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Summary

In the last 30 years, the study of orthogonal polynomials in Sobolev spaces has ob-
tained an increasing attention from the research community. The first work on Sobolev
orthogonal polynomials [6] was published in 1962 by Althammer, who studied the
Legendre-Sobolev polynomials orthogonal with respect to the inner product

gy = J_l f(x)g(z)dx + Af_l f(x)g'(x)dz, X\>0.

The motivation for such a study was attributed to the paper of Lewis [50]. Later on,
Schifke (see [92]) simplified and generalized some of the results in [6]].

Since then this area has paid an increasing attention by many researchers. In Chap-
ter 1 we only point out works which are important for understanding the material con-
tained in this Thesis and we apologize if some title is missing in the bibliography. In
any case, the interested reader is referred to [67]], a recent survey on Sobolev orthogonal
polynomials where the reader can find an overview in this subject as well as an huge
number of publications in the bibliography. This contribution has been very helpful for
the final form of this memory.

The study of this family of orthogonal polynomials is not only interesting for a
comparison with the standard theory of orthogonal polynomials (see [13, [93]), but
these polynomials also arise in a natural way in a variety of contexts:

e In Approximation Theory, Sobolev polynomials constitute a natural basis for the
approximating subspaces in a certain least square approximation problem (see
[S0D).

e Spectral theory of ordinary and partial differential equations.

e Analysis of spectral numerical methods for boundary value problems on partial
differential equations.



e Search of algorithms for the computation of Fourier Series in terms of Sobolev
orthogonal polynomials. The numerical experiments made by A. Iserles et al.
(see [40]) point out that the analysis of Gibbs phenomena can be performed in a
successful way using Sobolev orthogonal polynomials.

In this thesis, we analyze the properties of polynomials orthogonal with respect to
a discrete Sobolev inner product. More precisely, we will focus our attention on the
study of connection formulas relating Sobolev orthogonal polynomials with the corre-
sponding ordinary ones. Indeed, we deal with some problems on asymptotic behavior
of Sobolev orthogonal polynomials as well as we obtain some results on convergence
of Fourier-Sobolev series.

The present Thesis is organized as follows:

o In Chapter 1 we introduce the theory of Sobolev orthogonal polynomials and the
notation that we will use along this Thesis. We summarize two main differences
between the standard orthogonal polynomials and the Sobolev case: recurrence
relations and the location of zeros of orthogonal polynomials. Here, we also
include a thorough study about the known connection formulas. Finally, for a
better understanding of our work, we give the state of the art about asymptotics
and Fourier series of orthogonal polynomials, analyzing both the cases of mea-
sures with bounded and unbounded support, respectively.

e In Chapter 2 we study some algebraic and analytic aspects of certain family of
Sobolev polynomials orthogonal with respect to a measure with a bounded sup-
port on the real line. In Section[2.1] we present an alternative proof for a known
result about Outer Relative Asymptotics of Sobolev orthogonal polynomials. In
Section [2.2] we also include a new matrix connection relating the matrix asso-
ciated to the higher order recurrence relation for Sobolev polynomials and the
corresponding Jacobi matrix associated to the standard ones. In Section we
show a result about pointwise convergence of Fourier-Sobolev series in the case
of measures with bounded support.

e In Chapter 3 we summarize some known properties of polynomials orthogonal
with respect to a modification of the Laguerre measure, the k-iterated Christoffel
one. Later on, we obtain estimates for the norm of such polynomials as well as
a generalized Christoffel formula for them. Finally, we present a detailed study
about the diagonal Christoffel kernels associated to the Gamma distribution. In
particular, we obtain the asymptotic behavior of these kernel polynomials both
inside and outside the support of the measure.

o In Chapter 4 we deal with the Outer and Inner Relative Asymptotics of Sobolev-
type orthogonal polynomials when the mass points are located inside the support
of the measure, the oscillatory region for such polynomials. Finally, we obtain
the asymptotic behavior of the coefficients appearing in the higher order recur-
rence relation that Sobolev polynomials satisfy.



In Chapter 5 we show the divergence of a certain Fourier-Sobolev series. The
main tool for this purpose will be a Cohen type inequality. This problem is
dealing for the first time for a Sobolev-type inner product with a mass point
outside the support of the measure.

Some of the original results contained in this Thesis have published in the following
scientific journals and we list them within the bibliography at the end of this work:

(331

(391

(59]

(601

E. J. Huertas, F. Marcellan, M. F. Pérez-Valero, and Y. Quintana, Asymptotics for

Laguerre-Sobolev type orthogonal polynomials modified within their oscillatory
regime. Appl. Math. Comput. 236 (2014), 260-272.

E. J. Huertas, F. Marcelldn, M. F. Pérez-Valero, and Y. Quintana, A Cohen type
inequality for Laguerre-Sobolev expansions with a mass point outside their os-
cillatory regime. Turkish J. Math. 38 (2014), 994-1006.

F. Marcellan, M. F. Pérez-Valero, Y. Quintana, and A. Urieles, Recurrence rela-
tions and outer relative asymptotics of orthogonal polynomials with respect to a
discrete Sobolev type inner product, Bull. Math. Sci. 4 (1) (2014), 83-97.

F. Marcellan, M. F. Pérez-Valero and Y. Quintana, Asymptotic behavior of deriva-
tives of Laguerre kernels and some applications, J. Math. Anal. Appl. 421
(2015), 314-328.






Resumen

El desarrollo del estudio de polinomios ortogonales en espacios de Sobolev ha
tenido lugar a lo largo de los udltimos 30 afos. El primer articulo sobre polinomios
ortogonales de Sobolev, [6], fue publicado en 1962 por Althammer, quien estudié los
polinomios de Sobolev-Legendre ortogonales respecto al producto interno
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El autor atribuy6 la motivacién para este andlisis al articulo de Lewis [S0] sobre aprox-
imacién suave de minimos cuadrados. Mds tarde, algunos de los resultados obtenidos
en [6] fueron simplificados y generalizados por Schifke en [92].

Desde entonces han aparecido multitud de publicaciones en esta drea, de forma
que preferimos en el capitulo 1 centrarnos s6lo en aquellas aportaciones importantes
para la comprension y justificacion del material contenido en esta memoria y pedimos
disculpas si llegara a haber omisién de algin trabajo relevante. No obstante, el lector
interesado puede consultar [67], un estudio sobre polinomios ortogonales en espacios
de Sobolev aparecido en arXiv y recientemente aceptado para publicacién donde se
ofrece una vision general sobre esta materia, ademds de un resumen bastante completo
de la bibliografia y que ha sido de gran ayuda en la forma final que ha adquirido este
trabajo.

El estudio de estas nuevas familias de polinomios ortogonales es interesante, no
s6lo por la comparacién entre las propiedades y comportamiento de estos polinomios
frente a los polinomios ortogonales estandar (véanse [13}95]]), sino por las multiples
aplicaciones que tienen en diferentes contextos:

e En teoria de aproximacion, los polinomios de Sobolev constituyen una base natu-
ral para los subespacios de aproximacién de cierto problema de minimos cuadra-
dos (véase [50]).

e Teoria espectral de ecuaciones diferenciales ordinarias asi como para ecuaciones
en derivadas parciales.
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e Andlisis de métodos espectrales en el tratamiento numérico de problemas de
valores en la frontera para ecuaciones diferenciales en derivadas parciales.

e Biisqueda de algoritmos para el célculo de Series de Fourier en términos de poli-
nomios ortogonales de Sobolev. Los experimentos numéricos llevados a cabo por
A. Iserles et al. (véase [40]) obtuvieron resultados satisfactorios en el analisis del
fenémeno de Gibbs en desarrollos de Fourier usando polinomios de Sobolev en
comparacién con los polinomios estandar.

En esta memoria analizaremos el comportamiento y las propiedades de polinomios
ortogonales respecto a productos internos de Sobolev discretos. Mds concretamente,
nuestro interés serd el estudio de férmulas de conexion entre polinomios ortogonales
estdndar y polinomios ortogonales de Sobolev. De esta forma, podremos abordar al-
gunos problemas de asintética de polinomios ortogonales de Sobolev, asi como obtener
resultados de convergencia de series de Fourier asociadas a tales polinomios.

Estos contenidos se dividen en los siguientes capitulos:

e En el capitulo 1 presentamos una introduccién a la teoria de polinomios de
Soboleyv, introduciendo la notacién que se utilizard a lo largo de esta tesis. Se
resumirdn las principales diferencias entre el caso estdndar y el caso Sobolev.
En concreto nos centraremos en el estudio de relaciones de recurrencia y lo-
calizacion de ceros de dichos polinomios ortogonales. Se incluird un estudio
bastante completo de los diferentes tipos de férmulas de conexién existentes.
Finalmente, daremos una panordamica de los resultados conocidos en asintética
y desarrollos en series de Fourier de polinomios ortogonales de Sobolev tanto
en el caso de soporte acotado como en el no acotado, que permitird una mejor
comprension de nuestro trabajo.

e En el capitulo 2 se estudian aspectos analiticos y algebraicos de cierta familia
de polinomios de Sobolev ortogonales respecto a una medida de soporte aco-
tado. En la seccién|2.1|se presenta una demostracién alternativa de un resultado
conocido sobre asintética relativa exterior de ciertos polinomios de Sobolev. De-
mostraremos una nueva relacion matricial entre la matriz asociada a la relaciéon
de recurrencia que satisfacen los polinomios de Sobolev y la matriz de Jacobi
de los correspondientes polinomios ordinarios en la seccién En la dltima
seccion presentaremos un resultado sobre convergencia puntual de series de Fou-
rier asociadas a ciertos polinomios de Sobolev.

e En el capitulo 3 resumiremos algunas propiedades conocidas de polinomios or-
togonales respecto a una medida de Laguerre modificada, una k-iteracién de
Christoffel de la medida de Laguerre. A continuacién, obtendremos estima-
ciones para la norma de estos polinomios y proporcionaremos una férmula gen-
eralizada de Christoffel para tal familia de polinomios. Finalmente, presentare-
mos un estudio completo y detallado de los nicleos de Christoffel diagonales
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asociados a la distribucion Gamma, obteniendo la asint6tica de los mismos tanto
dentro como fuera del soporte de la medida.

En el capitulo 4 se hace un estudio de asintdtica relativa de polinomios ortog-
onales de Sobolev discreto cuando las masas en la parte discreta del producto
interno estan situadas dentro el soporte de la medida, la region de oscilacién
de dichos polinomios. El comportamiento de dichos polinomios serd estudiado
tanto dentro como fuera del soporte de la medida. Finalmente, obtendremos
el comportamiento asintdtico de los coeficientes que aparecen en la relacion de
recurrencia que satisfacen los polinomios de Sobolev.

En el capitulo 5 abordaremos el problema de convergencia de series de Fourier-
Sobolev. Mostraremos la divergencia de la serie de Fourier asociada a cierta
familia de polinomios ortogonales de Sobolev y la principal herramienta para
ello seran las desigualdades de tipo Cohen. Este problema es tratado por primera
vez para un producto de Sobolev discreto con una masa fuera del soporte de la
medida.

Todo el material original contenido en esta memoria ha sido aceptado para publi-
cacion en revistas cientificas bajo los siguientes titulos y el nimero que les asignamos
es el que ocuparan dentro de la bibliografia:

(38]

(391

(59]

(60]

E. J. Huertas, F. Marcellan, M. F. Pérez-Valero, and Y. Quintana, Asymptotics for
Laguerre-Sobolev type orthogonal polynomials modified within their oscillatory
regime. Appl. Math. Comput. 236 (2014), 260-272.

E. J. Huertas, F. Marcellan, M. F. Pérez-Valero, and Y. Quintana, A Cohen type
inequality for Laguerre-Sobolev expansions with a mass point outside their os-
cillatory regime. Turkish J. Math. 38 (2014), 994-1006.

F. Marcellan, M. F. Pérez-Valero, Y. Quintana, and A. Urieles, Recurrence rela-
tions and outer relative asymptotics of orthogonal polynomials with respect to a
discrete Sobolev type inner product, Bull. Math. Sci. 4 (1) (2014), 83-97.

F. Marcellan, M. F. Pérez-Valero and Y. Quintana, Asymptotic behavior of deriva-
tives of Laguerre kernels and some applications, J. Math. Anal. Appl. 421
(2015), 314-328.
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Introduction: Sobolev type orthogonal
polynomials

From now on, we will denote by R the set of real numbers, P will denote the
vector space of polynomials with real coefficients and P,, is the vector subspace of
polynomials with real coefficients and degree less than or equal to n.

Let £ < R be a bounded or unbounded infinite set. If we consider a nontrivial
positive Borel measure y supported on F, then a sequence of polynomials {p,(z)}r_,
is said to be an orthogonal polynomial sequence with respect to p if for all nonnegative
integers n and m,

(1) pn(x) is a polynomial of degree n,
(i) SEpn(I)pm(x)dp(aj) = Knonm, Kn#0,

where

P 0 if n # m,
R if n = m,

is the Kronecker delta.

If {p,(z)}_, is an orthogonal polynomial sequence and, in addition, we also have
K, =1, then it will be called an orthonormal polynomial sequence.



2 Introduction: Sobolev type orthogonal polynomials

In what follows, we will refer to this kind of sequences as sequences of standard
orthogonal polynomials. As a starting point, the main properties of orthogonal polyno-
mials on the real line are assumed to be known and we refer to the interested reader to
[L3] for a review on this subject.

The aim of this chapter is to introduce another family of orthogonal polynomials,
the so-called Sobolev-type orthogonal polynomials. Without any intention of plagia-
rism, we summarize the properties of such sequences of orthogonal polynomials by
comparison with those of the standard ones, specially some very well known results
that we will need for the development of the ideas in the subsequent chapters.

A Sobolev-type or discrete Sobolev inner product on the linear space P of polyno-
mials with real coefficients is defined by

K
s = ff(:z:)g(x)d,u(m) + ) Fler) AxG(er)”, K € Zy, (1.0.1)
k=1

where p is a nontrivial positive Borel measure supported on the real line, f, g € P, and
fork =1,...,K, K € Z,, the matrices A;, = (ag-“)) e RUFN)(A+Nk) are positive
semi-definite.

We denote by F(cy,) and G(cy,) the vectors F(ck) = (f(cx), f'(ck)s- .., fFN) ()
and G(c) = (g(ck), g'(ck)s- .., g% (ck)), respectively, with ¢, € R, Ny, € Z
where, as usual, v?" denotes the transpose of the row vector v. This notion was initially
introduced in [23]] for diagonal matrices Ay, which is the case we are dealing in this
work, and, in such a case, we can express the previous formula as follows

K Ny

gy =L+ D) D) MiifD(er)g™ (er), (1.0.2)

k=11i=0

o = j f(@)g(x)du(z),

where M}, ; = a(-l-c) = 0fori =0,...,N, — 1, and My n, > 0, when k =

1 K.

The Gram-Schmidt process applied to the canonical basis of P generates the or-
thonormal sequence of polynomials {B,,(x)}-_, for (1.0.2), i.e.,
<BnaBk>:5n7k; kj,’I’LZO,l,...,

where
B, () = Apa™ + lower degree terms, A, > 0.

We denote the corresponding monic polynomials by {Bj, ()}, Let {pn(z)},_, and
{Pn(x)}_, be the sequences of orthonormal and monic polynomials with respect to
L, respectively.
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Throughout this thesis, the notation u.,, ~ v,, or u,, ~, v,, means that the sequence
{an _, converges to certain non zero constant as n — oo while the notation w,, = v,
means that there exist positive real numbers C and C5 such that Cyu,, < v, < Couy,
for n large enough. Any other standard notation will be properly introduced whenever

needed.

1.1 Recurrence relations

It is well-known that a sequence of standard orthonormal polynomials {p,(z)}r_,
with respect to some measure 4 supported on the real line satisfies a three term recur-
rence relation

xpn(x) = an+1pn+1(x) + bnpn(x) + anpnfl(x)a n =0, (1.1.3)

with initial conditions p_;(z) = 0 and po(x) = The recurrence coeffi-

1
. (du(a)
cients are

an = [apoms@pa @) > 0. by = [ap?@)duta) < B

The converse result was proved by Favard in 1935 and the interested reader could
find more detail about this fact in [13}[26]]. This is equivalent to the symmetry of the
multiplication by z with respect to an inner product as a characterization of standard
inner products.

Due to the fact that Sobolev-type inner products we are dealing are non-standard,
ie.
@f, g #{f.zg9), fgeP,

Sobolev orthogonal polynomials no longer satisfy a three term recurrence relation.
However, it can be proved that they satisfy a higher-order recurrence relation.

Let hy(x) be the monic polynomial of least degree verifying hg\i,)(ck) = 0 for
k=1,...,K,i=0,..., N, that is,

K
hn(z) = [ [(& =)™+,
k=1

where N = Zszl N + K, then we have

Theorem 1.1.1. The Sobolev polynomials {B,,(x)},_, orthonormal with respect to
(1.0.2) satisfy a (2N + 1)-term recurrence relation

n+N

hy(@)Bu(z) = ). aniBi(z), (1.1.4)
k=n—N

with Qpn—N # 0.
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Proof. We can expand the polynomial h () B, () in the basis of Sobolev orthogonal
polynomials obtaining

n+N
hy(2)Bn(x) = Y aniBr(z)

with

ank =<hnBy, By) = JhN(m)Bn(x)Bk(x)du(m) ={(B,,hyBiy=10, ifk<n—N,

but

)\n—N

QApn—N = <hNBn7 Bn—N> = <Bna hNBn—N> = <Bna Bn> > 0.

O

Along this thesis, we will study different matrix interpretations of this higher order
recurrence relation as well as the asymptotic behavior of the coefficients appearing in
such a formula for some particular cases of the measure .

On the other hand, it can be proven that polynomials defined by (I.1.4) are closely
related to matrix polynomials satisfying a three term recurrence relation. For more
details about these relations, you can see [24]].

1.2 Connection formulas

In this Section, we study different formulas involving Sobolev-type orthogonal po-
lynomials and the standard ones. We will call these kind of relations connection for-
mulas and they will be a key tool in order to obtain properties for Sobolev polynomials
from those of the standard ones.

1. The technique for obtaining the first connection formula we are going to study
is due to Marcelldn and Ronveaux and it can be found in [64]. Since then, many
authors have used or generalized this kind of expansion.

Recall that {p, ()}, and {p,(x)},;_, are the sequences of orthonormal and
monic polynomials with respect to p, respectively.

We denote by K, (x, y) the n-th Christoffel-Darboux kernel

~

Z zp pk> (1.2.5)
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and we use the following notation for its partial derivatives

K, (z,y) 4
" J) g (Gik) ;

eI oyF = K" (z,y), 0<j,k<n. (1.2.6)

Proposition 1.2.1 (Connection formula type I). With the previous notation,

K Ny

Bu(x) Z Z My B (er) K (). (1.2.7)

k=11i=0

Proof. The Fourier expansion of the polynomial én in terms of the orthogonal
basis {pn ()}, leads to

By (z) = pul Z O D5 ( (12.8)

In the usual way, we find the coefficients 0, j, 0 < j < n — 1, as follows

K Ny

~ - Z Z Mk,iéy(f)(ck)ﬁgi)(ck)
o (Bn,Dj)u __ k=1i=0
7 Dy D Bj»Dju

Then (T.2:8) becomes

K Ny
5 0,7
Ba(z) Z Z D () KD (2, ). (1.2.9)
In order to obtain an explicit expression for BY (ck) whenk =1,... K,
i = 0,..., Ng, we can write (1.2.9) and its corresponding derivatives with re-
spect to x evaluated at z = ¢y, .. ., ¢k, in a matrix form as follows,
AB =P,
where A is the block matrix
A A ... Ak
Aoy Ay ... Aok
A=T+| . . - ]
A1 Age ... Akk

where [ is the N x N identity matrix and the (N; + 1) x (N; + 1) block A,; is
given by
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SN
MioKn—1(ci,e;)  MianK%V (e, e;) MoK (ci,e) .. Myn, K, 77 (ciyey)
Mi o K89 (e, c5) M,L,IK;I_?(CI,CJ) M; QKfj Dlcive;) oo M, Koy (e ep)
2,0 2,1 2,2 (2,N;)
Ay = | MioK®D(cive;)  MiiKPV(cie5) MioK® 1>( iei) e Min, K1 (ciyes)
Ni.‘o N;,l N;,2 ' (N;N-)
Mi)gK7(171 )(Ci,C]‘) Mileﬁxfl )(Ci,Cj) Ml 2K7(L 1 )(ci,c]') JVILN K" 1 J (Ci,Cj)
with A;; € RWVitLN;+1)
T
P = (Bn(c1) Py (cr)s o BV (01) Bu(e)s o BV () Bnlen) oo B ()
and
~ T
B = (Bn(cl) B (c1), ..., BN (1), Bu(ea), ..., BWND (ey), .., Bu(ex), ..., B(NK>(CK))

Then, applying Cramer’s rule we get

N det(Am
B (er) = det((A))’

form=1,...,N,
where B” (k) is the m-th position in the vector B and Ay, is the matrix obtained
by replacing the m-th column in the matrix A by the column vector P.

O

. The second connection formula is based on the expansion of the Sobolev poly-
nomial not in terms of the standard ones but in terms of a family of polynomials
orthogonal with respect to a suitable polynomial modification of the measure (.
This technique appeared for instance in [S7].

From now on, k(II,,) will denote the leading coefficient of any polynomial IT,,
with real coefficients and degree n and P,, will be the linear subspace of all
polynomials of degree less than or equal to n.

Let hy(x) be a polynomial such that hy (z)du(z) is a positive definite mea-

sure on the support of x4 and let {p&h] (x)}_, be the sequence of polynomials
orthonormal with respect to hy (x)dp(z).

Proposition 1.2.2 (Connection formula type II). The following connection for-
mula holds,

Z Angpl( Apn #0. (1.2.10)
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Moreover,
k(B,
An,O = ( h]) )
k(pn )
k(pn—N) 1
An,N - [h] A
k(pn+N) n,0

Proof. Since each p,[ch] (x) is of degree k, {p([)h] (@), o (@),....p" ()} is a ba-

sis of P,. Thus, there exist real numbers o, j, 7 = 0,1,...,n, such that

= h
2) =Y an,p (@)
=0

with

;= JhN(w)Bn(x)pj[h] (€)dp(z) = (B, hxply =0, ifj<n—N.
This proves the first statement with A,, ; = a, ,—;. Furthermore,

k(Bn)

[ ]
Apo = thv du(zr) = ;
k(™)

as well as

h
[ N) k(pEL,] ) 1

k(p hl
Ay = | hy(@)B, d B, hpldy) = = 2 = ’
N = f ~( pn N( )du(z) =< NDnZnD k(By) k‘(pq[{l]) Ano

and the result holds.
O

3. The last kind of connection formula appears for the first time in [44], where
Koekoek and Meijer were working with a Sobolev type inner product such that
1 is the Gamma distribution, k = 1, ¢, = 0and N > 1. Later on, generalizations
for more general inner products have been studied.

For the sake of simplicity, we consider a particular case of the inner product
(I.0.2). More precisely, we study the case of the inner product

q(c)
(©)
(005 = [p@a@du@+ () P o D) My | | N3

¢V -2)(¢)
(1.2.11)
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where My_1isa (N — 1) x (N — 1) positive semi-definite matrix.

Let us denote by {én(x)},{zo, {Dn(x)}_, and {pgk] ()}, the monic se-
quences of polynomials orthogonal with respect to (-, -)s, du(z) and dug(z) =
(x — ¢)**du(x), respectively.

A connection formula is said to be of type III when the n-th Sobolev poly-

nomial B,, is given as a linear combination of p,(x), (z — c)pglzll(x), (z —

4 _1 [2N-2
&)y (@), . (@ — )Nl P )

Before dealing with this connection formula, we will need some auxiliary results.
Taking into account that

P, = (z— ¢)*Pp 1 ®{(z — )*P, 1}, (1.2.12)

where
{(z - c)kPn_k}L = {p eP, | fp(x)v(x)du(x) =0,Yve (z— c)kIPn_k} ,

we obtain a decomposition for the polynomial B,, as a sum of a polynomial in
the vector subspace (x — ¢)*P,,_, and his corresponding orthogonal component.

Proposition 1.2.3. (i) The set {(z —c)* ﬁ?k] ;:é“ is an orthonormal basis for
the vector subspace (x — c)*IP,,_, with respect to .
(ii)
{(z - c)kIP’n_k}L = span{K,(z,¢), ..., K{>* D (z, c)}.

(iii) There exist real numbers agf;, j=0,...,k—1, such that

Bu(2) = anp(z — ) (2) + DT P KO (2, ).
j=0

Proof. (i) It is an immediate consequence of the orthogonality condition for
the sequence {1)7[12 i ()}~ ,.

@ii) It is enough to take into account the reproducing property of the kernel
polynomial

j@—&ﬁmwmﬁwawwm=m

for0<l<n—k0<j<k—Ll
(iii) It follows from (ii) having in mind the orthogonal decomposition (1.2.12) .
O
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1, in (iii) of the previous proposition, we obtain

Ifweputk=1,...,N —
Pu(z) = ana(z — )P (2) + al Y KV (@, 0),
P (@) = an2(z — )Pt (2) + aZH KO (2, 0) + alP KOV (2, 0),

&)+ .o+ alT KON ().

N—1~2N-2]

Py N+1(CC) + as,\i)_l)KﬁzO’O) (,

Pn(@) = an,n-1(z —¢)

This can be written in a matrix form as follows

P (@)

ﬁn(x) - an,l(‘r - C)pn—l

0,1 ~ A
w | Ko Pul@) — ana e — ) ()
AN—l : = )
0,N—2 ~ L J2N—
KT(L )(:C7C) pn(x) _an,N—l(x _C)N lpEiVN_?_]l(x)
where
all) 0 0
(2) (2)
n n,0 an,l 0
AEV)—l - : : ’
No1 N-1 No1
a;,o ) ap 1 ) aEz,Nf)Q
and
_Ipall? _Ipall? 1P I
Anp1 = 2] 5 QAp 2 = 4] 5 L) Qnp N—1 = J2N-2]
12n =117y 2SN IA lj2s N+1||[2N 2]

Now, we want to prove the nonsingularity of the matrix A}’ . For that purpose
we evaluate the above expressions and their successive derivatives until order

2) at © = ¢ to obtain

(N -

_ (N=3)
(e @ —an il AT = (V7 )an (55, ©

B - (N—1)
n(e) () e AT = (Vi P)2an 2 (1, ()

() ((N=2) (o o = _ (N=5)
AN—fn T T = o P () PP e = (V2)sens (605) T @

Fn(e) Bl (e) N (e
(1.2.13)

where A%L)_l is a lower triangular matrix and
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K,(c,c) K19 (¢, ¢) KXN=29(¢ ¢)
KOV-D (g | K@ KNl KT e
KﬁLO’N;z)(c, c) I(y(Ll‘N;z)(c7 c) . KfLN*z’I\}fz)(c7 c)
po(c) pi(c) pn(e) po(c)  pole) ... péN:Q)(C)
| Pt pi(c) Pn(c) pile) pile) ... pNTP(e)
K@ K@ e o0 e o L D

T
= P-1)x(n+ 1) Pt 1yx (N=1)-

On the one hand, let notice that rank P(n_1)x (n4+1) = N—1. Thus, rank K%N_m (¢,c) =

N-1,i.e. KSLN_Q) (¢, ¢) is a full rank matrix and, as a consequence, det K%N_Q) (c,c) #

0.

On the other hand, for the determinant of the matrix of the right hand side of
(T:2:13), we have a matrix in an echelon form when you subtract to any row the
last one. Indeed, the determinant becomes

" _ (N=3)

0 i@ 200 (#2)7© o 0T (62) "
(N-4)

0 0 “anafila(e) o =72z () ©

0 0 0 = (TN = 2l v 2PN ()

) PO (o) o)

= (DY ()Y PP (@ (©Bh 5 (0) . PN R (0)112! . (N=2) a1 oo va

= 102 on 21120 (N=2)15a ()P 4 ()BhL5(0) . P g (0) # 0.

Thus we get the following result.

Proposition 1.2.4. The lower triangular matrix As\ﬂ 1 is nonsingular. As a con-
sequence

ffonl()a ¢) Pa(@) — ana(z — ) (@)

Ky (z,¢) P () — ano(z — 2P, (2

. :{Ag\,;)_l}_l p ( ) 72(- )pn 2( ) 7
KNz, 0) () — an n—1(z — NN ()

or, equivalently,
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—Pn(c)
K?_ll)(% c) ;7 1
K, 7 (z,c) Tha 1]
' _ HPH + {AS\T/L)—l}il : pn(I)
KON w0/ |\ 220 1
Han2
— o { A 1 (@ = 0@pl) (1) — a2 {AG) ) (@ — o2 @pl o (2)
— = oA ) @ = oV e (),
(1.2.14)
where
1 0 0
0 1 0
gl = 0 ) 52 = 0 5 ) gN—l = 0
0 0 1

Now, we are ready to formulate the result we was looking for.

Proposition 1.2.5. (Connection formula type II1.) With the previous notation,
there exist real numbers {A,, ; };VZ ! such that

Bn(x) = An,0ﬁ71,(93) + An,l(x - C)Z’)\Ell(‘r)

+ Apa(z— )P, (@) + . 4+ Ap o (@ — OV TEN P ().

Infact, for1 < j < N —1,

~ ~(N— n — n N— —1-
Apj=omj (pn(c) pslN 2)(c)> (AEV),lMNl,l—i-ASV),lKL_l”(c, c)) 1ej,
and
—1
~ ~(N— n — n N—
Ano = 1+(pn(c) pg:N 2)(0)) (AEV)AMNL + A§V11K51712)(C7 C))
—pn(c)
195 ]2 1 1
Dy (c)
As\?)_l Hpnll + {As\'l;)_l}fl

D) () 1 1
[1pnl]?
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Proof. The set {po(x),...,pn(x)} is a basis of P,,. Then, we can expand the
Sobolev orthogonal polynomial B,, in terms of them as follows

n—1
Bu(x) = pu(x) + ) Buibi(@), (1.2.15)
3=0
where
5 SBu(@)sw)duta)
" |1D;1?
1 /a U pj(c
= 15112 (Bn(c) By, (c) BN 2)(0)) My_q jg
A§_N72)(c)

Putting the previous expression into (1.2.15), we obtain
K,—1(z,c)
K1 (z,¢)
YIRNIN A A(N-2) "
B, (z) = pu(x) — (Bn(c) ... By (c)) My_1 .
N—
K2 (w,0)

Taking derivatives up to order N — 2 and evaluating at x = c we obtain a system
that can be written in matrix form as follows,

(Bu(e) ... BN2() [1+MyakT (00| = (Pule) ... N

Finally, by using (T.2.14) we get

(©)-

Kn_1(z,c)

Bu(@) = pa@—(n(0) .. #NV(0) [1+ MyiK P (e0)| Mm( :
K2 ()
—If'n(CQ) 1
=@ (P . HNTI@) ML ARET ol || Al |
SN !

Hﬁnl\2

—an {AW )@ - ap (@) — an2 (A 3@ - o2@pl] (o)

— ...~ Qnp N— {A 1}71(33—0)1\] ten - 1PLNNE]1($)

2~[4] A[QN 2]

= Ap,0Pn(x)+Ap1(x— c)p @)+ An 2(x—c)°D,,_o(x)+.. .+ Ay N_1(z— C)N 1 Dy N+1( x)

|

Pn(x)
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where {4,, ; };V: " can be given in an explicit way.

1.3 Asymptotics

Our aim in this section is to describe some known results about asymptotics of
Sobolev polynomials to provide a historical framework for our contributions. As in the
standard case, three types of asymptotics for Sobolev polynomials have been studied:
strong asymptotics, nth root asymptotics and ratio asymptotics. We will focus on the
so called Outer Relative Asymptotics of orthogonal polynomials with respect to the
inner product (T.0.2). More precisely, we compare the asymptotic behaviour of the
Sobolev-type orthogonal polynomials with that of the standard ones by studying the
limit

lim Bu(2)
n—o pn(z)

where x does not belong to the support of the measure .

, (1.3.16)

The key idea for obtaining Outer Relative Asymptotics is to use the connection
formulas type I, II or III for the Sobolev-type orthogonal polynomials in the numerator
of (I.3:16). Then, the problem has been reduced to the study of the ratio asymptotics

lim PnlZ) (2)

Ay S (dw),

where p,,(x) could be either the n-th standard polynomial or another polynomial se-
quence orthogonal with respect to perturbations of the measure y appearing in the
connection formulas.

The techniques for the study of the problem change depending on the fact of the
support of the measure p is a bounded or unbounded set of the real line. For this reason,
we will divide our analysis in two subsections.

1.3.1 Bounded support

As we already mention, we will be interested in the study of families of polynomials
having ratio asymptotics. In the bounded case, a widely studied class of orthogonal
polynomials is the Nevai class of measures M (0,1) (see [77]). By simplicity, we
assume that the support of the measure 4 is [—1, 1]. More precisely, p will be in the
Nevai class of measures M(0,1), i.e. the recurrence coefficients in the three term
recurrence formula satisfy

lim b, =0, lim a, = =
n—x0 n—xL
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The Outer Ratio Asymptotics for measures y in the Nevai class reads as follows.

Theorem 1.3.1. (Outer Ratio Asymptotics) Let € M(0,1). Then

im 7pn(x) = p(x
L @ P

uniformly on compact subsets of C\supp(dp), where for z € C\[—1, 1] we define p(z)

by
p(z)=z++22 -1,

where we take the branch of \/z? — 1 for which |p(z)| > 1 whenever z € C\[-1,1].

As for the case of bounded support is concerned, we restrict ourselves to the case
of asymptotics for Sobolev polynomials orthogonal with respect to discrete Sobolev
inner products. As far as we know, the first paper in relative asymptotics for Sobolev
polynomials was [66], where the authors worked with an inner product in which first
derivatives appear. Some years later, in [47]], G. Lépez Lagomasino, F. Marcelldn
and W. Van Assche investigated the asymptotic properties for a class of polynomials
orthogonal with respect to a family of inner products that includes the discrete Sobolev
inner products with a finite number of complex masses located outside the support
of the measure. Since then many authors have made contributions in this area and
for a historical review of this period the reader is referred to [71]]. In Chapter[2] we
study a result on Relative Asymptotics of Sobolev-type orthogonal polynomials on
bounded support. Now, we only summarize the results necessary for understanding
this contribution.

It is well known that the Outer Relative Asymptotics changes according to the
location of the mass points with respect to the support of the measure. We distinguish
two cases:

1. The case of several mass points located inside the support of the measure was
studied in [90]]. Indeed, when one adds mass points inside the support of the mea-
sure, the asymptotic behavior of the orthogonal polynomials does not change.
The result reads as follows.

Theorem 1.3.2. If i/ > 0 a.e. then

tim Bol)
n—oow pn(x)

uniformly on compact subsets of C\[—1,1].

2. The situation is very different when we add mass points outside the support of
the measure. The parallel study was done in [57] for the particular case K = 1,
N1 = 1. In this case, we will refer to ¢; with c.
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We will denote by {¢, (x)}_, and {g,(x)}_, the orthonormal sequences with
respect to (¢ — x)du(x) and (¢ — x)?dp(x) respectively.

The Outer Relative Asymptotics depending on the positiveness of the coefficients
in the discrete part of the inner product is the following:

Theorem 1.3.3. Under the previous conditions we have
e For M >0,N >0,

T l;:((f)) _ p‘;(C) (1 B p(fﬁ))2

uniformly in compact sets of C\[—1, 1].

e For N =0,
t, 2o - (2509) " (1 29)

uniformly in compact sets of C\[—1, 1].
e For M =0,

i 20— (1-29) (-5

uniformly on compact sets of C\[—1, 1].

As we already mention, we will study Relative Asymptotics for certain Sobolev
type orthogonal polynomials. We will work with an inner product where the measure
w is assumed to belong to the Nevai class M (0, 1). It is well known that the support of
measures in that class is bounded and consists of the interval [—1, 1] plus a denumer-
able set of isolated points whose accumulation points are +1. Then, using techniques
given in [90], [S7] and [91]], we study the case of an inner product with mass points
located inside the support of the measure but outside [—1, 1].

1.3.2 Unbounded support

As far as we concern, there are no so many results in asymptotics for Sobolev-type
inner products when the measure p has an unbounded support. Despite the examples
related to Laguerre weights or Hermite weights very few examples are known. For the
historical context in this subject, we will consider a more general family of Sobolev
inner products. More precisely, we will deal with the inner product

(f,9) = Jf x)dpo(z) + ZJ £ (2) g™ () dpr (), (1.3.17)
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where dug, k = 0,1,...,m, are positive Borel measures supported on R. We
distinguish the following cases:

o All the measures dyiy, have a non-discrete set as support. In such a case we speak
of continuous Sobolev inner product or just continuous case.

e dug has continuous support and dyi1, .. ., du,, are supported in finite sets. In
this case, we are dealing with a discrete Sobolev inner product or Sobolev type
inner product.

In the case of continuous Sobolev inner products, for the case m = 1 we can find
three contributions [55} 74, [81] which can be situated in the context of coherence of
measures, all of them with Laguerre and Hermite measures. In [[12]], the authors studied
the case of dyg(z) = e=" dx and dyy (z) = Ae=%" dz. In particular, Relative Asymp-
totics for Sobolev orthogonal polynomials in terms of Freud polynomials associated
with the weight function w(z) = e=*" was deduced. In a more general context, in the
case m = 1 different types of asymptotic behavior of Sobolev orthogonal polynomials
with exponential weights were analyzed (see [34]). For a more detailed description on
the subject, the reader can see [56].

However, we will be interested in the case of discrete Sobolev inner products. As
a representative example, we focus our attention on the particular case of inner prod-
uct @]} when the measure p is the classical Laguerre measure, i.e., the Gamma
distribution.

In [18]], H. Duenas and F. Marcellan proved that the addition of a mass point at zero
does not modify the asymptotic behavior of these Sobolev orthogonal polynomials.
More precisely, they work with a non-diagonal inner product with only one mass point
at zero and their main results read:

Theorem 1.3.4. With the previous notation,

lim —
n—% Pp ('T

~—

uniformly on compact subsets of C\[0, o0).

In the same way as happens in bounded support, the addition of mass points outside
the support of the measure p modifies the asymptotic behavior of the Sobolev orthogo-
nal polynomials. This case was studied for the first time in [37]] and with our notation,
the results in outer relative asymptotics read as follows.

Theorem 1.3.5. [37) Theorem 5.6] Let us denote by Lﬁf”(x) and Bﬁ,a)(m) the La-
(1"

n!

guerre and Laguerre Sobolev type polynomials with leading coefficient equal to
respectively. For an inner product with K = 1 and N1 = 1, we get
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o [f M > 0and N > 0, then

o Bi(@) _ (ﬁ—W)Z
n—xL Lgla) (l‘) \/—713 + \/H ’

uniformly on compact subsets of C\[0, o0).

o I[f M =0and N >00r M > 0and N = 0, then

po B@) _ vr =
n—o lea)(m) \/jx + |C|7

uniformly on compact subsets of C\[0, c0).

The case of addition of mass points inside the support of the Laguerre measure was
unknown. In Chapter 3 we will deal with the study of asymptotics for Sobolev type
polynomials orthogonal with respect to when the mass points ¢ are located
inside the oscillatory regime of the polynomials.

1.4 Fourier series

1.4.1 Pointwise convergence

The pointwise convergence of Fourier series in terms of standard orthogonal po-
lynomials has been studied, for instance, in the particular case when y is the Jacobi
measure. The problem now is to determine under which conditions a function f satis-
fies

o8]
Z {f, BnyBn(xo) = f(x0), withxg € (—1,1), (Pointwise convergence)
n=0

where { B, (z)}_ is the sequence of orthonormal polynomials with respect to (1.0.2)).

Moreover, we will study the convergence of

S BB () = £9(er)
n=0

when My, ; > 0.

For the general case of the inner product (1.0.2), when p is the Jacobi measure and
all the mass points are located inside the support of the measure p, the problem was
solved by I. A. Rocha, F. Marcellan and L. Salto in [90]].
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For the case of only one mass point (KX = 1) located outside the support of the
Jacobi measure, the same result can be found in [57].

In both cases, the authors found two kind of conditions about the function f in
order to obtain the pointwise convergence of the Fourier-Sobolev series. The result
reads as follows.

Theorem 1.4.1. Let zg € (—1,1)\ U | {¢;} and let f be a function with derivatives
0)

at the points ¢y, such that f(if() belongs to L*(10.5). Then

Z@nwmwfm>

If My, ; > 0, then
ZKﬂ BB () = fD(ey)

Theorem 1.4.2. Let f(x) be a function with derivatives at the points ay satisfying a
Lipschitz condition of order 0 < n < 1 uniformly in [—1,1], i.e. |f(z + h) — f(x)]| <
M]h|" for |h| < 0 and for some § > 0. Then

SUF BuBa(a) = f(2), e (~11),

n=0

and the convergence is uniform in compact subsets of (—1,1)\ UX_, {ci}. Moreover,
at the mass points,

S BB @) = 19 (er)

n=0
provided that My, ; > 0.

1.4.2 Cohen-type inequalities

In this section, we present Cohen-type inequalities as a tool in order to prove diver-
gence of the Fourier series of orthogonal polynomials in weighted L? spaces.

The study of Cohen type inequalities began in the sixties of the previous century
and its seminal goal was to prove a conjecture stated by Littlewood in 1948 (see [36])
related to find an estimate from below for the L' norm of a trigonometric polyno-
mial. More precisely, Littlewood conjectured that for any trigonometric polynomial
Fg(z) = Z,If:l ape™ where 0 < n; < .-+ < ng, K > 2, and |az| > 1 for
1 < k < K, then the following estimate holds

27
J |Fr(z)|dx = Clog K. (1.4.18)
0
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is a lower bound for

Here C' is a universal constant. Cohen [14]] proved that % lololg LS
. g log K
the norm in (1.4.18|).

Since then Cohen type inequalities have been investigated by many authors in vari-
ous contexts and forms (cf. [22} 23| 35,169} 70, 80].) Even though Dreseler and Soardi
[22, 23] seem to be the first people who found Cohen type inequalities in the setting
of Jacobi expansions, it is worthwhile to point out that is due to Markett [70] the pre-
sentation of an approach admitting a simpler proof of Dreseler and Soardi result for
Jacobi expansions and stating the corresponding Cohen type inequalities for Laguerre
and Hermite expansions.

In the sequel, we will be interested in the Laguerre case, so we are going to focus
this section to analyze the Markett approach for Fourier series associated with classical
Laguerre polynomials. For more details, see [70].

This author considers two weighted L? spaces in his works, namely classical weighted

Lebesgue spaces:

{f : {SOL |f(z)e=*2[Prxda} /P < oo}, 1<p< oo,

w(a) —

{f esssup,olf(@)e 2 <}, p=o,

for &« > —1. Furthermore,

L = A 1 f @)u(e, a)lloo,ey < 0, ulz, ) = e a2y,

wherea>—71f1 p<ooand a = 0if p = 0.

Also, we use the notation L, ., where the subscript f(«) means either w(a) or u(a).

fle)

For a > —1, let {L%a)(x)};f;o be the sequences of normalized Laguerre polyno-
mials with leading coefficient equal to Gl

For f € L?(a) and {cxn}p_o,n € N U {0}, a family of complex numbers with
|en,n| > 0, let introduce the generalized partial sum operators 7,

T f) := Z Ck,nf(k)L](ga)v

k=0

-1
where f(k {So < (a) ) xaexd;p} S(; f(x)Ll(C“)(I)IO‘e*“’dil?, k=0,1,...
Let us denote ¢ = 3a+1’ when 8 = «, and o = 4, when § = pa/2, and let pg
be the conjugate of gg. The Cohen-type inequality for the family of classical Laguerre
polynomials is given by the following.
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Theorem 1.4.3. Let 1 < p < 0. Fora > —1/2,
2a42  2a+3
nor 2 ifa < p < po,
2a+1 .
T2z 1 = Clennl § (logn)iess  if p = po,p = qo,

2041 _ 2042

n 2 P ifg<p<b

Fora> =2/pifl<p<wanda>=0ifp= o0

n ifa < p<po,
T3 e 1 2 Clennl logn)s  ifp=po,p = qo,

1 2

n2" 7 ifqgo <p<b.

The main ideas for the proof of this result are the following:

e We can choose an appropriate test function g&/ in order to obtain the inequality

T3 (e

[ sup T (e )T -
n ] ~ 0#£feL? 1z . I " fle)

The idea consists to pick out a test function that will allow to reach the Cohen-
type inequality.

e The choice of Markett was

1/2
0 () e =02 | o () () (n+1)(n+2) et
g (@) =1 lm (@) ((n+a+j+1)(n+a+j+2) nt2 (@)

and the important characteristics of these functions are:

— They simplify the expression of the generalized partial sum operators in the
following sense

Ta(gn ) = Cn,nggJ (n)Lﬁf‘%
i.e., only the last term of the sum survives.

— We can estimate ||gn’]||LP( .
«

In the setting of Sobolev orthogonality the study of Cohen type inequalities is most
recent and it has attracted considerable attention, mainly when it is possible to use the
same (up to constant factor) previous test functions. For instance, the authors of [30,
83| have obtained Cohen type inequalities for Laguerre orthonormal expansions with
respect to discrete Sobolev inner products with only one mass point at ¢ = 0. Similar
results for Laguerre orthonormal expansions with respect to a non-discrete Sobolev
inner product appear in [27].
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1.5 Zeros

It is well known that the zeros of {p, (x)};-_, are real, simple and are located in the
interior of the convex hull of the support of p. They will be denoted by x,,; : Tn1 <
Tp2 < ... < Tpn-

Due to the fact we are working with a non standard inner product, the Sobolev
orthogonal polynomials lose this property. For instance, for polynomials orthogonal
with respect to the Sobolev-type inner product (T.0.2) with [—1, 1] as support of the
measure /i, it has been proved that n— N zeros of B,, () belong to [—1, 1] and the other
N zeros accumulate in [—1, 1]. For the case of unbounded support, parallel results can
be found. For more details on this subject see [67]].

1.6 Classical Laguerre polynomials

In the study of all aspects of Sobolev polynomials is quite frequent to explore for the
first time the case when p is a classical measure. There are three families of classical
polynomials: Jacobi, Hermite and Laguerre polynomials. For the computations in the
following chapters we will need to review the properties of Laguerre polynomials.

Laguerre orthogonal polynomials are defined as the polynomials orthogonal with
respect to the inner product

G.gba= | s@g@)ate s, a1 fgep (1.6.19)

The expression of these polynomials as an ; F; hypergeometric function is very
well known in the literature (see for instance, [41, [79} 95]). The connection between
these two facts follows from a characterization of such orthogonal polynomials as
eigenfunctions of a second order linear differential operator with polynomial coeffi-
cients.

For o > —1, let {Eg(x) % o LS (x)} i, and {LSLO’)(:E) *_o be the sequences
of monic, orthonormal and normalized Laguerre polynomials with leading coefficient
equal to (7n1!)"' , respectively. The following proposition summarizes some structural
and asymptotic properties of the classical Laguerre polynomials (see [38 39} [68]] and

the references therein.)

Proposition 1.6.1. The following statements hold.
1. Three-term recurrence relation. For every n = 1
wL8(x) = L1 (2) + B LS (x) + 7 Loy (2), (1.6.20)

with initial conditions ES‘ () =1,L¢@x) =2—(a+1), and B, = 2n+ o+ 1,
Y = n(n + ).
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. [95| p. 102] They satisfy the structure relation:

LD (@) = L (@) = L2 (),

. Foreveryn e N,

IZS|2 =T(n+ DT(n + a +1). (1.6.21)

. Hahn’s condition. For every n € N,

[Lo(2)]' = nLoF 1 (x). (1.6.22)

. The n-th Dirichlet kernel K,,(xz,y), given by

Kn(z,y) = ), Lel)Lily) (1.6.23)

satisfies the Christoffel-Darboux formula (cf. [|95 Theorem 3.2.2]):

Kn(,y) = — (Lg“(x)Lg(y)_Lﬁ(ms“(y)

|Lg2 (@ —y)

. The so called confluent form of the above kernel is given by

Ko, ) LY@ @) - LY @I @), n>0

(1.6.25)

|1Lg2 !

. [95] Theorem 8.22.3] (Outer strong asymptotics or Perron asymptotics formula

on C\R, ). Let o € R, then

L) (2) = %W—l/zem(_x)—a/2—1/4na/2—1/4exp (2(_nx)1/2)1.6.26)

X {pz_: Cr (e z)n M2 4 (’)(np/Q)} :
k=0

Here Cy(«; ) is independent of n. This relation holds for x in the complex
plane with a cut along the positive real semiaxis, and it also holds if x is in the
cut plane mentioned. (—x)_a/ 214 and (—2x) Y2 1must be taken real and positive
if v < 0. The bound for the remainder holds uniformly in every compact subset
of the complex plane with empty intersection with R ..
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8. [95| Theorem 8.22.2] (Perron generalization of Fejér formula on R,.. Let o €
R). Then for x > 0 we have

') (x) =nm 2egp—a/2-1/Ana/2=1/4 cos(2 (nx)1/2 —am/2 —w/4}
p—1
: { 3 Ap(z)n k2 4 O(np/z)}

k=0
= 2er 2y —a2=1/Ape2=1/4 5in (9 (nx)l/2 —an/2 —w/4}

- {g Bi(a)n 2 + O(nP/Q)} 7

(1.6.27)
where Ay (x) and By (x) are certain functions of x independent of n and regular
for x > 0. The bound for the remainder holds uniformly in [e,w]. For k = 0 we
have Ag(x) = 1 and By(x) = 0.

9. [I5| Theorem 2] (Alternative outer strong asymptotics). Let o > —1. The La-

guerre polynomial L%"’(a:) admits the following asymptotic expansion as n —

Q0

1 r 1
Lgloz) (!L‘) — 57_‘_—1/2 (n + o+ )ex/Z (_K/x)ftx/271/4 exp (2 (—K}.’E)l/2>

n!
d-1
X {Z By (o, z)n™™? 4 O(nd/Q)} )
k=0

for some coefficients By, (e, ) independent of n and r = k(n,a) = ol 4.
This modified expansion holds for x in the complex plane with a cut along the
positive real semiaxis, and it also holds if = is in the cut plane mentioned. The
bound for the remainder holds uniformly in every compact subset of the complex
plane with empty intersection with R ..

10. For everyn e N,

e o= [ L@ Pd(o) ~

11. [95] Theorem 8.1.3] Mehler-Heine type formula. For a fixed j, with j € N u {0},
if J,, denotes the Bessel function of the first kind, then

Lgla) .
lim Lo (@/(n+7)) _ =%, (2V7), (1.6.28)
n—ow n<
uniformly on compact subsets of C.

12. [4} formula (1.10)] Ratio asymptotics for scaled Laguerre polynomials:

S (R B

n=% L8 ((n + j)z) o((z —2)/2)
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holds uniformly on compact subsets of C\[0, 4] and uniformly on j € N u {0},
where ¢ is conformal mapping of C\[—1, 1] onto the exterior of the unit circle
given by

o(r) =z ++22—1, xeC\[-1,1],
with Va2 —1 > 0 when z > 1.



Sobolev type polynomials on bounded support

In this Chapter we study some analytic and algebraic properties of Sobolev-type
polynomials with respect to nontrivial probability measures with a bounded support on
the real line.

In Section we analyze the outer relative symptotics for a family of Sobolev-
polynomials orthogonal with respect to an inner product of the form with the
measure 4 in the Nevai class and the mass points located outside the support of the
measure. In Section [2.2] we deduce a new matrix interpretation of the recurrence re-
lation satisfied by the Sobolev orthogonal polynomial sequence in terms of a matrix
polynomial of the Jacobi matrix associated with the sequence of orthonormal poly-
nomials {p, (z)}>_,. The analysis of the connection coefficients for such sequences
constitutes a basic tool for such an approach. Finaly, in Section[2.3|we study the point-
wise convergence of the Fourier series associated with a family of Sobolev polinomials
orthogonal with respect to a Jacobi-Sobolev inner product with several mass points
outside the support of the measure.

2.1  Some background on asymptotics

Let 4 be a finite positive Borel measure supported on the interval [—1,1] with
infinitely many points at the support and let b;, k = 1, ..., K, be real numbers located
outside [—1, 1]. For f and g in L?(u) n C*[—1, 1] such that there exist the derivatives
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at by, we can introduce the Sobolev-type inner product

K Ny
Frgy = (Fr9) + 25 D) Miaf D (bk) g™ (br), Q.1.1)
k=1¢=0
with (f,g) = § f() du(z), My ; € C, and My, n, # 0. For convenience, we work

with another normal1zat1on of the Sobolev orthogonal polynomials. Let { B, (z)}*_,
be the sequence of monic polynomials of least degree such that

<Bn7p> = Oa pPE ]P)n—la

where P,,_; is the linear space of all polynomials with complex coefficients of degree
less than or equal to n — 1. The existence of B,, € P, for each n € Z, follows
from the solution of a system of n linear homogeneous equations and n + 1 unknowns.
Since | B, (z)[2du(x) = 1/72 > 0, we can define B,,(z) = 7, B,(z) and we have a
sequence {B,, ()}%_, such that

deg(Bn) <n, {(Bn,p)=0, peP,_i, f|§n(z)|2du(x) =1. (2.1.2)

It is clear that the polynomials B, are not orthonormal with respect to (@.1.11),
but it is possible to prove that, for 1 belonging to the Nevai class M (0, 1) and n large
enough, they are equal up to constant factors a,, with lim,,_,, a,, = 1. More pre-
cisely,

Lemma 2.1.1. [7 Lemma 2.2] For u € M(0, 1), the polynomials B,, satisfy the con-

ditions

(i) If My ; # 0, then lim,_. B (bk)
(i) limp o (Bn, By) = 1.
(iii) There exists a positive integer ng such that deg(gn) = nforalln = ny.
Recall that we denote by {p,(z)}>_, the sequence of orthonormal polynomials
with respect to u. In what follows, we assume that either p’ > 0 a.e. on the support of
wor € M(0, 1) with the additional assumption that none of the mass points by, belong

to the support of the measure p (cf. [77,87,(88]]). Let us consider N = ZkK:l(N;C +1)
and the polynomial

K
H x — by) Vet (2.1.3)

Let I, be the number of coefficients My, ;,7 = 0,..., N, different from 0 in
(@.1.10) and let Jj, be such that I, + J, = Ny + 1.
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In order to deduce asymptotic properties for the polynomials B,,, a successful strat-
egy is to find orthogonality relations involving the polynomials B, Pn, WN, and the
monomials (x — b;)™, form € {1,..., I} u {l,..., Ji}. Concerning this issue, we
have the following result.

Lemma 2.1.2. (i) Form =1,..., I,

[ Bu(x)pa() _
A | gy @) =0

(ii) If Ji > 0, then

i [©¥ @B @0 n (@)

d =0 =1,...,Jg.
oo (Zlf—bk)m M(x) y M ; sy Jk

Proof. 1t suffices to follow the proof given in [[7, Lemma 3.1], with the corresponding
modifications.

O

Lemma 2.1.3. For n = ny, the polynomial wn B, has the following representation in
terms of the sequence {p,(x)}_, of orthonormal polynomials with respect to [i.

2N
wy(2)Bp(z) = Y An jpnin—j(x), Ano #0. (2.1.4)

Jj=0

Moreover, A, j are bounded and A,, on = '{(p"‘N; L (B, B,) # 0.

K(Pnt+nN) An,o0
Proof. (2.1.4) is an immediate consequence of
| (@) Ba @i (2)duo) = Bviond.

Thus,

oN
Ani2:Jw2 z an 2du(z) € max w3 (),
2l = [AEIB ) < s )

H(Bn)

An,O = J’wN(a?)Bn(l')pn+N('r)du($) - ,‘{(anrN)7

Aoy = f wn (2) B (2)pnen (@)dja(x) = (Buy wxPron
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Therefore, the coefficients A,, ;, 0 < j < 2N, are bounded, and A, o, A, 2N
satisfy

O

We can already provide an alternative (and more simple) proof of a well-known
result about the outer relative asymptotics for the polynomials B, which is a special
case of [47, Theorem 4]. We denote by T the jth Chebyshev polynomial of the first
kind and by % () := x ++/22 — 1 with the assumption that the square root is positive
forz > 1.

Theorem 2.1.1. [47, formula (1.10)] Let i be a finite positive Borel measure in the
Nevai class M(0, 1), such that all the mass points by, ¢ supp p. Then the polynomials

(Bn(z)}2_, satisfy

() (0" () — " (b)>\ ™
i, 2 () H(w 2o (@)~ by) ) @19

uniformly on compact sets of C\supp .

Proof. Since p e M(0,1),

wn(@)Ba(r)
}Jéﬂm —;JAJ(sO (z)) (2.1.6)

uniformly on compact sets of C\supp .

Now, we are going to show that the A;’s are completely determined for any se-
quence of nonnegative integers A. In order to do it, we need to obtain a factorization
of the polynomial Z?fo Azl

Since by, ¢ supp 1, 1/(x — by,)? are continuous functions on supp u1. Hence, for a
fixed k € {1,..., K}, by orthogonality, (2.4), and the weak asymptotic property (see
[7, formula (2)]) we getfore =1,..., N + 1,

Mo AT(@)  da

(z—by) -2
2.1.7)

tim [ B ) (@)dp() = WJLI

neA (.’17 — bk)Z

According to the residue’s theorem, (2.1.7) means that the polynomial Z?]:VO Ajzd
has a zero of multiplicity at least Ny, + 1 at ¢~ (b,).
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On the other hand,

) wn (@) P71+N( )
nl]:»j\]‘l)J-(z,b )Nk+1 Bn(= ) —b)™ du (@)

Pn+N(-’E)
(z — b )™

m—1 1 wn @) .
= lim _eN_ — o) (= by )™ .
= »f{_,:o T <(I—bk)Nk+1 ) Cp)(@ —bR)” + (@ = bp) T N—Ny —1 m(’)} du(@)

m—1 ; wN ) P (x)
. A +N
= lim —————B Q )J n
n—> j;(l 7 <(m o) NeTFT n) k

dp(x) = 0,
— by )m—J

where 7,4 N_N,—1—m 18 a polynomial of degree n + N — N — 1 — m and the

last equality holds as a consequence of the following two facts (cf. [7, the proof of
statement (i) of Lemma 3.1. and Lemma 2.3])

Q)
nle—1-01 WN . (41)
lim B, b
M o 0 <<x ) 0
nle—1-jx, WN o\ U
= = lim By, bi) =0,
i (o) 00
where j; < jo2 < --- < jj, are the non negative integers corresponding to the
masses My, ; = 0.
(ii)
. m—j
1 —1)m—J 1
lim Jp7L+N(x)pn+N(,bk)dM($) _ ( ) ,
n—o pm—i—1 (x —by)m—J (m—j—D'\ /b -1
(2.1.8)
for each by, and m — j > 0.

Then ¢~ (by) is a zero of the polynomial Z o Aj27 of multiplicity at least Ny, +
1+ I.

From statement (i) of Lemma[2.1.2} we have

. WN(x)Bn(x)pan(x) _ _
JE%J @by W@ =0 m=1

N +1—1I.
As a consequence,

lim WN(x)Bn(x)pn—N( J Z] 0 A Tan— J( ) dz =0
neA ($—bk)m x—bk) 4/1_‘1:2 ’
(2.1.9)
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form =1,..., Ny + 1 — I. Hence, (2.1.9) means that o (b,) is a zero of the poly-
nomial Z?fo Ajz7 of multiplicity at least Ny, + 1 — Ij,.

Therefore, Z?fo A2 has the following factorization

2N K
> 427 = A [ (2 = 7 ()Y (2 = (o) V41,
= k=1

and for z = ¢~ (z) we obtain

K

2 AT (@) = 1_[ P~ ()M (07 (@) — o (br)) VT
- (2.1.10)

If = tends to infinity, then we find Ag = Aan Hszl(gp_(bk))QI’c and having in

1
mind that AgAany = N we can deduce that

K
T e el
2N = 2N )

and this last equation determines completely A; for any sequence of nonnegative inte-
gers A. Also, from (2.1.6) and (2.1.10) we can deduce that

fim wn () Bn(z) Hk Lot (o) 5 TT (e (@) — ¢ (o) Ve F 1+ (o (@) — o (b)) V1T

n—o  p,4N(T) 2N P}

K
- ziw H o (bi) 1 (07 () — @~ (b)) NEH IR (0 (2) — o (b)) Nr 1T

(™ (@) — o~ (b)) (™ () — @F (br)) N+

_ 1A +<bk>|fk< (&) — o~ (b)) x
SN E[ (o= () — T (by)) x

Finally, taking into account the outer ratio asymptotics for orthonormal polyno-
mials associated with measures in the Nevai class as well as the fact that

wy(z) = NH )2 = 2bpp () + 1)Vett (2.1.11)

on compact subsets of C\supp n, we get

CBue) 151 (@) -t )\
% (@) ‘H<|¢+<bk>| 26+ (@)@ — by) ) |

O O
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Remark 2.1.1. When by, € suppp, k = 1,..., K, for instance, {ak‘}kK:l1 and {b;}fjl
are the mass points of p on [—1,1] and the mass points of p on supp p\[—1, 1], re-
spectively, fork =1,... Kiandj=1,... Ky, K = Ky + Ko, it was proved in [7]
Theorem 3.1, (i)] that for u € M(0, 1) the following outer relative asymptotics holds

uniformly on compact subsets of C\supp p.

m Bn(x) B L® 1 (@+(x) —<p+(b;€))2 Iy,
" () _ﬂ<|¢+(b;)l 207 (z)(z — b)) > ’ 2.1.12)

where {q,(z)}~_, is the sequence of orthonormal polynomials with respect to the mea-
sure v € M(0,1) defined by v = 1 — 352y pu({ar})da, — Sp2y ({04 })n,

Even though in the previous proof we follow the ideas of the proof given in [[7,
Theorem 3.1], it is worthwhile to point out that the existing difference between the
arguments of both proofs is the use of Lemma which is necessary for us since we
do not consider the mass points of p inside supp .

2.2 Matrix interpretation

Next, we will assume that the values M ; in the inner product (@.1.11)) are non-
negative real numbers. In such a way, no = 0 in Lemma and we can define the
sequence of orthogonal polynomials { B, (2)}_, with deg(B,,) = n. Thus, it consti-
tutes a basis of the linear space P.

Lemma 2.2.1. The polynomial B,, has the following representation in terms of the
sequence {p,(x)}-_ of orthonormal polynomials with respect to p.

Bu(z) = ) anjpj(@) 2.2.13)
7=0
where
P
n,n /{/(pn)7

K Ng o .

g == 20 O3 My BE (b)p) (br), for 0<j <n—1.
k=11:=0

Proof. By the orthonormality of p,,, we have

- JBn(x)pn(w)dﬂ(x) =T, an(x)pn(x)du(:c) = o
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For 0 < j < n — 1, using (2.1.2) we have

aw=jémmmmww)

K Ny
= Bupiy— Y. > MBS (b)p! (be)
k=11=0
K Ng o )
= = 37> M BY (b)pl (br).
k=1¢=0
] ]

Lemma 2.2.2. The polynomial py, has the following representation in terms of the
sequence { By, (z)}>_,.

= > BuiBj(@), (22.14)
j=0
where
. K Nj
Prn = = = Z Z My, ;p$ (b)) BY (by),

(Bn, Bpyk(p )
1 K Ny
6"»J2<B By g; kD (b)) B Z( k), for 0<j<n—1.

Proof. This is a straightforward result that follows by using the same arguments as in
the previous lemma.

O

In order to write in matrix form, we introduce the following notation.

. . . T
B= (By(z), ... ,Bun(z), ...) ,
T
P = (po(x)7 coo (T, ) ,
and A is the following lower triangular infinite matrix

Q0,0 0 0
aro o1 O
Qa0 Q21 Q22
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Then B = AP and (2.2.13), (2.2.14) and (2.1.4), respectively, can be written in
matrix form as follows.

- T
Bn(x) = (an,07 s 7an,n) (po(x)a s 7p77(‘r)) )
. . T
pn(x) = (ﬂmo’ vﬁn,n) (BO(CU)’ aBn(x)) )
and
A T
wn (z) By (x) = (An,2N7 cee 7An,0) (Pn—N(I), S ,pn+N($))
N R T
= (Anaon, oo Ano)H (Bo(x), ... ,Bnin(z)) .
where H € R@N+1)x(n+N+1) i5 the Hessenberg matrix
,3an70 ﬁanyan 0 0 0
H=1| Buo ... Bamex ... Bum 0 0
ﬂn+N,O e ﬁn+N,n—N .. Bn+N,n /Bn+N,n+1 e /8n+N,n+N
Now, we decompose
[/ Bo(x) 0 T
[ anNfl(l') . 0 —
H 0 | Buon(@)
| 0 Bnin(z)/
Brn-No - PBn-Nn-N-1 Bo (x) anN(m)
: : +H| o],
Bn+N,o - DBreNn—N—1 Bn_N_1(x) Bn+N(a:)
where H is the matrix obtained from H deleting its first n — IV columns, i.e.
ﬂn—N,n—N e 0
H= :
,Bn+N,n7N e ﬁn+N,n+N
Having in mind that wNBn(x) € span(Bn_N, ce Bn+N) it follows that
Brn-No --- Bn—Nn—N—1
(Apon, - ,Ano) : : =(0, ... ,0).

ﬁnJrN,O ﬁnJrN,anfl
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Finally, we obtain

wn(2)Bo(@) = (Anans o Ano) H (Bun(@), - Buin(@)”

These remarks can be summarized as follows.

Proposition 2.2.1. The sequence of polynomials {Bn (x)}_, satisfies the following
recurrence relation.

A 2N A
WN(x)Bn(x) = Z ijBnJerj(x)
=0

where

6n—N,n—N s 0
(Cn,2N7 cee 7Cn,0) = (An,QNa cee 7An,0) :

BnJrN,an e /B’ﬂ+N,TL+N

On the other hand, according to Lemma[2.1.3]and Lemma[2.2.1]

An,j = JWN(m)B7L(x)pn+N—j (l‘)d,u(z)

= <wNBn7pn+ij> = <anwan+ij>

n
= <Z Qn 1PL, wan+N—j>
=0

n
= Z Oén,l<Pl> wan+N—j>'

=0

But,

{WNPraN—j D) = [WN(S)]ntN—j1s

ie., {wNDnt+N—j, pryisthe (n+N —j, 1) entry in the (2N +1)-diagonal matrix wy (J),
where J is the Jacobi matrix associated with the measure (i, i.e. the matrix associated
with the multiplication operator in terms of the orthonormal basis {p,(x)}_,.
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Notice that

n n

Anon = Z o 1 [wn(J)]n—Ng = Z am i [wn () ]n=n1
1=0 l=n—2N
Apaon-1 = Z an i [wn()]n=N+1,1 = Z an i [wn () ]n=Nt1,
1=0 l=n 2N +1

An70 = Z an,l[wN(J)]n-ﬁ—NJ = anm[WN(J)]n-Q—N,n-
=0

Thus,

[WN(J)]n—N,n—2N () 0
(A"’QN’ T ’ A"L’O) = (O‘n,n—zN; cee 70tn.n) : . .

[WN(J)]n—N,n cee [WN(J)]TI+N‘11,

As a conclusion, from Proposition[2.2.T| we obtain

(cnkzN, ,cn70):
[wN(Dlp—Nn—2N - 0 )(Bn—z\z,n—N 0 )

(O‘n,n—Z’NY =<"n,n)

[“"N(J)]an,n [WN(J)]n+N,n Bn+N,n—N Bn+N,n+N

This yields the relation between the parameters of the recurrence formula for { B, ()},
: 2N
in terms of {cv, ;}7_,, oy and {Bn— N1k, }izo-

On the other hand, from Lemma[2.1.3]

wyB = HP.
Here H denotes the 2N 4 1 banded infinite matrix with entries hy ; = Ap prn—j »

k— N < j < k+ N, and 0, otherwise.

Given C = (co(x),...,cn(x),...)T and D = (do(z),...,d,(2),...)T, we will
denote by (C, DT) and {C, DT’) the infinite matrices whose entries are (c;(z), d;(x))
and {c;(z), d;(x)), respectively.

Since (P, PT) = I, we have

H = (wyB,PT)=®B,wyP?) =B, P wy(J]))
(AP, PTYwn(J) = Awn(J).
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From Proposition we get
WNB = SE,
hence S(B, B> = (wyB,BT). Here S is the 2N + 1 banded infinite matrix with
entries sy ; = cppenN—j - kK — N < j < k + N, and 0 otherwise. But {wyB,BT) =
(wnB,BT)= (HP,PTAT) = HAT. Taking into account that (B, BT = Disadi-
agonal matrix according to the orthogonality of the polynomial sequence {B,,(x)};r_,

with respect to our Sobolev inner product, then SD = HA” and we get the following
result.

Proposition 2.2.2. The matrices S and wy (J) satisfy the following connection relation

SD = Awn(J)AT. (2.2.15)

For an alternative approach based on LU and U L factorization see [17].

2.3 Fourier series

We are interested in the study of the pointwise convergence of the Fourier series ex-
pansions in terms of the polynomials { B,,(x)}~_ orthonormal with respect to (.1.11))
when g is now the Jacobi measure. Our idea is to generalize some results given in [57]
for the case of only one mass point outside supp . In order to do this, we need some
pointwise estimates for the polynomials B,, and its derivatives at the mass points b.

We will say that a measure p belongs to the Szegd class and we will denote it by
we S ifsupp (du) = [—1,1] and

b on g/ ()

——— > -
—1V 1-— Z‘Q
It is well known that if {p, (x)}_, is the sequence of orthonormal polynomials with
respect to some measure A € S, then
/
pn(T)

outside the support of the measure.

The following result generalizes the above property to derivatives of higher order.

Lemma 2.3.1. Let A € S. Then, for each 1 < k < n we have

pn () _ O (n*), (2.3.16)

uniformly on compact subsets of C\[—1, 1].
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Proof. Since A\ € S, the polynomials p,, satisfy the following outer strong asymptotics
(see [95]):
D(X,0)2"(x)

pn(z) = (1+0(1)),

D()‘v 2(1)1(93))
uniformly in compact subsets of C\[—1, 1], where D(\, ) denotes the Szeg6 function

(" 1+ze ™

D\ 2) = exp{— | log N(cost)—— 2
(0.2) = exp{ - Lr o8 X (cost) 1ot}
for |z| < 1, and
+
o™ ()
B(z) =
(@) = £
Finally, (2.3:16) follows by estimating the kth derivative of ®"(z). O
Let
K *
on(w) = [ (e — )",
k=1
where N = 37 | N and
vr [N+ if Ny, is odd
TN, + 2, if N, is even.
and let us denote Wy (z) = %
(z—by) "k

Lemma 2.3.2. Let {q,(x)}/_, be the sequence of orthonormal polynomials with re-
spect to Oy (x)dp(z), where € S. Then, for 0 < m < N} we get

1
J gn () (2 = b)) NE TN g (2)dpu(z) = O ("™ (0k))") - (2.3.17)
-1
In particular,

1
| an@du@) =0 (1)) .3.19)
-1
Proof. We prove (2.3.17) by induction on m. For m = 1 we have

| an@)e = b)¥ o @)duto)

= f G () (@ (k) + T2 (2) (2 = bi)) (2 = bi) ™ o (@) dpa(w)

1
- j @) =)™ oy p(e)dulz) = O (0 00)").
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where IT,, 1 () is a polynomial of degree at most n— 1. For m = 2, using the previous
case and Lemma[2.3.T] we get

L (@) (z — b)) 20Nk (2)dp(z)

- qn(lbk) J_l @ (2)(qn(br) + ¢, (b)) (z — b)) (x — b)) V% ~2Q0n p(z)dpu(z)
an (o) (* *
~ g | @ - @)
1
= qn(lbk) J ) @ (z)(x — bk)N’?iz(ﬂN,k(m)du(x) +0 (n(gf(bk))”)

Now, let assume that (2.3:17) holds for every positive integer i < m, i.e.
1
| anlo)e = 0¥ oy p(@)due) = O (e (00"
-1
Then, using again Lemma[2.3.1] we obtain

1
| a@e =) @i

1 mo1 () )
mf 1 @ (q" (bx) + Z (z = bg)* ) (x — b)) "o k() dp(a)
-1 (i) !
-2 (57)) || o) = by @) ua)
1 (! .
= m J; qu(z)(x - bk)N" wN,k(x)d/u(z)
+ Z O (n') O (W1 (g™ (bx))")
m—1
= ((e7BD)") + 2, O ("M @™ (Br)") = O (0" ()" -
Finally, taking m = N} we obtain (Z.3.T8). O

Let ITj ; (x) be the polynomial of least degree such that the following conditions
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hold
I)(b) = 0, t#k j=0,..N,
(b)) = 0,ifj#1,
nee) = 1.

If My, ; > 0, then, for n large enough, if { B, (x)}~_, is the sequence of orthonor-
mal polynomials with respect to @.1.11) we have

1
0= (B, ;)= f B (2) My, i(z)dp(x) + My B (by),
1

and, as a consequence,

: 1
B -

L By (@)L 4 () dp()

Defining C' := max,e[—1,1] |H,i(7)|, we obtain the following estimate

‘Bff)(bk)‘ < : (23.19)

1
< W Ll B (z)du(x)

Then, using the same arguments as in the proof of Lemma [2.1.3] we can deduce
that

N
B, (z) = Z D,, jqn—j(z), with{D,, ;}_, bounded sequences for j = 1,..., N.
7=0
(2.3.20)

Therefore, in order to estimate B (bi), we only need to use (2.3.18) in the fol-
lowing way

1

. C C 1 N
00| < 5 || Be@dn@)| = 57| [ 3 An o s@iuto)
ki 1J—1 ki [J-1 75
C/ N 1 Cl N " ,
n—j(x)d = [0) — DAL (b))
s |25 ) s @inte)| = 551320 (10 =900 )

These remarks can be summarized as follows (see also Corollary 3.4 in [57]).
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Theorem 2.3.1. If s € S and the index k € {1,. .., K} is such that My, ; > 0, then

[BOb)| = 0 (n¥F o™ (b)) - (2321)

A straightforward pointwise estimate for the orthonormal Jacobi-Sobolev type po-
(o, 8)

lynomials By, "’ in the interval (—1, 1) is the following.

Lemma 2.3.3. Let jio g be the Jacobi measure with parameters o, f > —1. Then the
orthonormal Jacobi-Sobolev type polynomials B,(f‘ﬁ ) satisfy

‘B( @8) (g )‘ < Ch(z), forz e (—1,1) andforall n, (2.3.22)
where h(x) is a function depending on the parameters o, (.

Proof. Using the same arguments as in the proof of Lemma[2.1.3] we get a connection

formula between Jacobi-Sobolev type polynomials B,(LO"”B )

polynomials pﬁl h)

and the orthonormal Jacobi

WN (.’,E ”H) Z An,jpgj.?\/ —j )

with bounded coefficients. Then, there exists a positive constant C' such that, for every
reR,

()B(aﬁ) ‘<C Z

e ‘ (2.3.23)

Moreover, it is well known that the orthonormal Jacobi polynomials pgl h) satisfy

the pointwise estimates [80, 95]:

1 1
pga@(x)‘ <C oa>—3, B>-5 (324

1 1
‘pgg,@(x)‘ <C -l<a<-—3, -l1<f<—3, (2329

(1)t i(1+a)sts

forz e (—=1,1).

From (2.3:23)-(2.3.23)) the pointwise estimate (2.3.22)) follows. O

Finally, regarding Fourier series in this setting, for an appropriate function f the
pointwise convergence of the Jacobi-Sobolev Fourier series to f on the interval (—1,1)
is standard and the corresponding results are a straightforward consequence of those
given in [S8]]. We refer the interested reader to [38), Theorems 4.1-4.3 and Lemma 4.1],
more precisely.



Modified Laguerre measures and kernel
polynomials. Asymptotics.

In this chapter we study asymptotic properties of the polynomials orthogonal with
respect to modified Laguerre weights.

Let dyu be a nontrivial probability measure supported on a subset of the real line.
Several examples of modifications of the measure i have been studied in the literature.
In particular, it is worthwhile to point out the three canonical cases studied in [97, 98]

o Christoffel transformations:
N

dii(e) = [ (@ — &)du(a), & ¢ supp (dp). (3.0.1)

i=1

e Geronimus transformations:

di(z) = + Z M;é(x —n;), n; ¢supp(dp). (3.0.2)
1_[7 1(
e Modification by a rational factor:
N
A =1\ — &i
die) = =178 oy e g (an). G03)

152, (= mn))



42 Modified Laguerre measures and kernel polynomials. Asymptotics.

Now, we are going to focus our attention on the first type ogyerturbation. We will
modify the measure by the multiplication by the polynomial [ [,_, (z — as)™*, where

K
Z N, = N.
k=1

Let {LL“’N] ()}, denote the sequence of orthogonal polynomials with respect
K

to the modified Laguerre measure dyq, n(z) = H(:c — ap)Vez®e %z, a > —1
k=1
and ay < 0, normalized by the condition that LLQ’N] () have the same leading coeffi-

cient as the classical Laguerre orthogonal polynomials L%a)(a:) = 0l (z), i.e. with

=

n!

leading coefficient equal to

Some structure formulas for this family of polynomials have been studied in [28].
Indeed,

Proposition 3.0.1. /28 Proposition 2.1.] For N = 1, the following relation holds:

(@ = &) LN (2) = —(n+ )LL)

LY ey)
LL&,N—I] (gN)
Proposition 3.0.2. /28 Proposition 2.2.] We have

+(n+1) LieN=(), n>1.

LItV () = LN () — AN LV (),

where

e <n + 1>N 1] Lo )L
no) L e L)
Corollary 3.0.1. /28| Corollary 2.3.] For N = 1, we have

(z — en) LN (@) = —~(n + D)LY (@)

Ll N ey

LleN=(g), n>1.
L (ew)

+(n+1)

With the previous relations B. Xh. Fejzullahu obtained some asymptotic properties
that we summarize in the following:

Proposition 3.0.3. /28 Proposition 2.4.-2.5]

(a) Uniformly on compact subsets of C\[0, o0),
a—1,N

1/2 7[1+1 ](I)

n—w LLQ’N] (LL')

- J=z.
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(b) Uniformly on compact subsets of C\[0, o),

[o, N ]
lim L

n—a0 nN/2L(0) et \/jx+ﬁ)

:]x

(¢) Uniformly on compact subsets of C\[0, o),

LM @/ + ) _ 1 ol
lim N2 ™
e e [T (V=ar)™

where j € N U {0} and J,, is the Bessel function of the first kind.

Ja(2V/z),

(d) Plancherel-Rotach type outer asymptotics for L Ny

i 204 ) (¢((m ~2)/2) + 1>N
"L (0 + ) z :

where
() =z++V22—-1, zeC\[-1,1],

with /22 — 1 > 0 when x > 1. This asymptotic holds uniformly on compact
subsets of C\[0,4) and uniformly on j € N u {0}.

In this chapter, we restrict ourselves to the case K = 1, i.e. we will work with
iterations of Christoffel perturbations. For this modification of the Laguerre measure,
we obtain estimates for the norm of the perturbed polynomials as well as a generalized
Christoffel representation formula for them. Finally, we focus our attention on the
study of the asymptotics of kernel polynomials associated with the Gamma distribution
as well as the asymptotics for the partial derivatives of such polynomials.

3.1 k-iterated Laguerre polynomials

Using a k-iterated Christoffel transform of the measure (i, to the best of our knowl-
edge, a fifth type of Laguerre expansions can be introduced. This family of functions is
called k-iterated Laguerre polynomials, and it is constituted essentially by polynomials
orthogonal with respect to the modified Laguerre measure (z — ¢)*du(x), for k € N
fixed (see [131193].) Note that the modified Laguerre measure (z —c)*dyu(x) is positive
when either k is an even integer number or k is an odd integer number and c is a real
number located outside the support of u. Furthermore, it is very well known that, when
k = 1 and c is outside supp p, these polynomials are actually the kernel polynomials
corresponding to the moment functional associated with x4 and the K -parameter c [[13}
Sec. 1.7].
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In the sequel we will denote by { L™ (2)1%_, and {L{"1F ()} the sequences
of orthonormal and normalized k-iterated Laguerre polynomials with leading coeffi-
cient equal to (—n1!)"’ respectively. It is clear that for £ = 0 these sequences coincide
with the orthonormal and normalized Laguerre polynomials with leading coefficient

%, respectively.

The next Proposition gives the ratio asymptotics for k-iterated Laguerre polyno-
mials with consecutive indexes of iteration.

Proposition 3.1.1. [28 page 79] The limit

a),lk
i L@ :
n—w n1/2L£LO‘)'r[k71] (LL') A/ —T +/—¢C

holds uniformly on compact subsets of C\[0, 00).

(3.1.4)

The Mehler-Heine formula for k-iterated polynomials is just a particular case of

Proposition [3.0.3] (c).
Proposition 3.1.2. Uniformly on compact subsets of C\[0, c0),

(a),[k] ;
lim Ln 77 (@/(n+7)) _ ! kxfa/2<]a(2\/§)a

n—o notk/2 (\/H)

where j € N U {0} and J,, is the Bessel function of the first kind.

3.1.1 Estimates for the norm of k-iterated polynomials

In this section, we obtain some estimates for the norm of the k-iterated Laguerre
orthogonal polynomials and Laguerre-Sobolev type polynomials, respectively. In ad-
dition, we complete our study by deducing a connection formula involving different
families of k-iterated Laguerre orthogonal polynomials. It is worth to mention that this
is a result of independent interest.

Proposition 3.1.3. For a > —1 we have

hle)lkl . — f [ RN ()2 (2 = e)Fdpu(z) ~ n®HF k>0. (3.1.5)
0

n n

Proof. First of all, we proceed by induction on k in order to prove

(@) k] (c) ~ 1,(e),[k] (¢), k=0. (3.1.6)

n+1
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For k = 0, from Perron asymptotics formula (I.6.26), we obtain LSL +)1( ) ~

L )( ). Assuming that (3.1.6) is true for i < k — 1, we use this induction hypoth-
esis for i = k — 1 and (3.1.4), as follows

LNy L@y plenbetl g pe k-1 )

n+1 _ n+ n n+1 ~1
Lﬁf“)’[’“](c) Lﬁ_)i[’f—l](c) Lﬁf“)’[k](c) lea),[k—l](c)

Finally, the estimate (3.1.6) together with [68] equation (9)] yields (3.1.5).

3.1.2 Representation formula for k-iterated Laguerre polynomials

We complete our study of k-iterated Laguerre orthogonal polynomials by giving
a representation formula. The following lemma has been used repeatedly in order
to obtain representation formulas involving different families of Laguerre orthogonal
polynomials (up to multiplication for the corresponding weight functions):

Lemma 3.1.1. /8l p. 1192] (Askey inversion formula). Let w and w;y be positive
functions on [0, 00) such that w? /wy € L*[0,0). Let {p,(x)}_, and {q,(x)} _, be
the orthonormal polynomials associated with w and w1, respectively. Then if

n
= Z Ck,nPk (l‘)
k=0

we have

v el
x) = Z ChnGn(T)wi(x), 3.1.7)
where the above convergence of the series is taken in the appropriate L? space.

However, this method can not be applied in order to obtain a connection formula
for k-iterated polynomials as that for classical Laguerre ones given in [70, equation

(2.15)] due to the fact that the function & does not belong to L' (z%e~%dx). An
alternative method is presented in the followmg proposition and, in addition, we obtain
estimates for the coefficients appearing therein.

Proposition 3.1.4. The following connection formula holds.

J
(z — c) L) = Y (o) L), for1<j<k,  (3.1.8)

m=0
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where G, j (0, n) ~ (—l)m(gl)n] In particular, for j = k we have (generalized
Christoffel representation formula)

7
(@ = LW (@) = Y apmj(a,n) LY, (@).

m=0

Proof. We proceed by induction on j. For the case 7 = 1, the Christoffel formula reads
(see [13} Sec. 1.7])

(@),[k—1]
o) i L) e
(z = L W(2) = —(n + )L 1]<x>+(n+1)L<5T[k_l]( )L‘ P (@),
n c

and, using (3:1.6), we obtain

L( )1[k—1] (c)

L=ty T

ag1k(e,n) = (n+1)—

For j = 2, itis enough to note that (x—c)zL%O‘)’[k] (z) = (x—c) [(m - c)L%a)’[k] (x)]
and, according to (3.1.9), we have
(=0 LM @) = az o (0 ) L7 (@) a2 w00 m) T @) a0 2000, m) LM @),
where

a2 k(a,n) =(n+1)(n+2) ~

(a),[k—2] (o), [k—1]
L, (C) 2Ln+1 (C) 2
a19x(o,n) = —(n+1)(n+2)7+2 (n+1)2=2 2« 9p?
v LSer)l[k Te) L e

(a),[k—1] (a),[k—2]
L (c) L (c)
_ 27 n+1 n+1
ag2,k(c,n) = (n+1) (1] (©) lea),[k—2](c)

NTL2.

Let assume that

(x—c)” 1L [k] Z Am,j—1,k (0 n)ngﬁnEk J+1]( ),
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where @, j_1,5(c,n) ~ (=1)™ (7. ")n/ 1. Then,

—1

(z — )’ LS () 2 am j—1,x (0, n) (@ — )L I ()
m=0
Jj—1 (o[ (a), [’C—lj](c) (o). ki1
= n+m+ a),[k—j
= 3 amjorlen) | —(n+ DL @) + (0 + 1)W]]()Ln+m P (x)
m=0 n+m

J
= 3 amnlam) L @),
m=0
with
L(a) [k— ]](c)
ao,j,k(a,n) = (n + ag,j—1,k(a, ")WJ]() "

a),lk—j
Ly (c)

gk (@) = = (4 D151k (00m) + (14 Datn 1,100 m) 0557 —
n+m (C)
_mj_lj _mj_l j__mjj o
=1 (m—l)n (=0 (m Jnd = (1) (m)” l<m<j—1,
ajj k(o n) = —(n+1aj_1j-1k(a,n) ~ (~1)/n?,
and this proves ((3.1.8).

3.2 Kernel polynomials associated to the Gamma distribution

As we already mention, when k£ = 1 and c is outside supp p, the k-iterated poly-
nomials are actually the kernel polynomials corresponding to the moment functional
associated with y and the K-parameter c [[13| Sec. 1.7].

Recall that we denote

n La fe%
Kalz,y) = 3 ZEOLW) (3.2.10)
=0 (I, Ig
and its partial derivatives
0ITFK,
M:K““(z y), 0<i,j<n. (3.2.11)

0xJ Oyk

This kernel function satisfies important properties such as the reproducing property:

Proposition 3.2.1. If q is a polynomial of degree less than or equal to n, then

y) = j Ko (2, y)q(z)du(z).



48 Modified Laguerre measures and kernel polynomials. Asymptotics.

In particular, since K,, is a polynomial in y of degree n, we have
Koo 2) = [ K)o 2)du),

In addition, kernel polynomials appear in a natural way in the expression of the n-th
partial sum of a Fourier expansion. If we denote by {p,, ()}~ a system of orthogonal
polynomials with respect to the inner product {-, -», the Fourier orthogonal expansion
of a function f in terms of the orthogonal polynomial sequence {p, (x)}_, is defined
by

o0
= nPn\T), n s Pn
3 Fopale) <pmpn><f Pa).
The n-th partial sum S, f is defined by
= X Bnle) = <Kl

3.2.1 Asymptotics for the partial derivatives of kernels

Our goal here will be to analyze the asymptotic behavior of the partial derivatives
of the diagonal Christoffel-Darboux kernels corresponding to classical Laguerre ortho-
gonal polynomials (in short, the diagonal Laguerre kernels).

Then, for ¢ € R, we will study the asymptotic behavior of K (¢,c), 0 <
J k< n.

To the best of our knowledge, asymptotic properties of the Laguerre kernels K ,(LJ k) (¢, o),
0 < j,k < n, are not available in the literature, except possibly for those cases in which
some of the following situations have been considered.

o Casel:c>0and j =k =00r0 < 7,k < 1(cf. [38,142]].)

e Case2: c=0and0< 5,k <1lor0<j k<n(cf. [1883].)

Here, we will describe the asymptotic behavior of this kernel functions by analyz-
ing the following cases:

Casec=0

This is a very well known case. The result reads as follows.
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Proposition 3.2.2. [83 Equation (6)] For 0 < j,k < n — 1, the following asymptotic
behavior holds: . _
K59(0,0) ~ Cynothtitl (3.2.12)

where Cy is a constant independent of n.

Case c ¢ [0, )

The following result gives the asymptotic behavior of the partial derivatives of the
diagonal Laguerre kernels when = y = ¢ ¢ [0, o0).

Proposition 3.2.3. For ¢ ¢ [0,00) and 0 < j,k < n — 1, the following asymptotic
behavior holds A s
K% (e ) ~ Cin 2" etVre, (3.2.13)

n—1

where C is a positive real number independent of n.
Proof. Suppose that ¢ ¢ [0, o0) and let us denote
flz) = x%e‘lm, x> 0.
Applying the Stolz criterion (see e.g. [43])

KF (e, c) (L(a) )(k) (c) (Lgoi)1>(j) (c)
f(n) L2 (f(n) = f(n— 1))

, (3.2.14)

and using the mean value theorem, there exists £ € (n — 1, n) such that

k? ] J J— Jj— —nc
Fl)=f(n=1) = (&) = T H VT o mag M AV L 0T
(3.2.15)
Finally, from (1.6.22)), (1.6.26), (1.6.21), (3.2.14) and (3.2.13) the result follows.
O

Case ce (0, )

For the sake of simplicity, we study first the cases K, ©, )(c, ¢) and Kr(ll’ )( c).

Later on, we could extend this technique to the general case K, ,(1_’{) (¢,c).

Taking derivatives with respect to y in (3.2.10) and considering z = y = ¢ we get

1 L5 1 (9[25)"(c) = (o) [L5_a)" ()

1) —
Kno 1 (C, C) - 2 F(?’l)r(n + Oé)

(3.2.16)
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On the other hand,

1 1
BRIRONCET R

{Le 1 (@IL1"(0) + 3[L5 T (@[L31"(e) = LalLg 11" (0) = 3LL5Y (L5 1" (0)}
(3.2.17)

KV (e0)

The asymptotic behavior as n — oo of the above Laguerre kernels atz = ¢, c € R4,
that is, within the oscillatory regime of the classical Laguerre orthogonal polynomials
reads as follows.

Lemma 3.2.1. For every ¢ > 0, we have
K,—1(c,c) ~ rleCem i pll?,
K(OJ) (c,e) ~ aleCom 30 n1/2

b

1
1
K 1.,11)(07 0 ~ gﬂ_—lecc—%—a n3/2.

Proof. Taking p = 1 in (1.6.27), we have Ag(x) = 1 and By(x) = 0. Thus, when

x € R, we obtain the behavior of ES{” (z) for n large enough,

E%(m) _ (—1)"F(n + 1)7_(_71/2€m/2$7a/271/4na/271/4

ccos{2 (nz)? — an/2 — n/4} - (1 + O(nV/2)).

We can rewrite the above expression as

Lo (z) = (=1)"T(n + 1)n® ~30%(x) cos ¢ (z)(1 + O(n~?)) (3.2.18)

where -
() = oma) /2 - T _ T

sala) = 2n)? - T,
and

o%(z) = w2t 2pmel2m1/A (3.2.19)
is a function independent of n. Combining (1.6.22) with (3.2.32)), we get

I'n+1) ,
K,_1(c,c) ~ F((n—i-a))n O, (c;a),

where

Ol ) = 0 ()0 () [eos i1 (e) cos 93y (¢) — cos T (e) cos p3(e)] .
(3.2.20)
Let us deal with the above expression. From

cos(a + b) + cos(a — b)
2 )

cos(a) cos(b) =
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we have

O,(c; ) 1
W = 5 COs (4 c(n — 1) — T — 7T> (3221)

—%COS(Q\/%—WQ—W—FQ\/W)
—%cos(Q c(n—2)—2ﬁ—g)~

The last term on the right hand side is

7COS<2 (n—2)c—2ﬁ—g>=%sin<2m—2 (n—2)c>,

which behaves with n as follows

lim % sin (2\/77 - 2@)
7, sin (2\/77 —24/(n— 2)6)

= lim —

i o Ve 2V =0 = Ve

and, therefore,
1
5 sin (2«/(71 “2)e— 2«/nc) ~ \F (3.2.22)
n

Next we study
1 1
5 cos (4 cn—1) -7 —71') — 5 s (2\/nc—7roz —7m+24/c(n— 2))
(3.2.23)
in (3:2.21). Using

. a+b\ . a—>b
cosa — coshb = —2sin | —— ) sin ,
2 2
(3:2:23) becomes

—sin (\/cn—wa —m+2yc(n—1)+ \/c(n—2)>
-sin <2x/c(n —1)—Jen —+/e(n— 2))
where the first factor is bounded, and the second one verifies

lim +/nsin (2\/0 (n—1) — en — v/c(n— 2)) ~0. (3.2.24)

n—ao

From (3.2.22)) and (3.2.24)), we conclude

O, (c;a) ~ 7 lefem i 12,
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On the other hand, from the Stirling’s formula for the Gamma function, we deduce

I'(n+1)

11—«
L~ 3.2.25
I'(n+ a) "o ( )
under the above assumptions we get

1e 1.
Kn_i(c,c) ~mteCc 37 n2, ceR,.

Next, we can proceed as above and we obtain the asymptotic behavior given in (3.2.16).
For n large enough, we get

1T(n+1)

~ — a+l .
3 T(n +a) n** Tz, (¢ ), (3.2.26)
where

Wi (c;0) = 0%(c)a (e [cos ¢ () cos pf ¥5(c) — cos oy _y (c) cos g *3(c)] -

The expression in square brackets can be rewritten as

_sin <Jch—7TOz—;ﬂ'—i—\/c(n—1)+\/c(n—2)+\/c(n—3))
sin (\/a—\/c(n—l)—\/c(n—2)+\/c(n—3))
_sin (ﬂ'—i—\/%—l—\/c(n—l)—\/c(n—2)—\/c(n—3))
sin (\/%—Vc(n—n+¢c(n—2)—\/c(n—3)),

where

lim,, o [—nsin( cn—ma—3r+4/c(n—1)++/c(n—2) +\/c(n—3)>
-sin (\/cin—\/c(n—l)—\/c(n—2)+\/c(n—3))] =0,

and

lim,, 5 [—nsin (\/@—\/c(n—l) +4/c(n—2) —\/c(n—?)))
-sin (7T+JCT%+VC(1%—1)—\/c(n—2)—\/c(n—3))] = 2c.

As a consequence, taking into account (3.2.33)), we get

_ a3 _
U, (c;0) ~7m tefe™ 2 - 2en 1t

Replacing the above expression in (3.2.26)) and using again (3.2.25), we conclude

1 e 1
Kfl;l)(c,c)~7r lecem3—opl/2,
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Finally,
1,1 F(TL + 1) o 1
KM (e e) ~ mn +l 3|A1 n(c; ) + Agn(C @) (3.2.27)
where
Auneia) = a(r™H3(c) [cospitie) cos pi_y (c) — cos e2t e cos i (@)] , (3:228)
Aopn(ca) = o*TH)o®T2(c) [cos ©2T2(c) cos pF2(c) — cos T2 (c) cos goz"'}(c)]

(3.2.29)

The two expressions in square brackets of (3.2.28) and (3.2.29) can be rewritten, re-
spectively, as follows

—sin(\/%—ﬂ'a—Zﬂ'—i—\/c(n—l)+\/C(n—3)+\/c(n—4))
-sin<m—\/ﬁ+\/c (n—3) —/c( n—4)>

_sm<¢T Vi~ /el 1) - or + 4>)
-sin(ﬁ—\/c(n—l)+\/c(n—3)—\/c(n—4)),

—sin (m—wa—2ﬂ+2\/c(n—2)+\/c(n—3)>
-sin (2\/c(n—2)—\/c(n—l)—\/c(n—i’)))
—%COS <2\/c(n—3)—2\/c(n—l)—;7r>,

where the terms of each sumand in the above expresions have the following behavior

lim,, 5 [—n% sin (\/7%—7704—27r+\/c(n—1)+\/c(n—3) +\/c(n—4)>
sin (m—\/ﬁ—i—\/c(n—?))—\/c(n—él))] =0,

limy o, [—n sin (Ve (n = 3) = Ve — /e (n—1) = §m + /e (n— 1))
-sin(ﬁ—\/c (n—1)++/c(n—3) —4/c(n—4 )]=—\E,

lim,, 40 [—n% sin (m— Ta =21 +24/c(n—2) ++/c(n— 3))
-sin (2\/0(71—2) —4/c(n—1) —\/c(n—3))] =0,
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and

lim (n% (—;cos (2\/c (n—3)—2yc(n—1)— ;w») = Ve

n—>ao

Hence, using again (3.2.33)), we have

1

65672704 Cn*l/Z7

Aalcia) ~ —m

Mg () ~ mtefe 27%/en Y2,
Therefore
1 1 1
<3!A1,n(c; ) + aAgm(c; a)> ~ gﬂ'*lecc’o‘*% n~1/2,

Replacing in (3.2.27) we conclude,

1 ,
K,(llfl) (c,c) ~ gﬂflecc*%*a n3/2.

O

Now, we are ready to approach the general case. The results will be obtained just
by generalizing the previous technique. In the next result, we show a confluent form
for the partial derivatives of the kernel polynomial K,,_;(x,y) at the pointz = y = c.

Proposition 3.2.4. Foreveryn € Nand 0 < j, k < n — 1 we have

(ki) JIk! G (THEFLY ra ) a1
K, (c,c) = — = [ (ILy 119 () [L5]Y (c)
(G +k+ DL 12 ;o ¢

—[L31D(e) [Lg_,UH+170(e))]. (3.2.30)

Proof. For k = 0and 0 < j < n — 1 it suffices to follow a standard technique in
literature (see, for instance [2, p. 269]) by taking derivatives in (I.6.24) with respect to
the variable y and then to evaluate it at y = c¢. Thus we obtain

(0,5) _ J' ( . Ta Ta 7. Ta\Ta )
anl (27, C) - ||f/271||§(.’£ _ C)j+1 TJ (:L.? G Lnfl)Ln(‘rE) TJ (1’, G Ln)Lnfl(x) )

(3.2.31)
where T (z, c; f) is the j-th Taylor polynomial of f in c.

Using the Taylor expansion of zj‘;(x) and i%_l(x) in (3.2.31), we only need to
look for the coefficients of (z — ¢)7+*+1 there for finding K7 (c, ¢).

O
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Now, we continue by recalling that when p = 1 in (1.6.27), we have A(z) = 1 and
By(x) = 0. Thus, we obtain the behavior of L%(x) for n large enough, when x € R,

Eg(x) = (=1)"I(n + 1)7r—1/26x/2x—a/2—1/4na/2—1/4

ccos{2 (nz)"? — am/2 — w/4} - (1 + O(n~V/2)).

Then, we can rewrite the above expression as

L) = (=1)"T(n + Dns~10%x) cos o (z)(1 + O(n~Y2)),  (3.2.32)
where or
0o (z) = 2(na)'/? — 5 T
and
o%(z) = m2er2gpmo/271A, (3.2.33)

is a function independent of n.

Now our task is to find the asymptotic behavior of the diagonal Laguerre kernels.
In order to do this we have to estimate expressions of the following kind:

cos Py, (¢) cos ¥, () — cos i), (e) cos o (©)-

Under some conditions on the parameters 7, n1,no, and ng we can prove that the
above expression tends to zero when n tends to infinity and, moreover, we can compute
its speed of convergence. The result reads as follows.

Lemma 3.2.2. Let m = (i,n1,n2,n3) € N* be a multi-index such that ng = ny + ns.
For a > —1 and c € R let us consider the function

F2¢(n) i= cos p_,, (c) cos o™l (¢) — cos ™ (c) cos 92 (c). (3.2.34)

Then, the following asymptotic behavior holds.

%(ng —ny —n3)(n2 —ny +ngz)en? ifi=0 mod 4,

Foe(n) ~ St(no —n1 — n3)y/en Y2 ifi=1 mod 4,
- 1(n2 —n1 —ng)(ne —ny + ng)en ! ifi=2 mod 4,
2(na —ny — ng)Jen /2 ifi=3 mod 4.

Proof. From
cos(a) cos(b) = cos(a + b) ;— cos(a — b) 7
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cos(a) — cos(b) = —2sin (a;rb> sin (“ > b) :

and

we obtain

Fﬁ((n) =

% cos <2\/c(n —n1) +2¢/c(n —ng) — am — (@ +21)7r
1 (t+ D

—2005<2\/m+2\/ﬁ—0m— )—

2
= [ () + g (n),

+ % cos (2\/‘3(“ —m) = 2/e(n—no) + Z;)

R

cos (2 o(n = ng) — 2/cn — Z;)

where

[ (n) = —sin <\/% +/c(n —n1) +/e(n —n2) +/e(n —n3) —am — (@ +21)7T>

X sin (\/c(n—ng) +4/c(n —n1) —/e(n —n3) —@),

and

gpn(n) = —sin (\/c(n—nl) —Ve(n —ng) +/c(n —nz) — M)
X sin (\/c(n—nl)—\/c(n—ng)+\/ﬁ—m—i;).

Our first technical step will be to show that

JLII}/ n3/2 gin (\/c(n —ng) + \/C(n —ny) — \/C(n “ng) — \/67n> _ Tl1n42\ﬁ 20,

(3.2.35)
Notice that the function

hm(n) = (Vn—~/n—n2) — (Vn—n1 — \/n — n3)

can be written as

hm(n) = k(n) —k(n —ny), withk(n) = /n—/n —na.

Next, using the mean value theorem, we obtain

hm(n) = nik'(&,) = % <\/1£— - \/51_7712> , wheren —n; <&, <n.
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Denoting I(n) = in, we can apply again the mean value theorem in order to obtain
n n —ning .
hm(”) = (l(€71) - l(ﬁn - n2)) = 71”2[’(5n) = #(LLS/Q»
2 2 2
where n —ny —ng < gn —ng <0y < En <n.

Taking into account that lim,,_,o, 2= = 1, we get (3.2.33). Since the first factor in
f2¢(n) is bounded, we obtain

lim n'/2f%¢(n) =0, (3.2.36)
n—>o0 —

lim nf¢(n) = 0. (3.2.37)
n—ow -

Our second technical step will be to show that the speed of convergence of the first
factor in g¢ (n) is n=/2:

Ji_rgﬁsin (x/c(n—nl) —\/e(n —ns) +\/%—\/c(n—n2)) =
Ji_{t}L\ﬁ\/ﬁ(\/n—nl—\/n—ng—i—\f—\/n—ng)=

: Vn(n—ni —(n—n3)) /nn—(n—ng))\ _

i e (Y ) -

lim ﬁ( (s —n1) _ 12 ) _

n—>aL

n—x \/1—%+\/1—73+\/1—%+1

1
= 5%(713—711 +n2) # 0.

Then, in order to deduce the speed of convergence of g, (n) we will analyze the
following four cases:

(1) Ifi =0 mod 4, using that sin(x — 27) = sin(z), then

h_r’nf ngm(n) = Tc(ng —ny —ng)(ng —ny +ng) #0.

(i) Ifi =1 mod 4, using that sin(z — F) = cos(z), then

. . 1
lim n1/2gm(n) = Tﬁ(ng —ny —ng) # 0.

n—xL

(iii) If 4 =2 mod 4, using that sin(z — ) = —sin(z), then

1
lim ngy, (n) = 7e(n2 = n1—na)(nz — i +ng) # 0.
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(iv) If i = 3 mod 4, using that sin(z — 2F) = — cos(x), then

1
lim nl/Qng(n) = ixﬁ(ng —ny —ng) #0.

n—o

The above analysis together (3:2.36) yields the statement of Lemma. O

Theorem 3.2.1. For c € R, the partial derivatives of the diagonal Laguerre kernels
satisfy the following asymptotics.

y Conj+g+1 ifij+k=0 mod 2,
Kn—’jl)(cac) ~
itk
Cin’s ifi+k=1 mod 2,

where 0 < 5,k <n—1and

itk WAl J
Co = (—1)%7(]C +‘7 ,k+ 1)|0a(c)oo‘”+k+1 Z (j tht 1) (1),
J : =0

J

bk k!
ith-1 k!

N R E]

o.oc(c) a+]+k+1 Z (J +k+1> +k+1_2l)(_1)l+1

Proof. Without loss of generality, we can suppose that j < k. From (1.6.22) and

(3:2:30)), we obtain
j!k! ndtk+1

= X
(G + &+ DHILE A

J
Jjt+k+1 o o ~u o
3 (1) Erieninio - BHeRe).

(3.2.38)

K% (e,¢) =

Now, using (1.6.21) and (3:2.32)), we get

J .
(lw) Jtk+1 ik JK! n+1) atjt+k+1 at itk
K, (c,c) ; ( (-1) (j+k+1)!F(n+a)U (c)o (c)n

k+1-1 k+1-1
{cos it (€) cos T Ti(e) = cos it (e) cos o I (0)

From Lemma [3.2.2] we can express the above formula as follows.

J .
k I+ k+ . j!k! o ati ]+k atle
(e Z( z >(_1)J+k(j+k+1)!a (T4 (e 5+ Frt e (n i),
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wherem = (j+k+1—-251,j+k+1—-2,j+k+2—2I).

Then, foralll =0, ..., j, we get

(j+k+1—20)cn ! ifj+k+1—2l=0 mod 4,
Fotle(n — ) ~ N ifj+k+1—2/=1 mod4,
" —(j+k+1—20en"t  ifj+k+1-20=2 mod 4,
—Jen 12 ifj+k+1—2=3 mod 4,

or, equivalently,

(D' +k+1—=20)cn ifj+k+1=0 mod 4,
Fatien -y~ | )'en™!? ifj+k+1=1 mod 4,
= (—1)*1 G+ k+1—2D)en ifj+k+1=2 mod 4,
(—Diten1/? ifj+k+1=3 mod4.

Since the above relation can be reduced as follows,

(=) 5 fon 12 ifj+k=0 mod?2
(D)5 G+ k+1—20)en!  ifj+k=1 mod 2,

F&*’l’c(n )~ {

we get the statement of Theorem.

O

Remark 3.2.1. Notice that Theorem generalizes the asymptotic behavior of the
diagonal Laguerre kernels given in [I38)], where only the case 0 < j, k < 1 has been
analyzed. The interested reader can find the analogous of Theorem[3.2.1|when ¢ = 0,
0<jk<1l,andc =00<j,k<n-—1,in [I8 83], respectively. Also, it is
worthwhile to point out that, with a different approach, the authors of [42)] obtained a
lower bound for the Christoffel functions in the case ¢ = 0.






Unbounded support: asymptotics for
Laguerre-Sobolev type polynomials

As it was already mentioned, recent works have focused the attention on the study
of asymptotic properties of sequences of orthogonal polynomials with respect to spe-
cific cases of the inner product (I.0.2) with ‘mass points outside’ or ‘mass points inside’
of supppu, being suppy. a bounded interval of the real line. However, to the best of our
knowledge, asymptotic properties of the sequences of orthogonal polynomials asso-
ciated with (T.0.2) in the case of nontrivial probability measures with an unbounded
support on the real line and mass points inside the support of the measure are not avail-
able in the literature.

In this Chapter, we carry out a wide study of asymptotic properties of a repre-
sentative family of Sobolev polynomials orthogonal with respect to an inner product
with unbounded support, the Laguerre-Sobolev type polynomials. Taking into account
the results of concerning the asymptotic behavior of the diagonal Laguerre Ker-
nels, in Section we prove the outer relative asymptotic of the Laguerre-Sobolev
type orthogonal polynomials modified into the positive real semiaxis, i.e. a family of
Laguerre-Sobolev polynnomials orthogonal with respect to an inner product with mass
points located inside the support of the measure. In Section [4.2] we deduce the limit
behavior of the coefficients of the corresponding five-term recurrence relation. Finally,
in Section we study the inner relative asymptotics of Laguerre-Sobolev type ortho-
gonal polynomials when the mass points are also inside the support of the measure.



62 Unbounded support: asymptotics for Laguerre-Sobolev type polynomials

4.1 Outer relative asymptotics

In this section we deal with sequences of polynomials orthogonal with respect to a
particular case of (1.0.2). Indeed, p is the Gamma measure corresponding to classical
Laguerre orthogonal polynomials and

{fya)s = L‘J f(@)g(z)z*e *dr + F(c)AG(c)", a0 > —1, 4.1.1)

f, g € P. The matrix A and the vectors F(c), G(c) are

A= ( 1\04 ](37 > . F(e) = (f(e), f'(¢)) and G(c) = (g(c), g'(c)), respectively,

M, N € R, and the mass point c is located inside the oscillatory region for the classi-
cal Laguerre polynomials, i.e., ¢ > 0.

The main result of this section will be the outer relative asymptotics for the Laguerre-
Sobolev type polynomials 5+ (), orthogonal with respect to , when ce R,.
The proof will naturally falls in several parts, which will be established through an
appropriate sequence of Lemmas.

First, we will present a well known expansion of the monic polynomials §,Af N (z)
in terms of classical Laguerre polynomials ig (). The most usual way to represent the
Laguerre-Sobolev type orthogonal polynomials SN () is using the Laguerre kernel
and its derivatives as follows (see [64] and Theorem 5.1 in [37]).

(z — ¢)>SMN (2) = A(n; 2) L2 (z) + B(n;z) LY (2), (4.12)
where
Anyx) = (x — )2 + (z — ¢)A1(n; ¢) + Ap(n; ¢), 4.1.3)
B(n;z) = (x — ¢)B1(n; ¢) + By(n; c), o
with
Ly MEMN@L_ () _ NISMM (@[] (o)
Arn; ) = NI R ’
Ao(n;c) = _ NS, ’A] (C)Ln_l(c)7
MEN ksl | NSO @ 14
Bi(nie) = =iz g" IZe iz
Bo(ns ) = NS L)

L5113
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Notice that

Lite)  NE2 (o
[La)(e) 1+NEMY (e e)

SMN (¢) ’ , 4.1.5)
n (0.1)
1+ MK, 1(c,c) NK,”7(c,c)
MEMc ) 1+NKEMV (e c)
1+ MK,_1(c;e) L%(c)
(1,0) Far
~ MK,/ (cc L3 (c
[SMNY(e) = (e ] (4.1.6)

1+ MK, _1(c,c) NKT(LO;?(C, c)
MKT(LlfP (c,e) 1+ NKfll_’ll) (c,c)

We will analyze the polynomial coefficients in the above expansion in order to
obtain the desired results. If we replace @.1.3) and @.1.6)) in (@.1.4), we obtain

~MLg_ (0)Lg(e)=MNLg_, ()L ()KL (e, )+ MNnL_, () Lt (@) K (er0)

Al(n,c) — - n—1 n—1
' 2= (1+MKTL,1 (e, )+ NKEED (c,e)+ MNKn_1(c,e) K& (¢,0) - MNK Y (c,0) K49 (c,c))
(-Nn2Lot L (L] ()= MNn2 L5 FL () Lo F] (e) Knoi (c,0) + MNRLSFL (L () KUY (e0))

IEg 12 (14 M K1 () +NK D (c0) + MN K1 (e, ) KUY (0= MN KDY (e, 0) KD (e0))

—NnL® (c)iﬁfi(c)fMNni“

n—1

Ao(ns ) = o ()Lt} () Kn1(c.) TMNLE () L5 (e) Kj2) (e.0)
’ 25 412 (14 M K1 (e, )+ N KD (c0)+ MNK o1 (.0 KUY (c0) =M N KLY (.0 K0P (er0))

MELS () L8 (c)+ MNLE () LS () K L (e,0)- MNnLS () Lot () K Y (c0)

Bi(n;c) = —
(mic) L5 4112 (14 MK (e,0)+ NE Y () # MN K1 (e, ) KUY (0,0 - MN KD (e, ) KUY (e,0))

Nn2E2t () Eot o)+ MNn2 Lo+ () L2F ) (0) K1 (6,0) =M NnE2 T () L2 () K9 ()
IEg 412 (14 M K1 () +NKE Y (c0) # MN K1 (e, ) KUY (0= MN KO (e KD (e0)) |

NnLe ()Lt (o) + MNnL () Lo () K1 (c,c)—MN L2 () L2 (e) K19 (c,c)

By(n;c) = — n=l .
(mic) L5 4112 (14 M K1 () + NKY () # MNK o1 (e, ) KUY (.0 - MN KD (e, ) KUY (e,0))

Using (3:2:32)) and the estimates in Lemma[3.2.1] we can compute the asymptotic
behavior of the previous expressions as follows.
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1
Ncoot1(c)a+3(c)

Ai(n;c) ~ =% cos gty (€) cos iy () +cos ¢y (¢) cos iy (c)

1 _ a o
O Npataaagg " CosPRI(E) cosei (0

+ cos @ﬁf% (¢) cos gpgf} (c) + 2n 12 cos @ﬁf% (c) cos & (c),

+24/enM? cos 2 (¢) cos 21

-1
Ao(ms0) ~ ooy Cos i (€) cos e (e) e o cos iy (6) cos g

—2n " tcos o _1(c) cosgn(c),

1 —_ « « « «
Bu(nio) ~ Foarrgaggarag " COs () cos pi(e) + meos gl (e)cos g4 )

1 1/2
* Mo*(c)o(c) "
a+1

+ ncos apzf% (¢) cos wzf% (c) + 2112 cos w1 (c) cos i (),

+ 23/ent’? cos 2 (c) cos 2T (c) cos gt 1(c) cos it (c)

—1
Bog(n;c) ~ Mo (€)oo 3(c) cos % (c) cos 21 (¢)—c?n1/? cos % (c) cos 021 ()

—2cospi(c)cospia(c). (4.1.7)

Due to the oscillatory behaviour of the cosine functions appearing in the preceding
formulas, there are no real numbers /3y and (51 such that

Ao(n;e) ~ Con™,
By(n;c) ~ Cyn™,
for some Cy and C.
However, we can describe the asymptotic behaviour of our coefficients functions in
the following way:

Proposition 4.1.1. Let Ay(n;c), A1(n;c), Bo(n; ¢) and By(n; ¢) the functions defined
by @) Then, we have

g <L
Ai(n;e) ~ 1, lim‘nﬂAo(n;c) = {O l.fﬁ < 2
[ ﬂ lf/B = 2
; _1
Bi(n;c) ~ n, lim nﬁBo(n;c) = 0 lfﬁ < ?’
n—w0 ﬂ lfﬁ > -3

(¢)
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Proof. The asymptotic behaviour of Ag(n;c) and By(n;c) is a straightforward conse-
quence of the estimates in (4.1.7).

In order to obtain the asymptotics for A;(n;c) and By (n;c), we joint up the terms

cos i1 (c) cos ¢y, (c) + cos g ¥y (x) cos ppti(c) =

cos <2x/c(n—1)+\/a+ c(n—2)—a7r—7r) cos (\/@— c(n—2)+g)

+ %cos (2 c(n—1) —2\/(%) + %cos (2\/c(n—2) —2¢/c(n — 1)) ,

and

cos pp (¢) cos gy (¢) + cos T () cos i (c) =

cos (2\/@—1—2\/6(71— 1) —0471'—7'&') cos (2\/071—2 cln—1)+ g) + 1.

Taking into account that the previous expressions tend to 1 when 7 tends to infinity,
we obtain the desired result.

O

We can now state our main result.

Theorem 4.1.1. The outer relative asymptotics for Laguerre Sobolev-type polynomials
SM.N (), orthogonal with respect to the discrete Sobolev inner product , is

QM,N
lim 2@
% Lo(a)

uniformly on compact subsets of C\R .

Proof. Replacing #.1.3) in @.1.2)

§é‘4’N(9ﬂ) _ {1 L Aulnie) Ao cg } N {31(71; ©) , Boln; cg } 35_1(33)’
La(z) (x—c) (z—0) (x—c) (z—0)?) Lo(x)
(4.1.8)
From the Perron’s formula (1.6.26) (for more details we refer the reader to [15]) we get

LM (@@) o
LE{”(@«) =1-— NG +O0(n").

For monic polynomials the above relation becomes

Ly 4 (z) -1 V- n—1
i%(m) = < 7 + O( )> (4.1.9)
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By using {@.1.9) we can rewrite (4.1.8) as
§y7N(aj) {1 n Al (n, C) Ao(n, C) } _ { B (77;6) Bo(:;c) }

La(x) (x—c)  (z-0)? (r—¢)  (x—c)?

Then, in order to conclude our proof, we only need to check that

B .
lim (Al(n; c) — 1(n,c)> = 0, (4.1.10)
n—wL n
. By(n;c)
lim | Ag(n;c) — ————= = 0. 4.1.11)
n— n
By applying Proposition[#.1.1] we obtain @.1.10). From #1.7), we get
_ Bo(n;c) -1 atl

Ao(n;e)

e e (Cos i (€)cos g e) — cos i) cone )

— M2 (cos 3 (¢) cos 931 (e) — cos 98 (e) cos 3L (0)
2n~" (cos % _(c) cos % (c) — cos @ (c) cos 9 (c)) -

Since this expression tends to zero when n tends to infinity, then @.I.TT)) hold.

4.2 The five-term recurrence relation

This section is focused on the five-term recurrence relation that the sequence of
discrete Laguerre-Sobolev orthogonal polynomials {S2N (z)},,50 satisfies. Next,
we will estimate the coefficients of such a recurrence relation for n large enough and
c € R,. To this end, we will use the remarkable fact, which is a straightforward conse-
quence of , that the multiplication operator by (z — ¢)? is a symmetric operator
with respect to such a discrete Sobolev inner product. Indeed, for any f(x), g(x) € P

{(x =) f(x), 9(x))s = {f(x), (x — )’ g(x))s. (4.2.12)
Notice that
{(& =) f(x), g(x))s = {f(x), 9(x))pz- (4.2.13)
An equivalent formulation of #@.2:13) is
{(x =) f(2),9(x))s = {(x — &)’ f(2), 9(x)a- (4.2.14)

We will need some preliminary results that will be stated as Lemmas [4.2.1} and
4.2.2)
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Lemma 4.2.1. For every n > 1 and initial conditions fﬁl(x) =0 L§(z) = 1,
L () = 2 — (a + 1), the connection formula reads as
(2= )P 5p N (@) =

L8 o (@) + bo Loy (2) + 8, L2 (2) + dn L_ (2) + En L _y(),

where ~
bn = Bn-‘rl + Bn —2c+ Al(nv C) ~ 4”7

En =1+ + (Bn — ©)* + As(n;0) [Bn — ¢] + Ao(n; ) + Bi(n;c) ~ 60,
d, = Y (Brn + Brn—1 — 2¢) + v A1(n;¢) + (Bn-1 — ¢)B1(n;c) + Bo(n;c) ~ 4n3,

én = VYnYn-1+ ’Ynlel (’I’L, C) ~ n4'

Proof. We begin with the expression

(¢ — ) Ly(w) =

~

L2 o(x) + by L8y (2) + cnL8(2) + do LSy (2) + e, LS o(x),  (4.2.15)

where

bn = Bns1 + Bn — 2¢ ~ 4n, Cn = Yn+1 +7Vn + (Bn - 0)2 ~ 6n27
d, = ’Vn(ﬁn + Bno1 — 20) ~ 4n37 €n = TnIn—-1 ~ 7147
according to (1.6.20) and the definition of 3,, and ~,, in (1.6.20).
From the expression of A(n; x) in (4.1.3), the next step is to expand the polynomial
[A1(n;z)(x — ¢) + Ao(n; x)] L& (x) in terms of {L&}_ . Indeed, from (1.6.20)
[A1(n;2)(z — ¢) + Ag(n; 2)] LE(z) =

~ ~ ~

Ar(nyz) Ly (x) + [(Bn — ©)Ar(n;z) + Ag(ny2)] Ly (x) + Ar(n; )y Ly (2).
Adding these coefficients to those of (#.2.15), we obtain

A(n;z)L8(x) = L8 o (x) + by LY 1 (2) + &, L () + dn L8y () + &, Loy (),
with

Bﬁ = b, + A1(n;c) ~ 4n, Cn =+ A1(n;¢) (B —¢) + Ao(n;c) ~ 602,
d, = dy +YmAi(n;c) ~4n3, €, = e, ~n?,

where we have used Proposition In a similar way, for B(n; ) in (4.1.3)) we get

A~

B(n;2) Lo, (x) = é,L%(x) + dpo L2 _, (2) + én Ly (2),

n—1 n—1
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where

Bi(n;c) ~n,
= (Bn_1 — ¢)Bi(n;c) + Bo(n;c) ~ 2n?,
=Y, 1B1(n;c) ~ n3.

('B( Q,( O(

As a conclusion,
(= 0)?8MN (@) = A(n;z)L3(x) + B(nix) L9, (x)
= L%o(@) +bu L3 (@) + (@0 + E) L0 (2)
+(dn + dn) LSy () + (n + ) LG5 (2).
This completes the proof. O

Lemma 4.2.2. For every o > —1, n > 1, and ¢ € Ry the norm of the Laguerre-
Sobolev type polynomials SN, orthogonal with respect to is

1SN = 11212 + Bi(n; )| Lo_y |12 ~ T(n+ DI (n + a + 1).
where Bi(n;c) is the polynomial coefficient defined in @1.4).

Proof. First, let notice that

1SXN 1 = (SpPN (), (@ = 0)* L2 (2))s,
for every monic polynomial Hn,g of degree n — 2 . From (4.2.14)
SN (@), (@ = P aa(as = (@ =)’} (@), Laa())s

= {(z = )?SMN (@), I, 2(2))a.

Next we use the connection formula (4.1.2). Taking into account that A(n;z) is a

monic quadratic polynomial and B(n; x) is a linear polynomial with leading coefficient

Bi(n;c),
IENIE = (=S (@), s (@)

(A 2) LY (), T2 (2))a + (B(n; 2) Ly (2), T_2(2))a

= (L3(@), 20 + Bi(n; oXLo_y (2), 2" a.

The first term in the above expression is the norm of the monic Laguerre polynomial
of degree n and the second one is the norm of the Laguerre polynomial of degree n — 1
times Bj(n; c), which is given in (4.1.4). This means

ISAN N5 = [1Za][2 + Ba(ns o)l| Loyl [

Using the estimates (I.6.21)) and Proposition [d.T.1] we obtain
ISMN]E ~T(n + DT(n +a + 1),

which completes the proof. O
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We are ready to find the five-term recurrence relation satisfied by §,]LV[ N (z), and
the asymptotic behavior of the corresponding coefficients. Next, we will focus our
attention on its proof.

Let consider the Fourier expansion of (z—¢)2SM-N () in terms of {SM-N (z)}%_

n+2
k=0
where
_ 2§M,N gM,N
Anke = (o9 "AM(ﬁ)’Q . (x»s, k=0,...,n+2. (4.2.16)
5% Mls
Thus, A\, x = 0fork =0,...,n — 3. We are dealing with monic polynomials, so the

leading coefficient A, 2 = 1.

To obtain A, n+1, we use the connection formula (4 , with coefficients A(n; z)
and B(n;x) as in . Thus,

1 ~ A 1 ~ ~
Anntl = 72<A(n;$)L?§(x),Sﬁiv(x)>s+7<B(n;m)L$§_1($),Sﬁiv(x)>s
[1Sn5n 113 15557 113
1

730—02 S Aq(n;c).
||S+1||s<( V2L (@), S (2))s + Ar(nic)

Let us study the discrete Sobolev inner product {(x — c)22a( ), M, N(x))s above.

n+1
Applying @.2.12), (4.2.14), (1.6.21) and Lemma[d.2.T] we obtain
{(z = )’Lo(2), Sy5T (@))s (L(), (@ = 0)* 5T (@))a
= du1 |IL3][2-

From (3.2.25), Lemma.2.2and Proposition

di1 ||LS] 2 + Ay (n50)
1S4 112

In order to compute Ay, ,,, from @.1.2)) and (#.1.3) we get

N R ) 5%N(as>>s &= L5 (@), SV (@)
nn OM,N |2 1(”7 C) QM,N |2
[15n M1 1SR {15

+Ap(n;c) + Bi(n;c).
But, according to @.2.12), m} and Lemma 2] the first term is
{x—e)?Le(x), SYN(z)ys . ||LeI2

SMN =CnrAuN
|[Sn™ 152" 115

)\n,nJrl = ~ 4n.

15
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After some algebraic manipulations, from (1.6.20) we get
(w—e)Lg(x) = (2= Li_1 (x) = (Bu1 =) (x =) L1 (2) =yn—1(z—c) L _(x),

Using this expression, we obtain

(= Alg@) SUN@ps  _ Eaa) - PRV @
BRIE 1525113 -
iZe e
||||nl||||a —(Bn_1—c).

n S

Asa consequence,

Gn [ILGII2 + dn |IL3 1|12 + (Bn1 — ) + Ao(ni ) + Bi(n; o)

oM,N
15277 11%

/\n,n =
~ 6n2.

A similar analysis yields
do [|IL5 |2 + Ar(n = L;0)[|SA N3
OM,N
1521 113

[T
aM,N .
15232

3
>\n,n—1 ~ 4n y

A'rL,n—Q -

We can summarize the results of this Section in the following theorem.

Theorem 4.2.1. [Five-term recurrence relation] For every n = 1 a > —1,and c €
R, the monic Laguerre-Sobolev type polynomials {SM N(z)}£_,, orthogonal with
respect to satisfy the following five-term recurrence relation

(0= 0238 (@) =

ggiév(x) + /\n,n+1§%j]1\,(x) + /\n,ngfzv[’N( ) + >‘71 n— ISM N( ) + >‘n7n—2§7]1\4—7§[(x)7
with

g1 [|IL]12 + Ay (n; 4
)\n,n-&-l = +1 || |]\|4N+ l(n, C) ~4n = < )’fl,
1S5 1
Cal|Zg N2 + du lIL8 1l[2 = (Ba-1 =) + Ao(nic) + Bamic) ., (4) ,
Anyn = aM,N 2 ~67’l = 2 n-,
1Sn™ 115

do [ILe |12 + Ay (n — 1;¢)||SM-N]||2 4
N I1Lg 1l }VI(N NSNS N < >n3,
15,21 1% 3

SJ\/I,N 2 4
s = SN ()

M,N
||Sn72 ||%’ 4
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4.3 Inner L%-asymptotics

As an application of Theorem [3.2.1] we will study the inner asymptotics for a cer-
tain family of Laguerre-Sobolev type orthogonal polynomials. More precisely, we
compare the behavior of the Sobolev and standard Laguerre polynomials on (0, 00) for
n large enough. The main result in this section guarantees the norm convergence of the
Laguerre-Sobolev polynomials to the Laguerre ones in the Laguerre L?-norm. Before
to deal with the general case, we are going to analyze a more simple framework. For
example, let us consider the Sobolev type inner product

<fa g>S = <f7 g>oz + Mf,(c)gl(c)a (4.3.17)

where @« > —1, ¢ > 0 and M > 0. Notice that this is just a particular case of the family
of inner products defined in [64]. Let {L)(x)}*_, be the monic Laguerre-Sobolev
polynomials orthogonal with respect to (@.3.17). We also consider the normalization

_ L)

LM,a(x) ||ia|| ,

n

i.e., the normalized Laguerre-Sobolev type orthogonal polynomials with the same lead-
ing coefficient as the classical orthonormal Laguerre polynomial of degree n. Then,
(see [64) equation (2.8)])

Ee (o) - L) = — L))

(0,1)
= K"/ (z,c).
1+ MEMY (e, e)

n—1

Let consider the standard L2-Laguerre norm of the previous expression, i.e.

M2 (L) ()] N (¢H0)
(1+ MK (e, 0) KM (e )

1Lt = Lol =

Now, from Proposition [3.2.| we obtain

(

KV (e,¢) ~n Onf
and, on the other hand,
() nl(—1)"1 (a+1)

LYY (¢) = —2 = 5 Ln—1 ' (0),
() (@ IL2lle  (C(n+ DT(n +a+ 1)) ©
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from which it follows that

|
[(Lg) (C)]2 = ﬁlﬁ?_ﬁ”(c)ﬁ < Cn'/?.

As a consequence, N
1L = Lylla < Cn7,

so, we have proved the norm convergence of the n-th Laguerre-Sobolev type orthogo-
nal polynomial to the n-th Laguerre one:

Tim (|20 = L5 = 0.

4.3.1 The multi-index case

Let us consider the Sobolev type inner product lb and if{M(x) the correspond-
ing monic orthogonal polynomial of degree n. Also, we consider the normalization

B EZ’M(.%)
L5 o
i.e., the Laguerre-Sobolev polynomials with the same leading coefficient as the or-

thonormal Laguerre ones.

From now on, we will denote by j; < --- < j, the indexes such that M; _; =
Zqu_l =O.

Theorem 4.3.1. With the above notation, the inner L?-asymptotics for the Laguerre-
Sobolev polynomials orthogonal with respect to reads

|1 Lyt — Ly|lo < Cn 7Y, (43.18)

where C'is a positive constant independent of n. In particular,
lim ||[L&M — L2, = 0. (4.3.19)
n—x0

Proof. Following a standard technique we can expand the Laguerre-Sobolev type or-
thogonal polynomials in terms of the Laguerre classical ones to obtain

Pt =r5() - 3 3 vy (Fptt)”

k=0 ;=0

~

N .
~L3(0) - Y, o1y (B) 7 QKU o). (4.3.20)
7=0

|
—
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~ (4)
At this point, estimations for (L%’M) (c)whenj=0,...,N,

Jj#j1—1,...,jq — 1, are needed.

In order to do that, we can write (#.3.20) evaluated at z = c¢ in a matrix form as
follows,

a,M _ya«
ALY = L%,
where
14+ MoKp—i(c,e) MK (e, e) MK D(c,e) ... My KD (e, 0)
MoK("V(e,e) 14+ MK V(e,0) MKV (c0) oo MyKLP(e0)
A= MoK e MK (e, e) 14+ MKES PV (e,e) .. MyKYP (o) |,
MOKSL’ZIV)(C, c) My K7(11;11V) (¢, ¢) MgKflzjlv) (e, ¢) ... 1+ My KT(L]X’IN) (e, ¢)
L® = (L%(c), (L) L™ ()"
- n(c)a( n) (C)a"'7( n) (C) ’
and

Lo (E%M(c), (Ee) )., (Eett) ) (c)>T.

Here, vT" denotes the transpose of the vector v. Then, applying Cramer’s rule we get

~ (m—1) det(Am)
L) = S0 %m)
( n (©) = Geta)
where Ay, is the matrix obtained by replacing the m-th column in the matrix A by the
column vector L.

form=1,...,N +1,

Thus, by using Lemmas [4.3.2]and[4.3.3] for n large enough we obtain
~ (m—1)
()"0

where C is a positive constant which does not depend on 7.

—2m—1

<Cn 4, 4.3.21)

Finally, in order to obtain (#.3:19) we take norm in (#.3:20). Thus

n—1

N .
~ ~ (4) ;
1252 = )2 <l ) My (E) T (K (e ) 1
J=0

<(N +1 §N a2 | (2em)” (o] kU9 (e, 0.
\( + ) J [( n ) (C)] n—1 (Ca C)
=0
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From Theorem and (4.3.21) we get

2j+1
2

N . _
L3 — L3]2 <(N +1) D) CM2n 5y
§=0
<Cn~'.

O O

Remark 4.3.1. Notice that in [34] estimates in the weighted L?-norm for the difference
between continuous Sobolev orthogonal polynomials associated with a vector of mea-
sures (YW, W) and standard orthogonal polynomials associated with W, where W' is
an exponential weight W (z) = e 2Q®) and 1) is a measurable and positive function
on a set of positive measure, such that the moments of the Sobolev product are finite,
have been obtained in terms of the Mhaskar-Rakhmanov-Saff number. The authors as-
sume that Q) is an even and convex function on the real line such that Q" is continuous

in (0,00) and Q' > 0in (0,00), as well as for some 0 < a < 3, a < “Lg;;g) < 8,
x € (0,00) holds. The study of analogue estimates as above for general exponential

weights constitutes an interesting problem in which we are working.

Estimates for det(A) and det(Am)

First of all we will need the following well-known result, see for instance, [[76} vol.
I, p. 311].

Lemma 4.3.1 (Cauchy’s double alternant). Let x1,...,%pn,¥Y1,...,Yn be real num-
bers. Then,

1 1<i<j<n
det[ ] =
T; +Y;di<ig<n H (l'i'i‘yj)
1<i,j<n
Let us denote
N+1 N+1
M = H M,_, Q= Z L.
=1 I=1
I#£]1,--0q I#51,--Jq

Lemma 4.3.2. With the notation introduced in Section we have

2Q—(N+1)+q
2

det(A) ~, Cin~ 2, (4.3.22)
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where C is a positive constant independent of n. In particular, there exists a constant
Co > 0 such that

Q-(N+1)
det(A) > an2 T

forn large enough.

Proof. We denote by a;;, 1 < i,j < N + 1, the (¢, j) entry of the matrix A. Notice
that these entries verify

Mj_leL];fll’ifl)(c, c) for j such that M;_, > 0,
Ajj ~n 1 if 7 = j and Mj—l = 0,
0 ifi# jand M;_y =0.
Then, from Theorem[3.2.1, we obtain

itj—1

Mj_1007j_17i_1n 2, ifir+5=0 mod 2 and Mj_l > 0,
Mjflcl’jfl’ifln#, if ¢ +] =1 mod 2and Mj,1 > 0,
Aij ~n - .
/ 1 1fz=jande,1=O,
0 ifi;éjande_l = 0.
(4.3.23)
Using the definition of determinant and {.3.23), we get
det(A) = Z sgn(d)ay s(1) " AN41,5(N+1)
5ESN+1
B N1 (4.3.24)
~n Z sgn(9)Csn 5(5)71_”2(5) H anm,
0eSN+1 =1
l?&jlv--qu

where Sy 41 is the group of permutations of the set {1,..., N +1}, p1(0) (resp. p2(9))

is the number of indexes [ in {1,..., N 4+ 1}\{j1,...,jq} such that [ + o(l) is even
(resp. odd) and
N+1
Cs = 1_[ Ms1y-1Co.5()-1,1-1-

-1
li]lwwa]q

Let us define the set

B ~ l+d()isevenforalll =1,...,N +1,
A‘{568N+1 : and 6(1) = 1, forl = j1,..., j, }
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Notice that plTw) +p2(9) attains a minimum when p2(6) = 0. Then, the asymptotic

behavior of (@.3.24) will be given by the terms corresponding to permutations in A, if
they do not vanish. Thus, we have to check that D s, sgn(d)Cs is not zero.

N+1
> sen(d)Cs = > sen(d) [ Mswy-1Co.s01)-1,1-1
deA deA =1
l#jlw--vjq
Nl l+o() 1
= Z Sgn(5) H Mé(l)—l(_l) 2 +l0a(c)0a+l+a(l)_1(0)\ﬁm-
SeA =1 +o() —
1515 dq
(4.3.25)
. —atlts()—1
Recalling that g THH0(0—1(¢) = 7=1/2e¢/2c= 3 /4, we get
Nl 1+6(D)—1 _N+1-q (N+l-q@)c _ a(N+1-@)+2Q—(N+1—q)
H gDy = =2 e 2 ¢ 2
1=1
lijlwuv‘jq
_ N+1—q _ —q N+i-q _
= (0°7HQ)" T e = (o)) Ve e,
After some computations, (4.3.23]) becomes
N+1 1
Y sen(9)Cs = M(=1)? (0% ()W H170 NH1=a7@ Y sen(s) || TS =1’
seA SeA l#_z=1 ) +6(1) ~
J1seees Jq

Now, let consider

{1,2,...,N+1}\{j17j2,...,jq} = {7‘1,7‘2,...,7’[(1}U{Sl,SQ,...,SKz}

where r; is odd forz = 1,2,..., K7 and s; is even for 7 = 1,2, ..., K5. Notice that
K1+ Ko = N +1— q. Then, we have
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N+1 1
DSisen(d) [[ = =
= T I+6()—1
l¢j1;~~~7jq
DY Py [
= sgn(d) sgn(§)
3€Sk, €€k, i1 Tt — 1 s+ se) —1
K1 1 Ko 1
S N 1)) | [ Y | (——
56%;(1 Eri‘FT&(i)—l&;(Q jl:[lsj—i-s&(j)—l
[T i)’ [T Gi—s)?
1<K, I<i<js Ko
[T Gitri=1) J] (sits-1)
1<i<j<K, 1<i<j<Ks
where we have used Lemma[4.3.1lin the sense
1 us! 1
]y wol
ri— 341y — 3 li<ig<K 66%;{ gl )g ri + gy — 1

1

Finally, (4.3.23)) becomes
(ri —r5)? [T (si—s)?

> sgn(8)Cs = M (0%(c)) 2N H10) (N¥1lma-@ _SISE Sst
sea [T Gi+ri=1) [] Gi+s;—1)
1<i<j<Ki 1<i<j< Ko

which is, as desired, different from zero. Then, we can state that

2Q—(N+1)+gq
2

det(A) ~, Cn— 2, (4.3.26)

where C'is a positive constant independent of n. This concludes the proof.

Lemma 4.3.3. For n large enough, there exists a constant C > 0 such that

2Q—m—N+q _ 3
2 1,

| det(4,)] < Cn

Proof. Notice that for 7 # m, the entries of the matrix Ay, are the same as those of the
matrix A. Their asymptotic behavior was given in (4.3.23). Let us denote by G, the
(¢, m) entry of the matrix Ap,.



78 Unbounded support: asymptotics for Laguerre-Sobolev type polynomials

According to (3.2.32)), we have
dim = (L) V() ~, (1) g0 onz T cos o HiTl(e),  (4327)
fori=1,...,N +1.
We expand det(Ay,) along the m-th column:

N+1
det(Am) = Y (1) "y, det By, (4.3.28)

i=1

where Biy, is the V x [N matrix obtained by deleting of A the ¢-th row and the m-th
column.

Using in (¢.3:28)), we obtain

N+1 ‘ _
det(Am) ~n Z (—1)"+m+1o“+i_1(0)n%_% cos Tt 1 (c) det Bim,
i=1

where det B;, can be computed as

N N+1
detBim = . sgn(o) [ [broqy = D) sen@) [[  awe, 4329
oeSn =1 phew Lpi =1
4715-+50q
with
_ . Qb(l):l’ forl=j17"'7jq
V= {dJESNH ) and (i) = m :

Now, we will discuss two cases:

1. Case i + m even.

The highest power of n that can be reached in the sum (4.3.29) appears when
I+¢(l)isevenforalll=1,...,N + 1,1 #4,7j1,...,Js This means that

det Bjy ~p, C (Z Sgn(v)C’;) nw’

vyel'

with
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I+~(l)isevenforalll =1,... N +1,

r= ’YESN+1 : V(Z):l’ forl:j17"'7jq )
and v(i) =m
whenever
> sgn(7)C # 0. (4.3.30)
~yel’

2. Case z + m odd.

In this case, the highest power of n in the sum (@.3.29) could be at most 5
1, when the permutation ¢ satisfies that [ + () is odd forone l € {1,..., N +
11\{%, j1,-..,7q}, and it is even for the remainder indexes.

2Q—i—m—N+g—1 _

We obtain the highest power of n for the first case, and after checking (4.3.30), we
conclude

N+1 ,
det(Am) ~ Z (_1)n+m+1aa+z—1(c)n

i=1

2Q-m—N+q _ 3 -
T T1cos erti (o).
Then, for n large enough, there exists a constant C' > 0 such that

2Q—m—N+gq

|det(Am)| < Cn~ 7 %

In order to conclude the proof we must check that (4.3.30) holds. Indeed,

N+1
ngn(V) H M 1y-1Co ()11
ver =1
1#1,51,-.,0q
M - 2(N—q) 2N+itm=20-2Q NA1 1
= —1)@~i (o q . .
e I R
e l;éz’é’ﬂ.. j

Let suppose now that m is even. Let

{1,2,..., N+ 11\{¢, 41, J2, - . - gt = {r1,m2, oo F U {m, 81,82, .04, Sk,

where r; is odd for ¢ = 1,2,..., K1, and s; is even for+ = 1,2,..., K5. Notice that
K1+ Ko = N — q. We can write

N+1 1 K 1
;Fsgn(v) E 0 =1 = (5e§(1 sgn(d) g m) det B,

l?&i»jla-“ajq
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where
1 1 1
m+i—1 m+s;—1 o m+sk,—1
1 1 1
s1+i—1 s1+s1—1 e s1+85K,—1
B = 2 ,
1 1 1
SKyt+i—1 SKy,ts1—1 SKotSKy—1"
Using Lemma[d.3.1]
N+1 1
IR ICON [ B e
= = I+~ -1
1#4,J1,--:7q
Ko
. 2 2
(m —s))(i — s1) (i —s;) (ri —75)
=1 1<i<j< Ko 1<i<j<K,
(m+i—1) H (Si-i-Sj—l) H (T‘,‘-i-’l"j—l)
1<i<j<Ks 1<i<j<Ki

In an analogue way, if m is odd, let

{1,2,...,N +11\{4, 41, J2, - . -, g} = {m, 71,72, . TR P U {81,582, ..., Sk, )

where r; isodd for¢ = 1,2,..., Ky, and s; iseven fori = 1,2, ..., Ko, and
N+1 1

Z sgn(y) H T
o T I+~ -1

l;éi,jl,.--,jq

K1
H(m —r)(i—m) H (ri —15)° H (si = 55)°
=1 1<i<j<Ki 1<i<j<K2
(m+i—1) H (7’1-+1"j—1) H (Si-l-Sj—l)
1<i<j<K, Isi<jsK2

This is different from zero and we get our statement.



Divergence of Fourier Series: A Cohen type
inequality

The aim of this Chapter is to establish a Cohen type inequality when we deal with
the following Sobolev-type inner product on the linear space P of polynomials with
real coefficients

(s s = Lf f(@)g(x)du(x) + Mf(c)g(c) + N f'(e)g'(c), (5.0.)

where dy(z) = x®e *dx, o > —1, is the Laguerre measure, M, N > 0, and the mass
point c is a real number located outside the support of .

The novelty of our approach comes from two directions: First, we consider a
Sobolev-type inner product with only a mass point outside the support of the measure
w4 and, second, we incorporate new test functions different from those used in [[70]].

The outline of the chapter is as follows. Section[5.1] provides a basic background
dealing with structural and asymptotic properties of k-iterated Laguerre orthogonal po-
Iynomials, as well as some well known analytic properties of Laguerre-Sobolev type
polynomials. Section [5.1] contains some estimates for the norm of Laguerre-Sobolev
type polynomials (Propositions [5.1.2)). In Section we prove our main result (Theo-
rem. We obtain an estimate from below for the S;’ (a)~DOTM of the partial sums of
some balanced Fourier expansions in terms of Laguerre-Sobolev type orthonormal po-
lynomials. As an immediate consequence (Corollaries [5.2.1) and [5.2.2)) the divergence
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of such partial sums and Cesaro means of order § when p is located outside the Pollard
interval is deduced.

5.1 Background: structural and asymptotic properties

The following proposition will be useful in the sequel and it summarizes some
recent structural and asymptotic properties of Laguerre-Sobolev type polynomials.

Proposition 5.1.1. Let {L%Q’M’N)(a:) %o be the sequence of normalized Laguerre-

Sobolev type polynomials with leading coefficient equal to (7711!)71, associated with the

Sobolev-type inner product (5.0.1). Then the following statements hold.

(a) [68 Theorem 4] Connection formula for LM ().

LEMN) () = By L (2)+ By (2 —¢) L P (@) 4+ Bo (2—¢) 2L (@),

n n—1
(5.1.2)
where
(i) If M > 0 and N > 0, then
8cn® 32¢y/|c| n@=1/?
on~—————3, Bin~—""T—"7, 2n "~ 3
M (LE{")(C)) M (LS?‘)(C))
(5.1.3)
(#3) If M = 0and N > 0, then
1 1 1
BTLN*? By ~——, By ~ ————.
(#i) If M > 0and N = 0, then
Vel 1
Bop ~ Bl,n ~ Ty B2,n = 0.

)

2
M2 (L) (c)
(b) [68, Theorem 5 (ii)] Mehler-Heine type formula.

LN () 2], (2\x), ifM>0,N>0,
nlgr’lﬁ n< ==

—27%2 ], (23/x), if M =0,N>00r M >0,N =0,
(5.14)
uniformly on compact subsets of C.
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Now, we need to estimate the Laguerre-Sobolev type norm

hgba,M,N) = <L(a,M,N)’LSLo¢,JW,N)>S.

n

The next Proposition states that the estimate of this norm is the same as the estimate
obtained for the norms of classical Laguerre polynomials.

Proposition 5.1.2. For everyn € N,

R{eMN) L pe (5.1.5)

Proof. From the Sobolev type orthogonality, we get

_1 n
oA = <L55"M’N)(af)7 ) (x — c)"> om0 (5.1.6)
S

Since the non standard component of the Sobolev type inner product on the right
side of is equal to zero for n > 2, according to (5.1.2) we have

<L$LQ’M’N)(I)7 (=1 (x —c¢) > J (M) ( ﬂ(x —o)"z% Tdx

n'

B B
- B nh(a) 1,n h((x [2] 2,n h(a) [4]
0 n n-i h+ nn—1) "

Finally, analyzing the asymptotic behavior given in (5.1.3) and using (3.1.5) the result
follows.

O

Notice that the above estimate for the norm of the Laguerre-Sobolev type ortho-
gonal polynomials together with (5.1.4) (resp. (5.1.2))) allows us to obtain the corre-
sponding Mehler-Heine type formula (resp. a connection formula for the orthonormal
Sobolev type polynomials LMV (z).)

We conclude this section with the analog of [30, Proposition 5] when ¢ < 0.

Proposition 5.1.3. Let M, N > 0 and {L>M:N (2)}*_ be the sequence of orthonor-
mal Laguerre-Sobolev type polynomials. For o > —1/2 we have

@ 1/p —1/4 1/p,  ip, — dot4
(JI LgJVLN(x)e*JE/Q‘p xadx) > {Cn / (logn) /p lfp - 2ail’
0

Cna/Z—(a+1)/p, lf4a+4 <p< oo,
and for « > —2/p, 1 < p < 00, we have

2a+1
5.1.7)
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(I,

Cn~ 4P if4<p<oo.
(5.1.8)

L“’M’N(x)e_“'/z‘p :C"‘dx) 1/p N {Cn—1/4(]og )P ifp =4,

Proof. 1t suffices to follow the proof given in [30, Proposition 5] by making the cor-
responding modifications and using (5.1.5)) as well as (5.1.4)) for orthonormal polyno-
mials.

O

5.2 Cohen type inequality for Fourier expansions with respect to
Laguerre-Sobolev type orthogonal polynomials associated
with the inner product (5.0.1)

The goal of this section is to show a Cohen type inequality for Fourier expansions
with respect to Laguerre-Sobolev type orthonormal polynomials associated with the
Sobolev inner product (5.0.1). To this end, we will follow the Markett approach but, as
was mentioned at the beginning, we will incorporate new test functions different from
whose used in [[70].

Now, we are going to introduce the notation concerning weighted L? spaces, Sobolev
type spaces, test functions, and some usual elements from functional analysis, which
will needed in the sequel.

We consider the following weighted L? spaces.

{f: {S; |f (x)e=*2|Peda} /P < w}, 1<p< oo,

w(w)

{f sesssup,o|f(x)e ™?| < OO}, p =0,

for « > —1. Furthermore,
LZ(Q) = {f : ||f(l‘)u(l‘,0&)||[/p(()’m) < OO,U(J?,O() = 671/2‘,1:&/2}7
where a > —%ifl <p<ooanda = 0if p = oo.

Also, we use the notation Lz (> Where the subscript g(«) means either w(«) or



5.2 Cohen type inequality for Fourier expansions with respect to Laguerre-Sobolev type
orthogonal polynomials associated with the inner product (3.0.1) 85

u(a). The Sobolev type spaces are denoted by
ey = U € Loy 0 C 2 IF Iy =M1, +MIF@P + NIf(@F <0}, 1<p<e
(5.2.9)

= max{||fllez, [F)LIF Ol <o}, p=oco.
(5.2.10)

S;ffa) = {f € L;;f'(a) nC”*: ||f||S’

g(a)

Let [S7 (o] De the space of all bounded linear operators 7" : S5 () = S5 (o) With
the standard operator norm

ITAllss,,

IT]ljs» = sup
(55 e

o] 0#fes?,

() g(e)

For f € S;(a), the Fourier series in terms of the Laguerre-Sobolev type orthonormal
polynomials is given by

Z k)L (1), (5.2.11)
k=0

where f(k) = (f, Ly VYs, k=0,1,...

The Ceséro means of order 4, a nonnegative integer number, of the series (5.2.11)
is

fR) LM (),

where A7 = ().
For f € S;)(a) and {cpn}p_y,n € N u {0}, a family of complex numbers with

|en,n| > 0, let introduce the operators ToMN

a,AlJV a AIJV
111 :E: Ck?@f
k=0

The first technical step required for the proof of our main result is the choice of the
suitable test functions. For instance, in the setting of Laguerre-Sobolev type expan-
sions, see [30, (70, |83]], the authors consider (up to a constant factor) the following test
functions.
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1/2
i () i 2 | I L@+ () — (n+1)(n+2) i (o)
gn(z) = lx G <(n+a+j+1)(n+a+j+2) T nan

(5.2.12)

These functions and their derivatives vanish at 0 and this fact is a key property in
the development of the ideas of [30, 70} [83]. Unfortunately, they do not vanish at the
mass point ¢ < 0. For this reason, it seems to be natural to consider the following slight
modification of the functions (5.2.12)

n

G (x) := n~o/? [(a: - C)ijLifoj)(x) — Aoz — C)ijL(aZj)(x)] (5.2.13)

1/2
. _ (n+3)(n+4)
with An,a = ((n+a+;‘+3)(z+a+j+4)) .

As a consequence, it is well-known that the test polynomials G/ (z) can be ex-
pressed as (see [[70, equation (2.15)])

j+2
G2 (2) = (2= )2 Y apj@sn) L (), (5.2.14)
m=0

with
ag ;j(a,n) =ni.

Finally, the last technical step is to estimate the norm of the test functions (3.2.13).

Lemma 5.2.1. For some j > a —1/2 — 2(a + 1) /p, we have

nj+27o¢/271/2+(a+1)/p’ ifg(a) _ w(a),

o, ] »
167 sy, < € {nj+21/2+1/p’ if g(a) (5.2.15)

u(a).

Proof. Taking into account that the Sobolev norm of G2+ () coincides with its Lg (@)

norm (for g(a) = w(«) or g(a) = u(«)) and also considering the following expression
for G (z),

; 2,42 1,541 j
Gol(x) = gpa? (@) — 2egp 0" T (@) + Pgniy(a),

where g2 (z) is the test polynomial given in (5.2.12), so, we only need to use [70,
Lemma 1] in order to obtain the estimates (3.2.19).

O

(x)] :
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According to the notation in [30]], let us denote gy = ‘21 il, when 3 = «, and
qo = 4, when 8 = pa/2, and let py be the conjugate of go. We are ready to state our

main result.

Theorem 5.2.1. Let M, N > 0and 1 < p < 0. Fora > —1/2,

2042 2a+3

nor 2 dfasp<po,
2a+1 .
1T lsz 1= Clennl { (logn) %+ ifp = po,p = qo,

2041 2042

n 2 P ifgo<p<b.

Fora> =2/pifl<p<owanda = 0ifp = w©,

_3
2

n% ifa$p<p07
1 ,
1T M lisz 0 = Cleanl  (ogn) if p = po,p = qo,
1_2
n2-r chO <p<b;

where

(i) if M =0, N >20,thena =1and b = ©
(ii) if M >0, N >0, thena > 1,b < c0,and 1/a+ 1/b = 1.

Proof. Applying the operator 7™V to the test functions G/ (x) we get

n

ToNM Gy = Z (G (k) LM (5.2.16)

where
(Ge) M (k) =G, Ly My, k=0,...,n.

From (5.2:14) and the Sobolev orthogonality it follows in a straightforward way
that

(GNNE) =0 ifk <n.

When k = n, we get

(G29)"(n) =7f"‘/2a07j(oz7 n)fo LS)QZ( JLEMN () (2 — ¢)?ae " da

,1/2 00 ’
= Pag () () | L @LE M @)@ - o)t
0
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We can expand the polynomial (x — c)QLSLa’M’N) (z) in terms of the classical La-
guerre polynomials,

n+2
(z — ¢)2 LI MN)( Z Olny2, kL (2).

The comparison of the leading coefficient of both hand sides yields

Ap42.n42 = (n + 2)(n + 1)

On the other hand,
1/ @ a o, —T
(@) ) =g (e (e 30) 7 [ L 0L ) — e
—1/2 L o 2
= n_a/an,j(a,n) (hgf"M’N)) Oén+2’n+gf (LSHQ(.%')) % *dx
0

—1/2
= n_a/gao,j(oa n) (h%a’M’N)) (n+2)(n+ 1)h51-22
~ it

As a conclusion,

Now, we follow the proof given in [30, Theorem 1], taking into account that

p—1
L 00(c)] = /2 e { 3 Culasn ™2 4 O(n””)} ,
k=0

LN ()]

I

1 o
a/2—1/4 2+/—nc Culo:n~ %2 L Om—P2)\
T—icnn e {kz::o k(o e)n +O(n )}

O

Corollary 5.2.1. Let 3, pg, qo, and p be the same as in Theorem@ For ¢, = 1,
forallk =0, ... ,n,and for p outside the Pollard interval (py, qo) we get

||S ||[Sp ]_)(X)a n — o,

(8
where S,, denotes the nth partial sum of the expansion (5.2.11).
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It is worthwhile to point out that Corollary [5.2.1] says that as for the results of
[30, 70, [83]], the divergence of Fourier expansions in terms of this kind of Laguerre-
Sobolev type orthonormal polynomials remains true.

s
For ey, = %, k =0,...,n, from Theorem|5.2.1|we also get the divergence of

Cesaro means of order § when p is located outside the Pollard interval.

Corollary 5.2.2. Let M, N > 0and 1 < p < o0. Fora > —1/2,

0<5<2o¢p+2_2a2+3’ l'fa<p<po,

O<5<%_2ap7+23 ifQ0<p<ba
and p ¢ [po, qo], then 5
||0n||[85(a)] — 0, n — 0.

Fora> =2/pifl1 <p<o,anda =0, ifp = o,

3 ,
2 UP0<P<PO,

BN

%7 lfq0<p<ba

=

and p ¢ [po, qo), then we get

lollgsz, ) = 0. n— oo

Remark 5.2.1. It still remains as an open question the study of Cohen type inequali-
ties for the Laguerre Sobolev type orthonormal polynomials with respect to the inner
product

o8] N
(frgds = f F@)g(@)du(z) + 3 M; 9 ()99 (), (5.2.17)

=0

where du(x) = x%e “dx is the Laguerre measure, ¢ < 0, and M; > 0 for j =
0,..., N assuming that M > 0. The main difficulties in this case would be how to
choose suitable test functions as well as the possibility to have gaps in the Sobolev type
inner products , i.e. M; = 0 for some j = 0,..., N — 1. This means that the matrix
diag(My, ..., M) has not full rank (see for instance, [[83]] and the references therein.)






Conclusions

In this thesis, we have dealt with Sobolev-type orthogonal polynomials. In particu-
lar, we have focused our attention on four interesting problems:

(i) Connection formulas between Sobolev type and the associated standard ortho-
gonal polynomials.
(i) Matrix interpretation of recurrence relations and connection formulas.
(iii) Outer relative asymptotics for Sobolev type orthogonal polynomials.
(iv) Convergence of Fourier series associated to Sobolev-type orthogonal polyno-

mials.

As a result of the research in these directions, the original contributions of this
thesis have been the following ones:

e We have made an exhaustive study of connection formulas relating Sobolev type
and standard polynomials and we have found a quite general formula included

in Proposition[1.2.5]

e As for the case of Sobolev-type orthogonal polynomials with respect to nontriv-
ial probability measures with bounded support on the real line, we have found
an alternative proof of a known result on outer relative asymptotics of Sobolev
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polynomials (Theorem 2.1.T). We have also obtained a matrix connection be-
tween the (2N + 1)-diagonal matrix associated to the Sobolev-type orthogonal
polynomials and the Jacobi matrix of the corresponding standard polynomials
(Theorem [2.2.2)). Finally, we have generalized the study of the pointwise con-
vergence of Fourier series associated to Jacobi-Sobolev polynomials to the case
of inner products with several mass points outside the support of the measure.

We have worked with a family of polynomials orthogonal with respect to a
polynomial perturbation of the classical Laguerre measure, the k-iterated La-
guerre polynomials. In this direction, we have obtained estimates for the norm
of k-iterated Laguerre polynomials (Proposition [3.1.3) as well as a generalized
Christoffel representation formula for k-iterated polynomials (Proposition[3.1.4).

We have described the asymptotic behavior of the partial derivatives of diago-
nal Laguerre kernels depending on the location of the mass points in terms of
the support of the measure, i.e., if it is inside, outside or at the boundary of
the Laguerre measure. The novelty in this direction comes from the case of the
asymptotic behaviour of Laguerre kernels and its partial derivatives within the
oscillatory regime of classical Laguerre polynomials (Theorem and this
result will permit us to obtain asymptotics for Sobolev-type orthogonal polyno-
mials.

For the case of Sobolev-type polynomials orthogonal with respect to nontrivial
probability measures with unbounded supports, we have studied the representa-
tive case of Laguerre-Sobolev type orthogonal polynomials. The novelty con-
sists of considering for the first time a discrete Sobolev inner product with mass
points inside the support, which is the oscillatory region for the corresponding
polynomials. More precisely, we have studied the Outer Relative Asymptotics
(Theorem as well as the inner L?-Asymptotics (Theorem . We have
also obtained the asymptotic behavior of the coefficients in the five term recur-
rence relation associated to certain Sobolev-type polynomials (Theorem

Finally, we get a Cohen type inequality for Fourier expansions in terms of the or-
thonormal polynomials associated with a Sobolev type inner product with a mass
point located outside the support of the measure (Theorem [5.2.1)), for which we
have found a new family of test functions, different from those one can find in
the literature. Then, as an immediate consequence, we deduce the divergence
of Fourier expansions and Cesaro means of order § in terms of this kind of
Laguerre-Sobolev type polynomials (Corollary [5.2.T)).
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6.1 Future work

In view of the results of this thesis, we plan to follow several research lines in the
next future.

e The properties of classical Laguerre polynomials are very well known. In partic-
ular, Hahn condition allows to determine the derivatives of Laguerre polynomials
and using Perron or Féjer asymptotic formulas we can obtain the asymptotic be-
havior of these derivatives. It would be very useful to carry out a study about
asymptotics of derivatives of k-iterated Laguerre polynomials.

e From a theoretical point of view, it would be interesting to study the point-
wise convergence of the Jacobi-Fourier series associated with Sobolev type inner
products when some mass points are located inside the support and other ones
outside.

e For a denumerable set of mass points outside [—1, 1] which satisfy the Blaschke’s
condition and for a measure  such that its absolutely continuous part satisfies
the Szegd condition, the outer strong asymptotics of standard orthogonal poly-
nomials was given in [82]]. In [16], Denisov proved the outer ratio asymptotics
of standard polynomials with respect to a measure such that u'(z) > 0 a.e.
x € [—1,1] in the presence of a denumerable set of mass points off [—1, 1] with
the only condition that they accumulate at +1. The idea will be to study the
case of a denumerable set of mass points inside [—1, 1], which remains an open
problem.

e In Chapter ] we have studied asymptotics for Laguerre-Sobolev type polyno-
mials. It would be interesting to extend these results to another families of po-
lynomials orthogonal with respect to measures supported on an unbounded set.
Our technique is quite general and, basically, it requires to know strong asymp-
totics for the corresponding Sobolev polynomials.

e In Chapter[5|we have studied the convergence of some balanced Fourier-Sobolev
expansions in some p-weighted space, when p does not belong to the Pollard
interval. The complementary study for the case when p belongs to the Pollard
interval remains an open problem.

e It would be interesting the study of Cohen type inequalities for a continuous
Sobolev inner product associated with coherent pairs of measures when one of
the measures is the Laguerre one. This case requires to work in weighted Sobolev
spaces different from whose used since the first study of Markett.
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