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a las generaciones más jóvenes. Ha sido un lujo para mı́ poder trabajar con él. A mi
codirectora Yamilet Quintana por transmitirme su infatigable espı́ritu de trabajo, por
los dı́as en Caracas y por haberme mostrado de primera mano muchas herramientas de
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Summary

In the last 30 years, the study of orthogonal polynomials in Sobolev spaces has ob-
tained an increasing attention from the research community. The first work on Sobolev
orthogonal polynomials [6] was published in 1962 by Althammer, who studied the
Legendre-Sobolev polynomials orthogonal with respect to the inner product

xf, gy �
» 1

�1

fpxqgpxqdx� λ

» 1

�1

f 1pxqg1pxqdx, λ ¡ 0.

The motivation for such a study was attributed to the paper of Lewis [50]. Later on,
Schäfke (see [92]) simplified and generalized some of the results in [6].

Since then this area has paid an increasing attention by many researchers. In Chap-
ter 1 we only point out works which are important for understanding the material con-
tained in this Thesis and we apologize if some title is missing in the bibliography. In
any case, the interested reader is referred to [67], a recent survey on Sobolev orthogonal
polynomials where the reader can find an overview in this subject as well as an huge
number of publications in the bibliography. This contribution has been very helpful for
the final form of this memory.

The study of this family of orthogonal polynomials is not only interesting for a
comparison with the standard theory of orthogonal polynomials (see [13, 95]), but
these polynomials also arise in a natural way in a variety of contexts:

• In Approximation Theory, Sobolev polynomials constitute a natural basis for the
approximating subspaces in a certain least square approximation problem (see
[50]).

• Spectral theory of ordinary and partial differential equations.

• Analysis of spectral numerical methods for boundary value problems on partial
differential equations.
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• Search of algorithms for the computation of Fourier Series in terms of Sobolev
orthogonal polynomials. The numerical experiments made by A. Iserles et al.
(see [40]) point out that the analysis of Gibbs phenomena can be performed in a
successful way using Sobolev orthogonal polynomials.

In this thesis, we analyze the properties of polynomials orthogonal with respect to
a discrete Sobolev inner product. More precisely, we will focus our attention on the
study of connection formulas relating Sobolev orthogonal polynomials with the corre-
sponding ordinary ones. Indeed, we deal with some problems on asymptotic behavior
of Sobolev orthogonal polynomials as well as we obtain some results on convergence
of Fourier-Sobolev series.

The present Thesis is organized as follows:

• In Chapter 1 we introduce the theory of Sobolev orthogonal polynomials and the
notation that we will use along this Thesis. We summarize two main differences
between the standard orthogonal polynomials and the Sobolev case: recurrence
relations and the location of zeros of orthogonal polynomials. Here, we also
include a thorough study about the known connection formulas. Finally, for a
better understanding of our work, we give the state of the art about asymptotics
and Fourier series of orthogonal polynomials, analyzing both the cases of mea-
sures with bounded and unbounded support, respectively.

• In Chapter 2 we study some algebraic and analytic aspects of certain family of
Sobolev polynomials orthogonal with respect to a measure with a bounded sup-
port on the real line. In Section 2.1 we present an alternative proof for a known
result about Outer Relative Asymptotics of Sobolev orthogonal polynomials. In
Section 2.2 we also include a new matrix connection relating the matrix asso-
ciated to the higher order recurrence relation for Sobolev polynomials and the
corresponding Jacobi matrix associated to the standard ones. In Section 2.3 we
show a result about pointwise convergence of Fourier-Sobolev series in the case
of measures with bounded support.

• In Chapter 3 we summarize some known properties of polynomials orthogonal
with respect to a modification of the Laguerre measure, the k-iterated Christoffel
one. Later on, we obtain estimates for the norm of such polynomials as well as
a generalized Christoffel formula for them. Finally, we present a detailed study
about the diagonal Christoffel kernels associated to the Gamma distribution. In
particular, we obtain the asymptotic behavior of these kernel polynomials both
inside and outside the support of the measure.

• In Chapter 4 we deal with the Outer and Inner Relative Asymptotics of Sobolev-
type orthogonal polynomials when the mass points are located inside the support
of the measure, the oscillatory region for such polynomials. Finally, we obtain
the asymptotic behavior of the coefficients appearing in the higher order recur-
rence relation that Sobolev polynomials satisfy.
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• In Chapter 5 we show the divergence of a certain Fourier-Sobolev series. The
main tool for this purpose will be a Cohen type inequality. This problem is
dealing for the first time for a Sobolev-type inner product with a mass point
outside the support of the measure.

Some of the original results contained in this Thesis have published in the following
scientific journals and we list them within the bibliography at the end of this work:

[38] E. J. Huertas, F. Marcellán, M. F. Pérez-Valero, and Y. Quintana, Asymptotics for
Laguerre-Sobolev type orthogonal polynomials modified within their oscillatory
regime. Appl. Math. Comput. 236 (2014), 260–272.

[39] E. J. Huertas, F. Marcellán, M. F. Pérez-Valero, and Y. Quintana, A Cohen type
inequality for Laguerre-Sobolev expansions with a mass point outside their os-
cillatory regime. Turkish J. Math. 38 (2014), 994–1006.

[59] F. Marcellán, M. F. Pérez-Valero, Y. Quintana, and A. Urieles, Recurrence rela-
tions and outer relative asymptotics of orthogonal polynomials with respect to a
discrete Sobolev type inner product, Bull. Math. Sci. 4 (1) (2014), 83–97.

[60] F. Marcellán, M. F. Pérez-Valero and Y. Quintana, Asymptotic behavior of deriva-
tives of Laguerre kernels and some applications, J. Math. Anal. Appl. 421
(2015), 314–328.





Resumen

El desarrollo del estudio de polinomios ortogonales en espacios de Sobolev ha
tenido lugar a lo largo de los últimos 30 años. El primer artı́culo sobre polinomios
ortogonales de Sobolev, [6], fue publicado en 1962 por Althammer, quien estudió los
polinomios de Sobolev-Legendre ortogonales respecto al producto interno
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El autor atribuyó la motivación para este análisis al artı́culo de Lewis [50] sobre aprox-
imación suave de mı́nimos cuadrados. Más tarde, algunos de los resultados obtenidos
en [6] fueron simplificados y generalizados por Schäfke en [92].

Desde entonces han aparecido multitud de publicaciones en esta área, de forma
que preferimos en el capı́tulo 1 centrarnos sólo en aquellas aportaciones importantes
para la comprensión y justificación del material contenido en esta memoria y pedimos
disculpas si llegara a haber omisión de algún trabajo relevante. No obstante, el lector
interesado puede consultar [67], un estudio sobre polinomios ortogonales en espacios
de Sobolev aparecido en arXiv y recientemente aceptado para publicación donde se
ofrece una visión general sobre esta materia, además de un resumen bastante completo
de la bibliografı́a y que ha sido de gran ayuda en la forma final que ha adquirido este
trabajo.

El estudio de estas nuevas familias de polinomios ortogonales es interesante, no
sólo por la comparación entre las propiedades y comportamiento de estos polinomios
frente a los polinomios ortogonales estándar (véanse [13, 95]), sino por las múltiples
aplicaciones que tienen en diferentes contextos:

• En teorı́a de aproximación, los polinomios de Sobolev constituyen una base natu-
ral para los subespacios de aproximación de cierto problema de mı́nimos cuadra-
dos (véase [50]).

• Teorı́a espectral de ecuaciones diferenciales ordinarias ası́ como para ecuaciones
en derivadas parciales.
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• Análisis de métodos espectrales en el tratamiento numérico de problemas de
valores en la frontera para ecuaciones diferenciales en derivadas parciales.

• Búsqueda de algoritmos para el cálculo de Series de Fourier en términos de poli-
nomios ortogonales de Sobolev. Los experimentos numéricos llevados a cabo por
A. Iserles et al. (véase [40]) obtuvieron resultados satisfactorios en el análisis del
fenómeno de Gibbs en desarrollos de Fourier usando polinomios de Sobolev en
comparación con los polinomios estándar.

En esta memoria analizaremos el comportamiento y las propiedades de polinomios
ortogonales respecto a productos internos de Sobolev discretos. Más concretamente,
nuestro interés será el estudio de fórmulas de conexión entre polinomios ortogonales
estándar y polinomios ortogonales de Sobolev. De esta forma, podremos abordar al-
gunos problemas de asintótica de polinomios ortogonales de Sobolev, ası́ como obtener
resultados de convergencia de series de Fourier asociadas a tales polinomios.

Estos contenidos se dividen en los siguientes capı́tulos:

• En el capı́tulo 1 presentamos una introducción a la teorı́a de polinomios de
Sobolev, introduciendo la notación que se utilizará a lo largo de esta tesis. Se
resumirán las principales diferencias entre el caso estándar y el caso Sobolev.
En concreto nos centraremos en el estudio de relaciones de recurrencia y lo-
calización de ceros de dichos polinomios ortogonales. Se incluirá un estudio
bastante completo de los diferentes tipos de fórmulas de conexión existentes.
Finalmente, daremos una panorámica de los resultados conocidos en asintótica
y desarrollos en series de Fourier de polinomios ortogonales de Sobolev tanto
en el caso de soporte acotado como en el no acotado, que permitirá una mejor
comprensión de nuestro trabajo.

• En el capı́tulo 2 se estudian aspectos analı́ticos y algebraicos de cierta familia
de polinomios de Sobolev ortogonales respecto a una medida de soporte aco-
tado. En la sección 2.1 se presenta una demostración alternativa de un resultado
conocido sobre asintótica relativa exterior de ciertos polinomios de Sobolev. De-
mostraremos una nueva relación matricial entre la matriz asociada a la relación
de recurrencia que satisfacen los polinomios de Sobolev y la matriz de Jacobi
de los correspondientes polinomios ordinarios en la sección 2.2. En la última
sección presentaremos un resultado sobre convergencia puntual de series de Fou-
rier asociadas a ciertos polinomios de Sobolev.

• En el capı́tulo 3 resumiremos algunas propiedades conocidas de polinomios or-
togonales respecto a una medida de Laguerre modificada, una k-iteración de
Christoffel de la medida de Laguerre. A continuación, obtendremos estima-
ciones para la norma de estos polinomios y proporcionaremos una fórmula gen-
eralizada de Christoffel para tal familia de polinomios. Finalmente, presentare-
mos un estudio completo y detallado de los núcleos de Christoffel diagonales
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asociados a la distribución Gamma, obteniendo la asintótica de los mismos tanto
dentro como fuera del soporte de la medida.

• En el capı́tulo 4 se hace un estudio de asintótica relativa de polinomios ortog-
onales de Sobolev discreto cuando las masas en la parte discreta del producto
interno están situadas dentro el soporte de la medida, la región de oscilación
de dichos polinomios. El comportamiento de dichos polinomios será estudiado
tanto dentro como fuera del soporte de la medida. Finalmente, obtendremos
el comportamiento asintótico de los coeficientes que aparecen en la relación de
recurrencia que satisfacen los polinomios de Sobolev.

• En el capı́tulo 5 abordaremos el problema de convergencia de series de Fourier-
Sobolev. Mostraremos la divergencia de la serie de Fourier asociada a cierta
familia de polinomios ortogonales de Sobolev y la principal herramienta para
ello serán las desigualdades de tipo Cohen. Este problema es tratado por primera
vez para un producto de Sobolev discreto con una masa fuera del soporte de la
medida.

Todo el material original contenido en esta memoria ha sido aceptado para publi-
cación en revistas cientı́ficas bajo los siguientes tı́tulos y el número que les asignamos
es el que ocuparán dentro de la bibliografı́a:

[38] E. J. Huertas, F. Marcellán, M. F. Pérez-Valero, and Y. Quintana, Asymptotics for
Laguerre-Sobolev type orthogonal polynomials modified within their oscillatory
regime. Appl. Math. Comput. 236 (2014), 260–272.

[39] E. J. Huertas, F. Marcellán, M. F. Pérez-Valero, and Y. Quintana, A Cohen type
inequality for Laguerre-Sobolev expansions with a mass point outside their os-
cillatory regime. Turkish J. Math. 38 (2014), 994–1006.

[59] F. Marcellán, M. F. Pérez-Valero, Y. Quintana, and A. Urieles, Recurrence rela-
tions and outer relative asymptotics of orthogonal polynomials with respect to a
discrete Sobolev type inner product, Bull. Math. Sci. 4 (1) (2014), 83–97.

[60] F. Marcellán, M. F. Pérez-Valero and Y. Quintana, Asymptotic behavior of deriva-
tives of Laguerre kernels and some applications, J. Math. Anal. Appl. 421
(2015), 314–328.
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1
Introduction: Sobolev type orthogonal
polynomials

From now on, we will denote by R the set of real numbers, P will denote the
vector space of polynomials with real coefficients and Pn is the vector subspace of
polynomials with real coefficients and degree less than or equal to n.

Let E � R be a bounded or unbounded infinite set. If we consider a nontrivial
positive Borel measure µ supported on E, then a sequence of polynomials tpnpxqu8n�0

is said to be an orthogonal polynomial sequence with respect to µ if for all nonnegative
integers n and m,

(i) pnpxq is a polynomial of degree n,

(ii)
³
E
pnpxqpmpxqdµpxq � Knδnm, Kn � 0,

where

δnm �
#

0 if n � m,

1 if n � m,

is the Kronecker delta.

If tpnpxqu8n�0 is an orthogonal polynomial sequence and, in addition, we also have
Kn � 1, then it will be called an orthonormal polynomial sequence.



2 Introduction: Sobolev type orthogonal polynomials

In what follows, we will refer to this kind of sequences as sequences of standard
orthogonal polynomials. As a starting point, the main properties of orthogonal polyno-
mials on the real line are assumed to be known and we refer to the interested reader to
[13] for a review on this subject.

The aim of this chapter is to introduce another family of orthogonal polynomials,
the so-called Sobolev-type orthogonal polynomials. Without any intention of plagia-
rism, we summarize the properties of such sequences of orthogonal polynomials by
comparison with those of the standard ones, specially some very well known results
that we will need for the development of the ideas in the subsequent chapters.

A Sobolev-type or discrete Sobolev inner product on the linear space P of polyno-
mials with real coefficients is defined by

xf, gyS �
»
fpxqgpxqdµpxq �

Ķ

k�1

FpckqAkGpckqT , K P Z�, (1.0.1)

where µ is a nontrivial positive Borel measure supported on the real line, f, g P P, and
for k � 1, . . . ,K, K P Z�, the matrices Ak � papkqij q P Rp1�Nkqp1�Nkq are positive
semi-definite.
We denote by Fpckq and Gpckq the vectors Fpckq �

�
fpckq, f 1pckq, . . . , f pNkqpckq

�
and Gpckq �

�
gpckq, g1pckq, . . . , gpNkqpckq

�
, respectively, with ck P R, Nk P Z�

where, as usual, vT denotes the transpose of the row vector v. This notion was initially
introduced in [25] for diagonal matrices Ak, which is the case we are dealing in this
work, and, in such a case, we can express the previous formula as follows

xf, gy � xf, gyµ �
Ķ

k�1

Nķ

i�0

Mk,if
piqpckqgpiqpckq, (1.0.2)

xf, gyµ �
»
fpxqgpxqdµpxq,

where Mk,i � a
pkq
ii ¥ 0 for i � 0, . . . , Nk � 1, and Mk,Nk ¡ 0, when k �

1, . . . ,K.

The Gram-Schmidt process applied to the canonical basis of P generates the or-
thonormal sequence of polynomials tBnpxqu8n�0 for (1.0.2), i.e.,

xBn, Bky � δn,k, k, n � 0, 1, . . . ,

where
Bnpxq � λnx

n � lower degree terms, λn ¡ 0.

We denote the corresponding monic polynomials by t pBkpxqu8k�0. Let tpnpxqu8n�0 and
tppnpxqu8n�0 be the sequences of orthonormal and monic polynomials with respect to
µ, respectively.
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Throughout this thesis, the notation un � vn or un �n vn means that the sequence
tunvn u8n�0 converges to certain non zero constant as nÑ8 while the notation un � vn
means that there exist positive real numbers C1 and C2 such that C1un ¤ vn ¤ C2un
for n large enough. Any other standard notation will be properly introduced whenever
needed.

1.1 Recurrence relations

It is well-known that a sequence of standard orthonormal polynomials tpnpxqu8n�0

with respect to some measure µ supported on the real line satisfies a three term recur-
rence relation

xpnpxq � an�1pn�1pxq � bnpnpxq � anpn�1pxq, n ¥ 0, (1.1.3)

with initial conditions p�1pxq � 0 and p0pxq � 1

p³ dµpxqq1{2 . The recurrence coeffi-
cients are

an �
»
xpn�1pxqpnpxqdµpxq ¡ 0, bn �

»
xp2

npxqdµpxq P R.

The converse result was proved by Favard in 1935 and the interested reader could
find more detail about this fact in [13, 26]. This is equivalent to the symmetry of the
multiplication by x with respect to an inner product as a characterization of standard
inner products.

Due to the fact that Sobolev-type inner products we are dealing are non-standard,
i.e.

xxf, gy � xf, xgy, f, g P P,
Sobolev orthogonal polynomials no longer satisfy a three term recurrence relation.
However, it can be proved that they satisfy a higher-order recurrence relation.

Let hN pxq be the monic polynomial of least degree verifying hpiqN pckq � 0 for
k � 1, . . . ,K, i � 0, . . . , Nk, that is,

hN pxq �
K¹
k�1

px� ckqNk�1,

where N � °K
k�1Nk �K, then we have

Theorem 1.1.1. The Sobolev polynomials tBnpxqu8n�0 orthonormal with respect to
(1.0.2) satisfy a p2N � 1q-term recurrence relation

hN pxqBnpxq �
n�Ņ

k�n�N
αn,kBkpxq, (1.1.4)

with αn,n�N � 0.
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Proof. We can expand the polynomial hN pxqBnpxq in the basis of Sobolev orthogonal
polynomials obtaining

hN pxqBnpxq �
n�Ņ

k�0

αn,kBkpxq

with

αn,k � xhNBn, Bky �
»
hN pxqBnpxqBkpxqdµpxq � xBn, hNBky � 0, if k   n�N,

but

αn,n�N � xhNBn, Bn�Ny � xBn, hNBn�Ny � λn�N
λn

xBn, Bny ¡ 0.

Along this thesis, we will study different matrix interpretations of this higher order
recurrence relation as well as the asymptotic behavior of the coefficients appearing in
such a formula for some particular cases of the measure µ.

On the other hand, it can be proven that polynomials defined by (1.1.4) are closely
related to matrix polynomials satisfying a three term recurrence relation. For more
details about these relations, you can see [24].

1.2 Connection formulas

In this Section, we study different formulas involving Sobolev-type orthogonal po-
lynomials and the standard ones. We will call these kind of relations connection for-
mulas and they will be a key tool in order to obtain properties for Sobolev polynomials
from those of the standard ones.

1. The technique for obtaining the first connection formula we are going to study
is due to Marcellán and Ronveaux and it can be found in [64]. Since then, many
authors have used or generalized this kind of expansion.

Recall that tpnpxqu8n�0 and tppnpxqu8n�0 are the sequences of orthonormal and
monic polynomials with respect to µ, respectively.

We denote by Knpx, yq the n-th Christoffel-Darboux kernel

Knpx, yq �
ņ

k�0

ppkpxqppkpyq
xppk, ppkyµ , (1.2.5)
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and we use the following notation for its partial derivatives

Bj�kKnpx, yq
BxjByk � Kpj,kq

n px, yq, 0 ¤ j, k ¤ n. (1.2.6)

Proposition 1.2.1 (Connection formula type I). With the previous notation,

pBnpxq � ppnpxq � Ķ

k�1

Nķ

i�0

Mk,i
pBpiq
n pckqKp0,iq

n�1 px, ckq. (1.2.7)

Proof. The Fourier expansion of the polynomial pBn in terms of the orthogonal
basis tppnpxqu8n�0 leads to

pBnpxq � ppnpxq � n�1̧

j�0

σn,jppjpxq. (1.2.8)

In the usual way, we find the coefficients σn,j , 0 ¤ j ¤ n� 1, as follows

σn,j � x pBn, ppjyµ
xppj , ppjyµ �

�
Ķ

k�1

Nķ

i�0

Mk,i
pBpiq
n pckqpppiqj pckq

xppj , ppjyµ .

Then (1.2.8) becomes

pBnpxq � ppnpxq � Ķ

k�1

Nķ

i�0

Mk,i
pBpiq
n pckqKp0,iq

n�1 px, ckq. (1.2.9)

In order to obtain an explicit expression for pBpiq
n pckq when k � 1, . . . ,K,

i � 0, . . . , Nk, we can write (1.2.9) and its corresponding derivatives with re-
spect to x evaluated at x � c1, . . . , cK , in a matrix form as follows,

AB � P,

where A is the block matrix

A � I �

�����
A11 A12 . . . A1K

A21 A22 . . . A2K

...
...

. . .
...

AK1 AK2 . . . AKK

����,

where I is the N �N identity matrix and the pNi � 1q � pNj � 1q block Aij is
given by
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Aij �

�
���������

Mi,0Kn�1pci, cjq Mi,1K
p0,1q
n�1 pci, cjq Mi,2K

p0,2q
n�1 pci, cjq . . . Mi,Ni

K
p0,Njq
n�1 pci, cjq

Mi,0K
p1,0q
n�1 pci, cjq Mi,1K

p1,1q
n�1 pci, cjq Mi,2K

p1,2q
n�1 pci, cjq . . . Mi,Ni

K
p1,Njq
n�1 pci, cjq

Mi,0K
p2,0q
n�1 pci, cjq Mi,1K

p2,1q
n�1 pci, cjq Mi,2K

p2,2q
n�1 pci, cjq . . . Mi,Ni

K
p2,Njq
n�1 pci, cjq

...
...

...
. . .

...

Mi,0K
pNi,0q
n�1 pci, cjq Mi,1K

pNi,1q
n�1 pci, cjq Mi,2K

pNi,2q
n�1 pci, cjq . . . Mi,Ni

K
pNi,Njq
n�1 pci, cjq

�
��������
,

with Aij P RpNi�1,Nj�1q,

P �
�ppnpc1q, pp1npc1q, . . . , pppN1q

n pc1q, ppnpc2q, . . . , pppN2q
n pc2q, . . . , ppnpcKq, . . . , pppNK q

n pcKq
	T

,

and

B �
� pBnpc1q, pB1

npc1q, . . . , pBpN1q
n pc1q, pBnpc2q, . . . , pBpN2q

n pc2q, . . . , pBnpcKq, . . . , pBpNK q
n pcKq

	T
.

Then, applying Cramer’s rule we get

pBpiq
n pckq � detpAmq

detpAq , for m � 1, . . . , N,

where pBpiq
n pckq is them-th position in the vector B and Am is the matrix obtained

by replacing the m-th column in the matrix A by the column vector P.

2. The second connection formula is based on the expansion of the Sobolev poly-
nomial not in terms of the standard ones but in terms of a family of polynomials
orthogonal with respect to a suitable polynomial modification of the measure µ.
This technique appeared for instance in [57].

From now on, kpΠnq will denote the leading coefficient of any polynomial Πn

with real coefficients and degree n and Pn will be the linear subspace of all
polynomials of degree less than or equal to n.

Let hN pxq be a polynomial such that hN pxqdµpxq is a positive definite mea-
sure on the support of µ and let tprhsn pxqu8n�0 be the sequence of polynomials
orthonormal with respect to hN pxqdµpxq.
Proposition 1.2.2 (Connection formula type II). The following connection for-
mula holds,

Bnpxq �
Ņ

j�0

An,jp
rhs
n�jpxq, An,N � 0. (1.2.10)
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Moreover,

An,0 � kpBnq
kpprhsn q

,

An,N � kppn�N q
kpprhsn�N q

1

An,0
.

Proof. Since each prhsk pxq is of degree k, tprhs0 pxq, prhs1 pxq, . . . , prhsn pxqu is a ba-
sis of Pn. Thus, there exist real numbers αn,j , j � 0, 1, . . . , n, such that

Bnpxq �
ņ

j�0

αn,jp
rhs
j pxq

with

αn,j �
»
hN pxqBnpxqprhsj pxqdµpxq � xBn, hNprhsj y � 0, if j   n�N.

This proves the first statement with An,j � αn,n�j . Furthermore,

An,0 �
»
hN pxqBnpxqprhsn dµpxq � kpBnq

kpprhsn q
,

as well as

An,N �
»
hN pxqBnprhsn�N pxqdµpxq � xBn, hNprhsn�Ny �

kpprhsn�N q
kpBnq � kpprhsn�N q

kpprhsn q
1

An,0
,

and the result holds.

3. The last kind of connection formula appears for the first time in [44], where
Koekoek and Meijer were working with a Sobolev type inner product such that
µ is the Gamma distribution, k � 1, ck � 0 andN ¥ 1. Later on, generalizations
for more general inner products have been studied.
For the sake of simplicity, we consider a particular case of the inner product
(1.0.2). More precisely, we study the case of the inner product

pp, qqS �
»
ppxqqpxqdµpxq��ppcq p1pcq . . . ppN�2qpcq�MN�1

�
����

qpcq
q1pcq
...

qpN�2qpcq

�
���, N ¥ 3,

(1.2.11)
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where MN�1 is a pN � 1q � pN � 1q positive semi-definite matrix.

Let us denote by t pBnpxqu8n�0, tppnpxqu8n�0 and tpr2ksn pxqu8n�0 the monic se-
quences of polynomials orthogonal with respect to p�, �qS , dµpxq and dµkpxq �
px� cq2kdµpxq, respectively.

A connection formula is said to be of type III when the n-th Sobolev poly-
nomial Bn is given as a linear combination of ppnpxq, px � cqpr2sn�1pxq, px �
cq2pr4sn�2pxq, . . . , px� cqN�1p

r2N�2s
n�2 pxq.

Before dealing with this connection formula, we will need some auxiliary results.
Taking into account that

Pn � px� cqkPn�k `
 px� cqkPn�k

(K
, (1.2.12)

where px� cqkPn�k
(K �

"
p P Pn |

»
ppxqvpxqdµpxq � 0,@v P px� cqkPn�k

*
,

we obtain a decomposition for the polynomial Bn as a sum of a polynomial in
the vector subspace px� cqkPn�k and his corresponding orthogonal component.

Proposition 1.2.3. (i) The set tpx�cqkppr2ksj un�kj�0 is an orthonormal basis for
the vector subspace px� cqkPn�k with respect to µ.

(ii)  px� cqkPn�k
(K � spantKnpx, cq, . . . ,Kp0,k�1q

n px, cqu.

(iii) There exist real numbers apkqn,j , j � 0, . . . , k � 1, such that

ppnpxq � αn,kpx� cqkppr2ksn�kpxq �
k�1̧

j�0

a
pkq
n,jK

p0,jq
n px, cq.

Proof. (i) It is an immediate consequence of the orthogonality condition for
the sequence tpr2ksn pxqu8n�0.

(ii) It is enough to take into account the reproducing property of the kernel
polynomial »

px� cqkppr2ksl pxqKp0,jq
n px, cqdµpxq � 0,

for 0 ¤ l ¤ n� k, 0 ¤ j ¤ k � 1.

(iii) It follows from (ii) having in mind the orthogonal decomposition (1.2.12) .
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If we put k � 1, . . . , N � 1, in (iii) of the previous proposition, we obtain

ppnpxq � αn,1px� cqppr2sn�1pxq � a
p1q
n,0K

p0,0q
n px, cq,

ppnpxq � αn,2px� cq2ppr4sn�2pxq � a
p2q
n,0K

p0,0q
n px, cq � a

p2q
n,1K

p0,1q
n px, cq,

...

ppnpxq � αn,N�1px� cqN�1ppr2N�2s
n�N�1pxq � a

pN�1q
n,0 Kp0,0q

n px, cq � . . .� a
pN�1q
n,N�2K

p0,N�2q
n px, cq.

This can be written in a matrix form as follows,

A
pnq
N�1

�����
Knpx, cq
K
p0,1q
n px, cq

...

K
p0,N�2q
n px, cq

�����

������
ppnpxq � αn,1px� cqppr2sn�1pxqppnpxq � αn,2px� cq2ppr4sn�2pxq

...ppnpxq � αn,N�1px� cqN�1ppr2N�2s
n�N�1pxq

�����,
where

A
pnq
N�1 �

������
a
p1q
n,0 0 . . . 0

a
p2q
n,0 a

p2q
n,1 . . . 0

...
. . .

...

a
pN�1q
n,0 a

pN�1q
n,1 . . . a

pN�1q
n,N�2

�����,

and

αn,1 � ||ppn||2
||ppr2sn�1||2r2s

, αn,2 � ||ppn||2
||ppr4sn�2||2r4s

, . . . , αn,N�1 � ||ppn||2
||ppr2N�2s

n�N�1||2r2N�2s
.

Now, we want to prove the nonsingularity of the matrix ApnqN�1. For that purpose,
we evaluate the above expressions and their successive derivatives until order
pN � 2q at x � c to obtain

A
pnq
N�1

KpN�2q
n pc, cq �

���������������

ppnpcq pp1npcq � αn,1 ppr2sn�1
pcq . . . pppN�2q

n pcq �
�
N�2

1

	
αn,1

� ppr2s
n�1


pN�3q
pcq

ppnpcq pp1npcq . . . pppN�2q
n pcq �

�
N�2

2

	
2αn,2

� ppr4s
n�2


pN�4q
pcq

ppnpcq pp1npcq . . . pppN�2q
n pcq �

�
N�2

3

	
3!αn,3

� ppr6s
n�3


pN�5q
pcq

.

.

.
.
.
.

. . .
.
.
.ppnpcq pp1npcq . . . pppN�2q

n pcq

��������������
,

(1.2.13)

where ApnqN�1 is a lower triangular matrix and
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KpN�2q
n pc, cq �

�
����

Knpc, cq Kp1,0q
n pc, cq . . . KpN�2,0q

n pc, cq
Kp0,1q
n pc, cq Kp1,1q

n pc, cq . . . KpN�2,1q
n pc, cq

...
...

. . .
...

Kp0,N�2q
n pc, cq Kp1,N�2q

n pc, cq . . . KpN�2,N�2q
n pc, cq

�
���

�

�
����

p0pcq p1pcq . . . pnpcq
p10pcq p11pcq . . . p1npcq
...

...
. . .

...

p
pN�2q
0 pcq p

pN�2q
1 pcq . . . ppN�2q

n pcq

�
���

�
�����

p0pcq p10pcq . . . p
pN�2q
0 pcq

p1pcq p11pcq . . . p
pN�2q
1 pcq

...
...

. . .
...

pnpcq p1npcq . . . ppN�2q
n pcq

�
����

� PpN�1q�pn�1qP
T
pn�1q�pN�1q.

On the one hand, let notice that rankPpN�1q�pn�1q � N�1. Thus, rankKpN�2q
n pc, cq �

N�1, i.e. KpN�2q
n pc, cq is a full rank matrix and, as a consequence, detKpN�2q

n pc, cq �
0.

On the other hand, for the determinant of the matrix of the right hand side of
(1.2.13), we have a matrix in an echelon form when you subtract to any row the
last one. Indeed, the determinant becomes

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 �αn,1ppr2sn�1pcq �2αn,1
�ppr2sn�1

	p1q
pcq . . . �

�
N�2

1

�
αn,1

�ppr2sn�1

	pN�3q

pcq

0 0 �2!αn,2ppr4sn�2pcq . . . �
�
N�2

2

�
2!αn,2

�ppr4sn�2

	pN�4q

pcq

. . . . . . . . .
. . . . . .

0 0 0 . . . �
�
N�2
N�2

�
pN � 2q!αn,N�2ppr2N�4s

n�N�2pcqppnpcq pp1npcq pp2npcq . . . pppN�2q
n pcq

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
� p�1qN p�1qN�2ppnpcqppr2sn�1pcqppr4sn�2pcq . . . ppr2N�4s

n�pN�2qpcq1!2! . . . pN�2q!αn,1 . . . αn,N�2

� αn,1αn,2 . . . αn,N�21!2! . . . pN�2q!ppnpcqppr2sn�1pcqppr4sn�2pcq . . . ppr2N�4s
n�pN�2qpcq � 0.

Thus we get the following result.

Proposition 1.2.4. The lower triangular matrix ApnqN�1 is nonsingular. As a con-
sequence�����

Knpx, cq
K
p0,1q
n px, cq

...

K
p0,N�2q
n px, cq

����� tApnqN�1u�1

������
ppnpxq � αn,1px� cqppr2sn�1pxqppnpxq � αn,2px� cq2ppr4sn�2pxq

...ppnpxq � αn,N�1px� cqN�1ppr2N�2s
n�N�1pxq

�����,

or, equivalently,
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�����
Kn�1px, cq
K
p0,1q
n�1 px, cq

...

K
p0,N�2q
n�1 px, cq

�����

�������

�������
�ppnpcq
||ppn||2
�pp1npcq
||ppn||2
...

�pppN�2q
n pcq
||ppn||2

������� tApnqN�1u�1

�����
1
1
...
1

����
������� ppnpxq

� αn,1tApnqN�1u�1px� cq~e1ppr2sn�1pxq � αn,2tApnqN�1u�1px� cq2~e2ppr4sn�2pxq
� . . .� αn,N�1tApnqN�1u�1px� cqN�1~eN�1ppr2N�2s

n�N�1pxq,
(1.2.14)

where

~e1 �

�������
1
0
0
...
0

������, ~e2 �

�������
0
1
0
...
0

������, . . . , ~eN�1 �

�������
0
0
0
...
1

������.

Now, we are ready to formulate the result we was looking for.

Proposition 1.2.5. (Connection formula type III.) With the previous notation,
there exist real numbers tAn,juN�1

j�0 such that

Bnpxq � An,0ppnpxq �An,1px� cqppr2sn�1pxq
�An,2px� cq2ppr4sn�2pxq � . . .�An,N�1px� cqN�1ppr2N�2s

n�N�1pxq.

In fact, for 1 ¤ j ¤ N � 1,

An,j � αn,j

�ppnpcq . . . pppN�2q
n pcq

	
pApnqN�1M

�1
N�1�ApnqN�1K

pN�2q
n�1 pc, cqq�1~ej ,

and

An,0 � 1�
�ppnpcq . . . pppN�2q

n pcq
	�

A
pnq
N�1M

�1
N�1 �A

pnq
N�1K

pN�2q
n�1 pc, cq

	�1

�������ApnqN�1

�������
�ppnpcq
||ppn||2
�pp1npcq
||ppn||2
...

�pppN�2q
n pcq
||ppn||2

������� tApnqN�1u�1

�����
1
1
...
1

�����
�����

1
1
...
1

����
������.
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Proof. The set tpp0pxq, . . . , ppnpxqu is a basis of Pn. Then, we can expand the
Sobolev orthogonal polynomial Bn in terms of them as follows

pBnpxq � ppnpxq � n�1̧

j�0

βn,jppjpxq, (1.2.15)

where

βn,j �
³ pBnpxqppjpxqdµpxq

||ppj ||2
� � 1

||ppj ||2
� pBnpcq pB1

npcq . . . pBpN�2q
n pcq

	
MN�1

�����
ppjpcqpp1jpcq
...pppN�2q

j pcq

����.
Putting the previous expression into (1.2.15), we obtain

pBnpxq � ppnpxq � � pBnpcq . . . pBpN�2q
n pcq

	
MN�1

�����
Kn�1px, cq
K 1
n�1px, cq

...

K
p0,N�2q
n�1 px, cq

����.
Taking derivatives up to order N � 2 and evaluating at x � c we obtain a system
that can be written in matrix form as follows,� pBnpcq . . . pBpN�2q

n pcq
	 �
I �MN�1KpN�2q

n�1 pc, cq
�
�

�ppnpcq . . . pppN�2q
n pcq

	
.

Finally, by using (1.2.14) we get

pBnpxq � ppnpxq��ppnpcq . . . pppN�2q
n pcq

	 �
I �MN�1K

pN�2q
n�1 pc, cq

��1
MN�1

�
��

Kn�1px, cq
...

K
p0,N�2q
n�1 px, cq

�
�

� ppnpxq��ppnpcq . . . pppN�2q
n pcq

	
rM�1

N�1�KpN�2q
n�1 pc, cqs�1

�
�������

�
�������

�ppnpcq
||ppn||2

�pp1npcq
||ppn||2

...
�pp

pN�2q
n pcq
||ppn||2

�
������
� tApnqN�1u�1

�
����

1
1
...
1

�
���

�
�������
ppnpxq

� αn,1tApnqN�1u�1px� cq~e1ppr2sn�1pxq � αn,2tApnqN�1u�1px� cq2~e2ppr4sn�2pxq
� . . .� αn,N�1tApnqN�1u�1px� cqN�1~eN�1ppr2N�2s

n�N�1pxq
� An,0ppnpxq�An,1px�cqppr2sn�1pxq�An,2px�cq2ppr4sn�2pxq�. . .�An,N�1px�cqN�1ppr2N�2s

n�N�1pxq
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where tAn,juN�1
j�0 can be given in an explicit way.

1.3 Asymptotics

Our aim in this section is to describe some known results about asymptotics of
Sobolev polynomials to provide a historical framework for our contributions. As in the
standard case, three types of asymptotics for Sobolev polynomials have been studied:
strong asymptotics, nth root asymptotics and ratio asymptotics. We will focus on the
so called Outer Relative Asymptotics of orthogonal polynomials with respect to the
inner product (1.0.2). More precisely, we compare the asymptotic behaviour of the
Sobolev-type orthogonal polynomials with that of the standard ones by studying the
limit

lim
nÑ8

Bnpxq
pnpxq , (1.3.16)

where x does not belong to the support of the measure µ.

The key idea for obtaining Outer Relative Asymptotics is to use the connection
formulas type I, II or III for the Sobolev-type orthogonal polynomials in the numerator
of (1.3.16). Then, the problem has been reduced to the study of the ratio asymptotics

lim
nÑ8

p̃npxq
pn�1pxq , Czsupp pdµq,

where p̃npxq could be either the n-th standard polynomial or another polynomial se-
quence orthogonal with respect to perturbations of the measure µ appearing in the
connection formulas.

The techniques for the study of the problem change depending on the fact of the
support of the measure µ is a bounded or unbounded set of the real line. For this reason,
we will divide our analysis in two subsections.

1.3.1 Bounded support

As we already mention, we will be interested in the study of families of polynomials
having ratio asymptotics. In the bounded case, a widely studied class of orthogonal
polynomials is the Nevai class of measures Mp0, 1q (see [77]). By simplicity, we
assume that the support of the measure µ is r�1, 1s. More precisely, µ will be in the
Nevai class of measures Mp0, 1q, i.e. the recurrence coefficients in the three term
recurrence formula (1.1.3) satisfy

lim
nÑ8 bn � 0, lim

nÑ8 an �
1

2
.
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The Outer Ratio Asymptotics for measures µ in the Nevai class reads as follows.

Theorem 1.3.1. (Outer Ratio Asymptotics) Let µ PMp0, 1q. Then

lim
nÑ8

pnpxq
pn�1pxq � ρpxq,

uniformly on compact subsets of Czsupppdµq, where for z P Czr�1, 1s we define ρpzq
by

ρpzq � z �
a
z2 � 1,

where we take the branch of
?
z2 � 1 for which |ρpzq| ¡ 1 whenever z P Czr�1, 1s.

As for the case of bounded support is concerned, we restrict ourselves to the case
of asymptotics for Sobolev polynomials orthogonal with respect to discrete Sobolev
inner products. As far as we know, the first paper in relative asymptotics for Sobolev
polynomials was [66], where the authors worked with an inner product in which first
derivatives appear. Some years later, in [47], G. López Lagomasino, F. Marcellán
and W. Van Assche investigated the asymptotic properties for a class of polynomials
orthogonal with respect to a family of inner products that includes the discrete Sobolev
inner products with a finite number of complex masses located outside the support
of the measure. Since then many authors have made contributions in this area and
for a historical review of this period the reader is referred to [71]. In Chapter 2, we
study a result on Relative Asymptotics of Sobolev-type orthogonal polynomials on
bounded support. Now, we only summarize the results necessary for understanding
this contribution.

It is well known that the Outer Relative Asymptotics changes according to the
location of the mass points with respect to the support of the measure. We distinguish
two cases:

1. The case of several mass points located inside the support of the measure was
studied in [90]. Indeed, when one adds mass points inside the support of the mea-
sure, the asymptotic behavior of the orthogonal polynomials does not change.
The result reads as follows.

Theorem 1.3.2. If µ1 ¡ 0 a.e. then

lim
nÑ8

Bnpxq
pnpxq � 1

uniformly on compact subsets of Czr�1, 1s.

2. The situation is very different when we add mass points outside the support of
the measure. The parallel study was done in [57] for the particular case K � 1,
N1 � 1. In this case, we will refer to c1 with c.
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We will denote by tq̃npxqu8n�0 and tqnpxqu8n�0 the orthonormal sequences with
respect to pc� xqdµpxq and pc� xq2dµpxq respectively.

The Outer Relative Asymptotics depending on the positiveness of the coefficients
in the discrete part of the inner product is the following:

Theorem 1.3.3. Under the previous conditions we have

• For M ¡ 0, N ¡ 0,

lim
nÑ8

Bnpxq
qnpxq � ρ�1pcq

2

�
1� ρpcq

ρpxq

2

uniformly in compact sets of Czr�1, 1s.
• For N � 0,

lim
nÑ8

Bnpxq
q̃npxq �

�
ρ�1pcq

2


1{2 �
1� ρpcq

ρpxq



uniformly in compact sets of Czr�1, 1s.
• For M � 0,

lim
nÑ8

Bnpxq
q̃npxq � 1

2

�
1� ρpcq

ρpxq

�

1� ρ�1pcq
ρpxq



uniformly on compact sets of Czr�1, 1s.

As we already mention, we will study Relative Asymptotics for certain Sobolev
type orthogonal polynomials. We will work with an inner product where the measure
µ is assumed to belong to the Nevai class Mp0, 1q. It is well known that the support of
measures in that class is bounded and consists of the interval r�1, 1s plus a denumer-
able set of isolated points whose accumulation points are �1. Then, using techniques
given in [90], [57] and [91], we study the case of an inner product with mass points
located inside the support of the measure but outside r�1, 1s.

1.3.2 Unbounded support

As far as we concern, there are no so many results in asymptotics for Sobolev-type
inner products when the measure µ has an unbounded support. Despite the examples
related to Laguerre weights or Hermite weights very few examples are known. For the
historical context in this subject, we will consider a more general family of Sobolev
inner products. More precisely, we will deal with the inner product

xf, gy �
»
R
fpxqgpxqdµ0pxq �

m̧

k�1

»
R
f pkqpxqgpkqpxqdµkpxq, (1.3.17)
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where dµk, k � 0, 1, . . . ,m, are positive Borel measures supported on R. We
distinguish the following cases:

• All the measures dµk have a non-discrete set as support. In such a case we speak
of continuous Sobolev inner product or just continuous case.

• dµ0 has continuous support and dµ1, . . . , dµm are supported in finite sets. In
this case, we are dealing with a discrete Sobolev inner product or Sobolev type
inner product.

In the case of continuous Sobolev inner products, for the case m � 1 we can find
three contributions [55, 74, 81] which can be situated in the context of coherence of
measures, all of them with Laguerre and Hermite measures. In [12], the authors studied
the case of dµ0pxq � e�x

4

dx and dµ1pxq � λe�x
4

dx. In particular, Relative Asymp-
totics for Sobolev orthogonal polynomials in terms of Freud polynomials associated
with the weight function ωpxq � e�x

4

was deduced. In a more general context, in the
case m � 1 different types of asymptotic behavior of Sobolev orthogonal polynomials
with exponential weights were analyzed (see [34]). For a more detailed description on
the subject, the reader can see [56].

However, we will be interested in the case of discrete Sobolev inner products. As
a representative example, we focus our attention on the particular case of inner prod-
uct (1.0.2) when the measure µ is the classical Laguerre measure, i.e., the Gamma
distribution.

In [18], H. Dueñas and F. Marcellán proved that the addition of a mass point at zero
does not modify the asymptotic behavior of these Sobolev orthogonal polynomials.
More precisely, they work with a non-diagonal inner product with only one mass point
at zero and their main results read:

Theorem 1.3.4. With the previous notation,

lim
nÑ8

pBnpxqppnpxq � 1

uniformly on compact subsets of Czr0,8q.

In the same way as happens in bounded support, the addition of mass points outside
the support of the measure µ modifies the asymptotic behavior of the Sobolev orthogo-
nal polynomials. This case was studied for the first time in [37] and with our notation,
the results in outer relative asymptotics read as follows.

Theorem 1.3.5. [37, Theorem 5.6] Let us denote by Lpαqn pxq and Bpαq
n pxq the La-

guerre and Laguerre Sobolev type polynomials with leading coefficient equal to p�1qn
n! ,

respectively. For an inner product with K � 1 and N1 � 1, we get
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• If M ¡ 0 and N ¡ 0, then

lim
nÑ8

B
pαq
n pxq

L
pαq
n pxq

�
�?�x�a|c|?�x�a|c|

�2

,

uniformly on compact subsets of Czr0,8q.
• If M � 0 and N ¡ 0 or M ¡ 0 and N � 0, then

lim
nÑ8

B
pαq
n pxq

L
pαq
n pxq

�
?�x�a|c|?�x�a|c| ,

uniformly on compact subsets of Czr0,8q.

The case of addition of mass points inside the support of the Laguerre measure was
unknown. In Chapter 3 we will deal with the study of asymptotics for Sobolev type
polynomials orthogonal with respect to (1.0.2) when the mass points ck are located
inside the oscillatory regime of the polynomials.

1.4 Fourier series

1.4.1 Pointwise convergence

The pointwise convergence of Fourier series in terms of standard orthogonal po-
lynomials has been studied, for instance, in the particular case when µ is the Jacobi
measure. The problem now is to determine under which conditions a function f satis-
fies

8̧

n�0

xf,BnyBnpx0q � fpx0q, with x0 P p�1, 1q, (Pointwise convergence)

where tBnpxqu8n�0 is the sequence of orthonormal polynomials with respect to (1.0.2).

Moreover, we will study the convergence of

8̧

n�0

xf,BnyBpiq
n pckq � f piqpckq

when Mk,i ¡ 0.

For the general case of the inner product (1.0.2), when µ is the Jacobi measure and
all the mass points are located inside the support of the measure µ, the problem was
solved by I. A. Rocha, F. Marcellán and L. Salto in [90].
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For the case of only one mass point (K � 1) located outside the support of the
Jacobi measure, the same result can be found in [57].

In both cases, the authors found two kind of conditions about the function f in
order to obtain the pointwise convergence of the Fourier-Sobolev series. The result
reads as follows.

Theorem 1.4.1. Let x0 P p�1, 1qz YKi�1 tciu and let f be a function with derivatives
at the points ck such that fpx0q�fptq

x0�t belongs to L2pµα,βq. Then

8̧

n�0

xf,BnyBnpx0q � fpx0q.

If Mk,i ¡ 0, then
8̧

n�0

xf,BnyBpiq
n pckq � f piqpckq

Theorem 1.4.2. Let fpxq be a function with derivatives at the points ak satisfying a
Lipschitz condition of order 0   η   1 uniformly in r�1, 1s, i.e. |fpx� hq � fpxq| ¤
M |h|η for |h|   δ and for some δ ¡ 0. Then

8̧

n�0

xf,BnyBnpxq � fpxq, x P p�1, 1q,

and the convergence is uniform in compact subsets of p�1, 1qz YKk�1 tcku. Moreover,
at the mass points,

8̧

n�0

xf,BnyBpiq
n pckq � f piqpckq

provided that Mk,i ¡ 0.

1.4.2 Cohen-type inequalities

In this section, we present Cohen-type inequalities as a tool in order to prove diver-
gence of the Fourier series of orthogonal polynomials in weighted Lp spaces.

The study of Cohen type inequalities began in the sixties of the previous century
and its seminal goal was to prove a conjecture stated by Littlewood in 1948 (see [36])
related to find an estimate from below for the L1 norm of a trigonometric polyno-
mial. More precisely, Littlewood conjectured that for any trigonometric polynomial
FKpxq � °K

k�1 ake
inkx, where 0   n1   � � �   nK , K ¥ 2, and |ak| ¥ 1 for

1 ¤ k ¤ K, then the following estimate holds» 2π

0

|FKpxq|dx ¥ C logK. (1.4.18)
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Here C is a universal constant. Cohen [14] proved that C8
logK

log logK is a lower bound for
the norm in (1.4.18).

Since then Cohen type inequalities have been investigated by many authors in vari-
ous contexts and forms (cf. [22, 23, 35, 69, 70, 80].) Even though Dreseler and Soardi
[22, 23] seem to be the first people who found Cohen type inequalities in the setting
of Jacobi expansions, it is worthwhile to point out that is due to Markett [70] the pre-
sentation of an approach admitting a simpler proof of Dreseler and Soardi result for
Jacobi expansions and stating the corresponding Cohen type inequalities for Laguerre
and Hermite expansions.

In the sequel, we will be interested in the Laguerre case, so we are going to focus
this section to analyze the Markett approach for Fourier series associated with classical
Laguerre polynomials. For more details, see [70].

This author considers two weightedLp spaces in his works, namely classical weighted
Lebesgue spaces:

•

Lpwpαq �

$''&''%
 
f : t³8

0
|fpxqe�x{2|pxαdxu1{p   8(

, 1 ¤ p   8,
!
f : ess supx¡0|fpxqe�x{2|   8

)
, p � 8,

for α ¡ �1. Furthermore,

•
Lpupαq � tf : ||fpxqupx, αq||Lpp0,8q   8, upx, αq � e�x{2xα{2u,

where α ¡ � 2
p if 1 ¤ p   8 and α ¥ 0 if p � 8.

Also, we use the notation Lpfpαq, where the subscript fpαq means either wpαq or upαq.
For α ¡ �1, let tLpαqn pxqu8n�0 be the sequences of normalized Laguerre polyno-

mials with leading coefficient equal to p�1qn
n! .

For f P Lpfpαq and tck,nunk�0, n P N Y t0u, a family of complex numbers with
|cn,n| ¡ 0, let introduce the generalized partial sum operators Tαn

Tαn pfq :�
ņ

k�0

ck,nf̂pkqLpαqk ,

where f̂pkq �
"³8

0

�
L
pαq
k pxq

	2

xαe�xdx
*�1 ³8

0
fpxqLpαqk pxqxαe�xdx, k � 0, 1, . . .

Let us denote q0 � 4α�4
2α�1 , when β � α, and q0 � 4, when β � pα{2, and let p0

be the conjugate of q0. The Cohen-type inequality for the family of classical Laguerre
polynomials is given by the following.
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Theorem 1.4.3. Let 1 ¤ p ¤ 8. For α ¡ �1{2,

||Tαn ||rLpwpαqs ¥ C|cn,n|

$'&'%
n

2α�2
p � 2α�3

2 if a ¤ p   p0,

plog nq 2α�1
4α�4 if p � p0, p � q0,

n
2α�1

2 � 2α�2
p if q0   p ¤ b.

For α ¡ �2{p if 1 ¤ p   8 and α ¥ 0 if p � 8,

||Tαn ||rLpupαqs ¥ C|cn,n|

$'&'%
n

2
p� 3

2 if a ¤ p   p0,

plog nq 1
4 if p � p0, p � q0,

n
1
2� 2

p if q0   p ¤ b.

The main ideas for the proof of this result are the following:

• We can choose an appropriate test function gα,jn in order to obtain the inequality

||Tαn ||rLpfpαqs � sup
0�fPLp

fpαq

||Tαn pfq||Lpfpαq
||f ||Lp

fpαq

¥
�
||gα,jn ||Lp

fpαq

	�1 ||Tαn pgα,jn q||Lp
fpαq

.

The idea consists to pick out a test function that will allow to reach the Cohen-
type inequality.

• The choice of Markett was

gα,jn pxq :� n�α{2
�
xjLpα�jqn pxq �

� pn� 1qpn� 2q
pn� α� j � 1qpn� α� j � 2q


1{2
xjL

pα�jq
n�2 pxq

�
,

and the important characteristics of these functions are:

– They simplify the expression of the generalized partial sum operators in the
following sense

Tαn pgα,jn q � cn,n
ˆ
gα,jn pnqLpαqn ,

i.e., only the last term of the sum survives.

– We can estimate ||gα,jn ||Lp
fpαq

.

In the setting of Sobolev orthogonality the study of Cohen type inequalities is most
recent and it has attracted considerable attention, mainly when it is possible to use the
same (up to constant factor) previous test functions. For instance, the authors of [30,
83] have obtained Cohen type inequalities for Laguerre orthonormal expansions with
respect to discrete Sobolev inner products with only one mass point at c � 0. Similar
results for Laguerre orthonormal expansions with respect to a non-discrete Sobolev
inner product appear in [27].
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1.5 Zeros

It is well known that the zeros of tpnpxqu8n�0 are real, simple and are located in the
interior of the convex hull of the support of µ. They will be denoted by xnk : xn1  
xn2   . . .   xnn.

Due to the fact we are working with a non standard inner product, the Sobolev
orthogonal polynomials lose this property. For instance, for polynomials orthogonal
with respect to the Sobolev-type inner product (1.0.2) with r�1, 1s as support of the
measure µ, it has been proved that n�N zeros ofBnpxq belong to r�1, 1s and the other
N zeros accumulate in r�1, 1s. For the case of unbounded support, parallel results can
be found. For more details on this subject see [67].

1.6 Classical Laguerre polynomials

In the study of all aspects of Sobolev polynomials is quite frequent to explore for the
first time the case when µ is a classical measure. There are three families of classical
polynomials: Jacobi, Hermite and Laguerre polynomials. For the computations in the
following chapters we will need to review the properties of Laguerre polynomials.

Laguerre orthogonal polynomials are defined as the polynomials orthogonal with
respect to the inner product

xf, gyα �
» 8

0

fpxqgpxqxαe�xdx, α ¡ �1, f, g P P. (1.6.19)

The expression of these polynomials as an 1F1 hypergeometric function is very
well known in the literature (see for instance, [41, 79, 95]). The connection between
these two facts follows from a characterization of such orthogonal polynomials as
eigenfunctions of a second order linear differential operator with polynomial coeffi-
cients.

For α ¡ �1, let tpLαnpxqu8n�0, tLαnpxqu8n�0, and tLpαqn pxqu8n�0 be the sequences
of monic, orthonormal and normalized Laguerre polynomials with leading coefficient
equal to p�1qn

n! , respectively. The following proposition summarizes some structural
and asymptotic properties of the classical Laguerre polynomials (see [38, 39, 68] and
the references therein.)

Proposition 1.6.1. The following statements hold.

1. Three-term recurrence relation. For every n ¥ 1

xpLαnpxq � pLαn�1pxq � βnpLαnpxq � γnpLαn�1pxq, (1.6.20)

with initial conditions pLα0 pxq � 1, pLα1 pxq � x�pα� 1q, and βn � 2n�α� 1,
γn � npn� αq.
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2. [95, p. 102] They satisfy the structure relation:

Lpα�1q
n pxq � Lpαqn pxq � L

pαq
n�1pxq.

3. For every n P N,
||pLαn||2α � Γpn� 1qΓpn� α� 1q. (1.6.21)

4. Hahn’s condition. For every n P N,

rpLαnpxqs1 � npLα�1
n�1pxq. (1.6.22)

5. The n-th Dirichlet kernel Knpx, yq, given by

Knpx, yq �
ņ

k�0

pLαk pxqpLαk pyq
||pLαk ||2α , (1.6.23)

satisfies the Christoffel-Darboux formula (cf. [95, Theorem 3.2.2]):

Knpx, yq � 1

||pLαn||2α
� pLαn�1pxqpLαnpyq � pLαnpxqpLαn�1pyq

px� yq

�
, n ¥ 0.

(1.6.24)

6. The so called confluent form of the above kernel is given by

Knpx, xq � 1

||pLαn||2α
!
rpLαn�1s1pxqpLαnpxq � rpLαns1pxqpLαn�1pxq

)
, n ¥ 0.

(1.6.25)

7. [95, Theorem 8.22.3] (Outer strong asymptotics or Perron asymptotics formula
on CzR�). Let α P R, then

Lpαqn pxq � 1

2
π�1{2ex{2 p�xq�α{2�1{4

nα{2�1{4 exp
�

2 p�nxq1{2
	
(1.6.26)

�
#
p�1̧

k�0

Ckpα;xqn�k{2 �Opn�p{2q
+
.

Here Ckpα;xq is independent of n. This relation holds for x in the complex
plane with a cut along the positive real semiaxis, and it also holds if x is in the
cut plane mentioned. p�xq�α{2�1{4 and p�xq1{2 must be taken real and positive
if x   0. The bound for the remainder holds uniformly in every compact subset
of the complex plane with empty intersection with R�.
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8. [95, Theorem 8.22.2] (Perron generalization of Fejér formula on R�. Let α P
R). Then for x ¡ 0 we have

L
pαq
n pxq � π�1{2ex{2x�α{2�1{4nα{2�1{4 cost2 pnxq1{2 � απ{2� π{4u

�
"
p�1°
k�0

Akpxqn�k{2 �Opn�p{2q
*

�π�1{2ex{2x�α{2�1{4nα{2�1{4 sint2 pnxq1{2 � απ{2� π{4u
�
"
p�1°
k�0

Bkpxqn�k{2 �Opn�p{2q
*
,

(1.6.27)
where Akpxq and Bkpxq are certain functions of x independent of n and regular
for x ¡ 0. The bound for the remainder holds uniformly in rε, ωs. For k � 0 we
have A0pxq � 1 and B0pxq � 0.

9. [15, Theorem 2] (Alternative outer strong asymptotics). Let α ¡ �1. The La-
guerre polynomial Lpαqn pxq admits the following asymptotic expansion as n Ñ
8 :

Lpαqn pxq � 1

2
π�1{2 Γpn� α� 1q

n!
ex{2 p�κxq�α{2�1{4

exp
�

2 p�κxq1{2
	

�
#
d�1̧

k�0

B̂mpα, xqn�m{2 �Opn�d{2q
+
,

for some coefficients B̂mpα, xq independent of n and κ � κpn, αq � α�1
2 � n.

This modified expansion holds for x in the complex plane with a cut along the
positive real semiaxis, and it also holds if x is in the cut plane mentioned. The
bound for the remainder holds uniformly in every compact subset of the complex
plane with empty intersection with R�.

10. For every n P N,

hpαqn :�
» 8

0

rLpαqn pxqs2dµpxq � nα.

11. [95, Theorem 8.1.3] Mehler-Heine type formula. For a fixed j, with j P NYt0u,
if Jα denotes the Bessel function of the first kind, then

lim
nÑ8

L
pαq
n px{pn� jqq

nα
� x�α{2Jα

�
2
?
x
�
, (1.6.28)

uniformly on compact subsets of C.

12. [4, formula (1.10)] Ratio asymptotics for scaled Laguerre polynomials:

lim
nÑ8

L
pαq
n�1ppn� jqxq
L
pαq
n ppn� jqxq

� � 1

φppx� 2q{2q
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holds uniformly on compact subsets of Czr0, 4s and uniformly on j P N Y t0u,
where φ is conformal mapping of Czr�1, 1s onto the exterior of the unit circle
given by

φpxq � x�
a
x2 � 1, x P Czr�1, 1s,

with
?
x2 � 1 ¡ 0 when x ¡ 1.



2
Sobolev type polynomials on bounded support

In this Chapter we study some analytic and algebraic properties of Sobolev-type
polynomials with respect to nontrivial probability measures with a bounded support on
the real line.

In Section 2.1 we analyze the outer relative symptotics for a family of Sobolev-
polynomials orthogonal with respect to an inner product of the form (1.0.2) with the
measure µ in the Nevai class and the mass points located outside the support of the
measure. In Section 2.2 we deduce a new matrix interpretation of the recurrence re-
lation satisfied by the Sobolev orthogonal polynomial sequence in terms of a matrix
polynomial of the Jacobi matrix associated with the sequence of orthonormal poly-
nomials tpnpxqu8n�0. The analysis of the connection coefficients for such sequences
constitutes a basic tool for such an approach. Finaly, in Section 2.3 we study the point-
wise convergence of the Fourier series associated with a family of Sobolev polinomials
orthogonal with respect to a Jacobi-Sobolev inner product with several mass points
outside the support of the measure.

2.1 Some background on asymptotics

Let µ be a finite positive Borel measure supported on the interval r�1, 1s with
infinitely many points at the support and let bk, k � 1, . . . ,K, be real numbers located
outside r�1, 1s. For f and g in L2pµqXC8r�1, 1s such that there exist the derivatives
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at bk, we can introduce the Sobolev-type inner product

xf, gy � pf, gq �
Ķ

k�1

Nķ

i�0

Mk,if
piqpbkqgpiqpbkq, (2.1.1)

with pf, gq � ³
fpxqgpxqdµpxq, Mk,i P C, andMk,Nk � 0. For convenience, we work

with another normalization of the Sobolev orthogonal polynomials. Let tB̃npxqu8n�0

be the sequence of monic polynomials of least degree such that

xB̃n, py � 0, p P Pn�1,

where Pn�1 is the linear space of all polynomials with complex coefficients of degree
less than or equal to n � 1. The existence of B̃n P Pn for each n P Z� follows
from the solution of a system of n linear homogeneous equations and n� 1 unknowns.
Since

³ |B̃npxq|2dµpxq � 1{τ2
n ¡ 0, we can define B̂npxq � τnB̃npxq and we have a

sequence tB̂npxqu8n�0 such that

degpB̂nq ¤ n, xB̂n, py � 0, p P Pn�1,

»
|B̂npxq|2dµpxq � 1. (2.1.2)

It is clear that the polynomials B̂n are not orthonormal with respect to (4.1.11),
but it is possible to prove that, for µ belonging to the Nevai class Mp0, 1q and n large
enough, they are equal up to constant factors αn, with limnÑ8 αn � 1. More pre-
cisely,

Lemma 2.1.1. [7, Lemma 2.2] For µ P Mp0, 1q, the polynomials B̂n satisfy the con-
ditions

(i) If Mk,i � 0, then limnÑ8 B̂
piq
n pbkq � 0.

(ii) limnÑ8xB̂n, B̂ny � 1.

(iii) There exists a positive integer n0 such that degpB̂nq � n for all n ¥ n0.

Recall that we denote by tpnpxqu8n�0 the sequence of orthonormal polynomials
with respect to µ. In what follows, we assume that either µ1 ¡ 0 a.e. on the support of
µ or µ PMp0, 1qwith the additional assumption that none of the mass points bk belong
to the support of the measure µ (cf. [77, 87, 88]). Let us consider N � °K

k�1pNk � 1q
and the polynomial

ωN pxq :�
K¹
k�1

px� bkqNk�1. (2.1.3)

Let Ik be the number of coefficients Mk,j , j � 0, . . . , Nk, different from 0 in
(4.1.10) and let Jk be such that Ik � Jk � Nk � 1.
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In order to deduce asymptotic properties for the polynomials B̂n, a successful strat-
egy is to find orthogonality relations involving the polynomials B̂n, pn, ωN , and the
monomials px � bkqm, for m P t1, . . . , Iku Y t1, . . . , Jku. Concerning this issue, we
have the following result.

Lemma 2.1.2. (i) For m � 1, . . . , Ik,

lim
nÑ8

»
B̂npxqpnpxq
px� bkqm dµpxq � 0.

(ii) If Jk ¡ 0, then

lim
nÑ8

»
ωN pxqB̂npxqpn�N pxq

px� bkqm dµpxq � 0, m � 1, . . . , Jk.

Proof. It suffices to follow the proof given in [7, Lemma 3.1], with the corresponding
modifications.

Lemma 2.1.3. For n ¥ n0, the polynomial ωN B̂n has the following representation in
terms of the sequence tpnpxqu8n�0 of orthonormal polynomials with respect to µ.

ωN pxqB̂npxq �
2Ņ

j�0

An,jpn�N�jpxq, An,0 � 0. (2.1.4)

Moreover, An,j are bounded and An,2N � κppn�N q
κppn�N q

1
An,0

xB̂n, B̂ny � 0.

Proof. (2.1.4) is an immediate consequence of»
ωN pxqB̂npxqpipxqdµpxq � xB̂n, ωNpiy.

Thus,

2Ņ

i�0

|An,i|2 �
»
ω2
N pxq|B̂npxq|2dµpxq ¤ max

xPsupp µ
ω2
N pxq,

An,0 �
»
ωN pxqB̂npxqpn�N pxqdµpxq � κpB̂nq

κppn�N q ,

An,2N �
»
ωN pxqB̂npxqpn�N pxqdµpxq � xB̂n, ωNpn�Ny

� κppn�N q
κpB̂nq

xB̂n, B̂ny, n ¥ n0.
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Therefore, the coefficients An,j , 0 ¤ j ¤ 2N, are bounded, and An,0, An,2N
satisfy

An,0An,2N � κppn�N q
κppn�N qxB̂n, B̂ny.

We can already provide an alternative (and more simple) proof of a well-known
result about the outer relative asymptotics for the polynomials B̂n, which is a special
case of [47, Theorem 4]. We denote by Tj the jth Chebyshev polynomial of the first
kind and by ϕ�pxq :� x�?x2 � 1 with the assumption that the square root is positive
for x ¡ 1.

Theorem 2.1.1. [47, formula (1.10)] Let µ be a finite positive Borel measure in the
Nevai class Mp0, 1q, such that all the mass points bk R suppµ. Then the polynomials
tB̂npxqu8n�0 satisfy

lim
nÑ8

B̂npxq
pnpxq �

K¹
k�1

�
1

|ϕ�pbkq|
pϕ�pxq � ϕ�pbkqq2

2ϕ�pxqpx� bkq

Ik

, (2.1.5)

uniformly on compact sets of C̄zsuppµ.

Proof. Since µ PMp0, 1q,

lim
nPΛ

ωN pxqB̂npxq
pn�N pxq �

2Ņ

j�0

Ajpϕ�pxqqj (2.1.6)

uniformly on compact sets of C̄zsuppµ.

Now, we are going to show that the Aj’s are completely determined for any se-
quence of nonnegative integers Λ. In order to do it, we need to obtain a factorization
of the polynomial

°2N
j�0Ajz

j .

Since bk R suppµ, 1{px � bkqi are continuous functions on suppµ. Hence, for a
fixed k P t1, . . . ,Ku, by orthogonality, (2.4), and the weak asymptotic property (see
[7, formula (2)]) we get for i � 1, . . . , Nk � 1,

lim
nPΛ

»
ωN pxq
px� bkqi B̂npxqpn�N pxqdµpxq �

1

π

» 1

�1

°2N
j�0AjTjpxq
px� bkqi

dx?
1� x2

� 0.

(2.1.7)

According to the residue’s theorem, (2.1.7) means that the polynomial
°2N
j�0Ajz

j

has a zero of multiplicity at least Nk � 1 at ϕ�pbkq.
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On the other hand,

lim
nÑ8

» ωN pxq
px � bkqNk�1

B̂npxq
pn�N pxq
px � bkqm

dµpxq

� lim
nÑ8

» $&%
m�1¸
j�0

1

j!

�
ωN

px � bkqNk�1
B̂n

�pjq
pbkqpx � bkq

j � px � bkq
m
πn�N�Nk�1�mpxq

,.- pn�N pxq
px � bkqm

dµpxq

� lim
nÑ8

m�1¸
j�0

1

j!

�
ωN

px � bkqNk�1
B̂n

�pjq
pbkq

» pn�N pxq
px � bkqm�j dµpxq � 0,

where πn�N�Nk�1�m is a polynomial of degree n � N � Nk � 1 � m and the
last equality holds as a consequence of the following two facts (cf. [7, the proof of
statement (i) of Lemma 3.1. and Lemma 2.3]).

(i)

lim
nÑ8

nIk�1�j1

j1!pn�N pbkq
�

ωN
px� bkqNk�1

B̂n


pj1q
pbkq

� � � � � lim
nÑ8

nIk�1�jJk
jJk !pn�N pbkq

�
ωN

px� bkqNk�1
B̂n


pjJk q
pbkq � 0,

where j1   j2   � � �   jJk are the non negative integers corresponding to the
masses Mk,j � 0.

(ii)

lim
nÑ8

1

nm�j�1

»
pn�N pxqpn�N pbkq

px� bkqm�j dµpxq � p�1qm�j
pm� j � 1q!

�
1a
b2k � 1

�m�j
,

(2.1.8)
for each bk and m� j ¡ 0.

Then ϕ�pbkq is a zero of the polynomial
°2N
j�0Ajz

j of multiplicity at least Nk �
1� Ik.

From statement (ii) of Lemma 2.1.2, we have

lim
nÑ8

»
ωN pxqB̂npxqpn�N pxq

px� bkqm dµpxq � 0, m � 1, . . . , Nk � 1� Ik.

As a consequence,

lim
nPΛ

»
ωN pxqB̂npxqpn�N pxq

px� bkqm dµpxq � 1

π

» 1

�1

°2N
j�0AjT2N�jpxq
px� bkqm

dx?
1� x2

� 0,

(2.1.9)
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for m � 1, . . . , Nk � 1 � Ik. Hence, (2.1.9) means that ϕ�pbkq is a zero of the poly-
nomial

°2N
j�0Ajz

j of multiplicity at least Nk � 1� Ik.

Therefore,
°2N
j�0Ajz

j has the following factorization

2Ņ

j�0

Ajz
j � A2N

K¹
k�1

pz � ϕ�pbkqqNk�1�Ikpz � ϕ�pbkqqNk�1�Ik ,

and for z � ϕ�pxq we obtain

2Ņ

j�0

Ajpϕ�pxqqj � A2N

K¹
k�1

pϕ�pxq � ϕ�pbkqqNk�1�Ikpϕ�pxq � ϕ�pbkqqNk�1�Ik .

(2.1.10)

If x tends to infinity, then we find A0 � A2N

±K
k�1pϕ�pbkqq2Ik and having in

mind that A0A2N � 1

22N
, we can deduce that

A2N �
±K
k�1 |ϕ�pbkq|Ik

2N
,

and this last equation determines completely Aj for any sequence of nonnegative inte-
gers Λ. Also, from (2.1.6) and (2.1.10) we can deduce that

lim
nÑ8

ωN pxqB̂npxq
pn�N pxq

�
±K
k�1 |ϕ�pbkq|Ik

2N

K¹
k�1

pϕ�pxq � ϕ�pbkqqNk�1�Ik pϕ�pxq � ϕ�pbkqqNk�1�Ik

� 1

2N

K¹
k�1

|ϕ�pbkq|Ik pϕ�pxq � ϕ�pbkqqNk�1�Ik pϕ�pxq � ϕ�pbkqqNk�1�Ik

� 1

2N

K¹
k�1

|ϕ�pbkq|Ik pϕ�pxq � ϕ�pbkqqIk
pϕ�pxq � ϕ�pbkqqIk

ppϕ�pxq � ϕ�pbkqqpϕ�pxq � ϕ�pbkqqqNk�1.

Finally, taking into account the outer ratio asymptotics for orthonormal polyno-
mials associated with measures in the Nevai class as well as the fact that

ωN pxq � 1

2N
pϕ�pxqqN

K¹
k�1

ppϕ�pxqq2 � 2bkϕ
�pxq � 1qNk�1 (2.1.11)

on compact subsets of C̄zsuppµ, we get

lim
nÑ8

B̂npxq
pnpxq �

K¹
k�1

�
1

|ϕ�pbkq|
pϕ�pxq � ϕ�pbkqq2

2ϕ�pxqpx� bkq

Ik

.
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Remark 2.1.1. When bk P suppµ, k � 1, . . . ,K, for instance, takuK1

k�1 and tb1juK2
j�1

are the mass points of µ on r�1, 1s and the mass points of µ on suppµzr�1, 1s, re-
spectively, for k � 1, . . . ,K1 and j � 1, . . . ,K2, K � K1 �K2, it was proved in [7,
Theorem 3.1, (i)] that for µ P Mp0, 1q the following outer relative asymptotics holds
uniformly on compact subsets of C̄zsuppµ.

lim
nÑ8

B̂npxq
qnpxq �

K2¹
k�1

�
1

|ϕ�pb1kq|
pϕ�pxq � ϕ�pb1kqq2

2ϕ�pxqpx� b1kq

Ik

, (2.1.12)

where tqnpxqu8n�0 is the sequence of orthonormal polynomials with respect to the mea-
sure ν PMp0, 1q defined by ν � µ�°K1

k�1 µptakuqδak �
°K2

k�1 µptb1kuqδb1k .

Even though in the previous proof we follow the ideas of the proof given in [7,
Theorem 3.1], it is worthwhile to point out that the existing difference between the
arguments of both proofs is the use of Lemma 2.1.2, which is necessary for us since we
do not consider the mass points of µ inside suppµ.

2.2 Matrix interpretation

Next, we will assume that the values Mk,i in the inner product (4.1.11) are non-
negative real numbers. In such a way, n0 � 0 in Lemma 2.1.1 and we can define the
sequence of orthogonal polynomials tB̂npxqu8n�0 with degpB̂nq � n. Thus, it consti-
tutes a basis of the linear space P.

Lemma 2.2.1. The polynomial B̂n has the following representation in terms of the
sequence tpnpxqu8n�0 of orthonormal polynomials with respect to µ.

B̂npxq �
ņ

j�0

αn,jpjpxq (2.2.13)

where

αn,n � τn
κppnq ,

αn,j � �
Ķ

k�1

Nķ

i�0

Mk,iB̂
piq
n pbkqppiqj pbkq, for 0 ¤ j ¤ n� 1.

Proof. By the orthonormality of pn, we have

αn,n �
»
B̂npxqpnpxqdµpxq � τn

»
B̃npxqpnpxqdµpxq � τn

κppnq .



32 Sobolev type polynomials on bounded support

For 0 ¤ j ¤ n� 1, using (2.1.2) we have

αn,j �
»
B̂npxqpjpxqdµpxq

� xB̂n, pjy �
Ķ

k�1

Nķ

i�0

Mk,iB̂
piq
n pbkqppiqj pbkq

� �
Ķ

k�1

Nķ

i�0

Mk,iB̂
piq
n pbkqppiqj pbkq.

Lemma 2.2.2. The polynomial pn has the following representation in terms of the
sequence tB̂npxqu8n�0.

pnpxq �
ņ

j�0

βn,jB̂jpxq, (2.2.14)

where

βn,n � τn

xB̂n, B̂nyκppnq
� 1

xB̂n, B̂ny
Ķ

k�1

Nķ

i�0

Mk,ip
piq
n pbkqB̂piq

n pbkq,

βn,j � 1

xB̂j , B̂jy
Ķ

k�1

Nķ

i�0

Mk,ip
piq
n pbkqB̂piq

j pbkq, for 0 ¤ j ¤ n� 1.

Proof. This is a straightforward result that follows by using the same arguments as in
the previous lemma.

In order to write in matrix form, we introduce the following notation.

B̂ � �
B̂0pxq, . . . , B̂npxq, . . .

�T
,

P � �
p0pxq, . . . , pnpxq, . . .

�T
,

and Λ is the following lower triangular infinite matrix

Λ �

�����
α0,0 0 0 . . .
α1,0 α1,1 0 . . .
α2,0 α2,1 α2,2 . . .
...

...
...

. . .

����.
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Then B̂ � ΛP and (2.2.13), (2.2.14) and (2.1.4), respectively, can be written in
matrix form as follows.

B̂npxq �
�
αn,0, . . . , αn,n

� �
p0pxq, . . . , pnpxq

�T
,

pnpxq �
�
βn,0, . . . , βn,n

� �
B̂0pxq, . . . , B̂npxq

�T
,

and

ωN pxqB̂npxq �
�
An,2N , . . . , An,0

� �
pn�N pxq, . . . , pn�N pxq

�T
� �

An,2N , . . . , An,0
�
H̃

�
B̂0pxq, . . . , B̂n�N pxq

�T
,

where H̃ P Rp2N�1q�pn�N�1q is the Hessenberg matrix

H̃ �

�������
βn�N,0 . . . βn�N,n�N . . . 0 0 . . . 0

...
...

...
...

...
...

...
...

βn,0 . . . βn,n�N . . . βn,n 0 . . . 0
...

...
...

...
...

...
. . .

...
βn�N,0 . . . βn�N,n�N . . . βn�N,n βn�N,n�1 . . . βn�N,n�N

������.
Now, we decompose

H̃

���������

���������

B̂0pxq
...

B̂n�N�1pxq
0
...
0

��������
�

���������

0
...
0

B̂n�N pxq
...

B̂n�N pxq

��������

���������
�

��βn�N,0 . . . βn�N,n�N�1

...
...

βn�N,0 . . . βn�N,n�N�1

�
��� B̂0pxq

...

B̂n�N�1pxq

��� Ĥ

���B̂n�N pxq...

B̂n�N pxq

��,
where Ĥ is the matrix obtained from H̃ deleting its first n�N columns, i.e.

Ĥ �
��βn�N,n�N . . . 0

...
. . .

...
βn�N,n�N . . . βn�N,n�N

�.
Having in mind that ωN B̂npxq P spanpB̂n�N , . . . , B̂n�N q it follows that

�
An,2N, . . . , An,0

����βn�N,0 . . . βn�N,n�N�1

...
...

βn�N,0 . . . βn�N,n�N�1

��� �
0, . . . , 0

�
.
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Finally, we obtain

ωN pxqB̂npxq �
�
An,2N , . . . , An,0

�
Ĥ

�
B̂n�N pxq, . . . , B̂n�N pxq

�T
.

These remarks can be summarized as follows.

Proposition 2.2.1. The sequence of polynomials tB̂npxqu8n�0 satisfies the following
recurrence relation.

ωN pxqB̂npxq �
2Ņ

j�0

cn,jB̂n�N�jpxq

where

�
cn,2N , . . . , cn,0

� � �
An,2N , . . . , An,0

����βn�N,n�N . . . 0
...

. . .
...

βn�N,n�N . . . βn�N,n�N

��.

On the other hand, according to Lemma 2.1.3 and Lemma 2.2.1

An,j �
»
ωN pxqB̂npxqpn�N�jpxqdµpxq

� xωN B̂n, pn�N�jy � xB̂n, ωNpn�N�jy

�
C

ņ

l�0

αn,lpl, ωNpn�N�j

G

�
ņ

l�0

αn,lxpl, ωNpn�N�jy.

But,

xωNpn�N�j , ply � rωN pJqsn�N�j,l,

i.e., xωNpn�N�j , ply is the pn�N�j, lq entry in the p2N�1q-diagonal matrix ωN pJq,
where J is the Jacobi matrix associated with the measure µ, i.e. the matrix associated
with the multiplication operator in terms of the orthonormal basis tpnpxqu8n�0.
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Notice that

An,2N �
ņ

l�0

αn,lrωN pJqsn�N,l �
ņ

l�n�2N

αn,lrωN pJqsn�N,l

An,2N�1 �
ņ

l�0

αn,lrωN pJqsn�N�1,l �
ņ

l�n�2N�1

αn,lrωN pJqsn�N�1,l

...

An,0 �
ņ

l�0

αn,lrωN pJqsn�N,l � αn,nrωN pJqsn�N,n.

Thus,

�
An,2N , . . . , An,0

� � �
αn,n�2N , . . . , αn,n

�
�
��
rωN pJqsn�N,n�2N � � � 0

...
. . .

rωN pJqsn�N,n . . . rωN pJqsn�N,n

�
�.

As a conclusion, from Proposition 2.2.1 we obtain

�
cn,2N, . . . , cn,0

	
�

�
αn,n�2N, . . . , αn,n

	 ����
rωN pJqsn�N,n�2N � � � 0

.

.

.
. . .

rωN pJqsn�N,n . . . rωN pJqsn�N,n

���
����
βn�N,n�N � � � 0

.

.

.
. . .

βn�N,n�N . . . βn�N,n�N

���.

This yields the relation between the parameters of the recurrence formula for tB̂npxqu8n�0

in terms of tαn,junj�n�2N and tβn�N�k,ju2N
k�0.

On the other hand, from Lemma 2.1.3

ωN B̂ � HP.
Here H denotes the 2N � 1 banded infinite matrix with entries hk,j � Ak,k�N�j ,
k �N ¤ j ¤ k �N, and 0, otherwise.

Given C � pc0pxq, . . . , cnpxq, . . .qT and D � pd0pxq, . . . , dnpxq, . . .qT , we will
denote by pC,DT q and xC,DT y the infinite matrices whose entries are pcipxq, djpxqq
and xcipxq, djpxqy, respectively.

Since pP,PT q � I , we have

H � pωN B̂,PT q � pB̂, ωNPT q � pB̂,PTωN pJqq
� pΛP,PT qωN pJq � ΛωN pJq.
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From Proposition 2.2.1 we get

ωN B̂ � SB̂,

hence SxB̂, B̂T y � xωN B̂, B̂T y. Here S is the 2N � 1 banded infinite matrix with
entries sk,j � ck,k�N�j , k � N ¤ j ¤ k � N, and 0 otherwise. But xωN B̂, B̂T y �
pωN B̂, B̂T q= pHP,PTΛT q � HΛT . Taking into account that xB̂, B̂T y � D is a di-
agonal matrix according to the orthogonality of the polynomial sequence tB̂npxqu8n�0

with respect to our Sobolev inner product, then SD � HΛT and we get the following
result.

Proposition 2.2.2. The matrices S and ωN pJq satisfy the following connection relation

SD � ΛωN pJqΛT . (2.2.15)

For an alternative approach based on LU and UL factorization see [17].

2.3 Fourier series

We are interested in the study of the pointwise convergence of the Fourier series ex-
pansions in terms of the polynomials tBnpxqu8n�0 orthonormal with respect to (4.1.11)
when µ is now the Jacobi measure. Our idea is to generalize some results given in [57]
for the case of only one mass point outside suppµ. In order to do this, we need some
pointwise estimates for the polynomials Bn and its derivatives at the mass points bk.

We will say that a measure µ belongs to the Szegő class and we will denote it by
µ P S if supp pdµq � r�1, 1s and» 1

�1

lnµ1pxq?
1� x2

¡ �8.

It is well known that if tpnpxqu8n�0 is the sequence of orthonormal polynomials with
respect to some measure λ P S, then

p1npxq
pnpxq � Opnq

outside the support of the measure.

The following result generalizes the above property to derivatives of higher order.

Lemma 2.3.1. Let λ P S. Then, for each 1 ¤ k   n we have

p
pkq
n pxq
pnpxq � O

�
nk

�
, (2.3.16)

uniformly on compact subsets of Czr�1, 1s.
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Proof. Since λ P S, the polynomials pn satisfy the following outer strong asymptotics
(see [95]):

pnpxq � Dpλ, 0qΦnpxq
Dpλ, 1

2Φpxq q
p1�Op1qq,

uniformly in compact subsets of Czr�1, 1s, where Dpλ, xq denotes the Szegő function

Dpλ, zq � expt 1

4π

» π
�π

log λ1pcos tq1� ze�it

1� ze�it
dtu

for |z|   1, and

Φpxq � ϕ�pxq
2

.

Finally, (2.3.16) follows by estimating the kth derivative of Φnpxq.

Let

ω̃N pxq �
K¹
k�1

px� bkqN�
k ,

where N � °K
k�1N

�
k and

N�
k �

#
Nk � 1, if Nk is odd
Nk � 2, if Nk is even.

and let us denote ω̃N,kpxq � ω̃N pxq
px�bkqN

�
k

.

Lemma 2.3.2. Let tqnpxqu8n�0 be the sequence of orthonormal polynomials with re-
spect to ω̃N pxqdµpxq, where µ P S. Then, for 0   m ¤ N�

k we get» 1

�1

qnpxqpx� bkqN�
k �mω̃N,kpxqdµpxq � O

�
nm�1pϕ�pbkqqn

�
. (2.3.17)

In particular, » 1

�1

qnpxqdµpxq � O
�
nN

�
k �1pϕ�pbkqqn

	
. (2.3.18)

Proof. We prove (2.3.17) by induction on m. For m � 1 we have» 1

�1

qnpxqpx� bkqN�
k �1ω̃N,kpxqdµpxq

� 1

qnpbkq
» 1

�1

qnpxq pqnpbkq �Πn�1pxqpx� bkqq px� bkqN�
k �1ω̃N,kpxqdµpxq

� 1

qnpbkq
» 1

�1

q2
npxqpx� bkqN�

k �1ω̃N,kpxqdµpxq � O
�pϕ�pbkqqn� ,
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where Πn�1pxq is a polynomial of degree at most n�1. Form � 2, using the previous
case and Lemma 2.3.1 we get

» 1

�1

qnpxqpx� bkqN�
k �2ω̃N,kpxqdµpxq

� 1

qnpbkq
» 1

�1

qnpxqpqnpbkq � q1npbkqpx� bkqqpx� bkqN�
k �2ω̃N,kpxqdµpxq

� q1npbkq
qnpbkq

» 1

�1

qnpxqpx� bkqN�
k �1ω̃N,kpxqdµpxq

� 1

qnpbkq
» 1

�1

q2
npxqpx� bkqN�

k �2ω̃N,kpxqdµpxq �O
�
npϕ�pbkqqn

�
� O

�
npϕ�pbkqqn

�
.

Now, let assume that (2.3.17) holds for every positive integer i   m, i.e.» 1

�1

qnpxqpx� bkqN�
k �iω̃N,kpxqdµpxq � O

�
ni�1pϕ�pbkqqn

�
.

Then, using again Lemma 2.3.1, we obtain» 1

�1

qnpxqpx� bkqN�
k �mω̃N,kpxqdµpxq

� 1

qnpbkq
» 1

�1

qnpxq
�
qnpbkq �

m�1̧

i�1

q
piq
n pbkq
i!

px� bkqi
�
px� bkqN�

k �mω̃N,kpxqdµpxq

�
m�1̧

i�1

q
piq
n pbkq
i!qnpbkq

» 1

�1

qnpxqpx� bkqN�
k �m�iω̃N,kpxqdµpxq

� 1

qnpbkq
» 1

�1

q2
npxqpx� bkqN�

k �mω̃N,kpxqdµpxq

�
m�1̧

i�1

O
�
ni
�
O
�
nm�i�1pϕ�pbkqqn

�
� �pϕ�pbkqqn�� m�1̧

i�1

O
�
nm�1pϕ�pbkqqn

� � O
�
nm�1pϕ�pbkqqn

�
.

Finally, taking m � N�
k we obtain (2.3.18).

Let Πk,ipxq be the polynomial of least degree such that the following conditions
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hold

Π
pjq
k,ipbtq � 0, t � k, j � 0, . . . , Nt,

Π
pjq
k,ipbkq � 0, if j � i,

Π
piq
k,ipbkq � 1.

If Mk,i ¡ 0, then, for n large enough, if tBnpxqu8n�0 is the sequence of orthonor-
mal polynomials with respect to (4.1.11) we have

0 � xBn,Πk,iy �
» 1

�1

BnpxqΠk,ipxqdµpxq �Mk,iB
piq
n pbkq,

and, as a consequence,

|Bpiq
n pbkq| � 1

Mk,i

����» 1

�1

BnpxqΠk,ipxqdµpxq
���� .

Defining C :� maxxPr�1,1s |Πk,ipxq|, we obtain the following estimate

���Bpiq
n pbkq

��� ¤ C

Mk,i

����» 1

�1

Bnpxqdµpxq
���� . (2.3.19)

Then, using the same arguments as in the proof of Lemma 2.1.3, we can deduce
that

Bnpxq �
Ņ

j�0

Dn,jqn�jpxq, with tDn,ju8n�0 bounded sequences for j � 1, . . . , N.

(2.3.20)

Therefore, in order to estimate Bpiq
n pbkq, we only need to use (2.3.18) in the fol-

lowing way

���Bpiq
n pbkq

��� ¤ C

Mk,i

����» 1

�1

Bnpxqdµpxq
���� � C

Mk,i

�����
» 1

�1

Ņ

j�0

An,jqn�jpxqdµpxq
�����

¤ C 1

Mk,i

����� Ņ
j�0

» 1

�1

qn�jpxqdµpxq
����� � C 1

Mk,i

����� Ņ
j�0

O
�
pn� jqN�

k �1pϕ�pbkqqn�j
	�����

� O
�
nN

�
k �1pϕ�pbkqqn

	
.

These remarks can be summarized as follows (see also Corollary 3.4 in [57]).
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Theorem 2.3.1. If µ P S and the index k P t1, . . . ,Ku is such that Mk,i ¡ 0, then���Bpiq
n pbkq

��� � O
�
nN

�
k �1pϕ�pbkqqn

	
. (2.3.21)

A straightforward pointwise estimate for the orthonormal Jacobi-Sobolev type po-
lynomials Bpα,βq

n in the interval p�1, 1q is the following.

Lemma 2.3.3. Let µα,β be the Jacobi measure with parameters α, β ¡ �1. Then the
orthonormal Jacobi-Sobolev type polynomials Bpα,βq

n satisfy���Bpα,βq
n pxq

��� ¤ Chpxq, for x P p�1, 1q and for all n, (2.3.22)

where hpxq is a function depending on the parameters α, β.

Proof. Using the same arguments as in the proof of Lemma 2.1.3, we get a connection
formula between Jacobi-Sobolev type polynomials Bpα,βq

n and the orthonormal Jacobi
polynomials ppα,βqn

ωN pxqBpα,βq
N pxq �

2Ņ

j�0

An,jp
pα,βq
n�N�jpxq,

with bounded coefficients. Then, there exists a positive constant C such that, for every
x P R, ���ωN pxqBpα,βq

N pxq
��� ¤ C

Ņ

j��N

���ppα,βqn�j pxq
��� . (2.3.23)

Moreover, it is well known that the orthonormal Jacobi polynomials ppα,βqn satisfy
the pointwise estimates [80, 95]:

p1� xqα2� 1
4 p1� xq β2� 1

4

���ppα,βqn pxq
��� ¤ C, α ¡ �1

2
, β ¡ �1

2
, (2.3.24)���ppα,βqn pxq

��� ¤ C, �1   α ¤ �1

2
, �1   β ¤ �1

2
, (2.3.25)

for x P p�1, 1q.
From (2.3.23)-(2.3.25) the pointwise estimate (2.3.22) follows.

Finally, regarding Fourier series in this setting, for an appropriate function f the
pointwise convergence of the Jacobi-Sobolev Fourier series to f on the interval p�1, 1q
is standard and the corresponding results are a straightforward consequence of those
given in [58]. We refer the interested reader to [58, Theorems 4.1–4.3 and Lemma 4.1],
more precisely.



3
Modified Laguerre measures and kernel
polynomials. Asymptotics.

In this chapter we study asymptotic properties of the polynomials orthogonal with
respect to modified Laguerre weights.

Let dµ be a nontrivial probability measure supported on a subset of the real line.
Several examples of modifications of the measure µ have been studied in the literature.
In particular, it is worthwhile to point out the three canonical cases studied in [97, 98]:

• Christoffel transformations:

dµ̂pxq �
N¹
i�1

px� ξiqdµpxq, ξi R supp pdµq. (3.0.1)

• Geronimus transformations:

dµ̂pxq � dµpxq±M
j�1px� ηjq

�
M̧

j�1

Mjδpx� ηjq, ηj R supp pdµq. (3.0.2)

• Modification by a rational factor:

dµ̂pxq �
±N
i�1px� ξiq±M
j�1px� ηjq

dµpxq, ξi, ηj R supp pdµq. (3.0.3)
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Now, we are going to focus our attention on the first type of perturbation. We will
modify the measure by the multiplication by the polynomial

±K
k�1px� akqNk , where

Ķ

k�1

Nk � N.

Let tLrα,Nsn pxqu8n�0 denote the sequence of orthogonal polynomials with respect

to the modified Laguerre measure dµα,N pxq �
K¹
k�1

px � akqNkxαe�xdx, α ¡ �1

and ak   0, normalized by the condition that Lrα,Nsn pxq have the same leading coeffi-
cient as the classical Laguerre orthogonal polynomials Lpαqn pxq � L

rα,0s
n pxq, i.e. with

leading coefficient equal to p�1qn
n! .

Some structure formulas for this family of polynomials have been studied in [28].
Indeed,

Proposition 3.0.1. [28, Proposition 2.1.] For N ¥ 1, the following relation holds:

px� ξN qLrα,Nsn pxq � �pn� 1qLrα,N�1s
n�1 pxq

� pn� 1qL
rα,N�1s
n�1 pξN q

L
rα,N�1s
n pξN q

Lrα,N�1s
n pxq, n ¥ 1.

Proposition 3.0.2. [28, Proposition 2.2.] We have

Lrα�1,Ns
n pxq � Lrα,Nsn pxq �ANn L

rα,Ns
n�1 pxq,

where

ANn �
�
n� 1

n


N N¹
i�1

L
rα�1,i�1s
n�1 pξiqLrα,i�1s

n�1 pξiq
L
rα�1,i�1s
n pξiqLrα,i�1s

n pξiq
.

Corollary 3.0.1. [28, Corollary 2.3.] For N ¥ 1, we have

px� ξN qLrα,Nsn pxq � �pn� 1qLrα�1,N�1s
n�1 pxq

� pn� 1qL
rα�1,N�1s
n�1 pξN q
L
rα,N�1s
n pξN q

Lrα,N�1s
n pxq, n ¥ 1.

With the previous relations B. Xh. Fejzullahu obtained some asymptotic properties
that we summarize in the following:

Proposition 3.0.3. [28, Proposition 2.4.–2.5]

(a) Uniformly on compact subsets of Czr0,8q,

lim
nÑ8n

1{2L
rα�1,Ns
n�1 pxq
L
rα,Ns
n pxq

� ?�x.
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(b) Uniformly on compact subsets of Czr0,8q,

lim
nÑ8

L
rα,Ns
n pxq

nN{2Lpαqn pxq
�

K¹
k�1

1�?�x�?�ak
�Nk .

(c) Uniformly on compact subsets of Czr0,8q,

lim
nÑ8

L
rα,Ns
n px{pn� jqq

nα�N{2
� 1±K

k�1 p
?�akqNk

x�α{2Jαp2?xq,

where j P NY t0u and Jα is the Bessel function of the first kind.

(d) Plancherel-Rotach type outer asymptotics for Lpα,Nqn :

lim
nÑ8

L
pα,Nq
n ppn� jqxq
L
pαq
n ppn� jqxq

�
�
φppx� 2q{2q � 1

x


N
,

where
φpxq � x�

a
x2 � 1, x P Czr�1, 1s,

with
?
x2 � 1 ¡ 0 when x ¡ 1. This asymptotic holds uniformly on compact

subsets of Czr0, 4q and uniformly on j P NY t0u.

In this chapter, we restrict ourselves to the case K � 1, i.e. we will work with
iterations of Christoffel perturbations. For this modification of the Laguerre measure,
we obtain estimates for the norm of the perturbed polynomials as well as a generalized
Christoffel representation formula for them. Finally, we focus our attention on the
study of the asymptotics of kernel polynomials associated with the Gamma distribution
as well as the asymptotics for the partial derivatives of such polynomials.

3.1 k-iterated Laguerre polynomials

Using a k-iterated Christoffel transform of the measure µ, to the best of our knowl-
edge, a fifth type of Laguerre expansions can be introduced. This family of functions is
called k-iterated Laguerre polynomials, and it is constituted essentially by polynomials
orthogonal with respect to the modified Laguerre measure px � cqkdµpxq, for k P N
fixed (see [13, 95].) Note that the modified Laguerre measure px�cqkdµpxq is positive
when either k is an even integer number or k is an odd integer number and c is a real
number located outside the support of µ. Furthermore, it is very well known that, when
k � 1 and c is outside suppµ, these polynomials are actually the kernel polynomials
corresponding to the moment functional associated with µ and the K-parameter c [13,
Sec. I.7].



44 Modified Laguerre measures and kernel polynomials. Asymptotics.

In the sequel we will denote by tLα,rksn pxqu8n�0 and tLpαq,rksn pxqu8n�0 the sequences
of orthonormal and normalized k-iterated Laguerre polynomials with leading coeffi-
cient equal to p�1qn

n! , respectively. It is clear that for k � 0 these sequences coincide
with the orthonormal and normalized Laguerre polynomials with leading coefficient
p�1qn
n! , respectively.

The next Proposition gives the ratio asymptotics for k-iterated Laguerre polyno-
mials with consecutive indexes of iteration.

Proposition 3.1.1. [28, page 79] The limit

lim
nÑ8

L
pαq,rks
n pxq

n1{2Lpαq,rk�1s
n pxq

� 1?�x�?�c (3.1.4)

holds uniformly on compact subsets of Czr0,8q.

The Mehler-Heine formula for k-iterated polynomials is just a particular case of
Proposition 3.0.3 (c).

Proposition 3.1.2. Uniformly on compact subsets of Czr0,8q,

lim
nÑ8

L
pαq,rks
n px{pn� jqq

nα�k{2
� 1�a|c|

	k x�α{2Jαp2?xq,
where j P NY t0u and Jα is the Bessel function of the first kind.

3.1.1 Estimates for the norm of k-iterated polynomials

In this section, we obtain some estimates for the norm of the k-iterated Laguerre
orthogonal polynomials and Laguerre-Sobolev type polynomials, respectively. In ad-
dition, we complete our study by deducing a connection formula involving different
families of k-iterated Laguerre orthogonal polynomials. It is worth to mention that this
is a result of independent interest.

Proposition 3.1.3. For α ¡ �1 we have

hpαq,rksn :�
» 8

0

rLpαq,rksn pxqs2px� cqkdµpxq � nα�k, k ¥ 0. (3.1.5)

Proof. First of all, we proceed by induction on k in order to prove

L
pαq,rks
n�1 pcq � Lpαq,rksn pcq, k ¥ 0. (3.1.6)
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For k � 0, from Perron asymptotics formula (1.6.26), we obtain L
pαq
n�1pcq �

L
pαq
n pcq. Assuming that (3.1.6) is true for i ¤ k � 1, we use this induction hypoth-

esis for i � k � 1 and (3.1.4), as follows

L
pαq,rks
n�1 pcq

L
pαq,rks
n pcq

� L
pαq,rks
n�1 pcq

L
pαq,rk�1s
n�1 pcq

L
pαq,rk�1s
n pcq
L
pαq,rks
n pcq

L
pαq,rk�1s
n�1 pcq

L
pαq,rk�1s
n pcq

� 1.

Finally, the estimate (3.1.6) together with [68, equation (9)] yields (3.1.5).

3.1.2 Representation formula for k-iterated Laguerre polynomials

We complete our study of k-iterated Laguerre orthogonal polynomials by giving
a representation formula. The following lemma has been used repeatedly in order
to obtain representation formulas involving different families of Laguerre orthogonal
polynomials (up to multiplication for the corresponding weight functions):

Lemma 3.1.1. [8, p. 1192] (Askey inversion formula). Let w and w1 be positive
functions on r0,8q such that w2{w1 P L1r0,8q. Let tpnpxqu8n�0 and tqnpxqu8n�0 be
the orthonormal polynomials associated with w and w1, respectively. Then if

qnpxq �
ņ

k�0

ck,npkpxq,

we have

wpxqpkpxq �
8̧

n�k
ck,nqnpxqw1pxq, (3.1.7)

where the above convergence of the series is taken in the appropriate L2 space.

However, this method can not be applied in order to obtain a connection formula
for k-iterated polynomials as that for classical Laguerre ones given in [70, equation
(2.15)] due to the fact that the function px�cq2j

xj does not belong to L1pxαe�xdxq. An
alternative method is presented in the following proposition and, in addition, we obtain
estimates for the coefficients appearing therein.

Proposition 3.1.4. The following connection formula holds.

px� cqjLpαq,rksn pxq �
j̧

m�0

am,j,kpα, nqLpαq,rk�jsn�m pxq, for 1 ¤ j ¤ k, (3.1.8)
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where am,j,kpα, nq � p�1qm� jm�nj . In particular, for j � k we have (generalized
Christoffel representation formula)

px� cqjLpαq,rjsn pxq �
j̧

m�0

am,jpα, nqLpαqn�mpxq.

Proof. We proceed by induction on j. For the case j � 1, the Christoffel formula reads
(see [13, Sec. I.7])

px� cqLpαq,rksn pxq � �pn� 1qLpαq,rk�1s
n�1 pxq � pn� 1qL

pαq,rk�1s
n�1 pcq

L
pαq,rk�1s
n pcq

Lpαq,rk�1s
n pxq,

(3.1.9)
and, using (3.1.6), we obtain

a0,1,kpα, nq � pn� 1qL
pαq,rk�1s
n�1 pcq

L
pαq,rk�1s
n pcq

� n.

For j � 2, it is enough to note that px�cq2Lpαq,rksn pxq � px�cq
�
px� cqLpαq,rksn pxq

�
and, according to (3.1.9), we have

px�cq2Lpαq,rksn pxq � a2,2,kpα, nqLpαq,rk�2s
n�2 pxq�a1,2,kpα, nqLpαq,rk�2s

n�1 pxq�a0,2,kpα, nqLpαq,rk�2s
n pxq,

where

a1,2,kpα, nq � pn� 1qpn� 2q � n2

a1,2,kpα, nq � �pn� 1qpn� 2qL
pαq,rk�2s
n�2 pcq

L
pαq,rk�2s
n�1 pcq

� pn� 1q2L
pαq,rk�1s
n�1 pcq

L
pαq,rk�1s
n pcq

� �2n2,

a0,2,kpα, nq � pn� 1q2L
pαq,rk�1s
n�1 pcq

L
pαq,rk�1s
n pcq

L
pαq,rk�2s
n�1 pcq

L
pαq,rk�2s
n pcq

� n2.

Let assume that

px� cqj�1Lpαq,rksn pxq �
j�1̧

m�0

am,j�1,kpα, nqLpαq,rk�j�1s
n�m pxq,
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where am,j�1,kpα, nq � p�1qm�j�1
m

�
nj�1. Then,

px� cqjLpαq,rksn pxq �
j�1̧

m�0

am,j�1,kpα, nqpx� cqLpαq,rk�j�1s
n�m pxq

�
j�1̧

m�0

am,j�1,kpα, nq
�
��pn� 1qLpαq,rk�jsn�m�1 pxq � pn� 1q

L
pαq,rk�js
n�m�1 pcq

L
pαq,rk�js
n�m pcq

L
pαq,rk�js
n�m pxq

�


�
j̧

m�0

am,j,kpα, nqLpαq,rk�jsn�m pxq,

with

a0,j,kpα, nq � pn� 1qa0,j�1,kpα, nq
L
pαq,rk�js
n�1 pcq

L
pαq,rk�js
n pcq

� nj ,

am,j,kpα, nq � �pn� 1qam�1,j�1,kpα, nq � pn� 1qam,j�1,kpα, nq
L
pαq,rk�js
n�m�1 pcq

L
pαq,rk�js
n�m pcq

� p�1qm
� j � 1

m� 1

	
nj � p�1qm

�j � 1

m

	
nj � p�1qm

� j
m

	
nj , 1 ¤ m ¤ j � 1,

aj,j,kpα, nq � �pn� 1qaj�1,j�1,kpα, nq � p�1qjnj ,

and this proves (3.1.8).

3.2 Kernel polynomials associated to the Gamma distribution

As we already mention, when k � 1 and c is outside suppµ, the k-iterated poly-
nomials are actually the kernel polynomials corresponding to the moment functional
associated with µ and the K-parameter c [13, Sec. I.7].

Recall that we denote

Knpx, yq �
ņ

k�0

pLαk pxqpLαk pyqApLαk , pLαkE
α

, (3.2.10)

and its partial derivatives

Bj�kKnpx, yq
BxjByk � Kpj,kq

n px, yq, 0 ¤ i, j ¤ n. (3.2.11)

This kernel function satisfies important properties such as the reproducing property:

Proposition 3.2.1. If q is a polynomial of degree less than or equal to n, then

qpyq �
»
Knpx, yqqpxqdµpxq.
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In particular, since Kn is a polynomial in y of degree n, we have

Knpx, zq �
»
Knpx, yqKnpy, zqdµpyq.

In addition, kernel polynomials appear in a natural way in the expression of the n-th
partial sum of a Fourier expansion. If we denote by tpnpxqu8n�0 a system of orthogonal
polynomials with respect to the inner product x�, �y, the Fourier orthogonal expansion
of a function f in terms of the orthogonal polynomial sequence tpnpxqu8n�0 is defined
by

fpxq �
8̧

n�0

pfnpnpxq, pfn � 1

xpn, pnyxf, pny.

The n-th partial sum Snf is defined by

Snfpxq :�
ņ

k�0

pfkpkpxq � xf,Knpx, �qy.

3.2.1 Asymptotics for the partial derivatives of kernels

Our goal here will be to analyze the asymptotic behavior of the partial derivatives
of the diagonal Christoffel-Darboux kernels corresponding to classical Laguerre ortho-
gonal polynomials (in short, the diagonal Laguerre kernels).

Then, for c P R� we will study the asymptotic behavior of Kpj,kq
n pc, cq, 0 ¤

j, k ¤ n.

To the best of our knowledge, asymptotic properties of the Laguerre kernelsKpj,kq
n pc, cq,

0 ¤ j, k ¤ n, are not available in the literature, except possibly for those cases in which
some of the following situations have been considered.

• Case 1: c ¥ 0 and j � k � 0 or 0 ¤ j, k ¤ 1 (cf. [38, 42].)

• Case 2: c � 0 and 0 ¤ j, k ¤ 1 or 0 ¤ j, k ¤ n (cf. [18, 83].)

Here, we will describe the asymptotic behavior of this kernel functions by analyz-
ing the following cases:

Case c � 0

This is a very well known case. The result reads as follows.
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Proposition 3.2.2. [83, Equation (6)] For 0 ¤ j, k ¤ n� 1, the following asymptotic
behavior holds:

K
pk,jq
n�1 p0, 0q � C1n

α�k�j�1, (3.2.12)

where C1 is a constant independent of n.

Case c R r0,8q

The following result gives the asymptotic behavior of the partial derivatives of the
diagonal Laguerre kernels when x � y � c R r0,8q.
Proposition 3.2.3. For c R r0,8q and 0 ¤ j, k ¤ n � 1, the following asymptotic
behavior holds

K
pk,jq
n�1 pc, cq � C1n

k�j
2 e4

?�nc, (3.2.13)

where C1 is a positive real number independent of n.

Proof. Suppose that c R r0,8q and let us denote

fpxq � x
k�j
2 e4

?�xc, x ¡ 0.

Applying the Stolz criterion (see e.g. [43])

K
pk,jq
n�1 pc, cq
fpnq �

�
L
pαq
n�1

	pkq pcq�Lpαqn�1

	pjq pcq
||Lpαqn�1||2α pfpnq � fpn� 1qq

, (3.2.14)

and using the mean value theorem, there exists ξ P pn� 1, nq such that

fpnq�fpn�1q � f 1pξq � k � j

2
ξ
k�j
2 �1e4

?�ξc�2
?�cξ k�j�1

2 e4
?�ξc � C1n

k�j�1
2 e4

?�nc
.

(3.2.15)

Finally, from (1.6.22), (1.6.26), (1.6.21), (3.2.14) and (3.2.15) the result follows.

Case c P p0,8q

For the sake of simplicity, we study first the cases Kp0,1q
n�1 pc, cq and Kp1,1q

n�1 pc, cq.
Later on, we could extend this technique to the general case Kpk,jq

n�1 pc, cq.
Taking derivatives with respect to y in (3.2.10) and considering x � y � c we get

K
p0,1q
n�1 pc, cq �

1

2

pLαn�1pcqrpLαns2pcq � pLαnpcqrpLαn�1s2pcq
ΓpnqΓpn� αq . (3.2.16)
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On the other hand,

K
p1,1q
n�1 pc, cq �

1

3!

1

ΓpnqΓpn� αq�!pLαn�1pcqrpLαns3pcq � 3rpLαn�1s1pcqrpLαns2pcq � pLαnpcqrpLαn�1s3pcq � 3rpLαns1pcqrpLαn�1s2pcq
)
.

(3.2.17)

The asymptotic behavior as nÑ8 of the above Laguerre kernels at x � c, c P R�,
that is, within the oscillatory regime of the classical Laguerre orthogonal polynomials
reads as follows.

Lemma 3.2.1. For every c ¡ 0, we have

Kn�1pc, cq � π�1ecc�
1
2�α n1{2,

K
p0,1q
n�1 pc, cq � π�1ecc�

1
2�α n1{2,

K
p1,1q
n�1 pc, cq � 1

3
π�1ecc�

3
2�α n3{2.

Proof. Taking p � 1 in (1.6.27), we have A0pxq � 1 and B0pxq � 0. Thus, when
x P R� we obtain the behavior of pLpαqn pxq for n large enough,

pLαnpxq � p�1qnΓpn� 1qπ�1{2ex{2x�α{2�1{4nα{2�1{4

� cost2 pnxq1{2 � απ{2� π{4u � p1�Opn�1{2qq.
We can rewrite the above expression as

pLαnpxq � p�1qnΓpn� 1qnα2� 1
4σαpxq cosϕαnpxqp1�Opn�1{2qq (3.2.18)

where
ϕαnpxq � 2pnxq1{2 � απ

2
� π

4
,

and
σαpxq � π�1{2ex{2x�α{2�1{4 (3.2.19)

is a function independent of n. Combining (1.6.22) with (3.2.32), we get

Kn�1pc, cq � Γpn� 1q
Γpn� αqn

αΘnpc;αq,

where

Θnpc;αq � σαpcqσα�1pcq �cosϕα�1
n�1pcq cosϕαn�1pcq � cosϕα�1

n�2pcq cosϕαnpcq
�
.

(3.2.20)
Let us deal with the above expression. From

cospaq cospbq � cospa� bq � cospa� bq
2

,
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we have

Θnpc;αq
σαpcqσα�1pcq �

1

2
cos

�
4
a
c pn� 1q � πα� π

	
(3.2.21)

� 1

2
cos

�
2
?
nc� πα� π � 2

a
c pn� 2q

	
� 1

2
cos

�
2
a
c pn� 2q � 2

?
nc� π

2

	
.

The last term on the right hand side is

�1

2
cos

�
2
apn� 2qc� 2

?
nc� π

2

	
� 1

2
sin

�
2
?
nc� 2

apn� 2qc
	
,

which behaves with n as follows

lim
nÑ8

?
n

2
sin

�
2
?
nc� 2

apn� 2qc
	

� lim
nÑ8

?
n

2

sin
�

2
?
nc� 2

apn� 2qc
	

2
?
nc� 2

apn� 2qc p2?nc� 2
apn� 2qcq � ?

c,

and, therefore,
1

2
sin

�
2
apn� 2qc� 2

?
nc
	
�

c
c

n
. (3.2.22)

Next we study

1

2
cos

�
4
a
c pn� 1q � πα� π

	
� 1

2
cos

�
2
?
nc� πα� π � 2

a
c pn� 2q

	
(3.2.23)

in (3.2.21). Using

cos a� cos b � �2 sin

�
a� b

2



sin

�
a� b

2



,

(3.2.23) becomes

� sin
�?

cn� πα� π � 2
a
c pn� 1q �a

c pn� 2q
	

� sin
�

2
a
c pn� 1q � ?

cn�a
c pn� 2q

	
where the first factor is bounded, and the second one verifies

lim
nÑ8

?
n sin

�
2
a
c pn� 1q � ?

cn�a
c pn� 2q

	
� 0. (3.2.24)

From (3.2.22) and (3.2.24), we conclude

Θnpc;αq � π�1ecc�
1
2�α n�1{2.
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On the other hand, from the Stirling’s formula for the Gamma function, we deduce

Γpn� 1q
Γpn� αq � n1�α, (3.2.25)

under the above assumptions we get

Kn�1pc, cq � π�1ecc�
1
2�α n1{2, c P R�.

Next, we can proceed as above and we obtain the asymptotic behavior given in (3.2.16).
For n large enough, we get

K
p0,1q
n�1 pc, cq �

1

2

Γpn� 1q
Γpn� αqn

α� 1
2 Ψnpc;αq, (3.2.26)

where

Ψnpc;αq � σαpcqσα�2pcq �cosϕαnpcq cosϕα�2
n�3pcq � cosϕαn�1pcq cosϕα�2

n�2pcq
�
.

The expression in square brackets can be rewritten as

� sin

�?
cn� πα� 3

2
π �a

c pn� 1q �a
c pn� 2q �a

c pn� 3q



� sin
�?

cn�a
c pn� 1q �a

c pn� 2q �a
c pn� 3q

	
� sin

�
π �?

cn�a
c pn� 1q �a

c pn� 2q �a
c pn� 3q

	
� sin

�?
cn�a

c pn� 1q �a
c pn� 2q �a

c pn� 3q
	
,

where

limnÑ8
�
�n sin

�?
cn� πα� 3

2π �
a
c pn� 1q �a

c pn� 2q �a
c pn� 3q

	
� sin

�?
cn�a

c pn� 1q �a
c pn� 2q �a

c pn� 3q
	�

� 0,

and

limnÑ8
�
�n sin

�?
cn�a

c pn� 1q �a
c pn� 2q �a

c pn� 3q
	

� sin
�
π �?

cn�a
c pn� 1q �a

c pn� 2q �a
c pn� 3q

	�
� 2c.

As a consequence, taking into account (3.2.33), we get

Ψnpc;αq � π�1ecc�α�
3
2 � 2c n�1.

Replacing the above expression in (3.2.26) and using again (3.2.25), we conclude

K
p0,1q
n�1 pc, cq � π�1ecc�

1
2�α n1{2.
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Finally,

K
p1,1q
n�1 pc, cq �

Γpn� 1q
Γpn� αqn

α�1

�
1

3!
Λ1,npc;αq � 1

2!
Λ2,npc;αq



, (3.2.27)

where

Λ1,npc;αq � σαpcqσα�3pcq
�
cosϕα�3

n�3pcq cosϕαn�1pcq � cosϕα�3
n�4pcq cosϕαnpcq

�
, (3.2.28)

Λ2,npc;αq � σα�1pcqσα�2pcq
�
cosϕα�2

n�2pcq cosϕα�1
n�2pcq � cosϕα�2

n�3pcq cosϕα�1
n�1pcq

�
.

(3.2.29)

The two expressions in square brackets of (3.2.28) and (3.2.29) can be rewritten, re-
spectively, as follows

� sin
�?

nc� πα� 2π �a
c pn� 1q �a

c pn� 3q �a
c pn� 4q

	
� sin

�a
c pn� 1q � ?

nc�a
c pn� 3q �a

c pn� 4q
	

� sin

�a
c pn� 3q � ?

nc�a
c pn� 1q � 3

2
π �a

c pn� 4q



� sin
�?

nc�a
c pn� 1q �a

c pn� 3q �a
c pn� 4q

	
,

� sin
�a

c pn� 1q � πα� 2π � 2
a
c pn� 2q �a

c pn� 3q
	

� sin
�

2
a
c pn� 2q �a

c pn� 1q �a
c pn� 3q

	
�1

2
cos

�
2
a
c pn� 3q � 2

a
c pn� 1q � 1

2
π



,

where the terms of each sumand in the above expresions have the following behavior

limnÑ8
�
�n 1

2 sin
�?

nc� πα� 2π �a
c pn� 1q �a

c pn� 3q �a
c pn� 4q

	
� sin

�a
c pn� 1q � ?

nc�a
c pn� 3q �a

c pn� 4q
	�

� 0,

limnÑ8
�
�n 1

2 sin
�a

c pn� 3q � ?
nc�a

c pn� 1q � 3
2π �

a
c pn� 4q

	
� sin

�?
nc�a

c pn� 1q �a
c pn� 3q �a

c pn� 4q
	�

� �?c,

limnÑ8
�
�n 1

2 sin
�a

c pn� 1q � πα� 2π � 2
a
c pn� 2q �a

c pn� 3q
	

� sin
�

2
a
c pn� 2q �a

c pn� 1q �a
c pn� 3q

	�
� 0,
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and

lim
nÑ8

�
n

1
2

�
�1

2
cos

�
2
a
c pn� 3q � 2

a
c pn� 1q � 1

2
π





� ?

c.

Hence, using again (3.2.33), we have

Λ1,npc;αq � �π�1ecc�2�α?c n�1{2,

Λ2,npc;αq � π�1ecc�2�α?c n�1{2.

Therefore �
1

3!
Λ1,npc;αq � 1

2!
Λ2,npc;αq



� 1

3
π�1ecc�α�

3
2 n�1{2.

Replacing in (3.2.27) we conclude,

K
p1,1q
n�1 pc, cq �

1

3
π�1ecc�

3
2�α n3{2.

Now, we are ready to approach the general case. The results will be obtained just
by generalizing the previous technique. In the next result, we show a confluent form
for the partial derivatives of the kernel polynomial Kn�1px, yq at the point x � y � c.

Proposition 3.2.4. For every n P N and 0 ¤ j, k ¤ n� 1 we have

K
pk,jq
n�1 pc, cq �

j!k!

pj � k � 1q!||pLαn�1||2α
� j̧

l�0

�
j � k � 1

l


�rpLαn�1splqpcq rpLαnspj�k�1�lqpcq

� rpLαnsplqpcq rpLαn�1spj�k�1�lqpcq��. (3.2.30)

Proof. For k � 0 and 0 ¤ j ¤ n � 1 it suffices to follow a standard technique in
literature (see, for instance [2, p. 269]) by taking derivatives in (1.6.24) with respect to
the variable y and then to evaluate it at y � c. Thus we obtain

K
p0,jq
n�1 px, cq �

j!

||pLαn�1||2αpx� cqj�1

�
Tjpx, c; pLαn�1qpLαnpxq � Tjpx, c; pLαnqpLαn�1pxq

	
,

(3.2.31)
where Tjpx, c; fq is the j-th Taylor polynomial of f in c.

Using the Taylor expansion of pLαnpxq and pLαn�1pxq in (3.2.31), we only need to
look for the coefficients of px� cqj�k�1 there for finding Kpk,jq

n�1 pc, cq.
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Now, we continue by recalling that when p � 1 in (1.6.27), we haveA0pxq � 1 and
B0pxq � 0. Thus, we obtain the behavior of pLαnpxq for n large enough, when x P R�

pLαnpxq � p�1qnΓpn� 1qπ�1{2ex{2x�α{2�1{4nα{2�1{4

� cost2 pnxq1{2 � απ{2� π{4u � p1�Opn�1{2qq.
Then, we can rewrite the above expression as

pLαnpxq � p�1qnΓpn� 1qnα2� 1
4σαpxq cosϕαnpxqp1�Opn�1{2qq, (3.2.32)

where
ϕαnpxq � 2pnxq1{2 � απ

2
� π

4
,

and
σαpxq � π�1{2ex{2x�α{2�1{4, (3.2.33)

is a function independent of n.

Now our task is to find the asymptotic behavior of the diagonal Laguerre kernels.
In order to do this we have to estimate expressions of the following kind:

cosϕαn�n1
pcq cosϕα�in�n2

pcq � cosϕα�in�n3
pcq cosϕαnpcq.

Under some conditions on the parameters i, n1, n2, and n3 we can prove that the
above expression tends to zero when n tends to infinity and, moreover, we can compute
its speed of convergence. The result reads as follows.

Lemma 3.2.2. Let m � pi, n1, n2, n3q P N4 be a multi-index such that n3 � n1 �n2.
For α ¡ �1 and c P R� let us consider the function

Fα,cm pnq :� cosϕαn�n1
pcq cosϕα�in�n2

pcq � cosϕα�in�n3
pcq cosϕαnpcq. (3.2.34)

Then, the following asymptotic behavior holds.

Fα,cm pnq �

$'''&'''%
�1
4 pn2 � n1 � n3qpn2 � n1 � n3qc n�1 if i � 0 mod 4,
�1
2 pn2 � n1 � n3q?c n�1{2 if i � 1 mod 4,

1
4 pn2 � n1 � n3qpn2 � n1 � n3qc n�1 if i � 2 mod 4,
1
2 pn2 � n1 � n3q?c n�1{2 if i � 3 mod 4.

Proof. From

cospaq cospbq � cospa� bq � cospa� bq
2

,
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and

cospaq � cospbq � �2 sin

�
a� b

2



sin

�
a� b

2



,

we obtain

Fα,cm pnq �
1

2
cos

�
2
a
cpn� n1q � 2

a
cpn� n2q � απ � pi� 1qπ

2



� 1

2
cos

�
2
a
cpn� n1q � 2

a
cpn� n2q � iπ

2



� 1

2
cos

�
2
a
cpn� n3q � 2

?
cn� απ � pi� 1qπ

2



� 1

2
cos

�
2
a
cpn� n3q � 2

?
cn� iπ

2



� fα,cm pnq � gcmpnq,

where

fα,cm pnq � � sin

�?
cn�a

cpn� n1q �
a
cpn� n2q �

a
cpn� n3q � απ � pi� 1qπ

2



� sin

�a
cpn� n2q �

a
cpn� n1q �

a
cpn� n3q � ?

cn
	
,

and

gcmpnq � � sin
�a

cpn� n1q �
a
cpn� n2q �

a
cpn� n3q � ?

cn
	

� sin

�a
cpn� n1q �

a
cpn� n3q � ?

cn�a
cpn� n2q � iπ

2



.

Our first technical step will be to show that

lim
nÑ8n

3{2 sin
�a

cpn� n2q �
a
cpn� n1q �

a
cpn� n3q � ?

cn
	
� n1n2

?
c

4
� 0.

(3.2.35)

Notice that the function

hmpnq �
�?
n�?

n� n2

�� �?
n� n1 �?

n� n3

�
can be written as

hmpnq � kpnq � kpn� n1q, with kpnq � ?
n�?

n� n2.

Next, using the mean value theorem, we obtain

hmpnq � n1k
1pξnq � n1

2

�
1?
ξn

� 1?
ξn � n2



, where n� n1 ¤ ξn ¤ n.
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Denoting lpnq � 1?
n
, we can apply again the mean value theorem in order to obtain

hmpnq � n1

2
plpξnq � lpξn � n2qq � n1

2
n2l

1pδnq � �n1n2

2
δ�3{2
n ,

where n� n1 � n2 ¤ ξn � n2 ¤ δn ¤ ξn ¤ n.

Taking into account that limnÑ8 δn
n � 1, we get (3.2.35). Since the first factor in

fα,cm pnq is bounded, we obtain

lim
nÑ8n

1{2fα,cm pnq � 0, (3.2.36)

lim
nÑ8nf

α,c
m pnq � 0. (3.2.37)

Our second technical step will be to show that the speed of convergence of the first
factor in gcmpnq is n�1{2:

lim
nÑ8

?
n sin

�a
cpn� n1q �

a
cpn� n3q � ?

cn�a
cpn� n2q

	
�

lim
nÑ8

?
c
?
n
�?
n� n1 �?

n� n3 �?
n�?

n� n2

� �
lim
nÑ8

?
c

�?
npn� n1 � pn� n3qq?
n� n1 �?

n� n3
�
?
npn� pn� n2qq?
n� n2 �?

n



�

lim
nÑ8

?
c

�
pn3 � n1qa

1� n1

n �a
1� n3

n

� n2a
1� n2

n � 1

�
�

� 1

2

?
c pn3 � n1 � n2q � 0.

Then, in order to deduce the speed of convergence of gcmpnq we will analyze the
following four cases:

(i) If i � 0 mod 4, using that sinpx� 2πq � sinpxq, then

lim
nÑ8ng

c
mpnq � �1

4
cpn2 � n1 � n3qpn2 � n1 � n3q � 0.

(ii) If i � 1 mod 4, using that sinpx� π
2 q � cospxq, then

lim
nÑ8n

1{2gcmpnq � �1

2

?
cpn2 � n1 � n3q � 0.

(iii) If i � 2 mod 4, using that sinpx� πq � � sinpxq, then

lim
nÑ8ng

c
mpnq � 1

4
cpn2 � n1 � n3qpn2 � n1 � n3q � 0.
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(iv) If i � 3 mod 4, using that sinpx� 3π
2 q � � cospxq, then

lim
nÑ8n

1{2gcmpnq � 1

2

?
cpn2 � n1 � n3q � 0.

The above analysis together (3.2.36) yields the statement of Lemma.

Theorem 3.2.1. For c P R�, the partial derivatives of the diagonal Laguerre kernels
satisfy the following asymptotics.

K
pk,jq
n�1 pc, cq �

$'&'%
C0 n

j�k�1
2 if j � k � 0 mod 2,

C1 n
j�k
2 if j � k � 1 mod 2,

where 0 ¤ j, k ¤ n� 1 and

C0 � p�1q j�k2 j!k!

pk � j � 1q!σ
αpcqσα�j�k�1pcq?c

j̧

l�0

�
j � k � 1

l



p�1ql,

C1 � p�1q j�k�1
2

j!k!

pk � j � 1q!σ
αpcqσα�j�k�1pcq c

j̧

l�0

�
j � k � 1

l



pj � k � 1� 2lqp�1ql�1.

Proof. Without loss of generality, we can suppose that j ¤ k. From (1.6.22) and
(3.2.30), we obtain

K
pk,jq
n�1 pc, cq �

j!k!nj�k�1

pj � k � 1q! ||pLαn�1||2α
�

j̧

l�0

�
j � k � 1

l


�pLα�ln�1�lpcqpLα�j�k�1�l
n�j�k�1�lpcq � pLα�ln�lpcqpLα�j�k�1�l

n�j�k�2�lpcq
	
.

(3.2.38)

Now, using (1.6.21) and (3.2.32), we get

K
pk,jq
n�1 pc, cq �

j̧

l�0

�
j � k � 1

l



p�1qj�k j!k!

pj � k � 1q!
Γpn� 1q
Γpn� αqσ

αpcqσα�j�k�1pcqnα� j�k
2

tcosϕα�ln�1�lpcq cosϕα�j�k�1�l
n�j�k�1�lpcq � cosϕα�ln�lpcq cosϕα�j�k�1�l

n�j�k�2�lpcqu.
From Lemma 3.2.2, we can express the above formula as follows.

K
pk,jq
n�1 pc, cq �

j̧

l�0

�
j � k � 1

l



p�1qj�k j!k!

pj � k � 1q!σ
αpcqσα�j�k�1pcqn j�k2 �1Fα�l,cm pn�lq,
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where m � pj � k � 1� 2l; 1, j � k � 1� 2l, j � k � 2� 2lq.

Then, for all l � 0, . . . , j, we get

Fα�l,cm pn� lq �

$'''&'''%
pj � k � 1� 2lqc n�1 if j � k � 1� 2l � 0 mod 4,?
c n�1{2 if j � k � 1� 2l � 1 mod 4,

�pj � k � 1� 2lqc n�1 if j � k � 1� 2l � 2 mod 4,

�?c n�1{2 if j � k � 1� 2l � 3 mod 4,

or, equivalently,

Fα�l,cm pn� lq �

$'''&'''%
p�1qlpj � k � 1� 2lqc n�1 if j � k � 1 � 0 mod 4,

p�1ql?c n�1{2 if j � k � 1 � 1 mod 4,

p�1ql�1pj � k � 1� 2lqc n�1 if j � k � 1 � 2 mod 4,

p�1ql�1
?
c n�1{2 if j � k � 1 � 3 mod 4.

Since the above relation can be reduced as follows,

Fα�l,cm pn� lq �
#
p�1ql� j�k

2
?
c n�1{2 if j � k � 0 mod 2,

p�1ql� j�k�1
2 pj � k � 1� 2lqc n�1 if j � k � 1 mod 2,

we get the statement of Theorem.

Remark 3.2.1. Notice that Theorem 3.2.1 generalizes the asymptotic behavior of the
diagonal Laguerre kernels given in [38], where only the case 0 ¤ j, k ¤ 1 has been
analyzed. The interested reader can find the analogous of Theorem 3.2.1 when c � 0,
0 ¤ j, k ¤ 1, and c � 0, 0 ¤ j, k ¤ n � 1, in [18, 83], respectively. Also, it is
worthwhile to point out that, with a different approach, the authors of [42] obtained a
lower bound for the Christoffel functions in the case c ¥ 0.





4
Unbounded support: asymptotics for
Laguerre-Sobolev type polynomials

As it was already mentioned, recent works have focused the attention on the study
of asymptotic properties of sequences of orthogonal polynomials with respect to spe-
cific cases of the inner product (1.0.2) with ‘mass points outside’ or ‘mass points inside’
of suppµ, being suppµ a bounded interval of the real line. However, to the best of our
knowledge, asymptotic properties of the sequences of orthogonal polynomials asso-
ciated with (1.0.2) in the case of nontrivial probability measures with an unbounded
support on the real line and mass points inside the support of the measure are not avail-
able in the literature.

In this Chapter, we carry out a wide study of asymptotic properties of a repre-
sentative family of Sobolev polynomials orthogonal with respect to an inner product
with unbounded support, the Laguerre-Sobolev type polynomials. Taking into account
the results of 3.2.1 concerning the asymptotic behavior of the diagonal Laguerre Ker-
nels, in Section 4.1 we prove the outer relative asymptotic of the Laguerre-Sobolev
type orthogonal polynomials modified into the positive real semiaxis, i.e. a family of
Laguerre-Sobolev polynnomials orthogonal with respect to an inner product with mass
points located inside the support of the measure. In Section 4.2 we deduce the limit
behavior of the coefficients of the corresponding five-term recurrence relation. Finally,
in Section 4.3 we study the inner relative asymptotics of Laguerre-Sobolev type ortho-
gonal polynomials when the mass points are also inside the support of the measure.
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4.1 Outer relative asymptotics

In this section we deal with sequences of polynomials orthogonal with respect to a
particular case of (1.0.2). Indeed, µ is the Gamma measure corresponding to classical
Laguerre orthogonal polynomials and

xf, gyS �
» 8

0

fpxqgpxqxαe�xdx� FpcqAGpcqt, α ¡ �1, (4.1.1)

f, g P P. The matrix A and the vectors Fpcq, Gpcq are

A �
�
M 0
0 N



, Fpcq � pfpcq, f 1pcqq and Gpcq � pgpcq, g1pcqq, respectively,

M,N P R�, and the mass point c is located inside the oscillatory region for the classi-
cal Laguerre polynomials, i.e., c ¡ 0.

The main result of this section will be the outer relative asymptotics for the Laguerre-
Sobolev type polynomials pSM,N

n pxq, orthogonal with respect to (4.1.1), when c P R�.
The proof will naturally falls in several parts, which will be established through an
appropriate sequence of Lemmas.

First, we will present a well known expansion of the monic polynomials pSM,N
n pxq

in terms of classical Laguerre polynomials pLαnpxq. The most usual way to represent the
Laguerre-Sobolev type orthogonal polynomials pSM,N

n pxq is using the Laguerre kernel
and its derivatives as follows (see [64] and Theorem 5.1 in [37]).

px� cq2 pSM,N
n pxq � Apn;xqpLαnpxq �Bpn;xqpLαn�1pxq, (4.1.2)

where

Apn;xq � px� cq2 � px� cqA1pn; cq �A0pn; cq,
Bpn;xq � px� cqB1pn; cq �B0pn; cq, (4.1.3)

with

A1pn; cq � �M pSM,Nn pcqpLαn�1pcq
||pLαn�1||2α

� Nr pSM,Nn s1pcqrpLαn�1s1pcq
||pLαn�1||2α

,

A0pn; cq � �Nr pSM,Nn s1pcqpLαn�1pcq
||pLαn�1||2α

,

B1pn; cq � M pSM,Nn pcqpLαnpcq
||pLαn�1||2α

� Nr pSM,Nn s1pcqrpLαns1pcq
||pLαn�1||2α

,

B0pn; cq � Nr pSM,Nn s1pcqpLαnpcq
||pLαn�1||2α

.

(4.1.4)
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Notice that

pSM,N
n pcq �

∣∣∣∣∣ pLαnpcq NK
p0,1q
n�1 pc, cq

rpLαns1pcq 1�NK
p1,1q
n�1 pc, cq

∣∣∣∣∣∣∣∣∣∣1�MKn�1pc, cq NK
p0,1q
n�1 pc, cq

MK
p1,0q
n�1 pc, cq 1�NK

p1,1q
n�1 pc, cq

∣∣∣∣∣
, (4.1.5)

rpSM,N
n s1pcq �

∣∣∣∣∣1�MKn�1pc, cq pLαnpcq
MK

p1,0q
n�1 pc, cq rpLαns1pcq

∣∣∣∣∣∣∣∣∣∣1�MKn�1pc, cq NK
p0,1q
n�1 pc, cq

MK
p1,0q
n�1 pc, cq 1�NK

p1,1q
n�1 pc, cq

∣∣∣∣∣
. (4.1.6)

We will analyze the polynomial coefficients in the above expansion in order to
obtain the desired results. If we replace (4.1.5) and (4.1.6) in (4.1.4), we obtain

A1pn; cq � �M pLαn�1pcqpLαnpcq�MN pLαn�1pcqpLαnpcqKp1,1q
n�1 pc,cq�MNnpLαn�1pcqpLα�1

n�1pcqKp0,1q
n�1 pc,cq

||pLαn�1||2α
�
1�MKn�1pc,cq�NKp1,1q

n�1 pc,cq�MNKn�1pc,cqKp1,1q
n�1 pc,cq�MNK

p0,1q
n�1 pc,cqKp1,0q

n�1 pc,cq
	

�
�
�Nn2 pLα�1

n�2pcqpLα�1
n�1pcq�MNn2 pLα�1

n�2pcqpLα�1
n�1pcqKn�1pc,cq�MNnpLα�1

n�2pcqpLαnpcqKp1,0q
n�1 pc,cq

	
||pLαn�1||2α

�
1�MKn�1pc,cq�NKp1,1q

n�1 pc,cq�MNKn�1pc,cqKp1,1q
n�1 pc,cq�MNK

p0,1q
n�1 pc,cqKp1,0q

n�1 pc,cq
	 ,

A0pn; cq � �NnpLαn�1pcqpLα�1
n�1pcq�MNnpLαn�1pcqpLα�1

n�1pcqKn�1pc,cq�MN pLαn�1pcqpLαnpcqKp1,0q
n�1 pc,cq

||pLαn�1||2α
�
1�MKn�1pc,cq�NKp1,1q

n�1 pc,cq�MNKn�1pc,cqKp1,1q
n�1 pc,cq�MNK

p0,1q
n�1 pc,cqKp1,0q

n�1 pc,cq
	 ,

B1pn; cq � M pLαnpcqpLαnpcq�MN pLαnpcqpLαnpcqKp1,1q
n�1 pc,cq�MNnpLαnpcqpLα�1

n�1pcqKp0,1q
n�1 pc,cq

||pLαn�1||2α
�
1�MKn�1pc,cq�NKp1,1q

n�1 pc,cq�MNKn�1pc,cqKp1,1q
n�1 pc,cq�MNK

p0,1q
n�1 pc,cqKp1,0q

n�1 pc,cq
	

� Nn2 pLα�1
n�1pcqpLα�1

n�1pcq�MNn2 pLα�1
n�1pcqpLα�1

n�1pcqKn�1pc,cq�MNnpLα�1
n�1pcqpLαnpcqKp1,0q

n�1 pc,cq
||pLαn�1||2α

�
1�MKn�1pc,cq�NKp1,1q

n�1 pc,cq�MNKn�1pc,cqKp1,1q
n�1 pc,cq�MNK

p0,1q
n�1 pc,cqKp1,0q

n�1 pc,cq
	 ,

B0pn; cq � NnpLαnpcqpLα�1
n�1pcq�MNnpLαnpcqpLα�1

n�1pcqKn�1pc,cq�MN pLαnpcqpLαnpcqKp1,0q
n�1 pc,cq

||pLαn�1||2α
�
1�MKn�1pc,cq�NKp1,1q

n�1 pc,cq�MNKn�1pc,cqKp1,1q
n�1 pc,cq�MNK

p0,1q
n�1 pc,cqKp1,0q

n�1 pc,cq
	 .

Using (3.2.32) and the estimates in Lemma 3.2.1, we can compute the asymptotic
behavior of the previous expressions as follows.
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A1pn; cq � 1

Ncσα�1pcqσα�3pcqn
�3{2 cosϕαn�1pcq cosϕαnpcq�cosϕαn�1pcq cosϕαnpcq

�2
?
cn�1{2 cosϕαn�1pcq cosϕα�1

n�1pcq�
1

Mσαpcqσαpcqn
�1{2 cosϕα�1

n�2pcq cosϕα�1
n�1pcq

� cosϕα�1
n�2pcq cosϕα�1

n�1pcq � 2n�1{2 cosϕα�1
n�2pcq cosϕαnpcq,

A0pn; cq � �1

Mcσαpcqσα�3pcqn
�1 cosϕαn�1pcq cosϕα�1

n�1pcq�c1{2n�1{2 cosϕαn�1pcq cosϕα�1
n�1pcq

� 2n�1 cosϕαn�1pcq cosϕαnpcq,

B1pn; cq � 1

Ncσα�1pcqσα�3pcqn
�1{2 cosϕαnpcq cosϕαnpcq � n cosϕαnpcq cosϕαnpcq

� 2
?
cn1{2 cosϕαnpcq cosϕα�1

n�1pcq �
1

Mσαpcqσαpcqn
1{2 cosϕα�1

n�1pcq cosϕα�1
n�1pcq

� n cosϕα�1
n�1pcq cosϕα�1

n�1pcq � 2n1{2 cosϕα�1
n�1pcq cosϕαnpcq,

B0pn; cq � �1

Mcσαpcqσα�3pcq cosϕαnpcq cosϕα�1
n�1pcq�c1{2n1{2 cosϕαnpcq cosϕα�1

n�1pcq
� 2 cosϕαnpcq cosϕαnpcq. (4.1.7)

Due to the oscillatory behaviour of the cosine functions appearing in the preceding
formulas, there are no real numbers β0 and β1 such that

A0pn; cq � C0n
β0 ,

B0pn; cq � C1n
β1 ,

for some C0 and C1.

However, we can describe the asymptotic behaviour of our coefficients functions in
the following way:

Proposition 4.1.1. Let A0pn; cq, A1pn; cq, B0pn; cq and B1pn; cq the functions defined
by (4.1.4). Then, we have

A1pn; cq � 1, lim
nÑ8n

βA0pn; cq �
#

0 if β   1
2 ,

E if β ¥ 1
2 ,

B1pn; cq � n, lim
nÑ8n

βB0pn; cq �
#

0 if β   � 1
2 ,

E if β ¥ � 1
2 .
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Proof. The asymptotic behaviour of A0pn; cq and B0pn; cq is a straightforward conse-
quence of the estimates in (4.1.7).

In order to obtain the asymptotics for A1pn; cq and B1pn; cq, we joint up the terms

cosϕαn�1pcq cosϕαnpcq � cosϕα�1
n�2pxq cosϕα�1

n�1pcq �
cos

�
2
a
cpn� 1q � ?

cn�a
cpn� 2q � απ � π

	
cos

�?
cn�a

cpn� 2q � π

2

	
� 1

2
cos

�
2
a
cpn� 1q � 2

?
cn
	
� 1

2
cos

�
2
a
cpn� 2q � 2

a
cpn� 1q

	
,

and

cosϕαnpcq cosϕαnpcq � cosϕα�1
n�1pcq cosϕα�1

n�1pcq �
cos

�
2
?
cn� 2

a
cpn� 1q � απ � π

	
cos

�
2
?
cn� 2

a
cpn� 1q � π

2

	
� 1.

Taking into account that the previous expressions tend to 1 when n tends to infinity,
we obtain the desired result.

We can now state our main result.

Theorem 4.1.1. The outer relative asymptotics for Laguerre Sobolev-type polynomialspSM,N
n pxq, orthogonal with respect to the discrete Sobolev inner product (4.1.1), is

lim
nÑ8

pSM,N
n pxqpLαnpxq � 1,

uniformly on compact subsets of CzR�.

Proof. Replacing (4.1.3) in (4.1.2)

pSM,N
n pxqpLαnpxq �

"
1� A1pn; cq

px� cq � A0pn; cq
px� cq2

*
�
"
B1pn; cq
px� cq � B0pn; cq

px� cq2
* pLαn�1pxqpLαnpxq ,

(4.1.8)
From the Perron’s formula (1.6.26) (for more details we refer the reader to [15]) we get

L
pαq
n�1pxq
L
pαq
n pxq

� 1�
?�x?
n

�Opn�1q.

For monic polynomials the above relation becomes

pLαn�1pxqpLαnpxq � �1

n

�
1�

?�x?
n

�Opn�1q


. (4.1.9)
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By using (4.1.9) we can rewrite (4.1.8) as

pSM,N
n pxqpLαnpxq �

"
1� A1pn; cq

px� cq � A0pn; cq
px� cq2

*
�
#
B1pn;cq

n

px� cq �
B0pn;cq

n

px� cq2
+
.

Then, in order to conclude our proof, we only need to check that

lim
nÑ8

�
A1pn; cq � B1pn; cq

n



� 0, (4.1.10)

lim
nÑ8

�
A0pn; cq � B0pn; cq

n



� 0. (4.1.11)

By applying Proposition 4.1.1, we obtain (4.1.10). From (4.1.7), we get

A0pn; cq � B0pn; cq
n

� �1

Mcσαpcqσα�3pcqn
�1

�
cosϕαn�1pcq cosϕα�1

n�1pcq � cosϕαnpcq cosϕα�1
n�1pcq

�
� c1{2n�1{2 �cosϕαn�1pcq cosϕα�1

n�1pcq � cosϕαnpcq cosϕα�1
n�1pcq

�
2n�1

�
cosϕαn�1pcq cosϕαnpcq � cosϕαnpcq cosϕαnpcq

�
.

Since this expression tends to zero when n tends to infinity, then (4.1.11) hold.

4.2 The five-term recurrence relation

This section is focused on the five-term recurrence relation that the sequence of
discrete Laguerre–Sobolev orthogonal polynomials tpSM,N

n pxqun¥0 satisfies. Next,
we will estimate the coefficients of such a recurrence relation for n large enough and
c P R�. To this end, we will use the remarkable fact, which is a straightforward conse-
quence of (4.1.1), that the multiplication operator by px� cq2 is a symmetric operator
with respect to such a discrete Sobolev inner product. Indeed, for any fpxq, gpxq P P

xpx� cq2fpxq, gpxqyS � xfpxq, px� cq2gpxqyS . (4.2.12)

Notice that
xpx� cq2fpxq, gpxqyS � xfpxq, gpxqyr2s. (4.2.13)

An equivalent formulation of (4.2.13) is

xpx� cq2fpxq, gpxqyS � xpx� cq2fpxq, gpxqyα. (4.2.14)

We will need some preliminary results that will be stated as Lemmas 4.2.1, and
4.2.2.
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Lemma 4.2.1. For every n ¥ 1 and initial conditions pLα�1pxq � 0, pLα0 pxq � 1,pLα1 pxq � x� pα� 1q, the connection formula (4.1.2) reads as

px� cq2 pSM,N
n pxq �

pLαn�2pxq � b̃npLαn�1pxq � c̃npLαnpxq � d̃npLαn�1pxq � ẽnpLαn�2pxq,
where

b̃n � βn�1 � βn � 2c�A1pn; cq � 4n,

c̃n � γn�1 � γn � pβn � cq2 �A1pn; cq rβn � cs �A0pn; cq �B1pn; cq � 6n2,

d̃n � γnpβn � βn�1 � 2cq � γnA1pn; cq � pβn�1 � cqB1pn; cq �B0pn; cq � 4n3,

ẽn � γnγn�1 � γn�1B1pn; cq � n4.

Proof. We begin with the expression

px� cq2pLαnpxq �
pLαn�2pxq � bnpLαn�1pxq � cnpLαnpxq � dnpLαn�1pxq � enpLαn�2pxq, (4.2.15)

where

bn � βn�1 � βn � 2c � 4n, cn � γn�1 � γn � pβn � cq2 � 6n2,
dn � γnpβn � βn�1 � 2cq � 4n3, en � γnγn�1 � n4,

according to (1.6.20) and the definition of βn and γn in (1.6.20).

From the expression ofApn;xq in (4.1.3), the next step is to expand the polynomial
rA1pn;xqpx� cq �A0pn;xqs pLαnpxq in terms of tpLαnu8n�0. Indeed, from (1.6.20)

rA1pn;xqpx� cq �A0pn;xqs pLαnpxq �
A1pn;xqpLαn�1pxq � rpβn � cqA1pn;xq �A0pn;xqs pLαnpxq �A1pn;xqγnpLαn�1pxq.

Adding these coefficients to those of (4.2.15), we obtain

Apn;xqpLαnpxq � pLαn�2pxq � b̄npLαn�1pxq � c̄npLαnpxq � d̄npLαn�1pxq � ēnpLαn�2pxq,
with

b̄n � bn �A1pn; cq � 4n, c̄n � cn �A1pn; cq pβn � cq �A0pn; cq � 6n2,
d̄n � dn � γnA1pn; cq � 4n3, ēn � en � n4,

where we have used Proposition 4.1.1. In a similar way, for Bpn;xq in (4.1.3) we get

Bpn;xqpLαn�1pxq � c̆npLαnpxq � d̆npLαn�1pxq � ĕnpLαn�2pxq,
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where
c̆n � B1pn; cq � n,

d̆n � pβn�1 � cqB1pn; cq �B0pn; cq � 2n2,
ĕn � γn�1B1pn; cq � n3.

As a conclusion,

px� cq2 pSM,N
n pxq � Apn;xqpLαnpxq �Bpn;xqpLαn�1pxq

� pLαn�2pxq � b̄npLαn�1pxq � pc̄n � c̆nqpLαnpxq
�pd̄n � d̆nqpLαn�1pxq � pēn � ĕnqpLαn�2pxq.

This completes the proof.

Lemma 4.2.2. For every α ¡ �1, n ¥ 1, and c P R� the norm of the Laguerre-
Sobolev type polynomials pSM,N

n , orthogonal with respect to (4.1.1) is

||pSM,N
n ||2S � ||pLαn||2α �B1pn; cq||pLαn�1||2α � Γpn� 1qΓpn� α� 1q.

where B1pn; cq is the polynomial coefficient defined in (4.1.4).

Proof. First, let notice that

||pSM,N
n ||2S � xpSM,N

n pxq, px� cq2pΠn�2pxqyS ,
for every monic polynomial pΠn�2 of degree n� 2 . From (4.2.14)

xpSM,N
n pxq, px� cq2pΠn�2pxqyS � xpx� cq2 pSM,N

n pxq, pΠn�2pxqyS
� xpx� cq2 pSM,N

n pxq, pΠn�2pxqyα.
Next we use the connection formula (4.1.2). Taking into account that Apn;xq is a
monic quadratic polynomial andBpn;xq is a linear polynomial with leading coefficient
B1pn; cq,

||pSM,N
n ||2S � xpx� cq2 pSM,N

n pxq, pΠn�2pxqyα
� xApn;xqpLαnpxq, pΠn�2pxqyα � xBpn;xqpLαn�1pxq, pΠn�2pxqyα
� xpLαnpxq, xnyα �B1pn; cqxpLαn�1pxq, xn�1yα.

The first term in the above expression is the norm of the monic Laguerre polynomial
of degree n and the second one is the norm of the Laguerre polynomial of degree n�1
times B1pn; cq, which is given in (4.1.4). This means

||pSM,N
n ||2S � ||pLαn||2α �B1pn; cq||pLαn�1||2α.

Using the estimates (1.6.21) and Proposition 4.1.1, we obtain

||pSM,N
n ||2S � Γpn� 1qΓpn� α� 1q,

which completes the proof.
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We are ready to find the five-term recurrence relation satisfied by pSM,N
n pxq, and

the asymptotic behavior of the corresponding coefficients. Next, we will focus our
attention on its proof.

Let consider the Fourier expansion of px�cq2 pSM,N
n pxq in terms of tpSM,N

n pxqu8n�0

px� cq2 pSM,N
n pxq �

n�2̧

k�0

λn,k pSM,N
k pxq,

where

λn,k � xpx� cq2 pSM,N
n pxq, pSM,N

k pxqyS
||pSM,N

k ||2S
, k � 0, . . . , n� 2. (4.2.16)

Thus, λn,k � 0 for k � 0, . . . , n � 3. We are dealing with monic polynomials, so the
leading coefficient λn,n�2 � 1.

To obtain λn,n�1, we use the connection formula (4.1.2), with coefficients Apn;xq
and Bpn;xq as in (4.1.3). Thus,

λn,n�1 � 1

||pSM,N
n�1 ||2S

xApn;xqpLαnpxq, pSM,N
n�1 pxqyS �

1

||pSM,N
n�1 ||2S

xBpn;xqpLαn�1pxq, pSM,N
n�1 pxqyS

� 1

||pSM,N
n�1 ||2S

xpx� cq2pLαnpxq, pSM,N
n�1 pxqyS �A1pn; cq.

Let us study the discrete Sobolev inner product xpx � cq2pLαnpxq, pSM,N
n�1 pxqyS above.

Applying (4.2.12), (4.2.14), (1.6.21) and Lemma 4.2.1, we obtain

xpx� cq2pLαnpxq, pSM,N
n�1 pxqyS � xpLαnpxq, px� cq2 pSM,N

n�1 pxqyα
� d̃n�1 ||pLαn||2α.

From (3.2.25), Lemma 4.2.2 and Proposition 4.1.1

λn,n�1 � d̃n�1 ||pLαn||2α �A1pn; cq
||pSM,N

n�1 ||2S
� 4n.

In order to compute λn,n, from (4.1.2) and (4.1.3) we get

λn,n � xpx� cq2pLαnpxq, pSM,N
n pxqyS

||pSM,N
n ||2S

�A1pn; cqxpx� cqpLαnpxq, pSM,N
n pxqyS

||pSM,N
n ||2S

�A0pn; cq �B1pn; cq.
But, according to (4.2.12), (4.2.14) and Lemma 4.2.1, the first term is

xpx� cq2pLαnpxq, pSM,N
n pxqyS

||pSM,N
n ||2S

� c̃n
||pLαn||2α
||pSM,N

n ||2S
.
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After some algebraic manipulations, from (1.6.20) we get

px�cqpLαnpxq � px�cq2pLαn�1pxq�pβn�1�cqpx�cqpLαn�1pxq�γn�1px�cqpLαn�2pxq,
Using this expression, we obtain

xpx� cqpLαnpxq, pSM,N
n pxqyS

||pSM,N
n ||2S

� xpLαn�1pxq, px� cq2 pSM,N
n pxqyα

||pSM,N
n ||2S

� pβn�1 � cq

� d̃n
||pLαn�1||2α
||pSM,N

n ||2S
� pβn�1 � cq.

As a consequence,

λn,n � c̃n ||pLαn||2α � d̃n ||pLαn�1||2α � pβn�1 � cq �A0pn; cq �B1pn; cq
||pSM,N

n ||2S
� 6n2.

A similar analysis yields

λn,n�1 � d̃n ||pLαn�1||2α �A1pn� 1; cq||pSM,N
n ||2S

||pSM,N
n�1 ||2S

� 4n3,

λn,n�2 � ||pSM,N
n ||2S

||pSM,N
n�2 ||2S

� n4.

We can summarize the results of this Section in the following theorem.

Theorem 4.2.1. [Five-term recurrence relation] For every n ¥ 1, α ¡ �1, and c P
R�, the monic Laguerre-Sobolev type polynomials tpSM,N

n pxqu8n�0, orthogonal with
respect to (4.1.1) satisfy the following five-term recurrence relation

px� cq2 pSM,N
n pxq �pSM,N

n�2 pxq � λn,n�1
pSM,N
n�1 pxq � λn,n pSM,N

n pxq � λn,n�1
pSM,N
n�1 pxq � λn,n�2

pSM,N
n�2 pxq,

with

λn,n�1 � d̃n�1 ||pLαn||2α �A1pn; cq
||pSM,N

n�1 ||2S
� 4n �

�
4

1



n,

λn,n � c̃n ||pLαn||2α � d̃n ||pLαn�1||2α � pβn�1 � cq �A0pn; cq �B1pn; cq
||pSM,N

n ||2S
� 6n2 �

�
4

2



n2,

λn,n�1 � d̃n ||pLαn�1||2α �A1pn� 1; cq||pSM,N
n ||2S

||pSM,N
n�1 ||2S

� 4n3 �
�

4

3



n3,

λn,n�2 � ||pSM,N
n ||2S

||pSM,N
n�2 ||2S

� n4 �
�

4

4



n4.
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4.3 Inner L2-asymptotics

As an application of Theorem 3.2.1, we will study the inner asymptotics for a cer-
tain family of Laguerre-Sobolev type orthogonal polynomials. More precisely, we
compare the behavior of the Sobolev and standard Laguerre polynomials on p0,8q for
n large enough. The main result in this section guarantees the norm convergence of the
Laguerre-Sobolev polynomials to the Laguerre ones in the Laguerre L2-norm. Before
to deal with the general case, we are going to analyze a more simple framework. For
example, let us consider the Sobolev type inner product

xf, gyS � xf, gyα �Mf 1pcqg1pcq, (4.3.17)

where α ¡ �1, c ¡ 0 andM ¡ 0. Notice that this is just a particular case of the family
of inner products defined in [64]. Let tpLM,α

n pxqu8n�0 be the monic Laguerre-Sobolev
polynomials orthogonal with respect to (4.3.17). We also consider the normalization

rLM,α
n pxq �

pLM,α
n pxq
||pLαn||α ,

i.e., the normalized Laguerre-Sobolev type orthogonal polynomials with the same lead-
ing coefficient as the classical orthonormal Laguerre polynomial of degree n. Then,
(see [64, equation (2.8)])

rLM,α
n pxq � Lαnpxq � M pLαnq1 pcq

1�MK
p1,1q
n�1 pc, cq

K
p0,1q
n�1 px, cq.

Let consider the standard L2-Laguerre norm of the previous expression, i.e.

||rLM,α
n � Lαn||2α �

M2
�pLαnq1 pcq�2�

1�MK
p1,1q
n�1 pc, cq

	2K
p1,1q
n�1 pc, cq ¤

�pLαnq1 pcq�2
K
p1,1q
n�1 pc, cq

.

Now, from Proposition 3.2.1 we obtain

K
p1,1q
n�1 pc, cq �n C n

3
2 ,

and, on the other hand,

pLαnq1 pcq �
npLα�1

n�1pcq
||pLαn||α � n!p�1qn�1

pΓpn� 1qΓpn� α� 1qq1{2L
pα�1q
n�1 pcq,
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from which it follows that�pLαnq1 pcq�2 � n!

Γpn� α� 1q |L
pα�1q
n�1 pcq|2 ¤ Cn1{2.

As a consequence,
||rLM,α

n � Lαn||2α ¤ Cn�1,

so, we have proved the norm convergence of the n-th Laguerre-Sobolev type orthogo-
nal polynomial to the n-th Laguerre one:

lim
nÑ8 ||rLM,α

n � Lαn||α � 0.

4.3.1 The multi-index case

Let us consider the Sobolev type inner product (4.1.1) and pLα,Mn pxq the correspond-
ing monic orthogonal polynomial of degree n. Also, we consider the normalization

rLα,Mn pxq �
pLα,Mn pxq
||pLαn||α ,

i.e., the Laguerre-Sobolev polynomials with the same leading coefficient as the or-
thonormal Laguerre ones.

From now on, we will denote by j1   � � �   jq the indexes such that Mj1�1 �
� � � �Mjq�1 � 0.

Theorem 4.3.1. With the above notation, the inner L2-asymptotics for the Laguerre-
Sobolev polynomials orthogonal with respect to (4.1.1) reads

||L̃α,Mn � Lαn||α ¤ Cn�1, (4.3.18)

where C is a positive constant independent of n. In particular,

lim
nÑ8 ||L̃

α,M
n � Lαn||α � 0. (4.3.19)

Proof. Following a standard technique we can expand the Laguerre-Sobolev type or-
thogonal polynomials in terms of the Laguerre classical ones to obtain

rLα,Mn pxq �Lαnpxq �
n�1̧

k�0

Ņ

j�0

Mj

�rLα,Mn 	pjq pcq pLαk qpjq pcqLαk pxq
�Lαnpxq �

Ņ

j�0

Mj

�rLα,Mn 	pjq pcqKpj,0q
n�1 pc, xq. (4.3.20)
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At this point, estimations for
�rLα,Mn 	pjq pcq when j � 0, . . . , N,

j � j1 � 1, . . . , jq � 1, are needed.

In order to do that, we can write (4.3.20) evaluated at x � c in a matrix form as
follows,

ALα,M � Lα,
where

A �

�
��������

1 �M0Kn�1pc, cq M1K
p1,0q
n�1 pc, cq M2K

p2,0q
n�1 pc, cq . . . MNK

pN,0q
n�1 pc, cq

M0K
p0,1q
n�1 pc, cq 1 �M1K

p1,1q
n�1 pc, cq M2K

p2,1q
n�1 pc, cq . . . MNK

pN,1q
n�1 pc, cq

M0K
p0,2q
n�1 pc, cq M1K

p1,2q
n�1 pc, cq 1 �M2K

p2,2q
n�1 pc, cq . . . MNK

pN,2q
n�1 pc, cq

...
...

...
. . .

...

M0K
p0,Nq
n�1 pc, cq M1K

p1,Nq
n�1 pc, cq M2K

p2,Nq
n�1 pc, cq . . . 1 �MNK

pN,Nq
n�1 pc, cq

�
�������
,

Lα �
�
Lαnpcq, pLαnq1 pcq, . . . , pLαnqpNq pcq

	T
,

and

Lα,M �
�rLα,Mn pcq,

�rLα,Mn 	1 pcq, . . . ,�rLα,Mn 	pNq pcq
T .
Here, vT denotes the transpose of the vector v. Then, applying Cramer’s rule we get

�rLα,Mn 	pm�1q pcq � detpAmq
detpAq , for m � 1, . . . , N � 1,

where Am is the matrix obtained by replacing the m-th column in the matrix A by the
column vector Lα.

Thus, by using Lemmas 4.3.2 and 4.3.3, for n large enough we obtain�����L̃α,Mn 	pm�1q pcq
���� ¤ Cn

�2m�1
4 , (4.3.21)

where C is a positive constant which does not depend on n.

Finally, in order to obtain (4.3.19) we take norm in (4.3.20). Thus

||rLα,Mn � Lαn||2α ¤||
Ņ

j�0

Mj

�rLα,Mn 	pjq pcqKpj,0q
n�1 pc, xq||2α

¤pN � 1q
Ņ

j�0

M2
j

��rLα,Mn 	pjq pcq�2

K
pj,jq
n�1 pc, cq.
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From Theorem 3.2.1 and (4.3.21) we get

||rLα,Mn � Lαn||2α ¤pN � 1q
Ņ

j�0

CjM
2
j n

�4pj�1q�2
4 n

2j�1
2

¤Cn�1.

Remark 4.3.1. Notice that in [34] estimates in the weightedL2-norm for the difference
between continuous Sobolev orthogonal polynomials associated with a vector of mea-
sures pψW,W q and standard orthogonal polynomials associated with W , where W is
an exponential weight W pxq � e�2Qpxq and ψ is a measurable and positive function
on a set of positive measure, such that the moments of the Sobolev product are finite,
have been obtained in terms of the Mhaskar-Rakhmanov-Saff number. The authors as-
sume that Q is an even and convex function on the real line such that Q2 is continuous
in p0,8q and Q1 ¡ 0 in p0,8q, as well as for some 0   α   β, α ¤ xQ2pxq

Q1pxq ¤ β,

x P p0,8q holds. The study of analogue estimates as above for general exponential
weights constitutes an interesting problem in which we are working.

Estimates for detpAq and detpAmq

First of all we will need the following well-known result, see for instance, [76, vol.
III, p. 311].

Lemma 4.3.1 (Cauchy’s double alternant). Let x1, . . . , xn, y1, . . . , yn be real num-
bers. Then,

det
� 1

xi � yj

�
1¤i,j¤n

�

¹
1¤i j¤n

pxi � xjqpyi � yjq¹
1¤i,j¤n

pxi � yjq
.

Let us denote

M :�
N�1¹
l�1

l�j1,...,jq

Ml�1, Q :�
N�1̧

l�1
l�j1,...,jq

l.

Lemma 4.3.2. With the notation introduced in Section 4.3, we have

detpAq �n C1n
2Q�pN�1q�q

2 , (4.3.22)
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where C1 is a positive constant independent of n. In particular, there exists a constant
C2 ¡ 0 such that

detpAq ¡ C2n
2Q�pN�1q�q

2

for n large enough.

Proof. We denote by aij , 1 ¤ i, j ¤ N � 1, the pi, jq entry of the matrix A. Notice
that these entries verify

aij �n

$'&'%
Mj�1K

pj�1,i�1q
n�1 pc, cq for j such that Mj�1 ¡ 0,

1 if i � j and Mj�1 � 0,

0 if i � j and Mj�1 � 0.

Then, from Theorem 3.2.1, we obtain

aij �n

$'''&'''%
Mj�1C0,j�1,i�1n

i�j�1
2 , if i� j � 0 mod 2 and Mj�1 ¡ 0,

Mj�1C1,j�1,i�1n
i�j�2

2 , if i� j � 1 mod 2 and Mj�1 ¡ 0,

1 if i � j and Mj�1 � 0,

0 if i � j and Mj�1 � 0.
(4.3.23)

Using the definition of determinant and (4.3.23), we get

detpAq �
¸

δPSN�1

sgnpδqa1,δp1q � � � aN�1,δpN�1q

�n
¸

δPSN�1

sgnpδqCδn
�p1pδq

2 n�p2pδq
N�1¹
l�1

l�j1,...,jq

n
l�δplq

2 ,
(4.3.24)

where SN�1 is the group of permutations of the set t1, . . . , N�1u, p1pδq (resp. p2pδq)
is the number of indexes l in t1, . . . , N � 1uztj1, . . . , jqu such that l � σplq is even
(resp. odd) and

Cδ �
N�1¹
l�1

l�j1,...,jq

Mδplq�1C0,δplq�1,l�1.

Let us define the set

∆ �
"
δ P SN�1 :

l � δplq is even for all l � 1, . . . , N � 1,
and δplq � l, for l � j1, . . . , jq

*
.
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Notice that p1pδq2 �p2pδq attains a minimum when p2pδq � 0. Then, the asymptotic
behavior of (4.3.24) will be given by the terms corresponding to permutations in ∆, if
they do not vanish. Thus, we have to check that

°
δP∆ sgnpδqCδ is not zero.

¸
δP∆

sgnpδqCδ �
¸
δP∆

sgnpδq
N�1¹
l�1

l�j1,...,jq

Mδplq�1C0,δplq�1,l�1

�
¸
δP∆

sgnpδq
N�1¹
l�1

l�j1,...,jq

Mδplq�1p�1q l�σplq2
�lσαpcqσα�l�σplq�1pcq?c 1

l � δplq � 1
.

(4.3.25)

Recalling that σα�l�δplq�1pcq � π�1{2ec{2c
�α�l�δplq�1

2 c�1{4, we get

N�1¹
l�1

l�j1,...,jq

σα�l�δplq�1pcq � π�
N�1�q

2 e
pN�1�qqc

2 c�
αpN�1�qq�2Q�pN�1�qq

2

� �
σα�1pcq�N�1�q

c�Q � pσαpcqqN�1�q
c
N�1�q

2 c�Q.

After some computations, (4.3.25) becomes

¸
δP∆

sgnpδqCδ �Mp�1q2Q pσαpcqq2pN�1�qq cN�1�q�Q
¸
δP∆

sgnpδq
N�1¹
l�1

l�j1,...,jq

1

l � δplq � 1
,

Now, let consider

t1, 2, . . . , N � 1uztj1, j2, . . . , jqu � tr1, r2, . . . , rK1u Y ts1, s2, . . . , sK2u

where ri is odd for i � 1, 2, . . . ,K1 and si is even for i � 1, 2, . . . ,K2. Notice that
K1 �K2 � N � 1� q. Then, we have
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¸
δPΣ

sgnpδq
N�1¹
l�1

l�j1,...,jq

1

l � δplq � 1
�

�
¸

δPSK1

¸
ξPSK2

sgnpδq sgnpξq
K1¹
i�1

1

ri � rδpiq � 1

K2¹
j�1

1

sj � sξpjq � 1

�
¸

δPSK1

sgnpδq
K1¹
i�1

1

ri � rδpiq � 1

¸
ξPSK2

sgnpξq
K2¹
j�1

1

sj � sξpjq � 1

�

¹
1¤i j¤K1

pri � rjq2¹
1¤i j¤K1

pri � rj � 1q

¹
1¤i j¤K2

psi � sjq2¹
1¤i j¤K2

psi � sj � 1q ,

where we have used Lemma 4.3.1 in the sense

det
� 1

ri � 1
2 � rj � 1

2

�
1¤i,j¤K1

�
¸

δPSK1

sgnpδq
K1¹
i�1

1

ri � rδpiq � 1
.

Finally, (4.3.25) becomes

¸
δP∆

sgnpδqCδ �M pσαpcqq2pN�1�qq cN�1�q�Q

¹
1¤i j¤K1

pri � rjq2

¹
1¤i j¤K1

pri � rj � 1q

¹
1¤i j¤K2

psi � sjq2

¹
1¤i j¤K2

psi � sj � 1q

which is, as desired, different from zero. Then, we can state that

detpAq �n Cn 2Q�pN�1q�q
2 , (4.3.26)

where C is a positive constant independent of n. This concludes the proof.

Lemma 4.3.3. For n large enough, there exists a constant C ¡ 0 such that

|detpAmq| ¤ Cn
2Q�m�N�q

2 � 3
4 .

Proof. Notice that for i � m, the entries of the matrix Am are the same as those of the
matrix A. Their asymptotic behavior was given in (4.3.23). Let us denote by âim the
pi,mq entry of the matrix Am.
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According to (3.2.32), we have

âim � pLαnqpi�1qpcq �n p�1qn�i�1σα�i�1pcqn i
2� 3

4 cosϕn�i�1
n�i�1pcq, (4.3.27)

for i � 1, . . . , N � 1.

We expand detpAmq along the m-th column:

detpAmq �
N�1̧

i�1

p�1qi�mâim det Bim, (4.3.28)

where Bim is the N �N matrix obtained by deleting of A the i-th row and the m-th
column.

Using (4.3.27) in (4.3.28), we obtain

detpAmq �n
N�1̧

i�1

p�1qn�m�1σα�i�1pcqn i
2� 3

4 cosϕn�i�1
n�i�1pcqdet Bim,

where det Bim can be computed as

det Bim �
¸
σPSN

sgnpσq
N¹
l�1

bl,σplq �
¸
ψPΨ

sgnpψq
N�1¹
l�1

l�i,j1,...,jq

al,ψplq, (4.3.29)

with

Ψ �
"
ψ P SN�1 :

ψplq � l, for l � j1, . . . , jq
and ψpiq � m

*
.

Now, we will discuss two cases:

1. Case i �m even.

The highest power of n that can be reached in the sum (4.3.29) appears when
l � ψplq is even for all l � 1, . . . , N � 1, l � i, j1, . . . , jq. This means that

det Bim �n C
�¸
γPΓ

sgnpγqC 1γ
�
n

2Q�i�m�N�q
2 ,

with
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Γ �
$&%γ P SN�1 :

l � γplq is even for all l � 1, . . . , N � 1,
γplq � l, for l � j1, . . . , jq

and γpiq � m

,.- ,

whenever ¸
γPΓ

sgnpγqC 1γ � 0. (4.3.30)

2. Case i �m odd.
In this case, the highest power of n in the sum (4.3.29) could be at most 2Q�i�m�N�q�1

2 �
1, when the permutation ψ satisfies that l � ψplq is odd for one l P t1, . . . , N �
1uzti, j1, . . . , jqu, and it is even for the remainder indexes.

We obtain the highest power of n for the first case, and after checking (4.3.30), we
conclude

detpAmq �n
N�1̧

i�1

p�1qn�m�1σα�i�1pcqn 2Q�m�N�q
2 � 3

4 cosϕn�i�1
n�i�1pcq.

Then, for n large enough, there exists a constant C ¡ 0 such that

| detpAmq| ¤ Cn
2Q�m�N�q

2 � 3
4 .

In order to conclude the proof we must check that (4.3.30) holds. Indeed,

¸
γPΓ

sgnpγq
N�1¹
l�1

l�i,j1,...,jq

Mγplq�1C0,γplq�1,l�1

� M

Mm�1
p�1qQ�i pσαpcqq2pN�qq c 2N�i�m�2q�2Q

2

¸
γPΓ

sgnpγq
N�1¹
l�1

l�i,j1,...,jq

1

l � γplq � 1
.

Let suppose now that m is even. Let

t1, 2, . . . , N � 1uzti, j1, j2, . . . , jqu � tr1, r2, . . . , rK1
u Y tm, s1, s2, . . . , sK2

u,
where ri is odd for i � 1, 2, . . . ,K1, and si is even for i � 1, 2, . . . ,K2. Notice that
K1 �K2 � N � q. We can write¸

γPΓ

sgnpγq
N�1¹
l�1

l�i,j1,...,jq

1

l � γplq � 1
�

� ¸
δPSK1

sgnpδq
K1¹
i�1

1

ri � rδpiq � 1

	
det B,



80 Unbounded support: asymptotics for Laguerre-Sobolev type polynomials

where

B �

������
1

m�i�1
1

m�s1�1 . . . 1
m�sK2

�1
1

s1�i�1
1

s1�s1�1 . . . 1
s1�sK2

�1

...
...

. . .
...

1
sK2

�i�1
1

sK2
�s1�1 . . . 1

sK2
�sK2

�1 .

�����,
Using Lemma 4.3.1,

¸
γPΓ

sgnpγq
N�1¹
l�1

l�i,j1,...,jq

1

l � γplq � 1

�

K2¹
l�1

pm� slqpi� slq
¹

1¤i j¤K2

psi � sjq2

pm� i� 1q
¹

1¤i j¤K2

psi � sj � 1q

¹
1¤i j¤K1

pri � rjq2¹
1¤i j¤K1

pri � rj � 1q .

In an analogue way, if m is odd, let

t1, 2, . . . , N � 1uzti, j1, j2, . . . , jqu � tm, r1, r2, . . . , rK1
u Y ts1, s2, . . . , sK2

u,
where ri is odd for i � 1, 2, . . . ,K1, and si is even for i � 1, 2, . . . ,K2, and

¸
γPΓ

sgnpγq
N�1¹
l�1

l�i,j1,...,jq

1

l � γplq � 1

�

K1¹
l�1

pm� rlqpi� rlq
¹

1¤i j¤K1

pri � rjq2

pm� i� 1q
¹

1¤i j¤K1

pri � rj � 1q

¹
1¤i j¤K2

psi � sjq2¹
1¤i j¤K2

psi � sj � 1q .

This is different from zero and we get our statement.



5
Divergence of Fourier Series: A Cohen type
inequality

The aim of this Chapter is to establish a Cohen type inequality when we deal with
the following Sobolev-type inner product on the linear space P of polynomials with
real coefficients

xf, gyS �
» 8

0

fpxqgpxqdµpxq �Mfpcqgpcq �Nf 1pcqg1pcq, (5.0.1)

where dµpxq � xαe�xdx, α ¡ �1, is the Laguerre measure, M,N ¥ 0, and the mass
point c is a real number located outside the support of µ.

The novelty of our approach comes from two directions: First, we consider a
Sobolev-type inner product with only a mass point outside the support of the measure
µ and, second, we incorporate new test functions different from those used in [70].

The outline of the chapter is as follows. Section 5.1 provides a basic background
dealing with structural and asymptotic properties of k-iterated Laguerre orthogonal po-
lynomials, as well as some well known analytic properties of Laguerre-Sobolev type
polynomials. Section 5.1 contains some estimates for the norm of Laguerre-Sobolev
type polynomials (Propositions 5.1.2). In Section 5.2 we prove our main result (Theo-
rem 5.2.1). We obtain an estimate from below for the Spfpαq-norm of the partial sums of
some balanced Fourier expansions in terms of Laguerre-Sobolev type orthonormal po-
lynomials. As an immediate consequence (Corollaries 5.2.1 and 5.2.2) the divergence
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of such partial sums and Cesàro means of order δ when p is located outside the Pollard
interval is deduced.

5.1 Background: structural and asymptotic properties

The following proposition will be useful in the sequel and it summarizes some
recent structural and asymptotic properties of Laguerre-Sobolev type polynomials.

Proposition 5.1.1. Let tLpα,M,Nq
n pxqu8n�0 be the sequence of normalized Laguerre-

Sobolev type polynomials with leading coefficient equal to p�1qn
n! , associated with the

Sobolev-type inner product (5.0.1). Then the following statements hold.

(a) [68, Theorem 4] Connection formula for Lpα,M,Nq
n pxq.

Lpα,M,Nq
n pxq � B0,nL

pαq
n pxq�B1,npx�cqLpαq,r2sn�1 pxq�B2,npx�cq2Lpαq,r4sn�2 pxq,

(5.1.2)
where

piq If M ¡ 0 and N ¡ 0, then

B0,n � 8cnα

M
�
L
pαq
n pcq

	2 , B1,n � �32c
a|c|nα�1{2

M
�
L
pαq
n pcq

	2 , B2,n � 1

n2
.

(5.1.3)

piiq If M � 0 and N ¡ 0, then

B0,n � 1

4
a|c|n, B1,n � � 1

n
, B2,n � 1

4n2
a|c|n.

piiiq If M ¡ 0 and N � 0, then

B0,n �
a|c|

Mn1{2�α
�
L
pαq
n�1pcq

	2 , B1,n � � 1

n
, B2,n � 0.

(b) [68, Theorem 5 (ii)] Mehler-Heine type formula.

lim
nÑ8

L
pα,M,Nq
n p xn q

nα
�

$'&'%
x�α{2Jαp2?xq, if M ¡ 0, N ¡ 0,

�x�α{2Jαp2?xq, if M � 0, N ¡ 0 or M ¡ 0, N � 0,
(5.1.4)

uniformly on compact subsets of C.
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Now, we need to estimate the Laguerre-Sobolev type norm

hpα,M,Nq
n :� xLpα,M,Nq

n , Lpα,M,Nq
n yS .

The next Proposition states that the estimate of this norm is the same as the estimate
obtained for the norms of classical Laguerre polynomials.

Proposition 5.1.2. For every n P N,

hpα,M,Nq
n � nα. (5.1.5)

Proof. From the Sobolev type orthogonality, we get

hpα,M,Nq
n �

B
Lpα,M,Nq
n pxq, p�1qn

n!
px� cqn

F
S

, n ¥ 0. (5.1.6)

Since the non standard component of the Sobolev type inner product on the right
side of (5.1.6) is equal to zero for n ¥ 2, according to (5.1.2) we haveB

Lpα,M,Nq
n pxq, p�1qn

n!
px� cqn

F
S

�
» 8

0

Lpα,M,Nq
n pxq p�1qn

n!
px� cqnxαe�xdx

� B0,nh
pαq
n � B1,n

n
h
pαq,r2s
n�1 � B2,n

npn� 1qh
pαq,r4s
n�2 .

Finally, analyzing the asymptotic behavior given in (5.1.3) and using (3.1.5) the result
follows.

Notice that the above estimate for the norm of the Laguerre-Sobolev type ortho-
gonal polynomials together with (5.1.4) (resp. (5.1.2)) allows us to obtain the corre-
sponding Mehler-Heine type formula (resp. a connection formula for the orthonormal
Sobolev type polynomials Lα,M,N

n pxq.)

We conclude this section with the analog of [30, Proposition 5] when c   0.

Proposition 5.1.3. Let M,N ¥ 0 and tLα,M,N
n pxqu8n�0 be the sequence of orthonor-

mal Laguerre-Sobolev type polynomials. For α ¡ �1{2 we have�» 8
0

���Lα,M,N
n pxqe�x{2

���p xαdx
1{p
¥

#
Cn�1{4plog nq1{p, if p � 4α�4

2α�1 ,

Cnα{2�pα�1q{p, if 4α�4
2α�1   p   8,

(5.1.7)
and for α ¡ �2{p, 1   p   8, we have
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�» 8
0

���Lα,M,N
n pxqe�x{2

���p xαdx
1{p
¥

#
Cn�1{4plog nq1{p if p � 4,

Cn�1{p, if 4   p   8.
(5.1.8)

Proof. It suffices to follow the proof given in [30, Proposition 5] by making the cor-
responding modifications and using (5.1.5) as well as (5.1.4) for orthonormal polyno-
mials.

5.2 Cohen type inequality for Fourier expansions with respect to
Laguerre-Sobolev type orthogonal polynomials associated
with the inner product (5.0.1)

The goal of this section is to show a Cohen type inequality for Fourier expansions
with respect to Laguerre-Sobolev type orthonormal polynomials associated with the
Sobolev inner product (5.0.1). To this end, we will follow the Markett approach but, as
was mentioned at the beginning, we will incorporate new test functions different from
whose used in [70].

Now, we are going to introduce the notation concerning weightedLp spaces, Sobolev
type spaces, test functions, and some usual elements from functional analysis, which
will needed in the sequel.

We consider the following weighted Lp spaces.

Lpwpαq �

$''&''%
 
f : t³8

0
|fpxqe�x{2|pxαdxu1{p   8(

, 1 ¤ p   8,
!
f : ess supx¡0|fpxqe�x{2|   8

)
, p � 8,

for α ¡ �1. Furthermore,

Lpupαq � tf : ||fpxqupx, αq||Lpp0,8q   8, upx, αq � e�x{2xα{2u,

where α ¡ � 2
p if 1 ¤ p   8 and α ¥ 0 if p � 8.

Also, we use the notation Lpgpαq, where the subscript gpαq means either wpαq or
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upαq. The Sobolev type spaces are denoted by

Spgpαq � tf P Lpgpαq X C8 : ||f ||p
Sp
gpαq

� ||f ||p
Lp
gpαq

�M |fpcq|p �N |f 1pcq|p   8u, 1 ¤ p   8,
(5.2.9)

S8gpαq �
!
f P L8gpαq X C8 : ||f ||S8

gpαq � maxt||f ||L8
gpαq , |fpcq|, |f 1pcq|u   8

)
, p � 8.

(5.2.10)

Let rSpgpαqs be the space of all bounded linear operators T : Spgpαq Ñ Spgpαq, with
the standard operator norm

||T ||rSp
gpαqs � sup

0�fPSp
gpαq

||T pfq||Sp
gpαq

||f ||Sp
gpαq

.

For f P S1
gpαq, the Fourier series in terms of the Laguerre-Sobolev type orthonormal

polynomials is given by

8̧

k�0

f̂pkqLα,M,N
k pxq, (5.2.11)

where f̂pkq � xf, Lα,M,N
k yS , k � 0, 1, . . .

The Cesáro means of order δ, a nonnegative integer number, of the series (5.2.11)
is

σδnfpxq :�
ņ

k�0

Aδn�k
Aδn

f̂pkqLα,M,N
k pxq,

where Aδk �
�
k�δ
k

�
.

For f P Spgpαq and tck,nunk�0, n P N Y t0u, a family of complex numbers with
|cn,n| ¡ 0, let introduce the operators Tα,M,N

n

Tα,M,N
n pfq :�

ņ

k�0

ck,nf̂pkqLα,M,N
k .

The first technical step required for the proof of our main result is the choice of the
suitable test functions. For instance, in the setting of Laguerre-Sobolev type expan-
sions, see [30, 70, 83], the authors consider (up to a constant factor) the following test
functions.



86 Divergence of Fourier Series: A Cohen type inequality

gα,jn pxq :� n�α{2
�
xjLpα�jqn pxq �

� pn� 1qpn� 2q
pn� α� j � 1qpn� α� j � 2q


1{2
xjL

pα�jq
n�2 pxq

�
.

(5.2.12)

These functions and their derivatives vanish at 0 and this fact is a key property in
the development of the ideas of [30, 70, 83]. Unfortunately, they do not vanish at the
mass point c   0. For this reason, it seems to be natural to consider the following slight
modification of the functions (5.2.12)

Gα,jn pxq :� n�α{2
�
px� cq2xjLpα�jqn�2 pxq �An,αpx� cq2xjLpα�jqn�4 pxq

�
(5.2.13)

with An,α �
�

pn�3qpn�4q
pn�α�j�3qpn�α�j�4q

	1{2
.

As a consequence, it is well-known that the test polynomials Gα,jn pxq can be ex-
pressed as (see [70, equation (2.15)])

Gα,jn pxq � n�α{2px� cq2
j�2̧

m�0

am,jpα, nqLpαqn�2�mpxq, (5.2.14)

with

a0,jpα, nq � nj .

Finally, the last technical step is to estimate the norm of the test functions (5.2.13).

Lemma 5.2.1. For some j ¡ α� 1{2� 2pα� 1q{p, we have

||Gα,jn ||Sp
gpαq

¤ C

#
nj�2�α{2�1{2�pα�1q{p, if gpαq � wpαq,
nj�2�1{2�1{p, if gpαq � upαq. (5.2.15)

Proof. Taking into account that the Sobolev norm of Gα,jn pxq coincides with its Lpgpαq-
norm (for gpαq � wpαq or gpαq � upαq) and also considering the following expression
for Gα,jn pxq,

Gα,jn pxq � gα�2,j�2
n�2 pxq � 2cgα�1,j�1

n�2 pxq � c2gα,jn�2pxq,
where gα,jn pxq is the test polynomial given in (5.2.12), so, we only need to use [70,
Lemma 1] in order to obtain the estimates (5.2.15).
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According to the notation in [30], let us denote q0 � 4α�4
2α�1 , when β � α, and

q0 � 4, when β � pα{2, and let p0 be the conjugate of q0. We are ready to state our
main result.

Theorem 5.2.1. Let M,N ¥ 0 and 1 ¤ p ¤ 8. For α ¡ �1{2,

||Tα,M,N
n ||rSp

wpαqs ¥ C|cn,n|

$'&'%
n

2α�2
p � 2α�3

2 if a ¤ p   p0,

plog nq 2α�1
4α�4 if p � p0, p � q0,

n
2α�1

2 � 2α�2
p if q0   p ¤ b.

For α ¡ �2{p if 1 ¤ p   8 and α ¥ 0 if p � 8,

||Tα,M,N
n ||rSp

upαqs ¥ C|cn,n|

$'&'%
n

2
p� 3

2 if a ¤ p   p0,

plog nq 1
4 if p � p0, p � q0,

n
1
2� 2

p if q0   p ¤ b,

where

(i) if M � 0, N ¥ 0, then a � 1 and b � 8,
(ii) if M ¡ 0, N ¥ 0, then a ¡ 1, b   8, and 1{a� 1{b � 1.

Proof. Applying the operator Tα,M,N
n to the test functions Gα,jn pxq we get

Tα,N,Mn pGα,jn q �
ņ

k�0

ck,npGα,jn q^pkqLα,M,N
k , (5.2.16)

where

pGα,jn q^pkq � xGα,jn , Lα,M,N
k yS , k � 0, . . . , n.

From (5.2.14) and the Sobolev orthogonality it follows in a straightforward way
that

pGα,jn q^pkq � 0 if k   n.

When k � n, we get

pGα,jn q^pnq �n�α{2a0,jpα, nq
» 8

0

L
pαq
n�2pxqLα,M,N

n pxqpx� cq2xαe�xdx

� n�α{2a0,jpα, nq
�
hpα,M,Nq
n

	�1{2 » 8
0

L
pαq
n�2pxqLpα,M,Nq

n pxqpx� cq2xαe�xdx.
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We can expand the polynomial px � cq2Lpα,M,Nq
n pxq in terms of the classical La-

guerre polynomials,

px� cq2Lpα,M,Nq
n pxq �

n�2̧

k�0

αn�2,kL
pαq
k pxq.

The comparison of the leading coefficient of both hand sides yields

αn�2,n�2 � pn� 2qpn� 1q.

On the other hand,

pGα,jn q^pnq �n�α{2a0,jpα, nq
�
hpα,M,Nq
n

	�1{2 » 8
0

L
pαq
n�2pxqLpα,M,Nq

n pxqpx� cq2xαe�xdx

� n�α{2a0,jpα, nq
�
hpα,M,Nq
n

	�1{2
αn�2,n�2

» 8
0

�
L
pαq
n�2pxq

	2

xαe�xdx

� n�α{2a0,jpα, nq
�
hpα,M,Nq
n

	�1{2 pn� 2qpn� 1qhpαqn�2

� nj�2.

As a conclusion, #
pGα,jn q^pkq � 0, 0 ¤ k ¤ n� 1,

pGα,jn q^pnq � nj�2.

Now, we follow the proof given in [30, Theorem 1], taking into account that

|Lα,0,0n pcq| � nα{2�1{4e2
?�nc

#
p�1̧

k�0

Ckpα; cqn�k{2 �Opn�p{2q
+
,

|Lα,0,Nn pcq| � 1?�cnn
α{2�1{4e2

?�nc
#
p�1̧

k�0

Ckpα; cqn�k{2 �Opn�p{2q
+
.

Corollary 5.2.1. Let β, p0, q0, and p be the same as in Theorem 5.2.1. For ck,n � 1,
for all k � 0, . . . , n, and for p outside the Pollard interval pp0, q0q we get

||Sn||rSp
gpβqs Ñ8, nÑ8,

where Sn denotes the nth partial sum of the expansion (5.2.11).
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It is worthwhile to point out that Corollary 5.2.1 says that as for the results of
[30, 70, 83], the divergence of Fourier expansions in terms of this kind of Laguerre-
Sobolev type orthonormal polynomials remains true.

For ck,n � Aδn�k
Aδn

, k � 0, . . . , n, from Theorem 5.2.1 we also get the divergence of
Cesàro means of order δ when p is located outside the Pollard interval.

Corollary 5.2.2. Let M,N ¥ 0 and 1 ¤ p ¤ 8. For α ¡ �1{2,
$'&'%

0 ¤ δ   2α�2
p � 2α�3

2 , if a ¤ p   p0,

0 ¤ δ   2α�1
2 � 2α�2

p , if q0   p ¤ b,

and p R rp0, q0s, then
||σδn||rSpwpαqs Ñ8, nÑ8.

For α ¡ �2{p if 1 ¤ p   8, and α ¥ 0, if p � 8,$'&'%
0 ¤ δ   2

p � 3
2 , if a ¤ p   p0,

0 ¤ δ   1
2 � 2

p , if q0   p ¤ b,

and p R rp0, q0s, then we get

||σδn||rSpupαqs Ñ8, nÑ8.
Remark 5.2.1. It still remains as an open question the study of Cohen type inequali-
ties for the Laguerre Sobolev type orthonormal polynomials with respect to the inner
product

xf, gyS �
» 8

0

fpxqgpxqdµpxq �
Ņ

j�0

Mjf
pjqpcqgpjqpcq, (5.2.17)

where dµpxq � xαe�xdx is the Laguerre measure, c   0, and Mj ¥ 0 for j �
0, . . . , N assuming that MN ¡ 0. The main difficulties in this case would be how to
choose suitable test functions as well as the possibility to have gaps in the Sobolev type
inner products , i.e. Mj � 0 for some j � 0, . . . , N � 1. This means that the matrix
diagpM0, ...,MN q has not full rank (see for instance, [83] and the references therein.)





6
Conclusions

In this thesis, we have dealt with Sobolev-type orthogonal polynomials. In particu-
lar, we have focused our attention on four interesting problems:

(i) Connection formulas between Sobolev type and the associated standard ortho-
gonal polynomials.

(ii) Matrix interpretation of recurrence relations and connection formulas.

(iii) Outer relative asymptotics for Sobolev type orthogonal polynomials.

(iv) Convergence of Fourier series associated to Sobolev-type orthogonal polyno-
mials.

As a result of the research in these directions, the original contributions of this
thesis have been the following ones:

• We have made an exhaustive study of connection formulas relating Sobolev type
and standard polynomials and we have found a quite general formula included
in Proposition 1.2.5.

• As for the case of Sobolev-type orthogonal polynomials with respect to nontriv-
ial probability measures with bounded support on the real line, we have found
an alternative proof of a known result on outer relative asymptotics of Sobolev
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polynomials (Theorem 2.1.1). We have also obtained a matrix connection be-
tween the p2N � 1q-diagonal matrix associated to the Sobolev-type orthogonal
polynomials and the Jacobi matrix of the corresponding standard polynomials
(Theorem 2.2.2). Finally, we have generalized the study of the pointwise con-
vergence of Fourier series associated to Jacobi-Sobolev polynomials to the case
of inner products with several mass points outside the support of the measure.

• We have worked with a family of polynomials orthogonal with respect to a
polynomial perturbation of the classical Laguerre measure, the k-iterated La-
guerre polynomials. In this direction, we have obtained estimates for the norm
of k-iterated Laguerre polynomials (Proposition 3.1.3) as well as a generalized
Christoffel representation formula for k-iterated polynomials (Proposition 3.1.4).

• We have described the asymptotic behavior of the partial derivatives of diago-
nal Laguerre kernels depending on the location of the mass points in terms of
the support of the measure, i.e., if it is inside, outside or at the boundary of
the Laguerre measure. The novelty in this direction comes from the case of the
asymptotic behaviour of Laguerre kernels and its partial derivatives within the
oscillatory regime of classical Laguerre polynomials (Theorem 3.2.1) and this
result will permit us to obtain asymptotics for Sobolev-type orthogonal polyno-
mials.

• For the case of Sobolev-type polynomials orthogonal with respect to nontrivial
probability measures with unbounded supports, we have studied the representa-
tive case of Laguerre-Sobolev type orthogonal polynomials. The novelty con-
sists of considering for the first time a discrete Sobolev inner product with mass
points inside the support, which is the oscillatory region for the corresponding
polynomials. More precisely, we have studied the Outer Relative Asymptotics
(Theorem 4.1.1) as well as the inner L2-Asymptotics (Theorem 4.3.1). We have
also obtained the asymptotic behavior of the coefficients in the five term recur-
rence relation associated to certain Sobolev-type polynomials (Theorem 4.2.1)
.

• Finally, we get a Cohen type inequality for Fourier expansions in terms of the or-
thonormal polynomials associated with a Sobolev type inner product with a mass
point located outside the support of the measure (Theorem 5.2.1), for which we
have found a new family of test functions, different from those one can find in
the literature. Then, as an immediate consequence, we deduce the divergence
of Fourier expansions and Cesàro means of order δ in terms of this kind of
Laguerre-Sobolev type polynomials (Corollary 5.2.1).
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6.1 Future work

In view of the results of this thesis, we plan to follow several research lines in the
next future.

• The properties of classical Laguerre polynomials are very well known. In partic-
ular, Hahn condition allows to determine the derivatives of Laguerre polynomials
and using Perron or Féjer asymptotic formulas we can obtain the asymptotic be-
havior of these derivatives. It would be very useful to carry out a study about
asymptotics of derivatives of k-iterated Laguerre polynomials.

• From a theoretical point of view, it would be interesting to study the point-
wise convergence of the Jacobi-Fourier series associated with Sobolev type inner
products when some mass points are located inside the support and other ones
outside.

• For a denumerable set of mass points outside r�1, 1swhich satisfy the Blaschke’s
condition and for a measure µ such that its absolutely continuous part satisfies
the Szegő condition, the outer strong asymptotics of standard orthogonal poly-
nomials was given in [82]. In [16], Denisov proved the outer ratio asymptotics
of standard polynomials with respect to a measure such that µ1pxq ¡ 0 a.e.
x P r�1, 1s in the presence of a denumerable set of mass points off r�1, 1s with
the only condition that they accumulate at �1. The idea will be to study the
case of a denumerable set of mass points inside r�1, 1s, which remains an open
problem.

• In Chapter 4 we have studied asymptotics for Laguerre-Sobolev type polyno-
mials. It would be interesting to extend these results to another families of po-
lynomials orthogonal with respect to measures supported on an unbounded set.
Our technique is quite general and, basically, it requires to know strong asymp-
totics for the corresponding Sobolev polynomials.

• In Chapter 5 we have studied the convergence of some balanced Fourier-Sobolev
expansions in some p-weighted space, when p does not belong to the Pollard
interval. The complementary study for the case when p belongs to the Pollard
interval remains an open problem.

• It would be interesting the study of Cohen type inequalities for a continuous
Sobolev inner product associated with coherent pairs of measures when one of
the measures is the Laguerre one. This case requires to work in weighted Sobolev
spaces different from whose used since the first study of Markett.
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und deren Anwendung auf die beste Approximation, J. Reine Angew. Math. 211
(1962), 192–204.

[7] I. Alvarez Rocha and L. Salto, Asymptotics of polynomials orthogonal with re-
spect to a discrete-complex Sobolev inner product, J. Comput. Appl. Math. 178
(2005), 1–19.

[8] R. Askey, Orthogonal expansions with positive coefficients, Proc. Amer. Math.
Soc. 16 (1965), 1191–1194.

[9] R. Askey and S. Wainger, Mean convergence of expansions in Laguerre and Her-
mite series, Amer. J. Math. 87 (1965), 695–708.

[10] L. Baratchart, A. Martı́nez-Finkelshtein, D. Jiménez, D. S. Lubinsky, H. N.
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[20] H. Dueñas, E. J. Huertas, and F. Marcellán, Analytic properties of Laguerre-type
orthogonal polynomials, Integral Transforms Spec. Funct. 22 (2011), 107–122.
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with weights not satisfying Szegő’s condition, Mat. Sb. 118 (172) (1986), 151–
169. (English translation (1987): Math. USSR-Sb. 58, 149–167).

[90] I. A. Rocha, F. Marcellán, and L. Salto, Relative asymptotics and Fourier Series of
orthogonal polynomials with a discrete Sobolev inner product, J. Approx. Theory
121 (2003), 336–356.

[91] I. A. Rocha and L. Salto, Asymptotics of polynomials orthogonal with respect to
a discrete-complex Sobolev inner product, J. Comput. Appl. Math. 178 (2005),
1–19.
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