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Abstract 
 

In this study, the oxidation behaviour of an iron matrix cermet containing 50 % vol. Ti(C,N) 

was investigated before and after heat treatment by oxidation tests performed in static air at 

temperatures between 500 °C and 1000 °C. The oxidation mechanism for this type of 

composite materials was established and it was found that the heat treated material presents 

lower mass gain than the as-sintered material at the early stages of the oxidation, due to the 

volatilization of oxides. The oxidation behaviour of the sintered cermet was compared to 

those obtained for two commercial materials used in the fabrication of cutting tools, a high-

speed steel and a cemented carbide, revealing a higher oxidation resistance for the iron 

matrix cermet due to the formation of a self-protective layer during the oxidation process. 

 

Keywords: Metal matrix composites, powder metallurgy, oxidation, kinetics, scanning 

electron microscopy (SEM), X-Ray diffraction. 
 

1. Introduction 
 

Cemented carbides, tool steels and cermets are among the materials used to produce 

cutting tools, with cemented carbides being the most commonly used. However, in recent 

years, there has been growing interest in finding alternative materials to conventional 

cemented carbides due to the high and fluctuating price of Co, which is a reflection of its low 

abundance as well as its toxicity [1]. In this respect, in 2011, WC-Co was included in the 

‘12th Report on Carcinogens’ of the US Department of Health & Human Services as one of 

240 substances that may increase risk for cancer both as a powder and as a sintered 

material [2]. 

Ti(C,N)-based cermets could be a competitive alternative to conventional WC-Co because, 

although cermets show lower toughness, they present superiority over cemented carbides in 

terms of other properties such as hardness, wear resistance and oxidation resistance [3, 4]. 

However, the metallic matrices used in Ti(C,N)-based cermets are Ni and/or Co, which also 

show a risk of toxicity. 

mailto:palvared@ing.uc3m.es
http://ees.elsevier.com/jalcom/viewRCResults.aspx?pdf=1&docID=55065&rev=1&fileID=1676147&msid={61698AE9-AA3B-424B-97F1-82712E7EDEA1}
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There are several studies [5-7] that propose the use of Fe as a metallic matrix for cermets, 

as it is non-toxic and cheaper than Co or Ni, with the additional advantage of being able to be 

hardened by heat treatment. The disadvantage observed in processing Fe-matrix cermets is 

their poor wettability on Ti(C,N) particles during sintering in the liquid phase, which can be 

improved by the addition of alloying elements and compounds such as Cr, Mo, Mo2C or W 

[8]. Thus, in the present work, the metallic matrix chosen was a high-speed steel, M2 grade, 

which contains W, Mo and Cr. These alloying elements enhance different properties of the 

cermets with respect to those of a plain Fe matrix: (1) W, Mo and Cr improve the wettability 

between phases during sintering; (2) W and Mo are carbide formers that increase the hard 

phase of the compound; and (3) Cr increases the oxidation resistance of the material. 

The materials used to manufacture tools must possess certain characteristics required by a 

given application, such as oxidation resistance to withstand the high temperatures reached 

during operation. The literature reveals many studies regarding the oxidation resistance of 

cemented carbides at high temperatures [9-14], as well as some investigations related to the 

thermodynamic stability of Ti(C,N)-based cermets [15-17] with conventional matrices. 

However, the studies related to Fe matrix composites are scarce. Nevertheless, it is worth 

mentioning the work of Wittmann [6], who compared the oxidation resistance of a cemented 

carbide with that of a conventional Co matrix and that of an Fe matrix; and the study by 

Gómez [18], who studied the oxidation resistance of an M2-Ti(C,N) cermet, demonstrating 

the superior oxidation behaviour of the Ti(C,N) cermet with respect to that of the base 

material M2.  

The present work extends the investigation carried out by Gómez by studying the effect of 

heat treatment on the oxidation behaviour of the same cermet. This study was motivated by 

the fact that the hardness of the heat-treated cermet increases by 25 % compared to that of 

the sintered one, and the fracture toughness also improves by 40 % [19]; therefore, it is 

necessary to study to what extent the metallurgical changes leading to the improved 

mechanical properties affect the oxidation behaviour of cermet. A comparison of the 

oxidation resistance of the sintered M2-Ti(C,N) cermet with that of two commercial materials 

used in the cutting tool industry, a cemented carbide and a high-speed steel, was also 

conducted. 

  

2. Materials and experimental procedure. 
 

The composite material studied is composed of a high-speed steel, M2 grade, as the matrix 

and 50 vol% particles of Ti(C0.5N0.5) as a reinforcement. The composition of the M2 steel was 

6.2 wt. % W, 4.8 wt. % Mo, 4.1 wt. % Cr, 1.8 wt. % V, 0.85 wt. % C and Fe balance; 0.5 wt. 
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% of graphite was also added. The density and particle size of the starting powders are given 

in Table 1. 
 

Table 1: Characteristics of raw materials. 

 

The samples were prepared by the conventional powder metallurgy route. Powders were 

mixed for 4 hours in a Turbula® mixer and then pressed in a uniaxial die at 750 MPa to 

obtain cylinders measuring 16 mm in diameter and 5 mm in height. The green compacts 

were sintered in vacuum (10-4 mbar) at 1400 °C for 60 minutes. The sintered materials were 

submitted to heat treatments similar to those normally applied to the high-speed steel used 

for the matrix, that is, austenitising at 1200 ºC for 60 min under an Ar atmosphere, quenching 

in oil and double tempering at 560 °C for 60 minutes. The optimal conditions of the treatment 

were determined in a previous study in which other temperatures and times were studied 

[20]. Both as-sintered and heat-treated samples were characterised by scanning electron 

microscopy (SEM) and X-ray diffraction (XRD), and hardness was also measured as the 

control parameter of the heat treatment. 

Isothermal oxidation tests were conducted in a muffle furnace in static air under different 

conditions: (1) The time was varied (12, 24, 48, 72 and 120 hours) at a fixed temperature 

(1000 ºC) to study the oxidation kinetics. Samples of the M2-Ti(C,N) cermet in both the as-

sintered condition and after the heat treatment were tested. The surface of all of the samples 

was prepared in the same way, by sequentially grinding with silicon carbide (SiC) abrasive 

papers up to 1000 grit. The samples were introduced into the furnace chamber, maintained 

at the predetermined temperature for the specified time and were taken out once the holding 

time at the temperature was reached. (2) The temperature (500 ºC, 800 ºC, and 1000 ºC) 

was varied over a fixed time of 120 h. Samples of the M2-Ti(C,N) cermet and samples of 

commercial materials were submitted to these conditions. The commercial materials were 

used as a reference for the behaviour of the cermet under study, and for this purpose, a 

high-speed steel (M2 grade) and a cemented carbide (WC-10Co) were chosen.  

In all cases, the samples were placed into the furnace in alumina crucibles and maintained 

under the selected conditions of the experiment. After the experiment, the mass was 

measured to calculate the change in mass per unit area. To study the microstructure and 

composition of the oxide scales, the samples were cut perpendicularly to the surface and the 

cross-section analysed by SEM and energy dispersive X-ray spectroscopy (EDX). As three 

different layers were observed by SEM, they were also analysed by XRD to determine the 

oxides present. The XRD analyses were performed on the surface of the samples, carefully 

removing the top layer after the analysis by polishing to expose and analyse the next layer.  

The free energy of formation of different oxides was calculated using the software HSC 4.1.  



  

4 

Thermodynamic calculations of the oxide scales formed in the M2-Ti(C,N) cermet during 

isothermal oxidation at 1000 ºC were conducted using the Thermo-Calc software with the 

SSUB4 database [21]. 

 

 

3. Results and discussion. 

 

3.1. Characterisation of the as-sintered and heat-treated M2-Ti(CN) cermet 

 

Figure 1 shows SEM images of the microstructure of the as-sintered and the heat-treated 

M2-Ti(C,N) cermet. Both microstructures present three different phases: the dark phase 

corresponds to Ti(C,N) particles, the grey phase corresponds to the steel matrix and the third 

bright phase corresponds to the carbides of the alloying elements (W, Mo and V) from the 

high-speed steel matrix. Although the microstructures present the same three main phases, 

the heat-treated sample shows a hardness increase of 25 % with respect to the hardness of 

the as-sintered sample. Therefore, the steel matrix could be composed of different phases 

after the heat treatment. Figure 2 shows the results of the XRD analysis performed on the 

sintered and heat-treated cermets.  
 

Figure 1. Microstructures (SEM images) of M2-Ti(C,N) cermets: a) as-sintered and b) heat-treated.  

 

The diffractograms of both samples present peaks corresponding to the Ti(C,N) particles, 

peaks corresponding to the ferrite (Fe-α) or martensite in the steel matrix (note that the XRD 

patterns of ferrite and martensite are quite similar, and thus, it was not possible to distinguish 

them in this analysis) and peaks corresponding to carbides of the alloying elements of the 

steel matrix, mainly MC type carbide rich in V, Mo and W and M2C carbide rich in Mo and W, 

both typical in high speed steels. That is, the XRD analyses confirm the presence of the 

three main phases already observed in the microstructures but also highlight the main 

difference between the as-sintered and heat-treated cermet, namely, the presence of 

austenite phase (Fe-γ) in the sintered cermet, which does not appear in the heat-treated one.  

This result could be explained by the transformations that take place during heat treatment. 

During the austenitising step, the carbides of alloying elements from the high-speed steel are 

dissolved in the iron matrix, increasing the concentration of carbon and alloying elements in 

the matrix and stabilising the austenite such that, after quenching, the microstructure would 

contain retained austenite enriched with alloying elements, together with martensite. The 

increase of in temperature during the first tempering favours the diffusion of the alloying 

elements outside the austenite and leads to the formation of secondary carbides and 

martensite. In the second tempering, the retained austenite transforms completely, and 
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consequently, the austenite phase (Fe-γ) is not present in the XRD pattern of the heat-

treated sample. The final quantity of the carbides after the double tempering is lower than 

that in the as-sintered sample, as demonstrated in the microstructures shown in Figure 1, 

meaning that part of the alloying elements remains dissolved in the iron matrix. It is important 

to take this fact into account because it is one of the factors affecting the different oxidation 

behaviour of the as-sintered and heat-treated materials. 

 
Figure 2. Results of X-Ray diffraction analysis of the as-sintered and heat-treated M2-Ti(C,N) cermets.  

 

3.2. Oxidation kinetics of as-sintered and heat-treated M2-Ti(CN) cermets 

 

The oxidation kinetics were determined by measuring the mass gain after the oxidation 
experiments carried out at 1000 ºC for different exposure times: 12, 24, 48, 72 and 120 
hours. In  
Figure 3, the mass gain with respect to the exposure time of the sintered and heat-treated 

cermets is represented. The mass gain rate of the sintered sample at short exposure times is 

higher than the mass gain rate of the heat-treated one, whereas this behaviour is altered 

after an exposure time of 24 hours, as shown in Table 2. Thus, although the mass gain of the 

sintered sample is higher at early stages of the oxidation test, the final mass gain of the as-

sintered cermet after 120 hours of exposure is 150 mg/cm2 and that of the heat-treated one 

under the same oxidation conditions is slightly higher, 166.9 mg/cm2. Beyond 12 h, the 

oxidation kinetic of the sintered cermet follows a logarithmic trend, Eq. (1), and the oxidation 

kinetic of the heat-treated cermet follows a linear trend, Eq. (2).  

 
        y = 41.044ln(x) + 46.455; R² = 0.9997 (1) 

        y = 1.1803x + 26.368; R² = 0.9962 (2) 

where y represents the mass gain (mg/cm2) and x represents the exposure time (hours). 
 

Figure 3. Mass gain with respect to the exposure time in oxidation tests performed at 1000 ºC of the 
as-sintered and heat-treated M2-Ti(C,N) cermets. (Experiments in furnace).  

 

Table 2. Mass gain rate for sintered and heat-treated samples for each exposure time range. 

 

3.3. Characterisation of oxide scales of as-sintered and heat-treated M2-Ti(C,N) cermet 

 

Figure 4 shows cross-sections of the as-sintered and heat-treated M2-Ti(C,N) cermets after 

the oxidation experiment performed in a furnace at 1000 ºC for 120 hours. In both samples, 

the oxidation surface presents three different layers. The outer one is porous and has a 

thickness of approximately 150 μm; the intermediate layer is approximately 500 μm thick with 

coarser pores than the outer one; and the inner layer is compact and approximately 200 μm 
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in thickness. The main difference between the two materials is the higher number of cracks 

and pores in the inner layer of the heat-treated material in addition to a weaker bonding 

between layers than in the oxidation surface of the as-sintered cermet. The same figure 

shows SEM images at higher magnifications of the bulk material after the oxidation 

treatment. No significant differences are evident between the as-sintered and heat-treated 

materials, but some changes can be observed in the size and morphology of the carbides 

and Ti(C,N) particles in relation to the material before the oxidation tests, as expected. 
 

Figure 4. SEM images (BSE mode) of the cross-sections of the a) as-sintered and b) heat-treated M2-
Ti(C,N) cermets after the oxidation test performed at 1000 °C for 120 h. Detailed view of the bulk 

material after the oxidation experiment: c) as-sintered, d) heat-treated. 
 

The oxides present in the oxidation layers were studied by XRD analysis and SEM-EDX, and 

the results are shown in Figure 5. For the sintered sample, the XRD analysis of the outer 

layer shows only one type of oxide, Fe2O3; the analysis of the intermediate layer also shows 

the formation of Fe2O3, as well as WO2, TiO2 and Mo3O, and the analysis of the inner layer, 

the compact one, shows the formation of TiO2, Fe3O4 and FeTiO3. The XRD and SEM-EDX 

analyses of the heat-treated samples reveal the same type of oxide in the outer layer, Fe2O3, 

but the analyses of the intermediate layer show Fe2O3, TiO2 and a new oxide Fe2TiO5; no Mo 

or W oxides were identified in this layer; the analysis of the inner layer shows the formation 

of the oxides WO2, FeTiO3 and TiO2.  

 
Figure 5. XRD analysis of the outer, intermediate and inner layers formed on the surface of the M2-

Ti(C,N) cermets after the oxidation tests performed at 1000 °C for 120 h. a) As-sintered, b) heat-

treated. 

 

The composition of the oxidation layers was also analysed by EDX, and the results, 

presented in Figure 6, are in accordance with those obtained by XRD analysis. In the heat-

treated material, the Fe content decreases in the inner layer and increases gradually from 

the intermediate layer to the outer one, whereas in the sintered material, the Fe content is 

lowest in the intermediate layer and highest in the outer layer. On the other hand, for the 

heat-treated sample, the highest Ti content is in the inner layer and decreases gradually 

towards the outer layer, whereas for the sintered sample, the Ti content is highest in the 

intermediate layer and lowest in the outer layer. Another important difference between the 

composition of the oxide layers of the sintered and heat-treated cermets is related to the W 

and Mo contents. As demonstrated in the XRD analysis, these elements are not present in 

the intermediate layer of the heat-treated cermet, whereas the highest content of the 

elements in the sintered cermet is found in the intermediate layer. Moreover, due to the 
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presence of WO2 in the inner layer of the heat-treated sample, the highest W content 

occurred in this layer.  

 
Figure 6. EDX analysis of surface layers of as-sintered and heat-treated cermets.  

 

3.4 Thermodynamic studies 

 

A thermodynamic study was performed by calculating the stability of the main Fe and Ti 

oxides with respect to the temperature using the HSC 4.1 software program, and the mass 

fraction of those oxides as a function of the oxygen partial pressure was calculated using 

Thermocalc software. 

In Figure 7, the Gibbs free energy as a function of the temperature for the reaction of Fe, TiC 

and TiN with one mol of oxygen is presented. The calculations show that the formation of 

Fe2O3, Fe3O4 and TiO2 is thermodynamically favourable and that the formation of the oxide 

TiO2  by the reaction of TiC and TiN with O shows the highest stability.  

The formation of Fe3O4 is more favourable than the formation of Fe2O3 over the entire 

temperature range; nevertheless, the experimental analysis of the oxides revealed that the 

main iron oxide formed was Fe2O3. To understand the thermodynamic stability of the oxides, 

the mass fraction of the equilibrium phases with respect to the oxygen partial pressure was 

calculated as it has been performed in others works found on the literature [22], and it is 

shown in Figure 8. In this graph, only the mass phase fraction of the main oxides observed 

after the oxidation experiment is presented, namely, TiO2, FeTiO3, Fe3O4 and Fe2O3, as a 

function of the oxygen partial pressure (P(O2)). The phases that appear at lower P(O2) can 

be assumed to exist in the inner layer close to the bulk material, and the phases that appear 

at higher P(O2) can be assumed to exist in the outer layer of the oxidation surface. 

The results show that TiO2 and FeTiO3 appear at low P(O2), whereas the iron oxides appear 

at high P(O2), with Fe2O3 phase appearing at the highest P(O2). These results are in 

accordance with the experimental results obtained for the case in which Fe2O3 was observed 

in the outer oxide layer. 

 
Figure 7. Gibbs free energy as a function of temperature of the possible oxides formed during 

oxidation experiments, calculated by the HSC 4.1 software program. 

 
Figure 8. Phase fraction of a) TiO2, b) FeTiO3, c) Fe2O3 and d) Fe3O4 in the oxidation surface layers as 

a function of the oxygen partial pressure (PO2) calculated using Thermocalc software [21]. 

 

3.5. Oxidation surface morphology 
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Another difference observed when comparing the sintered and heat-treated cermets after the 

oxidation experiments performed in a furnace at 1000 ºC for 120 h is their surface 

morphology, shown in Figure 9. The oxidation surface of the as-sintered cermet has a 

smooth morphology, in contrast with the surface morphology of the heat-treated cermet, 

which exhibits spheres growing on top of each to form a columnar shape. This morphology 

may indicate the escape of gases during the oxidation process. 

 
Figure 9. Morphology of the oxidation surface of as-sintered and heat-treated M2-Ti(C,N) cermets 

after oxidation experiment performed at 1000 ºC for 120 h in a muffle furnace. 

 

3.6. Oxidation mechanism 

 

Considering all of the results obtained, the oxidation mechanisms of the M2-Ti(C,N) cermet 

in the as-sintered and heat-treated conditions can be proposed.  

The schematic diagram shown in Figure 10 depicts the oxidation mechanism proposed for 

the as-sintered cermet. The outer layer contains only Fe2O3, which is probably formed by the 

direct reaction of oxygen with the Fe of the steel matrix [22]. Due to the porous nature of this 

layer, the inward diffusion of oxygen is plausible. The intermediate layer contains reaction 

products formed by the reaction between oxygen and the steel matrix, as well as TiCN and 

carbide particles. Therefore, this layer is probably formed by the inward diffusion of oxygen, 

which reacts with both the Fe matrix and the Ti(C,N) particles to form Fe2O3, TiO2, WO2 and 

Mo3O oxides. This layer also appears to be permeable to oxygen. The inner layer is more 

compact and protective and composed of the stable oxides TiO2 and FeTiO3, which could be 

formed by the inward diffusion of oxygen. According to the thermodynamic calculations, 

these oxides may be stable at lower oxygen partial pressures. It is interesting to note that 

oxides of W and Mo, even though they are volatile, are trapped in the intermediate layer. 

This is one of the differences observed with respect to the oxidation of the heat-treated 

samples, whose significance will be explained later.  

This mechanism is in accordance with the oxidation kinetic law. During the early stages of 

oxidation, the mass gain rate is higher, and after the formation of the protective layer, the 

mass gain rate decreases.  

 
Figure 10. Schematic diagram of the oxidation mechanism proposed for the as-sintered M2-Ti(C,N) 

cermet. 

 

The schematic diagram shown in Figure 11 depicts the oxidation mechanism proposed for 

the heat-treated cermet. Similarly to the sintered material, the outer layer consisted of a 

porous layer of Fe2O3, probably formed by the direct reaction of oxygen with the Fe of the 
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steel matrix. In this case, the intermediate layer only contains Fe2O3 and TiO2, without the 

presence of WO2 and Mo3O that appeared in the as-sintered material. On the other hand, the 

inner layer contains W oxides. The explanation for the differences encountered lies in the 

microstructural features and, in particular, in the distribution of the carbides of the alloying 

elements. In the case of the as-sintered material, the alloying elements W and Mo form 

carbides that are located mainly around the Ti(C,N) particles. In the case of the heat-treated 

material, the alloying elements are partially dissolved in the steel matrix or occur as very fine 

carbide precipitates, which are less stable than the primary carbides present in the as-

sintered [23, 24]. Therefore, the alloying elements in the heat-treated material can react with 

directly with oxygen to form oxides, as opposed to what occurs in the as-sintered cermet, in 

which the oxygen has to react with the primary carbides instead of with the elements in solid 

solution. Due to the volatile nature of the oxides formed, they escape from the sample 

outwards, leaving the intermediate layer free of these oxides and leading to lower mass gain 

than as-sintered material during the early stages of the experiments, as well as an oxidation 

layer with more pores and cracks. A similar mechanism has been suggested by other 

researchers [12] where the generation of pores is associated with volatile oxides and cracks 

with stresses within the oxide scale The inner layer, however, presents W oxides, probably 

trapped in the same manner observed during the formation of the intermediate layer in the 

as-sintered sample. The volatilisation of WO2 and Mo3O may also be responsible for the 

surface morphology observed for the heat-treated sample, shown in Figure 9. This 

morphology has also been related to selective oxidation in another study [25]. 

 
Figure 11. Schematic diagram of the oxidation mechanism proposed for the heat-treated M2-Ti(C,N) 

cermet. 

 

3.6. Comparison with commercial materials 

 

To complete the study, the oxidation resistance of the M2-Ti(C,N) cermet was compared with 

the oxidation resistance of two commercial materials used in the fabrication of cutting tools, 

namely, a high-speed steel (M2 grade) and a cemented carbide. 

Figure 12a shows the effect of temperature on samples of the three materials after oxidation 

tests performed at 500 °C, 800 °C and 1000 ºC for 120 h. Figure 12b shows the mass gain of 

the materials with respect to the oxidation temperature after the oxidation experiments were 

performed in a muffle furnace.  

At 500 °C, none of the samples studied exhibit geometric changes and the three materials 

show almost no mass change. However, after the oxidation tests at 800 °C, the commercial 

materials, high-speed steel (M2) and cemented carbide, show catastrophic oxidation, leading 

to a total disintegration of the material, whereas the cermet maintains its cylindrical shape. 
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This behaviour is in accordance with the mass gain results shown in Figure 12b. The mass 

gain of the commercial materials after the oxidation test performed at 800 ºC is much higher 

than the mass gain of the sintered cermet, with the high-speed steel sample presenting the 

highest mass gain. After the oxidation experiment performed at 1000 ºC for 120 h, the mass 

gains of the M2-Ti(C,N) cermet, the cemented carbide and the high-speed steel were 24.4, 

162.5 and 334.5 mg/cm2, respectively. The mass gain of the commercial materials decreases 

drastically due to the liberation of volatile oxides formed, which promote the catastrophic 

oxidation and complete disintegration of the samples, as shown in Figure 12a. By comparing 

the oxidation behaviour of the commercial high-speed steel with that of the cermet, a lower 

mass gain of the composite material is observed. This discrepancy is observed because the 

presence of the Ti(C,N) particle reinforcement allows for the formation of a protective layer of 

TiO2 and FeTiO3, which prevents the oxidation of the bulk material.  

 
Figure 12. a) Samples of commercial M2 high-speed steel (left), commercial hard metal (centre) and 

sintered M2-Ti(C,N) cermet (right) after oxidation tests performed at 500 °C, 800 °C and 1000 °C for 

120 h. b) Mass gain with respect to oxidation temperature during oxidation experiment performed in a 

muffle furnace for 120 h. 

 

4. Conclusions  
 

A Ti(C,N) based cermet with Fe alloy as binder phase was prepared by powder metallurgy 

and subsequently heat treated by quenching in oil from 1200 ºC and double tempering at 560 

ºC for 60 minutes. Materials as-sintered and heat treated were subjected to oxidation 

experiments at 1000 ºC for different times up to 120 h in static air. The oxide scales were 

characterized to evaluate the oxidation mechanisms at high temperature and to understand 

the influence of the heat treatment. In both cases the oxide scales were multilayer, consisting 

of a protective inner layer of TiO2 and FeTiO3, and an outer layer of Fe2O3. The main 

difference between the as-sintered and heat treated materials is the composition of the 

interlayer, which shows the presence of WO2 and Mo3O in the as-sintered material, whereas 

these oxides are not found in the heat treated material. This difference is due to the heat 

treatment, during which the alloying elements are dissolved in the steel matrix or are present 

as very fine precipitates, which are less stable than the primary carbides found in the as-

sintered cermet. This observation, together with the mass gain variation during the oxidation 

experiments, and the thermodynamic calculations permit to explain the differences found in 

the oxidation mechanisms: the heat treated material presents lower mass gain than the as-

sintered material at the early stages of the oxidation, due to the volatilization of oxides. This 

leads to a quasi-linear trend in the mass gain kinetics for the heat treated material versus a 

logarithmic trend for the as-sintered.  
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The oxidation behavior of the as-sintered material was also compared to the behavior of two 

commercial tool materials: a high-speed steel and a cemented carbide. The superiority of the 

cermet in the conditions studied was demonstrated, and explained by the formation of a 

protective layer of TiO2 and FeTiO3 during the oxidation process. 
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Table 1: Characteristics of raw materials. 

Raw 
material Supplier 

Supplier data Experimental data 
Density 
(g/cm3) 

Particle size 
(µm) 

Density 
(g/cm3) 

Particle size 
(µm) 

Ti(C0.5N0.5) H. C. Starck 5.03 D50 = 3.71 5.12 D50 = 3.96 

HSS, M2 Osprey 8.58 D80<16 8.09 D50= 8.15 
 

Table 2. Mass gain rate for sintered and heat treated samples for each exposure time range. 

Exposure time (hours) 
Sintered Heat treated 

Mass gain rate  
(mg∙cm-2/hour) 

Mass gain rate  
(mg∙cm-2/hour) 

0-12 4.61 3.02 
12-24 2.50 1.83 
24-48 1.12 1.13 

48-120 0.52 1.13 
 

 
 

 



  
 

Figure 1. Microstructures (SEM images) of M2- Ti(C,N) cermet: a) as sintered, and b) heat treated  
 
 

 
Figure 2. X-Ray Diffraction analysis of the M2- Ti(C,N) cermet as sintered and after heat treatment.  

 
 

 
Figure 3. Mass gain with respect to the exposure time in oxidation tests at 1000 ºC of the as-sintered 

and heat treated M2- Ti(C,N) cermet. (Experiments in furnace). 
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Figure 4. SEM images (BSE mode) of the cross section of the a) as-sintered and b) heat  
treated M2-Ti(C,N) cermet after the oxidation test at 1000 °C during 120 h. Detail of the  

bulk material after the oxidation experiment: c) as sintered, d) heat treated. 
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Figure 5. XRD analysis of the outer, intermediate and inner layers formed on the surface of the 
cermets M2-Ti(C,N) after the oxidation tests at 1000 °C during 120 h. a) As-sintered, b) heat treated. 

 

 
Figure 6. EDX analysis of surface layers of a) as-sintered and b) heat treated cermets.  
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Figure 7. Gibbs standard free energy with respect to the temperature of the possible oxides formed 

during oxidation experiments, calculated by the software HSC 4.1. 
 

 
Figure 8. Phase fraction of a) TiO2; b) FeTiO3; c) Fe2O3 and d) Fe3O4 in the oxidation surface layers as 

a function of the oxygen partial pressure (PO2) calculated with Thermocalc software [18]. 
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Figure 9. Morphology of the oxidation surface of as-sintered and heat treated cermet M2-Ti(C,N) after 

oxidation experiment at 1000 ºC during 120 h in a muffle furnace. 
 

 
Figure 10. Schematic diagram of the oxidation mechanism proposed for the as-sintered cermet M2-

Ti(C,N). 
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Figure 11. Schematic diagram of the oxidation mechanism proposed for the heat treated cermet M2-

Ti(C,N). 
 

 

 

Figure 12. a) Samples of commercial M2 high speed steel, b) commercial hard metal and c) sintered 
M2-Ti(C,N) cermet after oxidation tests at 500 °C, 800 °C and 1000 °C during 120 h. d) Mass gain of 
commercial M2 high speed steel, commercial hard metal and sintered M2-Ti(C,N) cermet respect to 

oxidation temperature in oxidation experiment performed in a muffle furnace during 120 h. 
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Highlights 
 

 Oxidation behavior study of a new steel matrix TiCN-based cermet  
 Higher oxidation resistance of the cermet than commercial materials. 
 High oxidation resistance due to the formation of a TiO2 and FeTiO3 protective 

layer. 
 Oxidation mechanisms are proposed to explain the oxidation behavior. 
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