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1 Algorithmic extraction of topological information

As mentioned in the main text (MT), the main difference between our approach and previous ones
is that we compute directly the area of every cell, rather than estimating it using e.g. a Voronoi
tessellation.

This involves several steps that allow to replace the original AFM image by an adjacency
matrix among cells (Mij). The latter moreover provides the relevant topological information on
the cell arrangement that is further analyzed in the MT. In what follows we illustrate such a
processing protocol. The same procedure has been applied both to the experimental and to the
numerical images obtained from simulations of Eq. (6) in the MT. Overall, taking into account
the fact that we need to study the evolution of the system in time, this has required processing
of a large number of images (up to 1000 in the case of the simulations, taking into account that
averages over initial conditions are required at each fixed time).

1.1 Image processing

The extraction of the information from an AFM image or from a simulation morphology involves
its transformation and further recombination with some derivative images. The goal is to de-
termine clearly the boundary of each cell, in order to further study its geometrical (area) and
topological properties within the arrangement. The transformations we employ are standard in
the context of so-called morphological image analysis [1], and have been implemented through
straightforward use of built-in commands of the Matlab image processing toolbox. The resulting
figure is a posterized version of the original one and is amenable to quantitative analysis of the
type described in the MT.

The process we have followed involves the following steps, exemplified in Fig. 1:

1. Top-hat and bottom-hat transforms: These extract the areas in the image which have
highest or lowest brightness, respectively.

2. Re-combination of the original image and the two images obtained after Step 1: By fur-
ther adding/subtracting the top-hat and bottom-hat transforms, respectively, to/from the
original image, boundaries among cells are emphasized, as better appreciated after the next
step.

3. Complementation of the image in Step 2: As the inner region of the cells does not contain
relevant information in this context, the negative image of that after Step 2 is more con-
venient to process. Notice the enhancement of inter-cell boundaries already achieved after
Step 3, as compared with the initial image.

4. Detection of intensity valleys: This step allows, precisely, to remove the deepest regions
within each cell. These valleys will be removed to flatten the region within each cell in the
next Step.
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5. Watershed segmentation: By defining a threshold height, we can filter the image obtained
by subtracting those after Steps 3 and 4. The idea is that, after the present processing Step,
only the boundaries are bright enough, so that all the information below that threshold
has been removed. The resulting image is a collection of regions with value 0 (below the
threshold) and boundaries with value 1.

6. Cell color and number assignment: Using a standard color filling algorithm, we can assign
a color to each cell. Then, through the color map, a different number is assigned to each
individual cell.
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Figure 1: Schematic summary of the image processing steps performed to extract the topological
properties from the cellular patterns. Although many grains seem to have the same color, it is
due to a lack of resolution not to an overlapping in the grain numbering.

The cell boundaries can be explicitly extracted to illustrate the fidelity of the algorithm with
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respect to the original sample (Fig. 2).

Figure 2: Left: Same original image as in Fig. 1. Image size is 50×50 µm2. Right: Cell boundaries
obtained following the steps summarized in Fig. 1. The right arrow shows how a cell in the original
image corresponds to a region in the processed one. Numbers of neighbors, as computed by our
algorithm, are shown for a few sample cells.

1.2 Adjacency matrix and information on the cellular pattern

At the last step in Sec. 1.1, a number is assigned to each color (representing each a specific cell
in the pattern). After removal of regions that impinge the boundaries of the image, we find an
adjacency matrix, M ∈ RN×N , where N is the total number of remaining cells.

The process of assigning an adjacency matrix to the final image after Step 6 in the processing
protocol described above is straightforward: we run two loops over coordinates x and y through
the image, where x, y = 1, . . . ,Pixel ], where the lateral number of pixels is typically Pixel
] = 512. The simulations are scaled so that Pixel ] is 512 as well. At every pixel position (x, y)
(that corresponds, say, to the specific cell with color number i), we determine the color of the 4
neighboring pixels (x±1 and y±1). If the color of a nearest neighbor is different from the present
one and corresponds to color j 6= i, we set Mij = Mji = 1. A typical form of the matrix looks like

M =



0 0 0 0 0 0 . . .
0 0 0 0 0 0 . . .
0 0 0 1 0 0 . . .
0 0 1 0 0 0 . . .
0 0 0 0 0 1 . . .
0 0 0 0 1 0 . . .
...

...
...

...
...

...
. . .


As stated, Mij = 1 means that cell i is adjacent to cell j, with i, j = 1, . . . , N , thus M is
symmetric. The x value of diagonal elements remains arbitrary.

Additional observables, like e.g. the number of sides for each grain, can be obtained from M ,
in this case by summing all non-diagonal elements in the corresponding row of the adjacency
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matrix. Furthermore, also from the colored image1 in Fig. 1, we can count the number of pixels
assigned to each cell. By rescaling that number to the whole physical area of the experiment, we
can convert from “number of pixels” to µm2.

This automatic procedure allows to process large amounts of information, in particular from
the numerical simulations of the dynamics described by the cCH equation of the main text. Hence,
we can follow the evolution of observables in time, as shown in the figures of the main text (mean
cell area, entropy, number of neighbors, etc.). As an example, in Fig. 3 we show the histogram of
areas corresponding to Fig. 2.
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Figure 3: Histogram of physical areas obtained from Fig. 2.

2 Statistical significance of the fits

In the main text, we show the agreement between our data and several topological laws, such
as those of Aboav, Lewis, or Lemaitre. To assess the goodness of the linear fits provided (in
particular in the case of Figs. 2a,b of the main text), we have evaluated the correlation coefficient
and the so-called reduced-χ2 coefficient [2], defined as

reduced-χ2 =
1

ν −m

ν∑
i=1

(
yi − ȳi
σi

)2

,

where yi is the experimentally observed value, with error bar σi, and ȳi is the fitted one. The
parameter ν stands for the number of measured values from the experiment and m for the number
of fitting parameters (m = 2 in the case of a linear regression). The χ2 test provides an objective
quantification of the goodness of the fit. In particular, values of the reduced-χ2 between 0.1 and
10 are considered indicative of meaningful fits.
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1For computational performance, this is done within the same loops employed in the creation of the adjacency
matrix.
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