
Universidad Carlos III de Madrid
Escuela Politécnica Superior

Departamento de Tecnología Electrónica
Doctorado en Ingeniería Eléctrica, Electrónica y

Automática

Tesis Doctoral

HARDWARE DESIGN OF
CRYPTOGRAPHIC

ALGORITHMS FOR LOW-COST
RFID TAGS

Honorio Martín González
Dirigida por

Enrique San Millán Heredia
Leganés, 2015

This work is distributed under the Creative Commons 3.0 license. You are free to copy,
distribute and transmit the work under the following conditions: (i) you must attribute the
work in the manner specified by the author or licensor (but not in any way that suggests that
they endorse you or your use of the work); (ii) you may not use this work for commercial
purposes, and; (iii) you may not alter, transform, or build upon this work. Any of the
above conditions can be waived if you get permission from the copyright holder. See
http://creativecommons.org/licenses/by-nc-nd/3.0/ for further details.

E-mail: hmartin@ing.uc3m.es

Address:

Grupo de Diseño Microelectrónico y Aplicaciones
Departamento de Tecnología Electrónica
Universidad Carlos III de Madrid
Av. de la Universidad, 22
Leganés 28918 — Spain

http://creativecommons.org/licenses/by-nc-nd/3.0/
mailto:hmartin@ing.uc3m.es

Autor: Honorio Martín González
Directores: Enrique San Millán Heredia

Firma del Tribunal Calificador:

Nombre y Apellidos Firma

Presidente: Da. Teresa Riesgo Alcaide .

Vocal: D. Giorgio Di Natale .

Secretario: D. Emilio Olías Ruíz .

Calificación: .

Leganés, 27 de Enero de 2015.

Contents

List of acronyms xi

Abstract xiii

Resumen xv

Introduction xvii

1 RFID Technology 1

1.1 RFID basics . 2

1.1.1 RFID operation . 2

1.1.2 RFID components . 2

1.1.3 RFID features . 4

1.1.4 Advantages, disadvantages and applications 7

1.2 RFID standards . 9

1.2.1 ISO standards . 9

1.2.2 EPC standard . 11

1.3 RFID Security . 14

1.3.1 RFID security properties . 15

1.3.2 Attacking RFID systems . 15

1.3.3 RFID algorithms . 16

1.3.4 Low-cost RFID security . 17

ii Contents

2 Hardware Footprint Estimation of Lightweight Cryptographic Prim-
itives 19

2.1 Study of Lightweight Cryptographic primitives 21

2.1.1 Elements in Lightweight Cryptography 21

2.1.2 Hardware Implementation of Basic Operations 23

2.2 Estimating the Area of Lightweight Algorithms 29

2.2.1 Previous considerations . 29

2.2.2 A Linear Estimator . 33

2.2.3 Experimental results . 35

2.2.4 Adjusting control overheads 37

2.3 Conclusions . 39

3 Pseudo-Random Number Generators 43

3.1 State of the art . 45

3.1.1 PRNGs requirements for low-cost RFID tags 45

3.1.2 PRNG evaluation . 46

3.1.3 Known PRNGs . 47

3.2 AKARI-X . 50

3.2.1 Design and evaluation . 50

3.2.2 Hardware architectures . 52

3.3 RFID authentication Protocols . 55

3.3.1 Burmester-Munilla Protocol 56

3.3.2 Chien-Huang Protocol . 56

3.3.3 Design architectures for RFID identification protocols 57

3.4 Circuit Synthesis and Results . 59

3.4.1 Experimental Setting . 59

3.4.2 PRNG Results . 61

3.4.3 Protocol Results . 65

Contents iii

3.4.4 Impact of EPC-C1G2 module in RFID tags 67

3.5 Conclusions . 70

4 True Random Number Generators 71

4.1 Introduction . 72

4.1.1 Design and evaluation . 72

4.1.2 State of the art . 76

4.2 Analysis of a Novel TRNG . 87

4.2.1 Threat Model . 88

4.2.2 Implementation and Experimental Setup 92

4.2.3 Experimental Results . 95

4.2.4 Conclusions of the analysis . 110

4.3 A New TRNG based on Coherent Sampling with Self-timed Rings . . 111

4.3.1 Our Design . 113

4.3.2 Experimental results . 115

4.3.3 Conclusions of our TRNG . 121

4.4 Conclusions . 122

5 Conclusions 125

5.1 Conclusions . 125

5.2 Future work . 129

5.3 List of publications related to this thesis 130

5.3.1 Main thesis publications . 130

5.3.2 Other contributions . 131

A Data Set Functions 133

References 145

iv Contents

List of Figures

1 Thesis organization . xxi

1.1 RFID tag [99] . 2

2.1 Architectures for an XOR block. 24

2.2 Combinational Multiplier Architecture 25

2.3 Basic Cell of Combinational Multiplier 26

2.4 Shift and Add Multiplier . 27

2.5 Non Restoring Reduction Algorithm 29

2.6 GE for low complexity elements as a function of the number of bits
for UMC 90nm library. 32

2.7 Real and estimated footprint area (ω = 0.2). 36

2.8 Distribution of gate count estimation errors (ω = 0.2) 37

2.9 Real and estimated footprint area using adjusted control overheads:
results on 80 training designs. 40

2.10 Real and estimated footprint area using adjusted control overheads:
results on 40 test designs. 40

2.11 Distribution of gate count estimation errors using ω(FDP) on 40 test
designs. 42

3.1 Linear Feedback Shift Register scheme 48

3.2 Pseudorandom Number Generators AKARI-1 and AKARI-2. 51

3.3 Half (m/2) and quarter (m/4) adders and auxiliary logic and registers. 54

3.4 The 4-pass EPCGen2 inventory (left) and Burmester-Munilla inventory
(right) [22]. 56

vi List of Figures

3.5 Chien and Huang lightweight RFID authentication protocol [33]. . . . 58

3.6 Hardware architecture for a generic EPC-C1G2 protocol. 60

3.7 Area analysis of AKARI-1 PRNG (Gates Equivalents). 63

3.8 Implementation results of AKARI-1 PRNG (64-bit architecture). . . . 63

3.9 Area analysis of AKARI-1 PRNG. 64

3.10 Implementation results of AKARI-2 PRNG (32-bit architecture). . . . 65

3.11 Area analysis of Burmester-Munilla protocol (32-bit architecture). . . 67

3.12 Area analyis of Chien-Huang protocol (32-bit architecture). 69

3.13 Block diagram of a passive sensing tag. 69

4.1 General scheme of a TRNG . 73

4.2 Sunar et al. TRNG . 78

4.3 RO general architecture . 79

4.4 Structure and truth table of a Self-timed Ring stage. 80

4.5 Self-Timed Ring structure. 80

4.6 Example of tokens and bubbles propagation in a Self-timed Ring. . . 81

4.7 Core architecture of an RNG based on a Self-Timed Ring (STR) [32] 84

4.8 Entropy extraction principle . 84

4.9 General architecture of a TRNG based on coherent sampling. 86

4.10 The representation of the TRNG by Cherkaoui et al. with the path
delay of the XOR-tree (DpMax) . 91

4.11 Nine output sequences captured after restarting the TRNG. Note that
all sequences are different . 93

4.12 Setup for tampering with the temperature of the FPGA. A PT100
is placed between heating element and FPGA for measuring the
temperature. 94

4.13 Frequency of the STR measured at different temperatures. For higher
temperatures the frequency decreases. 94

4.14 (1): FPGA Extension Board (FEB); (2): Controller Board. 96

List of Figures vii

4.15 Frequency of the STR measured for different core voltage values.
Reducing the core voltage decreases the frequency. 96

4.16 Bias of the TRNG output before post-processing when a power glitch
with a length of 87.5µs and a core voltage of 1.20V are used. No bias
is observable after post-processing. 99

4.17 TRNG output before post-processing (lower plots) and resulting bit-
stream (upper plot) for a core voltage of 0.70V. For case (a) no power
glitch was inserted, for case (b) a power glitch of length 62.5µs was
inserted, and for case (c) a power glitch of length 187.5µs was inserted.100

4.18 Final bit-stream for a core voltage of 0.70V and a power glitch length
of 67.5µs. For case (a), 3-XOR filter with a configuration of 255
stages was applied, for case (b), 7-XOR filter with a configuration of
63 stages was applied. 100

4.19 TRNG output for different number of cycles affected by a clock glitch
(upper plots: 10 cycles, lower plots: 55 cycles). 102

4.20 Bit-stream of the TRNG precisely modified by using clock glitches
with different lengths. 102

4.21 Implemented XOR-tree ripple structure. 103

4.22 TRNG output of the enhanced design under normal operation conditions.104

4.23 TRNG output before post-processing when a power glitch with a
length of 87.5µs and a core voltage of 1.20V are used. In contrast to
the standard design (cf. Fig 4.16) no bias is observable. 105

4.24 TRNG output before post-processing when a power glitch with a
length of 62.5µs and a core voltage of 0.70V is induced. No bias is
observable. 105

4.25 TRNG output of the enhanced design for different number of cycles
affected by a clock glitch (upper plots: 10 cycles, lower plots: 55
cycles). No effect on the TRNG output is observable. 106

4.26 Generation of a glitch-free clock signal for the D flip-flops in the
XOR-tree. 106

4.27 Self-Timed Ring structure of our TRNG. 114

viii List of Figures

4.28 Sampler structure of our TRNG. 114

4.29 Sampler behavior. 115

4.30 Time evolution and histogram of S0. 116

4.31 Boxplots of p-value distributions for each sampling stage (b1 to b8)
and different frequencies. 117

4.32 Distribution of p-values for DIEHARD and NIST test suites. 120

List of Tables

1.1 RFID frequency range [52] . 7

1.2 EPC C1G2 tags main properties [121] 14

2.1 GEs for low-complexity elements . 31

2.2 GEs for different multiplication architectures and modulo reduction. . 33

2.3 Numerically estimated control overhead functions. 39

3.1 Evaluation of the quality of AKARI-1 and AKARI-2 (m = 32) against
several randomness tests. 52

3.2 Security Properties . 57

3.3 Hardware Analysis of AKARI-1 PRNG. 62

3.4 Hardware Analysis of AKARI-2 PRNG. 64

3.5 Hardware analysis of Burmester-Munilla EPC-C1G2 protocol. 66

3.6 Hardware analysis of Chien-Huang EPC-C1G2 protocol. 68

4.1 Results for different STR configurations in Spartan FPGAs 93

4.2 Period and Phase resolution for the different STR configurations using
a core voltage of 1.00 V and 0.70 V 98

4.3 Experimental results: Pass Rate (PR) proportion and average p-value
(PV) for generated traces. 116

4.4 Hardware results . 119

4.5 TRNG comparison . 119

4.6 ENT results for a sampling frequency set to 1 MHz. 120

x List of Tables

List of acronyms

ASIC Application-Specific Integrated Circuit

ASK Amplitude-Shift Keying

C1G2: Class-1 Generation-2

DoS: Denial of Service

EEPROM: Electrically Erasable Programmable Read-Only Memory

EPC: Electronic Product Code

FPGA: Field-Programmable Gate Array

GE: Gate Equivalents

HF: High frequency

ISO: International Organization for Standardization

LCG: Linear Congruential Generator

LF: Low Frequency

LFSR: Linear Feedback Shift Register

NIST: National Institute for Standards and Technology

PLL: Phase-Locked Loop

PRNG: Pseudo-Random Number Generator

PSK Phase-Shift Keying

RFID: Radio Frequency Identification

RN16: 16-bit Random Number Generator

xii List of acronyms

RO: Ring Oscillator

STR: Self-Timed Ring

TRNG: True-Random Number Generator

UHF: Ultra High frequency

Abstract

Radio Frequency Identification (RFID) is a wireless technology for automatic
identification that has experienced a notable growth in the last years. RFID is

an important part of the new trend named Internet of Things (IoT), which describes
a near future where all the objects are connected to the Internet and can interact
between them. The massive deployment of RFID technology depends on device costs
and dependability. In order to make these systems dependable, security needs to
be added to RFID implementations, as RF communications can be accessed by an
attacker who could extract or manipulate private information from the objects. On
the other hand, reduced costs usually imply resource-constrained environments.

Due to these resource limitations necessary to low-cost implementations, typical
cryptographic primitives cannot be used to secure low-cost RFID systems. A new
concept emerged due to this necessity, Lightweight Cryptography. This term was used
for the first time in 2003 by Vajda et al. and research on this topic has been done
widely in the last decade. Several proposals oriented to low-cost RFID systems have
been reported in the literature. Many of these proposals do not tackle in a realistic
way the multiple restrictions required by the technology or the specifications imposed
by the different standards that have arose for these technologies. The objective
of this thesis is to contribute in the field of lightweight cryptography oriented to
low-cost RFID tags from the microelectronics point of view.

First, a study about the implementation of lightweight cryptographic primitives
is presented . Specifically, the area used in the implementation, which is one of
the most important requirements of the technology as it is directly related to the
cost. After this analysis, a footprint area estimator of lightweight algorithms has
been developed. This estimator calculates an upper-bound of the area used in the
implementation. This estimator will help in making some choices at the algorithmic
level, even for designers without hardware design skills.

Second, two pseudo-random number generators have been proposed. Pseudo-
random number generators are essential cryptographic blocks in RFID systems.

According to the most extended RFID standard, EPC Class-1 Gen-2, it is mandatory
to include a generator in RFID tags. Several architectures for the two proposed
generators have been presented in this thesis and they have been integrated in
two authentication protocols, and the main metrics (area, throughput and power
consumption) have been analysed.

Finally, the topic of True Random Number Generators is studied. These genera-
tors are also very important in secure RFID, and are currently a trending research
line. A novel generator, presented by Cherkaoui et al., has been evaluated under
different attack scenarios. A new true random number generator based on coherent
sampling and suitable for low-cost RFID systems has been proposed.

Abstract

La tecnología de Identificación por Radio Frecuencia, más conocida por sus
siglas en inglés RFID, se ha convertido en una de las tecnologías de auto-

identificación más importantes dentro de la nueva corriente de identificación conocida
como Internet de las Cosas (IoT). Esta nueva tendencia describe un futuro donde
todos los objetos están conectados a internet y son capaces de identificarse ante otros
objetos. La implantación masiva de los sistemas RFID está hoy en día limitada por
el coste de los dispositivos y la fiabilidad. Para que este tipo de sistemas sea fiable, es
necesario añadir seguridad a las implementaciones RFID, ya que las comunicaciones
por radio frecuencia pueden ser fácilmente atacadas y la información sobre objetos
comprometida. Por otro lado, para que todos los objetos estén conectados es necesario
que el coste de la tecnología de identificación sea muy reducido, lo que significa una
gran limitación de recursos en diferentes ámbitos.

Dada la limitación de recursos necesaria en implementaciones de bajo coste, las
primitivas criptográficas típicas no pueden ser usadas para dotar de seguridad a
un sistema RFID de bajo coste. El concepto de primitiva criptográfica ligera fue
introducido por primera vez 2003 por Vajda et al. y ha sido desarrollado ampliamente
en los últimos años, dando como resultados una serie de algoritmos criptográficos
ligeros adecuados para su uso en tecnología RFID de bajo coste. El principal problema
de muchos de los algoritmos presentados es que no abordan de forma realista las
múltiples limitaciones de la tecnología. El objetivo de esta tesis es el de contribuir en
el campo de la criptografía ligera orientada a etiquetas RFID de bajo coste desde el
punto de vista de la microelectrónica.

En primer lugar se presenta un estudio de la implementación de las primitivas
criptográficas ligeras más utilizadas, concretamente analizando el área ocupado por
dichas primitivas, ya que es uno de los parámetros críticos considerados a la hora de
incluir dichas primitivas criptográficas en los dispositivos RFID de bajo coste. Tras el
análisis de estas primitivas se ha desarrollado un estimador de área para algoritmos
criptográficos ultraligeros que trata de dar una cota superior del área total ocupada

por el algoritmo (incluyendo registros y lógica de control). Este estimador permite al
diseñador, en etapas tempranas del diseño y sin tener ningún conocimiento sobre
implementaciones, saber si el algoritmo está dentro de los límites de área impuestos
por la tecnología RFID.

También se proponen 2 generadores de números pseudo-aleatorios. Estos genera-
dores son uno de los bloques criptográficos más importantes en un sistema RFID. El
estándar RFID más extendido entre la industria, EPC Class-1 Gen-2, establece el
uso obligatorio de dicho tipo de generadores en las etiquetas RFID. Los generadores
propuestos han sido implementados e integrados en 2 protocolos de comunicación
orientados a RFID, obteniendo buenos resultados en las principales características
del sistema.

Por último, se ha estudiado el tema de los generadores de números aleatorios. Este
tipo de generadores son frecuentemente usados en seguridad RFID. Actualmente esta
linea de investigación es muy popular. En esta tesis, se ha evaluado la seguridad de un
novedoso TRNG, presentado por Cherkaoui et al., frente ataques típicos considerados
en la literatura. Además, se ha presentado un nuevo TRNG de bajo coste basado en
la técnica de muestreo por pares.

Introduction

Introduction

Auto-identification technologies have been used massively during the last 50 years
and have become indispensable in our lives. Among these identification technologies
Bar-code has been the most used one in the last three decades and it is almost
present in all day-to-day products. Another promising identification technology is
Radio Frequency Identification (RFID). Although RFID appears to be relatively
new, it has been used in the field since the early forties with military purposes.

Along many years of research and development, RFID has reached a development
degree where the cost and miniaturization make it feasible to be used with commercial
purposes. The cost was the main drawback in the early stages of the development,
but nowadays the miniaturization and the manufacturing process automation allow
affordable costs and make this technology accessible to all kind of companies. In
addition, the increasing standardization of RFID technology, carried out by ISO and
EPCglobal, has allowed the deployment of RFID technology around the world. As a
maximum exponent of standardization stands out EPC Class-1 Gen-2 (EPC C1G2
[47]), extensively used in retail industry.

RFID technology offers several advantages over bar-code, as for example the
univocal identification of different items without the need of visual contact. This
unambiguous identification also makes possible to distinguish different objects from
the same family product. RFID systems can store additional useful data to the
company or the user, for example, locations (time and space).

As sensitive information related to each item is stored into each tag, it is necessary
to add security to RFID systems. A major difficulty in providing RFID tags with
security functions comes from the scarcity of computational resources available in
such platforms ([140, 125, 13]). For that reason, modern cryptographic solutions

xviii Introduction

based on difficult mathematical challenges that involve intensive computational
operations are not suitable for this resource-constrained devices.

A new area in the field of cryptography has been developed in the last years. In
2003 Vajda et al. introduced the new concept of lightweight cryptography. Since then,
this research line has become more and more important. Lightweight cryptography
tries to give answer to the necessity of security in resource-constrained environments
where computational resources are very limited.

Several contributions related to lightweight cryptography have been reported
in the literature. A large number of these contributions present a very theoretical
approximation but do not show a realistic approximation to the requirements imposed
by the technology.

Motivation

The motivation of this thesis is to contribute in the field of lightweight cryptography
oriented to low-cost RFID tags from the microelectronics point of view.

Despite the numerous contributions reported in the literature about lightweight
cryptography, there is a lack of proposals that tackle in a realistic way the multiple
requirements imposed by the technology.

• There are some very theoretical contributions that do not provide any proof of
their lightweightness [122] [110].

• In many cases, arguments in favor of their lightweightness are based on the use
of some operations that are generally considered inexpensive by the authors.
However, these estimations are not always correct, and the implementation of
some of these proposals greatly exceeds the area limit of 4K Gate Equivalents
(GE is the normalization commonly used for these applications) [73][97][34].

• In other cases, the design turns out to be not so lightweight because of factors
such as the bit length of the variables, the need for additional memory blocks
–which is usually missed in the analysis of resources–, and the overhead imposed
by selection and control logic. These and other aspects often make the final
gate count much higher than expected [34][110].

Introduction xix

In addition to the restrictions imposed by the technology, the standards add
additional requirements. In the field of low-cost passive RFID, the EPC C1G2
standard is widely used in the industry. This standard establishes the physical
and logical requirements for UHF (Ultra High Frequency) low-cost RFID systems.
Among these requirements, there are demands concerning the security. Specifically,
it is necessary to embed a pseudo-random/random number generator (RN16) in each
tag in order to secure the communications with readers. These kind of generators
are widely used in typical cryptographic applications.

Pseudo-random number generators (PRNGs) are deterministic algorithms that
generate an unbiased random output. There are several proposals oriented to low-cost
RFID proposed in the literature [105], [94], [27]. In these contributions area and
throughput estimations are usually shown, but in general no data are provided about
hardware architectures or power consumption.

True random number generators (TRNGs), are generators that use some physical
processes to generate random numbers. TRNGs are typically implemented on FPGAs
due to their flexibility and cost. There are several proposals presented in the literature
[127],[147], [54]. The main weaknesses of these works are the vulnerability against
some attack scenarios ([14],[90]) and the lack of portability.

The aforementioned issues motivate different goals to advance in the field of
lightweight cryptography for low-cost RFID tags.

Objectives

The main objective of this thesis is to contribute in the research field of lightweight
cryptography from the microelectronics point of view. In particular, our goal is
to design and implement lightweight cryptographic algorithms devoted to low-cost
RFID tags that comply with EPC Class-1 Gen-2 standard. The following specific
objectives are aimed:

1. Studying the main algorithms and functions, as well as their implementations,
used in lightweight cryptography, analysing their footprint area and suitability
to be used in low-cost RFID tags.

xx Introduction

2. As the EPC standard establishes the necessity of an embedded Random number
generator (RN16):

2.1. Designing and implementing a pseudo-random number generator compliant
with the EPC-C1G2 standard, obtaining the main metrics (area, power
consumption and throughput).

2.2. Designing and implementing a true-random number generator, evaluating
its suitability for low-cost RFID tags.

Based on these general objectives, we establish some more specific goals.

Regarding the first objective, it is intended to identify and analyse the main
elements used in lightweight cryptographic algorithms. This analysis will be focused
on the footprint area due to the fact that area and tag cost are closely related. In
addition, taking into account the problem presented in the literature with the area
estimation (the control logic is not included, memory blocks are not contemplated,
etc.), it is planned to establish general guidelines to give an upper-bound of the
footprint area algorithm. These guidelines are intended to be very useful for making
some choices at the algorithmic level, even for designers without hardware design
skills.

Concerning the second objective, the main standard used in the industry (EPC-
C1G2) establishes the necessity of a random generator (RN16) in each RFID tag.

Specifically, for goal 2.1. regarding PRNGs, it is intended to study of the state
of the art of PRNGs for low-cost RFID tags. Afterwards, the main aim will be to
design and implement a pseudo-random number generator suitable for low-cost RFID
tags and obtain experimentally some of the main metrics related to the constrains
imposed by the technology.

With reference to the 2.2. objective, it is planned to study the state of the art
of lightweight true-random number generators. In this study the main techniques
used in TRNG design and the typically contemplated evaluation scenarios will be
evaluated. Finally, the main goal will be to propose a lightweight TRNG suitable for
low-cost RFID tags.

Introduction xxi

RFID Basics, Standards and Security
Chapter 1

PRNGs

TRNGs

Conclusions and Future work

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Original
Contributions

Area Estimator

Figure 1: Thesis organization

Document Organization

As depicted in Fig.1, this thesis consists of five chapters organized as follows:

Chapter 1 shows an overview about RFID systems. The overview includes an
explanation of the RFID basics (components of the RFID systems, main features,
applications, etc), the most used standards (especial attention is given to EPC-C1G2
standard) and finally some remarks about RFID security.

In Chapter 2 a study about the footprint area of the main lightweight crypto-
graphic primitives is presented. Taking into account this information, a method to
estimate the footprint area of a whole algorithm is proposed. Finally, our experimental
results with a battery of real-world examples are discussed.

Chapter 3 presents the design and implementation of two pseudo-random number
generators. Several architectures are proposed to improve some of the main metrics.
Finally, both PRNGs are integrated into two authentication protocols. Resource
experimental results of the complete security system are shown.

xxii Introduction

In Chapter 4 a complete study of TRNGs suitable for digital devices is reported.
After that a novel generator presented by Cherkaoui et al. is analysed, testing
its response in typical evaluation scenarios of TRNGs (including two new attacks
scenarios, clock and power glitches, not contemplated in typical evaluation scenarios).
Finally, a new lightweight TRNG design based on the coherent sampling technique
is proposed.

Chapter 5 summarizes the conclusions of this thesis and future lines are pre-
sented.

1
RFID Technology

As aforementioned, the abbreviation RFID stands for radio frequency identification.
When the price of tags becomes economical enough, it is expected that RFID
technology will increase efficiency in the field of real-time identification.

According to [40], the origins of this technology go back to the early 20’s, when
MIT developed the first prototype of RFID system. Afterwards, it was massively
used with military purposes in the World War II. A plane identification system called
IFF (Identification Friend or Foe) was the first time that RFID was used in the field.

In spite of the fact that RFID is an old technology, it is in recent time that
companies have begun to understand its many benefits both for production and
distribution. For example, the US Department of Defense and Wal-Mart require all
their major suppliers to use RFID technology in their supply chains [67].

Nowadays, the Auto-ID labs are responsible of the development and deployment
of this technology. The Auto-ID Labs are the leading global research network of
academic laboratories in the field of Internet of Things (IoT). IoT is a hybrid network
of the Internet and resource-constrained networks, including RFID. Auto-ID Labs
and GS1 are the responsible of develop the Electronic Product Code Standard (EPC).
This standard is the most widely used in the industry.

In this chapter, an overview about RFID technology is presented. It is structured
as follows: In section 1.1 the basics of RFID systems are presented. First of all, the
RFID operation and components are presented. After that, the main features of
RFID systems are depicted. Finally, advantages, disadvantages and applications are
shown. Section 1.2 introduces the RFID standardization focusing on EPC standard.
Finally, Section 1.3 summarizes the security requirements of RFID technology.

2 1. RFID Technology

1.1 RFID basics

1.1.1 RFID operation

A RFID communication system is based on a bidirectional communication between a
reader (interrogator) and a tag (transponder) using radio-frequency waves. Typically,
a reader sends a query to a tag population, obtaining a response with the unique
identification number of each tag. This identification number is transmitted to the
database, where it is associated to the corresponding information.

1.1.2 RFID components

RFID systems consist of three main elements: the RFID tag, the reader and the
back-end database.

• RFID tag
The RFID tags or transponders are attached to items to be identified. The
information that will be transmitted in the communication process is stored in
the tags. These days, common tags consist of a integrated circuit (generally a
micro-processor) and a memory (see Figure 1.1). Other kind of tags known
as chipless do not include an IC. These kind of tags are more effective in
applications that implement simple functions. In addition, these tags are
cheaper than the tags that contain an IC [89].

Antenna

Capacitor

Contact

Integrated Circuit

Figure 1.1: RFID tag [99]

1.1. RFID basics 3

It is possible to classify RFID tags attending to several features like cost, shape,
material composition, etc [63]. But the two most extended classifications take
into account the type of memory and the power supply source.

– Type of memory:

∗ Read-only: This kind of tag has an ID that is usually established
during the fabrication process and cannot be changed.

∗ Write-once read-many: These tags do not have an ID after the
manufacture process. The user establishes the ID but it can not be
modified.

∗ Fully rewritable: It is possible to change the ID of these tags multiple
times.

– Power supply source:

∗ Passive RFID tags: this kind of tag does not have embedded a power
supply source. They rely on RF energy transferred from the reader to
the tag. RF energy is used to power the tag and with communication
purposes. This kind of powering has some drawbacks, for example
the quality of the power signal or the range. On the other hand, this
kind of tag uses a reduced area, that generally means a reduced cost.
Typically, passive tags have a cost between 0.05 and 0.1 e.
Other important feature of these tags is the frequency. Generally,
the operation frequency is between 125-134 KHz or in the band of
13.56 MHz, although some tags reach up to 2.45 GHz [52]. The tag
construction format is also an important feature and is usually selected
taking into account the application and the work environment.

∗ Semi-passive RFID tags: contrary to passive tags, semi-passive tags
include a little battery. The IC of these tags is always powered. For
that reason, the antenna is not optimized to collect energy from the
reader. They are often oriented to the data transmission process.

∗ Active RFID tags: this type of tag has an embedded power supply.
Therefore, they offer a wide range of frequencies (55 MHz, 2.45 or 5.8
GHz) or distances (up to 100 meters). Their size is bigger than the
previous ones. Typically they include an extra-memory. In addition,

4 1. RFID Technology

this sort of tag, on the contrary than the previous one, can take the
initiative in the communication process.

• RFID Reader

The reader, also known as interrogator, is a device that collects and processes the
data transmitted from tags. Depending on the application, some readers have
the capabilities of writing in tags. When RFID systems involve the use of passive
or semi-passive tags, readers play a key-role because they are responsible of
powering the tags. In addition, readers usually carry out complex cryptographic
operations. Moreover, they are the responsible of the communication with the
back-end database.

• Back-end database

The information stored in the tags is very limited. Usually, tags only store
an index or an identification number (ID). In the back-end database this
ID is related to the item information. Depending on the complexity of the
RFID system, the back-end database can be omitted. A secure communication
between the reader and the database is often assumed. As the resources are
not constrained, they usually implement solutions like SSL/TLS [103].

1.1.3 RFID features

In this section some important RFID system features are presented :

• Anti-collision: It is possible to define two kind of collisions: multiple tags
answering one reader or two readers interrogating the same tag. The first colli-
sion can be solved using probabilistic or deterministic anti-collision approaches.
These anti-collision methods have been widely used in networks and have been
redefined to be used in RFID systems. The second kind of collision, readers
collision, can occur when the signal from one reader interferes with the signal
from another reader where coverage overlaps. These collisions can be avoided
using a Time Division Multiple Access (TDMA) protocol. TDMA establishes
that readers must read at different times and do not interfere each other. The

1.1. RFID basics 5

problem is that a tag contained in the overlapping zone will be read twice. It
is possible to solve this problem if the back-end database allows the tags to be
read only once.

• Coding: Data coding is necessary to transmit digital signal through different
channels. The secret of the air interface is that a reader has a very specific way
in which it encodes data by modulation. The tag can not communicate with
the reader without knowing how the information from the reader is encoded.
The main coding procedures are: NRZ, Manchester, UnipolarRZ, DBP, Miller
and differential coding on PP coding.

• Modulation: Generally, modulation is the process of varying one or more
properties of the carrier signal, with a modulating signal that typically contains
information to be transmitted. In this case, different modulating techniques are
in some cases used in reader-tags communication and vice versa. The digital
modulations typically used in RFID systems are: Amplitude Shift Keying
(ASK), Frequency Shift Keying (FSK) and Phase Shift Keying (PSK). They
will be selected by taking into account power consumption, reliability and
bandwidth requirements.

• Energy transmission: When the RFID systems consist of passive tags, it is
necessary to establish a power transfer method between reader and tags. The
most well-known techniques are:

– Inductive Coupling: This technique is based on the magnetic coupling
between the reader and tags. It works similarly to an electrical transformer.
The reader’s antenna generates a magnetic field which induces current in
the tag’s antenna. Tag’s antenna consists of a coil and a capacitor. The
induced current will charge the capacitor that provides the power to carry
out the transmission.
Systems using this technique must work in a near field (around the
antenna’s diameter) because the generated field strength will decrease
quickly with the distance. In addition, the tag orientation will have an
important effect in the transmission.
Inductive coupling is generally used for Low Frequencies (LF and HF) due
to the small coverage area. It is noteworthy the sensitivity of this technique

6 1. RFID Technology

to electro-magnetic interferences. Moreover, energy can penetrate through
non-conductive materials easily.
Typical applications include 1-bit inductive electronic article surveillance
(EAS), anti-robbery systems, animal identification and access control.

– Backscatter: This technique is based on the propagation of electromagnetic
waves. The reader transmits the energy using electromagnetic waves. The
tags in the coverage zone receive part of this energy. The energy available
is related to the distance to the reader’s antenna. More precisely, it is
proportional to the inverse of the squared distance (1/d2).
This kind of propagation is commonly used in high frequencies (UHF and
microwaves). Finally, backscatter offers a wide coverage range, between 2
and 15 meters, but an embedded battery in the tag (active tags) is usually
required. Due to the wide range, it is necessary a standard to define the
spectrum range in this zone.

– Close coupling: This transmission technique is used in systems with a
range between 0.1 to 1 cm. The tag is located in the middle of the reader’s
coil. It is the same operation way as the inductive coupling. This method
is characterised by its high transmission efficiency. It is often used with
tags that embed a powerful IC that consumes a lot of energy.

• Frequency range: Defining the operation frequency is one of the important
aspects in the connection between readers and tags. The operation frequencies
are selected depending on the application and the current standard.

– Low Frequency (LF): This band includes frequencies from 0 to 135 KHz.
One of the biggest advantages with LF is that it is not affected as much
by surrounding metal. And the main drawbacks are the antenna cost and
a slow data transfer.

– High Frequency (HF):13,56 MHz is the frequency used for High Frequency
RFID systems. This frequency is a global standard accepted and can
be used world-wide. The advantages of this frequency are the tag cost
and the transmission rate. On the other hand, surrounding metals may
interfere with the RFID system.

– Ultra High Frequency (UHF) and microwaves: The band corresponding to

1.1. RFID basics 7

868 MHz up to 2.45 GHz is used in UHF RFID systems. This frequency
is the most common in the industries because it offers a wide read range.
Moreover, it is standardized by the EPC Global. On the contrary, UHF
RFID systems are affected by liquids and surrounding metals.

Table 1.1 summarizes the frequencies used in RFID systems, their main features
and applications.

Frequency Main Characteristics Typical applications
Low Frequency (LF) - Widely used since 1980 - Animal identification
Less than 135 KHz - Tolerance to surrounding metals and liquids - Industrial automation

- Slow data transfer - Access control
- little read range

High Frequency (HF) - Extensively used since 1995 - pay cards
13,56 MHz - Global standards - Access control

- Bigger read range - Anti-Counterfeiting
- Lower cost than LF tags. - People monitoring

- Poor behaviour around metals
Ultra High Frequency (UHF) - Used since late 90’s - Inventory control

860 up to - Longer read range than HF systems - Supply chain market
930 MHz - Low-cost Tags - Active tracking

- Different standards depending on the region
- Do not work in presence of liquids and metals

Microwave (SHF) - Used for several decades - Access control
2,45 GHz and 5,8GHz - - Highest transfer rate - Electronic tolling

- Commonly used with active and semi-passive tag - Industrial automation.
- Read range similar to UHF systems

- Affected by liquids and surrounding metals

Table 1.1: RFID frequency range [52]

1.1.4 Advantages, disadvantages and applications

RFID technology offers numerous advantages against other identification systems.
However, there are some drawbacks that have to be taken into account.

• Advantages: RFID systems are generally compared with bar-code systems.
The main advantage of RFID tags is that they do not require a line of sight to
be read. That feature makes possible to read concurrently several tags at the
same time. The information about the item that provides the RFID system is
superior to the information offered by the bar-code systems. In addition, RFID
systems can distinguish unambiguously each item while bar-codes distinguish
a family product. Since each tag can be unique, they can act as a security
feature if lost or stolen. Other important benefit of some RFID tags is that
they can be written several times.

8 1. RFID Technology

• Disadvantages: In comparison with bar-codes, RFID tags are very expensive.
Not only tag costs are important but also all the infrastructure necessary for
integrating RFID technology into existing inventory control systems. Moreover,
there are not internationally agreed frequencies for RFID operation, which
implies that companies operating around the world have to take into account
the regularization of different countries. Other important drawback is that it
is difficult for an RFID reader to read the information in case of RFID tags
installed in liquids and metal products. Finally, privacy concerns related to
the lack of security have been present since the beginning.

Taking into consideration the different advantages and disadvantages presented
above, RFID systems have been widely implemented for different applications. Among
the multiple applications stand out the following cases:

• Inventory: It is probably the most important and promising RFID application.
A special case of study is the Wal-Marts Race for RFID. Over the last decade,
Wal-Mart has required its top 100 suppliers to use RFID tags on cases and
pallettes of consumer goods. Wal-mart adopted the EPC standard, and in
collaboration with the ID-center was one of the main promoters of the standard.
At the beginning of the implantation, Wal-mart had to face some privacy issues
related with RFID. More recently, NASA has deployed its Project RFID for
use on the International Space Station (ISS), which includes using an RFID
reader with both barcoding and RFID capabilities [145].

• Tracking: The International Air Transport Association (IATA) analysed in
2005 the adoption of the RFID technology for the sorting and handling of
baggage. The conclusions were a Win-Win-Win situation for the three main
stakeholders, the airlines, the airports and the passengers. Nowadays RFID
systems in airports are fundamental, not only for the sorting of baggage but
also for other applications like e-tickets.[72]

• Payments: Since late 1980s, automated toll collection has been widely imple-
mented in the highways around the world. Electronic toll systems use active
RFID devices because their read range. These automated systems allow the
users to pay without stopping the car. The system helps to reduce traffic jams
caused by tolls.

1.2. RFID standards 9

• Security: RFID door locking systems have been deployed in hotels and resorts
which not only serve to grant secured access to a room but also to gain entrance
to theme parks and other restricted areas of the resort. Nonetheless, new hotels
are looking for innovative ways to differentiate themselves. Other new trending,
where RFID is used, is to unlock a car door or start the car engine with a
RFID card.

1.2 RFID standards

One of the key factors to deploy a new technology is standardization. RFID standards
are guidelines or specifications for all RFID products. Standards provide guidelines
about how RFID systems work, what frequencies they operate at, how data is
transferred, and how communication works between the reader and the tag. Multiple
standards for RFID technology have been developed during the years. This diversity
complicates the expansion of the technology.

There are two main actors around RFID technology standardization, ISO and EPC
Global. Many organizations making standards around RFID base their standards
on existing ones developed by the ISO or EPC, and then they present a tailored
solution for their application needs.

1.2.1 ISO standards

Internacional Organization for Standardization (ISO) is the largest developer of
technical standards in the world. In 1996 it set up a joint committee with Internacional
Electrotechnical Commission (IEC) to look at standardisation for RFID technology.
ISO has developed a variety of standards related to RFID technology covering aspects
such as the air interface, communication protocols, data control and formatting,
applications and other smallest areas. Some standards related to RFID technology
developed by ISO [56] are following presented:

• ISO standards developed for identification cards:

– ISO 10536 Identification cards ; Contactless integrated circuit cards ;
Close-coupled cards.

10 1. RFID Technology

– ISO 14443 Identification cards ; Contactless integrated circuit cards ;
Proximity cards.

– ISO 15693 Identification cards ; Contactless integrated circuit cards ;
Vicinity cards

• ISO standards developed for unit management level:

– ISO 15962 Radio frequency identification (RFID) for item management.

– ISO 15963 Information technology ; Radio frequency identification for
item management ; Unique identification for RF tags.

– ISO 19762 Information technology ; Automatic identification and data
capture (AIDC) techniques.

RFID standards have been developed by the following committees: ISO JTC1
SC31, ISO JTC1 SC17, ISO TC 104 / SC 4, ISO TC 23 / SC 19, ISO TC 204 and
ISO TC 122. These committees developed the following standards widely used in
dayly RFID systems:

• ISO 6346/9897/10374/18185/23389 Freight containers.

• ISO 9798/15434/15961/15962/15963 Information technology.

• ISO 11784/11785/14223 Radio frequency identification of animals.

• ISO 14816 Road transport and traffic telematics ; Automatic vehicle and
equipment identification ; Numbering and data structure.

• ISO 17358/17363/17364/17365/17366/17367 Supply Chain RFID Standards.

• ISO 18000 Information technology ; Radio frequency identification for item
management-

– ISO 18000-1 Reference architecture and definition of parameters to be
standardized

– ISO 18000-2 Parameters for air interface communications at 135 KHz

– ISO 18000-3 Parameters for air interface communications at 13,56 MHz

– ISO 18000-4 Parameters for air interface communications at 2,45 GHz

1.2. RFID standards 11

– ISO 18000-5 Parameters for air interface communications at 5,8 GHz

– ISO 18000-6 Parameters for air interface communications at 860-930 MHz

– ISO 18000-7 Parameters for air interface communications at 433.92 MHz

1.2.2 EPC standard

EPCglobal is leading the development of industry-driven standards for the Electronic
Product Code (EPC) to support the use of Radio Frequency Identification in today’s
fast-moving, information rich, trading networks.

Auto-ID Center was the responsible of EPC creation and development. Auto-ID
Center developed an UHF protocol. Originally, this protocol was intended to be used
with all kind of tags. The tags contemplated by the Auto-ID center were classified
by their complexity:

• Class 0: UHFl read-only, preprogrammed passive tag.

• Class 1: UHF or HF; write once, read many.

• Class 2: Passive read-write tags that can be written to at any point in the
supply chain.

• Class 3: Read-write with on-board sensors capable of recording parameters
like temperature, pressure, and motion; can be semi-passive or active.

• Class 4: Read-write active tags with integrated transmitters; can communicate
with other tags and readers.

• Class 5: Similar to Class 4 tags but with additional functionality; can provide
power to other tags and communicate with devices other than readers.

RFID Class-1 Generation-2 systems are the most used. Class-1, as aforesaid,
refers to the functionality of the tag while Gen-2 refers to the physical and logical
standards of tag and the encompassing system. Gen-2 tags are used for item level
identification in retail environments.

GS1’s EPC Gen2 air interface protocol, first published by EPCglobal in 2004,
defines the physical and logical requirements for an RFID system of interrogators and

12 1. RFID Technology

passive tags, operating in the 860 MHz - 960 MHz UHF range. Over the past decade,
EPC Gen2 has established itself as the standard for UHF implementations across
multiple sectors, and is at the heart of more and more RFID implementations [47].
Following the most relevant characteristics establish in EPC-C1G2 are presented:

1.2.2.1 Layers

EPC C1G2 establishes two layers:

• Physical layer: In this layer, the supported modulation techniques are speci-
fied: Double-sideband amplitude shift keying (DSB-ASK), single - sideband
amplitude shift keying (SSB-ASK) , or phase-reversal amplitude shift keying
(PR-ASK). Moreover it is included the coding allowed the encoding format,
selected in response to Interrogator commands (FM0 or Miller - modulated
subcarrier). Finally, it establishes that the communication link between reader
an tag is half-duplex.

• Tag-identification layer: An Interrogator manages Tag populations using
three basic operations [47]:

a) Select. Choosing a Tag population. An Interrogator may use a Select
command to select one or more Tags based on a value or values in
Tag memory, and may use a Challenge command to challenge one or
more Tags based on Tag support for the desired cryptographic suite and
authentication type. An Interrogator may subsequently inventory and
access the chosen Tag(s).

b) Inventory. Identifying individual Tags. An Interrogator begins an inven-
tory round by transmitting a Query command in one of four sessions. One
or more Tags may reply. The Interrogator detects a single tag reply and
requests the Tag’s EPC. Inventory comprises multiple commands. An
inventory round operates in one and only one session at a time.

c) Access. Communicating with an identified Tag. The Interrogator may
perform a core operation such as reading, writing, locking, or killing the
Tag; a security related operation such as authenticating the Tag; or a
file related operation such as opening a particular file in the Tag’s User

1.2. RFID standards 13

memory. Access comprises multiple commands. An Interrogator may only
access a uniquely identified Tag.

1.2.2.2 Memory Distribution

Tag memory shall be logically separated into the four distinct memory banks, each
of which may comprise zero or more memory words. The memory banks are [47]:

• Reserved memory shall contain the kill and/or access passwords, if passwords
are implemented on the Tag. The kill password shall be stored at memory
addresses 00h to 1Fh; the access password shall be stored at memory a d dresses
20h to 3Fh.

• EPC memory shall contain a Stored-CRC at memory addresses 00h to 0Fh,
a Stored-PC at addresses 10h to 1Fh, a code (such as an EPC, and hereafter
referred to as an EPC) that identifies the object to which the Tag is or will
be attached beginning at address 20h, and if the Tag implements Extended
Protocol Control (XPC) then either one or two XPC word(s) beginning at
address 210h.

• TID memory shall contain an 8-bit ISO/IEC 15963 allocation class identifier
at memory locations 00h to 07h. TID memory shall contain sufficient identifying
information above 07h for an Interrogator to uniquely identify the custom
commands and/or optional features that a Tag supports.

• User memory is optional. If a Tag implements User memory then it may
partition the User memory into one or more files.

1.2.2.3 Security

As information flows between the reader and tags, EPC C1G2 standard establishes
that tags shall implement a random or pseudo-random number generator (RN16).
RN16 must meet the following requirements [47]:

• The probability that any RN16 drawn from the PRNG has value RN16 = j

for any j, shall be bounded by 0.8/216 < P (RN16 = j) < 1.25/216.

14 1. RFID Technology

Table 1.2: EPC C1G2 tags main properties [121]

Identification 96 bit
Communication range ∼ 5 m
Tag power consumption ∼ 10 µ W [20]
Frequency (Europe) 865-868 MHz(UHF)
Operation frequency 100 KHz [21]

Tags Tx ratio 40-640 kbps
Tags Rx ratio 26.7-128 kbps

Identification per second 200
Area devoted to security 4000 Gates Equivalents [111]

• For a tag population of up to 10,000 tags, the probability that any two or more
tags simultaneously generate the same sequence of RN16 shall be less than
0.1%, regardless of when the tags are energized.

• An RN16 drawn from a tag’s PRNG 10ms after the end of Tr (RF signal
envelope rise time) shall not be predictable with a probability greater than
0.025% if the outcomes of prior draws from PRNG, performed under identical
conditions, are known.

In addition, a tag may implement a security timeout after a failed command.
Although this protocol gives Tag manufacturers the option of choosing which com-
mands are subject to a security timeout, it recommends that Tags implement a
security timeout at least for the Access-command sequence.

EPC Gen2 tags are passive and power dependent from the reader to respond the
queries. Table 1.2 summarizes the main characteristics of these tags.

1.3 RFID Security

RFID problems related to security are similar to those present in computers and
networks. However, RFID technology has two important handicaps. The first
handicap is related to the resources devoted to security in the tag. These resources,
mainly area, are directly connected to the tag cost. The second handicap in order
to provide security to RFID systems is the wireless nature of the technology. It is
easier for an attacker to eavesdrop information in a wireless system without being
detected [7].

1.3. RFID Security 15

1.3.1 RFID security properties

Basic security requirements in RFID technology can be listed as follows:

• Confidentiality: Is the feature that guarantees that only accredited users
can access the information. Confidentiality can be provided using physical
protection or at algorithm level. Confidentiality is a key feature because RFID
allows the tracking of items that suppose a threat to the users.

• Integrity: guarantees that the messages transmitted between two parties
are not modified in the communication process. Integrity includes insertion,
deletion, and substitution. This feature is specially important in re-writeable
tags. Typically, CRCs that only protect against random changes are used.

• Availability:It is the capacity of being available for accredited users. Some
RFID systems are easily disturbed using frequency interferences. Denial of
Service (DOS) attacks are the biggest threat against availability.

• Authenticity: It is important to guarantee that the tag can not be cloned or
falsified.

• Privacy: As RFID can be tracked, it is important to assure that the tag owner
can not be tracked in time or space.

1.3.2 Attacking RFID systems

One of the main concerns about RFID technology is security, due to the fact that with
a simple reader tuned to the appropriate frequency, information can be eavesdropped.
It is important to know the different threats against these devices in order to prevent
the attacks. Some of the usual attacks are the following [48]:

• Spoofing: Spoofing attacks supply false information that looks valid and the
system accepts. In RFID systems, typically broadcasts an incorrect EPC ID
when a valid ID is expected.

• Insert attacks: Insert attacks consist in the insertion of system commands
where data are generally expected.

16 1. RFID Technology

• DOS attacks: Denied of Service (DOS) attacks are carried out when a signal
transmits more information than it can be handled.

• Deactivation: Deactivation is an attack to the availability of the tag. It can
be performed if the deactivation code is known.

• Cloning: This kind of attack is classified as an integrity attack. The attacker
eavesdrops the tag identification and replicates this data in a fake tag.

• Tracking attacks: This attack affects the privacy of the user tag. The
tracking can be in time or in space.

• Replay attacks: It is an integrity attack where some traces that had been
observed in previous communications are sent.

• Man in the Middle (MitM): MitM is an integrity attack where an attacker
tries to impersonate a legitimate reader, adding, modifying or deleting original
traces of the communication.

1.3.3 RFID algorithms

In previous sections, the importance of authentication in RFID systems has been
depicted. Authentication protocols can be classified according to the complexity of
the operations involved in the computation [79][34]. Four groups can be listed:

• Full-fledged: These kind of protocols allow the implementation of classic
cryptography as public key or symmetric encryption. These protocols are used
in secure demanding applications like E-passports. Some full-fledged protocols
are presented in [5, 115, 126].

• Simple: These protocols accept random number generation and hash function
but public key encryption is not allowed. Two RFID protocols classified in this
group are [4, 104]

• Lightweight: These protocols support the generation of random number,
simple functions as Cyclic Redundancy Check (CRC) or bitwise operations.

• Ultra-lightweight: Only bitwise operations are allowed (XOR,AND,OR).

1.3. RFID Security 17

1.3.4 Low-cost RFID security

Typical cryptographic blocks developed for modern cryptography are not suitable
for low-cost tags. These blocks are based on difficult mathematical challenges that
involve intensive computational operations. In the last decade, an emerging field
known as Lightweight cryptography has been developed. Lightweight cryptography
involves several disciplines like cryptography, information technology, RF engineering
and microelectronics.

Lightweight cryptography comprehends the algorithms designed to be suitable for
RFID low-cost tags. As aforementioned, these kind of tags have very limited resources
(storage,area,power consumption,etc). These resource-constrained environments make
providing security in RFID a challenging task.

It is necessary to reduce the tags cost in order to deploy them massively. Used
silicon area is usually directly related to the costs. In RFID systems, the area devoted
to security in tags is up to 4000 GE. When this constraint is compared with the
approximate 8120 GE [51, 102] required by a standard hash function like SHA-1
(which is an essential building block for most security protocols), it becomes clear the
need for schemes that can provide some minimum security services while requiring
as few resources as possible.

Power consumption is also a constraint imposed by the system. As RFID tags
are passive, it is commonly accepted that only 10 µW can be consumed [20]. This
limit conditions the number of operations that can be carried out in parallel and also
the complexity of these operations (number of blocks involved in the computation).

Tags per second rate is also a constraint to handle in protocols design. Typical
applications demand up to 200 Tag/sec, that supposes between 500-600 clock cycles
(at 100 KHz) to compute the entire protocol [87, 94].

Finally, before designing a new protocol it is important to take into consideration
the final application. For example, an RFID E-passport does not require the same
security level as a low-cost tag employed in the supply chain (i.e. tags conforming
to the EPC-C1G2 specification). In the specific case of this thesis, focused on
EPC-C1G2 tags, the standard establishes its own security requirements like the
integration of an RN16 or the Tag-identification layer.

Since in 2003, Vajda and Buttyan introduced a set of challenge and response

18 1. RFID Technology

lightweight authentication protocols ([136]), several proposals have been presented in
the literature. Among these proposals, algorithms specifically oriented to EPC-C1G2
tags ([105][94],etc) are included. The main weakness of these proposals is the lack
of a realistic implementation and hardware results. In this thesis, the design and
implementation of lightweight cryptographic algorithms suitable for EPC-C1G2 tags
has been addressed from a realistic point of view.

2
Hardware Footprint Estimation of

Lightweight Cryptographic Primitives

A major difficulty in providing RFID tags with security functions comes from the
scarcity of computational resources available in such platforms (see, e.g. [140, 125, 13]
for recent developments in the design of tiny tags). For example, it is commonly
assumed that only between 250 and 4K Gate Equivalents (GE) can be devoted to
security functions in a low-cost RFID tag [70], which restricts affordable solutions to
lightweight algorithms only.

Typically, cryptographic algorithms have been designed to be efficient in software.
This is due to the fact that they were intended to be used in commercial applications
like PCs.

Nowadays, cryptographic modules can be implemented efficiently either by hard-
ware or by software. On the one hand, software implementations are known for being
easier to be developed and maintained. In addition, with the development of cus-
tom microprocessor instructions, these software implementations use microprocessor
resources efficiently.

On the other hand, for cryptographic modules or security-related applications in
general, software implementations are significantly less secure than their hardware
equivalents. The reason for this is mostly the fact that software solutions make use of
shared memory space and are running on operating systems. Moreover there are some
resource-constrained applications, like low-cost RFID tags, that can not use software
cryptographic modules because it is not possible to integrate a microprocessor.

20 2. Hardware Footprint Estimation of Lightweight Cryptographic Primitives

Hardware proposals in the area of lightweight cryptography have proliferated
over the last years, but most of them do not provide information about their
implementation:

• Very theoretical contributions that do not provide any proof of their lightweight-
ness are reported in the literature [122] [110].

• In many cases, arguments in favor of their lightweightness are based on the use
of some operations that are generally considered inexpensive by the authors.
However, these estimations are not always correct, and the implementation of
some proposals greatly exceeds the area limit of 4K GE [73][97][34].

• In other cases, the design turns out to be not so lightweight because of factors
such as the bit length of the variables, the need for additional memory blocks
–which is usually missed in the analysis of resources–, and the overhead impossed
by selection and control logic. These and other aspects often make the final
gate count much higher than expected [34][110].

All in all, providing accurate estimations of the footprint area of an ASIC
implementation is a hard task for algorithm designers [66, 59]. More often than not,
designers do not have the hardware design skills nor the tools required to implement
and analyze their proposals. Furthermore, there is a lack of a standard methodology
to provide such an estimation, as the result will vary depending on factors such as
the chosen architecture, the manufacturing technology, the possibility of introducing
optimizations at various levels, etc. Problems such as these are common in other
related areas. For example, designing low-power embedded systems [81, 152] is
also a major problem nowadays, and system designers face a situation similar to
that described above. Very recently, Ben Atitallah et al. [15] have presented a
methodology to provide designers with an estimation of the power consumption of a
complete system. Similarly, in this chapter we propose a relatively simple estimator
for the footprint area occupied by the ASIC implementation of an algorithm. The
suggested formula requires the designer to know only a few high-level details about
the target implementation, such as the number of registers used to store inputs,
outputs and intermediate variables, and some parameters related to the control
structures. Our work is motivated by and focussed on lightweight cryptographic
algorithms for constrained platforms such as RFID tags or sensor nodes.

2.1. Study of Lightweight Cryptographic primitives 21

The rest of this chapter is organized as follows. In Section 2.1 we provide an
overview of the main basic elements that are used in lightweight algorithms. In
Section 2.1.2 we show hardware architectures usually employed to implement these
elements. In Section 2.2, the Area estimator is introduced. First of all, the area
results of basic operation blocks using two real manufacturing libraries are depicted in
subsection 2.2.1. Subsequently, in Section 2.2.2, we present a method to estimate the
footprint area of a whole algorithm and in section 2.2.3 we discuss our experimental
results with a battery of real-world examples. Finally, Section 2.3 concludes the
chapter and summarizes our main contributions.

2.1 Study of Lightweight Cryptographic primitives

2.1.1 Elements in Lightweight Cryptography

In this section, we provide a brief description of the usual operations found in
lightweight cryptographic primitives and protocols. This will serve to motivate our
subsequent footprint analysis for individual building blocks.

2.1.1.1 Cryptographic Operations

As in the case of regular security functions, lightweight cryptographic primitives
and protocols aim at providing basic constructions to guarantee properties such as
the confidentiality, integrity and authenticity of data exchanged in communications.
In this case, however, the shortage of resources in the platforms severely limits the
sort of processing that can be done. Thus, most proposals attempt to rely only on
a few simple bitwise operations (such as, for example, XOR, OR, AND, shifts and
rotations) and inexpensive arithmetics such as addition modulo 2m.

• Triangular functions: XOR, AND, OR, Addition and Multiplication
In 2004, Klimov and Shamir introduced the concept of triangular functions
(T-functions) [76], which encompass most of such operations. A T-function is
a mapping from m-bit words to m-bit words where for each 0 ≤ i < m, the

22 2. Hardware Footprint Estimation of Lightweight Cryptographic Primitives

i-th bit of the output only depends on input bits 0, 1, . . . , i. Bitwise operations,
such as for example XOR (a⊕ b), OR (a ∨ b), AND (a ∧ b) and many others
found in modern processors (e.g., addition a + b mod 2m and multiplication
a · b mod 2m) are T-functions, and their compositions are T-functions too [76].

Secure cryptographic primitives and protocols cannot be designed by exclusively
using T-functions. A T-function has poor diffusion as it does not propagate
information from right to left, and its period is predictable [10]. As a con-
sequence, T-functions are not the only operations that are usually found on
lightweight cryptographic algorithms. For instance, in [34, 39] some arguments
are given for mixing triangular and non-triangular functions in order to design
more secure ultra-lightweight protocols.

• Rotation

One of the most common non-triangular function used in cryptography is the
rotation operation. Rotation can be performed in several ways. For instance,
rot∗(x, y) represents a circular shift of x by wht(y) positions to the left, where
wht(y) is the Hamming weight of y. In the classical definition, rot(x, y) is a
circular shift of x by y mod N positions to the left, where N represents the bit
length of variables x and y. Choosing a particular N determines the lightweight
nature of this operation. For example, if N is a multiple of 2n, then rot() can
be implemented very efficiently since it reduces to shifting the first argument
n positions to the right; otherwise, it becomes more complex and requires a
larger footprint area.

2.1.1.2 Storage and Control: Registers and multiplexers

Apart from arithmetic and logical operations, algorithms also require additional
hardware resources to store results and to control the execution flow. Such elements
are nearly always registers and multiplexers. Registers help to maintain the “state”
of the algorithm by storing intermediate and final results, and also by supporting the
control functions. Multiplexers are used to select among different inputs according to
some conditions, and are instrumental in any algorithm that incorporates a minimum
flow complexity (i.e., loops, ifs, etc.).

In general, the area occupied by registers and multiplexers is critical, and any

2.1. Study of Lightweight Cryptographic primitives 23

good design should find a balance between the amount of basic operations and
memory/control logic. It is quite common to find proposals where authors only
analyze the complexity of their designs by counting the amount of operations. While
this might be useful to determine the computational complexity of the algorithm,
ignoring memory and control requirements could be very misleading in terms of the
footprint area of the circuit. In fact, in many cases the area required by these elements
is much larger than that demanded by the arithmetic and logical components.

2.1.2 Hardware Implementation of Basic Operations

It is well-known that there are several ways of implementing a circuit. Serial, parallel
and Pipeline approximations are the most recognized.

Serial implementations use one common operation block sharing it to carry out
each operation. Serial implementations are generally the most efficient in area and
have a big penalty in throughput.

In parallel implementations, several operations are carried out simultaneously.
These kind of implementations often use less clock cycles but have a penalty in area
due to the necessity of replicating blocks.

Finally, the increasing demand for high speed ASICs is driving the requirement to
increase circuit throughput in terms of calculations per clock cycle. The performance
of an ASIC can be increased by pipelining but at an expense of increase in system
latency and area.

We next analyze various design elements and their area estimation depending on
the complexity of their implementation. For low-complexity blocks, we propose a
simple architecture, while for those with higher complexity we study and propose
several possible architectures.

2.1.2.1 Elements with Low Complexity Implementation

In this group we include some T-functions such as simple bitwise operations and
addition mod 2m. Registers and multiplexers are also in this category. Each of these
elements has a straightforward implementation with very low complexity.

24 2. Hardware Footprint Estimation of Lightweight Cryptographic Primitives

XORN

N

N

XORN/2

N/2

N/2

MUX

.

.

.

MUX.
.

.

DEMUX

..

.
.

N/2

N/2

N/2

N/2

N/2

N/2

A) B)

Figure 2.1: Architectures for an XOR block.

It is common to find implementations for 96 bits, as it is a common bit length
widely used in low-cost RFID tags such as those conforming to EPC Class-1 Gen-2
standard (ratified as ISO/IEC 18000-6C). We study the low complexity elements
for different number of bits, including among them 96-bits, obtaining a constant K
for each basic element. These constants will be subsequently used to obtain area
estimations for more complex constructions.

For the above mentioned bitwise operations, we can use a strategy to reduce
the area cost with a penalty in throughput. This strategy consists in reducing the
bit length of the block and using several clock cycles to obtain the final result. For
example, in an algorithm that uses an N -bit XOR block, it can be reduced to a
block of N/2 bits but needing two clock cycles to obtain the result. We note that
the reduction of a block involves the use of additional multiplexers for the control
logic. Thus, we need to find a trade-off between the reduction and the necessary
extra logic. Moreover, the drop in throughput has to be taken into consideration,
as it should always meet the restrictions imposed by the operational environment.
For instance, taking as reference the performance criteria of an RFID system that
demands a minimum reading speed of at least 150 tags per second [35, 21], we need
to carefully calculate the reduction of the block to fulfil this reading rate requirement.
Note, that this reduction strategy can be used with other operations such as adders
and the rest of bitwise operations.

For illustration purpuses, in Fig. 2.1(a) we show the scheme of an N -bit XOR
block. Fig. 2.1(b) shows the result after halving the XOR block (N/2 bits) and
introducing additional multiplexers to select inputs and outputs.

2.1. Study of Lightweight Cryptographic primitives 25

Figure 2.2: Combinational Multiplier Architecture

2.1.2.2 Multiplication Operation

In this section we study the multiplication operation. There are several possible
hardware architectures for its implementation, including: 1) a combinational archi-
tecture; 2) a shift-and-add architecture; and 3) the Karatsuba-Ofman architecture
[98, 123].

1) Classical Combinational Multiplication

The best implementation, in term of clock cycles, of a multiplier is achieved by
exclusively using combinational logic. Considering the partial multiplications
that are needed, the multiplier can be implemented with appropriate logic for
each partial multiplication, and adders to perform the addition of the partial
multiplications. It should be noted that this approach has the disadvantage of
having a high cost in area. As an example, the architecture required for 4-bit
unsigned binary numbers is shown in Fig. 2.2.

In Fig. 2.3, we show the internal structure of a basic cell. This cell includes
a Full Adder (FA) and an AND gate. The AND gate computes the product
of each bit of the multiplier qj with the corresponding bit of the multiplicand
mj. The output of this product is one of the inputs to the FA. The remaining
operands are the corresponding bit from the previous partial product (Ppi)
and the carry (c) generated in the previous stage.

2) Classical Shift and Add Multiplication

Partial products can be stored in a register and multiplications can be obtained

26 2. Hardware Footprint Estimation of Lightweight Cryptographic Primitives

FA
OUT IN

c

qiqi

Ppi+1

mj

mj

c

Ppi

Figure 2.3: Basic Cell of Combinational Multiplier

in several clock cycles in order to reduce the necessary hardware. To optimize
the number of clock cycles, the considered partial multiplications are the
multiplicand times each bit of the multiplier (i.e., there are as many partial
multiplications as bits have the multiplier). As multiplication times two can
be implemented as a shift left, the partial multiplications can be implemented
with just a shifting left register. An adder is necessary for the addition of
the partial results, and some control logic completes the architecture of this
multiplier as illustrated in Fig. 2.4. This sequential multiplier uses very few
hardware resources, but it is slow because many clock cycles are required. If
we consider big operands, this architecture uses N cycles, where N is the bit
length of the operands.

3) Karatsuba-Ofman

Karatsuba Ofman [98] is a much more efficient algorithm in terms of its
area/time factor. It is based on a divide and conquer strategy. A 2n-digit
integer multiplication is reduced to two n-digits multiplications, one (n + 1)
digits multiplication, two n−digits subtractions and two 2n-digit additions.

We consider the product X × Y of 2 integers, X and Y . These integers can be
split into two halves (i.e., XH , XL, and YH , YL). Let n be the number of bits

2.1. Study of Lightweight Cryptographic primitives 27

MULTIPLICAND

SHIFT LEFT

64 bits

ALU

PRODUCT

WRITE

MULTIPLIER

SHIFT RIGHT

CONTROL

TEST

64 bits

64 bits

32 bits

Figure 2.4: Shift and Add Multiplier

of each of these halves:

X = XH · 2n +XL (2.1)

Y = YH · 2n + YL (2.2)

The product P = X × Y can be obtained by computing four n-bit multiplica-
tions:

P = X × Y = (XH · 2n +XL)(YH · 2n + YL) = (2.3)

= 22n(XHYH) + 2n(XHYL +XLYH) +XLYL

Finally, the computation of (2.3) can be improved by applying the equality:

XHYL +XLYH = (2.4)

(XH +XL)(YH + YL)−XHYH −XLYL

Summarizing, the 2n-bit multiplication (X × Y) can be thus reduced to three
n-bit multiplications: XHYH , XLYL and (XH +XL)(YH + YL) by applying the
Karatsuba-Ofman algorithm. In fact, the algorithm performs a multiplication
operation by using smaller multiplications and some adders. Different design

28 2. Hardware Footprint Estimation of Lightweight Cryptographic Primitives

architectures can be considered for the implementation, by just selecting
different implementations for these adders and multipliers, which have already
been mentioned in the previous sections.

Specifically, we study two architectures. The first one uses a combinational
multiplication of n bits. This architecture computes each multiplication in one
clock cycle. The second architecture uses a shift and add multiplication of n
bits, with the penalty of using several clock cycles in each multiplication.

2.1.2.3 Modulo Reduction

This operation is commonly used in modular multiplications or even in rotations
like rot∗(x, y). The hardware needed for its implementation depends on the value of
the modulo. Given two positive numbers P (dividend) and N (divisor), P mod N

outputs the remainder of the division of P by N . This operation is considered
lightweight when N is a multiple of 2n because the division can be executed by
shifting to the right. Nevertheless, N may not be a multiple of 2n and for this reason
we present an implementation that allows the computation of the modulo for each
value N .

The modulo operation requires the computation of a division, which is a more
complex operation than the multiplication. One straightforward algorithm is the
Naive Reduction. This algorithm shifts and subtracts the modulus until the remainder
is obtained. A subtractor, a comparator and n-bit register are the only the hardware
needed for its implementation, but it uses a large amount of clock cycles (2n).
Alternatively, if we are wealthy in resources we can use the Non Restoring Reduction
(see Fig. 2.5), which is much more efficient but uses more hardware. In this case,
the modulo is obtained in approximately n steps.

Sometimes, a combination of a multiplication and a modulo reduction can be
found in some algorithms. There are special implementations to optimize these
combinations, usually involving the Montgomery modular multiplication scheme
and different possible architectures [68]. As this kind of operations are often not
lightweight, we will not study them in detail in this chapter.

2.2. Estimating the Area of Lightweight Algorithms 29

Qß Dividend

Contß0

Aß0

DßDivisor

Shift to the left A,Q

AßA-D

A< 0

Qß1 Qß0

AßA+D

Cont=n-1 ContßCont+1

END

NO YES

NO

YES

Figure 2.5: Non Restoring Reduction Algorithm

2.2 Estimating the Area of Lightweight Algorithms

2.2.1 Previous considerations

As discussed above, one major goal of this work is to provide an estimation of
the area required by a lightweight cryptographic algorithm as a function of some
high-level parameters. In these applications, it is crucial to keep in mind that circuits
predominantly operate at low frequencies. For instance, many RFID tags function
at 100 KHz. (Note that the 100 kHz frequency refers to the clock included in the
tag circuit, not to the communication band that is generally in the 860-960 MHz
range for EPC C1-G2 tags.) As the clock frequency is fixed, most restrictions in
these designs relate to area and power consumption.

In this subsection, we report area results obtained with two specific manufacturing
libraries for the different elements presented above. With these results, it will be
possible to distinguish which elements can be regarded as a lightweight element. In
addition, the area per bit (Ki) for each element, that will be used in the estimator,

30 2. Hardware Footprint Estimation of Lightweight Cryptographic Primitives

is calculated. A priori, it is unclear to us the extent to which our conclusions
generalize to other manufacturing technologies. The results, however, are still useful
to compare different algorithms and classify them as lightweight or not. Furthermore,
the methodology is general and can be easily extended to other libraries.

2.2.1.1 Synthesizer Setup

The experimentation has been conducted with two CMOS libraries: Faraday UMC
90 nm LL, tt 1.25V [134] and AMIS UCASCB 0.35 µm, tt 1.32V [1], where “tt”
stands for typical-typical cells. One key reason behind this decision is that these
libraries provide comprehensive information about the layout of basic cells. For our
purposes, this is essential to obtain a realistic estimation of the area occupied by an
algorithm. To synthesize each design we used Synopsys [2], which is one of the most
commonly used tools.

The operation frequency is set to 100 KHz. As mentioned before, this is quite
a common value for passive RFID tags. As for the synthesis with Synopsys, after
experimenting with different configurations we observed that the best results are
obtained with the medium effort option in area, delay and power consumption. These
options are set for all the experiments.

Finally, the area results are provided using Gate Equivalents (GEs), which is the
normalization commonly used for these applications. Using GEs facilitates compar-
isons among different implementations since the obtained values are independent of
the chosen technology. The GE value is obtained by dividing the whole area of the
circuit by the area of a basic NAND gate. For example, 1 GE for the UMC 90 nm
takes 3.16 µm2.

2.2.1.2 Area for Low-complexity Elements

Table 2.1 summarizes the area results (in GEs) obtained after synthesizing with
Synopsis the set of basic elements for UMC 90 nm and AMIS 0.35 µm libraries.
In this first analysis, the hardware architecture considered performs all operations
(combinational or just registers) in one clock cycle. As shown in Fig. 2.6, the area
occupied by each element increases linearly with the length (in bits) of variables.
The results obtained for the AMIS 0.35 µm library are almost equivalent and follow a

2.2. Estimating the Area of Lightweight Algorithms 31

Table 2.1: GEs for low-complexity elements

U
M

C
90

n
m

Lib. Element 32 bits 64 bits 96 bits 128 bits Ki

AND 39.70 79.39 119.08 158.78 K1=1.24
OR 39.70 79.39 119.08 158.78 K2=1.24
XOR 79.39 158.78 238.17 317.56 K3=2.48
ADD 239.66 477.84 716.01 954.19 K4=7.45
Multiplexer 71.00 143.00 214.00 285.81 Kmux=2.23
Register 147.00 287.00 441.00 588.24 Kreg=4.59

A
M

IS
0.

35
µ

m AND 42.66 85.33 127.99 170.64 K1=1.33
OR 53.33 106.65 160.03 213.22 K2=1.66
XOR 74.66 149.34 224.00 298.70 K3=2.33
ADD 203.35 406.00 608.69 811.32 K4=6.34
Multiplexer 85.33 170.66 256.00 341.55 Kmux=2.66
Register 214.33 435.66 651.66 869.00 Kreg=6.77

similar pattern. This simplifies considerably the analysis of more complex algorithms,
as it allows us to associate a constant value, named Ki for element i, giving the area
per bit for each element.

Some conclusions can be drawn from these results:

1. The adder occupies significantly more area than bitwise operations. Conse-
quently, if the area of an algorithm needs to be optimized, it is more appropriate
to focus on additions rather than concentrating on low complexity elements
such as bitwise operations. As all operations are done in one clock cycle,
one possibility to optimize the area would be to use an element with lower
bit length and carry out the operation in various clock cycles. For example,
variables can be split into two parts with half of the bits each and a half-length
adder can then be applied over each part. Note, however, that in doing this we
need to include additional elements, namely registers to store partial results,
multiplexers to choose among different signals, etc.

2. The area cost of registers is also noticeable. Taking into account that we
generally can devote just a small area to security subsystems (e.g., up to 4K
GEs in most passive RFID tags), and that roughly 50% of it is used for storage,
this means that at most five 96-bit registers could be used.

3. As for multiplexers, their cost in terms of area is small. These elements are
needed in algorithms with loops (e.g., “for” and “while” iterations) and also
when a input/output is selected among different signals.

32 2. Hardware Footprint Estimation of Lightweight Cryptographic Primitives

32 64 96 1280

100

200

300

400

500

600

700

800

900

1000

Bit length

G
E

AND/OR
XOR
ADD
Multiplexers
Registers

Figure 2.6: GE for low complexity elements as a function of the number of bits for UMC 90nm
library.

Overall, it can be concluded that designers will necessarily face some trade-offs
among operations and the amount of registers and multiplexers required. As a
general rule, bigger building blocks (i.e., using a larger bit length) will require less
extra registers/multiplexers, and vice versa.

2.2.1.3 Further Operations: Multiplication and Modulo Reduction

We next explore the area required by two operations that have been extensively used
in many cryptographic algorithms: multiplication and reduction modulo N . The
figures, both the number of GEs and the associated clock cycles required to complete
the operation, are shown in Table 2.2 for the UMC 90 nm and the AMIS 0.35 µm
libraries.

In general terms, multiplication cannot be considered as a lightweight operation
no matter what architecture is chosen, since it demands more than the 4K GEs often
required in environments such as RFID systems (96 bits). That being said, it is
worth-noting that some trade-offs also appear here. The combinational architecture
offers the best performance speed-wise, but it demands too much area. Conversely,
the Shift-and-Add option is much more efficient in terms of area, but the number of
clock cycles requires may be prohibitive for many applications. K-O architectures

2.2. Estimating the Area of Lightweight Algorithms 33

Table 2.2: GEs for different multiplication architectures and modulo reduction.

U
M

C
90

n
m

Lib. Operation 32 bits 64 bits 96 bits 128 bits Cycles

MULT (Comb.) 9345 36507 81268 144452 1
MULT (S+A∗) 2078 4113 6146 8164 N
MULT (K-O†,
Comb)

5744 16055 30853 49868 10

MULT (K-O†,
S+A∗)

4731 9367 13995 18566 N
2 + 4

Modulo reduction – – 3967 – 96

A
M

IS
0.

35
µ

m MULT (Comb.) 10223 36495 81007 143436 1
MULT (S+A∗) 2464 4840 7227 9639 N
MULT (K-O†,
Comb)

6621 17093 32123 51132 10

MULT (K-O†,
S+A∗)

5882 11610 17341 23111 N
2 + 4

Modulo reduction – – 4729 – 96

†K-O: Karatsuba-Ofman multiplier ∗S+A: Shift-Add multiplier

fall somewhere in between of these two alternatives.

Modulo reduction is a special case. As discussed before, it is very lightweight
when the bit length N is a power of two, as it can be implemented simply as various
right shifts. Otherwise, such as for example for N = 96, its area takes around 4K
GEs. Thus, our recommendation is to include it only when the resources required by
this operation can be reused in other parts of the algorithm.

2.2.2 A Linear Estimator

Estimating the area that an implementation of an algorithm can occupy is quite
challenging because it depends on many factors: the architecture(s) chosen by the
designer, the specific constraints, the manufacturing library, the basic cells used by
the synthesis tool, etc. In this section, we first propose an expression that estimates
the total area required by a hardware implementation of an algorithm. Subsequently,
we check its validity by comparing its predictions with the actual area obtained with
a battery of examples and provide a refinement of our estimator. Note that we have
discarded the use of multiplication since this operation uses resources in excess (>4K
GEs) to be categorized as a lightweight operation. Regarding modulo reduction,

34 2. Hardware Footprint Estimation of Lightweight Cryptographic Primitives

its usage in a lightweight algorithm is conditioned to be a power of two (i.e. 2n);
otherwise it demands more than 4K GEs and using it is unfeasible. In case of being a
power of two, the operation does not use any extra hardware resources, but requires
an upper bound of n clock cycles to compute it.

The total area occupied by an algorithm can be roughly divided into two main
blocks: datapath and control. The datapath contains the hardware for the different
operations required and registers to store inputs, outputs and intermediate results.
In many lightweight cryptographic algorithms, the datapath accounts for a significant
fraction of the total area, generally around 80% [105] [94].

Our estimation is based on the following rationale. As we previously pointed
out, the final footprint depends on the chosen architecture. In turn, opting for
one architecture or another depends on the goals and restrictions faced by the
designer. For example, on very constrained devices (such as RFID tags or some
sensor nodes) minimizing the area is a priority, which heavily influences the decision.
Since throughput is often a limiting factor too, one sensible choice is an architecture
that optimizes the area without penalizing throughput too much. In general, such
a design contains one single block of N bits for each basic operation needed, plus
registers to store data and multiplexers to select inputs and outputs.

Based on the previous considerations, we propose a simple linear estimation for
the area of the datapath, measured in GE, as a function of the bit length and the
number of basic operations, registers and multiplexers:

FDP = N ·
[4∑
i=1

Ai ·Ki + (B ·Kreg) +
(

(C +D) ·Kmux

)]
(2.5)

where:

• N is the bit length of the variables.

• Ai is a parameter dependent on the chosen architecture for the datapath (i = 1
for AND, i = 2 for OR, i = 3 for XOR, and i = 4 for ADD). As discussed
above, the implementation can range from a fully combinational design to one
using smaller operators but requiring more clock cycles. Thus, we measure Ai
as the number of N -bit operators.

• Ki is the area cost for the i-th operation, as shown in Table 2.1.

2.2. Estimating the Area of Lightweight Algorithms 35

• B is the number of variables that require storage.

• Kreg is the area cost for each register.

• C is the number of multiplexers necessary to select different inputs for the
operation blocks. When the block has more than two inputs, C is the number
of inputs minus one.

• D is the number of multiplexers necessary to select different inputs for each
register. If the algorithm is given in pseudocode, D can be easily estimated as
the number of assignments made for each variable.

• Kmux is the area cost for the multiplexers.

Obviously, expression (2.5) only factors in those elements studied in Section 2.2.1.
However, it can be extended without difficulty to any other blocks that conform to
the design rationale given in the paragraph above.

Finally, as the area of datapath and control are in most cases related, we express
the total area as:

F = (1 + ω) · FDP (2.6)

where ω is an overhead factor accounting for the control part (e.g., ω = 0.2 assuming
that control logic accounts for 20% of the total area).

2.2.3 Experimental results

We have tested our estimator against a library containing 120 lightweight functions.
The algorithms are named F1, F2, . . . , F30 and were synthesized for four different bit
lengths: N = 32, 64, 96, and 128 bits. Each function returns a single final output
value denoted Z and uses several input and intermediate variables, represented by
Xi and Yi, respectively. The dataset is well balanced, containing 10 functions with
2 inputs, 10 functions with 4 inputs, and another 10 functions with 6 inputs. The
data set of functions is depicted in A.

In Fig. 2.7 we compare the estimated area for all the datasets functions using
(2.6), assuming a control overhead ω = 0.2, versus the actual area given by Synopsys
after synthesizing each function. For simplicity, we only show the results obtained

36 2. Hardware Footprint Estimation of Lightweight Cryptographic Primitives

0 5 10 15 20 25 30
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Function index

G
at

e
E

qu
iv

al
en

ts
 (G

E
)

Estimated
Real

128 bits

96 bits

32 bits

64 bits

Figure 2.7: Real and estimated footprint area (ω = 0.2).

for the UMC 90 nm library. As suggested by Tables 2.1 and 2.2, the results for
the AMIS 0.35 µm are completely equivalent, and our experimentation confirms
this. The approximation is quite precise, with differences becoming greater when the
number of bits N increases. In Fig. 2.8 we show histograms of the estimation errors
for different bit lengths. For N = 32 and 64 bits, errors are bounded by 500 GE and
1K GEs respectively. This error increases to 1.5K GE and 2K GEs for N = 96 and
128 bits, respectively. Thus, chosing a high value for the control overhead (20%) in
Equation 2.6 does not minimize errors but guarantees an overestimation of circuit
area.

Further investigations reveal that the overestimation does not come from the
expression (2.5), but from (2.6). In other words, the estimation for the datapath area
is fairly accurate, but the amount of control logic does not generally increase linearly
with the number of bits. For instance, a Finite State Machine (FSM) controlling
some parts of an algorithm does not need more states when variables increase their
size. That being said, we emphasize that our choosing of (2.6) may still be valid for
constrained designs, where N often varies between 32 and 512, considering the result
as an upper bound.

2.2. Estimating the Area of Lightweight Algorithms 37

−1000 −500 0 500 1000 1500 2000 2500
0

2

4

6

−1000 −500 0 500 1000 1500 2000 2500
0

2

4

6

−1000 −500 0 500 1000 1500 2000 2500
0

2

4

6

−1000 −500 0 500 1000 1500 2000 2500
0

2

4

6

Estimation Error (in GE)

128 bits

96 bits

64 bits

32 bits

Figure 2.8: Distribution of gate count estimation errors (ω = 0.2)

2.2.4 Adjusting control overheads

As discussed in Section 2.2.2, the datapath and control areas are in most cases related.
In the model presented above we made the assumption that the relation is linear,
in particular with the control logic being a fraction (1 + ω) of the datapath area.
The experimental results discussed above show that this assumption works relatively
well for systems of up to 10K GE, particularly with ω = 0.2. The estimation error
becomes more significant for bigger systems. This is reasonable, as an increase in the
datapath footprint does not necessarily translate into a similar increase of control
logic.

Using the dataset of designs described above, we have numerically investigated
more precise approximations for the control overhead term used in (2.6). Two
alternatives were explored, both based on the idea that ω varies with some system
parameters. In the first one, we assumed that the control overhead depends on the
number of bits N , so the total area is actually of the form:

F =
[
1 + ω(N)

]
· FDP (2.7)

whereas in the second alternative it is assumed that the amount of control logic is a

38 2. Hardware Footprint Estimation of Lightweight Cryptographic Primitives

function of the datapath area:

F =
[
1 + ω(FDP)

]
· FDP (2.8)

The estimation of both functions ω(N) and ω(FDP) was done by couching the
problem as a nonnegative least-squares curve fitting one of the form:

min
Ω
‖CΩ− d‖2

2 (2.9)

where Ω = (ω1, . . . , ωk)T , with ωi ≥ 0, represents the sought function discretized in
k values. Matrix C and vector d contain, respectively, the actual datapath area and
total area obtained after synthesis.

We split the dataset of designs into two subsets. The first one, used to estimate
the overhead function (training) contains 80 randomly chosen (10 of each bit length)
designs out the 120 available. The remaining 40 designs will be subsequently used
to test the obtained estimator. Thus, each one of the 80 synthesized functions used
for training gives an equation for (2.9). These 80 equations are grouped into k bins.
In the case of ω(N), we chose k = 4 values (32, 64, 96, and 128 bits), whereas for
ω(FDP) we grouped equations into k = 7 intervals with a 2K GE difference between
each of them.

Using a standard numerical solver, we obtained the Ω-values shown in Table
2.3. Again, these figures correspond to the UMC 90 nm library; those obtained
for the AMIS 0.35 µm are very similar. Such overheads represent the best fit, in
a least-squares sense, for our experimental dataset. As observed, in both cases
the actual overhead is always below the fixed ω = 0.2 value that was used before.
Furthermore, it decreases as circuits grow bigger, both in terms of N and in datapath
area, which conforms to our previous intuition. For example, in systems with less
than 4K GE the overhead accounts for 16%-19% of the datapath area, but it falls
down to less than 10% when the datapath is 10K GE or more. This is also observed
when the overhead is considered a function of N .

Analysis of the squared 2-norm of the residual reveals that the ω(FDP) estimation
performs significantly better than ω(N). Thus, while the former yields a squared
residual of 1.38E+05, which roughly translates into an average error of 371 GE

2.3. Conclusions 39

Table 2.3: Numerically estimated control overhead functions.

N ω(N)
32 bits 0.1518
64 bits 0.1186
96 bits 0.1192
128 bits 0.1103

‖residual‖2
2 3.36E+06

FDP ω(FDP)
0 - 2000 GE 0.1906

2000 - 4000 GE 0.1717
4000 - 6000 GE 0.1691
6000 - 8000 GE 0.1271
8000 - 10000 GE 0.1098
10000 - 12000 GE 0.0932
12000 - 14000 GE 0.0774

‖residual‖2
2 1.38E+05

per design, the latter is greater by more than an order of magnitude (3.36E+06),
meaning an error of around 1833 GE per estimation. This is also reasonable, as it
appears to be more sensible that the amount of control logic depends more on the
datapath area rather than on the length of registers.

Overall, using functional overheads such as these provide us with a more precise
estimation of the total footprint area. For comparison with the plots discussed in
previous section, Figs. 2.9 and 2.10 show the adjusted estimates for the training and
test functions, respectively. Similarly, Fig. 2.11 shows the error distribution over
test functions only. It is clear that the fit is now much more accurate (compare with
Fig. 2.8), even though the new estimation cannot be regarded anymore as an upper
bound for the total footprint area.

2.3 Conclusions

In this chapter, a study concerning the area of lightweight primitives used in
lightweight cryptography has been presented. We have proposed a simple yet
accurate procedure to estimate the footprint area of generic lightweight algorithms.
We have argued that finding an accurate approximation is extremely hard, since
it strongly depends on factors such as the architecture chosen by the designer, the
manufacturing technology, the libraries used, the possibility of optimizing the foot-
print when combining several parts, etc. Despite this, the designer of algorithms
for constrained environments (such as, for example, those related to cryptographic

40 2. Hardware Footprint Estimation of Lightweight Cryptographic Primitives

0 2 4 6 8 10 12 14 16 18 200

5000

10000

15000

Training Function Index

G
at

e
E

qu
iv

al
en

ts
 (G

E
)

Estimated − Overheads ω(N)
Real
Estimated − Overheads ω(ADP)

Figure 2.9: Real and estimated footprint area using adjusted control overheads: results on 80
training designs.

1 2 3 4 5 6 7 8 9 102000

4000

6000

8000

10000

12000

14000

16000

Test Function Index

G
at

e
E

qu
iv

al
en

ts
 (G

E
)

Estimated − Overheads ω(N)
Real
Estimated − Overheads ω(ADP)

Figure 2.10: Real and estimated footprint area using adjusted control overheads: results on 40
test designs.

2.3. Conclusions 41

functions for RFID tags or sensor nodes) should count on some quantities to drive
their choices. One major motivation for this work is to fill this gap by providing
algorithm designers with a tool to estimate the cost, in terms of footprint area, of
their constructions.

We believe our proposal will help in making some choices at the algorithmic
level, even for designers without hardware design skills. Furthermore, it could also
be applied to get preliminary comparisons among different proposals (lightweight
primitives and more complex constructions such as security protocols) or, at least,
to decide if they are simply too costly for certain operational environments.

The work presented in this chapter can be extended in a number of ways. One
natural direction for future work is the inclusion of other commonly used elements
in the FDP estimator, such as for example S-boxes of non-linear filters. Similarly, we
expect to test the proposed estimator against well-known lightweight cryptographic
primitives and compare the predictions with reported experimental results. Finally,
our focus in this work has been exclusively on the footprint area of ASIC implemen-
tations. It would be interesting to extend our estimates to include other prominent
parameters, primarily throughput and power consumption, as these have also sig-
nificant influence in design choices. Consider, for example, the RFID standards
[47, 3], which states that a tag must support up to 1500 read attempts per second
under ideal conditions. However, this rate can be five or ten times smaller (500-150
tags/sec) in real world environments [21]. Therefore, if the tag’s operating frequency
is set to 100 KHz, the number of clock cycles used per reading is upper-bounded
by 670 (in fact, 500 clock cycles is an upper bound commonly assumed in previous
works [94, 87]). The methodology discussed in this work can be easily extended to
incorporate measures of throughput and power consumption. We expect to tackle
this in future work.

42 2. Hardware Footprint Estimation of Lightweight Cryptographic Primitives

−1500 −1000 −500 0 500 1000 1500 2000 2500
0

1

2

−1500 −1000 −500 0 500 1000 1500 2000 2500
0

1

2

3

−1500 −1000 −500 0 500 1000 1500 2000 2500
0

1

2

−1500 −1000 −500 0 500 1000 1500 2000 2500
0

1

2

Estimation Error (in GE)

96 bits

128 bits

64 bits

32 bits

Figure 2.11: Distribution of gate count estimation errors using ω(FDP) on 40 test designs.

3
Pseudo-Random Number Generators

Pseudo-random number generators (PRNGs) are deterministic algorithms that gen-
erate an unbiased random output. The output sequence can be considered random
in the sense that all the sequences have the same probability of appearance.

PRNGs are usually implemented in environments where True Random Number
Generators are not feasible. Their operation mode is based on an unknown internal
state, which is the seed to computes the next internal state. The output must have
statistical properties indistinguishable from true random numbers.

These blocks are commonly used in cryptographic applications. As an example,
the most well known application is the expansion key process, where using a initial
key (seed), several subkeys are generated [95]. Other applications that use PRNGs
are protocols [96], that use a shared secret and a Pseudo-Random Function (PRF)
to protect the messages. One-time pad and nonces are also included among the
common applications.

PRNGs serve as random number generators in current RFID technologies. They
are usually implemented in tags and readers. The pseudorandomness offered by on
board PRNGs is tipically used:

• To enhance the security of password-protected operations.

• In authentication protocols where the pseudo-random number is used to syn-
chronize the reader and the tag [22].

• As an anti-collision mechanism for inventorying processes [47].

44 3. Pseudo-Random Number Generators

• To acknowledge other Gen2 specific operations (e.g., memory writing, decom-
mission of tags, and self-destruction)[47].

PRNGs are, therefore, the crucial components that guarantee RFID security.

From a security perspective, The traditional definition of PRNGs involves a bunch
of statistical tests, but this is insufficient for cryptographic purposes. A good PRNG
for security applications should meet additionally the followings requirements [23]:

• The adversary cannot compute the internal state of the PRNG, even if many
outputs of the PRNG have been observed.

• The adversary cannot compute the next output of the PRNG, even if many
previous outputs of the PRNG have been observed.

• If the adversary can observe or even manipulate the input samples that are
fed in the PRNG, but the internal state of the PRNG is not known, then the
adversary cannot compute the next output and the next internal state of the
PRNG.

• If the adversary has somehow learned the internal state of the PRNG, but
the input samples that are fed in the PRNG cannot be observed, then the
adversary cannot figure out the internal state of the PRNG after the re-keying
operation.

Due to the fact that the standard EPC Class-1 Gen-2 requires the generation of a
16-bit pseudo-randon number, there is an increasing demand of secure PRNGs. These
PRNGs should not only meet the requirements of EPC-C1G2 but should also offer
interesting features (area,throughput, power consumption,etc) to be implemented in
resource-constrained environments. In this chapter we present a set of PRNGs that
meet with the standard EPC-C1G2 and are also suitable for being implemented in
low-cost RFID tags.

The chapter is structured as follows: In the first section 3.1, a brief state of the
art about PRNGs is presented, showing some general considerations. In section 3.2
the designed PRNGs are depicted and some details are also studied about the chosen
architectures. In Section3.3 we have implemented two authentication protocols that

3.1. State of the art 45

use the PRNGs that we have proposed. The hardware results obtained with up to
15 different designs are presented in Section 3.4. Finally, Section 3.5 concludes the
chapter and summarizes our findings and contributions.

3.1 State of the art

3.1.1 PRNGs requirements for low-cost RFID tags

The security level offered by the EPC-C1G2 standard and other passive RFID
tags is extremely low –in fact, almost inexistent. This is mainly due to the lack
of computational resources on the tags, which prevents them from using standard
security primitives and protocols. For example, it is commonly assumed (see, e.g.,[111]
) that no more than 4000 Gate Equivalents (GE) can be devoted to security functions.
As introduced before, a GE is the normalization commonly used for these applications.
The GE value is obtained by dividing the whole area of the circuit by the area of a
basic NAND gate. EPC-C1G2 tags support simultaneous read attempts up to 1500
tags/sec under ideal conditions. However, this rate can be five or ten times smaller
(500-150 tags/sec) in real-world environments [21]. Therefore the number of clock
cycles used per reading is upper-bounded by 670 clock cycles, assuming that the
RFID chip operates at a clock frequency of 100 kHz. We take 500 clock cycles as
reference value because this limit is less than the above mentioned value and has
been used in previous works [87, 94]. Furthermore, they should not consume more
than 10 µW , as low-cost tags are passive and, therefore, must harvest their power
supply from the reader signal. (See, for example, [20] for an elaborate motivation
on the need for low-power designs.) When these constraints are compared with the
approximate 8120 GE [51, 102] required by a standard hash function like SHA-1
(which is an essential building block for most security protocols), it becomes clear the
need for schemes that can provide some minimum security services while requiring
as few resources as possible.

As aforementioned in previous chapters, EPC-C1G2 standard identifies three
requirements that a PRNG must satisfy [47]:

• The probability that any RN16 drawn from the PRNG has value RN16 = j

for any j, shall be bounded by 0.8/216 < P (RN16 = j) < 1.25/216.

46 3. Pseudo-Random Number Generators

• For a tag population of up to 10,000 tags, the probability that any two or more
tags simultaneously generate the same sequence of RN16 shall be less than
0.1%, regardless of when the tags are energized.

• An RN16 drawn from a tag’s PRNG 10ms after the end of Tr (RF signal
envelope rise time) shall not be predictable with a probability greater than
0.025% if the outcomes of prior draws from PRNG, performed under identical
conditions, are known.

Due to the limitations imposed by the technology requirements and the EPC-
C1G2 standard, it is a challenging problem to design a PRNG suitable for low-cost
RFID tags.

3.1.2 PRNG evaluation

The PRNG output must be indistinguishable from a random number. The statistical
properties of the output are usually examined using battery tests and then compared
to the statistical properties of truly random sequences. These tests do not guarantee,
when successfully passed, that a given generator is useful for all kind of applications.
As aforesaid, the security analysis of PRNGs in a cryptographic context is not
restricted to a statistical analysis of the output of the generator, the algorithm itself
must be cryptographically analyzed in order to avoid some weaknesses as linearity.

The most well-known tests used to evaluate PRNGs are:

• ENT: ENT is a statistical test designed to evaluate PRNGs but it is also
used to test random streams [142]. The tests carried out by this suite are:
Entropy, Chi-square Test, Arithmetic Mean, Monte Carlo Value for Pi and
Serial Correlation Coefficient.

• NIST Test Suite for random Number Generators: this statistical package has
been developed by NIST [114]. The package consists of 15 tests that evaluate
the distribution of long binary sequences. The tests are: Frequency (Monobits)
Test, Test for Frequency within a Block, Runs Test, Test for the Longest Run
of Ones in a Block, Random Binary Matrix Rank Test, Random Binary Matrix
Rank Test, Non-overlapping (Aperiodic) Template Matching Test, Overlapping

3.1. State of the art 47

(Periodic) Template Matching Test, Maurer’s Universal Statistical Test, Linear
Complexity Test, Serial Test, Approximate Entropy Test, Cumulative Sum
(Cusum) Test, Random Excursions Test and Random Excursions Variant Test.

• Diehard: It is a test battery consisting of 15 test developed by Georges
Marsaglia in 1996 [91]. It is considered one of the most tough test batteries,
some generators that pass NIST test fail DIEHARD. The tests that compound
the battery are: birthday spacings , overlapping permutations, ranks of 31x31
and 32x32 matrices, ranks of 6x8 matrices, monkey tests on 20 bit Words,
monkey tests OPSO, OQSO, DNA, count the 1′s in a stream of bytes, count the
1′s in specific bytes, parking lot, minimum distance, random spheres, squeeze,
overlapping sums, runs, and craps. In 2002, Marsaglia [92] proposed a reduction
of the tests. Only 3 tests were selected for this lightweight suite and integer
numbers reduced to only 32 bits to evaluate the randomness of the sequence.
The new 3 tests are: The gcd test, based on Euclid’s algorithm for computing
the gcd of two random 32-bits integers. The Gorilla test, a stronger version
of Monkey test presented in Diehard. The Birthday Spacing test, a stronger
version of iterated birthday spacing test presented in Diehard.

Besides statistical tests as a way of randomness evaluation, there are other
methods related to the verification of EPC-C1G2 functionalities that can be carried
out using a simulation platform. For example, the IAIK UHF Demo Tag [101] is a
programmable device intended for developing new commands or functionalities to
the EPC Gen2 standard. It allows, moreover, to verify the new functionality using
compliant EPC Gen2 readers, by modifying the code inserted into the Demo Tag.
Thus, new developments can be implemented and tested in real environments [121].

3.1.3 Known PRNGs

PRNGs have been studied and used for some decades. There are several PRNGs
well-known in the literature and some secure proposals from different authors. Among
the most well-known PRNGs can be highlighted the following ones:

• Linear Congruential Generator (LCG): LCGs are simple pseudo-random
number generators usually defined by the following equation:

48 3. Pseudo-Random Number Generators

Sn Sn-1 Sn-2 S2

C1 C2 C3 Cn-1

S1

Cn

Output

Figure 3.1: Linear Feedback Shift Register scheme

Xn+1 = a ·Xn + c (mod m)

whereX0 is the seed and a, c andm are constants. If these constants are selected
carefully, the LCG will be a maximal period generator. LCGs are very popular
due to their straightforward implementation and good statistical characteristics,
but are insecure from a cryptographic point of view. The underlying problem
of LCGs is that Xn+1 and Xn are not independent. An attacker could predict
the entire sequence after eavesdropping some outputs (even if a, c and m are
unknown). LCGs are not used for cryptographic applications for this reason.

• Linear Feedback Shift Register (LFSR): LFSRs are generators that con-
sist of a shift register and XOR gates (see Fig.3.1). The LFSR input bit
is a linear function of its previous state. The feedback polynomial function
(C(x) = 1 + c1x

1 + c2x
2 + ...+ cnx

n) establishes the register positions that are
XORed. If the feedback function is primitive, the LFSR will have maximal
length. The main weakness that present LFSRs is the linearity.

• Blum-Blum-Shub Generator [17]: Blum-Blum-Shub security depends on
an integer factorization that is generally assumed to be intractable. A pseudo-
random bit sequence (z1, z2, ...zl) of length l is generated as described below:

1 Setup

1.1 Generate two large secret random (and distinct) primes p and q each
congruent to 3 modulo 4, and compute n = p · q.

1.2 Initialize the seed s randomly in the interval [1, n − 1] such that
gcd(s, n) = 1 and compute x0 = s2 mod N.

2 Random Bit Generation For i from 1 to l:

2.1 xi = x2
i−1modn

2.2 zi =least significan bit of xi

3.1. State of the art 49

The main problem of this generator is that it needs a lot of resources for the
implementation due to the computational complexity.

The previous PRNGs can not be used in low-cost RFID tags because of the lack
of security (LCG and LFSR) or the resources used in its implementation (BBS).
There are many others PRNGs in the literature, for example those based on the
theory of chaos. But these PRNGs do not accomplish the EPC-C1G2 requirements,
or they are not suitable for low-cost RFID tags.

In the last decade, several schemes have been reported. Among the PRNG
proposals oriented to low-cost RFID tags stand out the following ones:

• LAMED: Peris-Lopez et al. present in [105] a deterministic algorithm that
relies on the use of 32-bit keys and pre-established initial states. The set of
functions mainly consists of bit rotations, bitwise operations, and modular
algebra, building a 32-bit PRNG. The authors also propose an alternative
16-bit version of their PRNG for EPC Gen2 compatibility. To reduce the
output length from 32 to 16 bits, Peris et al. divide the 32-bit output in two
halves and XOR them to obtain the 16-bit output sequence. Experimental
results regarding area, throughput and power consumption were not presented.

• Che et al.: Che et al. describe in [28] a hybrid approach that combines the
use of Linear Feedback Shift Registers (LFSR) and a TRNG to build random
sequences. A theoretical attack to this PRNG was presented in [121].

• J. Melia-Segui et al: In [94] J. Melia-Segui et al. handled the inherent
linearity of LFSRs by means of a multiple-polynomial approach. Several feed-
back functions were implemented. The selection of each primitive polynomial
for every cycle is performed by the true random data source and a decoder.
The authors present a secure PRNG design suitable to the current EPC Gen2
technology, providing evidences of statistical and hardware compatibility. The
main problem is that the PRNG security relies on a TRNG.

Based on the necessity of embedded PRNGs in tags, and taking into account
the lightweight designs reported in the literature, we have proposed two lightweight
PRNGs that meet the EPC-C1G2 requirements, and are suitable for low-cost RFID
tags.

50 3. Pseudo-Random Number Generators

3.2 AKARI-X

3.2.1 Design and evaluation

Achieving EPC-C1G2 with a lightweight design supposes a challenge, as the lack of
resources in the tag impose severe constraints on the type and amount of operations
that can be included. Over the last years, several authors have proposed various
designs appropriate for resource-constrained devices such as low-cost RFID tags (see,
e.g., [27, 94]).

In this context, the concept of T-function introduced by Klimov and Shamir
[74, 75] results very interesting. All bitwise operations (e.g. bitwise XOR (a ⊕ b),
OR(a ∨ b) and AND (a ∧ b)) and most of the modern machine operations (e.g.
addition (a+ bmod2m) and multiplication (a · bmod2m)) are T-functions and their
composition are also T-functions.

In particular, the mapping x→ x+ (x · 2 ∨ C)(mod 2m) is very interesting. For
any m, it is a permutation with a single cycle of length 2m if both the least significant
bit and the third significant bit in the constant C are 1. Furthermore, the output
provided by this permutation looks like a random variable. However, this function
is not cryptographically secure. More precisely, an attacker can exploit the fact
that when a T-function is executed there is not propagation of information from left
to right, which facilitates its cryptanalysis. Nonetheless, these T-functions can be
mixed with a non-linear function to increase its security.

Using the information about the desirable cryptographic features of T-functions
and the study performed in chapter 2 about the footprint area of lightweight elements,
two lightweight PRNGs called AKARI-1 and AKARI-2 have been designed.

To overcome the above mentioned drawback of T-functions (no propagation of
information from left to right) and guarantee a high degree of diffusion, we have
included in our designs non-linear filters. Several candidates have been generated
using genetic programming. The possible non-linear filters are obtained through
evolving compositions of extremely light operands in terms of computation and
hardware demands (multiplication was excluded because of the results presented in
chapter 2). It is noteworthy that the non-linearity of each candidate was measured
using the Avalanche effect concept. This property tries, to some extend, to reflect the

3.2. AKARI-X 51

AKARI-1
1. x0 = x0 + ((x0 · 2) ∨ 5)
2. x1 = x1 + ((x1 · 2) ∨ 13)
3. z = x0
4. for r = 0 to 63 do
5. z = (z � 1) + (z � 1) + z + x1
6. Return least significant m/2 bits of z

AKARI-2
1. x0 = x0 + ((x0 · 2) ∨ 5)
2. x1 = x1 + ((x1 · 2) ∨ 13)
3. z = x0 ⊕ x1
4. for r = 0 to 24 do
5. z = (z � 1) + ((z + 0x56AB0A) > 1)
6. y = x1 ⊕ z
7. for r = 0 to 24 do
8. y = (y � 1) + (y � 1) + y + 0x72A4FB
9. Return least significant m/2 bits of z ⊕ y

Figure 3.2: Pseudorandom Number Generators AKARI-1 and AKARI-2.

intuitive idea of high non-linearity. More specifically, the avalanche effect is evident
if, when an input is changed slightly, the output changes significantly. Further
information about the methodology used to obtain non-linear filters can be found in
[64].

A description in pseudocode of the two PRNGs is given in Fig. 3.2, where (�)
and (�) symbolize right and left circular shift, respectively.

Analysing the proposed alternatives, AKARI designs are based on iterating a
simple function a given number of rounds. AKARI-1 consists of a initialization phase
that is usually precomputed in the reader (1,2 and 3) and only one filter function
which is iterated a relatively high number of times (r = 64). This function consists of
simple additions (a+bmod2m) and right and left circular shifts. Oppossedly, AKARI-
2 consists of an initialization phase(1,2 and 3) but employs two filter functions. The
two filter functions are mixed, facilitating the reduction of the number of iterations in
the loop r = 24. These two filters include lightweight operations, circular shifts and
constants. It is important to note that in both cases, the algorithm uses variables of
m bits and outputs numbers of m/2 bits.

52 3. Pseudo-Random Number Generators

Table 3.1: Evaluation of the quality of AKARI-1 and AKARI-2 (m = 32) against several
randomness tests.

Battery Test AKARI-1 AKARI-2

ENT

Entropy 8.000000 8.000000
Compression
Rate 0 0

χ2 Statistic 259.09 (41.70%) 250.99 (55.93%)
Arithmetic
Mean 127.4976 127.5031

MonteCarlo
π
estimation

3.141447036
(error
0.00%)

3.141512474
(error
0.00%)

Serial
correlation
coefficient

-0.000026 3.141512474
(0.000013

Diehard Overall p-value 0.352645 0.551129
NIST All Pass Pass

The statistical quality of the output sequence generated by AKARI-1 and AKARI-
2 was analyzed using three batteries of statistical randomness tests: ENT [142],
DIEHARD [91] and NIST [114]. The results obtained in these tests are depicted in
Table 3.1

3.2.2 Hardware architectures

We next describe several architectures for the implementation of both AKARI PRNGs.
The main goal of the designs depicted in Fig. 3.2 is meeting the various technology
requirements for low-cots RFID tags, namely using less than 4000 GE, taking less
than 500 clock cycles in the generation of a random number, and consuming less
than 10 µW [111]. At the same time, we try to maximize the security level, which is
directly linked to the bit-length of the generated random numbers.

With the proposed architectures, we try to maximize the throughput or minimize
the area while the above mentioned requirements are fulfilled. A reduction in the
footprint area can be exploited to add additional bits for the operations (more
security) or alternatively it can be used just to reduce the cost of silicon area.

3.2. AKARI-X 53

To maximize the throughput, the best strategy is trying that all the operations
are computed in only one clock cycle, as the clock frequency is very low at 100 KHz,
and there is plenty of room for a long critical path. With this strategy, the number
of clock cycles necessary to generate a Pseudo-random number are reduced to the
minimum.

On the other hand, the strategy adopted to reduce the area is related to the
lightweightness of the operations. As shown in the previous section, both PRNGs
mainly use simple bitwise operations. Even though these have a reduced cost in
terms of area, they can be implemented in different ways and it is unclear which one
will best fit the requirements given above. Taking into account the study carried
out in chapter 2, we can summarize that adders are the most expensive operation,
in terms of area, involved in these algorithms. We concluded that the best way to
improve the area cost is to reduce the size of the adder. However, this strategy incurs
in a penalty in throughput, since each addition takes several clock cycles. The limit
of this area reduction is established by the number of clock cycles used. As aforesaid,
some works assume that an EPC-C1G2 protocol should take less than 500 clock
cycles for each protocol run. For a 100 kHz frequency, this means one authentication
each 5 milliseconds or, equivalently, 200 protocol runs per second.

We have proposed several implementation architectures for each PRNG in order to
explore the trade-off between area and throughput while the EPC-C1G2 requirements
are achieved.

3.2.2.1 AKARI-1 Architectures

With the first architecture (AKARI-1A) we attempt to minimize the number of clock
cycles required to generate an output. Each operation is executed in only one cycle
whenever this is feasible. To achieve this, different m-bit operation blocks are used,
m being the bit length of the variables, and the control of inputs/outputs to/from
each block is implemented through a Finite State Machine (FSM).

In the second architecture (AKARI-1B) we seek to reduce the overall chip area
by reducing the area occupied by the adder. More precisely, we use an adder with
half the number of bits (m/2) plus the necessary control implemented by an FSM.
With this approach, the circuit needs more clock cycles because each sum takes now
2 cycles rather than just 1. Besides, it is now necessary to add some additional

54 3. Pseudo-Random Number Generators

logic (multiplexers and demultiplexer) to select which input is used at each cycle
(see Fig.3.3(a)). A priori, it is unclear whether the improvement in area given by a
reduced adder will or will not compensate for the area required by additional logic.
This will be discussed later when analyzing the implemented circuits.

It is not possible to go further with this reduction strategy in AKARI-1 PRNG
(using an adder of (m/4)) because the number of clock cycles used exceeds the limit
imposed by the standard.

3.2.2.2 AKARI-2 Architectures

We have explored three different architectures for AKARI-2. The first two (AKARI-
2A and AKARI-2B, respectively) are identical to those developed for AKARI-1;
i.e., AKARI-2A uses m-bit adders and takes 1 cycle, while AKARI-2B uses m/2-
bit adders and takes 2 cycles. To further explore the trade-off between area and
throughput, the third approach (AKARI-2C) goes one step further and uses m/4-bit
adders with additional support logic. In detail Fig. 3.3(b) we show the m/4 adder
plus the logic control (multiplexers and D flip-flops) that is needed to implement
this approach.

(a) with half bit length (m/2)

(b) Adder with quarter bit length (m/4)

Figure 3.3: Half (m/2) and quarter (m/4) adders and auxiliary logic and registers.

3.3. RFID authentication Protocols 55

For the same reason as in AKARI-1, it is not possible to go further with the
reduction strategy.

We have presented several architectures for both PRNGs in this section. However,
PRNGs are typically used along with authentication protocols that take advantage
of the freshness generated by PRNGs to increase their security. In the next section
are presented two authentication protocols compliant with EPC-C1G2 that require a
PRNG.

3.3 RFID authentication Protocols

To provide security in RFID communications, authentication protocols turn out to be
very effective. In [34] Chien proposed the following classification about the hardware
complexity of the different kind of protocols used in RFID: 1) Full-fledged tags support
on-board conventional cryptography like symmetric encryption, cryptographic one-
way functions and even public key cryptography; 2) Simple tags support random
number generators and one-way hash functions; 3) Lightweight tags support a random
number generator and simple functions, such as for example a Cyclic Redundancy
Code (CRC) checksum, but not a cryptographic hash function. Ultra-lightweight
tags can only compute simple bitwise operations, like XOR, AND, OR, etc.

A few security lightweight protocols are proposed in the literature aimed at
meeting the technology requirements set by the EPC-C1G2 standard [47]. In these
proposals, Pseudorandom Number Generators (PRNG) are often used to provide
freshness to the generated messages and avoid some attacks. According to EPC-C1G2,
tags should be able to generate 16-bit pseudorandom numbers (RN16), and store
temporarily at least two of these values. The system mainly comprises interrogators
(readers) and labels (tags). An interrogator manages tag populations using three
basic operations: 1) Select - the operation used to choose a tag population; 2)
Inventory - to identify tags; and 3) Access - the operation used for reading from
and/or writing to a tag.

We next describe two representative ultra-lightweight protocols based on PRNGs
developed to conform with the EPC-C1G2 specification.

56 3. Pseudo-Random Number Generators

Figure 3.4: The 4-pass EPCGen2 inventory (left) and Burmester-Munilla inventory (right)
[22].

3.3.1 Burmester-Munilla Protocol

Burmester and Munilla [22] proposed a lightweight mutual authentication RFID
protocol that supports session unlinkability and forward and backward security. In
this protocol, each tag shares with the server a synchronized PRNG (same algorithm,
key and seed). Tag and server are mutually authenticated by exchanging either three
or five consecutive numbers from the PRNG. Moreover the PRNG can be refreshed
when there is suspicion that the state of the PRNG may be compromised.

The original EPC-C1G2 protocol has four passes for identification, which involve
the exchange of the following messages: a query, a random number RN16, an
acknowledgement ACK(RN16) and the EPC data. As shown in Fig. 3.4, in [22]
the authors replace these values by three random numbers (RN1, RN2 and RN3)
in the so-called optimistic case. If RN1 was used previously (a flag called alarm is
ON), then two more nonces (RN4 and RN5) have to be exchanged.

3.3.2 Chien-Huang Protocol

Chien and Huang presented in [33] a new authentication protocol based on Li et al.’s
scheme [150]. The authors showed that Li et al.’s scheme is vulnerable against replay
attacks and attempted to improve its security level while preserving its lightweight
properties. The security of Chien-Huang protocol is based on a synchronized PRNG
shared between the tag and the reader. The scheme supports mutual authentication
and the authors claim that it provides security against replay, traceability and DOS
attacks.

A short description of the protocol is given below, but the reader is referred to
the original paper for further details. Each tag stores an l-bit secret key x, an l-bit

3.3. RFID authentication Protocols 57

Table 3.2: Security Properties

Burmester-Munilla Chien-Huang
Mutual authentication 0 0

Replay Attacks 0 0
DOS Attacks 0 0
Active Attacks 0 4
Forward secrecy 0 0
No traceability 0 4

×- no satisfied, 0 - satisfied, 4 - partially satisfied

secure identity SID, and an l-bit index-pseudonym IDS. Six values are stored in the
database for each tag: a secure identity SID, the current index-pseudonym IDSnew,
the old index-pseudonym IDSold, the current key xnew, the old key xold, and a flag
bit that is used to check whether the tag and the database are synchronized or not.
Three operators are used: 1) a PRNG g(); 2) rotate(p, w), which left rotates the
operand p w positions; and 3) Left(s) and Right(s), which symbolize the left/right
half of s respectively. Fig. 3.5 depicts the exchanged messages in this scheme.

Table 3.2 presents a brief security comparison between the two chosen protocols.
Both protocols provide mutual authentication and Burmester-Munilla scheme seems
to be more robust offering protection against traceability and active attacks.

3.3.3 Design architectures for RFID identification protocols

In this section, we present the designs made for the two EPC-C1G2 protocols described
above and the hardware architectures chosen, including memory, computational and
control logic. Both schemes rely on the use of a sufficiently good PRNG, but the
particular choice is left to implementers. Given that such a component is critical to
guarantee that the resulting circuit will fit a low-cost RFID tag, we have explored
the two AKARI designs presented above.

Most PRNG-based EPC-C1G2 protocols follow a similar working scheme. We
have designed an architecture for a generic EPC-C1G2 protocol (see Fig. 3.6) and
then particularized it for each implemented protocol. This architecture includes four
main blocks:

• Register Block: This encompasses all the registers needed to store intermediate
computations and long-term values. For example, in the Burmester-Munilla

58 3. Pseudo-Random Number Generators

Database RFID Reader RFID Tag
{flag, xold, xnew, IDSold, IDSnew, SID} {SID, IDS, x}

Generate R1
Query||R1−−−−−−−−−−−−→

Step 1:
Generate R2
Compute g̃ = g(R1||R2||x)
SID′ = rotate(SID, g̃)
R′ = left(SID′ ⊕ g̃)

R2||R′||IDS
←−−−−−−−−−−−−

R1||R2||R′||IDS
←−−−−−−−−−−−−

Step 2:
Search IDSi

If IDS == IDSold

flag = 0; x← xold;
ElseIf IDS == IDSnew

flag = 1; x← xnew;
Compute
g̃ = g(R1||R2||x)
SID′ = rotate(SID, g̃)
Check
left(SID′ ⊕ g̃) ?= R′

Compute
R′′ = right(SID′ ⊕ g̃)
If flag = 1
IDSold ← IDSnew;
xold ← xnew;

Otherwise
IDSnew ← g(IDS||SID′);
xnew ← g(x||̃g);

R′′
−−−−−−−−−−−−→

R′′
−−−−−−−−−−−−→

Step 3:
Compute
R′′

?= right(SID′ ⊕ g̃)
Update
IDS ← g(IDS||SID′)
x← g(x||̃g)

OK/NO
←−−−−−−−−−−−−

OK←−−−−−−−−−−−−
Step 4:
If OK
send SID

SID−−−−−−−−−−−−→

Figure 3.5: Chien and Huang lightweight RFID authentication protocol [33].

3.4. Circuit Synthesis and Results 59

protocol it contains the registers that store RN1, RN2, the state (gtag(state))
plus the refresh key K (we can discard the 1-bit flag cnt as its cost is negligible).
Likewise, in the Chien-Huang protocol the block stores the internal values
(SID, IDS and x) and the nonce R1 received from the reader.

• PRNG Block: It implements the chosen pseudorandom number generator.

• Timer Block: It controls the maximum waiting time for each message exchange
during a protocol run, indicating if the current execution must be aborted if
the other party does not reply.

• FSM: The interaction among the different block elements during a protocol
run is controled by a protocol-specific FSM. It also implements other details of
each scheme. For example, in the Burmester-Munilla protocol it checks the
alarm signal and selects the different operation modes (optimistic case or worst
case).

As far as optimization is concerned, most efforts are concentrated on the PRNG
block. The remaining modules are mainly composed of basic blocks and there is not
much room for optimization. Despite this, in some cases we were able to reduce area
by reusing some logic components from the PRNG into the protocol FSM.

3.4 Circuit Synthesis and Results

In this section, we report and discuss the main findings obtained for the different
architectures described above. Firstly, we implemented the 3+2 choices for the
PRNG using 6 different bit lengths (8, 16, 32, 64, 128 and 256 bits), resulting in 30
different designs. Each protocol was then implemented with 15 of them (32, 64 and
128 bits), as the remaining alternatives are inadequate for the EPC-C1G2 standard.

3.4.1 Experimental Setting

The synthesis of the various implementation alternatives discussed above was done
with the Synopsys software. The hardware was described in VHDL language, using
a structural style. The UMC library Faraday 90nm has been used. The choice of

60 3. Pseudo-Random Number Generators

Registers

PRNG

Timer

Inputs

and

Outputs

Input Data

Query

Address

R/W

Start/End_flag

next actual

Activation

T_flag

Reader I/O

FSM

Rst

Rst

Rst

Rst

Clk

Clk

Clk

Clk

Figure 3.6: Hardware architecture for a generic EPC-C1G2 protocol.

3.4. Circuit Synthesis and Results 61

this library is motivated by the fact that it provides information at the cell level,
giving access to very valuable information that is generally unavailable when using
generic libraries. In particular, this library provides detailed information of the
standard cells’ layout, which allows us to have a good estimation of the area and
power consumption of the circuit. Overall, this guarantees that the results here
presented are similar to those that would be obtained in a manufactured circuit.
Although the final figures may suffer slight variations, these are reasonably bounded
and do not have a significant impact in the results here reported.

All the tests have been performed with an operating frequency of 100 kHz for the
clock signal of the integrated circuit, which is typically used in RFID systems, and a
power supply set to 1.2 V. During our experimentation, it was found that the best
results were obtained using a medium effort in map, area and power consumption.

Three metrics were used to analyze the proposed implementations:

• Area: The full area occupied by the circuit, both in µm2 and in Gate Equiva-
lents (GE), is presented. As aforesaid, the GE is obtained by dividing the whole
circuit area by the area of a basic NAND logic gate; this result is completely
independent of the particular technology used.

• Power consumption: An estimation of the power consumption is provided.
Such a quantity heavily depends on the chosen technology.

• Throughput: The circuit throughput (Kbps), which measures how fast out-
puts are generated, is presented.

3.4.2 PRNG Results

3.4.2.1 AKARI-1 Results

Table 3.3 summarizes the four synthesis metrics identified above (circuit area, GE,
power consumption and throughput) for each PRNG architecture and using six
different output bit lengths. Some general conclusions can be drawn from these
results:

62 3. Pseudo-Random Number Generators

Table 3.3: Hardware Analysis of AKARI-1 PRNG.

8 bits 16 bits 32 bits 64 bits 128 bits 256 bits

Area (µm2:)
AKARI-1A 1494 3191 6209 12224 24340 48563
AKARI-1B 1643 2892 5484 10669 20912 41406

Gate Equivalents (GE):
AKARI-1A 476 1018 1980 3898 7762 15486
AKARI-1B 524 922 1749 3402 6669 13204

Power (nW):
AKARI-1A 47.35 89.95 173.8 343.2 712.17 1410
AKARI-1B 54.61 95.71 182.32 350.36 710.20 1460

Throughput (Kbps):
AKARI-1A 24.24 48.48 96.96 193.92 387.84 775.68
AKARI-1B 3.55 7.11 14.22 28.44 56.88 113.77

1. There is a clear trade-off between area and throughput. For example, for a
256-bit architecture, it can chosen between generating a number with a minimal
number of clock cycles (66 in AKARI-1A) or around a 15% improvement in
area (AKARI-1B) with a serious penalty in throughput.

2. The improvement in area becomes more noticeable for architectures with larger
bit lengths. This is reasonable, as the impact of the additional logic required
by the sequential adder is increasingly less relevant.

3. Differences in power consumption are not significant. However, we empha-
size that this strongly depends on the fabrication technology employed and,
therefore, these figures have to be taken with care.

Circuit area is a severe restriction in lightweight cryptography. It is commonly
assumed that a maximum of 4000 GE can be devoted for security functions. In Fig.
3.7 we can observe that the area increases linearly with the number of bits. For
a maximum of 4K GE, we estimate that the output bit-length is upper bounded
by 65 bits (AKARI-1A) and 75 bits (AKARI-1B), respectively. Fig. 3.8 shows the
area, power and clock cycles for a 64-bit implementation of the two architectures.
AKARI1-A fulfills the area requirements, and the required number of clock cycles
is also quite below the limit (66 � 500). AKARI-1B shows a different trade-off
between area and throughput, but the number of clock cycles is still below the 500
limit (450).

3.4. Circuit Synthesis and Results 63

Figure 3.7: Area analysis of AKARI-1 PRNG (Gates Equivalents).

Figure 3.8: Implementation results of AKARI-1 PRNG (64-bit architecture).

3.4.2.2 AKARI-2 Results

The synthesis results for the three implementations of AKARI-2 follow a pattern
similar to that observed for AKARI-1 (see Table 3.4). The first proposed architecture
(AKARI-2A) optimizes speed (51 clock cycles), while the third one (AKARI-2C)
optimizes the area at the expense of a lower throughput. AKARI-2B sits somewhere
in between, but only for bit lengths greater than 16 bits. Fig.3.9 shows the area
occupied by the three architectures as a function of the bit length. The larger values
that meet the 4K GE requirement are 34.2 (AKARI-2A), 40.4 (AKARI-2B) and
42.8 bits (AKARI-2C), respectively. Therefore, a 32-bit output seems a reasonable
choice if AKARI-2 is to be used in a protocol. Fig. 3.10 summarizes the performance
characteristics for this bit length. The three architectures consume roughly the same

64 3. Pseudo-Random Number Generators

Table 3.4: Hardware Analysis of AKARI-2 PRNG.

8 bits 16 bits 32 bits 64 bits 128 bits 256 bits

Area (µm2:)
AKARI-2A 2582 5837 11740 23462 46955 93257
AKARI-2B 2794 5173 10014 19656 38641 76910
AKARI-2C 2831 5081 9534 18421 36241 71579

Gate Equivalents (GE):
AKARI-2A 824 1.861 3.744 7.482 14.973 29.738
AKARI-2B 891 1.650 3.193 6.268 12.322 24.525
AKARI-2C 903 1.620 3.040 5.874 11.557 22.825

Power (nW):
AKARI-2A 57.38 109.88 216.06 439.37 902.49 1790.00
AKARI-2B 76.95 135.81 255.28 522.04 1070.00 2300.00
AKARI-2C 72.33 126.02 231.25 454.34 924.81 1810.00

Throughput (Kbps):
AKARI-2A 15.68 31.37 62.74 125.49 250.90 501.96
AKARI-2B 2.75 5.50 11.03 22.06 44.13 88.27
AKARI-2C 1.50 3.01 6.03 12.07 24.15 48.30

Figure 3.9: Area analysis of AKARI-1 PRNG.

power. There is no significant difference in area either, as the benefits of using smaller
adders (AKARI-2B and AKARI-2C) do not become apparent for such a small bit
length. This, however, seriously affect throughput, which drops dramatically for
AKARI-2C. Such bad performance of AKARI-2C in terms of throughput does not
come as a surprise, as the use of m/4-adders implies that each sum requires four
clock cycles, rather than just 1 and 2 in AKARI-2A and AKARI-2B, respectively.

3.4. Circuit Synthesis and Results 65

Figure 3.10: Implementation results of AKARI-2 PRNG (32-bit architecture).

3.4.3 Protocol Results

We now discuss the synthesis metrics obtained for the two protocols described in
Section 3.3. Each protocol has been implemented using the 5 PRNGs architectures
for 3 different bit lengths: 32, 64 and 128 bits.

3.4.3.1 Burmester-Munilla Protocol

Table 3.5 shows the footprint area, power consumption and maximum number of
authentications per second for Burmester-Munilla protocol. The area remains below
(or close to) 4K GE for the 5 PRNG implementations for a 32-bit architecture. For
larger bit-lengths, the area grows significantly, particularly if AKARI-2A is used.
Further investigation reveals that between 60% and 90% of the chip is occupied
by the PRNG. To better illustrate this, Fig.3.11 shows the total chip area and the
fraction corresponding to the PRNG. This gives an interesting insight for protocol
designers.

As for power consumption, an upper bound of 10 µW is commonly assumed as
the maximum power that a passive RFID tag can consume. Our implementations
are well below that limit, even for larger bit lengths such as 128 bits. The differences
observed between the power consumption of an isolated PRNG (see Tables 3.3 and
3.4) and the entire protocol are due to several facts: several random numbers are
generated in each protocol execution, the chip is energized for a longer period of
time, and the extra protocol circuitry adds some nano-watts.

66 3. Pseudo-Random Number Generators

Table 3.5: Hardware analysis of Burmester-Munilla EPC-C1G2 protocol.

Gate Equivalents (GE):
PRNG 32 bits 64 bits 128 bits

AKARI-1A 2666 5184 11382
AKARI-1B 2557 4833 9227
AKARI-2A 4026 8010 18282
AKARI-2B 3427 6766 13037
AKARI-2C 3519 6659 12723

Power (nW):
PRNG 32 bits 64 bits 128 bits

AKARI-1A 311 614 1250
AKARI-1B 288 530 1051
AKARI-2A 338 643 1266
AKARI-2B 326 622 1239
AKARI-2C 321 610 1162

Authentications/second
PRNG Best case Worst case

AKARI-1A 245 147
AKARI-1B 37 22
AKARI-2A 314 188
AKARI-2B 57 34
AKARI-2C 31 18

We have also calculated the number of authentications per second of each protocol
implementation. As described in the original protocol, the authentication could
involve the exchange of 3 (optimistic case) or 5 (worst case) random numbers. This
makes a difference, as the tags must wait for the reader to generate further numbers,
and then receive and process them. Throughput plays a fundamental role here,
as shown in 3.5. In both cases, different PRNG architectures yield substantially
different throughput results.

3.4.3.2 Chien-Huang Protocol

Implementation results for Chien-Huang protocol are quite similar to those discussed
for the first protocol (see Table 3.6). Again, a 32-bit architecture seems the fittest
choice for a low-cost RFID tag in terms of area, as larger bit lengths result in a bigger

3.4. Circuit Synthesis and Results 67

Figure 3.11: Area analysis of Burmester-Munilla protocol (32-bit architecture).

footprint. Fig.3.12 shows the fraction of the total chip area occupied by the PRNG.
As in the case of Burmester-Mulilla protocol, the PRNG accounts for more than 60%
of the total area, reaching an 80% for AKARI-2. In any case, all footprints are quite
power efficient and there are no significant differences between both protocols.

According to our implementations, Chieng-Huang protocol is clearly faster than
Burmester-Munilla, with a difference of more than 100 authentications per second for
the fastest versions of both schemes. This is reasonable, as Chieng-Huang involves
the generation of just 1 random number, while Burmester-Munilla requires 3 or 5.

3.4.4 Impact of EPC-C1G2 module in RFID tags

As an example, in Fig. 3.13 we show a general architecture for a battery-less
wireless sensors based on low-power EPC-C1G2 RFID tags. The antenna and
modulator/demodulator modules are common parts of any wireless communication
device. The operation frequency of the circuit is limited by the clock control module
and there is a module that efficiently and intelligently manages the power in the
circuit. The chip is armed with several external sensors (e.g. temperature and
humidity) and the multi-purpose sensor block includes internal sensors, controls
all of them, and provides the interface with the rest of the circuit. Finally the
EPC-C1G2 module supports lightweight cryptography primitives and the security
protocol compliant with EPC-C1G2 standard. This last module is the one we have
studied and implemented in this chapter. In [151] Zalbide et al. presented an ASIC
implementation of the EPC-C1G2 standard with a sensor. We can compare the whole

68 3. Pseudo-Random Number Generators

Table 3.6: Hardware analysis of Chien-Huang EPC-C1G2 protocol.

Gate Equivalents (GE):
PRNG 32 bits 64 bits 128 bits

AKARI-1A 2840 5453 15197
AKARI-1B 2703 5109 9931
AKARI-2A 4185 8273 22089
AKARI-2B 3656 7036 13871
AKARI-2C 3685 6901 13516

Power (nW):
PRNG 32 bits 64 bits 128 bits

AKARI-1A 277 538 1347
AKARI-1B 280 528 1025
AKARI-2A 315 597 1442
AKARI-2B 323 616 1218
AKARI-2C 319 611 1192

Authentications/second
PRNG

AKARI-1A 352
AKARI-1B 54
AKARI-2A 446
AKARI-2B 84
AKARI-2C 47

area of this passive sensing tag with the area used for our EPC module. For that
comparison, the area of the cores are normalized following the approach described
in [11], where TA is the anchor of the transistor for the technology used, a A is the
chip-area for Ta, and Tb is the technology to which the area is normalized.

Anorm = A

(Ta/Tb)2 (3.1)

Using this approach and taking 1 nm as the reference technology (Tb = 1 nm),
the normalized area of the RFID sensor tag proposed in [151] is 19.42. In our case,
for a 32-bit length compliant with EPC standard, in the worst case the EPC module
occupies a normalized area of 1.57 and 1.66 for Burmester-Munilla and Chien-Huang
EPC-C1G2 protocols, respectively. In other words, the EPC module uses less than
8.5 % in comparison to the whole chip area of the above mentioned RFID sensor

3.4. Circuit Synthesis and Results 69

Figure 3.12: Area analyis of Chien-Huang protocol (32-bit architecture).

Sensor
Multipurpose

Sensor Block

CLK control

Power

Managment

Unit

Modulator/

Demodulator

EPC

C1G2

Figure 3.13: Block diagram of a passive sensing tag.

70 3. Pseudo-Random Number Generators

tag. This percentage could be even smaller since in our proposed EPC module the
needed memory is counted in the module area calculations and a sensor tag is often
armed with a external EEPROM and the EPC module could use this memory.

3.5 Conclusions

The necessity of implementing PRNGs has become more important since the EPC-
C1G2 standard contemplates the implementation of these blocks. In addition to the
conditions imposed by the standard, the requirements of the technology are very
demanding. The pressing concern of miniaturization in order to implement massively
RFID tags, makes that only 4000 GE can be devoted to security. Moreover, a high
rate of read attempts is desired. Finally, as these kind of tags are passive, they must
consume only a few nano-watts. All in all, design security devoted to RFID tags is a
challenging task.

In this chapter, we have presented two new lightweight PRNGs suitable for
constrained devices such as low-cost RFID tags. Several implementation architectures
oriented to optimize some critical parameter have been proposed. In addition, two
authentication protocols based on PRNGs have been studied in order to include our
PRNGs in a complete security system. These authentication protocols comply with
EPC-C1G2 standard. Finally, the synthesis metrics for each PRNG architecture and
protocol are depicted.

Our experimentation suggests, as expected, that there are clear trade-offs between
the circuit area and its throughput, so that optimization of one of them comes at the
expense of a low performance in the other. We also found out that the PRNG area is
a very significant fraction of the entire protocol implementation, which reinforces the
view that advances in this area will greatly benefit from lightweight cryptographic
components.

4
True Random Number Generators

True Random Number Generators (TRNGs) are one of the basic cryptographic blocks
used in security protocols. These generators are commonly used to generate keys,
and for that reason, they are one of the most important elements in a cryptographic
protocol. Other applications of TRNGs include generation of nonces, padding plain-
text or even countermeasures against side channel attacks (TRNGs are used to
generate random noise within a certain bandwidth to avoid information leakage from
some processes carried out by the system that can be exploited by an attacker).

Regarding RFID technology, TRNGs are mainly used in the key generation
process. The random number is used as a PRNG seed in order to provide freshness
in RFID systems [33]. TRNGs guarantee the tag’s integrity because even if they
are clonned, their output cannot be predicted. Regarding this feature, other typical
application of TRNGs is defeating physical attacks at the same time that the
non-traceability of RFID systems is enhanced [83].

Due to the importance of random numbers in security systems, the TRNG output
should not only show good features like unpredictability, uniform distribution, etc.
but also, reliability against environmental changes (with a malicious purpose or not).

Owing to the necessity of adding security in embedded systems, the TRNG
integration in hardware devices has become an important challenge. These logic
devices are generally designed to implement deterministic functions, therefore the
inclusion of these kind of generators can have unwanted consequences. For that
reason, it is important to carefully implement these kind of generators.

The TRNG implementation costs can be very high due to the variety of parameters
(frequencies, place and route, power supply, post-processing necessities, etc.) that are

72 4. True Random Number Generators

involved in the correct behaviour of the TRNG. These parameters are often adjusted
in a trial and error process, for that reason, designing a TRNG is a challenging task.

Using Field Programmable Gate Arrays (FPGA) to implement TRNGs have
become very popular nowadays. A singular challenge supposes the implementation
of TRNGs on FPGAs as a consequence of the constrained resources of these sort of
devices. FPGAs contain defined logic blocks and therefore, there is not flexibility
when implementing designs. Furthermore, the vast majority of FPGAs do not include
analogue blocks, which are often used in the generation of random numbers.

This chapter is structured as follows. First, an introduction that includes some
generalities about the TRNG design process and evaluation methods is shown. In
the state of the art subsection, several TRNG proposals and attacks are studied.
In addition, a novel TRNG that will be later analysed and the coherent sampling
technique which is used in our TRNG proposal are introduced. After that, in section
4.2,the randomness of a novel TRNG presented by Cherkaoui et al. is analysed,
against different fault attack scenarios. In section 4.3, a new lightweight TRNG
design based on coherent sampling is proposed.

4.1 Introduction

4.1.1 Design and evaluation

True Random number generators commonly use some kind of physical phenomenon as
a source of entropy. Typically, these phenomena are analogue, so it is required to add
some extraction mechanism in order to convert the analogue phenomenon in digital
values that could be used by the device. Once the entropy source has been digitized,
the statistical properties of the digitized signal will be evaluated with the purpose
of establishing the TRNG quality. After the first evaluation, it is often necessary
to add a post-processing block to correct the output distribution. Finally, due to
the importance of the TRNGs in security systems, it is recommendable to check the
quality of the random output. Some embedded tests are used to set an alarm when
the generated number fails the tests. The typical blocks used in embedded TRNGs
are depicted in Figure 4.1.

4.1. Introduction 73

Source of

randomness

Entropy

extractor

Post-processing

mechanism

Embedded

tests

Digitized noise source

TRNG output

Alarm

Figure 4.1: General scheme of a TRNG

Digitized noise source: As mentioned previously, FPGAs usually do not in-
clude an analogue block, consequently it is not possible to take advantage of analogue
phenomena to extract entropy. In addition, these logic devices are designed to
minimize any random behaviour,and as a result, it is not an easy task to imple-
ment TRNGs on FPGAs. The most common entropy sources used on FPGAs are
metastability, delay variation between gates and thermal noise generated in the
device.

• Metastability is typically defined as the phenomenon that is produced when
the setup and hold time of a flip-flop are violated. The flip-flop output shows
temporarily an undetermined value. After this phase, a final value is set
randomly.

• The delay variation between gates is usually exploited by measuring the propa-
gation delay of a signal. Typically, the deviation of the ideal behaviour (jitter)
is used to extract entropy.

• Finally, as resistors and capacitors can be easily implemented in logic devices,
the thermal noise generated in these components can be used to affect the
frequency of a RC oscillator. The FPGA problem is that it does not include
the possibility of implementing resistors or capacitors. Therefore this is not an
entropy source suitable for FPGAs.

It is noteworthy that some FPGAs include phase locked loops (PLL). This
analogue block can be used in the generation of random numbers [55]. As this
block is not included in the majority of FPGAs, we will focus on other more general
methods that can be implemented even on FPGAs without PLLs.

Post-processing: The vast majority of TRNG outputs present a slight bias
before post-processing. This bias is caused by weaknesses in the entropy source or

74 4. True Random Number Generators

a poor quality in the entropy extraction method. The bias presented before the
post-processing makes the statistical test used to evaluate the TRNGs fail. In order
to solve this problem, it is common to add a post-processing stage to obtain an
acceptable bias at the final output. The most well-known post-processing techniques
are the following:

• XOR corrector: The XOR corrector consists in hashing n consecutive input
bits through a XOR operator to obtain 1 bit at the output. It is a very popular
post-processing technique due to its straightforward hardware implementation
and the fact that this corrector keeps the throughput constant. The main
problem of this corrector is that if the input bits are correlated, the bias is not
corrected at the output. A further analysis about the XOR corrector used as
post-processing can be found in [41].

• Von Neumann corrector: This post-processing [141] is the most well-known
technique because it generates unbiased outputs. Von Neumann corrector
consists in processing pairs. If the two input bits are equal, they are discarded.
On the other hand, the corrector output will be the first input bit. The main
drawback is that a high percentage of the generated bits are discarded (typically
about a 75%).

• Hash functions: Some authors include hash functions among the post processing
techniques. According to [62], if the input data have a high entropy, the output
generated by the hash function will be almost uniform. Besides, hash functions
used as post-processing provide some interesting cryptographic characteristics
as collision-resistance, one wayness, etc. The resources used to implement these
functions are their main drawback. In addition, it is not easy to compare this
technique with other post-processing methods.

• Good Linear Codes: this method is one of the most interesting options presented
in the literature because this technique presents a good trade-off between
resources and throughput. Furthermore, in [127] it is claimed that if an
attacker knows n input bits, then he can not guess the output better. This
feature provides more robustness to the system against bias introduced by an
attacker. A complete study of these linear codes and their characteristics is
presented in [80].

4.1. Introduction 75

Tests: As TRNGs play a key role in cryptographic systems, they should be
evaluated to guarantee at the output a stream of 0s and 1s uniformly distributed.
The TRNG quality is directly related to the entropy source, and taking into account
the post-processing, it is possible to select an entropy per bit rate at the output.

It is noticeable that some tests, that are used to evaluate TRNGs, have been
designed to evaluate PRNGs. These tests only check the output distribution without
regard to the phenomenon used to extract the entropy.

NIST, ENT and DIEHARD battery tests, that have been introduced in chapter 3,
are widely used to evaluate the statistical properties of the outputs. Other well-known
tests are the followings:

• FIPS: Federal Information Processing Standard is a standard used by USA
government and developed by the National Institute of Standards and Tech-
nology (NIST)[53]. This standard specifies the security requirements of a
cryptographic module used to protect sensitive information but unclassified.
This test stablish 4 different security levels.

• AIS31: It is an evaluation methodology debeloped by Bundesamt fr Sicherheit
in der Informationstechnik (BSI) [120]. This methodology was specifically
oriented to evaluate TRNGs. Unlike the previous suites, AIS31 establishes
a group of test to check the output before the post-processing block. This
measure guarantees the quality of the entropy source. Furthermore, AIS31
determines the necessity of on-line tests that generate an alarm when the
minimum entropy per bit will not be reached. Two different levels of security
are defined, P1 and P2. Basically, P1 level is focused on the TRNG final output
(after post-processing). P1 consist of 6 different tests (T0-T5) (a disjointness
test(T0),an autocorrelation test (T5) and FIPS-140-1 tests (T1-T4). The
security level P2 studies the raw output of the entropy source. It consists of
3 tests which are: A uniform distribution test (T6), A comparative test for
multinomial distributions (T7) and an entropy test (T8).

• On-line TEST: In terms of security, the idea of implementing embedded tests
that evaluate the quality of the TRNG (mandatory in AIS31) is very interesting.
If there are enough resources, it could be a good option to implement some of
the aforementioned tests. In typical application scenarios, the resources are

76 4. True Random Number Generators

very limited. For that reason it is not possible to use these tests. In [119], a
guide to choose efficient on-line tests for TRNGs was proposed. In lightweight
cryptography, where each equivalent gate counts, it is important to select a
test that observes a feature easily measured. Usually, tests that need a big
continuous bit-stream are avoided. The Frequency test is often selected among
the on-line tests due to its straightforward implementation and lightweightness.

4.1.2 State of the art

In this section some of the most recognized TRNGs presented in the literature are
summarized. In addition, typical attacks against TRNGs are also depicted.

4.1.2.1 TRNGs on ASICs

As aforementioned, embedded devices as smartcards that are used in applications
where high security is necessary, rely on TRNGs to provide security. TRNGs
implemented on ASICs have the advantage of using tailored blocks as PLL or some
other analog blocks. On the other hand, the TRNG design processes on ASICs are
expensive, due to the variety of parameters that have to be tuned in order to obtain
the required quality at the TRNG output.

Among the proposals reported in the literature oriented to low-cost RFID tags
stand out [8], [29]. In [8], an oscillator-based TRNG is presented. The circuit relies on
a system of jittered clocks that are being monitored by a clock arbiter-synchroniser,
in order to have a random output signal. In [29] the TRNG consists of an analog
random seed generator which uses the oscillator sampling mechanism and a LFSR
for post-processing.

4.1.2.2 TRNGs on FPGAs

In this subsection TRNGs on FPGAs are presented. They have been grouped
regarding their entropy source or the extraction method.

TRNGs using SRAM memories: In this group the TRNGs that use some
features of SRAM memories to generate random numbers are contained. There
are two main approaches: The first one uses the SRAM start-up state to extract

4.1. Introduction 77

entropy ([65],[138]). The noise generated on the start-up process of the SRAM is
non-deterministic. Using this noise as a seed in algorithms, it is possible to generate
a stream of random bits. The main problem of this extraction method is that some
SRAMs are reset on the start-up phase and it is not possible to take advantage of this
phenomenon. The other method is known as write collisions([58],[60]). This method
consists in generating a conflict in a particular address trying to write opposite
values at the same time. This procedure generates a kind of metastable response
that generates at the end a random bit. The problem of this extraction technique is
that not all the addresses have a random response. For that reason an enrolment
process is necessary. Moreover, the addresses can change their behaviour after a
SRAM reset.

TRNGs using Metastability: Metastability in electronics is the ability of a
digital electronic system to persist for an unbounded time in an unstable equilibrium
or metastable state [25]. This phenomenon has been widely used to generate random
numbers in ASICs. Taking advantage of metastability in FPGAs is more difficult due
to the fact that these devices are designed to minimize metastability events. Vasyltsov
et al. presented in [139] a TRNG that uses inverters (used as Ring Oscillators (ROs))
and multiplexers that switch between a metastable mode (entropy accumulation)
and a oscillation mode. More recently, in [144], it has been proposed another TRNG
that takes advantage of dual metastability. As mentioned before, the problem of
using metastability is that FPGAs are designed to minimize it. Moreover, some
vulnerabilities have been founded in [118].

TRNGs using jitter: As aforementioned, the jitter is the deviation of a signal
ideal behaviour. Using jittery signals has become the most effective method to
extract entropy in a FPGA. The jitter is composed of two main noises. Thermal
noise and flicker noise. The thermal noise is the responsible for the non-deterministic
component of the jitter. On the other hand, the flicker noise contributes with a
deterministic component that depends on the manufacturing technology, the power
supply, etc. There are two main techniques using jitter as a source of randomness:

• Sampling jittery clock signals This method consists in sampling high
frequency signals shifted in phase using a D flip-flop. Sunar et al. reported in
2007 a new TRNG using this technique [127]. To the best of our knowledge,
this was the first time that a stochastic model of a TRNG was presented. The

78 4. True Random Number Generators

RO-1

RO-2

RO-i

+
Resilient Function TRNG Output

Post-Processing

Figure 4.2: Sunar et al. TRNG

principle used by Sunar et al. is depicted in Fig 4.2. In this TRNG several ROs
that are sampled at the same time are used. If at least one of these ROs is
sampled in the jitter zone, a random bit will be generated. Using the provided
stochastic model and a resilient function used as a post-processing block, a
designer could select the entropy per bit. The main problem of this TRNG is
that the XOR-tree and the D flip-flop are not able to handle all the transitions
at their inputs.

In order to solve this problem, K. Wold et al. proposed in [147] a modified
version that includes a D flip-flop after each RO. These flip-flops make possible
to solve the problem of dealing with the transitions at the inputs. In addition,
the authors claim that it is possible to remove the post-processing block and
use less ROs. In [18], a study demonstrates that this TRNG presents pseudo-
randomness at the output. In this study a simulation of the K.Wold design,
with 18 ideal ROs (jitter-free), was carried out and it showed that a sequence
that pass statistical tests was generated.

Two fault attacks have been reported in the literature against these proposals
[90][14]. These attacks exploit the vulnerabilities of ROs.

Cherkaoui et al. presented a novel TRNG using this technique and Self-timed
Rings [32]. Further analysis of this TRNG has been carried out in following
sections due to the novelty of their proposal and its importance in this thesis.

• Coherent Sampling Coherent sampling is a technique that uses several clocks
with related frequencies or phases. The technique is simple, a clock signal
samples other clock signal in the edges. As these clock signals are not jitter-
free, the output of the sampling process will be a random stream. Fischer
and Drutarovsky presented in [54] a TRNG based on coherent sampling. In
this design, two PLLs embedded in the FPGA were used to generate the clock

4.1. Introduction 79

[1] [2] [3] [L]

Figure 4.3: RO general architecture

signals. The weak point of this TRNG is that PLLs are not supported in all
FPGA families. In order to solve this problem, Kohlbrenner et al. replaced
the PLLs by two ROs that can be used in all FPGAs. Besides, they proposed
a different sampler block. The problem of this TRNG is that an enrolment
process is necessary to obtain the required frequencies at the RO outputs.
In the same work, they claim that due to process variations, the normalized
frequencies of ROs can differ in up to 8% inside the chip and even more from
chip to chip.

As coherent sampling is the technique used in our TRNG proposal, it is
described more widely in section 4.1.2.5.

It is noteworthy that in almost all the proposals using these techniques, oscillators
are used as entropy sources. Due to the importance of these oscillators in TRNG
designs, in the next subsection are introduced the most extended oscillators used on
FPGAs.

4.1.2.2.1 Oscillators used as entropy sources

Jittery clocks are usually used as entropy sources in many TRNGs. Especially in
FPGAs where sources of randomness are very limited. Ring Oscillators (ROs) and
Self-Timed Rings (STRs) are the most used alternatives.

• Ring Oscillators: ROs are the most widely used solution as generators of
jittery clocks in both ASICs and FPGAs due to their low area, good integration
in digital and analog design flow and important phase noise. Basically, a RO
consists of a chain of an odd number of inverters or an inverter and delay
elements connected to form a ring. The structure of a generic RO is depicted
in 4.3.

80 4. True Random Number Generators

S
F C

R

F R C
0 0 C−1

0 1 0
1 0 1
1 1 C−1

Figure 4.4: Structure and truth table of a Self-timed Ring stage.

S0 S1 S2 SL

 F0 F2 FL F1 C0 CL C2 C1

 R0 R1 R2 RL

Figure 4.5: Self-Timed Ring structure.

ROs have been widely used in the literature [127] [147]. Their behaviour is well-
known under some environmental variations (temperature, underpowering, etc)
[149]. Among their weaknesses stand out the intra and extra device variability
of frequencies. Several attacks that take advantage of the RO weaknesses have
been reported in the literature [90][14].

• Self-Timed Rings:

Self-Timed Rings (STRs) are well-known structures to generate clock signals in
digital devices. A STR implements a handshake protocol that assures an evenly
distribution of events through the different stages. For this, the implementation
of a multi-phase oscillator based on a STR is highly configurable—frequency
and phase resolution between signals can be chosen.

– Architecture

The basic element in a STR is a stage. Each stage consists of a Muller
gate and an inverter, and implements the truth table shown in Fig. 4.4. If
the forward input F , is different from the reverse output R, the output C
takes the same value as F ; otherwise the previous output is maintained.
The STR architecture implements a micropipeline (ripple FIFO) intro-
duced by Sutherland in [130] (see Fig. 4.5). The handshake protocol used
guarantees the phase distribution between the micropipeline stages.

– Behavior and Configuration

4.1. Introduction 81

TTTTBBBB (01010000) → TTTBTBBB (01011000) →
TTBTBTBB (01011000) → TBTBTBTB (01100110) →
BTBTBTBT (11001100) → TBTBTBTB (10011001) →
BTBTBTBT (00110011) → TBTBTBTB (01100110) · · ·

Figure 4.6: Example of tokens and bubbles propagation in a Self-timed Ring.

In order to understand the STR operation we need to define the following
parameters:

∗ L: Is the number of stages that compose the STR. Each stage can be
initialized either to 0 or 1.

∗ Tokens and Bubbles: A stage contains a token if its output Ci is not
equal to the output Ci + 1. Converserly, a stage contains a bubble if
its output Ci is equal to the output Ci + 1. The number of tokens
(NT) and bubbles (NB) can be chosen during the initialization phase.

∗ N : It corresponds to the number of events distributed throughout
the ring, which equals the number of propagating tokens in the ring.

A token will propagate to the next stage (si+1) if this stage contains a
bubble. The bubble will occupy the backward stage si. The STR will
have an oscillatory behavior if there are at least 3 stages, 1 bubble, and
an even number of tokens. For example, in a 8 stage STR and a initial
distribution of 4 tokens and 4 bubbles, the events will propagate as shown
in Fig. 4.6.

It is important to note that the propagation delay of the ring depends on
two analog phenomena: Charlie effects and drafting effects. We refer the
reader to [146], where a complete model that explains both phenomena
and how they affect the ring propagation delay can be found.

Regarding configuration possibilities, the frequency can be fine tuned in
the initialization phase by changing the ratio between tokens and bubbles,
that is, NT/NB. The maximum frequency is reached when:

NT

NB
' Dff

Drr

(4.1)

where Dff and Drr are the static forward and static reverse propagation
delays, respectively.

82 4. True Random Number Generators

The phase shift between two stages separated by n stages can be calculated
as:

ϕn = n× N

L
× 90o (4.2)

Note that if L is a multiple of N , some outputs will have the same phase,
as it happens in the example shown in Fig. 4.6. In particular, there will
be four different phases through the ring, with each phase appearing in
two different stages (stagei and stagei+4). Therefore, in applications of
this oscillator in which the goal is typically to generate the maximum
number of different phases, L mod N should not be equal to 0.

A comparison between ROs and STRs used as a source of entropy can be found
in [30].

Others TRNGs: Owing to the importance of TRNGs in security systems,
several TRNGs have been presented in the last decade. Several of them are not
included in the previous classification but they are worthy to note. Dichtl et
al. presented in [43] a TRNG that tries to transform pseudo-randomness in true-
randomness. As LFSR is used as post-processing, it cannot be possible to assess a
entropy per bit at the final output. Lozac’h et al. proposed a TRNG based on open
loop chains and metastability in [84]. Finally, E.Bohl reported an interesting TRNG
with on-line testability in [19].

4.1.2.3 Attacks on TRNGs

TRNGs have not only to generate a uniform distributed output without bias but
also should be robust against attacks. There is an increasing interest in this topic
due to the important role of TRNGs in cryptographic systems.

Firsts studies dealing with these problems in FPGAs where focused on the effects
of temperature and voltage on the randomness. To the best of our knowledge, the
first attack was presented in 2003 by M. Dichtl [42]. In this work [133],an attack
against a TRNG that uses free-running oscillators and two LFSR was presented. An
attacker takes advantage of controlling the environmental conditions to guess the
frequency of the oscillators. Once the frequency is known, it is easier to guess the
LFSR internal state.

4.1. Introduction 83

In 2008, Sunar et al. presented a detailed report [149] about the effects of
temperature and voltage in their TRNG [127]. It was concluded that ROs frequencies
are dependant on the power supply and temperature, while the randomness was
barely affected.

R. Santoro et al. presented [118] in 2009 an evaluation of temperature effects
and high electronic activities around three TRNGs [127], [139] and [43]. It can be
concluded that [139] and [43] present weaknesses when the temperature is increased
or there is a high electronic activity around the TRNG.

It is worth to highlight the work presented by A.Markettos et al. [90]. In this
study the authors performed a fault injection attack against the K.Wold’s TRNG.
The ROs were locked to the same phase by coupling the injection frequency on to
the power supply of the device. If all the ROs have the same phase, the TRNG
will generate several deterministic bits. This attack was carried out using ROs
implemented in discrete logic.

Following the work started by A.Markettos et al., in [14],an electromagnetic (EM)
attack against Sunar’s TRNG was carried out, where the EM effects in the phase of
ROs to control the TRNG output were exploited.

As shown in [90] and [14], ROs are a weak point in TRNGs and their use should
be avoided.

In conclusion, a good TRNG should be portable among different FPGAs families,
should be robust against attacks and should be lightweight (area, power and clock
cycles).

4.1.2.4 Introduction to Cherkaoui et al. TRNG.

A.Cherkaoui et al. design is introduced in this section due to the novelty of this
proposal. To the best of our knowledge, vulnerabilities of this TRNG have not
been found yet. For this reason, in this thesis we have explored the response of a
lightweight implementation of this TRNG in typical TRNG evaluation scenarios.

A.Cherkaoui et al. presented in [32] a novel TRNG design that exploits the jitter
on a Self-Timed Ring to generate random numbers.

The STR consists of L-stages that uses a handshake request and acknowledgement
protocol in order to guarantee the propagation of events (N) simultaneously. In

84 4. True Random Number Generators

S
e
lf
-t

im
e

d
 r

in
g

1 2 3 L

DFF DFF DFF DFF DFF

clk

E
n
tr

o
p
y
 e

x
tr

a
c
to

r

Raw random bits

Figure 4.7: Core architecture of an RNG based on a Self-Timed Ring (STR) [32]

Ci-1

Ci

Ci+1

clk

∆φ

jitterVoltage

Time

Figure 4.8: Entropy extraction principle

the STR configuration process, L and N are selected to be co-prime. This STR
configuration guarantees the generation of L equidistant phases and a phase resolution
∆ϕ = T/2L, where T is the period that can be tuned precisely choosing the ratio
N/L. In Fig. 4.7, the architecture of the TRNG is presented.

Fig. 4.8 illustrates the entropy extraction principle. The STR output signals
are re-indexed according to their mean arrival time (Ci and Ci−1 are not adjacent
stages). Since each signal Ci is sampled using the same reference clock clk, if the
jittery interval around the mean signal phase is longer than the phase difference
between two signals Ci and Ci−1, at least one signal is sampled in its jittery time
interval. The resulting sample then has a random value, and hence the output of the
XOR gate is also random. A complete stochastic model to provide a lower bound of
entropy per bit as a function of the ring characteristics (number of stages, oscillation
period, and jitter size) is reported in [32].

As post-processing, an nth-order parity filter was used. This filter combines n

4.1. Introduction 85

successive input bits into one output bit using a XOR function, which enhances the
entropy per output bit, but reduces the throughput by n. The main advantage of the
parity filter is that combined with the proposed stochastic model, it enables simple
entropy per bit correction. The variable npmin that represents the minimum filter
order necessary to pass the statistical tests was defined.

Regarding the TRNG hardware, each STR stage contains a Muller gate and
an inverter implemented in one look-up-table (LUT). Hard-wired connections be-
tween the LUTs and adjacent flip-flops were used to connect each stage with its
corresponding flip-flop. Ring stages were placed so that the delays between adjacent
stages were identical, or at least similar (ring topology). Interconnecting each stage
with the previous and the following one, a ripple FIFO is created. Finally, the
FIFO is closed to create a ring that implements the handshake protocol [130]. A
XOR-tree was selected to hash the sampled outputs in only one bit. This XOR-tree
was implemented using a ripple structure (registers are used between each XOR row)
in order to achieve high working frequencies.

The evaluation of this TRNG was carried out in two different FPGAs (Altera
Cyclone III and Xilinx Virtex 5). Several architectures (different number of stages)
were evaluated. AIS31 statistical suite was used to test the TRNG output. Main
parameters,(∆ϕ, T , npmin,etc) for the different architectures and both devices can
be founded in [32].

4.1.2.5 Introduction to Coherent sampling.

Due to the importance of coherent sampling on this thesis (Coherent sampling
technique has been used in our TRNG proposal.), the principles of coherent sampling
are introduced in this section. After that, we present the main TRNG proposals that
exploit this technique.

4.1.2.5.1 Background

Coherent sampling is a well-known technique to sample periodic signals at finer time
intervals. Coherent sampling refers to an integer number of cycles that fits into a

86 4. True Random Number Generators

Random

Number

S1

S2

Sampler
Post-

processing

das

Figure 4.9: General architecture of a TRNG based on coherent sampling.

predefined sampling window. Mathematically, this can be expressed as:

fin
fsample

= Ncyc

Nsamples

(4.3)

where fin is the sampled signal (S1) frequency; fsample is the sampling signal (S2)
frequency; Ncyc is the number of cycles of the sampled signal; and Nsamples is the
number of samples.

If Ncyc and Nsamples are high and co-primes, the repetition period of samples will
be maximum—that is, we will have the highest resolution of the sampled signal. This
is an interesting feature because if the number of periods (frequencies) is constant for
ideal sources of S1 and S2, in physical systems where these clock signals contain jitter,
this number will be random because of the Gaussian random component contained
in the jitter.

The general architecture of a TRNG using coherent sampling is depicted in Fig.
4.9. The signal S1 would be sampled by the signal S2, generating a digitized analog
signal (known as “das”). If the quality of the raw output is not high enough, a
post-processing stage is added to guarantee a uniform output. A mathematical model
of physical RNGs based on coherent sampling can be found in [16].

4.1.2.5.2 TRNGs based on Coherent Sampling

The first time, to the best of our knowledge, that coherent sampling was used in an
FPGA to generate random numbers was in [54]. In that work, Fischer et al. used a
PLL embedded in an Altera FPGA in order to guarantee the relation between Ncyc

and Nsamples. As explained in Section 4.1.2.2, the main drawback of this proposal
is that the TRNG is not portable to other FPGA vendors. Besides, PLLs are not
supported in all FPGAs.

4.2. Analysis of a Novel TRNG 87

In [78], Kohlbrenner and Gaj replaced PLLs by ROs with the aim of obtaining a
portable design for FPGAs from different vendors. The RO frequencies are selected
to be close but not identical. The RO outputs are connected to a sampler circuit
that generates a stream of 0’s and 1’s. The length of this stream is counted module
2 to generate a random bit. The weakest point of this design is that it requires a
very complicated manual placement and routing process in order to finely set the
ring frequencies. This is a consequence of the high variation (up to 7 %) among the
RO frequencies in the same FPGA. To overcome such a sensitivity to placement, the
authors suggest a design with four ROs that are sampled by a fifth one.

In [37], Cret et al. take up the basic idea of using only two ROs. In this design,
the authors introduce a multiplexer to alternate the sampling signal. They claim
that the placement sensitivity is overcome using a parametrizable post-processing.
The main weakness of this TRNG is that the quality of the raw output, without
the post-processing stage, is really poor. In addition, Cret et al. present the cycle
lengths of the signal generated in the sampler and its distribution is not an evidence
of the claimed randomness—which is actually far away from an uniform distribution.

Finally, in [137] the authors present three designs based on different clock genera-
tors for different FPGA models. More precisely, the generators are RO-RO, RO-PLL
(for Altera FPGAs), and RO-DFS (for Xilinx FPGAs). Apart from the technology
dependency, the pair RO-RO cannot be fully automated since its design needs manual
placement and routing. Finally, it is worth mentioning that the authors introduce
the interesting idea of generating one random bit per half period by using mutual
sampling.

4.2 Analysis of a Novel TRNG

As aforesaid in the previous section, the TRNGs reported in the literature are not
suitable enough to secure lightweight applications due to different factors.

Some of them are not portable among different FPGA families because of the
lack of a special block, e.g PLLs on the Fischer and Drutarovsky design [54]. Others
like the TRNG based on metastability presented by Vasyltsov et al. in [139] has
been attacked successfully [118].

88 4. True Random Number Generators

Sunar’s design ([127]) was a very promising alternative due to the fact that was
the first TRNG that provided a stochastic model. But the attacks performed against
the ROs in [90] and [14] affect directly to the validity of the stochastic model.

In August, 2013, A.Cherkaoui et al. presented a new TRNG design keeping the
main idea of Sunar‘s design of sampling signals in the jitter zone [32]. ROs have been
replaced by a Self-Timed Ring in order to avoid their vulnerabilities. The authors
present a realistic stochastic model that guarantees a rate of entropy per bit. As far
as we know, this TRNG does not have any known vulnerability (problems related to
RO phase interlock and violations of the stochastic model) and no-attacks have been
reported in the literature.

In this section, in order to study if this design presents any vulnerability, we have
explored the response of the TRNGs in several typical scenarios. Underpowering,
temperature-variation susceptibility and power glitches have been considered. In
addition, for the first time (to the best of our knowledge), a clock glitch attack against
the TRNG has been performed. Specifically, against a "lightweight" implementation
of this TRNG affecting XOR-tree weaknesses. The implementation of this lightweight
version is important because area can be an exclusion factor to select this TRNG.

This section is structured as follows. In Section 4.2.1, we describe the threat
model and related work on that topic. In Section 4.2.2, the experimental setup
is introduced. Section 4.2.3 presents the obtained results for different fault-attack
injections and discussed the results. Conclusions are drawn in Section 4.2.4.

4.2.1 Threat Model

Two kind of attacks can be considered on TRNGs. First, passive attacks that collect
data from the TRNG output (before and after the post-processing) in order to predict
future values. Second, active attacks that try to modify the TRNG behavior to
control its output. Active attacks can target the randomness source, the entropy
extractor, algorithm post-processing, or in the alarm generated by embedded tests.
In this section, we present an attack that targets the entropy extractor, specifically
through the violation of timing constraints.

Nowadays, high frequencies are demanded in almost all applications. Hence, the
reduction of the critical path delay is one of the most important issues in the IC

4.2. Analysis of a Novel TRNG 89

design. This critical delay is the minimum time necessary to process the data through
the combinational logic between two D-registers sharing the same clock. The clock
period has to be higher than this critical delay in order to guarantee the correct
circuit behavior. This critical delay depends on the delay of the combinational gates
and also depends on the set-up and hold time of the registers.

The violation of time constraints induce faults in the circuit. There are two main
methods to achieve timing violations:

• Overclocking: This technique consists in decreasing the clock period to achieve
a time violation. If the clock frequency is high enough, it can be observed how
faulty data is latched by D flip-flops. To make certain the correct behavior,
the clock period Tclk must be:

Tclk > Tcritical + Tset−up (4.4)

where Tcritical represents the delay of the critical path and Tset−up represents
the setup time of the registers. From an attackers point of view, it is important
to control exactly when the fault is injected. Clock glitches are well known in
practice to induce timing violations. Typically, an attacker needs to be able to
control two parameters: When the fault is injected and also the duration of
this fault (consecutive clock cycles that are affected by the glitch injection).
Recent works have induced faults to cryptographic algorithms [153, 6, 82] using
this technique.

• Increasing propagation time: The other way to induce faults through timing
violations is to increase the critical path delay (Tcritical). In [112], the equation
of the inverter propagation time tpLH was presented, using first order analysis
of the dynamic behavior:

tpLH =
CL

[2|Vth,p|
VDD−|Vth,p|

+ ln
(
3− 4 |Vth,p|

VDD

)]
µpCox

Wp

Lp
(VDD − |Vth,p|)

(4.5)

where CL is the load capacitance, Vth,p represents the PMOS threshold voltage,
VDD is the power supply voltage, µp is the mobility, Cox is the gate oxyde
capacitance, and (Wp/Lp) denotes the aspect ratio of the PMOS. For more

90 4. True Random Number Generators

complex combinational logic, the aforementioned equation becomes more com-
plicated, but the inversely-proportional relationship between propagation delay
and power supply voltage still holds true. That means, the propagation time
through any combinational logic will increase with a decrease of VDD. The
same effect is caused by increasing the temperature, as temperature is directly
related with mobility µp.

Underpowering is generally used to induce fault by timing violation due to the
fact that any decrease of Vsupply will suppose an increase of the propagation
delay [112].

Once again, an attacker needs to control precisely when an attack is performed.
For that reason, underpowering is not an efficient way to achieve malicious
goals. Power glitches consisting in a sudden negative change of voltage have
been used to induce faults in cryptographic algorithms [153, 12]. With this
procedure, a transient fault is caused by increasing the propagation delay in
combinational logic. In summary, underpowering induces a permanent increase
of the propagation time, and a power glitch induces a transient increase of the
propagation time.

Increasing the temperature in order to induce faults is also an attack scenario
usually considered.

As it is shown in Fig. 4.10, in the TRNG presented by Cherkaoui et al. the critical
path is in the XOR-tree. We note that as the STR oscillator is purely combinational,
clock glitches do not affect its behavior. For this specific TRNG, clock glitches can
be used also to violate the conditions presented in the stochastic model, sampling
the same jitter realization twice by generating a glitch which meets the following
statement:

Fclk > 1/2∆ϕ. (4.6)

In practice, this violation is very difficult to achieve because the clock glitch
frequency induced should be of a few GHz (22GHz for a configuration of 63 stages).
Probably the XOR-tree critical path delay will have a bigger period. For that reason,
a fault would be introduced before a violation of the stochastic model appears.

4.2. Analysis of a Novel TRNG 91

Stage-1

DFF
XOR tree

clk

DpMax

DFF

DFF

DFF

Stage-2

Stage-3

Stage-i
DFF

Clock

Figure 4.10: The representation of the TRNG by Cherkaoui et al. with the path delay of the
XOR-tree (DpMax)

4.2.1.1 Related Work

Typical scenarios where the TRNGs are evaluated include the randomness evaluation
for different temperatures and core voltages. Surprisingly, to the best of our knowl-
edge, only two physical attacks on random number generators have been presented
in the literature. The first attack was presented by Markettos and Moore [90]. This
attack aims at an RO based TRNG implemented in an IC. Injecting a sine wave
onto the power supply, the operating conditions were modified and a bias appeared
at the output signal. The other attack, presented in [14], targets another RO based
TRNG [147] using an electromagnetic attack. In this attack, the ROs were locked on
the injection frequency, generating a controllable bias at the output.

On the other hand, power and clock glitches have been widely used to attack
cryptographic algorithms. Clock glitches are a well known technique to induce faults
in cryptographic designs. Several platforms have been designed to induce this kind
of faults [6, 46]. To the best of our knowledge, this kind of fault injection has not
been considered as a serious threat for TRNGs. As it is shown in the following
sections, clock glitches should be considered in the typical evaluation scenarios. The
fault injection using power glitches is widely used in microcontrollers, but only a few
papers reported the use of power glitches in FPGAs [153]. Besides, as in the clock
glitches case, this kind of attack has not been considered on TRNGs until now.

92 4. True Random Number Generators

4.2.2 Implementation and Experimental Setup

We have implemented several STR configurations in aSpartan-6 XC6SLX45 and a
Spartan-3 XC3S1000, that are both from XILINX. Following the recommendation
of [31], a hard-macro for each FPGA has been designed to guarantee the phase
distribution at the register inputs. The hard-macro implements an inverter, a Muller
gate using a 6-input LUT and also the sample D flip-flop in the same slice. In
addition, we have tried to avoid bottleneck effect using a placement process that
maintains the delay of consecutive stages. The XOR-tree is implemented using
6-input LUTs in order to save area.

The results presented in Table 4.1 were obtained using a core voltage of 1.2V.
The sampling frequency was set to 60MHz. This frequency has been chosen because
a bit rate of a few Megabit per second (>10MHz) is typically sufficient for normal
applications. More demanding applications like 10G-bit Ethernet servers would need
up to 20Mbits/s that can be reached with a 60MHz clock. Low Voltage Differential
Outputs (LVDS) have been used to avoid circuitry effects. Specifically, as an opposite
current flows in the two wires, the electromagnetic fields are canceled each other.
Therefore, the generation of electromagnetic noise is reduced. The STR period
was measured using an oscilloscope (the LeCroy WavePro 725Zi) and an active
differential probe with a 1GHz bandwidth. The sampling rate was set to 2GS/s
to obtain accurate results. Furthermore, a simple software post-processing filter
that enhances the entropy per bit was implemented. This post-processing consists
of a XOR filter that combines n consecutive bits into one output bit. This filter
was implemented in Matlab, which was also used for analyzing the measured (and
filtered) power traces.

We applied the statistical test of NIST [114] to 100 sequences of 106 bits for each
STR configuration. NIST provides a test suite that consists of a statistical package
including 15 tests which evaluate the randomness of binary sequences. For the test,
we set the confidence level to 0.01. Raw data were acquired using a FIFO memory
and a RS232 protocol at 19.2Kb/s. The npmin value presented in Table 4.1 shows
the filter order necessary to pass successfully the NIST test.

In terms of T , ∆ϕ, and npmin, these results are very similar to the results presented
in the original paper [32]. The difference in the throughput is due to the fact that
we are using a clock of 60MHz instead of a 400MHz clock.

4.2. Analysis of a Novel TRNG 93

Table 4.1: Results for different STR configurations in Spartan FPGAs

Device STR Measurements Compressed Data
L N T ∆ϕ npmin Throughput

Spartan-
6

63 32 2.88 ns 22.8 ps 7 8.5Mbit/s
127 64 3.18 ns 12.5 ps 5 12.0Mbit/s
255 128 3.52 ns 6.9 ps 3 20.0Mbit/s
511 256 4.27 ns 4.1 ps 3 20.0Mbit/s

Spartan-
3

63 32 3.77 ns 29.9 ps 5 12.0Mbit/s
127 64 3.84 ns 15.1 ps 3 20.0Mbit/s
255 128 3.99 ns 7.8 ps 2 30.0Mbit/s
511 256 4.21 ns 4.1 ps - 60.0Mbit/s

reset|11010011100110 reset|11000110001010 reset|10101011010101

reset|11101001010001 reset|111010001101 reset|00110110110000

reset|01110110011111 reset|10010110111101 reset|10100101111000

Figure 4.11: Nine output sequences captured after restarting the TRNG. Note that all sequences
are different

In order to characterize the pseudo randomness properties of this TRNG, we
decided to apply the idea of Dichtl et al. [43]. The idea is to restart the TRNG
from the same initial conditions. In Fig. 4.11, nine oscillograms of repeated restarts
are presented. The horizontal axis represents the time and shows the first 350 ns
(corresponding to the generation of 14 bits using a clock of 40MHz). The vertical
axis is the voltage of the output signal. It is clearly visible that several random
signals are generated after the same restarting point.

4.2.2.1 Setup for High-Temperature Fault Injections

We used a Positive Temperature Coefficient resistor heater (PTC) in order to increase
the temperature from room temperature (about 35◦C) up to 85◦C, i.e., the maximum
operating temperature for the Spartan-3. A PT-100 sensor was used to measure the
temperature. In order to facilitate the heat propagation, several layers of conductor

94 4. True Random Number Generators

material were used between the heater and the FPGA, as it is shown in Fig. 4.12. A
USB transfer protocol at 60Mb/s was used to collect the data from the FPGA as
fast as possible (to acquire the data at the same temperature).

Figure 4.12: Setup for tampering with the temperature of the FPGA. A PT100 is placed
between heating element and FPGA for measuring the temperature.

In Fig. 4.13, the frequency response of the STRs against temperature changing
is shown. A Spartan-3 with a core voltage of 1.2V was used to carry out the
measurements. It shows that the frequency of the STRs decreases with temperature
increase. At 35◦C, the frequency of the analyzed STRs is between 235 and 265MHz
depending on the number of stages (63, 127, 255, and 511) while at 85◦C it is between
230 and 260MHz.

We also analyzed the frequency response of a ring oscillator, which consists of
three inverters, in order to compare it with the behavior of the STRs. As a result,
we observed the same effect as obtained for the STR: the frequency decreases the
higher the temperature.

4.2.2.2 Controller Board and FPGA Extension Board

In order to tamper with the supply voltage as well as with the clock signal, a custom-
made fault-injection controller board was used, shown on the right side of Fig. 4.14.

40 50 60 70 80

230

240

250

260

270

Temperature (°C)

Fr
eq

ue
nc

y
(M

H
z)

63
127
255
511
RO3

Figure 4.13: Frequency of the STR measured at different temperatures. For higher temperatures
the frequency decreases.

4.2. Analysis of a Novel TRNG 95

The main part of the controller board is a XILINX Spartan-6 XC6SLX45 FPGA. For
inserting clock glitches into the clock signal, a similar approach to the one presented
in [6, 46] is applied. In order to insert power glitches, a high-speed multiplexer with
different, adjustable voltages at the inputs is used. Power-supply voltages between
0V and 5V are supported. The output of this multiplexer is connected to the supply
pin of the attacked device. Switching among the different inputs allows to tamper
with the supply-voltage level. The parameters glitch duration, glitch shape as well as
the point in time when the glitch is injected are configured by a PC that is connected
via USB.

In order to allow attacking a wide range of devices, the controller board provides
many pins for connecting extension boards. For the experiments conducted during
this work, an FPGA Extension Board (FEB) was developed as shown on the left
side in Fig. 4.14. Most relevant connections between the controller board and the
FEB are: a power supply, clock signal, trigger signal, and a serial connection for
communicating with the PC. With the trigger signal, a synchronization between the
FEB and controller board can be performed, which allows a precise glitch injection
according to the execution of the implementation on the FEB. The FPGA placed on
the FEB is the same as on the controller board, i.e., a XILINX Spartan-6 XC6SLX45.

As underpowering would be used to induce time violation faults, we have studied
the behavior of the STRs for different power-supply voltages. We have varied the
core voltage between 0.70V to 1.26V (note that according to the Xilinx Spartan-6
specification [148] underpowering happens if the core voltage is lower than 1.16V).
Also note that the minimum voltage for which the FPGA can be programmed is
0.70V.

As Fig. 4.15 shows, the core voltage affects directly the frequency of the STRs.
Hence, ∆ϕ is affected. The reduction of ∆ϕ does not affect the randomness, even a
higher frequency could be used for sampling the STR outputs fulfilling the stochastic
model constraints. Comparable results were presented in [31].

4.2.3 Experimental Results

In this section, experimental results are presented. First, we provide the results of
the temperature susceptibility of the TRNG. Second, we provide results of performed

96 4. True Random Number Generators

1

2

Figure 4.14: (1): FPGA Extension Board (FEB); (2): Controller Board.

Figure 4.15: Frequency of the STR measured for different core voltage values. Reducing the
core voltage decreases the frequency.

underpowering attacks. Finally, we present results of power and clock-glitch attacks.

4.2.3.1 High-Temperature Fault Attacks

In our experiments, we increased the temperature of the targeted Spartan-3 FPGA
to 35, 45, 55, 65, 75 and 85 ◦C. We did not increase the temperature further to avoid
destruction of the FPGA (so we operated the device within the specified maximum
operating conditions). Note that we aimed to evaluate the impact of an increased
ambient temperature on the output of the TRNG and not to cause over-heating
faults through operating the device beyond the maximum ratings as, for example,

4.2. Analysis of a Novel TRNG 97

recently shown by [71, 24]. The Spartan-3 FPGA was powered with a core voltage of
1.20V and was clocked with a frequency of 60MHz. We increased the temperature
from two different starting temperatures: from a lower and a higher temperature of
the goal temperature in order to test the TRNG reliability against past conditions.
We applied the NIST test to 100 sequences of 106 bits and obtained similar results in
terms of npmin to those presented in Table 4.1. However, the increased temperature
did not show any effects on the randomness of our TRNG. The increase of the XOR-
tree propagation time is not enough to induce a fault in the circuit. In particular,
the STR frequency decreases with the increase of the temperature as it is shown in
Fig. 4.13. This frequency decrease means a phase resolution (∆ϕ) increase which
makes less likely to sample at least one signal in the jitter zone. In this case, the
increase of the ∆ϕ is negligible (which is an increase of 1 ps in the worst case). In
addition, thermal noise, which is responsible for the random component of the jitter,
increases with the increase of the temperature. For that reason, this phenomenon
compensates the loss of randomness due to an increase of the phase resolution. So
the combination of both phenomenon did not significantly affect the TRNG and
randomness of the output.

4.2.3.2 Underpowering

Using the controller board and the FEB (Spartan-6 FPGA), we measured the
frequency response for different STR configurations (63, 127, 255, and 511) and
operated the device with a clock frequency of 20, 40, and 60MHz. The power supply
was set to either 0.70, 1.00, and 1.20V. We acquired 100 sequences of 106 bits for
each different combination of frequencies, STR configurations, and core voltages.

Using underpowering, the same phenomena are observed as in the temperature
fault-attack scenario. The propagation time increase through the XOR-tree does
not have any impact in the TRNG normal operation. On the other hand, the phase
resolution increase is more important in this case because there is a significant
difference among the frequencies reached for different core voltages (Fig. 4.15).
Table 4.2 presents the ∆ϕ obtained using a core voltage of 1.00 V and 0.7 V. The
largest difference in terms of phase resolution is obtained for the 63-stages architecture,
reaching a ∆ϕ difference of up to 41 ps. This change in the phase resolution is non-
negligible and provokes a bias that can be measured before the post-processing.

98 4. True Random Number Generators

For the 63-stages architecture and a core voltage of 0.70 V (worst case), a 2.6 %
bias (more 1’s than 0‘s) appears before the post-processing. However, this bias is
eliminated by the post-processing filter. In summary, using underpowering generates
random bias bits that are corrected after the post-processing without a visible impact,
in terms of randomness, at the final output.

4.2.3.3 Power-Glitch Attacks

Power glitches were injected for different frequencies, core voltages, and STR config-
urations. We successfully show that faults are induced in the TRNG output that are
caused by timing violations. First, we present results for a nominal supply voltage.
Afterwards, we present results of underpowering attacks. It is important to notice
that for both power glitch scenarios, the STR was still oscillating without any changes
at the output.

• Nominal Supply Voltage We set the power supply voltage to 1.20V and
injected power glitches to different STR configurations. As it was expected,
using low clock frequencies (4, 8, 20, and 32MHz), the power glitches do not
impact the final output due to the fact that the critical path delay period is
still lower than the clock frequency. However, using a 40MHz clock and a
power glitch length of 10 000 clock cycles, i.e., 250µs, a bias appears at the
TRNG output before the post-processing is done. This little bias is filtered by
the post-processing block and it is not noticeable at the final output. Fig. 4.16
shows the precise instant were the power glitch is induced creating a slight bias.

Table 4.2: Period and Phase resolution for the different STR configurations using a core
voltage of 1.00 V and 0.70 V

Voltage L T ∆ϕ

1.00 V

63 4.20 ns 33.2 ps
127 4.60 ns 18.1 ps
255 5.10 ns 10.0 ps
511 6.03 ns 5.8 ps

0.70 V

63 8.00 ns 63.4 ps
127 8.68 ns 34.1 ps
255 9.57 ns 18.7 ps
511 15.00 ns 14.4 ps

4.2. Analysis of a Novel TRNG 99

0 50 100 150 200 250 300 350 400 450 500
−0.5

0

0.5

1

1.5

Time (µs)

V
ou

tp
ut

 (V
)

0 50 100 150 200 250 300 350 400 450 500
0.9

1

1.1

1.2

1.3

Time (µs)

V
su

pp
ly

 (V
)

Figure 4.16: Bias of the TRNG output before post-processing when a power glitch with a length
of 87.5µs and a core voltage of 1.20V are used. No bias is observable after post-processing.

A configuration of 255-stages, 40MHz frequency, and a power-glitch length of
3 500 clock cycles, i.e., 87.5µs, were used to generate the figure. The maximum
glitch length that can be induced without erasing the FPGA configuration is
750µs.

• Underpowering We set the supply voltage to only 0.7V and induced power
glitches during the TRNG computation. This induces a permanent increase in
the critical path delay period without modifying the clock period. Due to that
reason, we observed that the TRNG implementation is more sensitive to power-
glitch attacks. No evidence of faults were observed for clock frequencies between
4MHz and 20MHz. Using a clock of 32MHz and a minimum glitch length of
62.5µs, faults were induced for different TRNG configurations. We note that
the maximum power glitch length that can be used before deprogramming the
FPGA is 375µs. Fig. 4.17 shows the TRNG bitstream, before post-processing,
under different glitch lengths. A 255-stage TRNG was selected, using a 40MHz
clock. Fig. 4.17a shows the output in normal conditions, in Fig. 4.17b a power
glitch of 62.5µs was induced, and Fig. 4.17c presents the output affected by a
187.5µs power-glitch length.

The effects of power glitches are observable after the TRNG post-processing phase.
For a visualization, we used a clock frequency of 40MHz and induced a power glitch
with a length of 62.5µs on different STR configurations. Fig. 4.18a shows the output

100 4. True Random Number Generators

0 2 4
x 105

0
0.5

1

1.5
2

2.5
3

Time (ns)

V
ou

tp
ut

 (V
)

a)

10 20 30

20

40

60

80

100

120
10 20 30

20

40

60

80

100

120

0 2 4
x 105

0
0.5

1

1.5
2

2.5
3

Time (ns)

V
ou

tp
ut

 (V
)

b)

10 20 30

20

40

60

80

100

120

0 2 4
x 105

0
0.5

1

1.5
2

2.5
3

Time (ns)

V
ou

tp
ut

 (V
)

c)

Figure 4.17: TRNG output before post-processing (lower plots) and resulting bit-stream
(upper plot) for a core voltage of 0.70V. For case (a) no power glitch was inserted, for case (b)
a power glitch of length 62.5µs was inserted, and for case (c) a power glitch of length 187.5µs
was inserted.

a) b)

5 10 15 20 25 30 35 40 45 50

10

20

30

40

50

60

70

80

90

100

Figure 4.18: Final bit-stream for a core voltage of 0.70V and a power glitch length of 67.5µs.
For case (a), 3-XOR filter with a configuration of 255 stages was applied, for case (b), 7-XOR
filter with a configuration of 63 stages was applied.

after a 3-XOR filter for a configuration of 255 stages. Fig. 4.18b shows the TRNG
output after the post-processing of a 7-XOR filter for a configuration of 63 stages.
As the 255-stages configuration offers a higher entropy rate per bit, it is necessary to
apply a more “lightweight” post-processing step than for the 63-stages configuration.

As the same number of bits before the post-processing is affected by the power
glitch, after the post-processing the number of bits affected will be higher in the

4.2. Analysis of a Novel TRNG 101

architecture that needs a less complex post-processing (255-stages) than in the
architecture that uses a more complex post-processing (63-stages). This observation
has a significant impact on a frequently used on-line test, the longest-run test. Low
implementation costs make this test a popular choice. Longest-run tests count the
number of equal consecutive bits at the TRNG output and if this number exceeds
a predefined threshold, an error signal is generated in order to signalize the faulty
behavior. As a consequence, a TRNG implementation using the less-complex post-
processing (255-stages) might not pass this test in presence of a power glitch while
an implementation applying the more-complex post-processing (63-stages) might
pass this test in presence of the similar power glitch. For example, if 100 bits are
affected by the power glitch before the post-processing, the output will have 14
consecutive equal bits for the 63-stages architecture and 33 consecutive equal bits
for the 255-stages architecture. If the threshold of the longest-run test is e.g. set
to 20, the first case will be detected as normal behavior (the number of consecutive
equal bits is smaller than the threshold value) while in the second case an error
signal will be generated (the number of consecutive equal bits exceeds the threshold
value). An attacker could take advantage of this situation controlling a bunch of bits
undetectable for the long run test. In this case, using more post-processing steps
can suppose to be more vulnerable. For that reason, using a XOR filtering is not a
good option.

4.2.3.4 Clock-Glitch Attacks

The controller board allows us to induce clock glitches accurately and generate a
one-bit faulty output. For different frequencies (4, 8, 10, and 20MHz) and a core
voltage of 1.20V, clock glitches were injected without observable effect in the output.
This is due to the fact that the highest frequency reached during the clock glitch for
30MHz is about 60MHz. At this frequency, the statement Tclk > Tcritical + Tset−up is
met.

For a STR configuration of 255 stages, setting the core voltage to 1.20V, and
using a clock frequency of 40MHz, clock glitches were injected generating a faulty
output in the TRNG. In Fig. 4.19, two different numbers of cycles are affected by
clock glitches (10 and 55, respectively). The operation frequency used is 40MHz,
obtaining up to a frequency of 90MHz during the clock glitches. We also have tried

102 4. True Random Number Generators

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−2

−1

0

Time (ns)

V
ou

tp
ut

 (V
)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−2

−1

0

Time (ns)

V
cl

k
(V

)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−2

−1

0

Time (ns)

V
ou

tp
ut

 (V
)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−2

−1

0

Time (ns)

V
cl

k
(V

)

Figure 4.19: TRNG output for different number of cycles affected by a clock glitch (upper
plots: 10 cycles, lower plots: 55 cycles).

100 200 300 400 500 600 700 800

2

4

6

8

10

12

14

Figure 4.20: Bit-stream of the TRNG precisely modified by using clock glitches with different
lengths.

to use underpowering (0.70V) and obtained similar results.

Fig. 4.20 presents the result of several successful clock-glitch injections using a
clock of 40MHz, a core voltage of 1.20V, and a STR configuration of 255 stages.
With this plot, we demonstrate that we were able to fully control the output of the
TRNG by changing the number of clock cycles affected by the clock glitches. We
also controlled the interval between the trigger event and the time instance when
clock glitches are injected. As a result, we drawn an “I” letter into the bit stream.

In summary, using clock glitches it is possible to control precisely the output of
the TRNG, changing the numbers of bits desired when it is necessary. With this kind
of attack, we can introduce faults in the instant of a key generation, or bypass easily

4.2. Analysis of a Novel TRNG 103

some on-line tests that are executed from time to time. Clock glitches induced faults
are a serious threat to TRNGs and should be included in typical attack scenarios.

4.2.3.5 How to Thwart These Attacks?

The XOR-tree has proved to be the weak point of the analyzed TRNG. In order
to avoid the effects of power and clock glitches, it is necessary to enhance the
implementation of this XOR-tree by using a ripple structure. For our experiments,
we therefore added a register after each XOR row that decreases the critical path
delay. This costs some additional resources (area and power), for example, it is
necessary to add 51 registers for the STR configuration with 255 stages. These 51
registers are added after each 6-input LUT that implements a 6-XOR operation. In
Fig. 4.21, a representation of the XOR-tree ripple structure is represented.

A.Cherkaoui et al. used this ripple structure in order to reach higher frequencies
up to 400MHz (they did not use it to provide protections against fault attacks).
However, this XOR-tree ripple structure can also be applied to increase the security
level of TRNG implementations by lowering the critical path delay and sensitivity
window for power and glitch attacks. Note that this does not prevent high-frequency

XOR
6-LUT D

flip-
flop

XOR
6-LUT D

flip-
flop

XOR
6-LUT D

flip-
flop

XOR
6-LUT D

flip-
flop

XOR
6-LUT D

flip-
flop

XOR
6-LUT D

flip-
flop

XOR
6-LUT D

flip-
flop

Figure 4.21: Implemented XOR-tree ripple structure.

104 4. True Random Number Generators

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−.05

0

0.5

1

1.5

2

2.5

3

Time (ns)

V
ou

tp
ut

 (V
)

Figure 4.22: TRNG output of the enhanced design under normal operation conditions.

glitch attacks but protects against glitches at least below 90MHz as shown in this
section and demonstrated in our experiments.

In order to demonstrate the reliability of our protected implementation, the same
attacks have been carried out. Fig. 4.22 shows the normal behavior of a 255-stages
STR using a core voltage of 1.20V and a clock frequency of 40MHz. It shows that
the used ripple structure does not affect the normal operation of the TRNG. The
figure shows the first 200 bits that were generated by the TRNG.

In Fig. 4.23, the result is shown where a power glitch was induced using a core
voltage of 1.20V and a glitch length of 87.5µs.

Fig. 4.24 shows the result of a similar setup where a power glitch was induced
using a core voltage of 0.70V and a glitch length of 62.5µs. Both figures show that
the enhanced TRNG architecture does not provide any bias before the post-processing
step. Thus, the random behavior is not affected by the performed attacks (and
attacking parameters).

Fig. 4.25 shows the TRNG output of two different attacking setups. The upper
plot shows the output in a setup where a clock glitch has been induced during a clock
period of 55 cycles. The lower plot shows the result of a clock glitch that has been
induced during a clock period of 10 cycles. In contrast to the scenario presented in
Fig. 4.18, there is no bias at the TRNG output. A clock frequency of up to 90MHz
has been achieved. The same result was obtained using underpowering the device
using a core voltage of 0.7 V only.

4.2. Analysis of a Novel TRNG 105

0 50 100 150 200 250 300 350 400 450 500
0.9

1

1.1

1.2

1.3

Time (µs)

V
su

pp
ly

 (V
)

0 50 100 150 200 250 300 350 400 450 500
−0.5

0

0.5

1

1.5

Time (µs)

V
ou

tp
ut

 (V
)

Figure 4.23: TRNG output before post-processing when a power glitch with a length of 87.5µs
and a core voltage of 1.20V are used. In contrast to the standard design (cf. Fig 4.16) no bias
is observable.

0 50 100 150 200 250 300 350 400 450 500
−0.5

0

0.5

1

1.5

Time (µs)

V
ou

tp
ut

 (V
)

0 50 100 150 200 250 300 350 400 450 500
0.65

0.70

0.75

0.8

0.85

Time (µs)

V
su

pp
ly

 (V
)

Figure 4.24: TRNG output before post-processing when a power glitch with a length of 62.5µs
and a core voltage of 0.70V is induced. No bias is observable.

Fault attacks based on clock glitches are only possible if the attacked device
receives the clock signal from an external clock source. That means, if the clock
signal is generated on-chip, the previous attacks based on clock-tampering are not
applicable.

If the device has an external clock pin, it is possible to include an clock-observation
circuit as presented in Fig. 4.26 in order to ensure a glitch-free clock signal (clkgf)
for the D flip-flops of the XOR tree. For that purpose, one D flip-flop clocked with

106 4. True Random Number Generators

0 5000 1000 1500 2000 2500 3000 3500 4000 4500 5000
−2

−1

0

1

Time (ns)

V
ou

tp
ut

 (V
)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−2

−1

0

Time (ns)

V
cl

oc
k

(V
)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−2

−1

0

1

2

Time (ns)

V
ou

tp
ut

 (V
)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−2

−1

0

Time (ns)

V
cl

oc
k

(V
)

Figure 4.25: TRNG output of the enhanced design for different number of cycles affected by a
clock glitch (upper plots: 10 cycles, lower plots: 55 cycles). No effect on the TRNG output is
observable.

D Q

RST

D flip-flop DpMax/2

'1'
Delay

clkgf

clk

Figure 4.26: Generation of a glitch-free clock signal for the D flip-flops in the XOR-tree.

the standard clock signal clk and the input D (that is permanently set to one) is
used. The output Q is connected to the reset of the flip-flop via a delay element.
The output of this element changes DpMax/2 after an input change. The output Q
also serves as clkgf . This circuit prevents clock glitches shorter DpMax to propagate
to the D flip-flops of the XOR-tree.

This glitch-free clock generator has been synthesized in a Spartan 3E. To imple-
ment the delay element, we used an inverter chain. This solution offers a straightfor-
ward implementation and also portability among different FPGA families. Moreover,
the response of an inverter chain is well-known in different scenarios (underpow-

4.2. Analysis of a Novel TRNG 107

ering, temperature variations, etc). Other approximations have been taken into
account, like PLLs, but they have been discarded because of their complexity and
non-portability.

In comparison with the ripple structure, our proposed glitch-free clock generator
is even more lightweight. For the STR configuration with 255 stages, 50 registers are
saved in comparison to the ripple structure implementation. In addition, the correct
operation of the XOR-tree is guaranteed under any clock glitch attack (which is not
the case for the ripple structure).

4.2.3.6 A General Formalization Model

We present a general formal model to guide designers and evaluators to systematically
test their architectures against this kind of attack. For this purpose, we need to
specify the time frame when the architecture is generally susceptible to “overclocking”
and subsequently define all fault-injection parameters that could lead to a bias of
the TRNG output. This allows us to propose a testing strategy for evaluators to
guarantee security against this attack under the assumptions of this underlying
model.

Definition 1 (Time Frame Tframe)

We define the time frame when the device is susceptible to overclocking attacks
as Tframe = Tclock−to−Q + Tcritical + Tset−up < Tclk, where Tclock−to−Q represents the
delay from the clock transition to a possible output change of a flip-flop and Tset−up
represents the time that a flip-flop input signal needs to be stable before the sampling
is triggered by the next clock edge. Tframe is the time starting at the beginning of
a positive clock edge until the time when the last signal propagated through the
critical path of the design and all registers are stable and settled. Intended changing
of the clock signal during Tframe causes overclocking and a possible bias.

Remark 1

In our model, we assume a synchronous CMOS logic. We also consider (active)
single-edge-triggered clocking, which is not a loss of generality though and can be

108 4. True Random Number Generators

easily extended to two-phase clocking circuits, for instance. For simplicity, we also
do not consider effects such as clock jitter and skew that also impact Tframe.

Definition 2 (Fault-Injection Model)

An adversary is able to induce additional clock-signal edges or to change the signal-
propagation delay of the internal circuit. The changing of the clock signal is arbitrary
in the sense that he/she can define the time when the additional clock signal is
injected and how the additional clock-signal shape looks like, i.e., the starting time
and duration of the signal transition.

This fault model implies a physical bound in the fault-injection frequency which
depends on the used fault-injection setup. An adversary is therefore only able to
inject faults with a maximum frequency fmax = 1/∆, where ∆ denotes the minimum
time between two consecutive glitch injections. Furthermore, we define Tmin = λ ·∆
to be the minimum time between the rising clock edge and the rising clock edge of the
injected glitch and λ is a multiple of ∆. Besides this, we do not make any restrictions
regarding higher-order fault-injections. An adversary is also able to induce several
clock glitches during Tframe which causes several overclock signals and thus causing
faults in two or more consecutive instructions.

Changing the propagation delay can be caused by intentionally varying the
ambient temperature or by varying the power-supply conditions (e.g., underpowering).

Definition 3 (Clock-Glitch Injection Time)

For clock glitches, we denote tstart ∈ [Tmin, Tframe] the time when a positive clock-
glitch is injected.

Definition 4 (Signal-Propagation Delay)

We define room temperature as the minimum temperature denoted by Tempmin ∼=
23◦C. Since an increase of the signal-propagation delay is only caused by heating, we
define the maximum ambient temperature to be the maximum temperature where
the device is barely able to produce the correct output, i.e., Tempmax. Regarding
power-supply modifications, we denote 0 ≤ Vmin ≤ Vnominal as the minimum voltage

4.2. Analysis of a Novel TRNG 109

level where the device is barely able to produce the correct output (can be also set to
zero in the tests), and Vmin < Vnominal < Vmax the maximum voltage level (typically
beyond the recommended ratings but lower in order to avoid destruction).

4.2.3.7 Testing Strategy

We propose to apply fault attacks that are performed in the given parameter ranges
described in Definition 3 and 4. All fault attacks are applied during the sensitivity
window Tframe (given in Definition 1). If all tests pass (under these attacks), the
design is considered secure against attacks up to the specified adversary frequency
fmax under the assumptions given in this model (with λ = 1).

4.2.3.8 Discussion about the Obtained Results

We have shown that our TRNG implementation (an implementation of the recently
published TRNG architecture of A.Cherkaoui et al.) is resistant against temperature
variations in the range of 35 ◦C to 85 ◦C. Note that the temperature evaluation
is one of the typical tests carried out for TRNGs. In [118], the response of three
TRNGs were measured, showing an influence in terms of randomness for 2 of the
three TRNGs evaluated.

Another typical testing case to evaluate TRNGs is by applying different core
voltages. In [149], a complete study of the influence of variations in the power supply
on ROs was carried out. These variations affect the randomness of the TRNG
depending on the number of inverters the ROs are composed of. For our analyzed
TRNG implementation, we have shown that it is resistant against this kind of attack.

Moreover, we have shown that power glitches can induce faults in the TRNG
but we were not able to fully control which bits should be biased and which bit
should be not. However, we have successfully injected faults in our TRNG imple-
mentation by underpowering the FPGA device. These results emphasize the need of
countermeasures against this kind of attack.

Finally, we have shown that clock glitches can produce very precise biases in the
TRNG. We were able to control and influence each bit of the TRNG output thus
making this kind of attack one of the most powerful attacks against our analyzed

110 4. True Random Number Generators

TRNG implementation. Power and clock glitches pose a serious threat for TRNGs
and should be considered in typical evaluation scenarios.

In order to thwart these attacks, we integrated a ripple XOR-tree structure into
the TRNG and evaluated the performance. It showed that this structure helps against
clock-glitch fault attacks below clock-glitch frequencies of theoretically 400MHz (note
that we evaluated glitches up to 90MHz only). This might be a good solution to
prevent many clock-glitch based attacks that are performed with standard fault-
injection equipment. More sophisticated fault-injection attacks with fault frequencies
beyond 400MHz could still induce faults and should be considered in future work.

In addition to this proposal, a glitch-free clock generator that prevents clock
glitches shorter DpMax to propagate to the D flip-flops of the XOR-tree, has been
presented. This clock generator is a lightweight and portable solution that guarantees
the correct operation under clock glitch attacks.

As an outcome of these investigations, we recommend to apply a more secure
post-processing technique like BCH-codes [80] as for example applied in [127]. BCH-
codes are a well-known alternative with low-area requirements and an acceptable
penalty in the throughput. As in particular presented in [127], a BCH-code was used
in the TRNG which provided good results. The code had a compression factor of 16
and could be implemented using 256 registers and a few XORs. The main advantage
of using BCH-codes, acording to [80], is that this kind of post-processing is more
reliable than XOR filters or Von Neumann correctors against an adversary bias.

To the best of our knowledge, this is the first time that power and clock glitches
are injected in a TRNG implementation. It is interesting to point out, as shown
before, the critical path of our design lies in the XOR-tree, so other TRNGs that
use very similar architectures, e.g., [127, 147], are expected to be vulnerable against
these kind of fault attacks as well.

4.2.4 Conclusions of the analysis

In this section, we performed different fault attacks on a TRNG modified imple-
mentation of A.Cherkaoui et al. [32]. This modified implementation is suitable for
low cost environments. The implementation was running on two FPGA platforms
(a Spartan-3 and a Spartan-6). We induced various power and clock glitches dur-

4.3. A New TRNG based on Coherent Sampling with Self-timed Rings 111

ing TRNG operation by varying the glitch location and duration. We successfully
demonstrated that an adversary can to cause a bias in the random output of the
TRNG. This bias can be exploited in attacks to reveal the exact value of the random
number and thus extract secret key information of implementations of cryptographic
algorithms. We also highlight the simplicity of these attacks and that they can be
performed with low cost. We therefore suggest to include the applied fault attack
tests in standard evaluation scenarios to evaluate the resistance against these types
of attacks.

Furthermore, we evaluated our TRNG implementation against thermo attacks
and underpowering. We varied the ambient temperature of the FPGA and evaluated
the impact of temperature on the random outputs. We also powered the FPGAs
below the recommended power-supply specifications to evaluate the resistance against
faults. For both attacking scenarios, we did not observe any bias in the output. The
implementation resists against these types of attacks and guarantees the stochastic
model validity.

Finally, we tested the original version of the TRNG that introduces several
registers after each XOR row in order to obtain a higher performance. These
registers reduce the critical path delay. This ripple structure can be used as a simple
countermeasure against most power and glitch attacks that are performed below a
certain frequency (which is also often limited in practical attacks). We performed
glitch attacks below 90MHz under various operating conditions and showed that the
enhanced TRNG implementation provides resistance against these attacks.

In conclusion, Cherkaoui et al. original proposal is secure against the fault attacks
presented in this section. On the other hand, the lightweight modified implementation
presents some vulnerabilities. For that reason, we can conclude that Cherkaoui et al.
proposal can not be implemented in resource-constrained systems.

4.3 A New TRNG based on Coherent Sampling
with Self-timed Rings

As aforesaid, the desired features for a TRNG suitable for resource-constrained
environments are lightweightness, robustness and portability. Motivated by these

112 4. True Random Number Generators

goals, authors have reported in the literature several TRNGs designs.

In previous sections, several TRNGs that are not suitable for resource-constrained
devices for different reasons have been presented.

For instance, regarding the portability, a TRNG based on Coherent Sampling
technique (CS) was presented in [54]. It is a lightweight design but can not be
implemented in some FPGA families (no portable) because it uses a Phase-Locked
Loop (PLL).

Concerning robustness, Sunar et al. presented a promising TRNG suitable for
FPGA [127].Nevertheless, this design was rapidly discarded since it suffers from
implementation problems, mostly related to the number of signals handled by the
XOR-tree. Moreover, the quality of the raw signal is rather poor and needs post-
processing. In addition, in [14] and [90] ROs vulnerabilities to frequency injection
were exploited, in which the ROs are locked to an injected frequency and the jitter
phenomena as source of randomness is neutralized.

The Kohlbrenner and Gaj proposal ([78]) can be considered insecure because
uses ROs, and additionally it is not portable, as the design depends so much on the
selected device that it has to be tuned (manual placement and routing) for each
FPGA implementation.

Finally, introduced in section 4.1.2.4, the TRNG presented by Cherkaoui et al.
[32] is secure and portable but uses a substantial amount of resources in terms of
power and circuit area. This renders it unsuitable for constrained devices. More
specifically, the STR generates 63 signals that are sampled and finally passed through
an XOR-tree, generating a high activity, and, correspondingly, having a high power
consumption. Moreover, the hardware requirements are superior to the ones that
can be afforded in most constrained devices. In the previous section a lightweight
implementation was tested but some vulnerabilities appeared.

In this section, we present a new TRNG based on the coherent sampling technique
(4.1.2.5). On the one hand, the design takes advantage of some key STR features,
which help us solve the implementation problems (mainly the device dependence)
suffered by Kohlbrenner and Gaj’s design [78], while simultaneously allowing us
avoid the vulnerabilities linked to the use of ROs. On the other hand, the proposed
design is very efficient in hardware, which makes it suitable for devices with limited
capabilities, and offers a relatively high throughput. The remaining of this section

4.3. A New TRNG based on Coherent Sampling with Self-timed Rings 113

is organized as follows. In Section 4.3.1, our proposal is presented together with
some necessary implementation considerations. The experimental results, both about
the randomness quality and hardware requirements, are presented in Section 4.3.2,
together with a comparison between our proposal and the most relevant designs.
Finally, Section 4.3.3 concludes the section and summarizes our main contributions.

4.3.1 Our Design

The design presented in this section is inspired by the TRNG proposed by Kohlbrenner
and Gaj in [78]. We use the same architecture but replace the ROs by 2 STRs.
Cherkaoui et al. carried out in [30] an exhaustive comparison between ROs and
STRs. According to this work, the main differences are:

• STR robustness to voltage variations can be enhanced by adding more stages.
ROs do not offer this feature.

• STRs present a lower extra-device frequency variation when operating at high
frequencies.

• In STRs the period jitter does not depend on the number of stages but it is
mostly dependant of the jitter generated in each stage.

From the security point of view, these features are very interesting. In fact, in
[30] the authors conclude that STRs are more robust to attacks than ROs, and this
property is inherited by our proposal. Furthermore, replacing ROs by STRs provides
our design with the possibility of having at least L different signals in each STR.
Each one of those L signals can be used as a sampling or sampled signal, since each
stage can be considered as an independent source of entropy—the number stages is
equal to the number of independent entropy sources. Moreover, the STR is highly
configurable, being easy to set desired frequencies for the STR outputs.

4.3.1.1 Architecture overview

Fig.4.27 and Fig.4.28 show the different blocks that make up our TRNG. Fig.4.27
depicts the two STR used in our design. Both STRs are composed of L stages
that generate L different outputs with a frequency fSTR. The number of tokens

114 4. True Random Number Generators

Stage1 Stage2 StageL

Stage1 Stage2 StageL

STR-A

STR-B

SA1

SA2

SAL

SBL

SB2

SB1

Figure 4.27: Self-Timed Ring structure of our TRNG.

D D D DXOR

SBi

SAi S0 C0

Smpl_clk

Bi

Figure 4.28: Sampler structure of our TRNG.

and bubbles are selected in the reset phase attending to the frequency and phase
necessities.

The jitter contained in the STR outputs is extracted using the sampler circuit
shown in Fig.4.28. Each sampler circuit is composed of 4 D-type flip-flops and 1
XOR gate. The first flip-flop uses the signal SBi to sample the signal SAi. The signal
S0 will be high while the rising edges of SBi occur during the high level of SAi. In
Fig.4.29 we show the behavior of S0 taking into account that SBi contains jitter. As
consequence of such a jitter, the cycle length of S0 will not be constant.

In our design, both signals, SBi and SAi, contain jitter. As a variation of the
original sampler design that includes a one-bit counter latched by S0, in our design
we use the simplified version presented in [137]. In this scheme, instead of counting
the cycles of SBi, we count the number of cycles that S0 is at a high level. If such a
number of cycles is even, the previous output is maintained; otherwise, the output
changes. Two D flips-flops and 1 XOR gate are involved in this process. Finally,
the last flip-flop samples the signal C0 using an external clock. This external clock
determines the TRNG throughput. As our design is composed of two STRs with L

4.3. A New TRNG based on Coherent Sampling with Self-timed Rings 115

Uncertain cycle

SAi

SBi

S0

Figure 4.29: Sampler behavior.

stages each, L sampler circuits are necessary (see Fig. 4.9).

Finally, our design includes a post-processing unit that might be needed depending
on the quality, in terms of randomness, of the raw data. The selected post-processing
is a parity filter, which has been widely used as post-processing in previous proposals
such as [32] and [37]. More precisely, a nth parity filter takes n consecutive bits and
XOR all them together to produce one bit. This post-processing offers a simple bias
reduction with the penalty of a throughput reduction—the filter reduces the bit
generation by a factor of n.

4.3.2 Experimental results

We have implemented the proposed TRNG in a FPGA Spartan-3E XC3S500E. Two
8-stage STRs have been implemented and configured in the reset phase to obtain
a STR output frequency of 300 MHz. Several frequencies have been used in the
external clock that samples the signal C0. Eight bits are generated with each rising
edge of the sampling clock.

In order to obtain almost the same propagation delay in the different stages, a
hard-macro has been designed. This hard-macro implements, using a single Look-Up
Table (LUT), a Muller gate and an inverter. If Altera’s FPGAs are used instead,
these hard-macros can be implemented using their equivalent hard-wired macros.

To show evidence of the Gaussian jitter in the STR outputs, we have counted the
number of cycles of the signal S0, as done in [137] and [78]. Fig.4.30 depicts the time
evolution of the S0 length (at the top of the figure) and a histogram of the cycles (at
the bottom). The histogram population corresponds with 1 300,000 measurements.
The average period of S0 is 38.69 ns with an standard deviation of 0.215 ns. As the

116 4. True Random Number Generators

Figure 4.30: Time evolution and histogram of S0.

Table 4.3: Experimental results: Pass Rate (PR) proportion and average p-value (PV) for
generated traces.

0.5 MHz 1 MHz 5 MHz 10 MHz 25 MHz 50 MHz
PR PV PR PV PR PV PR PV PR PV PR PV

b1 97,91 0,41 98,58 0,44 98,41 0,57 99,08 0,55 99,5 0,58 93,83 0,22
b2 98,41 0,43 99,33 0,34 82,58 0,18 82,5 0,30 84,66 0,22 39,66 0,16
b3 98,83 0,46 99,08 0,62 98,58 0,59 98,91 0,41 98 0,44 99,33 0,60
b4 99,66 0,59 99,41 0,45 99,33 0,36 99,41 0,45 99 0,59 83,41 0,17
b5 92,66 0,25 87,16 0,20 98,5 0,59 98,25 0,55 99,16 0,39 97,91 0,30
b6 98,41 0,54 98,75 0,47 31,66 0,04 31,58 0,01 31,25 0,08 22,25 0,05
b7 98,75 0,36 99,16 0,45 98,83 0,53 98,91 0,61 98,58 0,36 66,58 0,24
b8 99,16 0,39 98,91 0,31 98 0,44 97,5 0,40 96,83 0,43 48,5 0,15

Total 97,97 0,43 97,55 0,41 88,23 0,41 88,27 0,41 88,37 0,39 68,93 0,24

frequency of the STR has been set to 300 MHz, that means that the average cycle
length is 11.6090 cycles. In conclusion, the histrogram distribution clearly shows
evidence of the underlying randomness in the sampling process, and, by extension,
in each stage of the STR.

We have chosen two STRs with 8 stages since this configuration is easily tunable
and offers a good trade-of between area and throughput. The throughput goal has
been set to 1 Mbps in order to be comparable to other TRNGs proposals based on
coherent sampling. This throughput threshold will set the lowest sampling frequency
that can be used in our design.

4.3. A New TRNG based on Coherent Sampling with Self-timed Rings 117

Figure 4.31: Boxplots of p-value distributions for each sampling stage (b1 to b8) and different
frequencies.

4.3.2.1 Testing Randomness

The testing of our proposal has been carried out using the NIST statistical test
suite [114], as commonly done to validate previous proposals (e.g., [54, 78, 37]). To
transfer the bits generated by the TRNG in the FPGA to the host computer where
the NIST tests are executed, a FIFO memory and a RS232 communication protocol
have been used. In addition, the post-processing has been conducted in the host
computer in order to reduce the acquisition time of the traces.

We have evaluated the TRNG output for the foloowing set of sampling frequencies:
50, 25, 4, 1, and 0.5 MHz). A higher sampling frequency will imply a higher
throughput, but also a lower quality of the random bits due to the fact that the
jitter accumulation time is shorter. According to the study presented in [61], a
longer accumulation time is desirable so that the contribution of the thermal noise
(responsible of the non-deterministic jitter) is perceptible. On the other hand, the
use of a longer accumulation time causes that the flicker noise (responsible of the
deterministic jitter) dominates the jitter. This paradox forces designers to find a
trade-off to set the sampling frequency.

For the post-processing, we have tested the minimum parity filter order (bit-wise
XOR tree) necessary to pass the NIST tests for the different sampling frequencies

118 4. True Random Number Generators

studied. A 3rd order filter is needed for 50 MHz, while a 2nd order filter suffices
for the rest. As expected, the post-processing necessities are higher when higher
sampling frequencies are used. Although many sampling frequencies need the same
order parity filter, it is important to notice that the proportion of failed tests before
the post-processing rises when the sampling frequency is increased, as explained
below. This is a crucial point if for some reasons the TRNG will be used without
the post-processing block.

We have evaluated the quality of the raw data before the post-processing for the
six sampling frequencies studied. Fig.4.31 shows boxplots of the p-value distribution
for each sampling stage (b1 to b8) and different frequencies. According to the
documentation provided by NIST, a random stream must present uniformity in
the distribution of its p-values. It can be seen in Fig.4.31 that higher sampling
frequencies presents less uniformity for its p-values distribution than lower sampling
frequencies, which are more uniform.

Further evidence of this phenomenon is presented in Table 4.3, which shows the
proportion of traces that pass the statistical tests (PR) and the average p-value (PV)
for the different sampling stages and frequencies. Note that traces corresponding to
b5 and b6 perform quite badly, specially b6. For sampling frequencies of 0.5 MHz
and 1 MHz, only a single trace (b5) fails the NIST tests before the post-processing.
It is noteworthy, however, that b5 fails the tests by a narrow margin. Three traces of
b5 fail the tests for the sampling frequencies of 5 MHz, 10 MHz and 25 MHz, and 7
traces fail for 50 MHz. As for b6 traces, they fail badly for the sampling frequencies
between 5 MHz and 50 MHz. This consistent behavior in b6 is mainly due to the fact
that the synthesizer has placed the sampling stage that generates the b6 stream in
a way that causes a huge delay between the sampling (SA6) and the sampled (SB6)
signals. This problem could be solved using a manual placement and routing process.
In fact, we have tested this: using manual placement and routing and setting the
sampling frequency to 50 MHz results in a design such that the raw stream of bits
without post-processing passes the NIST tests. Nevertheless, one major design goal
of our proposal is to avoid such a manual procedures. We next show how the quality
of the final output is not affected by sporadic low-quality stages.

Finally, we have evaluated the quality of our proposed TRNG after pre-processing.
A sampling frequency of 1 MHz has been selected for this experimentation since

4.3. A New TRNG based on Coherent Sampling with Self-timed Rings 119

Table 4.4: Hardware results

LUTs Registers Throughput (Mbps)
2 STRs 16 0 -

Sampling Circuit 8 32 -
Post-Processing 8 16 -

Total 32 48 4

Table 4.5: TRNG comparison

Hardware Resources Throughput Hardware Complexity Portability
Our proposal 32 LUTs 48 Registers 4 Mbps medium yes

Fischer et al. [54] 121 LCs 4 ESBs and 1 PLL 69 Kbps medium no
Kohl et al. [78] 12 LUTs 24 Registers 300 Kbps high yes

Valtchanov et al. [137] RO-RO 15 LUTs 4 Registers 2 Mbps high yes
RO-PLL 12 LCs 4 Registers and 1 PLL 2 Mbps medium no
RO-DFS 11 LUTs 6 Registers and 2 DFS 2 Mbps medium no

Cherkaoui et al. [32] 320 LUTs 320 Registers 200 Mbps medium yes

this frequency offers a trade-of between throughput and randomness quality before
the post-processing stage. We have opted for having a good quality signal without
post-processing in order to make stronger our TRNG proposal against side channel
attacks. ENT [142], DIEHARD [91], and NIST [114] suites have been used for
analyzing the randomness quality.

In Table 4.6 we summarize the results obtained with ENT, which resemble those
obtained with a genuine random variable: the chi-square test is passed; entropy is
extremely high; the serial correlation is very low; etc. DIEHARD is a much more
demanding battery of tests for checking randomness. As in the case of NIST tests,
they are particularly designed for cryptographic applications. To show evidence
that our proposed TRNG behaves as a random variable, in Fig. 4.32 we depict the
distribution of p-values for all tests included in both suites. In particular, the p-values
in both tests are in the interval between 0.2 and 0.8 and the TRNG passes both the
NIST and DIEHARD batteries of tests. From all of the above, we can conclude that
our proposed TRNG outputs a bit streams that looks like a true random variable.

4.3.2.2 Hardware results

The results presented in this subsection have been obtained for a Spartan-3E
XC3S500E FPGA and correspond to our chosen design with a sampling frequency
of 1 Mhz. The architecture consists of two 8-stage STRs, eight sampling stages,

120 4. True Random Number Generators

Table 4.6: ENT results for a sampling frequency set to 1 MHz.

Entropy 7.999987
Compression 0%
Chi Square distribution 261.92 (36.96%)
Arithmetic mean 127.5110
Monte Carlo value for Pi 3.141718075
Serial correlation coefficient 0.000368

Figure 4.32: Distribution of p-values for DIEHARD and NIST test suites.

and a second order parity filter as post-processing block. Table 4.5 summarizes the
resources needed to implement our TRNG and the final throughput obtained.

Since each STR stage uses a single LUT, the STRs occupies 2 × L LUTs. As
shown in Fig.4.28, the sampler structure uses 4 registers and an XOR gate (1 LUT).
Therefore, the number of LUTs used by the sampler structure is L and the number
of registers 4× L. Finally, the post-processing necessities depend on the parity filter
of order n. The LUTs used by the post-processing is also conditioned by the inputs
of each LUT. Since a 4-input XOR gate, as in the case of 2-input XOR gates, can be
implemented using 1 LUT, the number of LUTs and registers will be L and n× L,
respectively—the filter order is 2 for 1 MHz sampling frequency, as explained in
Section 4.3.2.1.

In summary, observing the results above we can conclude that each raw random
bit (before the post-processing) has a cost of 3 LUTs and 4 registers. Therefore,
for a given sampling frequency (fsampling), a designer could improve the throughput
by adding more stages to the STRs. This will result in fsampling bps per additional
stage. On the other hand, this improvement translates into a circuit area penalty of
3 LUTs and 4 registers per additional stage.

4.3. A New TRNG based on Coherent Sampling with Self-timed Rings 121

4.3.2.3 Comparison with others FPGA-based TRNGs

We finally present a comparison between our proposal and other TRNG designs that
use coherent sampling. We also include the proposal of Cherkaoui et al. [32] since
it is based on STRs. For each proposal, we have analyzed the hardware resources
needed and the throughput offered. Besides, we have also considered the hardware
complexity (including the degree of automation of the design) and its portability
(device independence). Regarding hardware complexity, we distinguish among three
categories: 1) low complexity is devoted for designs that can be implemented easily;
2) medium complexity implies designs that need to use hard-macros or specific
components like PLL or DFS; finally 3) high complexity considers designs that
require a manual place and route process. Finally, the portability column represents
whether the design needs special resources or efforts to be implemented in different
FPGA vendors or devices.

We emphasize here that the hardware results presented in Table 4.5 constitute an
estimation for the designs in which the authors do not provide specific results. For
Cherkaoui et al.’s proposal, we selected the architecture that implements 255 stages.

Table 4.5 shows the comparison between our design and other TRNG proposals.
It can be noted that our proposal offers a very good trade-off among the set of
parameters evaluated. TRNGs that need a complicated place and route process (e.g.
[78] and RO-RO [137]) are superior in terms of hardware resources, but these designs
have the drawback of requiring a specific design for each particular device. Among
the TRNGs based on coherent sampling, our design offers the highest throughput.
Note that this could be even better if a higher sampling frequency would have
been selected. On the other hand, Cherkaoui et al.’s TRNG presents the highest
throughput, but uses around 10 times more resources than our proposal. Finally,
it is worth mentioning that our proposal is highly portable and complaint with the
three requirements set in Section 4.3; lightweightness, robustness and portability.

4.3.3 Conclusions of our TRNG

In this section, we have proposed a TRNG based on coherent sampling, which is a
phenomenon that seems to provide good results in previous proposals. Most previous
works rely on either a Phase-Looked Loop or a Ring Oscillator. The use of these

122 4. True Random Number Generators

components has one major drawback: it makes the design dependent on the FPGA
vendor—e.g., not all FPGA vendors support PLLs—and requires manual placement
and routing for setting particular frequencies for each device. To avoid these two
drawbacks, we propose a novel design where ROs or PLLs are replaced by Self-timed
Rings. We argue that the use of STRs is very convenient, for it provides robustness
against frequency and voltage variations while, simultaneously, offers one independent
source of entropy for each ring stage. Thus, the resulting TRNG combines the power
of coherent sampling and the hardness and portability linked to STRs. Furthermore,
our design does not depend on the FPGA vendor, and the placement and routing is
performed automatically by the synthesis tool.

Our proposal outperforms all previous TRNGs based on STRs, and its throughput
could be further increased if we relax our conditions about the quality of the random
signals before the post-processing. We have studied in detail the most restrictive
design with a sampling frequency set to 1 MHz. In terms of randomness, our
TRNG passes all batteries of tests for checking the randomness of a random number
generator (ENT and DIEHARD), and also others like NIST that are devoted to
evaluate generators designed for cryptographic applications.

4.4 Conclusions

Lightweightness, robustness and portability are desired features for resource-constrained
TRNGs. Motivated by these goals, many researchers have pointed out the conve-
nience of using FPGAs as TRNG platforms, due to their low cost and versatility
[50, 132, 144]. However, FPGAs offer a resource-constrained environment (fixed
logic blocks) that does not include analog blocks, which are frequently employed to
generate very entropic outputs.

In this chapter it has been presented an overview about TRNGs implemented on
FPGAs. In the state of the art section 4.1 it has been reported the basics to design
a TRNG. Moreover, a summary of the proposals contained in the literature has been
presented. In addition, some attacks against TRNGs have been included.

In 4.2 it has been analysed a very promising TRNG designed by Cherkaoui et
al. [32]. This TRNG is based on sampling several jittery signals, generated by an
STR, and collecting them using a XOR-tree in order to obtain a random bit at the

4.4. Conclusions 123

output. A lightweight version (XOR-tree purely combinational), suitable for low
cost applications, was evaluated in typical scenarios considered in TRNG evaluation.
Temperature variation, underpowering, power glitches and clock glitches were taken
into account. To the best of our knowledge, this is the first time that clock glitches
have been considered in the evaluation of a TRNG. As conclusion of this analysis,
some vulnerabilities in the lightweight version have been found. In addition, the
original implementation has been tested obtaining good results in terms of security.
We can conclude that the proposal presented by Cherkaoui et al. in [32] is secure
if it is implemented correctly. On the other hand, it is not suitable for low cost
applications like RFID.

Finally, due to the necessity of a secure lightweight TRNG in some applications,
we have proposed a new TRNG based on the coherent sampling in 4.3. Our design
is based on the idea presented by Kohlbrenner et al.. In order to overcome the weak-
nesses introduced by ROs, we have replaced ROs by STRs. STRs offer independent
entropy sources of randomness that can be tuned accurately. Therefore, our TRNG
combines the power of coherent sampling and the hardness and portability linked to
STRs. Our proposed TRNG presents a trade-off between hardware resources and
throughput offering a secure output that passes all batteries of tests ([114] [142] [91]).

124 4. True Random Number Generators

5
Conclusions

5.1 Conclusions

RFID is one of the most promising identification technologies. The resources used in
RFID tags are limited by two important factors: economical and technical. The first
one is related to the necessity of a low production cost for the massive deployment
of the technology. The technical factor is connected to the power requirements for
operating passive RFID tags.

It is important for the massive deployment of the technology to have an standard
that guarantees the same operation rules for RFID systems around the world. EPC-
C1G2 is the most used standard in the industry. This standard describes the way of
operation for UHF RFID systems. One of the most interesting specifications is the
requirement of a pseudo-random/random number generator (RN16) in the tag to
guarantee the security of the communications.

All in all, security and privacy are issues of concern for low-cost RFID systems
nowadays. Due to the constrained-resources environment, typical secure crypto-
graphic approximations can not be used in tags. For example, it is commonly
assumed (see, e.g.,[111]) that no more than 4000 Gate Equivalents can be devoted
to security functions. EPC-C1G2 tags support simultaneous read attempts up to
1500 tags/sec under ideal conditions. However, this rate can be five or ten times
smaller (500-150 tags/sec) in real-world environments [21]. Therefore the number of
clock cycles used per reading is upper-bounded by 670 clock cycles, assuming that
the RFID chip operates at a clock frequency of 100 kHz. We take 500 clock cycles as
reference value because this limit is less than the above mentioned value and has

126 5. Conclusions

been used in previous works [87, 94]. Furthermore, they should not consume more
than 10 µW , as low-cost tags are passive and, therefore, must harvest their power
supply from the reader signal. (See, for example, [20] for an elaborate motivation
on the need for low-power designs.) When these constraints are compared with the
approximate 8120 GE [51, 102] required by a standard hash function like SHA-1
(which is an essential building block for most security protocols), it becomes clear the
need for schemes that can provide some minimum security services while requiring
as few resources as possible. For that reason, lightweight cryptography plays a key
role in RFID systems.

As aforesaid in the introduction, despite the numerous contributions reported in
the literature about lightweight cryptography, there is a lack of proposals that tackle
in a realistic way the multiple requirements imposed by the technology. Typically,
most of them do not provide information about their implementation:

• Very theoretical contributions that do not provide any proof of their lightweight-
ness are reported in the literature [122] [110].

• In many cases, arguments in favor of their lightweightness are based on the use
of some operations that are generally considered inexpensive by the authors .
However, these estimations are not always correct, and the implementation of
some proposals greatly exceeds the area limit of 4K GE [73][97][34].

• In other cases, the design turns out to be not so lightweight because of factors
such as the bit length of the variables, the need for additional memory blocks
–which is usually missed in the analysis of resources–, and the overhead impossed
by selection and control logic. These and other aspects often make the final
gate count much higher than expected [34][110].

In this thesis lightweight cryptographic implementations for RFID systems have
been studied from a realistic point of view. These are the major contributions
regarding the two major objectives proposed in the Introduction section:

1. Studying the main lightweight cryptographic primitives, analysing their foot-
print area and suitability to be used in low-cost RFID tags.

5.1. Conclusions 127

– In chapter 2 it has been presented an study about the footprint area of
elements commonly used in lightweight cryptography. The footprint area
is one of the most important requirements because it is directly related to
the tag cost. We have analysed various design elements and their area
estimation depending on the complexity of their implementation. For low-
complexity blocks, we have proposed a simple architecture, while for those
with higher complexity we have studied and proposed several possible
architectures. Authors could use this study to know what operations can
include in their lightweight algorithms.

– With the information obtained from the study of elements used in
lightweight cryptography, an area estimator for lightweight algorithms
has been developed. This estimator takes into account the area devoted
to the data-path and establishes a linear relation with the control logic
(20 %). The estimator offers an upper-bound of the total footprint area.
We have tested our estimator against a library containing 120 lightweight
functions obtaining good results. Moreover, in order to provide a more
accurate estimation of the area, other relations between the area of the
data-path and the control logic have been studied. In comparison with the
first estimator (20 %), these procedures offer a more accurate estimation,
even though the new estimation cannot be considered anymore as an
upper-bound for the total footprint area.

2. As the EPC standard establishes the necessity of an embedded Random number
generator (RN16).

2.1. Designing and implementing a pseudo-random number generator compliant
with the EPC-C1G2 standard, obtaining the main metrics (area, power
consumption and throughput).

∗ Regarding the Pseudo random number generators, we have proposed
two lightweight secure PRNGs known as AKARI. Several implemen-
tation architectures oriented to optimize some critical parameters
have been proposed. The main metrics related to the technology
requirements (area, power consumption and throughput) have been
obtained. In order to provide more accurate numbers, a library that
contains the layout of the used cells has been used, giving access to

128 5. Conclusions

very valuable information that is generally unavailable when using
generic libraries.
∗ AKARI PRNGs have been integrated into two lightweight authen-

tication protocols that comply with the standard EPC-C1G2. Both
schemes rely on the use of a sufficiently good PRNG, but the particu-
lar choice is left to implementers. Given that such a component is
critical to guarantee that the resulting circuit will fit a low-cost RFID
tag, we have explored the integration of the two AKARI designs.
As most PRNG-based EPC-C1G2 protocols follow a similar working
scheme, we have designed an architecture for a generic EPC-C1G2
protocol and then particularized it for each implemented protocol.
The main metrics have been presented for different configurations. In
addition, the impact of the EPC module in a complete RFID tag has
been studied .

2.2. Designing and implementing a True-random number generator, evaluating
its suitability for low-cost RFID tags.

∗ Concerning True-random number generators, in chapter 4 it has been
reported an overview about the state of the art of TRNGs. This
overview includes main evaluation procedures, entropy extraction
techniques and attacks. As a major contribution has been reported
an analysis of a novel TRNG presented in [32]. This analysis includes
typical scenarios used in the evaluation of TRNGs (temperature
variation, underpowering and power glitches). In addition, the effects
of clock glitches on a TRNG have been studied for the first time.
It has been proved that a lightweight design like this is vulnerable
against clock glitches attacks. Two solutions has been proposed in
order to thwart these attacks . The first one includes a ripple structure
in the XOR-tree (weak point of the TRNG) to reduce the critical
path. The second one is oriented to devices that have an external
clock pin. We have proposed to include a clock-observation circuit in
order to ensure a glitch-free clock signal(clkgf) for the D flip-flops of
the XOR tree. Moreover, a general formal model to guide designers
and evaluators to systematically test their architectures against this
kind of attack has been presented.

5.2. Future work 129

∗ Finally, due to the necessity of a secure lightweight TRNG in some
applications, we have proposed a new TRNG based on the coherent
sampling technique in 4.3. Our design is based on the idea presented by
Kohlbrenner et al. In order to overcome the weaknesses introduced by
ROs, we have replaced ROs by STRs. STRs offer independent entropy
sources of randomness that can be tuned accurately. Therefore, our
TRNG combines the power of coherent sampling and the hardness and
portability linked to STRs. Our proposed TRNG presents a trade-off
between hardware resources and throughput offering a secure output
that passes all batteries of tests ([114] [142] [91]). Evidence of the
Gaussian jitter has been shown in Fig.4.30. Finally, a resource
comparison with other TRNGs has been performed.

5.2 Future work

The work presented in this thesis can be extended in a number of ways.

Regarding chapter 2, the work related to the study of lightweight primitives and
the estimator can be extended as follows:

• One natural direction for future work is the inclusion of other commonly
used elements in the study, such as for example S-boxes of non-linear filters.
Including these new blocks in the estimator.

• It would be interesting to extend our estimates to include other prominent
parameters, primarily throughput and power consumption, as these have also
significant influence in design choices.

• It would be very meaningful to compare the estimator results with the results
provided by High level synthesis tools (e.g. Synphony HLS by Synopsys).
High-Level Synthesis tools accelerates algorithm creation by enabling C, C++
and System C specifications to be directly targeted into an FPGA.

Concerning chapter 3, possible future lines in the PRNG area could be the
followings:

130 5. Conclusions

• Based on AKARI PRNGs, designing a new PRNG that eliminates the last
filter that penalizes the throughput using more complex operations.

True-number generators line (chapter 4) can be extended as follows:

• It could be interesting to implement in an ASIC the proposed TRNG in order
to see how affects the surrounding conditions to the randomness.

• Other possible line is in the field of on-line test. As aforementioned, it is
mandatory to guarantee a randomness level at the output. Designing lightweight
on-line tests is a very challenging task in the future.

• In the field of fault attacks evaluation in TRNGs, there is a lack of formality in
the evaluation of TRNGs against fault attacks. Create a generalized formulation
would be essential to systematically evaluate TRNGs for different attacks.

Finally, designing and implementing our own authentication protocol for EPC-
C1G2, where AKARI PRNGs and our TRNG could be integrated would be a very
meaningful contribution in the field of low-cost RFID.

5.3 List of publications related to this thesis

5.3.1 Main thesis publications

J1 Martin, H.; Peris-Lopez, P.; Tapiador, J.E.; San Millan, E., "An Estimator for
the ASIC Footprint Area of Lightweight Cryptographic Algorithms," Industrial
Informatics, IEEE Transactions on , vol.10, no.2, pp.1216,1225, May 2014 doi:
10.1109/TII.2013.2288576 IF=8,785

J2 Martin, H.; San Millan, E.; Peris-Lopez, P.; Tapiador, J.E., "Efficient ASIC
Implementation and Analysis of Two EPC-C1G2 RFID Authentication Pro-
tocols," Sensors Journal, IEEE , vol.13, no.10, pp.3537,3547, Oct. 2013 doi:
10.1109/JSEN.2013.2270404 IF=1.852

5.3. List of publications related to this thesis 131

C1 Martin, H.; San Millan, E.; Entrena, L.; Lopez, P.P.; Castro, J.C.H., "AKARI-
X: A pseudorandom number generator for secure lightweight systems," On-
Line Testing Symposium (IOLTS), 2011 IEEE 17th International , vol., no.,
pp.228,233, 13-15 July 2011 doi: 10.1109/IOLTS.2011.5994534

J3 Martin, H.; Korak, T.; Millan, E.S.; Hutter, M., "Fault Attacks on STRNGs:
Impact of Glitches, Temperature, and Underpowering on Randomness," Infor-
mation Forensics and Security, IEEE Transactions on , vol.10, no.2, pp.266,277,
Feb. 2015 doi: 10.1109/TIFS.2014.2374072 IF=2.065

J4 Martin, H.; Peris-Lopez, P.; Tapiador, J.E.; San Millan, E., "A New TRNG
based on Coherent Sampling with Self-timed Rings" Sent for review to the
IEEE Transactions on Industrial Informatics IF=8,785

5.3.2 Other contributions

C2 Martin, H.; San Millan, E.; Entrena, L.; Peris-Lopez, P., "Implementation of
Secure Lightweight PRNGs for RFID." Conference on Design of Circuits and
Integrated Systems (DCIS 2010).

C3 Martin, H.; Peris-Lopez, P.; San Millan, E.; Entrena, L.,"ATOM: A Pseudo-
random Number Generator Suitable for RFID Protocols."Conference on Design
of Circuits and Integrated Systems (DCIS 2011).

C4 Martin, H.; Vaskova, A; Lopez-Ongil, C.; San Millan, E.; Portela-Garcia, M.,
"Effect of ionizing radiation on TRNGs for safe telecommunications: Robustness
and randomness," On-Line Testing Symposium (IOLTS), 2014 IEEE 20th Inter-
national , vol., no., pp.202,205, 7-9 July 2014 doi: 10.1109/IOLTS.2014.6873697

C5 Gross, H.; Wenger, E.; Martin, H.; Hutter, M., PIONEER−a Prototype for the
Internet of Things based on an Extendable EPC Gen2 RFID Tag. RFIDsec
2014 July 21−23, 2014, Oxford, UK.

J5 Martin, H.; Peris-Lopez, P.; Tapiador, J.E.; San Millan, E., Hardware Imple-
mentation of the Tav-128 Hash Function for RFID Systems Sent for review to
the Microelectronics Journal IF=0.924

132 5. Conclusions

A
Data Set Functions

##
Function names : F1 , F2 , . . . , F30
##
Symbols used :
N: b i t l ength o f v a r i a b l e s used
Z : output value
Xi : input v a r i a b l e s
Yi : in t e rmed ia te v a r i a b l e s
##
There are :
10 func t i on s with 2 input v a r i a b l e s
10 func t i on s with 4 input v a r i a b l e s
10 func t i on s with 6 input v a r i a b l e s
##
Each func t i on should be implemented for N = 32 , 64 , 96 , and 128 b i t s

(120 d i f f e r e n t de s i gn s)
##

Z = F1(X1 ,X2)
For i=1 to N

X1 = X1 >> 3
X2 = X1 >> 7
X1 = (X1+X2)>3+ 0x789

134 A. Data Set Functions

Z= (X1+X2)>>7

Z = F2(X1 ,X2)
For i=1 to N

X1= (X1+X2) >> 3
X2 = (X1 >> 7)+X2
X1 = (X1 XOR X2)+ 0x789
X2 = (X2 AND X1)+ 0x765 XOR X2

Z= (X1+X2)>>7

Z = F3(X1 ,X2)
For i=1 to N

X1 = (X1 XOR X2) XOR (X1 AND X2)
X2 = (X1 + X2)>>5 XOR (X1 + X2)
X1 = (X2 >> 8) + X1
X2 = (X1 >> 6) XOR X2

Z = (X1 XOR X2) AND (X1 OR X2)

Z = F4(X1 ,X2)
For i=1 to N

Y1= (X1 + X2) >> 3
X1 = X1 XOR (Y1>>1)
X2 = X2 XOR X1+Y1

Z= (X1+X2)>>7 XOR Y1

Z = F5(X1 ,X2)
For i=1 to N

Y1= (X1 + X2 >> 3) AND X1
Y2= (X2 + Y1 >> 3) AND X1
X1 = X1 XOR Y1

X2 = X2 + Y2
Z= (Y1 XOR Y2) XOR (X1 AND X2)

Z = F6(X1 ,X2 ,X3 ,X4)
For i=1 to N

135

X1 = X1 XOR X2 XOR X3 XOR X4
X2 = X2 XOR X1 + X3
X3 = (X3 XOR X2 + X4)>>1
X4 = X3 + X4 XOR 0x876
X1 = X4 AND X2 XOR (X1>>5)

Z = X1 + X2 + X3 + X4

Z = F7(X1 ,X2 ,X3 ,X4)
For i=1 to N

Y1 = X1 XOR X2 XOR X3 XOR X4
X2 = X2 XOR X1 + Y1
X3 = (X3 XOR Y1)>>5 + X4
X4 = X3 AND X4 XOR 0x876
X1 = X4 + X2 XOR (Y1>>5)

Z = X1 XOR X2 + X3 + X4+ (Y1>>5)

Z = F8(X1 ,X2 ,X3 ,X4)
For i=1 to N

Y1 = (X1 + X2)>>5
IF ((Y1>>(N−1))==1)

X2 = X2+ X3 OR X4
IF ((Y2>>(N−1))==0)

X3 = X1+ X4 OR X2
X4= (X3 + X4 + X1)>>7+X2
X1 = X1 XOR (Y1>>5) + X3

Z = X3+X2 XOR (X1 OR X2)+X4

Z = F9(X1 ,X2 ,X3 ,X4)
For i=1 to N

X1 = X1 + X2 XOR X3
IF (X1 XOR X2 == X3)

X3 = (X1+ X2)>>5+ X4
IF (X2 OR X3 == X4)

X2 = X1 + X4 OR X2 XOR 0x678
X3= X3+(X1 XOR X3 + X2) >> 3
X2 = X2 XOR X3 OR X1

136 A. Data Set Functions

Z = X3+X2 + (X1 OR X2) XOR 0x786

Z = F10 (X1 ,X2 ,X3 ,X4)
For i=1 to N

Y1 = X1 XOR X2
Y2 = X2 XOR X4
IF ((Y1>>(N−1))==1)

X2 = X2+ X3 OR Y1
IF ((Y2>>(N−1))==0)

X3 = X1+ X4 OR Y2
X3= (X3 + X4 + X1)>>7+X2
X1 = X1 XOR Y1
X4 = X4 + Y2 XOR X1

Z = X3+X2 XOR Y1 + Y2

Z = F11 (X1 ,X2 ,X3 ,X4 ,X5 ,X6)
For i=1 to N

X1 = X1 +X4+ 0x78
X2 = X2 + X6 XOR (X4 AND X5)
Y1 = X1 XOR (X2 >> 6)
X3 = (X1+ X3 + Y1)>1+X5
X4 = (X1+ X4 + Y1)>3 XOR X3
X5 = (X1+ X5 + Y1)>5 + (X2>>5)
X6 = (X1+ X6 + Y1)>7 XOR (X1 + 0x67)

Z= X1 + X2 + X3 + X4 + X5 + X6

Z = F12 (X1 ,X2 ,X3 ,X4 ,X5 ,X6)
For i=1 to N

Y1 = (X1 + X2)>1
Y2 = (X3 XOR X4)
Y3 = (X5 + X6)
X3 = (X1+ Y1 + Y1)>1
X4 = (X2+ Y2 + Y1)>3
X5 = (X3+ Y3 + Y1)>5
X6 = X6 XOR (Y1+ Y2 + Y3)>7

137

X1 = X1 XOR Y1
X2 = X2 + Y2

Z= X1 + X2 + X3 + X4 + X5 + X6

Z = F13 (X1 ,X2 ,X3 ,X4 ,X5 ,X6)
Y1 = X1 XOR X2
X1 = X1 +X4
X2 = X2 + X6
X3 = (X1+ X3 + Y1)>1
X4 = (X1+ X4 + Y1)>3
X5 = (X1+ X5 + Y1)>5
X6 = (X1+ X6 + Y1)>7

Z= X1 + X2 + X3 + X4 + X5 + X6

Z = F14 (X1 ,X2 ,X3 ,X4 ,X5 ,X6)
Y1 = X1 XOR X2
IF ((Y1 >> N−1) == 1)

X1 = X1 >> 3
IF ((Y1 >> N−1) == 0)

X2 = X1 >> 3
X3 = (X1+ X3)>>6 + Y1
X4 = (X2+ X4) XOR 0x77 + Y1
X5 = (X1+ X5)>>5 + Y1
X6 = (X1+ X6 + Y1)>7

Z= X1 + X2 + X3 + X4 + X5 + X6

Z = F15 (X1 ,X2 ,X3 ,X4 ,X5 ,X6)
Y1 = X1 + X2
Y2 = X3 + X4
X1 = X1 + Y2
X2 = X2 + Y2

IF ((X4 AND X5) == 0xF)
X3 = X4 + X1 XOR X2

X4 = X4+X1 XOR (Y1>>5)
X5 = X5+X3 AND (Y2>>7)+X3

138 A. Data Set Functions

X6 = X6>>6+Y1
Z= X1 XOR X2 + X3 + X4 XOR X5 + X6 XOR (Y1+Y2)

Z = F16 (X1 , X2)
Y1 = (X1 XOR X2) >> 16
FOR i=1 TO N

Y2 = (Y1 >> 16) OR X2
Y2 = Y2 + 0x3B2FA064
X2 = X2 XOR Y2

END−FOR
Z = Y2 + X2

Z = F17 (X1 , X2)
Y1 = (X1 + X2) >> 16
IF (Y1 == 0)

X1 = X1 >> 16
X2 = X2 >> 16

END−IF
FOR i=1 TO N

Y1 = (Y1 + X1) >> 8
Y2 = (Y1 + X2) >> 8
X1 = X2 XOR Y2
X2 = X1 XOR Y1

END−FOR
Z = X1 OR X2

Z = F18 (X1 , X2)
Y1 = (X1 XOR X2) + (X1 AND X2)
Y2 = (X1 AND X2) + (X1 OR X2)
Y3 = (Y1 XOR Y2) >> 16
IF (Y1 == 0)

Y3 = Y3 + 0X17D4A0BB
END−IF
IF (Y2 AND Y3 == 0)

Y3 = Y3 XOR X1

139

END−IF
Z = Y1 + Y2 + Y3

Z = F19 (X1 , X2)
Y1 = 0
FOR i=1 TO N

Y1 = Y1 + ((X1 >> 8) XOR X2)
END−FOR
Z = Y1 XOR X1 XOR X2

Z = F20 (X1 , X2)
FOR i=1 TO N

Y1 = (X1 >> 32) + X2
IF (Y1 == 0)

X2 = X2 >> 8
END−IF

END−FOR
Z = Y1 AND X2

Z = F21 (X1 , X2 , X3 , X4)
Y1 = X1 XOR X2 XOR X3 XOR X4
FOR i=1 TO 32

Y2 = (X1 + X2 + X3 + X4) >> 16
Y3 = (Y1 XOR Y2) + (Y1 AND Y2)
X1 = (X1 >> 1) XOR Y3
X2 = (X2 >> 1) XOR Y2
X3 = (X3 >> 1) XOR Y3
X4 = (X4 >> 1) XOR Y2

END−FOR
Z = Y2 XOR Y3

Z = F22 (X1 , X2 , X3 , X4)
Y1 = (X1 AND X2) + (X3 OR X4)

140 A. Data Set Functions

Y2 = (X1 XOR X2 XOR X3 XOR X4) >> 16
Y3 = (X1 + Y1) XOR X1
Y4 = (X2 + Y2) OR X2
Y5 = (X3 + Y1) XOR X3
Y6 = (X4 + Y2) OR X4
Z = Y1 XOR Y2 XOR Y3 XOR Y4 XOR Y5 XOR Y6

Z = F23 (X1 , X2 , X3 , X4)
Y1 = 0
FOR i=1 TO 16

X1 = (X1 >> 8) XOR X2
X2 = (X2 >> 8) XOR X3
X3 = (X3 >> 8) XOR X4
X4 = (X4 >> 8) XOR X1
Y1 = Y1 XOR ((X1 XOR X2) + (X3 XOR X4))

END−FOR
Z = Y1

Z = F24 (X1 , X2 , X3 , X4)
Y3 = 0
IF (X1 AND X2 = 0)

FOR i=1 TO N
Y1 = (Y1 >> 8) XOR X1
Y2 = (Y1 >> 8) XOR X2
Y3 = Y3 + (Y1 AND Y2)

END−FOR
END−IF
Y4 = X3
Y5 = X4
FOR i=1 TO N

Y3 = Y3 XOR Y4 XOR Y5
Y4 = (Y4 >> 8) + Y3
Y5 = (Y5 >> 8) + Y3

END−FOR
Z = Y3 XOR X1 XOR X2 XOR X3 XOR X4

141

Z = F25 (X1 , X2 , X3 , X4)
Y1 = 0
FOR i=1 TO N

Y1 = Y1 + (X1 XOR x2)
X1 = (X1 >> 16) AND Y1
X2 = (X2 OR Y1) AND X1

END−FOR
IF (X3 XOR X4 == 0)

Y1 = (Y1 >> 16) + X3 + X4
X3 = X3 XOR Y1
X4 = X4 XOR Y1

END−IF
Z = Y1 XOR X3 XOR X4

Z = F26 (X1 , X2 , X3 , X4 , X5 , X6)
Y1 = (X1 + X2) XOR X5
Y2 = (X3 + X4) XOR X6
IF (Y1 AND Y2 == 0)

Y1 = Y1 >> 16
Y2 = Y2 >> 16

END−IF
FOR i=1 TO N

Y1 = Y1 XOR (X5 AND X6)
Y2 = Y1 OR (X1 + X6) OR 0x0F0F0F0F
X5 = X5 XOR (X1 + Y1 + Y2)
X6 = X6 AND (X1 + Y1 + Y2)

END−FOR
Z = Y1 XOR Y2

Z = F27 (X1 , X2 , X3 , X4 , X5 , X6)
Y1 = 0
FOR i=1 TO 64

Y1 = X1 XOR X2 XOR X3
X1 = (X4 >> 8) + Y1
X2 = (X5 >> 16) + Y1

142 A. Data Set Functions

X3 = (X6 >> 24) + Y1
END−FOR
Z = Y1 AND (X4 XOR X5 XOR X6)

Z = F28 (X1 , X2 , X3 , X4 , X5 , X6)
Y1 = (X1 + X2) >> 16
Y2 = (X3 + X4 + X5) >> 8
Y3 = (X6 AND Y1) + (X6 XOR Y2)
IF (Y1 XOR Y2 XOR Y3 == 0)

Y1 = Y1 + 0XF1F1F1F1
Y2 = (Y1 OR Y2) + (Y1 AND Y3)

END−IF
Z = Y3 XOR (Y1 + Y2)

Z = F29 (X1 , X2 , X3 , X4 , X5 , X6)
FOR i=1 TO 16

X1 = X1 XOR X4
X2 = X2 XOR X5
X3 = X3 XOR X6
Y1 = X1 + X2 + X3

END−FOR
Y1 = (Y1 >> 16) + (X1 XOR X2 XOR X3)
Z = (Y1 XOR X4) + (Y1 XOR X5) + (Y1 XOR X6)

Z = F30 (X1 , X2 , X3 , X4 , X5 , X6)
Y1 = X1 XOR X2 XOR X3 XOR X4 XOR X5 XOR X6
FOR i=1 TO 16

X1 = (X1 >> 8) + Y1
X2 = (X2 >> 8) + Y1
X3 = (X3 >> 8) + Y1
X4 = (X4 >> 8) + Y1
X5 = (X5 >> 8) + Y1
X6 = (X6 >> 8) + Y1
Y1 = X1 XOR X2 XOR X3 XOR X4 XOR X5 XOR X6

END−FOR

143

Z = 0X0F0F0F0F AND Y1

144 A. Data Set Functions

References

[1] Amis semiconductor c035u cmos. Design Rules. Rev. A, 2006.

[2] Synopsys design compiler user guide. Version D-2010.03-SP2, 2010.

[3] ISO/IEC 18000-6. Information technology – radio frequency identification for item
management – part 6: Parameters for air interface communications at 860 mhz to
960 mhz. 2013.

[4] A. Bogdanov, L.R. Knudsen, G. Leander, C. Paar, A. Poschmann, M.J.B. Robshaw, Y.
Seurin, and C. Vikkelsoe. Present: An ultra-lightweight block cipher. In proceedings
of CHES 2007, 2007.

[5] A. Juels, D. Molner, and D. Wagner, . Security and privacy issues in epassports.
Proc. First Int’l Conf. Security and Privacy for Emerging Areas in Comm. Networks,
2005.

[6] Michel Agoyan, Jean-Max Dutertre, David Naccache, Bruno Robisson, and Assia
Tria. When Clocks Fail: On Critical Paths and Clock Faults. In Smart Card Research
and Advanced Application, pages 182–193. Springer, 2010.

[7] S.A. Ahson and M. Ilyas. RFID Handbook: Applications, Technology, Security, and
Privacy. Taylor & Francis, 2008.

[8] J.A.A. Angulo, E. Kussener, H. Barthelemy, and B. Duval. A new oscillator-based
random number generator. 2012. cited By (since 1996)0.

[9] L. Atzori, A. Iera, and G. Morabito. The internet of things: A survey. Computer
Networks, 54(15):2787–2805, 2010.

[10] Gildas Avoine, Xavier Carpent, and Benjamin Martin 0002. Privacy-friendly syn-
chronized ultralightweight authentication protocols in the storm. J. Network and
Computer Applications, 35(2):826–843, 2012.

[11] B. M. Baas. A low-power, high-performance, 1024-point FFT processor. IEEE
Journal of Solid-State Circuits, 34(3):380–387, 1999.

146 A. References

[12] Hagai Bar-El, Hamid Choukri, David Naccache, Michael Tunstall, and Claire Whelan.
The sorcerer’s apprentice guide to fault attacks. IACR Cryptology ePrint Archive,
2004:100, 2004.

[13] S.G. Baskir and B. Ors. Implementation of a secure rfid protocol. In Signal Processing
and Communications Applications Conference (SIU), 2013 21st, pages 1–4, April
2013.

[14] Pierre Bayon, Lilian Bossuet, Alain Aubert, Viktor Fischer, Francois Poucheret,
Bruno Robisson, and Philippe Maurine. Contactless electromagnetic active attack
on ring oscillator based true random number generator. In Constructive Side-
Channel Analysis and Secure Design - Third International Workshop, COSADE 2012,
Darmstadt, Germany, May 3-4, 2012. Proceedings, pages 151–166, 2012.

[15] R. Ben Atitallah, E. Senn, D. Chillet, M. Lanoe, and D. Blouin. An efficient
framework for power-aware design of heterogeneous mpsoc. Industrial Informatics,
IEEE Transactions on, 9(1):487–501, Feb 2013.

[16] F. Bernard, V. Fischer, and B. Valtchanov. Mathematical model of physical rngs
based on coherent sampling. Tatra Mountains - Mathematical Publications, 45:1–14,
2010.

[17] L Blum, M Blum, and M Shub. A simple unpredictable pseudo random number
generator. SIAM J. Comput., 15(2):364–383, May 1986.

[18] N. Bochard, F. Bernard, and V. Fischer. Observing the randomness in ro-based
trng. In Reconfigurable Computing and FPGAs, 2009. ReConFig ’09. International
Conference on, pages 237–242, Dec 2009.

[19] E. Bohl, M. Lewis, and S. Gallein. A true random number generator with on-line
testability. 2014. cited By (since 1996)0.

[20] D. Brenk, J. Essel, J. Heidrich, R. Agethen, D. Kissinger, G. Hofer, G. Holweg,
G. Fischer, and R. Weigel. Energy-efficient wireless sensing using a generic adc sensor
interface within a passive multi-standard rfid transponder. IEEE Sensors Journal,
11(11):2698–2710, Nov. 2011.

[21] M. Brown, E. Zeisel, and R. Sabella. Chapter 2 - rfid tags. In RFID+ Exam Cram.
Que, 2006.

[22] M. Burmester and J. Munilla. Lightweight RFID authentication with forward and
backward security. ACM Trans. Inf. Syst. Secur., 14(1):11:1–11:26, June 2011.

A.0. References 147

[23] Levente Buttyan and Jean-Pierre Hubaux. Security and Cooperation in Wireless Net-
works: Thwarting Malicious and Selfish Behavior in the Age of Ubiquitous Computing.
Cambridge University Press, New York, NY, USA, 2007.

[24] Rafael Boix Carpi, Stjepan Picek, Lejla Batina, Federico Menarini, Domagoj
Jakobovic, and Marin Golub. Glitch it if You Can: Novel Parameter Search Strategies
for Successful Fault Injection. In Pankaj Rohatgi and Aurelien Francillon, editors,
Smart Card Research and Advanced Applications -? CARDIS 2013, 12th Interna-
tional Conference, Berlin, Germany, November 27-?29, 2013, Proceedings., LNCS.
Springer, 2013.

[25] T.J. Chaney and C.E. Molnar. Anomalous behavior of synchronizer and arbiter
circuits. Computers, IEEE Transactions on, C-22(4):421–422, April 1973.

[26] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template Attacks. In Burton S.
Kaliski Jr., Çetin Kaya Koç, and Christof Paar, editors, Cryptographic Hardware
and Embedded Systems – CHES 2002, 4th International Workshop, Redwood Shores,
CA, USA, August 13-15, 2002, Revised Papers, volume 2523 of Lecture Notes in
Computer Science, pages 13–28. Springer, 2003.

[27] W. Che, H. Deng, X. Tan, and J. Wang. A random number generator for application
in rfid tags. In Networked RFID Systems and Lightweight Cryptography, pages
279–287. Springer-Verlag, 2008.

[28] Wenyi Che, Huan Deng, Wang Tan, and Junyu Wang. A random number generator
for application in rfid tags. In Peter H. Cole and Damith C. Ranasinghe, editors,
Networked RFID Systems and Lightweight Cryptography, pages 279–287. Springer
Berlin Heidelberg, 2008.

[29] W. Chen, W. Che, N. Yan, X. Tan, and H. Min. Ultra-low power truly random
number generator for rfid tag. Wireless Personal Communications, 59(1):85–94, 2011.
cited By (since 1996)0.

[30] Abdelkarim Cherkaoui, Viktor Fischer, Alain Aubert, and Laurent Fesquet. Com-
parison of self-timed ring and inverter ring oscillators as entropy sources in fpgas. In
DATE, pages 1325–1330, 2012.

[31] Abdelkarim Cherkaoui, Viktor Fischer, Alain Aubert, and Laurent Fesquet. A
self-timed ring based true random number generator. In ASYNC, pages 99–106,
2013.

148 A. References

[32] Abdelkarim Cherkaoui, Viktor Fischer, Laurent Fesquet, and Alain Aubert. A Very
High Speed True Random Number Generator with Entropy Assessment. In Guido
Bertoni and Jean-Sebastien Coron, editors, Cryptographic Hardware and Embedded
Systems - CHES 2013, volume 8086 of Lecture Notes in Computer Science, pages
179–196. Springer Berlin Heidelberg, 2013.

[33] H.-Y. Chien and C.-W. Huang. A lightweight authentication protocol for low-cost
RFID. Journal of Signal Processing Systems, 59(1):95–102, April 2010.

[34] H.Y. Chien. SASI: A new ultralightweight RFID authentication protocol providing
strong authentication and strong integrity. IEEE Transactions on Dependable and
Secure Computing, 4(4):337–340, Oct.-Dec. 2007.

[35] Peter H. Cole and Damith C. Ranasinghe. Networked RFID Systems and Lightweight
Cryptography: Raising Barriers to Product Counterfeiting. 1 edition.

[36] National Intelligence Council. Disruptive civil technologies: Six technologies with
potential impacts on us interests out to 2025. Conference Report - CR 2008-07, April
2008.

[37] O. Cret, A. Suciu, and T. Gyorfi. Practical issues in implementing trngs in fpgas
based on the ring oscillator sampling method. In 10th International Symposium on
Symbolic and Numeric Algorithms for Scientific Computing (SYNASC ’08), pages
433–438. IEEE Computer Society, 2008.

[38] J.-L. Danger, S. Guilley, and P. Hoogvorst. High speed true random number generator
based on open loop structures in {FPGAs}. Microelectronics Journal, 40(11):1650 –
1656, 2009.

[39] Paolo D’Arco and Alfredo De Santis. On ultralightweight rfid authentication protocols.
IEEE Trans. Dependable Sec. Comput., 8(4):548–563, 2011.

[40] Brian Panchalingam Mukunthan Stratis Chris Dargan, Gaurav Johnson. The use of
radio frequency identification as a replacement for traditional barcoding. 2004.

[41] Robert B Davies. Exclusive or (xor) and hardware random number generators.
Website, 2002.

[42] Markus Dichtl. How to predict the output of a hardware random number generator.
In ColinD. Walter, CetinK. Koc, and Christof Paar, editors, Cryptographic Hardware
and Embedded Systems - CHES 2003, volume 2779 of Lecture Notes in Computer
Science, pages 181–188. Springer Berlin Heidelberg, 2003.

A.0. References 149

[43] Markus Dichtl and Jovan Dj. Golic. High-speed true random number generation
with logic gates only. In Pascal Paillier and Ingrid Verbauwhede, editors, CHES,
volume 4727 of Lecture Notes in Computer Science, pages 45–62. Springer, 2007.

[44] D. M. Dobkin. Chapter 3 - Radio basics for UHF RFID. In The RF in RFID, pages
51–101. Newnes, 2008.

[45] O. Elissati, E. Yahya, S. Rieubon, and L. Fesquet. A novel high-speed multi-phase
oscillator using self-timed rings. In International Conference on Microelectronics
(ICM’10), pages 204–207, 2010.

[46] Sho Endo, Takeshi Sugawara, Naofumi Homma, Takafumi Aoki, and Akashi Satoh.
An on-chip glitchy-clock generator and its applicataion to sage-error attack. In
Second International Workshop on Constructive Side-Channel Analysis and Secure
Design (COSADE 2011), 24-25 February 2011, Darmstadt, Germany, Workshop
Proceedings COSADE 2011, pages 175–182, 2011.

[47] EPCglobal Inc. Class-1 Generation-2 UHF RFID protocol for communications at
860 MHz - 960 MHz (version 1.2.0), 2008.

[48] F. Thornton, B. Haines, A. M. Das, H. Bhargava, A. Campbell, J. Kleinschmidt. Rfid
security, protect the supply chain. Ed: Syngress Publishing INC. ISBN:1-59749-047-4,
2006.

[49] Benjamin Fabian, Tatiana Ermakova, and Cristian Muller. Shardis: A privacy-
enhanced discovery service for rfid-based product information. IEEE Trans. Industrial
Informatics, 8(3):707–718, 2012.

[50] X. Fang, Q. Wang, C. Guyeux, and J. M. Bahi. {FPGA} acceleration of a pseu-
dorandom number generator based on chaotic iterations. Journal of Information
Security and Applications, 19(1):78 – 87, 2014.

[51] M. Feldhofer and C. Rechberger. A case against currently used hash functions in rfid
protocols. In International Conference on the Move to Meaningful Internet Systems
- OTM Workshops, volume 4277 of LNCS, pages 372–381. Springer-Verlag, 2006.

[52] Klaus Finkenzeller. RFID Handbook: Fundamentals and Applications in Contactless
Smart Cards and Identification. John Wiley & Sons, Inc., New York, NY, USA, 2
edition, 2003.

[53] FIPS. Security Requirements for Cryptographic Modules, May 2001.

150 A. References

[54] M. Fischer, V. Drutarovsky. True random number generator embedded in recon-
figurable hardware. In Proceedings of International Workshop on Cryptographic
Hardware and Embedded Systems (CHES’02), volume 2523 of Lecture Notes in
Computer Science, pages 415–430. Springer-Verlag, 2002.

[55] Viktor Fischer, Milos Drutarovsky, Martin Simka, Frederic Celle, and Universite Jean
Monnet. A simple pll-based true random number generator for embedded digital
systems. Computing and Informatics, pages 5–6.

[56] ISO: Internacional Organization for Standardization. http://www.iso.org/.

[57] B. Glover and H. Bhatt. RFID Essentials (Theory in Practice). O’Reilly Media, Inc.,
2006.

[58] T. Guneysu and C. Paar. Transforming write collisions in block rams into security
applications. In Field-Programmable Technology, 2009. FPT 2009. International
Conference on, pages 128–134, Dec 2009.

[59] Xu Guo, Meeta Srivastav, Sinan Huang, Dinesh Ganta, Michael B. Henry, Leyla
Nazhandali, and Patrick Schaumont. Asic implementations of five sha-3 finalists.
In Wolfgang Rosenstiel and Lothar Thiele, editors, DATE, pages 1006–1011. IEEE,
2012.

[60] T. Gyorfi, O. Cret, and A Suciu. High performance true random number generator
based on fpga block rams. In Parallel Distributed Processing, 2009. IPDPS 2009.
IEEE International Symposium on, pages 1–8, May 2009.

[61] P. Haddad, Y. Teglia, F. Bernard, and V. Fischer. On the assumption of mutual
independence of jitter realizations in p-trng stochastic models. In Design, Automation
and Test in Europe Conference and Exhibition (DATE’14), pages 1–6. IEEE Computer
Society, 2014.

[62] S. Halevi. Cryptographic hash functions and their many applications. USENIX
Security Symposium, 2009.

[63] Hamid Jabbar, Taikyeong Ted. Jeong. Rfid system integration.
http://sciyo.com/download/pdf/pdfs_id/8487?...39k13d81v7ljriispot11toiq.

[64] J.C. Hernandez-Castro, J.M. Estevez-Tapiador, A. Ribagorda-Garnacho, and
B. Ramos-Alvarez. Wheedham: an automatically designed block cipher by means
of genetic programming. In IEEE Congress on Evolutionary Computation, pages
192–199, 2006.

A.0. References 151

[65] D.E. Holcomb, W.P. Burleson, and K. Fu. Power-up sram state as an identifying
fingerprint and source of true random numbers. Computers, IEEE Transactions on,
58(9):1198–1210, 2009.

[66] S. Hosseini.-Khayat. A lightweight security protocol for ultra-low power asic im-
plementation for wireless implantable medical devices. In Medical Information
Communication Technology (ISMICT), 2011 5th International Symposium on, pages
6–9, March 2011.

[67] http://www.afcea.org. Radio frequency identification ready to deliver, armed forces
communications and electronics association. January 2005.

[68] Miaoqing Huang, Kris Gaj, and Tarek A. El.-Ghazawi. New hardware architectures for
montgomery modular multiplication algorithm. IEEE Trans. Computers, 60(7):923–
936, 2011.

[69] Y.-J. Huang, W.-C. Lin, and H.-L. Li. Efficient implementation of RFID mutual
authentication protocol. IEEE Transactions on Industrial Electronics, 59(12):4784–
4791, Dec. 2012.

[70] Yu.Jung Huang, Ching.Chien Yuan, Ming.Kun Chen, Wei.Cheng Lin, and
Hsien.Chiao Teng. Hardware implementation of rfid mutual authentication pro-
tocol. Industrial Electronics, IEEE Transactions on, 57(5):1573–1582, May 2010.

[71] Michael Hutter and Jörn-Marc Schmidt. The Temperature Side-Channel and Heating
Fault Attacks. In Pankaj Rohatgi and Aurelien Francillon, editors, Smart Card
Research and Advanced Applications - CARDIS 2013, 12th International Conference,
Berlin, Germany, November 27-29, 2013, Proceedings. Springer, 2013.

[72] International Air Transport Association. Rfid business case for baggage tagging.
http://www.iata.org/whatwedo/stb/Documents/RFID0case

[73] Guiyue Jin, Jiyu Jin, Xueheng Tao, and Baoying Li. A full scale authentication
protocol for rfid conforming to epc class1 gen2 standard. In Services Computing
Conference (APSCC), 2012 IEEE Asia-Pacific, pages 286–290, Dec 2012.

[74] A. Klimov and A. Shamir. A new class of invertible mappings. In International
Workshop on Cryptographic Hardware and Embedded Systems, volume 2523 of LNCS,
pages 471–484. Springer-Verlag, 2002.

152 A. References

[75] A. Klimov and A. Shamir. New applications of T-functions in block ciphers and
hash functions. In Fast Software Encryption, volume 3557 of LNCS, pages 18–31.
Springer Berlin Heidelberg, 2005.

[76] Alexander Klimov and Adi Shamir. A new class of invertible mappings. In Burton
S. Kaliski Jr., Cetin Kaya Koc, and Christof Paar, editors, CHES, volume 2523 of
Lecture Notes in Computer Science, pages 470–483. Springer, 2002.

[77] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analysis.
In Michael Wiener, editor, Advances in Cryptology - CRYPTO ’99, 19th Annual
International Cryptology Conference, Santa Barbara, California, USA, August 15-19,
1999, Proceedings, volume 1666 of Lecture Notes in Computer Science, pages 388–397.
Springer, 1999.

[78] Paul Kohlbrenner and Kris Gaj. An embedded true random number generator for
fpgas. In Proceedings of the 12th International Symposium on Field Programmable
Gate Arrays (ACM/SIGDA’04), FPGA ’04, pages 71–78, New York, NY, USA, 2004.
ACM.

[79] Kwak, M., Kim, J. y Kim, K. Desynchronization and cloning resistant
lightweight rfid authentication protocolo using integer arithmetic for low-cost tags.
http://caislab.kaist.ac.kr/publication/paper_files/2009/SCIS2009_Minhea.pdf.

[80] Siew-Hwee Kwok, Yen-Ling Ee, Guanhan Chew, Kanghong Zheng, Khoongming
Khoo, and Chik How Tan. A comparison of post-processing techniques for biased
random number generators. In Claudio Agostino Ardagna and Jianying Zhou, editors,
WISTP, volume 6633 of Lecture Notes in Computer Science, pages 175–190. Springer,
2011.

[81] Shuenn.-Yuh Lee, Liang.-Hung Wang, and Qiang Fang. A low-power rfid integrated
circuits for intelligent healthcare systems. Information Technology in Biomedicine,
IEEE Transactions on, 14(6):1387–1396, Nov 2010.

[82] Yang Li, Kazuo Ohta, and Kazuo Sakiyama. New fault-based side-channel attack
using fault sensitivity. IEEE Transactions on Information Forensics and Security,
7(1):88–97, 2012.

[83] Zhaoyu Liu and Dichao Peng. True random number generator in rfid systems against
traceability. In Consumer Communications and Networking Conference, 2006. CCNC
2006. 3rd IEEE, volume 1, pages 620–624, Jan 2006.

A.0. References 153

[84] F. Lozach, M. Ben-Romdhane, T. Graba, and J.L. Danger. Fpga design of an
open-loop true random number generator. pages 615–622, 2013. cited By (since
1996)0.

[85] D. Lubicz and N. Bochard. Towards an oscillator based trng with a certified entropy
rate. Computers, IEEE Transactions on, PP(99):1–1, 2014.

[86] Adnan Abu Mahfouz and Gerhard P. Hancke. Distance bounding: A practical
security solution for real-time location systems. IEEE Trans. Industrial Informatics,
9(1):16–27, 2013.

[87] K. Mandal, X. Fan, and G. Gong. Warbler: A lightweight pseudorandom number
generator for EPC C1 Gen2 tags. In Radio Frequency Identification System Security,
volume 8 of Cryptology and Information Security, pages 73–84. 2012.

[88] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power Analysis Attacks –
Revealing the Secrets of Smart Cards. Springer, 2007. ISBN 978-0-387-30857-9.

[89] Manish Bhuptani, Shaaram Moradpour. Rfid field guide. Prentice Hall PTR Upper
Saddle River, NJ, USA, 2005.

[90] A. Theodore Markettos and Simon W. Moore. The frequency injection attack on
ring-oscillator-based true random number generators. In Proceedings of the 11th
International Workshop on Cryptographic Hardware and Embedded Systems, CHES
’09, pages 317–331, Berlin, Heidelberg, 2009. Springer-Verlag.

[91] G. Marsaglia. The marsaglia random number cdrom including the diehard battery
of tests of randomness. 1996.

[92] George Marsaglia and Wai Wan Tsang. Some difficult-to-pass tests of randomness.
Journal of Statistical Software, 7(3):1–9, 1 2002.

[93] H. Martin, E. San Millan, L. Entrena, P. Peris-Lopez, and J. C. Hernandez-Castro.
AKARI-X: A pseudorandom number generator for secure lightweight systems. In
IEEE International On-Line Testing Symposium (IOLTS), pages 228–233. IEEE
Society, 2011.

[94] J. Melia.-Segui, Joaquin Garcia-Alfaro, and Jordi Herrera.-Joancomarti. Analysis and
improvement of a pseudorandom number generator for epc gen2 tags. In Radu Sion,
Reza Curtmola, Sven Dietrich, Aggelos Kiayias, Josep M. Miret, Kazue Sako, and
Francesc Sebe, editors, Financial Cryptography Workshops, volume 6054 of Lecture
Notes in Computer Science, pages 34–46. Springer, 2010.

154 A. References

[95] Alfred J. Menezes, Scott A. Vanstone, and Paul C. Van Oorschot. Handbook of
Applied Cryptography. CRC Press, Inc., Boca Raton, FL, USA, 1st edition, 1996.

[96] David Molnar and David Wagner. Privacy and security in library rfid: Issues,
practices, and architectures. In Proceedings of the 11th ACM Conference on Computer
and Communications Security, CCS ’04, pages 210–219, New York, NY, USA, 2004.
ACM.

[97] M.M. Morshed, A. Atkins, and Hongnian Yu. An efficient and secure authentica-
tion protocol for rfid systems. In Automation and Computing (ICAC), 2011 17th
International Conference on, pages 51–56, Sept 2011.

[98] Nadia Nedjah and Luiza de Macedo Mourelle. A review of modular multiplication
methods ands respective hardware implementation. Informatica (Slovenia), 30(1):111–
129, 2006.

[99] Mundo NFC. Diferencia entre nfc y rfid.
http://mundonfc.wordpress.com/2012/02/08/diferencia-entre-nfc-y-rfid/, 2012.

[100] NxP. UCODE EPC Gen2, Consulted on March 2013.

[101] Graz University of Technology. UHF RFID Demo Tag. [Online] (Last access Sept.
2014), Available at http://jce.iaik.tugraz.at/sic/Products/.

[102] Maire O’Neill. Low-cost SHA-1 hash function architecture for RFID tags. InWorkshop
on RFID Security, pages 41–51. Dominikus, S., Aigner, M. (eds.), 2008.

[103] P. Peris Lopez. Phd:lightweight cryptography in radio frequency identification (rfid)
systems. http://www.lightweightcryptography.com/, 2008.

[104] Pedro Peris-Lopez, Julio Cesar Hernandez-Castro, Juan M. Estevez-Tapiador, and
Arturo Ribagorda. An efficient authentication protocol in rfid systems resistant to
active attacks. In EUC Conferences and Workshop: SecUbiq Workshop„ 2007.

[105] Pedro Peris.-Lopez, Julio Cesar Hernandez Castro, Juan M. Estevez.-Tapiador, and
Arturo Ribagorda. Lamed - a prng for epc class-1 generation-2 rfid specification.
Computer Standards & Interfaces, 31(1):88–97, 2009.

[106] Selwyn Piramuthu. Rfid mutual authentication protocols. Decision Support Systems,
50(2):387–393, 2011.

A.0. References 155

[107] Thomas Plos, Michael Hutter, Martin Feldhofer, M. Stiglic, and F. Cavaliere. Security-
enabled near-field communication tag with flexible architecture supporting asymmet-
ric cryptography. IEEE Trans. VLSI Syst., 21(11):1965–1974, 2013.

[108] R. A. Potyrailo, D. Monk, W. G. Morris, S. Klensmeden, H. Ehring, T. Wortley,
V. Pizzi, J. Carter, and G. Gach. Integration of passive multivariable RFID sensors
into single-use biopharmaceutical manufacturing components. In IEEE International
Conference on RFID, pages 1–7, April 2010.

[109] R.A. Potyrailo, C. Surman, W.G. Morris, T. Wortley, M. Vincent, R. Diana, V. Pizzi,
J. Carter, and G. Gach. Lab-scale long-term operation of passive multivariable rfid
temperature sensors integrated into single-use bioprocess components. In IEEE
International Conference on RFID-Technologies and Applications (RFID-TA), pages
16–19, Sept.

[110] N. Rama and R. Suganya. Ssl-map: A more secure gossamer-based mutual authenti-
cation protocol for passive rfid tags. In International Journal on Computer Science
and Engineering, pages 363–367, 2010.

[111] D. Ranasinghe, D. Engels, and P. Cole. Low-cost RFID systems: confronting security
and privacy. In Proceedings of Auto-ID Labs Research Workshop, 2004.

[112] Behzad Razavi. Fundamentals of microelectronics. Wiley, Hoboken, NJ, 2008.

[113] H. Reinisch, M. Wiessflecker, S. Gruber, H. Unterassinger, G. Hofer, M. Klamminger,
W. Pribyl, and G. Holweg. A multifrequency passive sensing tag with on-chip
temperature sensor and off-chip sensor interface using EPC HF and UHF RFID
technology. IEEE Journal of Solid-State Circuits, 46(12):3075–3088, Dec. 2011.

[114] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson,
M. Vangel, D. Banks, A. Heckert, J. Dray, and S. Vo. A statistical test suite
for random and pseudorandom number generators for cryptographic applications.
Technical Report, 2001.

[115] S. Kinoshita, M. Ohkubo, F. Hoshino, G. Morohashi, O. Shionoiri, and A. Kanai,.
Privacy enhanced active rfid tag. Proc. Int’l Workshop Exploiting Context Histories
in Smart Environments, 2005.

[116] S.S. Saab, J.G. Hobeika, and IE. Ouaiss. A novel pseudorandom noise and band
jammer generator using a composite sinusoidal function. IEEE Transactions on
Signal Processing, 58(2):535–543, Feb 2010.

156 A. References

[117] A. P. Sample, D. J. Yeager, P. S. Powledge, A. V. Mamishev, and J. R. Smith. Design
of an RFID-based battery-free programmable sensing platform. IEEE Transactions
on Instrumentation and Measurement, 57(11):2608–2615, Nov. 2008.

[118] Renaud Santoro, Olivier Sentieys, and Sebastien Roy. On-the-fly evaluation of fpga-
based true random number generator. In Proceedings of the 2009 IEEE Computer
Society Annual Symposium on VLSI, ISVLSI ’09, pages 55–60, Washington, DC,
USA, 2009. IEEE Computer Society.

[119] Werner Schindler. Efficient online tests for true random number generators. In
Cryptographic Hardware and Embedded Systems - CHES 2001, Third International
Workshop, Paris, France, May 14-16, 2001, Proceedings, volume 2162 of Lecture
Notes in Computer Science, pages 103–117. Springer, 2001.

[120] Werner Schindler and Wolfgang Killmann. Evaluation criteria for true (physical)
random number generators used in cryptographic applications. In Revised Papers
from the 4th International Workshop on Cryptographic Hardware and Embedded
Systems, CHES ’02, pages 431–449, London, UK, UK, 2003. Springer-Verlag.

[121] J.M. Seguí and Universitat Oberta de Catalunya. Internet Interdisciplinary Insti-
tute (IN3). Lightweight PRNG for Low-cost Passive RFID Security Improvement.
Universitat Oberta de Catalunya, 2011.

[122] Jian Shen, Dongmin Choi, S. Moh, and Ilyong Chung. A novel anonymous rfid
authentication protocol providing strong privacy and security. In Multimedia Infor-
mation Networking and Security (MINES), 2010 International Conference on, pages
584–588, Nov 2010.

[123] Ming.-Der Shieh, Jun.-Hong Chen, Wen.-Ching Lin, and Hao.-Hsuan Wu. A new
algorithm for high-speed modular multiplication design. IEEE Trans. on Circuits
and Systems, 56-I(9):2009–2019, 2009.

[124] S. Shrestha, M. Balachandran, M. Agarwal, V. V. Phoha, and K. Varahramyan.
A chipless RFID sensor system for cyber centric monitoring applications. IEEE
Transactions on Microwave Theory and Techniques, 57(5):1303–1309, May 2009.

[125] Kazem Sohraby, Mahmoud Daneshmand, Chonggang Wang, and Bo Li 0001. Per-
formance analysis of rfid generation-2 protocol. IEEE Transactions on Wireless
Communications, 8(5):2592–2601, 2009.

A.0. References 157

[126] S.S. Kumar and C. Paar. Are standards compliant elliptic curve cryptosystems
feasible on rfid? Proc. Workshop RFID Security, 2006.

[127] B. Sunar, W. J. Martin, and D. R. Stinson. A provably secure true random number
generator with built-in tolerance to active attacks. IEEE Transactions on Computers,
58:109–119, 2007.

[128] V. B. Suresh and W.P. Burleson. Entropy extraction in metastability-based trng. In
IEEE International Symposium on Hardware-Oriented Security and Trust (HOST),
pages 135–140, June 2010.

[129] C. Surman, R.A. Potyrailo, W.G. Morris, T. Wortley, M. Vincent, R. Diana, V. Pizzi,
J. Carter, and G. Gach. Temperature-independent passive rfid pressure sensors for
single-use bioprocess components. In IEEE International Conference on RFID, pages
78–84. IEEE Society, April 2011.

[130] I. E. Sutherland. Micropipelines. Communications of the ACM, 32(6):720–738, 1989.

[131] Chiu Chiang Tan, Bo Sheng, and Qun Li. Secure and serverless rfid authentication and
search protocols. IEEE Transactions on Wireless Communications, 7(4):1400–1407,
2008.

[132] D. B. Thomas and W. Luk. The lut-sr family of uniform random number generators
for fpga architectures. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 21(4):761–770, April 2013.

[133] Thomas E. Tkacik. A hardware random number generator. In Revised Papers from
the 4th International Workshop on Cryptographic Hardware and Embedded Systems,
CHES ’02, pages 450–453, London, UK, UK, 2003. Springer-Verlag.

[134] UMC. Fsd0j_a umc 90 nm logic ll low-k process, 90 nm generic core 1d25v cell
library. Release Note 0.3, Rev. 2009Q2v2.0v2.0, 2009.

[135] R. Vaidyanathaswami and A. Thangaraj. Robustness of physical layer security
primitives against attacks on pseudorandom generators. IEEE Transactions on
Communications, 62(3):1070–1079, March 2014.

[136] István Vajda and Levente Buttyán. Lightweight authentication protocols for low-cost
rfid tags. In 2nd Workshop on Security in Ubiquitous Computing, in conjunction
with Ubicomp 2003, October 2003.

158 A. References

[137] B. Valtchanov, V. Fischer, and A. Aubert. Enhanced trng based on the coherent
sampling. In 3rd International Conference on Signals, Circuits and Systems (SCS’09),
pages 1–6, 2009.

[138] Vincent van der Leest, Erik van der Sluis, Geert-Jan Schrijen, Pim Tuyls, and Helena
Handschuh. Cryptography and security. chapter Efficient Implementation of True
Random Number Generator Based on SRAM PUFs, pages 300–318. Springer-Verlag,
Berlin, Heidelberg, 2012.

[139] Ihor Vasyltsov, Eduard Hambardzumyan, Young-Sik Kim, and Bohdan Karpinskyy.
Fast digital trng based on metastable ring oscillator. In CHES, pages 164–180, 2008.

[140] A. Vena, E. Perret, and S. Tedjini. Design of compact and auto-compensated single-
layer chipless rfid tag. Microwave Theory and Techniques, IEEE Transactions on,
60(9):2913–2924, Sept 2012.

[141] John von Neumann. 13. various techniques used in connection with random digits.
Journal of Research of the National Bureau of Standards. Applied Mathematics Series,
12(??):36–38, 1951.

[142] J. Walker. Randomness battery. 1998.

[143] Bin Wang and Maode Ma. A server independent authentication scheme for rfid
systems. IEEE Trans. Industrial Informatics, 8(3):689–696, 2012.

[144] P.Z. Wieczorek. Dual-metastability fpga-based true random number generator.
Electronics Letters, 49(12):744–745, 2013.

[145] Laurie Wiegler. Never lost in space: Nasa uses rfid on the space station.
http://blog.atlasrfidstore.com/nasa-rfid-never-lost-space, 2014.

[146] A. Winstanley and M. Greenstreet. Temporal properties of self-timed rings. In
Correct Hardware Design and Verification Methods, volume 2144 of Lecture Notes in
Computer Science, pages 140–154. Springer Berlin Heidelberg, 2001.

[147] Knut Wold and Chik How Tan. Analysis and enhancement of random number
generator in fpga based on oscillator rings. Int. J. Reconfig. Comput., 2009:4:1–4:8,
January 2009.

[148] Xilinx. Spartan-6 fpga data sheet:dc and switching characteristics, 2011.

[149] Sang-Kyung Yoo, Deniz Karakoyunlu, Berk Birand, and Berk Sunar. Improving the
robustness of ring oscillator trngs. TRETS, 3(2):9, 2010.

A.0. References 159

[150] Y. z. Li, Y. b. Cho, N.-K. Um, and S.-H. Lee. Security and privacy on authentication
protocol for low-cost RFID. In Intl. Conf. on Computational Intelligence and Security,
volume 2, pages 1101–1104. IEEE Society, Nov. 2006.

[151] I. Zalbide, J. Vicario, and I. Velez. Power and energy optimization of the digital core
of a Gen2 long range full passive RFID sensor tag. In IEEE International Conference
on RFID, pages 125–133. IEEE Society, April 2008.

[152] Yuan Zhou, C.L. Law, and Jingjing Xia. Ultra low-power uwb-rfid system for precise
location-aware applications. In Wireless Communications and Networking Conference
Workshops (WCNCW), 2012 IEEE, pages 154–158, April 2012.

[153] Loic Zussa, Jean-Max Dutertre, Jessy Clédière, and Assia Tria. Power supply glitch
induced faults on fpga: An in-depth analysis of the injection mechanism. In IOLTS,
pages 110–115, 2013.

