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Abstract. In the context of functional data analysis, we propose a new method

to test the homogeneity of families of functions. Based on some well-known depth

measures, we construct four different statistics in order to measure distance between

the two families. A simulation study is performed to check the efficiency of the tests

when confronted with shape and magnitude perturbation. Finally, we apply these

tools to measure the homogeneity in some families of real data, obtaining good

results for these new methods.

1. Introduction

In the last years functional data analysis (FDA) has become one of the most active

domains of research in Statistics, because of its own interest and also for its applica-

tions in a number of context like medical science, biology, chemistry or social sciences.

In essence, the objects of study in FDA are real functions which are assumed to be

generated by means of a stochastic process. The functions are observed in a certain

number of fixed points or time instants, but instead of being treated as multivariant

Date: January 28, 2014.

1
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data, they are smoothed using appropriate tools that frequently rely on techniques of

functional analysis. Nevertheless, a number of techniques of multivariate data have

been adapted or generalized to the FDA context. The main references on this field

are Ramsay-Silverman [RS05] and Ferraty-Vieu [FV06].

In this paper we address the problem of homogeneity between families of functions;

that is, given two families of curves, we attempt to decide whether these two families

have been produced or not by the same process, so they have equal probability dis-

tributions. This problem has been recently considered in the last years. Benko et al.

[BHK09] present methods for testing equality of means between functional data that

respectively rely on bootstrap and asymptotic procedures; and Horváth-Kokoszka

[HK12], moreover, also describe tests to compare the quality of the covariance op-

erator. López Pintado and Romo [LR09] (see also [LS93]) Romo-Pintado describe

a rank test to establish the homogeneity of two functional samples, obtaining quite

accurate results. Cluster algorithms have also been proposed in [ACMM03], for ex-

ample. Finally, a different point of view is developed by Cuevas-Febrero-Fraiman in

[CFF04], where an ANOVA F-test based in functional distances was proposed. In the

same way, the approach we take in this paper is related to distances between the two

functional families which are based on depth measures.

Consider an interval I ⊂ R, and a finite family F = {x1 . . . xn} of real functions

defined over the interval. We will assume that the functions lie in C1(I). The concepts

of distance between families that we introduce in this paper will be based on the

notion of statistical depth, a concept originated in the field of the statistical analysis

of multivariate data, and then extended to functional data. In our context, a depth

functional with respect to the family F will be a functional d : C1(I) → R, whose
value should depend on a certain way on the family F and also on a depth measure

defined a priori. In this way, the value of d over the function will constitute a measure

of how deep is the function f “inside” the family F . By means of these functionals,

we construct four families of statistics which are shown to be useful to decide if

two families of functions are homogeneous or heterogeneous. In order to understand

the behaviour of the measures with respect to differences of magnitud and shape in

the families, we have tested our methods on several samples of simulated functions.

Moreover, we discuss homogeneity in some real contexts, as Ramsay height data, the

tecator family and the mitochondrial data MCO. See last section for details.
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The structure of the paper is as follows. In Section 2 we present the concept

of depth, introduce the notion of depth with regard to a family and describe our

statistics. Section 3 reviews the measures of depth that are used in order to undertake

the different homogeneity tests. Section 4 is devoted to the analysis of some families

of simulated data, whereas in the last section we perform the test for the real data

examples.

2. Distances between functional families

In the growing field of FDA, where functions are data, a crucial general goal is

to define concepts which mimic or transport the usual notions in multivariate data

analysis. The depth of functions was defined -in any of its versions-, in this sense, as

a generalization to this context of a notion of centrality, being the deepest function

of a certain family an adequate definition of the “median” of the data.

Usually, the concept of depth is quite related with some notion of distance between

functions, a phenomenon which is more clearly seen in the multivariate versions. In

order to introduce intuitive statistics that indicate in some sense distance between

two samples, we propose the definition of depth of a family with respect to another.

Given a certain measure of functional depth d, and given a family of functions F
and another function g not necessarily in F , we denote by dF(g) the depth of g with

regard to the family F ∪{g}. We define henceforth the notion of the deepest function

of a family with respect to another:

Definition 2.1. Let F and G be two finite families of continuous functions defined

in an interval I. The deepest function of G with regard to F is the function g of

the family G which maximizes dF(g) among g ∈ G. We will denote this function by

DF(G), or simply D(G) if the base family F is understood. If there are more than one

function in G for which the depth is reached, we can choose any of them as DF(G),
or else we can consider the whole set as the deepest subfamily of G with regard to F .

Observe that the if the families F and G are large enough, the probability of

finding two functions of G which maximize the depth gets small, so usually we could

talk about the deepest function.

The definition of the deepest function of G with respect to F is addressed to propose

a solution to the problem of homogeneity in the context of functional data. Given

two or more families of functions, we say that the functions are homogeneous if they
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come from the same experiment, and then have equal probability distributions. In our

framework, to determine explicitly the distributions is usually a very difficult problem,

so we are forced to design different strategies to test homogeneity. We offer hence a

different approach to the problem, by using the depth measures to perform an analysis

which, by nature, may include the distance between functions, their magnitude and

their shape.

Our starting point are two samples of functional data, F and G. The function

DF(G) or DG(F) may supply interesting information about homogeneity. In this

sense the concept of deepest function can be used in different ways. In the following,

we propose several possible statistics which depend on the notion of deepest function

and allow to undertake the analysis of homogeneity.

We define the first statistic P1 as

P1(F ,G) = dFDGG.

Probably this is the more natural approach to the homogeneity problem, since roughly

speaking, the function DGG is the best estimator of the experiment which produces

the sample G. Hence, it is reasonable to compute how deep is this estimator with

respect to F . The bigger this depth, the less likely the two samples come from

different experiments.

The second statistic is defined as a variation of the previous one:

P2(F ,G) = |P1(F ,G)−P1(F ,F)|.

This definition may be considered a kind of normalization of the previous one. It

could happen that the nature of the experiment which originates the sample F makes

impossible for any datum of the experiment to reach the value 1 (for example, if the

experiment produces two well-defined “bands” of functions, or if some deep functions

cross themselves in close points). In this case, P1(F ,F) would give a good estimation

of the maximum of these depths, and the difference |P1(F ,G)−P1(F ,F)| would be

more informative than the value P1(F ,G) alone; see the computations section for

interesting questions about this issue. In this case, the families are likely to come

from the same experiment as the statistic gets closer to zero. It would be probably

equivalent to consider the quotient instead of the absolute value of the difference.
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A different approach is given by the statistic

P3(F ,G) = dF(DFG),

which identifies the F -depth of the deepest function of G with respect to F . This

is the function of the family G which is more likely to come from the experiment

that generates the sample F , and then it is relevant from the point of view of the

classification. In particular, |P3(F ,F)| = P1(F ,F) for any family F .

Observe that the function DFG could not be a good estimator for the result of the

experiment that generates F . Then, if we intend to use it for the classification of

experiments, it would also be interesting to produce a measure that controls simul-

taneously the F -depth and the G-depth of DGG. One possible option is to define a

measure in [0, 1] × [0, 1] whose values are the F -depth and the G-depth of DFG; in
this context, the first number would be the measure the depth itself, while the second

would be interpreted as a control number of how sharp is the measure. However, this

approach is bivariant, so we propose instead an alternative univariant version that

avoid that disadvantage and catches essentially the same information:

P4(F ,G) = |P3(F ,G)−P1(F ,F)||P3(F ,G)−P1(G,G)|.

The greater this number, the less likely the two samples come from the same

experiment.

Once the statistics are defined, we propose the following method for testing the null

hypothesis of equality of distributions of the two functional samples. We use a boot-

strap approach to take the final decision since the theoretical asymptotic distributions

of these statistics are difficult to obtain.

1. Select a functional depth measure dF and a statistic P = Pi for some i ∈
{1, 2, 3, 4}, which will depend on the previous concrete choice. In this paper,

to deal with dF we will use Fraiman-Muniz depth, h-modal depth, random

depth RPD, band depth BD and modified band depth mBD but there are

other possibles choices for the depth measure.

2. Now consider the families F and G, and propose as a null hypothesis H0 that

F and G come from the same experiment. We perform then a hypothesis test

to reject (or not) H0.

3. Define the family H as the union F ∪ G, and obtain N bootstrap samples of

H of size |H|. For any 1 ≤ j ≤ N , let Sj be the corresponding sample, denote
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by S1
j the family of the first |F| functions and by S2

j the family of the last |G|.
Then compute Pj = P(S1

j ,S2
j ).

4. For an appropriate size α, compute a confidence interval I for the values Pj.

5. The null hypothesis will be rejected if and only if the functional P(F ,G) does
not belong to the interval I, and in this case we will assume that the groups

are not homogeneous.

The nature of the computations suggests to use unilateral confidence intervals. To

obtain the critical value at 95% of confidence, we trim the five percent of the data

in the appropriate side of the interval: in measures P1 and P3 should be the smaller

values, while in the normalized values will be the bigger ones.

Below we present our results with both simulated data and real data, but we first

review the functional depths we use.

3. Functional depths

The concept of depth in the context of functional data analysis generalizes the same

notion for multivariate data, which in turn was an extension to the multidimensional

framework of the order statistics and other univariant measures. While the multivari-

ate measures are mainly addressed to explore a certain centrality of a point in some

real vector space, the different nature of the functional data forces the statistics to

consider another features of the functions involved, as the shape of the functions or

the amount of time they spend in a certain range of real numbers. In this sense, we

have chosen different depth measures which in turn explore different features of the

functions inside the families. We start with the pioneering work of Fraiman-Muniz,

whose goal is to measure how much time every function is deep inside the family.

Fraiman-Muniz depth. Consider an instant a bunch of curves {x1(t), . . . xn(t)}
defined on the interval [0, 1]. Denote by I(−) the indicator function, and consider,

for every i ∈ 1 . . . n, the function:

Fn,t(xi(t)) =
1

n

n∑
k=1

I(xk(t) ≤ xi(t)),

and also the univariate depth

Dn(xi(t)) = 1− |1
2
− Fn,t(xi(t))|.
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Then, the Fraiman-Muniz depth of the function xi(t) is defined in [FM01] as the

integral:

FM(xi(t)) =

∫ 1

0

Dn(xi(t))dt.

h-modal depth. This measure was first defined by Cuevas et al. [CFF06] and is

addressed to identify the functional mode of the family. Consider again a family of

curves {x1(t), . . . xn(t)}, select a value h which should be interpreted as a bandwidth,

and also consider a kernel function defined on the real positive numbers. Then the

h-modal depth of the function xi(t) with respect to K and h is defined as:

hDn(xi, h) =
n∑

k=1

K(∥xi − xk∥)
h

.

In this paper, as recommended by the aforementioned authors, we take the norm

L2, h as the 15th percentile of the empirical distribution of the norms ∥xi − xk∥, and
K a convenient truncated Gaussian kernel.

Random projection depths. These two versions of depth were proposed by

Cuevas et al. [CFF07], and combine random projections of the functions of the

family in different directions with a bivariate data depth which is used to order the

corresponding results. More precisely, given a family of functions {x1(t), . . . xn(t)}
and ν, a realization of a stochastic process whose values are random directions, we

define the projection of xi along the direction ν as

Ti,ν =

∫ 1

0

ν(t)xi(t)dt,

and analogously,

T ′
i,ν =

∫ 1

0

ν(t)x′
i(t)dt

considering the derivatives instead of the trajectories of the function. If we select a

bivariate data depth D and assume P realizations of V , we may define the following

two versions of the random projection depth:

RPD1(xi) = 1/P
P∑

p=1

D(Ti,ν , Ti,ν),
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which takes into account only the trajectories of the functions, and

RPD2(xi) = 1/P
P∑

p=1

D(Ti,ν , T
′
i,ν)

which considers the functions and their derivatives.

In this note, the role of D to compute depths will be played by the bivariate version

of h-modal depth. Moreover, we checked that the results obtained in our contexts

using RPD1 and RPD2 were similar, and as the second one was computationally

harder, in this paper we use only the first version, which we will denote simply by

RPD.

Band depth. In [LR09], López-Pintado and Romo define two different versions

of a new depth of essentially geometric nature. It is based on the concept of band,

understood as a portion of the plane that is delimited by the family of curves. More

precisely, fix the family F , and given a function x ∈ C(I), denote by G(x) the graph

of x. Then, for every j such that 2 ≤ j ≤ n, the n-th band depth is defined by the

formula:

BD(j)
n (x) =

(
n

j

)−1 ∑
1≤i1≤i2≤...≤ij≤n

I{G(x) ⊆ B(xi1 , xi2 , . . . , xij)}.

Here xi1 , xi2 , . . . , xij are functions in the family and B(xi1 , xi2 , . . . , xij) is defined in

the following way:

Bj(x) = Bj(x;xi1 , . . . , ij) = {(t, y) ∈ I : mink=11,...ijxk(t) ≤ y ≤ maxk=11,...ijxk(t) ≤ x(t)}.

Here I stands, as usual, for the indicator function. Note that BD
(j)
n (x) measures

the proportion of j-uplas (xi1 , xi2 , . . . , xij) in F such that x belongs to the band

determined by them.

The global band depth compiles all the previous measures:

Given a family F as above and a value J such that 2 ≤ J ≤ n, the band depth of

a function x is defined as

BDn,J(x) =
J∑

j=2

BD(j)
n (x).

Of course, from an analytic point of view, the most logical choice for J is n, so we

collect all the posible information given by the curves in the family F . However, if
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|F| is big, the depth can turn to be computationally intractable. The authors prove

that the value is quite stable in J , so in this paper we will use J = 2. In this case,

the depth depends generally on non-degenerate bands.

The authors also define a modified version of the band depth, by considering bands

in the interval I, instead of bands in the plane:

Aj(x) = Aj(x;xi1 , . . . , ij) = {t ∈ I : mink=11,...ijxk(t) ≤ x(t) ≤ maxk=11,...ijxk(t) ≤ x(t)}.

Now the authors consider a Lebesgue measure λ on the interval (usually the standard

one), and define as in the previous case:

mBD(j)
n (x) =

(
n

j

)−1 ∑
1≤i1≤i2≤...≤ij≤n

λ(Aj(x))

λ(I)
,

again with 2 ̸= j ̸= n. Now the definition of the modified band depth is analogous to

the previous one:

mBDn,J(x) =
J∑

j=2

BD(j)
n (x),

for 2 ≤ J ≤ n.

4. Simulation study

In order to describe the characteristics and features of our procedures, we perform

a simulation study using the four different statistics defined in Section 2 and the five

depth measures defined in the previous section: Fraiman-Muniz, h-modal, random

measure, band depth and modified band-depth. We consider six functional popu-

lations in the space C[0, 1], which are considered as the realizations of a stochastic

process X(−) which has continuous trajectories in the interval [0, 1].

Sample 0. This is the reference set, generated by a Gaussian process

X(t) = E(t) + e(t)

with mean function E(t) = E(X(t)) = 30t3/2(1− t), and e(t) is a centered Gaussian

process, whose covariance matrix is given by Cov(ei, ej) = 0.3 ∗ exp(− |ti−tj |
0.3

).

The remaining sets are produced by perturbing the generation process in two ways.

The first three suffer magnitude contamination in the mean, while the covariant

matrix does not change.
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Sample 1. This set is generated by the Gaussian process X(t) = 30t3/2(1 − t) +

1 + e(t).

Sample 2. In this case the contamination is smaller than in Sample 1: X(t) =

E(X(t)) = 30t3/2(1− t) + 0.5 + e(t).

The next samples are obtained from the reference set of Sample 0 by changing in a

more drastic way the mean function, and also the covariance matrix. These changes

give rise to shape contamination.

Sample 3. This set is generated by the Gaussian process X(t) = 30t(1− t)2+e(t),

where e(t) is defined in the same way as above.

Sample 4. Defined as X(t) = 30t(1− t)2+h(t), where h(t) is a centered Gaussian

process whose covariance matrix is given by Cov(ei, ej) = 0.5 ∗ exp(− |ti−tj |
0.2

).

Sample 5. The last group combines the previous cases, being defined by 30t3/2(1−
t) + h(t). Hence, the perturbation here is only induced by the process h(t).

The routines used to undertaken the simulations were developed in R and are

available upon request. We adopt the following notation:

• For i ∈ {1, 2, 3, 4, 5} The five sets of simulated functions will be denoted by

Si.

• For every k ∈ {1, 2, 3, 4}, the statistic Pk used in the hypothesis test will be

as defined in Section 2.

Figure 1. From left to right and from up down, the five samples. In

green, the reference family.
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We use the following method to test homogeneity. Select a depth measure d| and a

statisticP = Pk from the list above. Now generate 50 functions with the algorithm for

S0 and 50 functions with the algorithm for Si, for a certain i. Each curve is observed

in 30 equidistant points. Now compute Pi(S0, Si). Then consider 1000 standard

bootstrap samples of size 100 of the family H = S0∪Si. For any 1 ≤ j ≤ 1000, let Sj

be the corresponding sample, denote by S1
j the sample of the first 50 functions and

by S2
j the sample of the last 50, and compute Pj = P(S1

j ,S2
j ). With this 1000 values

we compute an unilateral confidence interval for a confidence of 0.05. Now the null

hypothesis is that F and G come from the same experiment, and we reject if and only

if P(F ,G) does not belong to the interval I. Finally we repeat the whole process 100

times and count the number of rejections. Our results are shown in the tables, and

commented below.

The results of our computations are listed in Table 1 with the information of both

the previous measures and the rank tests. There we denote respectively by FM,

dmode, RPD, BD and mBD, the Fraiman-Muniz depth, h-modal depth, random pro-

jection depth, and band depth and modified band depth. We maintain the notation

for the samples of functions which are already described and are the target of our

study. For each statistic, the table shows the number of rejections in 100 essays, for

the usual level 0.05 of confidence.

We may analyze our results from three differents point of view, focusing respectively

in the classification criteria, the depth measures or the populations. Considering cri-

teria, it is clear from the data that the most accurate is P3 as it always distinguishes

the families, with a perfect 100% of success. Its normalized version works also quite

well, being uneffective when combining it with h-modal depth, or when the magni-

tude contamination is too small. The measure P3 only presents problems when its

associated depth is BD, and same phenomenon happens to P4.

From the point of view of the depth measures, it is clear all of them work well (at

least 75 rejections in almost all the cases) except the band depth, so in case we need

to use these kind of measure, the modified version is clearly preferrable. Finally, it

is apparent from the simulations that the difficulties only appear if the magnitude

contamination is really small (Sample 2) or we combine the two perturbations (Sample

5) and the measures are powerful when confronted with other type of contaminations.

Note that, excluding BD, the measures detect always the difference for families F1,

F3 and F4 and F5.
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4.1. Sensibility analysis. We carry out a sensibility analysis of our approach with

respect to several aspects that can be considered:

Size of the bootstrap. In order to test the importance of the size of the bootstrap

sample, we also undertook some test cases enlarging it to 1000 and 3000. The com-

putation time increased in a significant way, while there were not an apparent change

in the conclusions of our study. So we may conclude that our statements are stable

with regard to the size of the bootstrap resampling.

Confidence. We choose the usual signification level of 0.05, but in order to check

the robustness of our results, we tested some of the data for a level of 0.025. We

obtain the same conclusions as in the 0.05 case, so may assume that our measures

are also robust in this sense.

Symmetry. We also check what happens if in each case, we take the population

Si as the reference sample in the hypothesis test, and S0 as the test sample. Again,

the results where similar to the ones that are shown in the paper. While a priori it

would be a good idea to take into account this symmetric values, we check that the

benefit of this strategy would be exiguous, and at the same time the computational

cost would increase significantly.

Power test. In order to show the performance of the measures introduced in the

paper, we have carried out a power test for a concrete model case. Consider the

gaussian stochastic process X(t) = 30t3/2(1 − t) + e(t) + η, which depends on the

parameter η > 0, and consider the measure P1 referred to Fraiman-Muniz depth.

We know by Table 1 that for η = 1 and η = 0.5 the measure separates this family

from the reference family in 100 out of 100 replications. After generating another

100 replications for η = 0.25, we found that the measure detected heterogeneity in

all cases. However, for η = 0.1 the family gets really close to Family 0 and then the

measure only discriminates in 9 out of 100 cases.

Observe that in the same situation (see Table 2) the rank test produces a perfect

score for samples 1, 3 and 4, but it fails to prove homogeneity when the difference of
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P1 P2 P3 P4

FM

1 100 100 100 100

2 100 100 100 100

3 100 100 100 100

4 100 100 100 100

5 57 52 100 76

h-modal

1 100 100 100 48

2 95 92 100 80

3 100 100 100 29

4 100 100 100 100

5 87 70 100 83

RPD

1 100 100 100 98

2 100 100 100 28

3 100 100 100 100

4 100 100 100 100

5 16 19 100 36

BD

1 100 19 100 97

2 52 21 100 25

3 100 32 100 93

4 46 30 100 92

5 65 22 100 73

mBD

1 100 100 100 76

2 100 99 100 41

3 100 100 100 100

4 100 100 100 100

5 67 46 100 83

Table 1. Simulation results

magnitude is small (Family 2) or when the shape contamination is important (Family

5). The latter was early advised in [LR09].

To prevent disfunctions caused by outliers, is is usual to define trimmed measures,

considering a subsample of functions in F , for example the 95% of deeper functions.

The smaller these numbers are, the greatest the probability that both series of data

come from the same experiment. We have checked the trimmed measures in some of
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Rank test simulated data FM h-modal RPD BD mBD

Sample 1 100 100 100 100 100

Sample 2 65 41 57 49 44

Sample 3 100 100 100 100 100

Sample 4 100 100 100 100 100

Sample 5 61 94 6 99 78

Table 2. Rank test for simulated data

our previous computations, but the results were very similar to the measures without

trimming, so we offer here the results of the latter.

5. Real data

In this last section, we illustrate the validity of our methods with four different

real data sets: a) Ramsay growth curves dataset, which consists of the height (in cm)

of 93 people measured throught time; b) MCO data, where data measure calcium

content in cardiac cells of mice; c) Tecator spectrometric data set, which consists of

215 infrared spectra of meat samplest obtained by a Tecator IFF Analyzer, and d) the

second derivative of the spectrometric data. The results of the rank test are included

at the end of the section.

In the tables below, CV (critical value) stands for the extreme of the unilateral

confidence interval of the test. Observe that for the measures P1 the null-hypothesis

is rejected when the value of the statistic is smaller than CV, whereas in the remaining

two we reject when the value of Pn is larger than CV. In the corresponding columns

labeled “Rej.” we specify if the null-hypothesis is rejected or not in each case.

5.1. Ramsay data. We start our analysis of real cases with the classical growth

dataset first studied by Ferraty-Vieu in [FV06], and also analyzed more recently by

López Pintado and Romo in [LR09] and by Alonso, Casado and Romo in [ACR12].

The variables are the 93 growth curves for 39 boys and 54 girls, measured between 1

and 18 years, and we intend to test the homogeneity of samples by sex. The results

are shown in Table 3.
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Figure 2. Ramsay growth data.

P1 CV Rej. P2 CV Rej. P3 CV Rej. P4 CV Rej.

FM 0.879 0.827 No 0.128 0.089 Yes 0.893 0.888 No 0.0007 0.001 No

dmode 6.685 6.153 No 3.157 0.722 Yes 4.908 6.579 Yes 4.389 1.276 Yes

RPD 0.224 0.211 No 0.088 0.03 No 0.239 0.24 Yes 0.00002 0.00004 Yes

BD 0.05 0.147 Yes 0.271 0.125 Yes 0.194 0.204 Yes 0.011 0.006 Yes

mBD 0.392 0.46 Yes 0.121 0.0572 Yes 0.497 0.499 Yes 0.00004 0.0003 No

Table 3. Measures for Ramsay data

It is obtained that at 95% level of confidence, the measure P2 establishes a clear

difference between male and female data for the four considered depths. Moreover,

the four statistics separate when they are combined with band-depth and modified

band depth. The “natural” measure P3 is effective in four out of five cases, and

the remaining one (when combining with Fraiman-Muniz) is very close to being so.

For these data, only P1 seems to be not quite powerful, as it separates only when

combined with BD and mBD. Looking at the 24 outcomes of Table 3, we obtain

a 70.8 percent of separations, which increases to 83.3 percent if we do not take into

account the measure P1. Observe also that for these data the rank test only separates

in half of the cases, and in particular is ineffective for mBD. It is also remarkable that

both methods show weakness when combined with Fraiman-Muniz depth, which seem

not quite appropriate to confront these kind of observations.

5.2. MCO data. Now we apply our measures to the mitochondrial calcium overload

dataset ([RM03]), previously studied from a statistical point of view in [CFF06] and

[BCC11]. The functional variable measures the level of mitochondrial calcium in

mouse cardiac cells, as high levels of this element usually imply good protection of

these cells in the event of ischemia process. The ultimate goal of the study is to test
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Figure 3. Mitochondrial calcium data.

P1 CV Rej. P2 CV Rej. P3 CV Rej. P4 CV Rej.

FM 0.689 0.814 Yes 0.263 0.127 Yes 0.922 0.894 No 0.0002 0.002 No

dmode 4.425 5.865 Yes 2.649 1.392 Yes 6.854 6.799 Yes 0.046 0.416 No

RPD 0.227 0.205 No 0.0366 0.033 Yes 0.244 0.239 No 0.000007 0.00004 No

BD 0.047 0.07 Yes 0.096 0.088 Yes 0.078 0.111 Yes 0.008 0.002 Yes

mBD 0.338 0.449 Yes 0.181 0.077 Yes 0.502 0.498 No 0.00026 0.00034 No

Table 4. Measures for MCO data

the power of the drug Cariporide to increase the levels of calcium in the cells. The

dataset consist in a control group of 45 observations and in a treated group of 44.

The levels of MCO are measured every ten seconds during an hour, so each function

is observed in principle at 360 points; however, the data which correspond to the first

three minutes are eliminated from the sample, as they show a high variability which

depend on factors that are hard to control.

In Table 4 we present the results of our computations for the mitochondrial data

MCO.

Different to the case of Ramsay data, we do not know a priori if the data are

naturally split into two families or not. Again the measure P2 gives the biggest

evidence to the splitting hypothesis, as it shows heterogeneity in all the cases. The

measure P1 also offers support to that hypothesis, as it only fails to make difference

when combining with the random depths. Measure P3 only rejects homogeneity in

í , 

... 
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half of the cases, and P4 just one. From the point of view of the depth, band-

depth shows again difference in all the families. For these data, the rank test shows

heterogeneity in two cases, when it is carry out with the h-modal and band depths.

Figure 4. Tecator data.

5.3. Tecator. The tecator dataset have been intensively studied in the last years,

see for example [FV06], [LY08] and [MLR13]. Tecator is a commercial name for a

Infracted Food Analyzer, that in this case is used to measure the infrared absorbance

spectrum of meat samples. These absorbances are given as functions of the intensity

of the light measured just before and just after passing through the sample. The

observations measure the contents of moisture, protein and fat in every sample of

meat, and the goal is to separate two samples according to their different levels

of fat. The discrete observations consist in 100 channel-absorbance spectrum for

a given wavelength, which are made continuous using a B-spline basis of order 6.

The dataset is divided in data with high fat content (77 observations) and data

with low (the remaining 158). Following the approach of the aforementioned papers

of Ferraty-Vieu and Li-Yu, we have computed our homogeneity measures also for

the spectrometric data and for the second derivative of it. Recall that the discrete

derivative is defined by means of the differences between subsequent points where the

values for the functions are taken. The results for the first case appear in Table 5:

¡ 
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P1 CV Rej. P2 CV Rej. P3 CV Rej. P4 CV Rej.

FM 0.946 0.866 No 0.032 0.094 No 0.983 0.959 No 0.00001 0.0002 No

dmode 9.301 7.686 No 0.144 2.062 No 9.446 8.91 No 2.008 3.173 No

RPD 0.243 0.233 No 0.007 0.016 No 0.249 0.248 No 0.0000004 0.000003 No

BD 0.382 0.344 No 0.085 0.095 No 0.457 0.417 No 0.0002 0.001 No

mBD 0.511 0.476 No 0.007 0.037 No 0.518 0.514 No 0.003 0.00002 Yes

Table 5. Measures for tecator data

Our computations support the widespread impression that the meat samples of the

tecator data may proceed from the same family. As just one out of our 24 measures

is able to separate the data (concretely P4 combined with modified band-depth), it is

quite likely that this is an outlier instead of a genuine difference. Moreover, it can be

seen as the critical values are usually quite far from the extremes of the corresponding

interval.

More evidence is extracted from the rank test, that shows homogeneity in the five

cases, and always in a quite robust way. The evidence then suggests that we cannot

reject the hypothesis of equality between the two families.

Figure 5. Tecator second derivatives.

5.4. Tecator second derivatives. There is quite more evidence of heterogeneity in

the family of the second derivatives, as we may check in Table 6:

As in the previous familiy MCO, both P1 and P2 are able to separate, in this case

four out of five cases, and again the other two measures seem not powerful in this case.
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P1 CV Rej. P2 CV Rej. P3 CV Rej. P4 CV Rej.

FM 0.835 0.859 Yes 0.091 0.067 Yes 0.919 0.887 No 0.0001 0.0008 Yes

dmode 10.581 12.032 Yes 2′729 0.722 Yes 13′413 12.402 No 0.874 5.663 No

RPD 0.215 0.225 Yes 0.025 0.017 Yes 0.237 0.233 No 0.00003 0.00008 No

BD 0.121 0.089 No 0.056 0.1 No 0.179 0.121 No 0.00006 0.00437 No

mBD 0.448 0.461 Yes 0.054 0.036 Yes 0.498 0.482 No 0.101 0.0003 Yes

Table 6. Measures for tecator data (second derivatives)

Rank test Ramsay MCO Tecator Tecator 2

FM 1733 2140 8427 7737

h-modal 1233 1625 8553 8490

RPD 1721 2051 8296 7768

BD 1159 1482 8136 6989

mBD 1703 2140 8427 7757

CV 1623.095 1781.395 7595.08 7595.08

Table 7. Rank test in real data

The scheme is very similar to that case, except for the fact that band-depth gives no

difference in any of the four cases. It is also remarkable that P4 only separates when

combining with modified band-depth, just as it happens in the possibly outlier case

described above.

The rank-test gives support in these case to the hypothesis of non homogeneity, as

it shows it in all of the five observations.

6. Discussion

In this paper, we have defined some new measures of distances between families

of functions to solve the problem of homogeneity in the context of functional data

analysis. Combining these measures with the depth functions defined by Fraiman-

Muniz, Cuevas-Fraiman-Muniz and López-Pintado-Romo, we propose a hypothesis

test based on the bootstrap methology and apply it to a number of simulated and

real functional data. Our measures shows their effectiveness in detecting differences of

magnitudes and shape in some families generated by gaussian processes, and moreover

are able to show heterogeneity for Ramsay data, mitochondrial data and the second

derivatives tecator data. It is significative that our methods show homogeneity in the
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tecator data without differentation, a phenomenon widely treated in the literature.

It is also worth to comment that our method improves the rank-test in some cases.

Once the concept of depth of a function with regard to a family is defined, sev-

eral generalizations appear to be possible. For example, the family of tecator data

discussed above shows that there is information about homogeneity hidden in the

derivatives that cannot be directly extracted from the original functions. Hence, it

should be interesting to define and describe a unified way to deal with all the depth

measures and statistics used in our work when applied at the same time to all the

functions and all their derivatives. It is likely that such a notion would be able to

show patterns in the homogeneity of the families that could not be deduced with-

out differentiation. On the other hand, it would be also interesting to define some

measures that allow to test at the same time the homogeneity of several families of

functions. We plan to undertake this task in subsequent work.
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Cariporide preserves mitochondrial proton gradient and delays ATP depletion in

cardiomyocites during ischemic conditions. Am J. Physiol.-Heart C., 285: 999–1006,

2003.


