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Abstract: 

This paper revisits the basic hypothesis underlying the measurement of flow-induced 

vibration in fluidized beds. A novel theoretical approach based on the standing pressure 

field characterizing the bed dynamics is proposed to link the pressure fluctuations to the 

measured accelerometer signals. The model provides a reliable prediction of the 

carrying frequency band and helps in designing the accelerometer measurement process. 

The model was tested with previous results reported in the literature as well as with 

piezoelectric accelerometer measurements collected from a lab-scale experimental 

facility. A study on accelerometer measurements was conducted to identify the main 

limitations expected for measuring flow-induced vibrations in a gas-solid fluidized bed. 

The structural response of the vessel to flow-induced vibration was mostly determined 

by the “bed acoustics” that can be dominated by either elastic or compression waves. 

Finally, the survival of an envelope process on the measured accelerometer signal 

guaranteed the quality of the flow dynamical information collected during the 

measurement process. 
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1. Introduction 

The increasing need for non-invasive measurement methods for the monitoring of 

gas-solid fluidized beds (FB‟s) prompted the use of the so-called „acoustic‟ monitoring 

(AE) methods (Boyd and Varley, 2001;Briens and Bojarra, 2010;Cents et al., 

2004;Tsujimoto et al., 2000)(Tsujimoto et al., 2000; Boyd and Varley, 2001; Cents et 

al., 2004 Briongos et al., 2006; Briens and Bojarra, 2010). By providing measurements 

that do not interfere with the bed dynamics, these promising techniques using both 

acoustic (sound waves) and vibration measurements (structural waves) offer several 

advantages with respect to the measurement techniques that use invasive methods. 

Although sound pressure waves and flow-induced vibrations possess distinct features, 

most of the reported literature does not distinguish between sound waves propagating 

through an elastic fluid medium and vibration waves circulating across structural 

elements. The measured sound and solid waves are all referred to as AE signals, even 

for the sound waves measured using microphone devices with the vibration motion 

mostly collected through accelerometer transducers. The wave motion exhibited by both 

types of measured signals explains the direct analogy historically established between 

the sound and the structural vibration waves. Understanding the fundamentals of sound 

and structural waves prior to addressing the flow-induced vibration problem is 

necessary by taking into account the results of the propagating waves through a fluid 

medium, as the sound waves can only store energy in compression (longitudinal waves). 

For the circulation through a solid material, both shear and compression components 

can store energy, giving rise to longitudinal, flexural and torsional waves. The measured 

vibration signal accounts for shear as well as the compression terms. 

Among the different measurement techniques included within the „AE‟ methods, the 

monitoring of mechanical vibrations using accelerometer transducers is currently 

receiving considerable attention (He et al., 2009;Leskinen et al., 2010;Wang et al., 

2009;Wang et al., 2010). To monitor the performance of a specific fluidized bed 

application, these previous works typically used the accelerometers to gather knowledge 

on the so-called fluidization quality. Consequently, the accelerometer measurements 

have been successfully applied in granulation processes to detect agglomeration 

phenomena or to measure bed fluidity (Book et al., 2011). Accelerometers can also be 

used to assess the behavior of specific fluidized bed operations, such as the liquid 

injection process in gas-solid fluidized beds (Briens et al., 2011). Fluidized bed 
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dynamics have also been studied with vibration measurements using accelerometers 

(Abbasi et al., 2010;Cody et al., 1996).  

Though never explicitly mentioned, the hypothesis underlying the use of accelerometer 

transducers is based on the assumption that the measured signal corresponds to the 

flow-induced vibrations originating from the FB dynamics. In spite of the extensive 

literature concerning accelerometer measurements, a theoretical framework on the flow-

induced vibrations in gas-solid fluidized beds is still needed to further understand the 

measured accelerometer signals and to guide the design of the measurement process. 

For the sampling frequencies used to collect the accelerometer signals, two very 

different measurement approaches have been used in the literature to address the 

measurement of the accelerometer signals in gas-solid FB‟s. One type of measurement 

method in the ultrasonic ranges used sampling frequencies of the order of hundreds of 

kHz (Cao et al., 2009;Tsujimoto et al., 2000). These „high frequency‟ studies assumed 

that the „acoustic emission‟ (i.e. flow induced vibration) resulted from the particle-

particle and particle-wall collisions, suggesting that an “impact model” can account for 

the elastic waves resulting from these particle collisions. These methods should have 

provided a reliable estimation of the carrier frequency component of the measured 

accelerometer signal for measurements in the ultrasonic range (Jiang et al., 2007). One 

of the main drawbacks of this approach results from the high computational cost of 

sampling at those high frequencies, as the great number of data in each sample 

complicates the measurement process, limiting the number of time series analysis 

techniques that can be used to handle the data. A more commercial low-cost 

measurement approach has been developed that uses sampling frequencies that are 

considerably reduced in the measurement ranges between 20 kHz to 50 kHz (Abbasi et 

al., 2010;Abbasi et al., 2009;Cody et al., 1996;Cody et al., 2008). With this low 

frequency approach, two very different interpretations of the measured accelerometer 

signals are used to understand the flow-dynamic information of the FB system. In 

(Cody et al., 1996), the measured mechanical vibrations were also attributed to random 

particle impact. In contrast, (Abbasi et al., 2009) used the accelerometer measured 

signal to study bubble dynamics, assuming that the vibration signal recorded by the 

accelerometers „directly reflects the bubble characteristics‟. For the accelerometer signal 

collected at high or low frequencies, the results reported in the literature suggest that 

these AE methods can be useful in extracting information on the fluidized bed 

dynamics. A major question arises on the compatibility of the different previously 
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reported approaches regarding the depth that an accelerometer signal analysis can 

provide to properly use the accelerometer signals. 

For the AE measurements and, in particular, the use of accelerometers for measuring 

mechanical vibrations, several complications are expected during the measurement 

process (Vervloet et al., 2010). The fact that the measured accelerometer signals 

accounted for the dynamical response of the structure as well as for the FB dynamics 

suggests that the measured accelerometer signal can contain information of the 

unwanted structural motions (structure-borne sound) as well as other background noises 

and signal losses resulting from the structural and material dampening. These factors 

can obscure the flow dynamics information carried within the measured signal. The 

physical meaning of the so-called vibrating signals should not be ignored in 

understanding both the measured signals and the measurement process. 

Recently, a close relationship between the acceleration and the pressure fluctuation 

signals measured simultaneously in a gas-solid fluidized bed operating at different 

fluidization conditions has been reported (de Martin et al., 2010), suggesting that further 

attention should be given to the study of the relationships between pressure fluctuations 

and flow-induced vibrations. 

Within the framework of the well-known flow induced vibration theory, this paper 

presents a novel approach using a standing pressure field developed within the bed to 

link the pressure fluctuations resulting from the fluidized bed dynamics with the 

measured accelerometer signals. The model provides a reliable prediction of the 

carrying wave frequency and can be used to design the accelerometer measurement 

process, helping to understand how the FB dynamical information can be encoded 

within the accelerometer signals.  

2. Flow-induced vibration in fluidized beds

The basic hypothesis underlying the measurement of „flow-induced vibrations‟ 

establishes that: i) the motion of the structure does not significantly influence the 

pressure on the surface of the structure; and ii) the flow is a stationary, ergodic „random 

process‟ (Blevins, 1986). To have reliable flow-dynamics measurements, both points i 

and ii should be satisfied for measurements of the flow dynamics using a vibration 

analysis. The „flow-induced vibration‟ reflects the surface pressure on a structure (due 

in this case to the FB dynamics) as a result of the interaction between the bed dynamics 

phenomena (i.e. bubble, bulk and particle dynamics) with the resonant bandwidth of the 
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structure. The flow-induced vibration is also strongly dependent on the experimental 

setup and the measurement process (McConnell, 1995).  

For the design of the accelerometer measurement process for a certain fluidized bed 

application, knowledge of the carrying frequency band of the measured accelerometer 

signal is critical in defining the measurement set up and the subsequent monitoring 

conditions. As stated above, only a few examples can be found in the literature (Jiang et 

al., 2007;Leach et al., 1978) that provide information to generate some understanding of 

the carrier frequency band properties characterizing the measured accelerometer signal. 

These previous works mostly focused on the relationship between the particle 

characteristics and the measured acceleration signals. A model developed in (Jiang et 

al., 2007) based on the relationship between particle collisions and acoustic signals dealt 

with the measurement of the elastic waves produced by the particle-particle and 

particle-wall collisions. Consequently, the expected carrying resonant frequency band 

had considerably high frequency values, requiring the use of very high sampling 

frequencies ranging from 100 kHz to 500 kHz (Jiang et al., 2007;Tsujimoto et al., 

2000). Even though several reports suggested that these high frequency methods can be 

tuned to serve for some fluidized bed applications, the sampling frequencies on the 

order of hundreds of kHz considerably can increase the computational costs needed to 

handle the monitoring problem. In addition, this approach disregards two important 

factors, such as the compression waves (van der Schaaf et al., 1998) and the structural 

vessel dynamics, which might affect the measurement of flow-induced vibration 

resulting from the fluidized bed dynamics, as discussed below. Consequently, the use of 

a theory based solely on “elastic waves” as the single source of „Acoustic Emissions ( 

AE)‟ cannot be easily extended to other FB systems and does not explain the most 

recent research results in the field (Abbasi et al., 2009;Cody et al., 1996;Cody et al., 

2000;de Martin et al., 2010;de Martin et al., 2011;Li et al., 2011).  

To analyze the relationship between the acoustic and vibration waves and to provide an 

increased understanding into the sound and vibration mechanisms responsible for the 

measured acceleration signals, a novel model is proposed to account for the interaction 

between both the acoustic pressure field (resulting from the elastic and compression 

pressure waves) and the vessel response. As shown below, the model links the standing 

pressure wave pattern resulting from the fluidized bed dynamics with the measured 

accelerometer signals. 
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A continuous system has an „infinite‟ number of natural frequencies, and a 

characterization of the „true‟ response spectra is not trivial (McConnell, 1995). The 

major issue regarding the design of the accelerometer measurement process is to 

develop a reliable prediction of the carrying frequency band that will carry the flow 

dynamic information. The proposed model is intended not to mimic the measured 

accelerometer signal but to predict the carrying frequency band to define both the 

accelerometer and the measurement conditions. 

In the following sections, the pressure wave pattern developed within the bed is first 

discussed followed by a discrete approximation of the solution of the mechanical 

vibration of the vessel structure to link with the pressure field. 

3. The pressure field 

The origin and the propagation of pressure waves in fluidized beds have been the 

subject of substantial research efforts (Bi et al., 1995;Musmarra et al., 1995;Roy et al., 

1990;van der Schaaf et al., 1998). The propagating pressure waves, which are mainly a 

result of the fluctuations in gas or particle velocities and to local changes in the bed 

voidage, are coupled with “forced fluidized bed oscillations”, leading to an acoustic 

wave pattern characterized by a natural period of the pressure oscillation, tn. 

Previous results reported in the literature (Baskakov et al., 1986;Brown and Brue, 2001) 

demonstrated that bubbling fluidized beds might be explained by second-order 

dynamical systems. In Hao and Bi (2005), a second order dashpot model was proposed 

to explain the pressure fluctuations in gas-solid fluidized beds, demonstrating that the 

response of the pressure fluctuations originated in the bed due to a periodic driven force 

was adequately explained by the proposed model by setting the „zero‟ frequency, f0, of 

the model as: 

bedHgf ~0  (1)  

For freely bubbling beds, the dominant frequency of the spectra was always larger than 

the characteristic frequency obtained from eq.1. 

Purely periodic oscillations of the gas pressure in gas-solid fluidized bed described by 

expressions analogous to eq.1 have been observed in shallow beds (Verloop and 

Heertjes, 1974). As noted in Hao and Bi (2005), the different dynamical forces acting 

within a freely fluidized bed (i.e. bubbles) might force the characteristic oscillation 

towards frequencies greater than this zero frequency, f0. Consequently, the natural 
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period of oscillation of the pressure wave propagation will be characterized by the 

frequency of a stationary „resonance state‟. 

Different theories addressed the characterization of this „natural period‟. Among these 

theories, the approaches followed independently by (Roy et al., 1990) and (Herrera et 

al., 2002) are based on the propagation of plane waves in tubes of finite length 

(Billingham and King, 2000). These theories led to the use of two different expressions 

that yield a value of the natural frequency, fn, that provides a reliable prediction of the 

measured resonant frequency data. As reported in Roy et al. (1990), the bed is modeled 

as a compressible pseudo-homogeneous gas-solid mixture without the relative motion 

and the interactions between the particle and the gas phases, leading to the following 

expression for tn: 

  
g

gp

s

bed

s

bed
n

n c
H

c
Ht

f 

 


1441

0
 (2)  

A pseudo-homogeneous model can be used to estimate the pressure wave propagation 

velocity, cs. In contrast with the approach followed in Herrera et al. (2002), the bed is 

treated as a single homogeneous medium with the use of a known solution for the 

natural frequencies of the gas oscillations in a tube of length Hbed closed at one end: 
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where cs can be experimentally estimated from the corresponding standing wave 

pattern, assuming a rigid distributor, which results in an application of the separated-

flow compressible-wave theory to the problem. The natural frequencies computed from 

either the pseudo-homogeneous or the separated flow approaches are approximately of 

the same order as the first mode of eq. 3, m = 1. 

To characterize the pressure wave pattern that identifies the fluidized bed dynamics, 

both the pseudo-homogeneous and the separated flow approaches are valid for the 

acoustic fields controlled by the compression waves. These conditions are consistent 

with the experimental observations reported in the literature, apparently confirming that 

the propagation wave velocities can be well predicted by both approaches. The 

separated flow theory has been reported to be more appropriate in accounting for cs with 

the observed effects of the wave frequency and the particle size (i.e. elastic waves) (Bi 

et al., 1995;van der Schaaf et al., 1998). In this paper, the separated-flow compressible-

wave theory is used to characterize the natural frequency of the bed. The equation stated 
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below, reported in Ryzhkov and Tolmachev (1983), can be used to account for the 

pressure propagation wave velocities: 
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with the density ratio and the particle relaxation time defined, respectively, as: 
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With both the angular wave frequency, , appearing in equation 4 and the propagation 

wave velocities needed to estimate the natural bed frequency in eq. 3 are unknown, an 

iterative approach using a zero order conjugate gradient method routine can be used. 

The initial trial value for w used in eq. 3 was taken from the quarter of the period of the 

wave frequency estimated from the pseudo-homogeneous approach (eq. 2) (van der 

Schaaf et al., 1998), with the resulting cs value used to compute a new natural period 

(eq. 2) and so on. No more than three iterations were needed to converge. For a first 

trial, the natural frequency of the bed can also be roughly estimated using eq. 2 with a 

pseudo-homogeneous model to account for the pressure wave velocity. 

4. The structural response 

To link the acoustic (pressure) emissions resulting from the bed dynamics phenomena 

with the measured accelerometer signals, the resonant bandwidth of the structure must 

be identified to determine where the dynamical information will be carried. A relatively 

simple method to solve the complex vibration problem of a continuous system breaks 

the distributed inertia of the continuous system into a finite number of lumped inertia 

elements (nodes). A discrete approximation of the solution of the mechanical vibration 

of the vessel structure, which is considered to be a multidegree of freedom system 

(MDOF), can be used to represent the flexural (bending) vibration of the vessel 

structure.  

For the exact determination of the natural frequencies from a continuous model, the 

discrete approach also requires the solution of a matrix eigenvalue problem. In this line, 

an evaluation of the stiffness influence coefficients is a common practice in the 

structural analysis for solving the different vibration modes of a given MDOF problem 

(Clough and Penzien, 2003). For mechanical systems, the calculation of stiffness 
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influence coefficients for a MDOF having n nodes requires the solution of n 

simultaneous equations, which might lead to a significant computational effort for 

systems characterized by many degrees of freedom. In contrast, the use of flexibility 

influence coefficients, fij, defined as the deflection of the coordinate node i due to a unit 

load applied to node j, provides a simple way to deal with the problem. As these 

influence coefficients are defined as the inverse of the stiffness matrix, knowledge of 

these values is sufficient for solving a free vibration problem, providing the natural 

frequencies and the mode shapes of the fluidized bed vessel structure (Appendix I).  

The transient response of the structure to force excitations 

The natural frequencies and mode shapes play a vital role in the vibration of the 

structure, and the knowledge of the undamped response of a MDOF system provides a 

first glance of the resulting accelerometer spectra. Real systems are damped and the 

analysis of the response of the structure under given excitation conditions becomes 

critical in understanding the modal characteristics of the vessel structure.  

During the analysis of the dynamic response of a MDOF system, the displacement 

mode superposition approach leads to the following governing equation (Gatti and 

Ferrari, 2003): 

 tfXKXCXM nnn    (6)

where the Mn, Cn, and Kn terms account, respectively, for the mass, damping and 

stiffness matrices, with f(t) representing a time dependent one-dimensional vector of the 

forcing functions (Table 1). M is a diagonal matrix whose diagonal elements are the 

nodal masses, mi, and the stiffness matrix obtained from the inverse of the flexibility 

matrix (Appendix I). Using theory (McConnell, 1995) as a first approximation, a 

viscous damping model can be assumed, and the damping coefficient matrix Cn, can be 

expressed as a function of the modal damping factor, n, as: 

nnnn MwC 2 (7)

The natural frequencies of the mode shapes, wn, can be estimated with the flexibility 

matrix approach (Appendix I), and the damping factor can be determined 

experimentally or estimated theoretically. As presented below within the acoustic 

interaction model section, this study is restricted to the modal expansion of the subset of 

n-modes obtained from the acoustic interaction model (following the mode 
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displacement method). The choice of the number of nodes, n, taken into account during 

the simulations is critical to obtain an accurate solution. For arbitrary viscous damping, 

the modal matrix does not diagonalize the damping matrix, and the system expressed in 

eq. 5 can be solved in state space using a discrete-time transition matrix approach (de 

Silva, 2000). The state response of the system can be expressed as a function of the state 

transition matrix. Accordingly, the state and the input vector are defined as: 

 tfu
X
X

x 







 ; (8)

To obtain the measured acceleration response of the system, equation 5 can be rewritten 

as follows: 

 tfMXCMXKMX nnnnn
111     (9)

Combined with the “identity, XX   ”, this expression can be put into matrix notation

as: 
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(10)

Next, eq. 9 can be written in state space form: 

   tGfAxx  (11)

The temporal evolution of eq.10 can be determined using the Laplace transform 

method. The solution is then given as a function of the state transition matrix, (t), as: 

           dfGtxttx
t


0

,0 (12)

where the first and the second terms on the right-hand side of eq.11 account, 

respectively, for the „free‟ and the „forced‟ state responses of the system. The state 

transition matrix, (t), is given by the matrix exponential expansion equation: 

   22

!2
1 tAAtIet At  (13)

(t,) represents the time series obtained from eq. 12 by replacing t by t-: 

     tAet, (14)
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5. The acoustic interaction model

A continuous system has an „infinite‟ number of natural frequencies. To estimate the 

structural response of the fluidized bed vessel through the flexibility matrix approach, a 

suitable number of nodes is necessary to avoid the so-called spatial aliasing problem, as 

the mode shape that can be adequately described through the proposed discrete 

approach depends on the number of nodes used to describe the system. The linear 

constraints imposed by the normal-mode solution approach used to described the 

structural response implies that each natural frequency obtained from the reciprocals of 

the positive squared roots of the eigenvalues of the flexibility matrix has at least one 

corresponding mode shape, which should be represented by an homogeneous 2nd order

linear equation (eq. 6). The existing analogy between the form of the solution used to 

describe both the pressure field and the structural response is the departure point to 

propose an interaction model between the pressure and the structural problems to set a 

suitable number of nodes. 

The mode shapes responsible for the different normal modes of vibration of the vessel 

structure are proposed to be directly related to the stationary wave pattern characterizing 

a freely bubbling bed. As shown in Figure 1, the number of nodes per unit length 

needed to perform the discrete lumped approximation to the continuous vessel is 

directly linked with the mode shape excited by the natural bed frequency characterizing 

the pressure wave pattern of the fluidized bed system, which, as stated above, is 

estimated with eq. 3. 

The departure hypothesis of the acoustic interaction model assumes that: 

1. The natural bed frequency estimated with eq. 3 is seen as a resonance state of the

„zero‟ bed frequency, f0, computed from eq. 1. 

2. The pressure waves propagate at cs.

3. The wavelengths are interpreted as the distance between beats („pulses‟) over the

structure. The wavelength corresponding to the purely periodic oscillations (zero 

state), 0, is taken as the reference length. 

4. The fluidized bed is treated as a one degree „damped‟ vibration system

characterized by a natural frequency, fn, resulting from the „resonant effect‟ that 

the different excitation forces appearing in a freely bubbling bed have over the 

„zero‟ bed frequency, f0. 

11



The number of nodes, n, is given as the ratio between the wavelengths characterizing, 

respectively, the „zero‟ and the resonance states: 



































0

00

2
2

f
fround

fc
fcroundroundn n

ns

s

n 





  (15)  

As depicted in Figure 1, for the natural frequency characterizing the bubbling fluidized 

beds equaling the zero frequency that characterizes the purely periodic oscillations, the 

number of nodes will be one. Larger natural frequencies than the zero frequency give 

rise to the number of nodes. As shown in Figure 1, some damping effects are included 

in f0, as estimated according to (Verloop and Heertjes, 1974) as: 
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The minimum of number of nodes provided by eq. 15 should be used to avoid the 

spatial aliasing problem. The model given by eq. 12 should be solved by integrating the 

structural problem resulting from the partition of the continuous system into the 

corresponding nodes computed through eq. 15 to have a reliable structural response. 

Using a large number of nodes can result in an increased frequency resolution in the 

frequency domain with an increase in the computational cost with increasing the 

number of nodes.  

In addition to the useful information generated to understand the measurement process 

provided by the model, from a design of the measurement process point of view, the 

acceleration data provided by the model can be properly sampled to match the 

experimental sampling frequency used during the acceleration measurements to assess 

the suitability of existing commercial accelerometers for specific applications. 

6. Experimental. 

To test the reliability of the proposed theory and to estimate the resonant bandwidth of 

the structure that will interact with the bed, the transient response of the model to 

several pulse-type excitation functions was investigated (Table 1). The sinusoidal type 

function was chosen to model the pressure excitation force applied by the fluidized bed 

dynamics on the vessel structure (Bi et al., 1995;Musmarra et al., 1995;Roy et al., 

1990;van der Schaaf et al., 1998). This study shows how the boundary conditions and 

the measurement position can affect the resulting bandwidth spectra. The surrogate 
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accelerometer signals constructed using the measured pressure signals as forcing 

functions in eq. 6 were used to compare the resulting frequency spectra with the 

measured accelerometer signals collected during the present research.  

Experimental Set-up 

Pressure fluctuations and piezoelectric acceleration measurements were collected from a 

PMMA-gas-solid fluidized bed of 0.192 m ID with a bed aspect ratio of H/D = 0.75 

(Table 2). The bed was operated with a 6 mm thick perforated plate distributor with 275 

holes of 2 mm diameter distributed in a triangular arrangement with an 11 mm pitch. To 

prevent raining through the orifices, a wire mesh of 100 m was placed below the 

distributor. Previous results reported in literature were used to validate the proposed 

model.  

The accelerometry and pressure fluctuation signals were measured simultaneously for 4 

minutes. A flow meter system consisting of a set of Cole-Parmer rotameters was used 

to control the air supply to provide bubbling regime conditions (1.6 < Ur < 2.1) using 

the operational conditions shown in Table 2.  

Vibration measurement 

The horizontal vibrations of the vessel wall were collected using two commercial 

accelerometers (Brüel and Kjaer Type 4507 B 005) located in the external face of the 

wall to account for the transversal vibrations of the vessel wall by the mounting slots 

supported with glue. The accelerometers were placed at 0.14 m and 0.07 m from the 

distributor, at the same height as the Kistler pressure transducer. The accelerometers 

were fitted to a NI 9233 (National Instruments) acquisition module mounted in a NI 

cDAQ-9172 system connected to a PC. The software used to acquire the signals was 

Labview 2010. The sensors had a sensitivity of 995 mV/g and a resonant frequency of 

16.3 kHz. The sampling frequency was set to 10 kHz. Special care was taken with the 

wire that connects each accelerometer with the data acquisition device to avoid 

triboelectric noise in the signal.  

Pressure fluctuation measurement 

Pressure fluctuations were recorded by two probes placed at 0.14 m and 0.07 m height, 

respectively, and connected to a Kistler pressure transducer Type 7261. The transducers 

were connected to an adjustable range charge amplifier Type 5015. The charge 
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amplifier acted as a high-pass filter with a filter frequency of 0.1 Hz with only the 

fluctuating part of the signal recorded. The charge amplifiers were connected through a 

NI 9234 module to the cDAQ-9172 system. For the accelerometer system, the sampling 

frequency for the pressure fluctuations measurements was set to 10 kHz. 

7. Results and discussion 

7.1 The response spectra 

For the measurement of the flow dynamics using a vibration analysis, the „flow-induced 

vibration‟, which reflected the surface pressure on a structure, is produced as a 

consequence of the interaction between the bed dynamics phenomena and the resonant 

bandwidth of the structure. Using a discrete approximation for the solution of the 

acoustic interaction on the vessel structure, the response of the vessel wall to the surface 

pressure induced by the fluidized bed dynamics is dependent on the force applied on 

each node (lumped inertia element) of the vessel structure. With the unsteady FB 

dynamics, the gas flow interactions generate pressure fluctuations within the 

corresponding standing wave pressure pattern, which result in a varying pressure field 

on the surface of the structure that might affect several „nodes‟ simultaneously. As a 

consequence, the spatial and frequency content of the pressure fluctuations might be 

influenced by the response spectra of the nearby nodes. The different conditions (fixed-

free, pinned-pinned, fixed-pinned and fixed-fixed configurations) of the vessel 

boundary used during the computations might also change the spectral response of the 

vessel to the flow-induced vibrations (Table 1). The influence of these factors on the 

measurement process is explored below to set the criteria for the choice of the 

simulation settings to be used during the designing of the accelerometer measurement 

process. In real systems, the response spectra are far more complex, including multiple 

contributions, in addition to the transversal vibrations considered by the proposed 

model. These additional contributions can include rotational and base excitation 

contributions to the response spectra. As the continuous system has an „infinite‟ number 

of natural frequencies, understanding the response spectra can be a tricky problem. 

7.2 Effect of boundary conditions 

The boundary conditions can often be a source of error in the comparison of field and 

laboratory measurements, as small changes in a structure at a certain key point might 
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have an important effect on the “final boundary conditions”. The possible deviations 

between the field measurements and the predicted responses are essential to understand 

this system. As shown in Figure 2, the estimated normalized frequency response of the 

cylindrical UC3M vessel (Table 2) using a sinusoidal pulse-type excitation function are 

given for the four different boundary conditions (Table 1): fixed-free, pinned-pinned, 

fixed-pinned and fixed-fixed. Figure 2a shows the temporal response of the system to 

the sinusoidal input (Table 1). Two different spectrum types can be observed, 

depending on the boundary condition used. The fixed-fixed and fixed-free cases had 

very similar amplitude responses in the time domain. Within the frequency domain, the 

corresponding spectral energy was distributed over a band of frequencies having an 

energy magnitude roughly the same order of magnitude as the center frequency of the 

band. A confirmation of the field measurements with these two boundary conditions 

would be expected to produce a wide-band process characterized by frequencies ranging 

approximately from 500 Hz to 4500 Hz (Figure 2b). In contrast, the pinned-pinned and 

the fixed-pinned conditions were characterized by temporal responses with large 

amplitudes and narrow spectra in the frequency domain, with the center frequency 

having a larger magnitude than the rest of the characteristic frequencies appearing 

within the spectra. The band frequency responses characterized by a frequency centered 

around 3000 Hz and 2500 Hz for the pinned-pinned and the fixed-pinned, respectively, 

were predicted for the experimental facility matching the pinned-pinned or the fixed-

pinned conditions. To assess the reliability of the proposed model to predict the carrying 

frequency band, the frequencies responses in Figure 2b were compared to the 

normalized Power Spectral Density (PSD) of the experimental accelerometer signal 

measured under bubbling operating conditions (Table 2). 

Figure 3b shows the PSD function of the measured Brüel and Kjaer Type 4507 B 005 

accelerometer signals collected at 10 kHz from the UC3M PMMA vessel (Table 2). The 

fluidized bed facility was fixed at the distributor extreme with the other extreme set 

free, matching the experimental fixed-free boundary configuration. To compare the 

experimental and simulated data, the PSD spectra should be dimensionless as the 

simulates data corresponded to the pulse-type excitation conditions whereas the 

experimental data accounted for the spectra of the current measured accelerometer 

signals. Both the content and the distribution of the energy were quite different in 

magnitude.  
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According to the literature, three different regions can be distinguished in the spectrum 

of Figure 3a: the mean response region that corresponds with the average displacement 

of the structure produced by the long term behavior of the vessel vibration, the non-

resonant (buffeting) response region of the vessel at frequencies below the resonant 

bandwidth of the structure, and the resonant response region due to the vibration of the 

structure as a consequence of flow induced vibration within the resonant frequency 

band. The resonant region was characterized by a wide-band frequency signal ranging 

from 1000 Hz to 4000 Hz, as expected for the fixed-free boundary condition. Figure 3b 

shows the frequency response of the structure corresponding to the sinusoidal pulse-

type excitation presented previously in Figure 2b for the fixed-free boundary conditions. 

The model predicted the broad band frequency content along the resonant response 

region. Without a mean flow excitation, the region resulting from the mean response of 

the structure did not contain a frequency component. The same low frequency content 

can be observed within the buffeting region, where only small frequency content was 

expected. The model provides a reliable prediction of both the type and the size of the 

resonant bandwidth of the structure. 

7.3 Effect of distributed excitations and the measurement distance to the 

excitation point on the measured accelerometer signals. 

The measured accelerometer signal can originate from the distributed and concentrated 

flow dynamics loads, resulting in the vibration of the structure within the mentioned 

resonant response region. For the measurements of the flow-induced vibration 

originating from the FB dynamics, the distributed loads can be related to the coherence 

phenomena, such as bubble coalescence, gas flow fluctuation, bubble eruption and bed 

mass oscillation, which generate fast pressure waves that can affect almost 

instantaneously the surface pressure above the vessel structure (Bi et al., 

1995;Musmarra et al., 1995;Roy et al., 1990;van der Schaaf et al., 1998). In contrast, 

the concentrated flow-induced vibrations should account for the local fluctuations in 

pressure corresponding to low coherence phenomena, such as gas bubbles and 

turbulence. Regardless of whether the distributed or the concentrated loads are the 

forces responsible of the measured flow-induced vibrations, the theory of the vibrating 

testing states that the characterization of the response spectra of both the concentrated 

and the distributed loads should require the simultaneous measurement of the vibration 

motion at different locations to identify the structure mode shapes. Without this 
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consideration, the information from some significant modes can be missed (McConnell, 

1995). The characterization of the „true‟ response spectra is not trivial. Previous studies 

that used AE methods for monitoring the fluidized beds dynamics reported the 

collection of accelerometer measurements at different locations of the structure (de 

Martin et al., 2010;Li et al., 2011), taking into account the influence of the measurement 

position on the measured signal. In de Martin et al. (2010), the accelerometer and 

pressure measurements collected at the different bed positions were used to study the 

coherence phenomena. A close relationship between the IOP and COP spectra was 

estimated from the pressure fluctuation measurements and the associated envelope 

process of the accelerometer signals. No conclusions have been made on the effect of 

the structural dynamic vessel responses on the measured signals. 

The existing limitations in acquiring the „true‟ response spectra require a visualization, 

at least qualitatively, of the mode shape leaks effects on the measured accelerometer 

signal within the resonant response region. Figures 4 and 5 show the theoretical 

response as a function of the concentrated and distributed loads, respectively, along the 

vessel structure for a sinusoidal pulse-type excitation having fixed-free boundary 

conditions. The concentrated load simulation was performed by applying the forcing 

function at node 2 at a spacing of 0.07 m, as measured from the bed distributor (Figure 

4). The distributed load pulse-type run was performed by forcing simultaneously the 

different nodes with the same sinusoidal pulse-type function (Figure 5). In both cases, 

the corresponding acceleration signal was measured at the different node positions 

ranging between 0.03 m < n < 1 m to characterize the resulting response spectra. 

As observed in Figure 4, the frequencies characterizing the resonant response region to 

the concentrated load excitation only propagate through the adjoining nodes, as the 

resonant response region remains almost intact in the proximity of the excitation point. 

The local phenomena behind the concentrated excitation can only be measured near the 

flow dynamic load source. This local feature can also be observed for other boundary 

condition situations with a fixed condition that can be applied to some of the 

boundaries. For the time domain response of the excitation, the amplitude response of 

the measured acceleration signal increased with the distance to the load point. This 

increase in the amplitude corresponded with an increase in the low frequency content 

appearing in the mean response and the nonresonant response regions. The flow 

dynamic information encoded within the resonant bandwidth region of the 

corresponding acceleration signals could have been masked with this response.  
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The effect of distributed loads for the fixed-free BC case, shown in Figure 5, or the 

other BC conditions suggested that the distributed load can propagate through the vessel 

by enhancing the low-frequency component of the acceleration signals. As a result of 

the distributed load effect, the center frequency characterizing the resonant frequency 

band was expected to be drawn to the low frequencies values. 

These preliminary results indicated a different structural behavior for the local and 

global structural flow dynamics loads. Consequently, as for the pressure fluctuation 

measurements, the analysis of the accelerometer signals can be used to study both local 

and global phenomena.  

7.4 Model testing. 

To test the reliability of the proposed acoustic interaction theory in the study of the 

carrying resonant response region, several literature reports that cover the different 

approximations to the problem of flow induced vibration measurement in FB‟s were 

used for a comparison. The experimental conditions shown in table 2 were used to run 

the model for a comparison with the corresponding literature data. 

The results obtained from the vibration induced by pulse-type excitation were used to 

demonstrate that the model performance predicted the carrying wave frequency band. 

The potential use during the subsequent design of the accelerometer measurement 

process is also discussed. A practical example of the vibration induced by the pressure 

time series excitation was presented to demonstrate the existing relationship between 

the acoustic and vibrations waves resulting from the pressure waves originating within 

the bed. The relationship between the pressure and the vibrations contribute to an 

understanding of the FB dynamical information that can be encoded within the 

measured accelerometry signals. 

7.4.1 Vibration induced by pulse-type excitation 

Figure 6 shows a comparison between the PSD of the simulated accelerometer time 

series obtained with fixed-fixed boundary conditions (dotted line) and the PSD of the 

experimental accelerometer signal, reported in (Cody et al., 1996) (solid line), for an 

aluminum vessel operating with glass spheres of dp = 229 µm fluidized with helium gas 

(Table 2). As in Figure 3, the dimensionless spectrum was used in the comparison. 

Consistent with the results shown previously in Figure 3, the information regarding the 

mean response region of the vessel structure (low frequency region) was not taken into 

18



account by the model. The PSD from the simulated time series exhibited a close 

behavior within the resonant response region. Within the resonance region, the flow 

dynamic information was carried by the FB dynamics. As shown in Figure 6, the model 

successfully predicted a complex wide-band response spectrum ranging from 1000 Hz 

to 20 kHz for measurements at 50 kHz (Table 2). This information is critical in guiding 

the design of the accelerometer measurement process. As discussed in the example 

shown below for the vibration induced by the pressure time series, this information may 

be used to assess the „quality‟ of the FB dynamic information contained in the measured 

accelerometer signal. 

Figure 7 compares the PSD for the accelerometry signal collected from a PMMA 

laboratory-scale reactor reported in the literature (Jiang et al., 2007) (solid line) with the 

corresponding simulation runs obtained by a sinusoidal pulse-type excitation for the 

four different boundary conditions (dotted line). As stated above, the corresponding 

experimental results consider the elastic waves to be the single source of the measured 

accelerometer signals. Regardless of the boundary condition used, the model produced a 

reliable prediction of the measured resonant response region, with the center frequency 

value of the experimental and simulated spectra exhibiting a close agreement. The 

apparent independence of the predicted band response on the model boundary 

conditions was a result of the height of the bed (Hb  0.05 m) being very small, 

suggesting that the elastic waves produced by the particle-particle and the particle-wall 

collisions dominated the propagation velocity term (fn = 208 Hz, cs = 52 m/s) of the 

pressure field. Tall fluidized beds produced differing responses that suggested the 

importance of the compression wave term in these responses.  

In spite of the great differences with the sampling frequencies chosen to measure the 

accelerometer signals (Table 2), both approaches reported in Cody et al. (1996) and 

Jiang et al. (2007) assumed that the particle-particle and particle-wall collisions were 

the single sources for the measured “Acoustic Emissions”. This apparent inconsistency 

disappeared within the present approach, with the existing pressure wave pattern 

dominated by either the compression or the elastic waves.  

To conclude with the validation of the vibration induced by the pulse-type excitation 

test, figure 8 compares the results reported in Abbasi et al. (2009). For the different 

fluidization conditions, the resulting PSD functions from the simulation runs exhibited a 

characteristic frequency peak close to the 1 kHz value (peak number one), which 
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characterizes the measured spectra. With the exception of the spectrum shown in figure 

8b, the characteristic frequencies were always below 8 kHz, as reported in Abbasi et al. 

(2009). In addition, a secondary peak centered at approximately 4 kHz appeared in most 

of the simulated runs (peak number 2), which also appeared in the experimental signal 

for the H/D = 1 conditions (figure 8c).  

Several comments on the results shown in figure 8 may be of interest. The fluidized bed 

facility used in Abbasi et al. (2009) had a circulating structure. The vessel‟s actual 

structural response cannot be modeled as a „single‟ beam due to the effect that the 

downcomer tube might have had on the boundary conditions. To use the single beam 

structural approach in the design of the accelerometer measurement process also in the 

circulating systems, a conceptual reduction of the current structural problem was needed 

to define a „single beam‟ problem that could be handled by the proposed simplified 

approach. As shown in Table 2, the column height, L, used in the model through the 

simulation, L = 0.3 m, did not correspond with the experimental value of the vessel 

length, Lcolumn = 2 m, reported in the literature (Abbasi et al., 2009). To reduce the 

structural problem to a single beam problem, the vessel length used to compute the 

nodes in the calculations was roughly taken as the difference between the actual vessel 

length minus the downcomer length (L =Lcolumn-LD). Without these approximations, the 

actual vessel height was used through the computation, producing slight differences in 

both the response type and center frequency spectrum. For Lcal = L = 2 m, the model 

predicted a wide carrier frequency band centered around 2 kHz, with the model 

overestimating the carrying wave and failing to predict the apparent narrow band 

process reported in literature. The model still predicted the lack of frequencies found 

above 8 KHz, which is also useful information for the design of the measurement 

process. A reliable prediction of both the center spectral frequency and the response 

type spectrum can be made after reducing the structural problem.  

7.4.2 Vibration induced by a pressure time series  

With the validation of the prediction for the expected carrying wave frequency band by 

a pulse-type excitation test to help the design of the accelerometer measurement 

process, a practical example of vibration induced by a pressure time series excitation 

was developed and presented below. This example illustrates the existing relationship 
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between the pressure field characterizing the FB dynamics and the signals measured by 

the accelerometers. 

Recent literature regarding accelerometer monitoring (de Martin et al., 2010;de Martin 

et al., 2011;Li et al., 2011) has revealed the existing relationship between pressure 

fluctuations and accelerometer signals measured simultaneously from FB‟s. The low 

frequency information carried in the associated envelope process within the 

accelerometer signals can be directly related to the conventional pressure fluctuation 

measurements for the slow varying envelope conditions for the measured accelerometer 

signals (Langley, 1986). This approach is in agreement with the theory of random 

vibrations (Crandall and Mark, 1963), as the flow-induced vibrations should typically 

have a modulated response. In the FB system, this modulation might be produced by the 

interaction of the bed dynamics phenomena (i.e. bubble, bulk and particle dynamics) 

with the resonant bandwidth of the structure. 

A vibration induced by a measured pressure time signals test was conducted to develop 

an understanding on the effects of the FB dynamics on the measured accelerometer 

signal as a consequence of its interaction with the resonant bandwidth of the structure. 

To facilitate these measurements, the pressure signals collected by the Kistler Type 

7261 transducers at the UC3M FB facility (Table 2) were used as the forcing function, 

f(t), of the structural model (eq. 5).  

Figure 9a shows a comparison in the time domain between the measured and the 

simulated accelerometer signal provided by the model. The model described the 

quantitative and qualitative behavior of the experimental accelerometer signal. As the 

model produced a good prediction of the carrying wave frequency band, a close look at 

the time domain information of the signal depicted in Figure 9a revealed that the scales, 

tm and te, characterizing the time domain information of the experimental signal can be 

found within the simulated acceleration signal (Figure 9b). The frequency domain 

analysis of both experimental and simulation signals (Figure 10) confirmed the 

reliability of the model to predict the expected carrying wave frequency band for the 

structural model forced with an experimental pressure time series. Figure 10a shows 

how the model predicted that the flow dynamic information would be carried within a 

wide carrying frequency band located within the resonant response region of the spectra 

(Figure 10b). Moreover as in the previous case, for the vibration induced by the pulse-
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type tests, the model did not account for the information carried within the mean and the 

nonresonant response regions (Figure 3). 

Figure 11 shows the PSD of the envelope signals from both the measured (dotted red 

line) and the simulation accelerometer signals (dotted black line). The Hilbert transform 

method reported in de Martin et al. (2010) was applied to extract the associated 

envelope processes. To compare the information carried by the experimental and the 

simulated envelope signals, the corresponding pressure time series measured at the 

same position of the acceleration signal is shown in Figure 11 (solid red line) (these 

pressure signals were used in eq. 5 to force the structural model). As expected, the 

relationship between the measured pressure signal and the envelope signal recovered 

from the measured accelerometer signal was apparent and in agreement with the results 

reported previously (de Martin et al., 2010). Only small differences can be observed 

between the corresponding PSDs at the low frequency region. To compare the pressure 

fluctuation measurements with the envelope recovered from the simulated 

accelerometer signal, a close agreement existed between the envelope and the pressure 

time series from 2 to 8 Hz. As shown in figure 11, a comparison for Ur = 1.6, which as a 

consequence that the corresponding fluidization regime is not yet well developed, 

produced the most unfavorable case between the simulated envelope process and the 

corresponding pressure fluctuation time series, focusing on the FB dynamics carried in 

the envelope process and not on the precise matching of the spectra. The structural 

response of the vessel to a flow-induced vibration was mostly determined by the “bed 

acoustics” estimated using the settle bed conditions. With the fluidization regime 

driving the envelope process, the distinct features characterizing the standing wave 

pattern at several fluidization conditions cannot be matched. 

For the experimental accelerometer signal, a clear difference at the low portion of the 

PSD was observed between the envelope process associated with the simulated 

acceleration signal and the experimental pressure fluctuation signal used as a forcing 

function (please note the energy of the characteristic peaks appearing below 1.8 Hz in 

Figure 11). These differences appearing at low frequencies helped to identify 

unambiguously the origin of the dissimilarities as structural-born.  

As the measured pressure time series used to force the structural model can be 

recovered from the envelope process, the envelope process was determined to account 

for the flow-dynamic forces behind the vibration of the structure, whereas the measured 
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accelerometer signals accounted for the dynamical response of the structure, which can 

also contain information of the unwanted structural motion as well as other background 

noises. Consequently, if the measured accelerometer signals are induced by the flow-

dynamics of the fluidized bed, they might exhibit enough sensitivity to certain flow 

changes to appreciate some particular phenomena under study, explaining why the 

previous approaches dealing with accelerometer measurements gave acceptable 

outcomes for certain monitoring and control issues. The structural as well as the 

background noises can reduce the „quality‟ of the measured accelerometer signal, 

preventing an adequate application with this approach for multiple conditions, such as a 

detailed analysis of the dynamical processes (bubbles and particle dynamics) 

characterizing the dynamics of gas-solid fluidized bed.  

8. Conclusions 

The acoustic interaction model produced a reliable prediction of the carrying wave 

frequency at the different measurement sampling conditions that might be used by the 

outlined acquisition systems. The results provided by the vibration induced by the 

pulse-type excitation tests sufficed for these designing purposes. Several fluidization 

parameters, such as the fluidization velocity U0, were not used to characterize the 

pressure field in the bed. Consequently, the structural responses of the vessel to flow-

induced vibrations were mostly determined by the “bed acoustics”. From the vibration 

induced by a pressure time series, the fluidization regime drove the envelope process. 

More research is needed to gain knowledge on the flow-induced vibrations in gas-solid 

fluidized beds.  

The vibration induced by pressure time series excitation tests revealed a close 

relationship between the pressure fluctuation characterizing the FB dynamics and the 

flow-induced accelerometer signals measured simultaneously in the bed. This 

observation is in agreement with the most recent advances reported in the literature on 

this subject. The pressure time series excitation tests helped to understand the effects of 

the FB dynamical information on the measured signals. It can be used to discriminate 

between the contribution of both the flow dynamic information and the structural-born 

noise on the accelerometer signals collected from a FB system at the corresponding 

measurement conditions. 
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The mechanical response of the vessel to concentrating load excitation propagates 

through the adjoining nodes. Consequently, the local phenomena behind the excitation 

can only be measured near the flow dynamic origin of the load. In contrast, the 

distributed load can propagate through the vessel by enhancing the low-frequency 

component of the measured acceleration signals, bringing the center frequency 

characterizing the resonant frequency band to low frequencies values. This information 

is extremely important in dealing with the different phenomena behind the flow 

dynamic forces characterizing the fluidized beds and in placing the accelerometer for 

reliable monitoring. 

As expected, the results shown through the paper confirmed that the measured 

accelerometer signal will be contaminated by unwanted structural motion. Consistent 

with the random vibration theory, the simulated accelerometer signal induced by an 

experimental pressure time series produced a modulated response as a consequence of 

the interaction of the bed dynamics phenomena with the resonant bandwidth of the 

structure. The simulated acceleration signal and the corresponding associated envelope 

process accounted for the different dynamics. The envelope time series accounted for 

the flow-dynamic forces behind the vibration of the structure (beating phenomena) and 

the measured accelerometer signals accounted for the dynamical response of the 

structure. The survival of an envelope process on the measured accelerometry signal 

guaranteed the quality of the dynamical information collected during the measurement 

process.  

Notation 

Uppercase letters 

Acv    cross sectional area of the vessel, m2 

B    density ratio, [-] 

D    Internal bed diameter, m 

E    Young Modulus of vessel material, Pa 

F0    Force magnitude, N 

H    bed height, m 

I    area moment of inertia, m4 

ID    Internal vessel diameter, m 

L    vessel length, m 
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OD     external vessel diameter, m 

Ur    reduced velocity Ur = U0/Umf, [-] 

X    displacement vector, (mode shape), m 

Lowercase letters 

cs0    pressure wave air propagation velocity, m/ 

cs    pressure wave bed propagation velocity, m/s 

dp    particle diameter, m 

f0    natural „zero‟ frequency, Hz 

fn    natural frequency, Hz 

g    acceleration of gravity, m/s2 

mi    lumped mass, kg 

mv    vessel mass, kg 

n    number of nodes per unit length, [-] 

t0    time rise for pulse time excitation 

te    characteristic time of experimental accelerometry signal, s 

tm    characteristic time of simulated accelerometry signal, s 

tn    natural period of pressure oscillation, s 

Greek letters 

    angular frequency, rad/s 

    cp/cv ratio, [-] 

    void fraction, [-] 

mf    void fraction at minimum fluidization velocity, [-] 

g    dynamic viscosity of gas fluidizing gas, Pas 

g    gas density, kg/m3 

p    particle relaxation time, s 

s    particle density, kg/m3 

s    sphericity factor, [-] 

Abbreviations 

BC    Boundary condition. 

CE    Cumulative energy PSD function 

FB    fluidized bed 
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PSD    Power spectral density 
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Appendix I: The flexibility matrix approach 

The governing equation of the free vibrations of a linear undamped MDOF system for a 

normal-mode solution in the form iwtXex  , where w is the frequency of vibration and 

X is the displacement vector (mode shape), after substitution read as: 

02  KXMX  (17)  

in which M is the mass matrix and K is the stiffness matrix. Under the assumption that 

the FB vessel structure has a positive MDOF stiffness matrix, eq. 5 can be written in 

terms of the flexibility matrix, A as: 

01
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The solution to the computation of the natural frequencies of the systems reduced to 

solve the bracket term of eq. 18 and to compute the reciprocals of the positive squared 

roots of the eigenvalues of the AM product. As shown in eq. 18, although the physical 

construction and the motion itself were quite different between the transverse 

displacement and the translational problem, the definition and the properties of the 

elastic stiffness of the lumped mass were quite similar, in the sense that the dynamics of 

both systems can be represented by similar equations of motion. Within the flexural 

vibration problem, the elastic stiffness to the transverse deflection of the node masses 

was a function of the corresponding massless bending springs that interconnect them 

(de Silva, 2000). 

According to the discrete model approach, the lumped masses, mi, are of equal value 

and calculated as: 
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The elements of the flexibility matrix, A, and the corresponding AM matrix are in the 

form: 
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  (20)

where the yij are dimensionless flexibility coefficients, which can be determined as a 

function of the boundary conditions from the solution of the deflection of a beam 

subjected to concentrated loads (Kelly, 1993). The dimensionless natural frequencies, 

*, are then obtained from the reciprocals of the positive squared roots of the

eigenvalues of yij by considering the distributed inertia of the discrete approach: 
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Finally, the dimensional natural frequencies are obtained as: 
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Appendix II: Sequence of calculations. 

The sequence of calculations followed by the program is sketched in Figure A.1. 

Initially, the bed pressure field was characterized to estimate both the number of nodes 

and the bed natural frequency used within the pulse-type functions. The natural 

frequencies characterizing the different modes of the structure were computed through 

the flexibility matrix approach (Appendix I). This information was further used to 

compute the damping coefficient matrix, Cn, according to the viscous damping model 

assumption. Finally, the transient response of the structure (eq. 12) was solved as a 

function of the forcing function. (i.e. vibration induced by a pulse excitation or a 

vibration induced by a pressure time series).  
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Figure Caption 

 

Figure 1. Acoustic interaction model scheme: a) FB „zero‟ frequency model; b) 

stationary „resonance state‟ at fn, and the resulting lumped mass structural 

approximation. 

 

Figure 2. Simulated normalized time and frequency structural response of the 

Cylindrical UC3M vessel of table 2, pulse-type excitation runs for the fixed-fixed, 

pinned-pinned, fixed-pinned and fixed-fixed boundary conditions. The main expected 

frequency components present in the simulated signals are numbered in brackets. 

 

Figure 3. Pulse-type induced excitation run for the UC3M vessel (table 2): a) 

Cumulative energy PSD function of the measured accelerometer signal; b) Normalized 

PSD of the measured accelerometer signal; c) Cumulative energy PSD function of the 

simulated accelerometer signals for fixed-free boundary conditions; d) Normalized PSD 

function of pulse-type excitation run accelerometer signals. 

 

Figure 4 Concentrated load effects on the theoretical frequency and the time domain 

sinusoidal pulse-type excitation responses (Fixed-Free BC). The lower case n on the 

graphs accounts for the node position. 

 

Figure 5. Distributed load effects on the theoretical frequency and the time domain 

sinusoidal pulse-type excitation responses (Fixed-Free BC). The lower case n on the 

graphs accounts for the node position 

 

Figure 6. Comparison of the normalized PSD of the simulated pulse-type excitation run 

at Fixed-Fixed BC (dotted line) and the normalized PSD of the experimental 

accelerometer signal reported in the literature (Cody et al., 1996) (solid line) for an 

aluminum vessel operating with glass spheres of dp = 229 µm fluidized with helium gas. 

 

Figure 7. Comparison of the normalized PSD of the simulated pulse-type excitation runs 

(dotted line) for the boundary conditions a) Fixed-Free BC; b) Fixed-pinned BC; c) 

31



pinned-pinned BC; and d) Fixed-Fixed BC as well as the normalized PSD of the 

experimental accelerometer signal reported in the literature (Jiang et al., 2007) (solid 

line) for a PMMA vessel operating with 0.5 kg of LLDPE of dp = 360 µm. The red 

arrows point to the resonance frequency value of the accelerometer sensor used for the 

experimental run. 

Figure 8. Comparison of the normalized PSD of the simulated pulse-type excitation runs 

(dotted line) using pinned-pinned BC. a) H/D = 2, dp = 150 m; b) H/D = 0.5, dp = 280 

m; c) H/D = 1, dp = 280 m; and d) H/D = 2, dp = 280 m as well as the normalized 

PSD of the experimental accelerometer signal reported in the literature (Abbasi et al., 

2009) (solid line) for a PMMA circulating vessel operating with sand particles. The red 

arrows point to the main resonance frequency peaks value detected in both cases. 

Figure 9. Time domain comparison between the measured and the induced responses by 

pressure time series accelerometer signals for the UC3M PMMA vessel (table 2). a) 30 

seconds of dynamics (please note the beating phenomena on both measured and 

simulated time series); b) the detail of the time domain structure (tm te) of the measured 

and the simulated accelerometry signals. 

Figure 10. Comparison of the normalized PSD of the simulated pressure-type excitation 

run (black line) at Fixed-Free BC and the normalized PSD of the experimental 

accelerometer signal measured at the UC3M PMMA vessel (table 2). a) PSD function 

comparison;  b) Cumulative PSD energy function. 

Figure 11. PSD of the measured pressure time series (solid red line) and the envelope 

signals extracted from: measured accelerometer signals (dotted red line); simulation 

accelerometer signals (dotted black line). 

Figure A1. Sequence of calculations 
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Table caption 

Table 1. Pulse-type functions and transient response conditions 

 

Table 2. Experimental condition used through the simulations. The * superscript symbol 

accounts for the assumed values. 
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Figure 1
Click here to download high resolution image
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Figure 2
Click here to download high resolution image
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Figure 3
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Figure 4
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Figure 5
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Figure 6
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Figure 7
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Figure 8
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Figure 9
Click here to download high resolution image
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Figure 10
Click here to download high resolution image
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Figure 11
Click here to download high resolution image
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Table 1. Pulse type functions and transient response conditions 
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 Vessel properties Bed & material characteristics Gas phase Sampling 
settings 

Unit 

Geometry 
& 

distributor 
type 

size [m] 
E, 

GPa 
, 

kg/m3 
L, 
m 

H 
[m] dp [m] 

p 
[kg/m3] mf s gas 

, 
105, 
Pas 

g 
[kg/m3]   fs, kHz 

Cody et.al (1996) 
(Aluminium 
vessel) 

Cylindrical 
/ perforate 
plate  

0.0762 (ID) 
0.0826(OD) 

68.9 2700 0.26  0.16 297 2640 0.43 0.9 Helium 1.86 0.1785 1.664 50 

Jian et al. (2007) 
(PMMA vessel) 

Cylindrical 
/ perforate 
plate 

0.15 (ID) 
0.154*(OD) 

3* 1190 1 0.05 360 
(LLDPE) 

920 0.43 0.9* Air 1.85 1.2 1.4 500 

Abassi et al. 
(2009) (PMMA 
vessel) 

Cylindrical 
/ perforate 
plate 

0.15 (ID) 
0.154*(OD) 

1.8/ 
3.9 

1190 2 
0.075 
0.15 

0.225 

150 
280 

(sand) 
2640 0.43 0.86* Air 1.85 1.2 1.4 25 

UC3M (PMMA 
Vessel) 

Cylindrical 
/ perforate 
plate 

0.192 (ID) 
0.196 (OD) 

1.8 / 
3.9 

1190 1 0.14 
637 

(sand) 
2632  0.86* Air 1.85 1.2 1.4 10 

Table 2. Experimental condition used through the simulations. The * superscript symbol accounts for assumed values. 
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