
Learning analytics in the LMS: Using browser
extensions to embed visualizations into a

Learning Management System

Derick Leony, Abelardo Pardo, Luis de la Fuente Valent́ın, Iago Quiñones, and
Carlos Delgado Kloos

Telematics Engineering Department,
University Carlos III of Madrid,

Av. Universidad 30, Leganés, Spain
{dleony,abel,lfuente}@it.uc3m.es,iagoqo@inv.it.uc3m.es,cdk@it.uc3m.es

http://gradient.it.uc3m.es

Abstract. The use of analytics has gained a relevant level of impor-
tance in current learning environments. Due to its life-cycle of observa-
tion, analysis and intervention, it is important to make learning analytics
available to all the participants of a learning process. A Learning Man-
agement System (LMS) is a very suitable platform to present results in
the form of visualizations, but the development of custom modules usu-
ally requires programming and administrative work. This paper presents
a system architecture to embed learning analytics visualizations without
having to develop a custom LMS module. Our approach is based on the
modification of the LMS’ web pages through a browser extension. The
details of the implementation are presented, as well as issues that might
arise and how to address them.

Keywords: learning analytics, browser extensions, LMS augmentation

1 Introduction

The life-cycle of a learning analytics process can be described in three stages:
observation, analysis and intervention [1]. During the observation phase, actions
performed by the learner are collected and stored; this data is filtered and pro-
cessed. During the analysis phase, the data is analyzed to detect patterns that
help define the current situation of each learner. Finally, the learner is intervened
in order to improve her learning performance given her current situation. This
paper focuses on the intervention stage of the cycle.

A common approach taken to intervene is the provision of awareness by
displaying visualizations to the participants of the learning activity. Learners
are provided with self-awareness of their performance and comparisons with the
group performance. Meanwhile, instructors are provided with awareness of the
learners performance at individual and collective levels. Among the examples of
application of visualizations in learning contexts we can find CAMera [2], the
goal-oriented visualizations of activity tool tracking [3], and CourseViz [4].

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/30047104?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


A Learning Management Systems (LMS) is a common channel of communi-
cation to all the participants of the course; this is a main reason to use them
as the channel to display visualizations. The most common approach to achieve
this is through the development of a custom module to be installed in the LMS.
However, given that the LMS is commonly managed at an institutional level
and it must support several courses, installing a customized module becomes a
complicated procedure both technically and administratively.

In this paper, we propose an architecture to embed learning analytics visual-
izations and reports into a LMS without having to install modules in the LMS.
This solution follows a client-server pattern and is based on a learning analyt-
ics service that provides the visualizations in combination with a web browser
extension used by the participants of the course. Thus, we simplify the task of
providing visualizations to participants of the course, valuable for the execution
pilot studies or the evaluation of visualizations.

The rest of the article is structured as follows, Section 2 describes the archi-
tecture, its components and the communication among them. Section 3 explains
an implementation based on this architecture. Finally, section 4 presents some
points of discussion such as problems to address and future work regarding the
architecture.

2 Description of the architecture

The architecture proposed involves two main components: a visualization that is
dynamically generated by a learning analytics service and a web browser exten-
sion on the client side. Both components and the method to interconnect them
are described as follows.

2.1 Learning analytics service

The analytics service is in charge of generating the visualizations that will be
embedded in the LMS web page by the browser extension. The visualizations
can be generated as a single image or as an independent web page depending on
whether the visualization will be interactive.

A visualization might present different information to the same participant,
depending on the context where the visualization is being shown. This requires
the service to accept parameters that indicate the current context of the viewer.
For instance, the visualization of a learner performance could be displayed to
both instructor and learner, but the latter could be provided with a compari-
son of her performance and the performance of the whole class group. In other
situations, such as a general dashboard, the learning analytics service provides
information about the individual user only when the visualization is seen by a
learner but not when seen by an instructor.

2



2.2 Behavior of the browser extension

The browser extension includes a special type of script known as a content script,
which consists of a JavaScript code executed in the context of a page whose URL
matches a given pattern. It must be noted that the URL pattern does not accept
a query string; thus, the verification of the query string must be done within the
logic of the content script.

In the architecture, there are two sites where the content script must be run:
the course home page and the course participant list. The content script modifies
the home page and the page that lists the course members. The structure and
design of the elements that are included into these pages follow the style of the
complete LMS in order to maintain it consistent.

The modification on the course home page consists of the inclusion of an
element commonly known as widget, module or portlet. This element is shown
to every participant of the course, be it a learner or an instructor. The content
presented is a visualization obtained from the analytics service which will be
personalized for each viewer. Because of this personalization, the content script
must obtain a user identifier within the content of the page, and usually available
at explicit links referring to the user profile or session status.

In the list of participants the content script adds a visualization element
next to each learner’s portrait or full name. In order to maintain the privacy of
the learners’ academic information, the list of participants should be modified
only if the viewer is an instructor. Thus, the content script needs to be aware of
the role that the viewer plays within the course which can be achieved through
mechanisms like analyzing the options available on the web page or fetching the
content of the viewer’s profile and analyzing the user description. As in the home
page modification, the user identifier for each learner can be obtained from a link
pointing to her user profile in the LMS.

2.3 Communication between extension and service

Visualizations must be available for the browser extension to embed them into
the web page of the LMS when seen by a course participant. This is usually
achieved by offering the visualizations through a web server and requiring au-
thentication in order to respect the privacy of the learner data.

The communication process follows a client-server architecture, where the
browser extension plays the role of the client and the visualization service is
the server. The extension initiates the communication process by requesting the
appropriate visualization given the current context in the LMS, which includes
the web page and the user’s current profile. The request includes information
about the identity of the user and current context.

The proposed architecture and the exchange of information among its com-
ponents are represented in Fig. 1.

3



Fig. 1. Architecture for embedding visualizations into a Learning Management System
through a browser extension. The elements we introduce are colored in green.

3 Implementing the architecture

In our scenario, the LMS where the visualizations are embedded is Moodle and
the course participants use Google Chrome and Mozzilla Firefox as their web
browsers. The visualization service is provided by LearnGLASS [5], which is a
learning analytics system that supports the development of visualizations on top
of a common learning dataset. LearnGLASS follows a modular architecture, it
is in a specific visualization module that the visualization service was developed
and published. This specific part of the module does not require to have initiated
a session in GLASS, since it will be accessible from Moodle.

Regarding the browser extensions, we have used Kango Extensions [6] to
develop extensions for both Firefox and Chrome. This framework allows the
generation of browser-specific extensions based on a common base code.

Although the web page that generates the visualization does not require a
session, it does require an authentication token as a parameter. The token is
generated by a hash function of the user identifier, the current timestamp and
a password known by both client and server. Fig. 2 presents a screen capture of
the home page of a Moodle course as seen by a student; the red selection shows
the visualization that has been inserted.

4 Discussion

Using a decentralized architecture also implies the appearance of problems that
need to be addressed such as a fragmentation of client software, dependency on
structure, account association and security.

User identity issues include the unification of user accounts in the two sys-
tems, the LMS and the visualization service. These problems are explained with

4



Fig. 2. Home page of a Moodle course as seen by a learner. The visualization embedded
by our solution is highlighted in red.

more detail in [7] where the possible solutions are also included. For this imple-
mentation we have previously imported the Moodle user identifiers into GLASS
database and mapped each Moodle account to its corresponding GLASS account.

A second possible issue to take into account is that by using a client-server
architecture, users might have different versions of the client. This problem is
approached in our implementation through the provision of an update URL. This
URL is accessed by the web browser to check whether there is a new version of
the extension and, when this is the case, the user has the option to upgrade.

By modifying the structure of the LMS’ web pages, the correct behaviour
of the presented architecture depends on keeping the same structure and visual
design of the web pages. This issue is addressed through a constant monitoring of
the LMS look-and-feel and the appropriate modification of the extension to adapt
to change. Another mechanism to consider is the development of an alert system
in the extension that informs the visualization service about any mismatch in
the structure of the page.

One of the main disadvantages of the development of a client application
with JavaScript is the availability and openness of its source code. Thus, the
development of an authentication protocol that is password-protected becomes
difficult. A possible way to overcome this problem is through the implementation
of the OAuth protocol to allow the browser extension to fetch information from
the visualization service. This option presents the disadvantage of requiring an
initial intervention by the user.

Regarding the proposed future work, we are currently working on the de-
ployment of a learning analytics scenario that is supported by the presented
architecture. This deployment has many objectives: evaluate its viability, ana-
lyze the reaction of users to the presentation of analytics, and analyze whether

5



the effects of embedded visualizations in the LMS during the learning process of
the participants.

Finally, another line of technical work is the generalization of the browser
extension. Currently, the extension is dependant on the structure of the pages in
the LMS and on the visualization service specification. By abstracting both of
these characteristics, we would improve the modularity and re-usability of the
extension.

Acknowledgment

Work partially funded by the EEE project, “Plan Nacional de I+D+I TIN2011-
28308-C03-01” and the “Emadrid: Investigación y desarrollo de tecnoloǵıas para
el e-learning en la Comunidad de Madrid” project (S2009/TIC-1650).

References

1. Elias, T.: Learning Analytics : Definitions, Processes and Potential.
http://learninganalytics.net/LearningAnalyticsDefinitionsProcessesPotential.pdf
(2011) Last accessed: August 2011.

2. Schmitz, H., Scheffel, M., Friedrich, M., Jahn, M., Niemann, K., Wolpers, M.: Cam-
era for ple. Learning in the Synergy of Multiple Disciplines (2009) 507–520

3. Santos, J., Govaerts, S., Verbert, K., Duval, E.: Goal-oriented visualizations of
activity tracking: a case study with engineering students. In: Proceedings of the
2nd International Conference on Learning Analytics and Knowledge, ACM (2012)
143–152

4. Mazza, R., Dimitrova, V.: CourseVis: A graphical student monitoring tool for sup-
porting instructors in web-based distance courses. International Journal of Human-
Computer Studies 65(2) (February 2007) 125–139

5. Leony, D., Pardo, A., de la Fuente Valent́ın, L., Sánchez de Castro, D., Del-
gado Kloos, C.: GLASS: a learning analytics visualization tool. In: Proceedings
of the 2nd International Conference on Learning Analytics and Knowledge, ACM
(2012) 162–163

6. KangoExtensions: Kango Cross-browser extension framework.
http://www.kangoextensions.com (2012) Last accessed: July 2012.

7. de la Fuente Valent́ın, L., Leony, D., Pardo, A., Kloos, C.: User identity issues in
mashups for learning experiences using ims learning design. International Journal
of Technology Enhanced Learning 3(1) (2011) 80–92

6




