Maritime Technology and Research 2019; 1(2): xx-xx

https://doi.org/10.33175/mtr.2019.146259

Maritime Technology and Research

https://www.tci-thaijo.org/index.php/MTR

Species identification of processed sea cucumbers from Malaysian market based on concatenated gene sequences of mitochondrial rRNA genes

Kamarul Rahim Kamarudin^{1,*}, Maryam Mohamed Rehan² and Aisyah Mohamed Rehan³

¹Department of Technology and Natural Resources, Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, Pagoh Campus, Johor Darul Takzim 84600, Malaysia

Article information

Received: September 19, 2018 Revised: December 12, 2018 Accepted: January 10, 2018

Keywords

12S rRNA gene 16S rRNA gene Malaysian markets processed sea cucumbers Phylogenetic analysis

Species identification of sea cucumbers that have undergone body deformation due to extensive food processing e.g. beche-de-mer is difficult especially with the copresence of cases of unlabelled or mislabelled sea cucumber-based products in the markets. Therefore, a study was done to determine the species identities of processed sea cucumbers from selected Malaysian markets using concatenated gene sequences of non-protein-coding 12S and 16S mitochondrial rRNA genes. Phylogenetic analyses based on the distance-based Neighbour Joining method, and the characterbased methods i.e. the Maximum Parsimony method, Maximum Likelihood method, and the Bayesian Analysis method of 47 ingroup sequences representing 37 processed sea cucumber specimens, 6 reference samples, and 4 additional specimens suggested the presence of 3 main clusters i.e. gamat family consisting of genus Stichopus and genus Thelenota; and timun laut family comprising family Holothuriidae. A number of 3 gamat species i.e. Stichopus horrens, Stichopus vastus, and Thelenota anax were recorded. Meanwhile, the specimens of Holothuria (Halodeima) atra, Holothuria (Halodeima) edulis, Holothuria (Metriatyla) lessoni, Holothuria (Mertensiothuria) leucospilota, and Holothuria (Metriatyla) scabra were the 5 timun laut species that grouped under the family Holothuriidae. The outcomes of this study can be utilised by the enforcement agencies to monitor and overcome the issues of species substitution and product mislabelling of processed sea cucumber products in Malaysian markets.

All rights reserved

²Department of Food Biotechnology, Faculty of Science and Technology, Universiti Sains Islam Malaysia, Negeri Sembilan Darul Khusus 71800, Malaysia

³Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, Pahang Darul Makmur 25200, Malaysia

^{*}Corresponding author's e-mail: kamarulr@uthm.edu.my

1. Introduction

The seafood industry is facing a critical issue of species substitution of commercial marine products. There are a number of contributing factors to such issue or intentional product mislabelling; among them are increase in global seafood consumption, growing international trade, and fluctuations in the food supply and demand of different marine species (Rasmussen & Morrissey, 2008). According to Rasmussen and Morrissey (2008), economic fraud, health hazards, and illegal trade of protected species could be the serious consequences resulted from species substitution. China have commercialised 26 sea cucumber species placing the country as the second world's top producer (Choo, 2008). However, the mislabelling of 63.6 percent of commercial sea cucumber products from Guangzhou, China was reported by Wen et al. (2011). The same issue can be observed in Malaysian markets by which some sea cucumber-based products have been labelled with incorrect species name and missing manufacturing or packaging details. In fact, Malaysia has been ranked as the fourth world's top producer of commercial sea cucumber with 19 commercial species (Choo, 2008) and the issue could cause problems to the local economy, health and conservation sectors

For years, the microscopic observation of ossicle shapes; the external anatomy of sea cucumber e.g. the presence and shape of tube feet and feeding tentacles; and the internal anatomy e.g. the types of calcareous rings have been used for morphological species identification of sea cucumber. However, even though the morphological characteristics in sea cucumber species identification are important (Dabbagh et al., 2012; Massin et al., 2002), molecular method using Deoxyribonucleic Acid (DNA) is required as a confirmation tool especially for processed sea cucumbers that have underwent shape deformation due to extensive processing. Processed sea beche-de-mer cucumbers including available in the forms of frozen, dried, pickled, and canned products, to mention a few.

Species identification, phylogenetic analyses, and phylogeographical analyses of animal have incorporated mitochondrial DNA (mtDNA) as the most preferred model for molecular genetic studies. Small-subunit mitochondrial ribosomal RNA (rRNA) as part of the mtDNA stores informative resources for phylogenies (Freeman & Herron, 2004). 12S rRNA and 16S rRNA are the 2 components of the small subunit. Both mitochondrial rRNA genes are not protein-coding gene, since rRNA only produces polypeptides that are used to make up proteins. In fact, 16S mitochondrial rRNA gene has been frequently used in the molecular genetic analyses of sea cucumber. In terms of species identification of processed sea cucumbers in commercial food products, PCR-RFLP technique and Forensically Informative Nucleotide Sequencing (FINS) technique based on the 16S mitochondrial rRNA gene have been further developed by Wen et al. (2010) to identify six sea cucumber of family Stichopodidae. the species Furthermore, Wen et al. (2011) applied FINS technique to evaluate the incidence of incorrect labelling of sea cucumbers of the family Holothuriidae. The studies reported the presence of product mislabelling issue or species substitution issue in the markets. In contrast to 16S mitochondrial rRNA, there is a lack of study on 12S mitochondrial rRNA gene of sea cucumber to date. Only one study on 12S mitochondrial rRNA gene of live sea cucumber has been found to date (Clouse et al. 2005). Clouse et al. (2005) summarised that B. marmorata and B. bivittata should be accepted as 2 separate species as both species were not sister species and B. bivittata was genetically closer to B. argus. In terms of species identification of processed sea cucumbers, Kamarudin et al. (2017) incorporated ossicle shapes and 12S rRNA gene sequences for species identification of gamat-based bechede-mer from Langkawi Island, Malaysia. Besides, Kamarudin et al. (2017) used 12S mitochondrial rRNA gene to identify the species of sea cucumber specimens from Kudat, Sabah, Malaysia whereby 3 species recorded i.e. Holothuria scabra, Stichopus horrens and Stichopus ocellatus.

In Malaysia, issues related to species substitution and product mislabelling of sea cucumber-based products can be observed and investigated at some places. Therefore, the aim of this study was to determine the species identity of processed sea cucumber specimens from selected Malaysian markets by using the concatenated gene sequences of non-proteincoding 12S mitochondrial rRNA gene and 16S mitochondrial rRNA gene. Since mitochondrial rRNA genes have been known informative, it is believed that their concatenation will give better conclusion on the genetic identity of sea cucumber due to the interconnection of more informative sites in a DNA sequence. The genetic identity and relationship of the sea cucumber specimens in this study were determined through Online Basic Local Alignment Search Tool program for nucleotide (blastn) and phylogenetic analyses based on the distance-based method with clustering algorithm as the tree building strategy i.e. the Neighbour Joining method, character-based methods the optimality criterion as the tree building strategy i.e. the Maximum Parsimony method, Maximum Likelihood method, and Bayesian Analysis method. A comparison has been made between the findings of the analyses and the manufacturing or packaging details of the sea cucumber specimens. Moreover, this study also highlights the issues

of intentional species substitution and product labelling of processed sea cucumbers in selected Malaysian markets. The information may be utilised by the enforcement agencies to tackle issues pertaining to sea cucumber-based products in Malaysia.

2. Materials and methods

2.1 Study site and sampling

Kota Kinabalu, Sabah and Kudat, Sabah (East Malaysia, in Borneo Island); Kuantan, Pahang Darul Makmur (East Coast region Peninsular Malaysia); Langkawi Archipelago, Kedah Darul Aman (North region Peninsular Malaysia); Nilai, Negeri Sembilan Darul Khusus (South region of Peninsular Malaysia); and Pangkor Archipelago, Perak Darul Ridzuan (West Coast region in the northern part of Peninsular Malaysia) were included as the sampling sites (Figure 1). A number of 112 sea cucumber specimens were sampled including six live and fresh specimens of gamat species (SHP1-SHP3, Stichopus horrens) and timun laut species (HLTNP1-HLTNP3, Holothuria (Mertensiothuria) leucospilota)) from 2 sampling sites in Pangkor Archipelago as the reference samples of fresh sea cucumbers; and 7 dried gamatbased beche-de-mer specimens from Kuah, Langkawi Archipelago (LKIG1-LKIG6) as the reference samples of processed sea cucumbers.

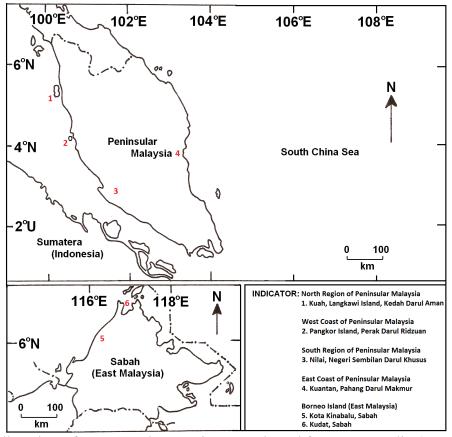


Figure 1 Sampling sites of sea cucumber specimens. Adapted from Kamarudin (2018).

2.2 Total genomic DNA extraction

A number of 3 methods of total genomic DNA extraction were used i.e. modified cetyl trimethyl ammonium bromide (CTAB) method of Grewe et al. (1993) coupled with the Geneaid Genomic DNA Mini (Blood/Cultured Cell), total genomic DNA extraction using the FavorPrepTM Tissue Genomic DNA Extraction Mini Kit, and total genomic DNA extraction using the DNeasy mericon Food Kit by QIAGEN. For the third method, homogenised tissue was prepared by using the **QIAGEN TissueRuptor** disrupting and homogenising the tissue. One % agarose gel with FloroSafe DNA Stain was used to determine the approximate yield of the total genomic DNA through horizontal gel electrophoresis. The extracts were kept in -20 °C chest freezer for long-term storage.

2.3 Polymerase chain reaction (PCR)

The gene amplification involved 2 methods:

- a) Twenty five μ l PCR reaction volume using the 2x TopTaq Master Mix Kit by QIAGEN
- b) Fifty μ l PCR reaction volume containing 33.75 μ l of sterilised dH₂O, 5.0 μ l of 10X PCR reaction buffer, 3.0 μ l of 25 mM magnesium chloride, 2.5 μ l of each 5 μ M universal primer, 1.0 μ l of 10 mM dNTP mix, 2.0 μ l of the DNA extract and 0.25 μ l of 5 u/ μ l Taq DNA polymerase.

The primer sets for mitochondrial rRNA genes are as follows:

a) Primers for 12S mitochondrial rRNA gene (Palumbi et al. (1991), expected length: ~360 bp)):

AB12SA-Lf (forward) 5'- AAA CTG GGA TTA GAT ACC CCA CTA T -3' (25 bases)

AB12SB-Hr (reverse) 5'- GAG GGT GAC GGG CGG TGT GT -3' (20 bases)

b) Primers for 16S mitochondrial rRNA gene (Palumbi et al. (1991), expected length: ~650 bp)):

16sar-L (forward) 5' - CGC CTG TTT ATC AAA AAC AT - 3' (20 bases)

16sbr-H (reverse) 5' – CCG GTC TGA ACT CAG ATC ACG T – 3' (22 bases)

The PCR cycles involved 2 parameter batches:

a) 2 min at 95 °C for initial denaturation, 30 s at 95 °C for denaturation, 30 s at optimised temperature for annealing, 45 s at 72 °C for extension, repetition of step 2 - 4 for another 34 - 39 cycles, 5 min at 72 °C for final extension, and forever hold at 4 °C.

b) 5 min at 95 °C for initial denaturation, 45 s at 95 °C for denaturation, 90 s at optimised temperature for annealing, 1 min 30 s at 72 °C (60 s/kb; 29 cycles) for extension, 7 min at 72 °C for final extension, and forever hold at 4 °C.

2.4 PCR product purification and DNA sequencing

The PCR fragment purification involved 3 types of kits i.e. QIAquick PCR Purification Kit by QIAGEN (for direct purification of single PCR fragment), Geneaid Gel/PCR DNA Fragments Extraction (for Kit purification of single PCR fragment), and QIAquick Gel Extraction Kit by QIAGEN (for purification of desired PCR fragment from agarose gel). Some of the unpurified PCR products were sent directly to the First BASE Laboratories Sdn Bhd, Seri Kembangan, Selangor Darul Ehsan, Malaysia as the company also provides PCR products clean up service.

2.5 Phylogenetic analyses

The sequenced PCR products of the mitochondrial DNA genes were displayed using Chromas program version 2.5.1 (Copyright[©] 1998 - 2016 Technelysium Pty Ltd). The online blastn was used to assign each DNA sequence to a particular sea cucumber species or genus. Prior to the phylogenetic tree reconstruction, ClustalX program version 2.1 (Thompson et al., 1997) was used for multiple sequence alignment of forward reaction sequences. In addition, Molecular Evolutionary Genetics Analysis

version 7.0.14 (MEGA7; Kumar et al., 2016) was subsequently used to concatenate the partial sequences of non-protein-coding 12S and 16S mitochondrial rRNA genes, and also to calculate the number of base substitutions per site from between sequences (i.e. pairwise genetic distance matrix) using the Maximum Composite Likelihood model (Tamura et al., 2004) with the elimination of all positions containing gaps and missing data, and then to reconstruct phylogenetic trees Neighbour Joining method (a distance-based method with clustering algorithm as the tree building strategy) and Maximum Parsimony method (a character-based method with optimality criterion as the tree building strategy). Modeltest (version 3.7) program (Posada and Crandall, 1998) was used to calculate and find the best model for DNA evolution prior to the reconstruction of Maximum Likelihood phylogenetic trees using PAUP* (version 4.0b10) program (Swofford, 1998) with 100 bootstrap replicates. A number of 56 models of DNA substitution were tested in order to choose the model that fitted the data best.

Meanwhile, reconstructions the of consensus Bayesian phylogenetic trees (using Bayesian Analysis method, a character-based method with optimality criterion as the tree building strategy) were done by using (version MrBayes 3.1.2) program (Huelsenbeck and Ronquist, 2001). TreeView (version 1.6.6) program (Page, 1996) and paint.net 4.0.6 (Final 4.6.5693.28) program (Copyright © 2015 dotPDN LLC, Rick Brewster, and contributors) were used to display and edit the reconstructed phylogenetic trees.

3. Results and discussion

Table 1 indicates the number of base substitutions per site from between concatenated gene sequences of non-protein-coding 12S and 16S mitochondrial rRNA genes. A number of 47 nucleotide sequences and a total of 769 positions were involved in the final dataset. The genetic distance values between specimens that were identified as *S. horrens* ranged from 0 (0 %) to 0.0390 (3.9 %)

https://www.tci-thaijo.org/index.php/MTR

with average genetic distance of 0.0131 (1.31 %), thus suggesting their status as single morphospecies i.e. morphospecies *S. horrens*. Besides, the genetic distance values between PKSH1 specimen (from Kudat, Sabah) and other *S. horrens* specimens including the reference samples of SHP ranged from 0.0325 (3.25 %) to 0.0390 (3.9 %). Meanwhile, the genetic distance value between *S. vastus* specimens i.e. PKSO1 (from Kudat, Sabah)

and LKIG7 was 0.0185 (1.85 %). The genetic distance values between *T. anax* specimens i.e. KKS specimens (from Kota Kinabalu, Sabah) ranged from 0.0012 (0.12 %) to 0.0375 (3.75 %) with average genetic distance of 0.0181, thus suggesting their status as single morphospecies i.e. morphospecies *T. anax*. Furthermore, the average genetic distance between *Stichopus* specimens was 0.1340 (13.4 %).

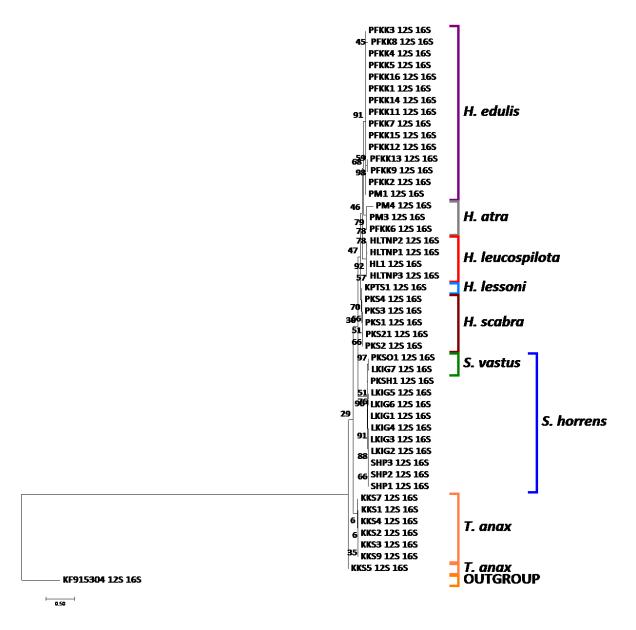
Table 1 Pairwise genetic distance matrix of sequences of concatenated gene sequences of non-protein-coding 12S and 16S mitochondrial rRNA genes of sea cucumber specimens from selected Malaysian markets and other sampling sites including the reference samples and processed specimens.

75																									
																									0.0052
24																								0.0322	0.0267 0.0
23																							29		
22																						13	31 0.0267	39 0.0052	13 0,0000
21																						6 0.0013	4 0.0281	9 0.0039	6 0.0013
70																					0.0013	0.0026	0.0294	0.0039	0.0026
19																				0.3279	0.3254	0.3274	0,3596	0,3325	0.3274
18																			0.0470	0.3055	0.3079	0,3099	0.3432	0.3119	0,3099
17																		0.0013	0.0456	0.3075	0.3099	0.3119	0.3432	0.3140	0.3119
16																	0.0131	0.0118	0.0429	0,3095	0.3119	0.3140	0.3475	0.3160	0.3140
15																0.0052	0.0078	0.0065	0.0429	0,3055	0.3079	0,3099	0,3432	0.3119	0,3099
14															0.0039	0.0092	0.0118	0.0105	0.0470	0,3115	0,3140	0.3160	0.3496	0.3180	0,3160
13														0.0157	0.0118	0.0171	0.0039	0.0052	0.0497	0.3075	0,3099	0.3119	0.3432	0,3140	0.3119
12													0.2596	0.2672	0.2615	0.2653	0.2596	0.2615	0.2811	0.1273	0.1256	0.1271	0.1543	0.1305	0.1271
11												0.3003	0.2086	0.2121	0.2069	0.2138 (0.2069	0.2051	0.1997	0.3043 (0.3067	0.3087	0.3442	0.3107	0.3087
10											0.0052	0,3007 0	0.2106 0	0.2141 0	0.2089 0	0.2158 0	0.2089 0	0.2071 0	0.2017 0	0.3039 0	0.3063 0	0.3043 0	0.3395 0	0.3103 0	0.3043 0
										0.0365	0.0364 0.	0.3466 0.	0.2469 0.	0.2543 0.	0.2488 0.	0.2525 0.	0.2451 0.	0.2469 0.	0.2356 0.	0.3551 0.	0.3578 0.	0.3556 0.	0.3864 0.	0.3621 0.	0.3556 0.
6									0.0365	0.0078 0.0	0.0026 0.0	0.3003 0.3	0.2086 0.2	0.2121 0.3	0.2069 0.2	0.2104 0.2	0.2069 0.2	0.2051 0.2	0.1997 0.2	0.3043 0.3	0.3067 0.3	0.3087 0.3	0.3442 0.3	0.3107 0.3	0.3087 0.3
00								39																	
7							13	26 0.0039	54 0.0379	52 0.0065	00 0.0013	3 0.3027	36 0.2106	21 0.2141	69 0.2089	38 0.2158	69 0.2089	51 0.2071	97 0.2017	13 0.3067	57 0.3091	37 0.3112	12 0.3468	0.3132	37 0.3112
9						2	5 0.0013	5 0.0026	3 0.0364	5 0,0052	2 0.0000	1 0.3003	4 0.2086	4 0.2121	1 0.2069	4 0.2138	6 0.2069	4 0.2051	3 0.1997	2 0,3043	7 0.3067	7 0.3087	2 0.3442	8 0.3107	7 0,3087
2						0.0132	0.0145	0.0145	0.0323	0.0185	0.0132	0,3091	0.2184	0.2254	0.2201	0.2254	0.2166	0.2184	0.2093	0,3152	0.3177	0,3197	0,3442	0.3218	0.3197
4					0.3075	0.3007	0.3031	0.3007	0.3468	0.3043	0.3007	0.1661	0.3284	0.3346	0.3325	0.3367	0.3284	0.3304	0.3455	0.1544	0.1526	0.1542	0.1823	0.1577	0.1542
8				0.0131	0.3051	0.2983	0.3007	0.2983	0,3441	0.3019	0.2983	0.1627	0.3300	0.3362	0,3341	0,3383	0.3300	0,3321	0,3492	0.1542	0.1525	0.1541	0.1821	0.1576	0.1541
2			0.0105	0.0211	0,3135	0,3067	0,3091	0,3067	0,3489	0,3063	0,3067	0,1661	0,3284	0,3346	0,3325	0,3367	0.3284	0,3304	0.3518	0.1576	0.1558	0.1542	0.1823	0.1609	0.1542
1		0.0278	0.0197	0.0092	0.3075	0.2967	0.2991	0.2967	0.3468	0.3003	0.2967	0.1661	0.3304	0.3325	0.3304	0.3346	0.3304	0.3284	0.3518	0.1480	0.1463	0.1479	0.1774	0.1514	0.1479
	1. HL1	2. HLTNP1	3. HLTNP2	4. HLTNP3	5. KKS1	6. KKS2	7. KKS3	8. KKS4	9. KKS5	10. KKS7	11. KKS9	12. KPTS1	13, LKIG1	14. LKIG2	15. LKIG3	16. LKIG4	17. LKIG5	18, LKIG6	19. LKIG7	20. PFKK1	21. PFKK11	22. PFKK12	23. PFKK13	24. PFKK14	25. PFKK15

Genetic identity of processed sea cucumbers https://www.tci-thaijo.org/index.php/MTR

25	0.0052	0.0026	0.0039	0.0039	0.0039	0.1099	0.0013	0.0406	0.0336	0.1304	0.1320	0.1434	0.1273	0.1257	0.3120	0.3144	0.0026	0.1099	0.2242	0,3140	0.3140	0 2119
	0.0065 0.	0.0052 0.	0.0052 0.	0.0052 0.	0.0052 0.	0.1131 0.	0.0039 0.	0.0420 0.	0.0392 0.	0.1338 0.	0.1354 0.	0.1469 0.	0.1307 0.	0.1291 0.	0.3140 0.	0.3193 0.	0.0052 0.	0.1131 0.	0.2283 0.	0.3160 0.	0.3160 0.	0.3140 0
24						_			_													
23	2 0.0322	6 0.0294	9 0.0308	9 0.0308	9 0.0308	9 0.1372	3 0.0281	9690'0 9	6 0.0199	4 0.1594	0.1610	4 0.1731	3 0.1561	7 0.1545	0.3454	4 0.3479	6 0.0294	9 0.1372	2 0.2420	0.3453	0.3453	0 0 2452
77	0.0052	0.0026	0.0039	0.0039	0.0039	0.1099	0.0013	0.0406	0.0336	0.1304	0.1320	0.1434	0.1273	0.1257	0.3120	0.3144	0.0026	0.1099	0.2242	0.3140	0.3140	0 2110
21	0.0039	0.0013	0.0026	0.0026	0.0026	0.1084	0.000	0.0393	0.0350	0.1288	0.1304	0.1418	0.1257	0.1242	0,3099	0,3123	0,0013	0.1084	0.2224	0,3119	0,3119	0 2000
70	0.0026	0.0026	0.0013	0.0013	0.0013	0.1100	0.0013	0.0378	0.0364	0.1305	0.1321	0.1436	0.1274	0.1258	0.3075	0.3148	0.0026	0.1100	0.2244	0,3095	0,3095	0.2075
19	0.3304	0.3254	0,3300	0.3300	0.3300	0.3070	0.3254	0.3709	0,3654	0.2730	0.2711	0.2850	0.2749	0.2769	0.0484	0.0158	0.3254	0.3070	0,4523	0.0429	0.0429	0.0443
18	0.3079	0.3079	0.3075	0.3075	0.3075	0.2939	0.3079	0.3470	0.3489	0.2537	0.2556	0.2654	0.2556	0.2575	0.0278	0.0360	0.3079	0.2939	0.4333	0.0092	0.0092	0.000
17	0.3099	0.3099	0.3095	0.3095	0.3095	0.2959	0.3099	0.3491	0.3489	0.2556	0.2574	0.2673	0.2574	0.2593	0.0291	0.0373	0.3099	0.2959	0.4357	0.0078	0.0078	0000
16	0.3119	0.3119	0.3115	0.3115	0.3115	0.2939	0.3119	0.3491	0.3531	0.2593	0.2612	0.2711	0.2612	0.2631	0.0318	0.0400	0.3119	0.2939	0.4309	0.0078	0.0078	0.000
15	0.3079	0.3079	0.3075	0.3075	0.3075	0.2919	0.3079	0.3448	0.3489	0.2537	0.2556	0.2654	0.2556	0.2575	0.0264	0.0346	0.3079	0.2919	0.4309	0.0026	0.0026	0.0012
14	0.3140	0.3140	0,3136	0,3136	0,3136	0.2939	0,3140	0,3512	0,3532	0.2594	0.2612	0.2711	0.2612	0.2632	0.0304	0.0387	0,3140	0.2939	0.4309	0.0039	0.0039	2000
13	0.3099	0.3099	0,3095	0,3095	0,3095	0.2959	0,3099	0,3491	0.3489	0.2556	0.2574	0.2673	0.2574	0.2593	0.0331	0.0414	0,3099	0.2959	0.4357	0.0118	0.0118	0.0121
12	0.1305	0.1256	0.1273	0.1273	0.1273	0.1486	0.1256	0.1646	0.1646	0.0158	0.0171	0.0265	0.0184	0.0197	0.2673	0.2733	0.1256	0.1486	0.2754	0.2615	0.2615	N 252A
11	0.3067	0.3047	0.3023	0.3023	0.3023	0.3172	0.3067	0.3520	0.3563	0.2999	0.2999	0.3124	0.2999	0.3019	0.2086	0.1980	0.3047	0.3172	0.4828	0.2104	0.2104	2000 0
10	0.3063	0.3043	0,3019	0,3019	0,3019	0.3176	0,3063	0,3515	0.3515	0.2983	0.2983	0,3108	0.2983	0,3003	0.2106	0.1999	0,3043	0.3176	0.4820	0.2123	0.2123	2010.0
6	0.3578	0.3556	0.3530	0.3530	0.3530	0.3692	0.3578	0.4076	0.3949	0.3525	0.3525	0.3660	0.3503	0.3525	0.2506	0.2374	0.3556	0.3692	0.5069	0.2488	0.2488	2020
00	0.3067	0.3047	0,3023	0,3023	0.3023	0,3193	0,3067	0.3520	0,3563	0,3019	0,3019	0.3144	0,3019	0,3039	0.2086	0.1980	0.3047	0.3193	0.4828	0.2103	0.2103	2000.0
7	0,3091	0,3071	0.3047	0.3047	0.3047	0.3197	0.3091	0.3547	0.3589	0.3023	0.3023	0.3148	0.3023	0.3043	0.2106	0.1999	0.3071	0.3197	0.4862	0.2123	0.2123	2010
9	0.3067	0,3047	0.3023	0,3023	0.3023	0.3172	0.3067	0.3520	0.3563	0.2999	0.2999	0.3124 (0.2999	0.3019	0.2086	0.1980	0.3047	0.3172	0.4828	0.2104 (0.2104 (2000 0
2	0.3177 0	0.3156 0	0.3132 0	0.3132 0	0.3132 0	0.3313 0	0.3177 0	0.3638 0	0.3606 0	0.3156 0	0.3156 0	0.3284 0	0.3156 0	0.3177 0	0.2219 0	0.2111 0	0.3156 0	0.3313 0	0.4813 0	0.2201 0	0.2201 0	0 2219 0
4	0.1577 0	0.1542 0	0.1528 0	0.1528 0	0.1528 0	0.1666 0	0.1526 0	0.1972 0	0.1858 0	0.1761 0	0.1745 0	0.1867 0	0.1761 0	0.1778 0	0.3242 0	0.3362 0	0.1542 0	0.1666 0	0.2901 0	0.3283 0	0.3283 0	0 2204 0
33	0.1576 0.	0.1541 0.	0.1526 0.	0.1526 0.	0.1526 0.	0.1681 0.	0.1525 0.	0.1970 0.	0.1856 0.	0.1727 0.	0.1743 0.	0.1832 0.	0.1727 0.	0.1743 0.	0.3258 0.	0.3378 0.	0.1541 0.	0.1681 0.	0.2859 0.	0.3300 0.	0.3300 0.	0 3330 0
2	0.1609 0.	0.1574 0.	0.1560 0.	0.1560 0.	0.1560 0.	0.1715 0.	0.1558 0.	0.1989 0.	0.1859 0.	0.1761 0.	0.1778 0.	0.1867 0.	0.1761 0.	0.1778 0.	0.3242 0.	0.3404 0.	0.1574 0.	0.1715 0.	0.2920 0.	0.3283 0.	0.3283 0.	0 3304 0
.7	0.1514 0.1	0.1479 0.1	0.1465 0.1	0.1465 0.1	0.1465 0.1	0.1683 0.1	0.1463 0.1	0,1905 0,1	0.1809 0.1	0.1729 0.1	0.1712 0.1	0.1834 0.1	0.1729 0.1	0.1745 0.1	0.3263 0.3	0.3383 0.3	0.1479 0.1	0.1683 0.1	0.2921 0.2	0,3304 0,3	0.3304 0.3	0 2382 0 3
-																			0.7			
	26. PFKK16	27. PFKK2	28. PFKK3	29. PFKK4	30. PFKK5	31. PFKK6	32. PFKK7	33. PFKK8	34. PFKK9	35, PKS1	36. PKS2	37. PKS21	38. PKS3	39. PKS4	40. PKSH1	41. PKS01	42. PM1	43. PM3	44. PM4	45, SHP1	46. SHP2	47 CHD2

47																						
46																						0.0013
45																					0.0000	0.0013
44																				0.4357	0.4357	0,4333
43																			0.1245	0.2959	0.2959	0.2939
42																		0.1084	0.2224	0.3119	0.3119	0,3099
41																	0.3123	0.2962	0.4388	0.0373	0.0373	0.0360
40																0.0373	0.3099	0.2880	0.4285	0.0291	0.0291	0.0278
39															0.2594	0.2654	0.1242	0.1375	0.2720	0.2612	0.2612	0.2594
38														0.0013	0.2575	0.2635	0.1257	0.1390	0.2739	0.2594	0.2594	0.2575
37													0.0131	0.0145	0.2673	0.2734	0.1418	0.1522	0.2865	0.2692	0.2692	0.2673
36												0.0118	0.0039	0.0052	0.2575	0.2634	0.1304	0.1438	0.2777	0.2593	0.2593	0.2575
35											0.0013	0.0105	0.0026	0.0039	0.2556	0.2616	0.1288	0.1422	0.2758	0.2575	0.2575	0.2556
34										0.1698	0.1714	0.1816	0.1664	0.1648	0.3510	0.3536	0.0363	0.1458	0.2527	0.3510	0.3510	0.3510
33									0.0771	0.1681	0.1698	0.1804	0.1648	0.1632	0.3491	0.3548	0.0393	0.1477	0.2716	0.3491	0.3491	0.3470
32								0.0393	0.0350	0.1288	0.1304	0.1418	0.1257	0.1242	0.3099	0.3123	0.0013	0.1084	0.2224	0.3119	0.3119	0.3099
31							0.1084	0.1477	0.1458	0.1422	0.1438	0.1522	0.1390	0.1375	0.2880	0.2962	0.1084	0.0000	0.1245	0.2959	0.2959	0.2939
30						0.1085	0.0026	0.0365	0.0378	0.1305	0.1321	0.1436	0.1274	0.1258	0,3095	0.3168	0.0039	0.1085	0.2226	0.3115	0.3115	0.3095
53					0.0000	0.1085	0.0026	0.0365	0.0378	0.1305	0.1321	0.1436	0.1274	0.1258	0.3095	0.3168	0.0039	0.1085	0.2226	0.3115	0.3115	0,3095
28				0.0000	0.0000	0.1085	0.0026	0.0365	0.0378	0.1305	0.1321	0.1436	0.1274	0.1258	0.3095	0.3168	0.0039	0.1085	0.2226	0.3115	0.3115	0,3095
17			0.0039	0.0039	0.0039	0.1084	0.0013	0.0393	0.0363	0.1288	0.1304	0.1418	0.1257	0.1242	0.3099	0.3123	0.0000	0.1084	0.2224	0.3119	0.3119	0,3099
76		0.0052	0.0039	0.0039	0.0039	0.1131	0.0039	0.0406	0.0392	0.1338	0.1354	0.1469	0.1307	0.1291	0.3099	0.3172	0.0052	0.1131	0.2283	0.3119	0.3119	0.3099
	26. PFKK16	27. PFKK2	28. PFKK3	29. PFKK4	30. PFKK5	31. PFKK6	32. PFKK7	33. PFKK8	34. PFKK9	35. PKS1	36. PKS2	37. PKS21	38. PKS3	39. PKS4	40. PKSH1	41. PKS01	42. PM1	43. PM3	44. PM4	45. SHP1	46. SHP2	47. SHP3


With regard to the *timun laut* specimens, the average genetic distance value between Holothuria specimens including the reference samples of HLTNP was 0.1112 (11.12 %). Moreover, the genetic distance values between H. leucospilota specimens (HLTNP specimens and HL1 specimen from Pangkor Archipelago, Perak) ranged from 0.0086 (0.86 %) to 0.0277 (2.77 %) with an average genetic distance of 0.0169 (1.69 %). The genetic distance values specimen (from Pangkor between HL1 Archipelago, Perak) and other H. leucospilota specimens ranged from 0.0086 (0.86 %) to 0.0277 (2.77 %). Furthermore, the genetic distance values between H. scabra specimens (PKS specimens from Kudat, Sabah) ranged from 0.0013 (0.13 %) to 0.0140 (1.4 %) with an average genetic distance of 0.0066 (0.66 %), while the genetic distance values between H. lessoni specimen i.e. KPTS1 (from Kuantan, Pahang) and H. scabra specimens ranged from 0.0179 (1.79 %) to 0.0284 (2.84 %). As for the H. atra specimens (PFKK6 specimen from Kota Kinabalu, Sabah and specimens of PM3 and PM4 from Manukan Island, Sabah), the average genetic distance was 0.0835 (8.35 %) ranging from 0 (0 %) to 0.1253 (12.53 %), with the genetic distance value between PFKK6 specimen and PM3 specimen was 0 (0 %). The average genetic distance between H. edulis specimens (PFKK specimens from Kota Kinabalu, Sabah and PM1 specimen from Manukan Island, Sabah) excluding PFKK6 specimen was 0.0293 (2.93 %) ranging from 0 (0 %) to 0.1539 (15.39 %), suggesting their status as single thus morphospecies i.e. morphospecies H. edulis. The genetic distance values between PM1 specimen and PFKK specimens excluding PFKK6 specimen ranged from 0 (0 %) to 0.1182 (11.82 %).

With regard to the Neighbour Joining analyses using concatenated gene sequences of non-protein-coding 12S and 16S mitochondrial rRNA genes, the optimal tree with the sum of branch length = 7.50559484 is shown in **Figure 2**. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (i.e. 1000 replicates) are shown next to the branches (Felsenstein,

1985). The tree was drawn to scale, with branch lengths in the same units as those of the evolutionary distances used to infer the phylogenetic tree. The evolutionary distances computed using the Maximum Composite Likelihood method (Tamura et al., 2004) and are in the units of the number of base substitutions per site. All positions containing gaps and missing data were eliminated. A number of 48 taxa consisting of 47 ingroup taxa and one outgroup taxon, and 749 characters representing aligned base positions (after multiple alignment) were involved in the phylogenetic analyses of the sequences of concatenated gene sequences of non-protein-coding 12S and 16S mitochondrial rRNA genes using Neighbour Joining method. The outgroup taxon was an individual of Peniagone sp., a deep-sea swimming sea cucumber species with GenBank Accession No. KF915304.

Figure 2 illustrates the presence of 2 main groups of the specimens: the timun laut family with 47 % bootstrap support and a few clusters representing family Stichopodidae (the gamat family). A number of 3 gamat species i.e. S. horrens, S. vastus, and T. anax were representing the family Stichopodidae. T. anax was divided into 2 clusters and S. horrens cluster was supported by 96 % bootstrap value. Nonetheless, the specimens of S. vastus were also grouped into the S. horrens due to their close genetic relationship. As mentioned earlier, the genetic distance value between S. vastus specimens i.e. PKSO1 (from Kudat, Sabah) and LKIG7 was low i.e. 0.0185 (1.85 %). S. vastus cluster was supported with 97 % bootstrap value. In addition, the specimens of PFKK excluding PFKK6 specimen were clustered as H. edulis with 91 % bootstrap support. Purcell et al. (2012) recorded a processed H. lessoni that is similar to the dried tip-sum (KPTS1), therefore the specimen was regarded as *H. lessoni*. In terms of the species status of PM specimens, the analyses identified PM1 specimen as H. edulis, and the specimens of PM3 and PM4 as H. atra. Therefore, the specimens of *H. leucospilota* that formed a cluster with 92 % bootstrap value, the specimens of *H. edulis* that formed a cluster with 91 % bootstrap value, the specimens of *H. scabra* that formed a cluster with 66 % bootstrap value, the dried specimen of *H. lessoni* (KPTS1), and the specimens of *H. atra* that formed a cluster with 79 % bootstrap value were the 5 *timun laut* species that grouped under the family Holothuriidae with 47 % bootstrap support. *H. atra* was

genetically closer to *H. edulis* with 68 % bootstrap support. Furthermore, the subgenus *Mertensiothuria* represented by the specimens of *H. leucospilota* was genetically closer to the subgenus *Halodeima* represented by the specimens of *H. atra* and *H. edulis* with 46 % bootstrap value, thus supporting their taxonomic classification.

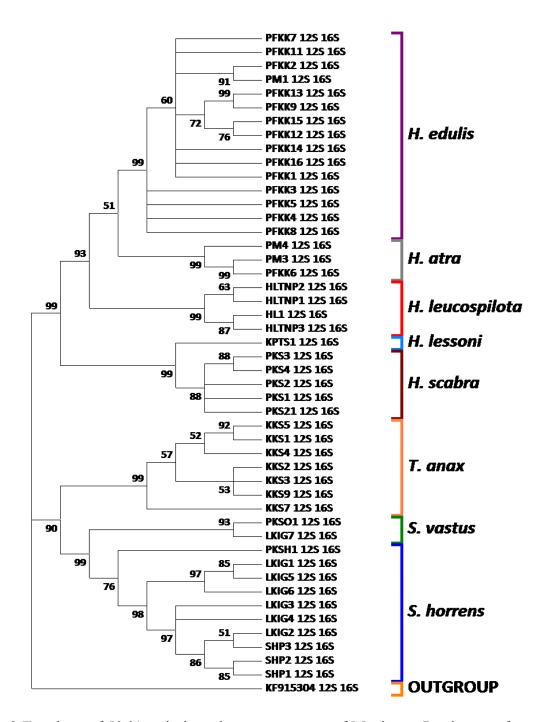


Figure 2 Topology of 50 % majority-rule consensus tree of Neighbour Joining of sea cucumber specimens from selected Malaysian markets and other sampling sites including the reference samples and processed specimens inferred from concatenated gene sequences of non-protein-coding 12S and 16S mitochondrial rRNA genes using MEGA7 program (Kumar et al., 2016) with 1000 bootstrap replicates. Numbers at nodes indicate the bootstrap values in percentage (%).

As for the Maximum Parsimony analyses using concatenated gene sequences of nonprotein-coding 12S and 16S mitochondrial rRNA genes, the bootstrap consensus tree inferred from 1000 replicates was taken to represent the evolutionary history of the taxa analysed (Felsenstein, 1985). Branches corresponding to partitions reproduced in less than 50 % bootstrap replicates were collapsed. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates) are shown next to the branches (Felsenstein, 1985). The Maximum Parsimony tree was obtained using Subtree-Pruning-Regrafting the algorithm (Nei & Kumar, 2000) with search level 1 in which the initial trees were obtained by the random addition of sequences (10 replicates). All positions containing gaps and missing data were eliminated. Besides, a number of 48 taxa consisting of 47 ingroup taxa and one outgroup taxon, and 749 characters representing aligned base positions (after multiple alignment) were involved in the phylogenetic analyses.

Figure 3 illustrates the presence of 2 main clusters of the specimens: family Stichopodidae (the *gamat* family) and the *timun laut* family, both with 90 % bootstrap

99 % bootstrap support and support, respectively. A number of 3 gamat species i.e. S. horrens, S. vastus, and T. anax were clustered under the family Stichopodidae. T. anax cluster was supported by 99 % bootstrap value, S. horrens cluster was supported by 76 % bootstrap value, and S. vastus cluster was supported by 93 % bootstrap value. S. vastus was genetically closer to S. horrens with 99 % bootstrap support. Furthermore, the specimens of H. leucospilota that formed a cluster with 99 % bootstrap value, the specimens of H. edulis that formed a cluster with 99 % bootstrap value, the specimens of H. scabra that formed a cluster with 88 % bootstrap value, the dried specimen of H. lessoni (KPTS1), and the specimens of H. atra that formed a cluster with 99 % bootstrap value were the 5 timun laut species that grouped under the family Holothuriidae with 98 % bootstrap support. H. atra was genetically closer to H. edulis with 51 % bootstrap support. Likewise the Neighbour Joining the subgenus Mertensiothuria analyses, represented by the specimens of Н. leucospilota was genetically closer to the subgenus Halodeima represented by specimens of H. atra and H. edulis with 93 % bootstrap value.

Figure 3 Topology of 50 % majority-rule consensus tree of Maximum Parsimony of sea cucumber specimens from selected Malaysian markets and other sampling sites including the reference samples and processed specimens inferred from concatenated gene sequences of non-protein-coding 12S and 16S mitochondrial rRNA genes using MEGA7 program (Kumar et al., 2016) with 1000 bootstrap replicates. Numbers at nodes indicate the bootstrap values in percentage (%).

Pertaining to the Maximum Likelihood analyses using concatenated gene sequences of non-protein-coding 12S and 16S mitochondrial rRNA genes, Modeltest (version 3.7) program suggested general time-reversible (GTR)

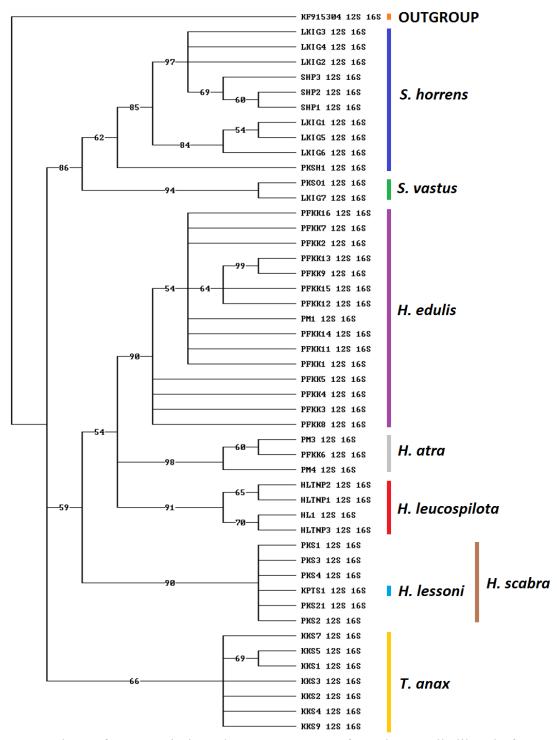
model (Tavaré, 1986) with the rate variation among sites (+G) (i.e. GTR+G) as the best model of DNA substitution based on the Akaike Information Criterion (AIC); and Tamura and Nei (TrN) model (Tamura & Nei,

1993) with the rate variation among sites (+G) (i.e. TrN+G) as the best model of DNA substitution based on the Hierarchical Likelihod Ratio Tests (hLRTs). The GTR model and the TrN model were based on unequal base frequencies. According to Posada and Buckley (2004), the AIC and Bayesian Analysis are good at the evaluation of model selection uncertainty, capable to compare multiple nested or non-nested models at once, and allow for the use of all available models for the estimation of phylogenies and model parameters. Hence, between the AIC and the hLRTs used in Modeltest program, the model of DNA substitution suggested by the AIC is better. The GTR+G model suggested by the AIC was chosen for the Maximum Likelihood tree reconstruction (Lset Base=(0.3343 0.2070 0.1869) Nst=6 Rmat=(2.4444 4.2221 1.8990 1.0703 7.6112) Rates=gamma Shape=0.7426 Pinvar=0)).

A number of 48 taxa consisting of 47 ingroup taxa and one outgroup taxon, and 859 characters representing aligned base positions (after multiple alignment) were involved in the phylogenetic analyses. Overall, the base frequencies were unequal (i.e. Adenine (A) = 33.43 %, Cytosine (C) = 20.70 %, Guanine (G) = 18.69 %, and Thymine (T) = 27.18 %), thus supporting the selection of GTR+G model by the AIC as the best model. In addition, Figure 4 illustrates the presence of 2 clusters of family Stichopodidae (the gamat family) i.e. genus Stichopus cluster with 86 % bootstrap support and genus *Thelenota* cluster with 66 % bootstrap support; and the timun laut family with 59 % bootstrap support. A number of 3 gamat species i.e. S. horrens, S. vastus, and T. anax under the family Stichopodidae were identified. T. anax cluster was supported by 66 % bootstrap value, S. horrens cluster was supported by 62 % bootstrap value, and S. vastus cluster was supported by 94 % bootstrap value. S. vastus was genetically closer to S. horrens with 86 % bootstrap support. Besides, the specimens of H. leucospilota that formed a cluster with 91 % bootstrap value, the specimens of H. edulis that formed a cluster with 90 % bootstrap value, the specimens of *H. scabra* (with the inclusion of the dried specimen of *H. lessoni* (KPTS1)) with 90 % bootstrap value, and the specimens of *H. atra* that formed a cluster with 98 % bootstrap value were the 5 *timun laut* species that grouped under the family Holothuriidae with 59 % bootstrap support.

Furthermore, the phylogenetic analysis of Bayesian Analysis method was ended when the standard deviation of split frequencies was below 0.01. Accordingly, for the Bayesian Analysis analyses of concatenated gene sequences of non-protein-coding 12S and 16S mitochondrial rRNA genes, the standard deviation of split frequencies was 0.007697 at 1,780,000 generations. Figure 5 illustrates the presence of 3 main groups of the specimens: family Stichopodidae (the gamat family) with 66 % posterior probability, and 2 subclusters of the timun laut family. A number of 3 gamat species i.e. S. horrens, S. vastus, and T. anax were clustered under the family Stichopodidae. T. anax cluster was supported by 87 % posterior probability, S. horrens cluster was supported by 50 % posterior probability and S. vastus cluster was supported by 99 % posterior probability.

The specimens of *H. leucospilota* that formed a cluster with 98 % posterior probability, the specimens of H. edulis that formed a cluster with 95 % posterior probability, and the specimens of *H. atra* that formed a cluster with 89 % posterior probability were the 3 timun laut species that formed one of the subclusters of the timun laut family with 65 % posterior probability. The specimens of H. scabra that formed a cluster with 94 % posterior probability and the dried specimen of H. lessoni (KPTS1) were the 2 timun laut species that formed the other subcluster of the timun laut family with 90 % posterior probability. Moreover, H. edulis was closer to H. atra with 75 % posterior probability, and H. scabra was closer to H. lessoni with 90 % posterior probability. Likewise the Neighbour Joining analyses and Maximum Parsimony analyses, subgenus Mertensiothuria represented by the specimens of *H. leucospilota* was genetically closer to the subgenus Halodeima represented



by the specimens of *H. atra* and *H. edulis* with 65 % posterior probability.

In addition, the Maximum Likelihood tree (Figure 4) and the Bayesian Analysis tree (Figure 5) supported that *H. scabra* was genetically closer to H. lessoni with 90 % bootstrap value/posterior probability, thus supporting their taxonomic classification as from the subgenus Metriatyla. Except the Bayesian Analysis tree, the other phylogenetic trees show the clustering of timun laut specimens into clusters with 47 - 99 % bootstrap values, thus suggesting the formation of timun laut group. In summary, 8 sea cucumber species were recorded in this study including 5 timun laut species i.e. H. leucospilota, H. atra, H. edulis, H. scabra, and H. lessoni; and 3 gamat species i.e. S. horrens, S. vastus, and T. anax. H. leucospilota, H. atra, H. edulis, H. scabra, S. horrens, and T.

anax were the commercial Malaysian sea cucumber species (Choo, 2008). Nevertheless, H. lessoni and S. vastus were not listed as commercial Malaysian sea cucumber species. Among the species recorded in this study, 2 timun laut species were included in the International Union for Conservation of Nature (IUCN) Red List for aspidochirotid holothuroids, whereby H. lessoni and H. scabra were regarded as "endangered, or at a high risk of extinction" (Conand et al., 2014). Apart from that, the outcomes of this study provide better information on the level of species substitution and product mislabelling of processed sea cucumbers Malaysian markets which may subsequently assists the enforcement agencies to monitor overcome the issues through introduction of mtDNA sequencing technique.

https://www.tci-thaijo.org/index.php/MTR

Figure 4 Topology of 50 % majority-rule consensus tree of Maximum Likelihood of sea cucumber specimens from selected Malaysian markets and other sampling sites including the reference samples and processed specimens inferred from concatenated gene sequences of non-protein-coding 12S and 16S mitochondrial rRNA genes using PAUP* (version 4.0b10) program (Swofford, 1998) with 100 bootstrap replicates. Numbers at nodes indicate the bootstrap values in percentage (%).

Figure 5 Topology of consensus Bayesian Analysis tree of sea cucumber specimens from selected Malaysian markets and other sampling sites including the reference samples and processed specimens inferred from from concatenated gene sequences of non-protein-coding 12S and 16S mitochondrial rRNA genes using MrBayes (version 3.1.2) program (Huelsenbeck & Ronquist, 2001), with the addition of all compatible groups to the tree. Numbers at nodes indicate the posterior probabilities of clades in percentage (%).

4. Conclusions

In conclusion, the phylogenetic trees based on the distance-based method with clustering algorithm as the tree building strategy i.e. the Neighbour Joining method, the character-based methods and optimality criterion as the tree building strategy i.e. the Maximum Parsimony method, Maximum Likelihood method. and Bayesian Analysis method suggested presence of 3 main clusters of the specimens gamat family consisting of genus Stichopus and genus Thelenota; and timun laut family comprising family Holothuriidae. Three gamat species i.e. S. horrens, S. vastus, and T. anax; and 5 timun laut species i.e. H. atra, H. edulis, H. lessoni, H. leucospilota, and H.

scabra were recorded. This study also highlights the presence of issues of intentional species substitution or product mislabeling due to the observation of unlabelled products in the selected Malaysian markets. The outcomes of this study may assist the enforcement agencies to monitor and address the said issues.

Acknowledgements

We would like to thank Mrs. Siti Nabilah Bt Mohd Rusly, Mr. Muhammad Izzat B. Redzuan and Ms. Sarina Irma Binti Saidon; all members of Food Biotechnology program, Faculty of Science and Technology (FST), Universiti Sains Islam Malaysia (USIM), Nilai Campus; all reviewers of this paper; and the Malaysian Ministry of Higher Education

(MOHE) for the and financial inputs assistance. Research Acculturation Grant Scheme (RAGS) Phase 1/2014 from the Ministry of Education (MOE) Ref: USIM/RAGS/FST/36/50414 and the Fundamental Research Grant Scheme (FRGS) Phase 1/2015 from the Department of Higher Education, MOE - Ref: USIM/FRGS/FST/ 32/51515 were used to fund this research. Visit Malaysian Sea Cucumber Database http://sites.google.com/site/malaysianseacucu mber/ for more details.

References

- Choo, P. S. (2008). Population status, fisheries and trade of sea cucumbers in Asia. In V. Toral-Granda, A. Lovatelli & M Vasconcellos (Eds.). Sea cucumbers. A global review of fisheries and trade (pp. 81-118). FAO Fisheries and Aquaculture Technical Paper. No. 516., Rome.
- Clouse, R., Janies, D., & Kerr, A. M. (2005). Resurrection of *Bohadschia bivittata* from *B. marmorata* (Holothuroidea: Holothuriidae) based on behavioral, morphological, and mitochondrial DNA evidence. *Zoology 108*(1), 27-39.
- Conand, C., Polidoro, B., Mercier, A., Gamboa, R., Hamel, J. F., & Purcell, S. (2014). The IUCN Red List assessment of aspidochirotid sea cucumbers and its implications. *SPC Beche-de-mer Information Bulletin 34*(5), 3-7.
- Dabbagh, A. R, Keshavarz, M., Mohammadikia, D., Afkhami, M., & Nateghi, S. A. (2012). *Holothuria scabra* (Holothuroidea: Aspidochirotida): First record of a highly valued sea cucumber, in the Persian Gulf, Iran. *Marine Biodiversity Records* 5(8), e69.
- Freeman, S., & Herron, J. C. (2004). *Evolutionary Analysis*. 3rd ed. Upper Saddle River, NJ: Pearson/Prentice Hall.
- Huelsenbeck, J. P., & Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogeny. *Bioinformatics* 17(8), 754-755.
- Kamarudin, K. R. (2018). Species Identification, Molecular Phylogenetic and Genetic Diversity of Sea Cucumber

- (Phylum Echinodermata: Class Holothuroidea) in Malaysia. Ph.D. Thesis, Universiti Sains Islam Malaysia, Nilai, Negeri Sembilan, Malaysia.
- Kamarudin, K. R., Mohamed, M. R., & Bahaman, N. A. (2017). Morphological and molecular identification of ossicle shapes in sea cucumber species *Holothuria scabra*, *Stichopus horrens* and *Stichopus ocellatus* from Kudat, Sabah, Malaysia. *Pertanika Journal of Tropical Agricultural Science* 40(1), 161-172.
- Kamarudin, K. R., Mohamed, M. R., Mohd, H. N., Ramly, N. Z., & Mohamed, A. R. (2017). Comparisan of ossicle shape and 12S rRNA gene sequencing techniques for species identification of gamat-based beche-de-mer from Langkawi Kedah Archipelago, Darul Aman. Pertanika Journal **Tropical** of Agricultural Science 40(2), 91-104.
- Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. *Molecular Biology and Evolution 33*(7), 1870-1874.
- Massin, C., Zulfigar, Y., Hwai, T. S., & Boss, S. Z. (2002). The genus *Stichopus* (Echinodermata: Holothuroidea) from the Johore Marine Park (Malaysia) with the description of two new species. *Bulletin de l'Institut royal des Sciences naturelles de Belgique 72*, 73-99.
- Page, R. D. M. (1996). TREEVIEW: An application to display phylogenetic trees on personal computers. *Bioinformatics* 12(4), 357-358.
- Palumbi, S., Martin, A., Romano, S., McMillan, W. O., Stice, L., & Grabowski, G. (1991). *The Simple Fool's Guide to PCR*. Department of Zoology and Kewalo Marine Laboratory, Universiti of Hawaii, Honolulu.
- Posada, D., & Buckley, T. R. (2004). Model selection and model averaging in phylogenetics: Advantages of akaike information criterion and bayesian approaches over likelihood ratio tests. *Systematic Biology* 53(5), 793-808.

- Posada, D., & Crandall, K. A. (1998). Modeltest: Testing the model of DNA substitution. *Bioinformatics* 14(9), 817-818.
- Rasmussen, R. S., & Morrissey, M. T. (2008). DNA-based methods for the identification of commercial fish and seafood species. *Comprehensive Reviews in Food Science and Food Safety* 7(3), 280-295.
- Swofford, D. L. (1998). "PAUP", Phylogenetic Analysis Using Parsimony (*and other methods), version 4. Sinauer Associates, Sunderland, MA.
- Tamura, K., Nei, M., & Kumar, S. (2004). Prospects for inferring very large phylogenies by using the neighbor-joining method. *Proceedings of the National Academy of Sciences of the United States of America* 101(30), 11030-11035.

- Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., & Higgins, D. G. (1997). The ClustalX windows interface: Flexible strategies for multiple sequence alignment aided by the quality analysis tools. *Nucleic Acids Research* 25(24), 4876-4882.
- Wen, J., Hu, C., Zhang, L., & Fan, S. (2011). Genetic identification of global commercial sea cucumber species on the basis of mitochondrial DNA sequences. *Food Control* 22(1), 72-77.
- Wen, J., Hu, C., Zhang, L., Luo, P., Zhao, Z., Fan, S., & Su, T. (2010). The application of PCR-RFLP and FINS for species identification used in sea cucumbers (Aspidochirotida: Stichopodidae) products from the market. *Food Control* 21(4), 403-407.