1ξ(z)e = φ̃(sI − D̃0)−1ξ̃(z)e,

or alternatively, to

z(sα + β) + z2(sγ − β + η)
s2 + sυ + η

= z(sα̃ + β̃) + z2(sγ̃ − β̃ + η̃)
s2 + sυ̃ + η̃

, (4.12)

where α, γ, η, υ (respectively α̃, γ̃, η̃, υ̃) are given by (4.9), and β (respectively β̃) is given
by

β = φ(−uw + yv − um+ yq − rw + xv − rm+ xq) + (rw − xv + rm− xq). (4.13)

Note that since D0 is invertible, then necessarily η 6= 0. Define next the following three
expressions:

C1 = αη − β(α + γ),
C2 = β + α(α + γ − υ),
C3 = η − β + γ(γ − υ + α).
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It can be proven that the system of equations defined by (4.12) possesses a unique solution
given by

α̃ = α, β̃ = β, γ̃ = γ, η̃ = η, υ̃ = υ, (4.14)

if and only if at least one of the Cis is different from zero, for i = 1, 2, 3.

Otherwise, when C1 = C2 = C3 = 0, an infinite number of solutions to (4.12) are found:

α = α̃, β̃ = β − α(υ − υ̃), γ = γ̃, η̃ = η − (α + γ)(υ − υ̃), for υ̃ > 0.

Consider now (4.1) for n = 2. We proceed analogously to the case n = 1 to find that
(4.5) becomes

φ(s1I −D0)−1ξ(z1)(s2I −D0)−1ξ(z2)e = φ̃(s1I − D̃0)−1ξ̃(z1)(s2I − D̃0)−1ξ̃(z2)e, (4.15)

where

φ(s1I −D0)−1ξ(z1)(s2I −D0)−1ξ(z2)e =
z1z2(s1δ1 + s2δ2 + s1s2δ3 + δ4) + z1z

2
2(s1(αη − δ1) + s2δ5 + s1s2δ6)

(s2
1 + s2

2)η + s2
1s

2
2 + (s2

1s2 + s1s2
2)υ + (s1 + s2)ηυ + s1s2υ2 + η2 +

z1z
2
2(βη − δ4) + z2

1z2(s1δ7 + s2δ8 + s1s2δ9 + δ10)
(s2

1 + s2
2)η + s2

1s
2
2 + (s2

1s2 + s1s2
2)υ + (s1 + s2)ηυ + s1s2υ2 + η2 +

z2
1z

2
2(s1(ηγ − δ7) + s2δ11 + s1s2δ12 + η2 − ηβ − δ10)

(s2
1 + s2

2)η + s2
1s

2
2 + (s2

1s2 + s1s2
2)υ + (s1 + s2)ηυ + s1s2υ2 + η2 ,

(respectively the right-hand side of (4.15)) where δi for i = 1, . . . , 12 are given by

δ1 = β(q −m) + (φ(w − v − q +m) + v)(vy −mu+ qy − uw)
−m(qx−mr − rw + vx),

δ2 = β(q + w) + (φ(x+ y − r − u) + (r − x))(mv − qw),
δ3 = α(q + w) +mv − qw,
δ4 = β(mr − qx− uw + vy) + η(mv − qw),
δ5 = φ((r + u)(mr +mu− qx− qy) + (x+ y)(−vx− vy + wr + wu))

+(r + u)(qx−mr) + (x+ y)(vx− wr)− δ2,

δ6 = φ((r + u)(q −m) + (x+ y)(v − w))− q(r + u)− v(x+ y)− δ3, (4.16)
δ7 = (γ − n)(rm+ rw − xq − xv)− β(t− n) + t(−mu+ qy − uw + vy),
δ8 = (η − β)(q + v) + (φ(nr + nu− tx− ty) + (tx− nr))(q + v −m− w),
δ9 = γ(q + v) + (φ(t− n)− t)(q + v −m− w),
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δ10 = η(mr − qx− vx+ rw +mt+ tw − nq − nv)
−β(mr − qx− vx+ rw + nr + nu− tx− ty),

δ11 = (φ(−nr − nu+ tx+ ty) + (rn− tx))(r + u− x− y)
+(r + u)(β − η)− δ8,

δ12 = −γ(r + u) + (r + u− x− y)(φ(n− t) + t)− δ9,

respectively, δ̃i for i = 1, . . . , 12. Then, it is tedious but straightforward to prove that if
C1 6= 0 or C2 6= 0 or C3 6= 0, then (4.14) leads to (for a detailed proof see Appendix 4.C)

δ̃i = δi, for i = 1, . . . , 12,

and therefore, in any of these cases the solution to the equality in distributions (4.1) for
n = 1, 2 is

α̃ = α, β̃ = β, γ̃ = γ, η̃ = η, υ̃ = υ, δ̃i = δi, for i = 1, . . . , 12. (4.17)

Given a known BMAP2(2) defined by B = {D0, D1, D2} (or alternatively by x, y, . . . , t)
as in (4.6), then the set of equations given by (4.17) provides the solutions B̃ = {D̃0, D̃1, D̃1}
(alternatively x̃, ỹ, . . . , t̃) of a differently parametrized BMAP2(2), such that (4.5) holds for
n = 1 and n = 2. In Ramı́rez-Cobo et al. [87] the analogous equations for the MAP2 are
solved. Then, it is proved there that the (infinite) solutions also satisfy the equations for
n ≥ 3 and therefore, the MAP2 is concluded to be non-identifiable. However, due to the
complexity of the set of expressions (4.9), (4.13) and (4.16), this approach was unfeasible in
practice, since it was not possible to (symbolically) obtain the values of B̃ = {D̃0, D̃1, D̃1}
(x̃, ỹ, . . . , t̃) that solve the system (4.17) via standard symbolic packages as Maple or Matlab.
In consequence, a different approach for solving the identifiability problem of the BMAP2(2)
needs to be considered. The proof of the main result in next section shows such a procedure.

Finally, after extensive simulational experiments, it has been checked that the most
frequent BMAP2(2)s are those for which C1 · C2 · C3 6= 0. In what follows we assume that a
given BMAP2(2) satisfies this property together with the previously discussed τ 6= 0. Note
that τ = C2 + C3, and therefore the assumption that τ 6= 0 combined with C1 · C2 · C3 6= 0
leads to C1 · C2 · C3 6= 0 and C2 6= −C3. The remaining cases (that is, C1 · C2 · C3 = 0, but
still τ 6= 0) are considered in the Appendix 4.D.
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4.2.2 Main result

The next result provides the solutions to (4.17).

Proposition 4.1. Let B be a BMAP2(2) as in (4.6) with underlying MAP2, M, as in (4.7).
Assume that

A1. C1 · C2 · C3 6= 0.

A2. M satisfies τ 6= 0.

Let ũ < 0 and r̃ > 0, and let x̃(ũ, r̃), ỹ(ũ, r̃), ṽ(ũ, r̃), w̃(ũ, r̃), m̃(ũ, r̃), q̃(ũ, r̃), ñ(ũ, r̃) and
t̃(ũ, r̃) be defined as

x̃(ũ, r̃) = −ũ+ x+ u,

ỹ(ũ, r̃) = −(ũ2 − ũx− ũu+ xu− ry)
r̃

,

q̃(ũ, r̃) = h1(φ̃, x̃, ỹ, D0, D1, D2),
m̃(ũ, r̃) = h2(φ̃, x̃, ỹ, q̃, D0, D1, D2),
ñ(ũ, r̃) = h3(φ̃, x̃, ỹ, q̃, D0, D1, D2),
t̃(ũ, r̃) = h4(φ̃, x̃, ỹ, q̃, D0, D1, D2),

w̃(ũ, r̃) =
(
xun+ ryt− ũxw + ryv + ũxv + ũuv − ryn+ ur̃t− r̃yv + ũr̃n

ω

+ −ũr̃v − r̃yt+ 2r̃xu− r̃xw − ũr̃t+ ur̃v − ryw + ũxt− ũuw
ω

+ −xu
2 − ũxn− rr̃y + rxr̃ + ruy − rxu+ ũ2w + ũ2n− rũ2

ω

+ −ũ
2t− ũ2v + ũ3 + r̃u2 − r̃2x− 2ũ2u+ r2y + ũu2 − 2ũr̃x

ω
(4.18)

+ −r̃
2u− 3ũr̃u+ 2ũxu+ 2ũ2r̃ + rũu− ũr̃r − ũ2x+ r̃2ũ

ω

+ ũut+ rũx− r̃xn+ xuw − ũun+ rur̃ + rr̃w + rr̃n

ω

+ −xuv − xut+ ũr̃w − ryũ
ω

)
− ñ(ũ, r̃),

ṽ(ũ, r̃) =
(
r̃(−xv − xt− yv − yt+ rw + rn+ uw + un− r̃w − r̃n+ rr̃ + rũ)

ω

+ r̃(ũu− r̃2 − 2ũr̃ + ur̃ + r̃v + r̃t+ ũv + ũt− ũw − ũn− ũ2)
ω

)
− t̃(ũ, r̃),



CHAPTER 4. NON-IDENTIFIABILITY OF THE BMAP2(K) 86

where
ω = −ũu− ur̃ + xu+ ũ2 + 2ũr̃ + r̃2 − ũx− r̃x− ry. (4.19)

Then, the set of values {ũ, r̃, x̃(ũ, r̃), ỹ(ũ, r̃), ṽ(ũ, r̃), w̃(ũ, r̃), m̃(ũ, r̃), q̃(ũ, r̃), ñ(ũ, r̃), t̃(ũ, r̃)}
solves the system of equations given by (4.17), for specific values of functions h1, h2, h3 and
h4 (see Remark 4.1 below).

Remark 4.1. Closed-form expressions for hi, i = 1, 2, 3, 4 can be found at

https: // sites. google. com/ site/ joavrc/ software

They have been included neither in Proposition 4.1 nor in the Appendix due to their large
extension (around 43 pages).

Remark 4.2. It might be the case that under specific values of ũ and r̃, the denominators
in (4.18) are equal to zero. However, since the set of solutions is infinite (as many solutions
as the number of ũ and r̃ satisfying ũ < 0 and r̃ > 0), we will concentrate on those values
which do not imply any numerical inconsistency. In other words, it may be assumed that the
set of values (4.18) contains an infinite subset of well defined solutions.

Proof. Since it is not possible to symbolically solve the set of equations (4.17), the next
alternative procedure was applied. Consider a fixed BMAP2(2) with representation B =
{D0, D1, D2} as in (4.6), with underlying MAP2,M = {R0, R1} as in (4.7), then the method
provided by Theorem 4.1 in Ramı́rez-Cobo et al. [87] (see Appendix 4.E) allows to calculate
an equivalent MAP2, under the assumption that τ 6= 0, given as:

R̃0 =
x̃ ỹ

r̃ ũ

 , R̃1 =
d̃111 −x̃− ỹ − d̃111

d̃211 −r̃ − ũ− d̃211

 , (4.20)

where r̃ and ũ are free parameters, and x̃, ỹ, d̃111 and d̃211 are obtained as

x̃(ũ, r̃) = −ũ+ x+ u,

ỹ(ũ, r̃) = −(ũ2 − ũx− ũu+ xu− ry)
r̃

,

d̃111 =
(
xun+ ryt− ũxw + ryv + ũxv + ũuv − ryn+ ur̃t− r̃yv + ũr̃n− ũr̃v

ω

+ −r̃yt+ 2r̃xu− r̃xw − ũr̃t+ ur̃v − ryw + ũxt− ũuw − xu2 − ũxn
ω

+ −rr̃y + rxr̃ + ruy − rxu+ ũ2w + ũ2n− rũ2 − ũ2t− ũ2v + ũ3 + r̃u2

ω

https://sites.google.com/site/joavrc/software
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+ −r̃
2x− 2ũ2u+ r2y + ũu2 − 2ũr̃x− r̃2u− 3ũr̃u+ 2ũxu+ 2ũ2r̃ + r̃2ũ

ω

+ −ũr̃r − ũ
2x+ rũu+ ũut+ rũx− r̃xn+ xuw − ũun+ rur̃ + rr̃w

ω

+ +rr̃n− xuv − xut+ ũr̃w − ryũ
ω

)
,

d̃211 =
(
r̃(−xv − xt− yv − yt+ rw + rn+ uw + un− r̃w − r̃n+ rr̃ + rũ)

ω

+ r̃(ũu− r̃2 − 2ũr̃ + ur̃ + r̃v + r̃t+ ũv + ũt− ũw − ũn− ũ2)
ω

)
,

where ω is defined in (4.19).

We should point out here that given any MAP2 as in (4.7), then there exists infinite equivalent
MAP2s as in (4.20), each one constructed from a specific choice of a certain parameter ε (see
Theorem 4.1 in Ramı́rez-Cobo et al. [87]). Therefore, R̃0 and R̃1 are indeed, R̃0(ε) and
R̃1(ε). Imposing the condition that equivalent BMAP2s must have equivalent underlying
MAP2s leads to

D̃0 = R̃0 =
x̃ ỹ

r̃ ũ

 , D̃1 =
w̃ m̃

ṽ q̃

 , D̃2 =
ñ −x̃− ỹ − w̃ − m̃− ñ
t̃ −r̃ − ũ− ṽ − q̃ − t̃

 ,
where necessarily D̃1 + D̃2 = R̃1 or in other words, w̃ = d̃111 − ñ and ṽ = d̃211 − t̃. This
approach, which can be seen to reduce the number of unknown variables from 10 to 4, is
illustrated as follows

B = {D0, D1, D2} B̃ =
{
D̃0(ε), D̃1(ε), D̃2(ε)

}
yMAP2

xBMAP2(2)

M = {R0, R1}
fix ε−−−→ M̃ =

{
R̃0(ε), R̃1(ε)

}
In order to find the remaining unknowns ñ, t̃, m̃ and q̃, the known values are substituted
into the next subset of equations of (4.17),

β̃ = β, γ̃ = γ, δ̃3 = δ3, δ̃4 = δ4, (4.21)

to yield the expressions given by (4.18). Note that equations (4.21) must hold because
assumption A1 implies (4.17). Finally, it is cumbersome but straightforward to check that
the solutions in (4.18) also satisfy the rest of equations in (4.17).
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Remark 4.3. The set of values in (4.18) solves the equality of Laplace transforms (4.5) for
n = 1, 2. Or equivalently, given a BMAP2(2) as in (4.6) it allows to compute the values of
B̃ = {D̃0, D̃1, D̃2} such that (4.5) holds for n = 1, 2. However, we should point out here that
not all the infinite solutions in (4.18) define real BMAP2(2)s, as the next example shows.

Example 4.1. Consider the BMAP2(2) defined by

D0 =
−7.0666 0.0779

0.0047 −6.9116

 , D1 =
4.5829 0.4523

1.3993 1.5595

 , D2 =
0.0354 1.9181

3.3994 0.5488

 ,
whose underlying MAP2 is

R0 =
−7.0666 0.0779

0.0047 −6.9116

 , R1 =
4.6183 2.3704

4.7986 2.1083

 .
If the value of ε = 0.0018 is set in the method derived in Ramı́rez-Cobo et al. [87] to find an
equivalent MAP2 then

R̃0 =
−7.0649 0.0985

0.0064 −6.9134

 , R̃1 =
6.4265 0.5398

6.6068 0.3001


is obtained. Computing the values of ñ, t̃, m̃ and q̃ as in (4.18), finally leads to

D̃0 =
−7.0649 0.0985

0.0064 −6.9134

 , D̃1 =
5.1102 −0.6433

1.9265 1.0323

 , D̃2 =
1.3163 1.1831

4.6803 −0.7322

 ,
which is not a real BMAP2(2), since m and (−r − u− v − q − t) are negative. Note that in
spite of that, the equations (4.17) still hold.

The previous example motivates the seek for feasible values of the free parameters ũ and
r̃ such that the equations in (4.18) define a real BMAP2(2). One possibility is to define ũ ≡
u−κ and r̃ ≡ r+κ, where κ > 0 is an auxiliary variable. By substituting these values into the
set (4.18), we obtain the set F = {ũ(κ), r̃(κ), x̃(κ), ỹ(κ), ṽ(κ), w̃(κ), m̃(κ), q̃(κ), ñ(κ), t̃(κ)}
defined by

φ̃(κ) = (r + κ)φ
r

,

x̃(κ) = x+ κ,

ỹ(κ) = −(κ2 + (x− u)κ− ry)
r + κ

,
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q̃(κ) = qr − vκ
r

,

w̃(κ) = wr + vκ

r
, (4.22)

ṽ(κ) = v(r + κ)
r

,

ñ(κ) = nr + tκ

r
,

t̃(κ) = t(r + κ)
r

,

m̃(κ) = −(vκ2 − r(q − w)κ−mr2)
r(r + κ) .

Remark 4.4. Note that if r = 0, then a numerical inconsistency is found in (4.22). In-
deed, it can be proven that there exists a finite number of combinations of the elements of
{D0, D1, D2} (where in all of them at least one parameter is equal to zero), under which
(4.22) cannot be calculated. However, our findings show that in those cases it is always pos-
sible to obtain another parametrization of ũ and r̃ (different to ũ = u − κ and r̃ = r + κ),
under which the new set F is well defined. For the sake of abbreviation we will focus on the
general case, where all the elements of {D0, D1, D2} are assumed to be strictly positive or
negative.

The following Proposition provides the possible values that the auxiliary variable κ may
take in such a way that the set F , given by (4.22), defines a real BMAP2(2).

Proposition 4.2. Consider a BMAP2(2) with representation B as in (4.6), and define

κ1 = −x,

κ2 = u− x
2 ,

κ3 = r(1− φ)
φ

,

κ4 = rq

v
,

κ5 = −r
t
(r + u+ v + q + t),

κ6 =
(u− x) +

√
(x− u)2 + 4ry
2 ,

κ7 = r

2v

[
(q − w) +

√
(q − w)2 + 4vm

]
,
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κ8 = − r

2t

[
u+ v + q + n+ t+ r−√
(u+ v + q + n+ t+ r)2 + 4t(−y − x− w −m− n)

]
.

Let κ be chosen from

0 < κ < min {κ1, κ2, κ3, κ4, κ5, κ6, κ7, κ8} , if x < u, (4.23)
0 < κ < min {κ1, κ3, κ4, κ5, κ6, κ7, κ8} , if x = u, (4.24)

and setting ũ ≡ u − κ and r̃ ≡ r + κ. Then there exist an infinite number of BMAP2(2)s,
B̃, given by F = {ũ(κ), r̃(κ), x̃(κ), ỹ(κ), ṽ(κ), w̃(κ), m̃(κ), q̃(κ), ñ(κ), t̃(κ)}, defined in (4.22),
such that (4.5) holds.

The proof of Proposition 4.2 follows the lines of that of Theorem 4.1 in Ramı́rez-Cobo
et al. [87]. For the interested reader, see Appendix 4.F. Finally, in order to prove that the
stationary BMAP2(2) does not have a unique representation, we have to show that the set
of feasible solutions (4.22) where κ is defined as in Proposition 4.2, also satisfies the equality
of the Laplace transform (4.5) for all n ≥ 3. This is shown by the next result.

Finally, in order to prove that the stationary BMAP2(2) does not have a unique repre-
sentation, we have to show that the set of feasible solutions (4.22) where κ is defined as in
Proposition 4.2, also satisfies the equality of the Laplace transform (4.5) for all n ≥ 3. This
is shown by the next result.

Corollary 4.1. The stationary BMAP2(2) is not an identifiable process.

Proof. The proof of Corollary 4.1 is analogous to the proof of Theorem 4.2 in Ramı́rez-Cobo
et al. [87] (therefore the details are omitted), where in this case ∆(s) is replaced by ∆(s, z)
defined as

∆(s, z) = (sI −D0)−1ξ(z),

with parametrization

∆(s, z) =
a(s, z) b(s, z)
c(s, z) d(s, z)

 .
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Consider Example 4.1, according to Proposition 4.2 a value of κ needs to be selected
from

0 < κ < min{7.0666, 0.0775, 0.0023, 0.1573, 0.0007, 0.0052, 0.0008, 0.0039}

Take for example, κ = 5× 10−4, then the obtained BMAP2(2) is

D̃0 =
−7.0661 0.0856

0.0052 −6.9121

 , D̃1 =
4.7399 0.0859

1.5562 1.4026

 , D̃2 =
0.4167 1.7380

3.7807 0.1675

 ,
which is a real BMAP2(2) and according to Corollary 4.1 it makes (4.5) hold for all s, z and
n. Therefore, B ≡ B̃.

All calculations to prove the non-identifiability of the stationary BMAP2(2) have been
carried out using MATLAB R© version 7.1.0.246 (R14). In the spirit of a reproducible research
the codes utilized in this paper are available at

https://sites.google.com/site/joavrc/software

4.3 Non-identifiability of the BMAP2(k) for k ≥ 3

In Section 4.2, it has been proven that the stationary BMAP2(2) is a non-identifiable process
and a procedure to construct the equivalent representation to a given one has been derived.
This section goes further and ensures the non-identifiability for the stationary BMAP2(k),
for all k ≥ 3. As will be seen, our approach uses the decomposition of a given BMAP2(k)
into k differently parametrized BMAP2(2)s and the construction of the equivalent process is
based on the equivalent BMAP2(2)s to the composing BMAP2(2)s.

Consider a BMAP2(k), for k ≥ 3, denoted by G = {D0, D1, ..., Dk} with stationary
distribution φG as in (1.14). Consider the k BMAP2(2)s, obtained as combinations of the
rate matrices defining G:

B1 =
{
D0, D1,

k∑
i=2

Di

}
, . . . ,Bj =

D0,
k∑

i=1,i6=j
Di, Dj

 , (4.25)

. . . ,Bk =

D0,
k∑

i=1,i6=k
Di, Dk

 .

https://sites.google.com/site/joavrc/software
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In order to apply the results of Section 4.2 we will assume that the underlying and
common stationary MAP2 for all Bi, for i = 1, ..., k, M =

{
D0,

∑k
i=1Di

}
satisfies τ 6= 0.

Let φBi
be the stationary distributions of Bi, for i = 1, ..k. We claim that φG = φBi

,
for i = 1, ..., k. This follows from the fact that G and Bi possesses the same infinitesimal
generator Q (see (1.12)) and therefore the same stationary probability vectors π. It is
immediate to check that expression (1.14) is the same for G and Bi, since D = ∑k

l=1Dl

coincides under the k considered models.

As it was proven in Section 4.2, for any κi ∈ (0, κBi
), where κBi

is computed according to
Proposition 4.2, there exists a unique BMAP2(2), B̃i(κBi

) equivalent to Bi. This result leads
to the next Theorem, where a BMAP2(k) for k ≥ 3, is constructed from a specific choice of
κi, i = 1, ..., k.

Theorem 4.1. Consider a BMAP2(k), k ≥ 3, defined by G = {D0, D1, ..., Dk} and the
BMAP2(2)s, B1,..., Bk, as in (4.25). Let B̃1(κ),...,B̃k(κ) the equivalent BMAP2(2)s to B1,...,
Bk represented by

B̃1(κ) =

D̃0(κ), D̃1(κ),
˜( k∑
i=2

Di

)
(κ)

 ,
...

B̃k(κ) =

D̃0(κ),
˜ k∑

i=1,i6=k
Di

(κ), D̃k(κ)

 ,
where 0 < κ < min(κB1 , ..., κBk

), being κBi
obtained from (4.23) or (4.24), for i = 1, ..., k.

Then, the representation

G̃(κ) =
{
D̃0(κ), D̃1(κ), ..., D̃k(κ)

}
, (4.26)

defines a BMAP2(k), for k ≥ 3.

Proof. Note that the matrices in
{
D̃0(κ), D̃1(κ), ..., D̃k(κ)

}
are rate matrices since they define

the equivalent BMAP2(2)s, B̃1(κ), ..., B̃k(κ). Therefore, for G̃(κ) as in (4.26) to define a
BMAP2(k), for k ≥ 3, we have only to prove that

(∑k
i=0 D̃i(κ)

)
e = 0. This would conclude

the proof.

Consider the joint density function of the pair (T ,B) in a general BMAP2(k) (see Klemm
et al. [51]),

f{D0,...,Dk}(t, b) = φeD0t1Db1 . . . e
D0tnDbne, (4.27)
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where t = (t1, . . . , tn) and b = (b1, . . . , bn) with bi ≤ k, for i = 1, . . . , n, denote the sequence
of inter-event times and batch sizes, respectively. Note that, f{D0,...,Dk}(t, b) is the inverse of
the Laplace Stieltjes transform given by (4.2). Since B̃i(κ) is equivalent to Bi, for i = 1, ..., k,
one has

f{
D0,D1,

∑k

i=2 Di

}(t, b) = f{
D̃0(κ),D̃1(κ),

˜(∑k

i=2 Di

)
(κ)
}(t, b),

... (4.28)
f{

D0,
∑k

i=1,i6=k
Di,Dk

}(t, b) = f{
D̃0(κ),

˜(∑k

i=1,i6=k
Di

)
(κ),D̃k(κ)

}(t, b),

for all t and b. Consider now the first equality in (4.28) concerning the equivalence between
B1 and B̃1, and take t = t and b = 2. Then,

φB̃1
eD̃0t

˜( k∑
i=2

Di

)
(κ)e = f{

D̃0(κ),D̃1(κ),
˜(∑k

i=2 Di

)
(κ)
}(t, b)

= f{
D0,D1,

∑k

i=2 Di

}(t, b),

= φB1e
D0t

(
k∑
i=2

Di

)
e

=
k∑
i=2
φB1e

D0tDie

=
k∑
i=2
φB̃1

eD̃0tD̃i(κ)e (4.29)

= φB̃1
eD̃0t

(
k∑
i=2

D̃i(κ)
)

e,

where (4.29) follows from Bi ≡ B̃i, for i = 2, ..., k. Since given the pair (B1, κ) there exists a
unique equivalent process, B̃1(κ), then necessarily

˜( k∑
i=2

Di

)
(κ) =

k∑
i=2

D̃i(κ). (4.30)

Since B̃1(κ) is a BMAP2(2), then(
D̃0(κ) + D̃1(κ) +

(
k∑
i=2

D̃i

)
(κ)

)
e = 0,
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which combined with (4.30) finally leads to(
k∑
i=0

D̃i(κ)
)

e = 0.

The next theorem proves the non-identifiability of BMAP2(k), for k ≥ 3, through the
decomposition of G into k Bis.

Theorem 4.2. The stationary BMAP2(k) is a non-identifiable process for k ≥ 3.

Proof. The proof relies on the fact that for a given BMAP2(k), G = {D0, D1, . . . , Dk}, there
exists a BMAP2(k), G̃ = G̃(κ) as in (4.26) such that G is equivalent to G̃.

We proceed now to show that if 0 < κ < min(κB1 , ..., κBk
) and G̃ constructed as in (4.26),

then G̃ is equivalent to G. Or, alternatively, the equality of Laplace transforms (4.5) holds,

f ∗T ,B(s, z)G = f ∗
T̃ ,B̃

(s, z)G̃.

For simplicity, we prove the equality of Laplace transforms (4.5) for k = 3. The generalization
for k ≥ 4 is straightforward. Define ∆(si) = (siI − D0)−1 and ξ(zi) = ∑k

l=1Dlz
l
i, for

i = 1, ..., n. Consider n = 1, then

f ∗T ,B(s1, z1)G = φG∆(s1)ξ(z1)e
= φG∆(s1)

(
D1z1 +D2z1

2 +D3z1
3
)

e

= φG∆(s1)
(
D1z1 + (D2 +D3)z1

2
)

e

+z1
2φG∆(s1)

(
(D1 +D2)z1 +D3z1

2
)

e

−z1
2φG∆(s1)(D1 +D2 +D3)e

= f ∗T ,B(s1, z1)B1 + z1f
∗
T ,B(s1, z1)B3 − z1

2f ∗T ,B(s1, 1)B2

= f ∗
T̃ ,B̃

(s1, z1)B̃1
+ z1f

∗
T̃ ,B̃

(s1, z1)B̃3
− z1

2f ∗
T̃ ,B̃

(s1, 1)B̃2

= φG̃∆̃(s1)ξ̃(z1)e
= f ∗

T̃ ,B̃
(s1, z1)G̃,

where the equivalence between Bi and B̃i for i = 1, 2, 3, and the equality of the stationary
distributions, φG = φBi

and φG̃ = φB̃i
, for i = 1, 2, 3, have been applied. We now proceed
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by induction on n,

f ∗T ,B(s, z)G = φG∆(s1)ξ(z1) . . .∆(sn)ξ(zn)e
= φGχ(n− 1)∆(sn)

(
D1zn +D2zn

2 +D3zn
3
)

e

= φGχ(n− 1)∆(sn)
(
D1zn + (D2 +D3)zn2

)
e

+zn2φGχ(n− 1)∆(sn)
(
(D1 +D2)zn +D3zn

2
)

e

−zn2φGχ(n− 1)∆(sn)(D1 +D2 +D3)e
= f ∗T ,B(s, z)B1 + znf

∗
T ,B(s, z)B3 − zn2f ∗T ,B(s, 1)B2

= f ∗
T̃ ,B̃

(s, z)B̃1
+ znf

∗
T̃ ,B̃

(s, z)B̃3
− zn2f ∗

T̃ ,B̃
(s, 1)B̃2

= φG̃χ̃(n− 1)∆̃(sn)ξ̃(zn)e
= f ∗

T̃ ,B̃
(s, z)G̃,

where χ(n− 1) = ∏n−1
i=1 ∆(si)ξ(zi). In consequence, G̃ and G are equivalent.

In the next example we illustrate our approach for finding equivalent BMAP2(3) to a
given fixed one.

Example 4.2. Consider the BMAP2(3) defined by

G : D0 =
−5.5 0.5

0.55 −4

 , D1 =
0.85 0.65

0.05 0.9

 , D2 =
 1.2 0.55

0.65 0.45

 , D3 =
 1.4 0.35

0.85 0.55

 ,
whose underlying BMAP2(2)s are

B1 : D0 =
−5.5 0.5

0.55 −4

 , D1 =
0.85 0.65

0.05 0.9

 , D2 +D3 =
2.6 0.9

1.5 1

 ,

B2 : D0 =
−5.5 0.5

0.55 −4

 , D1 +D3 =
2.25 1

0.9 1.45

 , D2 =
 1.2 0.55

0.65 0.45

 ,

B3 : D0 =
−5.5 0.5

0.55 −4

 , D1 +D2 =
2.05 1.2

0.7 1.35

 , D3 =
 1.4 0.35

0.85 0.55

 ,
where {κB1 , κB2 , κB3} = {0.2239, 0.2799, 0.1724} are the respective upper bounds obtained
from Proposition 4.2.
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Let κ = 0.05 that verifies

0 < κ < min(0.2239, 0.2799, 0.1724),

we can construct the equivalent B̃is, for i = 1, 2, 3,

B̃1 : D̃0(κ) =
−5.45 0.5792

0.6 −4.05

 , D̃1(κ) =
0.8545 0.5996

0.0545 0.8955

 ,

˜(D2 +D3)(κ) =
2.7364 0.6803

1.6364 0.8636

 ,

B̃2 : D̃0(κ) =
−5.45 0.5792

0.6 −4.05

 , D̃2(κ) =
1.2591 0.4367

0.7091 0.3909

 ,

˜(D1 +D3)(κ) =
2.3318 0.8432

0.9818 1.3682

 ,

B̃3 : D̃0(κ) =
−5.45 0.5792

0.6 −4.05

 , D̃3(κ) =
1.4773 0.2436

0.9273 0.4727

 ,

˜(D1 +D2)(κ) =
2.1136 1.0364

0.7636 1.2864

 .
Then, from Theorem 4.1 an equivalent BMAP2(3), G̃(κ), can be constructed as follows,

G̃ : D̃0(κ) =
−5.45 0.5792

0.6 −4.05

 , D̃1(κ) =
0.8545 0.5996

0.0545 0.8955

 , D̃2(κ) =
1.2591 0.4367

0.7091 0.3909

 ,

D̃3 =
1.4773 0.2436

0.9273 0.4727

 ,
where D̃0(κ) is obtained from the equivalence of the underlying MAP2 and D̃i(κ) is obtained
from B̃i for i = 1, 2, 3.
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4.4 Chapter summary

This chapter deepens the understanding of the identifiability of the BMAP process, a relevant
aspect not only from the theoretical viewpoint, but also when inference for the process is to
be undertaken. Specifically, it proves that the two-state stationary BMAP or BMAP2(2) is
non-identifiable, extending previous works focused on the case k = 1. The main result of this
chapter is the introduction of a method that shows how to build an equivalent stationary
BMAP2(k)s, to any given fixed one, which is derived from equality of the Laplace transforms
for n = 1, 2 , and for k ≥ 3 this method is based on the construction of equivalent BMAP2(k)s,
and on the decomposition of a BMAP2(k) into k BMAP2(2)s.

In this chapter, similarly as in previous works considering analogous problems, the con-
cept of identifiability is expressed in terms of the equality in distribution of a reduced num-
ber of components of the process (inter-event times and batch sizes). Since the sequences
of inter-event times and batch sizes constitute the only available information for estimation
purposes, other elements of the process which commonly remain unobserved as the times
between transitions without event occurrences, or the sequence of visited states, are not
taken into account in the identifiability definition. This fact in combination with the high
number of parameters defining the processes induce the lack of identifiability of BMAPs.

Appendices

4.A Proof of Lemma 4.1

Let T = (T1, . . . , Tn), B = (B1, . . . , Bn), s = (s1, . . . , sn), z = (z1, . . . , zn), t = (t1, . . . , tn),
b = (b1, . . . , bn). Then, expression (4.2) easily follows from the definition of the moment
generating function of (T ,B),

f ∗T ,B(s, z) =
∫ ∞

0
e−s1t1 . . . e−sntn

n∏
j=1

 ∞∑
bj=1

z
bj

j

 fT ,B(t, b) dt, (4.31)

We have that the cumulative distribution function for (Tn, Bn) is

FTn,Bn(tn, bn) = φ(I − eD0tn)(−D0)−1Dbne, for tn, bn ≥ 0.

Therefore, the joint cumulative distribution function is,

FT ,B(t, b) = φ(I − eD0t1)(−D0)−1Db1 . . . (I − eD0tn)(−D0)−1Dbne.
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and the joint density function of (T ,B), fT ,B(t, b), is given by (4.27).

Now, after substituting fT ,B(t, b) in (4.31) and regrouping, we obtain

f ∗T ,B(s, z) = φ
∫ ∞

0
e−s1t1eD0t1

 ∞∑
b1=1

Db1z
b1
1

 . . . e−sntneD0tn

 ∞∑
bn=1

Dbnz
bn
n

 edt

= φ(s1I −D0)−1

 ∞∑
b1=1

Db1z
b1
1

 . . . (snI −D0)−1

 ∞∑
bn=1

Dbnz
bn
n

 e.

4.B Proof of Lemma 4.2

Let T = (T1, . . . , Tn), B = (B1, . . . , Bn), s = (s1, . . . , sn) and z = (z1, . . . , zn). Since

E[B1Bn] =
∂f ∗(T ,B)(s, z)
∂z1∂zn

∣∣∣∣
s=0;z=1

,

then, it follows from (4.2) that

E[B1Bn] = φ(−D0)−1
(

k∑
l=1

lDlz
l−1
1

)
κ(−D0)−1

(
k∑
l=1

lDlz
l−1
n

)
e
∣∣∣∣
s=0;z=1

= φ(−D0)−1D?
1[(−D0)−1D]n−2(−D0)−1D?

1e,

where κ = ∑n−1
m=2(smI −D0)−1

(∑k
l=1Dlz

l
m

)
. Therefore (4.3) is obtained.
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4.C Proof of Formula (4.17)

It can be easily seen that, after calculation, condition (4.12) holds if and only if

γ = γ̃,

η − β + γυ̃ = η̃ − β̃ + γ̃υ,

η̃γ − βυ̃ + ηυ̃ = ηγ̃ − β̃υ + η̃υ,

ηη̃ − βη̃ = η̃η − β̃η, (4.32)
α = α̃,

β + αυ̃ = β̃ + α̃υ,

αη̃ + βυ̃ = α̃η + β̃υ,

βη̃ = β̃η,

the system (4.32) holds.

Considering that α = α̃ and γ = γ̃, we solve the linear system (4.32) with unknowns, β̃, υ̃
and η̃. We used the Gaussian elimination method to solve this problem, and obtained

β̃ − αυ̃ = β − αυ,
υ̃(αη − β(α + γ)) = υ(αη − β(α + γ)),

η̃ − υ̃(α + γ) = η − υ(α + γ), (4.33)
υ̃(β + α(α + γ − υ)) = υ(β + α(α + γ − υ)),

υ̃(η + (γ − υ + α)(α + γ)) = υ(η + (γ − υ + α)(α + γ)).

Recall that

C1 = αη − β(α + γ),
C2 = β + α(α + γ − υ),
C3 = η − β + γ(γ − υ + α),

note that if either C1 6= 0 or C2 6= 0 or C3 6= 0 then (4.33) implies

α = α̃, β = β̃, γ = γ̃, η = η̃, υ = υ̃.
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Consider now the condition (4.15) which holds if and only if,

z1z2(s1δ1 + s2δ2 + s1s2δ3 + δ4) + z1z
2
2(s1(αη − δ1) + s2δ5 + s1s2δ6)

(s2
1 + s2

2)η + s2
1s

2
2 + (s2

1s2 + s1s2
2)υ + (s1 + s2)ηυ + s1s2υ2 + η2 +

z1z
2
2(βη − δ4) + z2

1z2(s1δ7 + s2δ8 + s1s2δ9 + δ10)
(s2

1 + s2
2)η + s2

1s
2
2 + (s2

1s2 + s1s2
2)υ + (s1 + s2)ηυ + s1s2υ2 + η2 +

z2
1z

2
2(s1(ηγ − δ7) + s2δ11 + s1s2δ12 + η2 − ηβ − δ10)

(s2
1 + s2

2)η + s2
1s

2
2 + (s2

1s2 + s1s2
2)υ + (s1 + s2)ηυ + s1s2υ2 + η2

=
z1z2(s1δ̃1 + s2δ̃2 + s1s2δ̃3 + δ̃4) + z1z

2
2(s1(α̃η̃ − δ̃1) + s2δ̃5 + s1s2δ̃6)

(s2
1 + s2

2)η̃ + s2
1s

2
2 + (s2

1s2 + s1s2
2)υ̃ + (s1 + s2)η̃υ̃ + s1s2υ̃2 + η̃2 +

z1z
2
2(β̃η̃ − δ̃4) + z2

1z2(s1δ̃7 + s2δ̃8 + s1s2δ̃9 + δ̃10)
(s2

1 + s2
2)η̃ + s2

1s
2
2 + (s2

1s2 + s1s2
2)υ̃ + (s1 + s2)η̃υ̃ + s1s2υ̃2 + η̃2 +

z2
1z

2
2(s1(η̃γ̃ − δ̃7) + s2δ̃11 + s1s2δ̃12 + η̃2 − η̃β̃ − δ̃10)

(s2
1 + s2

2)η̃ + s2
1s

2
2 + (s2

1s2 + s1s2
2)υ̃ + (s1 + s2)η̃υ̃ + s1s2υ̃2 + η̃2 ,

which is equivalent that the following holds,

δ12 = δ̃12

δ12υ̃ + (ηγ − δ7) = δ̃12υ + (η̃γ̃ − δ̃7)
δ12η̃ + (ηγ − δ7)υ̃ = δ̃12η + (η̃γ̃ − δ̃7)υ

(ηγ − δ7)η̃ = (η̃γ̃ − δ̃7)η
δ11 + δ12υ̃ = δ̃11 + δ̃12υ

(ηγ − δ7 + δ11)υ̃ + η2 − ηβ − δ10 + δ12υ̃
2 = (η̃γ̃ − δ̃7 + δ̃11)υ + η̃2 − η̃β̃ − δ̃10 + δ̃12υ

2

δ11η̃ + (η2 − ηβ − δ10)υ̃ + (ηγ − δ7)υ̃2 + δ12η̃υ̃ = δ̃11η + (η̃2 − η̃β̃ − δ̃10)υ + (η̃γ̃ − δ̃7)υ2 + δ̃12ηυ

(η(η − β)− δ10)η̃ + (ηγ − δ7)η̃υ̃ = (η̃(η̃ − β̃)− δ̃10)η + (η̃γ̃ − δ̃7)ηυ
δ12η̃ + δ11υ̃ = δ̃12η + δ̃11υ

(ηγ − δ7)η̃ + (η2 − ηβ − δ10)υ̃ + δ11υ̃
2 + δ12η̃υ̃ = (η̃γ̃ − δ̃7)η + (η̃2 − η̃β̃ − δ̃10)υ + δ̃11υ

2 + δ̃12ηυ

δ12η̃
2 + (η2 − ηβ − δ10)υ̃2 + (ηγ − δ7 + δ11)η̃υ̃ = δ̃12η

2 + (η̃2 − η̃β̃ − δ̃10)υ2 + (η̃γ̃ − δ̃7 + δ̃11)ηυ
(ηγ − δ7)η̃2 + (η(η − β)− δ10)υ̃η̃ = (η̃γ̃ − δ̃7)η2 + (η̃(η̃ − β̃)− δ̃10)υη

δ11η̃ = δ̃11η

(η(η − β)− δ10)η̃ + δ11η̃υ̃ = (η̃(η̃ − β̃)− δ̃10)η + δ̃11ηυ

δ11η̃
2 + (η(η − β)− δ10)υ̃η̃ = δ̃11η

2 + (η̃(η̃ − β̃)− δ̃10)υη
(η(η − β)− δ10)η̃2 = (η̃(η̃ − β̃)− δ̃10)η2

δ9 = δ̃9
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δ7 + δ9υ̃ = δ̃7 + δ̃9υ

δ9η̃ + δ7υ̃ = δ̃9η + δ̃7υ

δ7η̃ = δ̃7η

δ8 + δ9υ̃ = δ̃8 + δ̃9υ

δ10 + (δ7 + δ8)υ̃ + δ9υ̃
2 = δ̃10 + (δ̃7 + δ̃8)υ + δ̃9υ

2

δ8η̃ + δ10υ̃ + δ7υ̃
2 + δ9η̃υ̃ = δ̃8η + δ̃10υ + δ̃7υ

2 + δ̃9ηυ

δ10η̃ + δ7η̃υ̃ = δ̃10η + δ̃7ηυ

δ9η̃ + δ8υ̃ = δ̃9η + δ̃8υ

δ7η̃ + δ10υ̃ + δ8υ̃
2 + δ9η̃υ̃ = δ̃7η + δ̃10υ + δ̃8υ

2 + δ̃9ηυ

δ9η̃
2 + δ10υ̃

2 + (δ7 + δ8)η̃υ̃ = δ̃9η
2 + δ̃10υ

2 + (δ̃7 + δ̃8)ηυ
δ7η̃

2 + δ10υ̃η̃ = δ̃7η
2 + δ̃10υη

δ8η̃ = δ̃8η

δ10η̃ + δ8η̃υ̃ = δ̃10η + δ̃8ηυ

δ8η̃
2 + δ10υ̃η̃ = δ̃8η

2 + δ̃10υη

δ10η̃
2 = δ̃10η

2

δ6 = δ̃6

(αη − δ1) + δ6υ̃ = (α̃η̃ − δ̃1) + δ̃6υ

δ6η̃ + (αη − δ1)υ̃ = δ̃6η + (α̃η̃ − δ̃1)υ
(αη − δ1)η̃ = (α̃η̃ − δ̃1)η
δ5 + δ6υ̃ = δ̃5 + δ̃6υ

(αη − δ1 + δ5)υ̃ + βη − δ4 + δ6υ̃
2 = (α̃η̃ − δ̃1 + δ̃5)υ + β̃η̃ − δ̃4 + δ̃6υ

2

(βη − δ4)υ̃ + (αη − δ1)υ̃2 + δ5η̃ + δ6η̃υ̃ = (β̃η̃ − δ̃4)υ + (α̃η̃ − δ̃1)υ2 + δ̃5η + δ̃6ηυ

(βη − δ4)η̃ + (αη − δ1)η̃υ̃ = (β̃η̃ − δ̃4)η + (α̃η̃ − δ̃1)ηυ
δ6η̃ + δ5υ̃ = δ̃6η + δ̃5υ

(αη − δ1)η̃ + (βη − δ4)υ̃ + δ5υ̃
2 + δ6η̃υ̃ = (α̃η̃ − δ̃1)η + (β̃η̃ − δ̃4)υ + δ̃5υ

2 + δ̃6ηυ

(αη − δ1 + δ5)η̃υ̃ + δ6η̃
2 + (βη − δ4)υ̃2 = (α̃η̃ − δ̃1 + δ̃5)ηυ + δ̃6η

2 + (β̃η̃ − δ̃4)υ2

(αη − δ1)η̃2 + (βη − δ4)υ̃η̃ = (α̃η̃ − δ̃1)η2 + (β̃η̃ − δ̃4)υη
δ5η̃ = δ̃5η

(βη − δ4)η̃ + δ5η̃υ̃ = (β̃η̃ − δ̃4)η + δ̃5ηυ

δ5η̃
2 + (βη − δ4)υ̃η̃ = δ̃5η

2 + (β̃η̃ − δ̃4)υη
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(βη − δ4)η̃2 = (β̃η̃ − δ̃4)η2

δ3 = δ̃3

δ1 + δ3υ̃ = δ̃1 + δ̃3υ

δ3η̃ + δ1υ̃ = δ̃3η + δ̃1υ

δ1η̃ = δ̃1η

δ2 + δ3υ̃ = δ̃2 + δ̃3υ

δ4 + (δ1 + δ2)υ̃ + δ3υ̃
2 = δ̃4 + (δ̃1 + δ̃2)υ + δ̃3υ

2

δ2η̃ + δ4υ̃ + δ1υ̃
2 + δ3η̃υ̃ = δ̃2η + δ̃4υ + δ̃1υ

2 + δ̃3ηυ

δ4η̃ + δ1η̃υ̃ = δ̃4η + δ̃1ηυ

δ3η̃ + δ2υ̃ = δ̃3η + δ̃2υ

δ1η̃ + δ4υ̃ + δ2υ̃
2 + δ3η̃υ̃ = δ̃1η + δ̃4υ + δ̃2υ

2 + δ̃3ηυ

δ3η̃
2 + δ4υ̃

2 + (δ1 + δ2)η̃υ̃ = δ̃3η
2 + δ̃4υ

2 + (δ̃1 + δ̃2)ηυ
δ1η̃

2 + δ4υ̃η̃ = δ̃1η
2 + δ̃4υη

δ2η̃ = δ̃2η

δ4η̃ + δ2η̃υ̃ = δ̃4η + δ̃2ηυ

δ2η̃
2 + δ4υ̃η̃ = δ̃2η

2 + δ̃4υη

δ4η̃
2 = δ̃4η

2

We have stated that if either C1 6= 0 or C2 6= 0 or C3 6= 0 are satisfied,then

α = α̃, β = β̃, γ = γ̃, η = η̃, υ = υ̃,

which implies δi = δ̃i for i = 1, . . . , 12.

4.D The cases where C1 · C2 · C3 = 0

In this Appendix we describe a procedure to obtain equivalent BMAP2(2) to a given one, in
the case that the general condition C1 ·C2 ·C3 6= 0 is not satisfied and under the assumption
that τ 6= 0, being τ defined in (4.10). These cases can be summarized as

1. C2 · C3 6= 0 and C1 = 0,
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2. C1 · C3 6= 0 and C2 = 0,

3. C1 · C2 6= 0 and C3 = 0,

4. C2 = C3 = 0 and C1 6= 0,

5. C1 = C3 = 0 and C2 6= 0,

6. C1 = C2 = 0 and C3 6= 0.

The case where C1 = C2 = C3 = 0 is not considered since τ = C2 + C3 is assumed to
be different from zero. We claim that cases 4-5-6 are not possible in practice. It can be
easily seen that if Ci = 0, then either Cj · Ck 6= 0 or Cj = Ck = 0, for i, j, k ∈ {1, 2, 3}
and i 6= j 6= k. Therefore, there does not exist any BMAP2(2) such that Cj = Ck = 0 and
Ci 6= 0, for i, j, k ∈ {1, 2, 3} and i 6= j 6= k.

We focus now on the cases 1-3, under the assumption that τ 6= 0. The solution to the
system of equation (4.17) for each case is given by the next three results.

Proposition 4.3. Let B be a BMAP2(2) as in (4.6) with underlying MAP2, M, as in (4.7).
Assume that

A1. C2 · C3 6= 0, C1 = 0,

A2. M satisfies τ 6= 0.

Let ũ < 0 and r̃ > 0, and let x̃(ũ, r̃), ỹ(ũ, r̃), ṽ(ũ, r̃), w̃(ũ, r̃) be defined as in (4.18), and

q̃(ũ, r̃) = f1(φ̃, x̃, ỹ, D0, D1, D2),
m̃(ũ, r̃) = f2(φ̃, x̃, ỹ, q̃, D0, D1, D2), (4.34)
ñ(ũ, r̃) = f3(φ̃, x̃, ỹ, q̃, D0, D1, D2),
t̃(ũ, r̃) = f4(φ̃, x̃, ỹ, q̃, D0, D1, D2),

for specific values of functions f1, f2, f3 and f4. Then, the set of values
{ũ, r̃, x̃(ũ, r̃), ỹ(ũ, r̃), ṽ(ũ, r̃), w̃(ũ, r̃), m̃(ũ, r̃), q̃(ũ, r̃), ñ(ũ, r̃), t̃(ũ, r̃)} solves the system of equa-
tions given by (4.17).

Proposition 4.4. Let B be a BMAP2(2) as in (4.6) with underlying MAP2, M, as in (4.7).
Assume that
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A1. C1 · C3 6= 0, C2 = 0,

A2. M satisfies τ 6= 0.

Let ũ < 0 and r̃ > 0, and let x̃(ũ, r̃), ỹ(ũ, r̃), ṽ(ũ, r̃), w̃(ũ, r̃) be defined as in (4.18), and

q̃(ũ, r̃) = g1(φ̃, x̃, ỹ, D0, D1, D2),
m̃(ũ, r̃) = g2(φ̃, x̃, ỹ, q̃, D0, D1, D2), (4.35)
ñ(ũ, r̃) = g3(φ̃, x̃, ỹ, q̃, D0, D1, D2),
t̃(ũ, r̃) = g4(φ̃, x̃, ỹ, q̃, D0, D1, D2),

for specific values of functions g1, g2, g3 and g4. Then, the set of values
{ũ, r̃, x̃(ũ, r̃), ỹ(ũ, r̃), ṽ(ũ, r̃), w̃(ũ, r̃), m̃(ũ, r̃), q̃(ũ, r̃), ñ(ũ, r̃), t̃(ũ, r̃)} solves the system of equa-
tions given by (4.17).

Proposition 4.5. Let B be a BMAP2(2) as in (4.6) with underlying MAP2, M, as in (4.7).
Assume that

A1. C1 · C2 6= 0, C3 = 0,

A2. M satisfies τ 6= 0.

Let ũ < 0 and r̃ > 0, and let x̃(ũ, r̃), ỹ(ũ, r̃), ṽ(ũ, r̃), w̃(ũ, r̃) be defined as in (4.18), and

q̃(ũ, r̃) = q1(φ̃, x̃, ỹ, D0, D1, D2),
m̃(ũ, r̃) = q2(φ̃, x̃, ỹ, q̃, D0, D1, D2), (4.36)
ñ(ũ, r̃) = q3(φ̃, x̃, ỹ, q̃, D0, D1, D2),
t̃(ũ, r̃) = q4(φ̃, x̃, ỹ, q̃, D0, D1, D2),

for specific values of functions q1, q2, q3 and q4. Then, the set of values
{ũ, r̃, x̃(ũ, r̃), ỹ(ũ, r̃), ṽ(ũ, r̃), w̃(ũ, r̃), m̃(ũ, r̃), q̃(ũ, r̃), ñ(ũ, r̃), t̃(ũ, r̃)} solves the system of equa-
tions given by (4.17).

Remark 4.5. The analogous to Remark 4.2 applies to Propositions 3-5.

Remark 4.6. Closed-form expressions for fi, gi and qi, for i = 1, 2, 3, 4 can be found at

https: // sites. google. com/ site/ joavrc/ software

https://sites.google.com/site/joavrc/software
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Remark 4.7. Similarly as happened for the general case C1 · C2 · C3 6= 0, the set of values
in (4.34), (4.35) and (4.36) solves the equality of Laplace transforms (4.5) for n = 1, 2, and
according to the proof of Corollary 4.1 this is generalized to all n ≥ 1. In addition, in order
to obtain a real equivalent BMAP2(2), Proposition 4.2 also applies.

Remark 4.8. The analogous to Remark 4.4 applies to Propositions 3-5.

4.E Theorem 4.1 of Ramı́rez-Cobo et al. [87]

Consider the two-state MAP or MAP2, characterized by M≡ {θ, D0, D1} where

θ = (θ, 1− θ), D0 =
x y

z u

 , D1 =
w −x− y − w
v −z − u− v

 , (4.37)

and
x = −λ1, y = λ1p120, w = λ1p111,

z = λ2p210, u = −λ2, v = λ2p211.

The stationary probability distribution is φ = (φ, 1− φ) where

φ = wz − vx
wz − vx− zy − vy + xu+ wu

.

Theorem 4.3 (Theorem 4.1 of Ramı́rez-Cobo et al. [87]). Consider a MAP2, M as in
(4.37), and define

ε1 = −x,

ε2 = u− x
2 ,

ε3 = z(1− φ)
φ

,

ε4 =
(u− x) +

√
(x− u)2 + 4zy
2 ,

ε5 = −z
v

(z + u+ v),

ε6 = − z

2v

[
(u+ v + z + w)−

√
(u+ v + z + w)2 + 4v(−w − y − x)

]
.

Let ε be chosen from

0 < ε < min {ε1, ε2, ε3, ε4, ε5, ε6} , if x < u, (4.38)
0 < ε < min {ε1, ε3, ε4, ε5, ε6} , if x = u, (4.39)
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and set ũ ≡ u− ε and z̃ ≡ z + ε. Then there exist an infinite number of MAP2s, M̃, given
by F = {ũ, z̃, x̃(ũ, z̃), ỹ(ũ, z̃), ṽ(ũ, z̃), w̃(ũ, z̃)}, where x̃(ũ, z̃), ỹ(ũ, z̃), ṽ(ũ, z̃), and w̃(ũ, z̃) are
defined in Proposition 4.2 of Ramı́rez-Cobo et al. [87], such that the equality of the Laplace
transforms holds for n = 1, 2.

4.F Proof of Proposition 4.2

We prove here that the set F in Proposition 4.2 provides feasible solutions to the problem
of equivalent BMAP2(2)s. Assume first that x < u. Let κ be defined as in (4.23), that is,

0 < κ < min {κ1, κ2, κ3, κ4, κ5, κ6, κ7, κ8} .

First, we prove that min {κ1, κ2, κ3, κ4, κ5, κ6, κ7, κ8} > 0. It is straightforward to check that

min {κ1, κ2, κ3, κ4} > 0.

Also, κ5 = − r
t
(r+ u+ v+ q+ t) > 0, since r, t > 0 and −r− u− v− q− t > 0. Next, κ6 > 0

since u − x > 0, and κ7 > 0 since (q − w) <
√

(q − w)2 + 4vm, because v,m > 0. Finally,
κ8 > 0 since − r

2t < 0, −y − x− w −m− n > 0 and therefore,

(u+ v + q + n+ t+ r)2 < (u+ v + q + n+ t+ r)2 + 4t(−y − x− w −m− n).

Then,
ũ = u− κ < 0 and r̃ = r + κ > 0.

Moreover, since κ < κ2 = u− x
2 , this assures that x̃ < ũ, and thus the parameterization of

M̃ is different from that of M with permuted states.

Since κ < κ3 = r(1− φ)
φ

, then

0 ≤ φ̃ ≡ (r + κ)φ
r

≤ 1.

Also, from κ < κ4 = rq

v
,

q̃ ≡ qr − vκ
r

> 0,

is obtained. Next,

(u− x)−
√

(x− u)2 + 4ry
2 < 0 < κ <

(u− x) +
√

(x− u)2 + 4ry
2 = κ6,
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implies that
ỹ(ũ, r̃) ≡ −(κ2 + (x− u)κ− ry)

r + κ
> 0,

and

r

2v

[
(q − w)−

√
(q − w)2 + 4vm

]
< 0 < κ <

r

2v

[
(q − w) +

√
(q − w)2 + 4vm

]
= κ7,

implies that
m̃(ũ, r̃) ≡ −(vκ2 − r(q − w)κ−mr2)

r(r + κ) > 0.

In addition,

w̃(ũ, r̃) ≡ wr + vκ

r
> 0, ṽ(ũ, r̃) ≡ v(r + κ)

r
> 0,

t̃(ũ, r̃) ≡ t(r + κ)
r

> 0, ñ(ũ, r̃) ≡ nr + tκ

r
> 0.

It remains to prove that −r̃ − ũ− ṽ − q̃ − t̃ > 0 and −x̃− ỹ − w̃ − m̃− ñ > 0. It is easy to
check that

−r̃ − ũ− ṽ − q̃ − t̃ = −r − u− v(r + κ)
r

− qr − vκ
r

− t(r + κ)
r

= −r − u− r(v + q) + t(r + κ)
r

,

which is positive if and only if κ < κ5 = −r
t
(r+u+ v+ q+ t). Finally, an easy computation

shows that −x̃− ỹ − w̃ − m̃− ñ > 0 is equivalent to

−κ− x > −(κ2 + (x− u)κ− ry)
r + κ

+ −(vκ2 − r(q − w)κ−mr2)
r(r + κ) + (nr + tκ) + (wr + vκ)

r
,

which holds if and only if κ ∈ (r1, r2) where

r1 = − r

2t

[
(u+ v + q + n+ t+ r)

+
√

(u+ v + q + n+ t+ r)2 + 4t(−y − w −m− n− x)
]
< 0,

r2 = − r

2t

[
(u+ v + q + n+ t+ r)

−
√

(u+ v + q + n+ t+ r)2 + 4t(−y − w −m− n− x)
]

= κ8 > 0.
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Now, assume that x = u. Then, let κ be defined as in (4.24), where in this case, κ6 ≡
√
ry.

Then,

ũ = u− κ < 0,
r̃ = r + κ > 0,
x̃ = x+ κ < 0 (since κ < −x),

ỹ = ry − κ2

r + κ
> 0 (since κ < √ry),

w̃ = wr + vκ

r
> 0,

ṽ = v(r + κ)
r

> 0,

ñ = nr + tκ

r
> 0,

t̃ = t(r + κ)
r

> 0,

and q̃, m̃, φ̃ ∈ [0, 1], −r̃ − ũ − ṽ − q̃ − t̃ > 0 and −x̃ − ỹ − w̃ − m̃ − ñ > 0 follow from the
assumptions κ < κ4, κ < κ7, κ < κ3, κ < κ5 and κ < κ8, respectively.



Chapter 5

Dependence patterns of the BMAP

The Batch Markovian Arrival Process allows for correlated batch event occurrences and de-
pendent inter-event times. Therefore it is considered as a model in contexts where dependent
data is observed. Most works regarding the theoretical aspect of the correlation structure
are focused on special cases of the MAP, specifically, the two-state MAP, see Heindl et al.
[41], Casale et al. [13], Ramı́rez-Cobo and Carrizosa [92] and Hervé and Ledoux [42], where
different analysis of the inter-event times correlation function are carried out, such as correla-
tion bounds, behaviors and characterizations. The main result found is that auto-correlation
function of the inter-event times for the stationary MAPm decreases geometrically.

The auto-correlation function for a sequence of inter-event times of a BMAP has a known
closed-form, as it can be seen in Chakravarthy [15]. However, the structure of the correlation
of the batch arrivals has not been studied in detail in the literature. In this chapter we study
some theoretical properties of the correlation functions of the inter-event times and batches
sizes for the stationary BMAP2(2). We prove that both auto-correlation functions decrease
geometrically to zero. In addition, we provide a characterization of the correlation functions
for the general BMAPm(k) case.

This chapter is organized as follows. Section 5.1 contains some preliminary results con-
cerning the correlation functions of the inter-event times and batches sizes. Section 5.2
generalizes the theoretical characterization of the auto-correlation functions of the general
BMAPm(k), for k ≥ 2. In Section 5.3 we provide closed-form functions for the auto-
correlation structures for the BMAP2(2), and provide important theoretical results and
patterns. Finally, in Section 5.4 some conclusions of this chapter are given.

109
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5.1 Preliminaries

In this section we recall the auto-correlation formulas for the inter-event times and batch
sizes, introduced in the previous chapter, in (4.3) and (4.4) respectively, which are the
starting point of the contributions in this chapter.

The auto-correlation function of the time between the (n − 1)-th and n-th event occur-
rences, Tn, in the stationary version, is given by

ρT (l) = ρ(T1, Tl+1) =

(
µTπ [(−D0)−1D]l (−D0)−1e− µ2

T

)
σ2
T

,

where l ≥ 1 represents the time lag, D = D1 +D2, and

µT = φ(−D0)−1e,

σ2
T = µT (2π(−D0)−1e− µT ).

Recall that π = πBMAP is the stationary probability vector of the underlying Markov process
J(t), and φ = φBMAP is defined in (1.14) as

φ = (πDe)−1πD.

Equivalently,

ρT (l) =

(
π [(−D0)−1D]l (−D0)−1e− µT

)
2π(−D0)−1e− µT

. (5.1)

Let Bn denote the size of the n-th batch event occurrence in the stationary version of
the BMAPm(k). Then, the auto-correlation function is given by

ρB(l) = ρ(B1, Bl+1) = φ(−D0)−1D?
1 [(−D0)−1D]l−1 (−D0)−1D?

1e− (φ(−D0)−1D?
1e)2

φ(−D0)−1D?
2e− (φ(−D0)−1D?

1e)2 ,

(5.2)
where l ≥ 1 represents the time lag, and D?

1 = D1 + 2D2 and D?
2 = D1 + 4D2, and

µB = φ(−D0)−1(D1 + 2D2)e,
σ2
B = φ(−D0)−1(D1 + 4D2)e−

(
φ(−D0)−1(D1 + 2D2)e

)2
.

In the following, we will try to obtain information from (5.1) and (5.2).
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5.2 Dependence structure of the BMAPm(k), m ≥ 3

This section generalizes previous results of the correlation structure of the inter-event times
for the stationary MAP2 and introduce new results on the correlation structure of the batch
size.

Theorem 5.1. Consider a BMAPm(k), for k ≥ 2, and let ρT (l) and ρB(l) denote the auto-
correlation function of the inter-event times distribution and batch sizes respectively. Then

ρT (l) =
m∑
i=2

pm,k,i(T )qlk,i,

ρB(l) =
m∑
i=2

pm,k,i(B)ql−1
k,i ,

where qk,i, for i = 2, . . . ,m are the eigenvalues of the matrix (−D0)−1D different from 1,
such that |qk,i| < 1, and pm,k,i(T ) and pm,k,i(B) are derived after calculations.

In addition,

|ρT (l)| ≥ |ρT (l + 1)|, for all l ≥ 1 and lim
l→∞

ρT (l) = 0,
|ρB(l)| ≥ |ρB(l + 1)|, for all l ≥ 1 and lim

l→∞
ρB(l) = 0.

Proof. Note that from (5.1) and (5.2), the matrix [(−D0)−1D] is the stochastic matrix P ?,
therefore, for the general m-state case, [(−D0)−1D]l has spectral decomposition,

[
(−D0)−1D

]l
= Q∆lQ−1,

where ∆ = diag(qk,1, qk,2, . . . , qk,m) are the eigenvalues, Q is the right eigenvector and Q−1

is the left eigenvector of (−D0)−1D.

For proving the result, we need the classical Perron-Frobenious theorem (for its proof and
many applications, we refer the reader to MacCluer [64] or Lawler [55], pages 16-17).

Theorem 5.2. (Perron-Frobenious theorem) Let A be a m×m stochastic matrix. Then the
following hold:

i) 1 is a simple eigenvalue of A.

ii) The absolute value of any other eigenvalue is strictly less than 1, that is, all eigenvalues
qk,i 6= 1 satisfy, |qk,i| < 1.
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Since,
πP ? = π ⇔ π = φ, and P ?e = e,

we have that the left eigenvector associated to the eigenvalue 1 is φ, and the right eigenvector
associated to 1 is e.

Then, [
(−D0)−1D

]l
= [e ν(2) ν(3) . . . ν(m)]∆l[φ ω(2) ω(3) . . . ω(m)]ᵀ,

where ν(i) and ω(i) are the columns and rows of the right and left eigenvectors respectively,
so ω(i)ν(i) = 1, and ∆l = diag(1, qlk,2, qlk,3 . . . , qlk,m), so

[
(−D0)−1D

]l
= eφ+ ν(2)ω(2)qlk,2 + ν(3)ω(3)qlk,3 + . . .

= eφ+
m∑
i=2

ν(i)ω(i)qlk,i. (5.3)

Now, for simplicity purposes, denote the numerators of (5.1) and (5.2) as

τmT (l) = π
[
(−D0)−1D

]l
(−D0)−1e− µT ,

τmB (l) = φ(−D0)−1D?
1

[
(−D0)−1D

]l−1
(−D0)−1D?

1e− (φ(−D0)−1D?
1e)2.

Recall that µT = φ(−D0)−1e, then, substituting (5.3) in τmT (l), we obtain

τmT (l) = π
[
(−D0)−1D

]l
(−D0)−1e− µT

= π

[
eφ+

m∑
i=2

ν(i)ω(i)qlk,i

]
(−D0)−1e− µT

= πeφ(−D0)−1e + π
[
m∑
i=2

ν(i)ω(i)qlk,i

]
(−D0)−1e− µT

=
m∑
i=2

(
πAi(−D0)−1e

)
qlk,i,

where
Ai = ν(i)ω(i).

Analogously,
τmB (l) =

m∑
i=2

(
φ(−D0)−1D?

1Ai(−D0)−1D?
1e
)
ql−1
k,i .
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Then,

ρT (l) = τmT (l)
2π(−D0)−1e− µT

=
∑m
i=2 (πAi(−D0)−1e) qlk,i
2π(−D0)−1e− µT

=
m∑
i=2

(πAi(−D0)−1e) qlk,i
2π(−D0)−1e− µT

.

And

ρB(l) = τmB (l)
φ(−D0)−1D?

2e− (φ(−D0)−1D?
1e)2

=
∑m
i=2 (φ(−D0)−1D?

1Ai(−D0)−1D?
1e) ql−1

k,i

φ(−D0)−1D?
2e− (φ(−D0)−1D?

1e)2

=
m∑
i=2

(φ(−D0)−1D?
1Ai(−D0)−1D?

1e) ql−1
k,i

φ(−D0)−1D?
2e− (φ(−D0)−1D?

1e)2 .

Therefore, the auto-correlation of the inter-event times for the general BMAPm(k) for k ≥ 2
can be written as

ρT (l) =
m∑
i=2

pm,k,i(T )qlk,i (5.4)

where
pm,k,i(T ) =

(
πAi(−D0)−1e

2π(−D0)−1e− µT

)
And for the batches,

ρB(l) =
m∑
i=2

pm,k,i(B)ql−1
k,i (5.5)

where
pm,k,i(B) =

(
φ(−D0)−1D?

1Ai(−D0)−1D?
1e

φ(−D0)−1D?
2e− (φ(−D0)−1D?

1e)2

)

Since |qk,i| < 1 we conclude that ρT (l) and ρB(l) are also decreasing sequences.

The complexity of the auto-correlation functions increases as the number of states, m, of
the process increases. Therefore, we expect to obtain richer correlation structures for higher
order BMAPs.
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5.3 Dependence structures of the BMAP2(k), k ≥ 2

In the this section we tackled the auto-correlation structure for the two-state case. This
section aims to provide a correlation structure for the general BMAPm(k), for k ≥ 2.

Recall that the stationary BMAP2(2) is represented by B = {D0, D1, D2} where (see
equation (4.6) from Chapter 4)

D0 =
x y

r u

 , D1 =
w m

v q

 , D2 =
n −x− y − w −m− n
t −r − u− v − q − t

 ,
where without loss of generality it is assumed that x ≤ u, and

x = −λ1, y = λ1p120, w = λ1p111, m = λ1p121, n = λ1p112,

r = λ2p210, u = −λ2, v = λ2p211, q = λ2p221, t = λ2p212.

We now present one of the major contributions of this chapter, where the structure of
the ρT (l) is characterized.

Lemma 5.1. Let a BMAP2(2) determined as in (4.6), and let ρT (l) denote the auto-
correlation function of the inter-event times distribution. Then

ρT (l) = p(T )ql, (5.6)

for some p(T ) and |q| < 1. In addition,

|ρT (l)| ≥ |ρT (l + 1)|, for all l ≥ 1 and lim
l→∞

ρT (l) = 0.

Proof. Let ωl denote the numerator in (5.1)

ωl = π
[
(−D0)−1D

]l
(−D0)−1e− µT . (5.7)

And, let ω denote the denominator in (5.1)

ω = 2π(−D0)−1e− µT ,

Then, after calculations, ω may be written in terms of the model parameters as

ω = κ1 + κ2

(ry − ux)(n− r − t− v + w + x)(nr + nu+ rw − ry − tx+ uw − ty + ux− vx− vy) .

(5.8)
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where

κ1 = 2(x− r)(n+ w + x)(nr + nu+ rw − ry − tx+ uw − ty + ux− vx− vy)
+2(y − u)(r + t+ v)(nr + nu+ rw − ry − tx+ uw − ty + ux− vx− vy),

κ2 = (ry − ux)(n− r − t− v + w + x)2.

Now, consider the expression (5.7). It can be seen that (−D0)−1D has spectral decomposition

(−D0)−1D = Q∆Q−1,

where ∆ is a diagonal matrix whose components are the eigenvalues of (−D0)−1D and Q is
the corresponding eigenvectors matrix, given by

Q =

1 ry − ux− nu− uw + ty + vy

nr + rw − tx− vx
1 1

 , ∆ =

1 0

0 (nr + nu+ rw − tx+ uw − ty − vx− vy)
ry − ux

 .
(5.9)

Therefore, [
(−D0)−1D

]l
= Q∆lQ−1, (5.10)

where

∆l =


1 0

0
[

(nr + nu+ rw − tx+ uw − ty − vx− vy)
ry − ux

]l
 .

Then, ωl may be written in terms of the model parameters as

ωl = (κ3 + κ4)(nr + nu+ rw − tx+ uw − ty − vx− vy)l(−r − u+ x+ y)
(ry − ux)l(ry − ux)(n− r − t− v + w + x)(nr + nu+ rw − ry − tx+ uw − ty + ux− vx− vy) ,

(5.11)
where

κ3 = n2r + 2nrw + nrx+ unr − ntx+ unt− nvx+ unv − yr2 − 2yrt− 2yrv + rw2 + rwx,

κ4 = urw + urx− yt2 − 2ytv − twx+ utw − tx2 + utx− yv2 − vwx+ uvw − vx2 + uvx.

Hence, taking into account (5.8) and (5.11), it can be verified that ρT (l) may be written in
terms of the model parameters as

ρT (l) = (nr + nu+ rw − tx+ uw − ty − vx− vy)l(−r − u+ x+ y)(κ3 + κ4)
(ry − ux)l(κ1 + κ2) , (5.12)
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Then, ρT (l) = p(T )ql, where

p(T ) = (κ3 + κ4)(−r − u+ x+ y)
(κ1 + κ2) ,

q = (nr + nu+ rw − tx+ uw − ty − vx− vy)
ry − ux

.

Note that q is an eigenvalue of P ? defined in (1.13). As P ? = (−D0)−1D is a stochastic
matrix, then it has two possible eigenvalues: 1 and q, and −1 ≤ q ≤ 1. Then |q| < 1 is
satisfied.

Since |q| < 1 we conclude that |ρT (l)| ≥ |ρT (l + 1)| for all l ≥ 1.

Next, we present an analogous result for the auto-correlation function of the batch size.

Lemma 5.2. Let a BMAP2(2) determined as in (4.6), and let ρB(l) denote the auto-
correlation function of the batch sizes. Then

ρB(l) = p(B)ql−1, (5.13)

for some p(B) and |q| < 1. In addition,

|ρB(l)| ≥ |ρB(l + 1)|, for all l ≥ 1 and lim
l→∞

ρB(l) = 0.

Proof. We proceed analogous to the proof Lemma 5.1. Let τl denote the numerator in (5.2)

τl = φ(−D0)−1D?
1

[
(−D0)−1D

]l−1
(−D0)−1D?

1e− (φ(−D0)−1D?
1e)2, (5.14)

And, let τ denote the denominator in (5.2)

τ = φ(−D0)−1D?
2e−

(
φ(−D0)−1D?

1e
)2
,

Then, τ may be written in terms of the model parameters as

τ = ε1ε2
(nr + nu+ rw − ry − tx+ uw − ty + ux− vx− vy)2 . (5.15)

where

ε1 = −mr + nq −mt−mv + nv + qw + qx− rw − tw + vx,

ε2 = mr − nq − nr +mt+mv − nu− nv − qw − qx+ ry + tw + tx− uw + ty − ux+ vy.
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From (5.9) and (5.10), consider the expression (5.14). It can be easily seen that[
(−D0)−1D

]l−1
= Q∆l−1Q−1,

Then, τk may be written in terms of the model parameters as

τl = −ε(nr + nu+ rw − tx+ uw − ty − vx− vy)l−1(mr +mu− qx+ rw − qy + uw − vx− vy)
(ry − ux)l−1(ry − ux)(nr + nu+ rw − ry − tx+ uw − ty + ux− vx− vy)2 ,

(5.16)
where

ε = ε3x
2 + (ε4 + ε5)x+ ε6 + ε7

where

ε3 = qt+ qv + uv,

ε4 = nqt−mv2 − v2y − nqr −mrt−mt2 −mrv + nqv − 2mtv,
ε5 = 2nuv − qrw + qtw + qvw − ruw − tuw − rvy + uvw − tvy,
ε6 = mnr2 − n2qr +mr2w + n2uv − qrw2 − nv2y − ruw2 − tuw2 + r2wy + t2wy +mnrt,

ε7 = mnrv − 2nqrw +mrtw +mrvw − nruw − ntuw − nrvy + nuvw − ntvy
+2rtwy + rvwy + tvwy.

Hence, taking into account (5.15) and (5.16), it is easy to check that (5.2) becomes

ρB(l) = (nr + nu+ rw − tx+ uw − ty − vx− vy)l−1ε(−mr −mu+ qx− rw + qy − uw + vx+ vy)
(ry − ux)l−1(ry − ux)ε1ε2

,

Then, ρB(l) = p(B)ql−1, where

p(B) = ε(−mr −mu+ qx− rw + qy − uw + vx+ vy)
(ry − ux)ε1ε2

,

q = (nr + nu+ rw − tx+ uw − ty − vx− vy)
ry − ux

As it was shown in Lemma 5.1, |q| < 1 is satisfied. Therefore ρB(l) is a decreasing sequence.

Remark 5.1. Note that for any BMAP2(k), for k ≥ 3, the stochastic matrix

P ? = (−D0)−1
k∑
i=1

Di,
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is still a 2 × 2 matrix with eigenvalues 1 and qk, where |qk| < 1. Therefore, the results for
Lemmas 5.1 and 5.2 are valid for any BMAP2(k), for k ≥ 3.

ρT (l) = pk(T ).qlk,
ρB(l) = pk(B).ql−1

k ,

for some pk(T ) and pk(B), and |qk| < 1. Therefore, ρT (l) and ρB(l) are decreasing sequences.

Remark 5.2. Expressions (5.6) and (5.13) obtained for the BMAP2(2) auto-correlations ρT
and ρB respectively, implies that ρT and ρB can take negative or positive values for some
l ≥ 1, which leads to the following correlation patterns for ρT .

• Pattern 1. If p(T ), q ≥ 0, then ρT (l) ≥ 0 for all l ≥ 1. As an example, consider the
BMAP2(2),

D0 =
−0.2653 0.0164

0.0485 −4.4157

 , D1 =
0.1986 0.0422

0.1041 3.6693

 , D2 =
0.0025 0.0056

0.0082 0.5855

 ,
it is easy to check that p(T ) = 0.4278 and q = 0.7261, and the auto-correlation function
is

ρT (1) = 0.3106, ρT (2) = 0.2256, ρT (3) = 0.1638,
ρT (4) = 0.1189, ρT (5) = 0.0864, ρT (6) = 0.0627.

• Pattern 2. If p(T ) ≤ 0 and q ≥ 0, then ρT (l) ≤ 0 for all l ≥ 1. For example, consider
the BMAP2(2),

D0 =
−1.7318 0.7232

0.0148 −1.7898

 , D1 =
0.0847 0.0159

0.1445 0.8245

 , D2 =
0.9049 0.0031

0.7169 0.0890

 ,
it is easy to check that p(T ) = −0.0534 and q = 0.2874, and the auto-correlation
function is

ρT (1) = −0.0153, ρT (2) = −0.0044, ρT (3) = −0.0013,
ρT (4) = −0.0004, ρT (5) = −0.0001, ρT (6) = −3.0072× 10−5.

• Pattern 3. If p(T ) ≥ 0 and q ≤ 0, then ρT (2l) ≥ 0 and ρT (2l+ 1) ≤ 0 for all l ≥ 1. As
an illustration, consider the BMAP2(2),

D0 =
−0.3414 0.0203

0.3617 −4.6970

 , D1 =
0.0051 0.3080

2.7217 0.0159

 , D2 =
0.0017 0.0063

0.7457 0.8519

 ,
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it is easy to check that p(T ) = 0.3035 and q = −0.6790, and the auto-correlation
function is

ρT (1) = −0.2060, ρT (2) = 0.1399, ρT (3) = −0.0950,
ρT (4) = 0.0645, ρT (5) = −0.0438, ρT (6) = 0.0297.

• Pattern 4. If p(T ) ≤ 0 and q < 0, then ρT (2l) ≤ 0 and ρT (2l+ 1) ≥ 0 for all l ≥ 1. As
an example, consider the BMAP2(2),

D0 =
−1.3722 0.9891

0.0742 −1.9044

 , D1 =
0.0466 0.2619

0.9831 0.0567

 , D2 =
0.0203 0.0543

0.7871 0.0035

 ,
it is easy to check that p(T ) = −0.1450 and q = −0.2188, and the auto-correlation
function is

ρT (1) = 0.0317, ρT (2) = −0.0069, ρT (3) = 0.0015,
ρT (4) = −0.0003 ρT (5) = 0.0001, ρT (6) = −1.5886× 10−5.

Analogous patterns are found for ρB(l) for l ≥ 1. That is,

• Pattern 1. If p(B), q ≥ 0, then ρB(l) ≥ 0 for all l ≥ 1. As an example, consider the
BMAP2(2),

D0 =
−1.1791 0.0281

0.0462 −1.0961

 , D1 =
0.0302 0.1324

0.0383 0.7907

 , D2 =
0.9118 0.0766

0.1595 0.0614

 ,
it is easy to check that p(B) = 0.4958 and q = 0.5897, and the auto-correlation function
is

ρB(1) = 0.4958, ρB(2) = 0.2924, ρB(3) = 0.1724,
ρB(4) = 0.1017, ρB(5) = 0.0600, ρB(6) = 0.0354.

• Pattern 2. If p(B) ≤ 0 and q ≥ 0, then ρB(l) ≤ 0 for all l ≥ 1. For example, consider
the BMAP2(2),

D0 =
−1.8815 0.0719

0.0551 −1.3879

 , D1 =
0.9732 0.8188

0.0216 0.6550

 , D2 =
0.0116 0.0060

0.6001 0.0562

 ,
it is easy to check that p(B) = −0.2396 and q = 0.0720, and the auto-correlation
function is

ρB(1) = −0.2396, ρB(2) = −0.0172, ρB(3) = −0.0012,
ρB(4) = −0.0001, ρB(5) = −6.4348× 10−6, ρB(6) = −4.6324× 10−7.
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• Pattern 3. If p(B) ≥ 0 and q ≤ 0, then ρB(2l) ≤ 0 and ρB(2l+ 1) ≥ 0 for all l ≥ 1. As
an illustration, consider the BMAP2(2),

D0 =
−1.8499 0.0233

0.3029 −1.7062

 , D1 =
0.0172 0.7854

0.9346 0.4201

 , D2 =
0.9496 0.0743

0.0485 0.0001

 ,
it is easy to check that p(B) = 0.2352 and q = −0.1394, and the auto-correlation
function is

ρB(1) = 0.2352, ρB(2) = −0.0328, ρB(3) = 0.0046,
ρB(4) = −0.0006, ρB(5) = 0.0001, ρB(6) = −1.2373× 10−5.

• Pattern 4. If p(B) ≤ 0 and q < 0, then ρB(2l) ≥ 0 and ρB(2l+ 1) ≤ 0 for all l ≥ 1. As
an example, consider the BMAP2(2),

D0 =
−1.5013 0.1198

0.0836 −1.1887

 , D1 =
0.3441 0.9929

0.0759 0.0240

 , D2 =
0.0420 0.0026

0.9269 0.0783

 ,
it is easy to check that p(B) = −0.4754 and q = −0.5402, and the auto-correlation
function is

ρB(1) = −0.4754, ρB(2) = 0.2568, ρB(3) = −0.1387,
ρB(4) = 0.0749, ρB(5) = −0.0405, ρB(6) = 0.0219.

5.4 Chapter summary

This chapter extends important properties of the auto-correlation function of the inter-event
times of the stationary BMAP2(2), and introduces new results for the auto-correlation func-
tion of the batch sizes. We provide a characterization of both auto-correlation functions in
terms of the eigenvalues of P ?, and prove that they both decrease geometrically as the time
lag increases. In addition, four behavior patterns are distinguished for both correlation func-
tions, illustrated with numerical examples. Also, the characterization of the auto-correlation
functions has been extended for the general BMAPm(k) case.



Chapter 6

Conclusions and future work

In this dissertation we have studied important properties of the point process that captures
the statistical features of dependent and not identical distributed inter-event times (MAP),
as well as possible correlates batch arrivals (BMAP). These processes have been proved
to be manageable and tractable models. And therefore are a good alternative to model
non-exponential type inter-event times. The main contributions of this dissertation are the
following,

• We have studied the non-stationary Markovian arrival process, in particular its two-
state case, MAP2, and we characterize its canonical representation. Specifically,

X We have defined when a non-stationary MAP2 is identifiable in terms of its
Laplace-Stieltjes transform for all n ≥ 1 given that the inter-event times are
observed.

X We show that the non-stationary MAP2 is a nonidentifiable process, which is also
a valid result for non-stationary MAP’s of order m.

X We consider a moments matching approach in order to provide a procedure that
shows how to build an equivalent non-stationary MAP2 for any given fixed one.

X We show that the non-stationary MAP2 is characterized by a set of five moments.

X We define the unique canonical representation for the non-stationary MAP2 in
terms of five parameters (instead of six).

X Every result presented has been illustrated with numerical examples.

121
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• Motivated by the result of a canonical representation in the non-stationary MAP2, we
develop an inference procedure in Chapter 3.

X We introduce an important modeling framework based on N independent inter-
event sequences, that can be extended to a wide range of applications.

X We provide the autocorrelation function of the inter-event times for the non-
stationary version of the MAPm.

X We develop a moment matching approach to model the sequence of failures of N
electrical components to a non-stationary MAP2.

X A real data case provided by the Spanish private electrical utility company, Iber-
drola, has been provided to illustrate our developed approach. Important quan-
tities regarding the counting process are calculated.

X We compare the capability of the non-stationary MAP2 to properly capture the
statistical characteristics of a sequence of failures of N electrical components
versus its stationary counterpart.

• We have studied the stationary Batch Markovian arrival process with two-states, and
batch arrivals up to size k, BMAP2(k) in Chapter 4.

X We have defined important distributional properties of the batch arrival process:
the joint Laplace-Stieltjes transform between the inter-event times and batch sizes;
and the autocorrelation function.

X We provide conditions under which two BMAP2(2)s are equivalent for n = 1 and
n = 2. And also give a procedure to construction an equivalent BMAP2(2) to a
given one.

X We prove that the stationary BMAP2(2) is a nonidentifiable process.

X We have defined when a BMAP2(k), for k ≥ 3, is nonidentifiable, based on the
decomposition of nonidentifiable BMAP2(2)s. We extend that result to prove that
the stationary BMAP2(k), for k ≥ 3, is a nonidentifiable process.

X Numerical examples have been presented to show the presented results.

• The autocorrelation functions of the inter-event times and batch sizes of the BMAP2(2)
were examined in Chapter 5.
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X We have characterized the autocorrelation function of the inter-event times in
terms of the eigenvalue different from 1 of P ?, for the stationary BMAP2(2). An
analogous result was given for the autocorrelation function for the batch sizes.

X We prove that both correlation functions decrease geometrically as the time lag
increases, for the stationary BMAP2(2).

X We identify four behavior patterns for both correlation functions. Numerical
examples have been presented to show the presented results.

X We have extended the characterization of the autocorrelation functions of the
inter-event times and batch sizes for the general stationary BMAPm(k).

Possible research lines as extensions of the presented work are the following,

↪→ In Chapter 2 we studied the canonical representation of the non-stationary MAP2. A
possible extension of this work is to thoroughly study the identifiability problem for
the non-stationary process when group or batch arrivals are allowed, BMAPm(k), for
k ≥ 2.

↪→ In Chapter 3 we considered a framework of N electrical components identically built to
fit a non-stationary MAP2. A first extension is to consider a new setting where not all
the components are equal. In such case, it would be desirable to develop an estimation
technique that either groups or separates those components that are structurally the
same. Second, it is of interest to derive an estimation approach when the repair times
are non-negligible. Finally, we wish to study how the MAP can be estimated in the
case of censored inter-failure times data, a very common problem in practice.

↪→ In Chapter 4 we proved the non-identifiability of the stationary BMAP2(k), for k ≥ 2.
A challenging extension concerning the BMAPs is the study of the canonical represen-
tation of the process, a reduced/unique form that characterizes the process in terms
of a fewer number of parameters (as Bodrog et al. [7] stated for stationary MAP2).

Other prospects regarding this chapter may concern both the estimation of the station-
ary BMAP2(k) and the study of the nonidentifiability of the higher order stationary
BMAPm(k), for m ≥ 3, which are expected to show more versatility for modeling pur-
poses. Concerning the second point, we are aware of the complexity of such a problem
due to the increasing number of parameters.
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↪→ In Chapter 5 we proved that the autocorrelation functions for the inter-event times
and batch sizes decrease geometrically for the stationary BMAP2(2). An important
extension would be to determine patterns and bounds for the autocorrelation functions
for the stationary BMAPm(k), with m ≥ 3. As well as study the joint correlation
function of the inter-event times and batch sizes, and determine if greater structures
can be captured.

↪→ Extend the estimation methods proposed for the BMAP to estimate the steady-state
distributions of the queueing system. In addition, following Auśın et al. [5], we will
also try to design a BMAP/G/c queueing system, that is, given arrival and service
data, our objective will be to choose the optimal number of servers so as to minimize
an expected cost function which will depend on quantities, such as the number of
customers in the queue.

↪→ It is of interest to derive a hypothesis test given a sequence of inter-event times to
determine which MAP adjusts better the data, i. e., try to find the MAP (with some
order m, m the smallest as possible) which better fits the trace.
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[5] Auśın, M., Lillo, R. and Wiper, M. (2007). Bayesian control of the number of servers in a
GI/M/c queueing system, Journal of statistical planning and inference, 137, 3043-3057.

[6] Blackwell, D. and Koopmans, L. (1957). On the identifiability problem for functions of
finite Markov chains. The Annals of Mathematical Statistics, 28, 1011-1015.
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