

Final Project

Design and implementation of simple storage and

query engines for a column-based and access

optimized relational table structure on disk

Lorena Prieto Horcajo

Ingeniería Informática Superior

mailto:100061031@alumnos.uc3m.es

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 2

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 3

To my father

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 4

These page is intentionally left in blank

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 5

Abstract

Relational database management systems currently keep large volumes of data in secondary

storage. But with the increasing development of hardware features such as quantity of memory,

number of CPUs and CPUs cores, computation cycles, etc. the new trend is to store data in main

memory. Such storage will lead to a suited different organization of data that only is efficient if

data is always available in main memory.

Taking into account this idea, SAP has developed a new relational DBMS: SAP HANA. It is an

implementation of in-memory database technology designed for enterprise computing. In this

database it is necessary to separate data into two differenced categories: cold data and hot data.

This separation is necessary to handle the increasing, but still limited capacity of main memory

efficiently while keeping all data available for reporting needs. Data in a database has its own life

cycle and the sequence of events that certain data has passed through determines its state. The

term cold data refers to data that has become passive and can be stored in disk if it will not be

changed any longer and, thus, this data will be accessed less often. In the other hand, the term hot

data is used to refer data that is frequently accessed. The disadvantage with in-memory databases

is the memory consumption especially for data which are rarely accessed, i.e. cold data.

Therefore some mechanisms of streaming cold data in/out disk without using any kind of

buffering, which allows consuming the minimal amount of memory, have been designed,

implemented and evaluated. According to experimental results, the approach that consists of

using a column store data model and applying some compression techniques show the best

performance.

En la actualidad los sistemas de gestión de bases de datos relacionales mantienen grandes

volúmenes de datos en almacenamiento secundario. Pero con el creciente desarrollo de las

características del hardware, como la cantidad de memoria, el número de CPUs y núcleos de CPU,

ciclos de computación, etc. la nueva tendencia es la de almacenar los datos en la memoria

principal. Tal almacenamiento dará lugar a una organización diferente de los datos, que sólo es

eficiente si los datos están siempre disponibles en memoria principal.

Teniendo en cuenta esta idea, SAP ha desarrollado un nuevo sistema gestor de base de datos

relacional: SAP HANA. Este sistema es una implementación de la tecnología de base de datos en

memoria, diseñado para la computación empresarial. En esta base de datos, es necesario separar

los datos en dos categorías diferenciadas: hot data vs. cold data. Esta separación es necesaria para

manejar el aumento, pero todavía limitada capacidad, de la memoria principal de manera

eficiente, manteniendo todos los datos disponibles. Los datos en una base de datos tienen su

propio ciclo de vida y la secuencia de eventos que cierto dato ha pasado, determina su estado. El

término cold data se refiere a datos que se han vuelto pasivos y se pueden almacenar en el disco si

no se cambiarán por más tiempo y, por lo tanto, estos datos son accedidos con menor frecuencia.

Por otro lado, el término hot data se usa para referirse a datos a los que se accede con frecuencia.

La desventaja con bases de datos en memoria es el consumo de memoria, especialmente para los

datos a los que rara vez se tiene acceso, es decir, cold data.

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 6

Por lo tanto, algunos mecanismos de streaming de cold/hot data con el disco sin usar ningún

tipo de buffering,lo que permite consumir la mínima cantidad de memoria, han sido diseñados,

implementados y evaluados. De acuerdo con los resultados experimentales, el método o

aproximación que consiste en usar un modelo de datos en columna y aplicar algunas técnicas de

compresión es el que muestra el mejor rendimiento.

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 7

Index

1. Introduction ... 14

1.1. Document Structure .. 15

2. Framework ... 17

3. High-level architecture .. 21

4. Analysis and Design .. 24

4.1. Approach 1: Column Store ... 25

4.2. Approach 2: Column Store with compression ... 27

4.3. Approach 3: Row Store without compression ... 28

4.4. Approach 4: Partition Attributes Across (PAX) ... 30

5. Implementation .. 33

5.1. Approach 1: Column Store ... 35

5.2. Approach 2: Column Store with compression ... 38

5.3. Approach 3: Row Store without compression ... 40

5.4. Approach 4: Partition Attributes Across (PAX) ... 44

6. Evaluation ... 49

6.1. Evaluation design ... 49

6.2. Evaluation implementation ... 51

6.3. Approach 1: Column Store ... 52

6.4. Approach 2: Column Store with compression ... 58

6.5. Approach 3: Row Store without compression ... 64

6.6. Approach 4: Partition Attributes Across (PAX) ... 66

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 8

6.7. Discussion ... 69

7. Conclusions and future work .. 73

8. References .. 76

9. Graphics Appendix .. 78

9.1. Approach 1: Column Store graphs .. 78

9.2. Approach 2: Column Store with compression graphs .. 83

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 9

Figure Index

Figure 1: Overview of the unified table concept [12] .. 19

Figure 2: An example PAX page [22] .. 20

Figure 3: Prototype ... 21

Figure 4: Component Diagram ... 22

Figure 5: Storage Engine Component Diagram ... 23

Figure 6: Query Engine Component Diagram ... 23

Figure 7: Write column no compression in file ... 26

Figure 8: Write dictionary in file .. 27

Figure 9: Write index in file .. 27

Figure 10: Write rows in binary file ... 29

Figure 11: Approach 4 design ... 30

Figure 12: Row represented in the binary file .. 42

Figure 13: Page header example of Approach 4 ... 46

Figure 14: Mini page example of Approach 4 .. 46

Figure 15: Comparison between Query 1 and Query 2 .. 55

Figure 16: Comparison between Query 3 and Query 8 .. 56

Figure 17: Comparison between Query 9 and Query 10 .. 57

Figure 18: Comparison between Query 1 and Query 2 .. 60

Figure 19: Comparison between Query 3 and Query 8 .. 62

Figure 20: Comparison between Query 9 and Query 10 .. 63

Figure 21: Approach 3 performance .. 65

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 10

Figure 22: Approach 4 performance .. 67

Figure 23: Comparison between Approach 1 and Approach 2, average time 69

Figure 24: Comparison between Approach 3 and Approach 4, 1 MB buffer size............................... 70

Figure 25: Comparison between all approaches, 1 MB buffer size ... 71

Figure 26: Query 1 performance .. 78

Figure 27: Query 2 performance .. 78

Figure 28: Query 3 performance .. 79

Figure 29: Query 4 performance .. 79

Figure 30: Query 5 performance .. 80

Figure 31: Query 6 performance .. 80

Figure 32: Query 7 performance .. 80

Figure 33: Query 8 performance .. 81

Figure 34: Query 9 performance .. 81

Figure 35: Query 10 performance .. 82

Figure 36: Query 1 performance .. 83

Figure 37: Query 2 performance .. 83

Figure 38: Query 3 performance .. 84

Figure 39: Query 4 performance .. 84

Figure 40: Comparison between Query 4 and Query 6 .. 85

Figure 41: Query 5 performance .. 85

Figure 42: Query 6 performance .. 86

Figure 43: Query 7 performance .. 86

Figure 44: Query 8 performance .. 87

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 11

Figure 45: Query 9 performance .. 87

Figure 46: Query 10 performance .. 88

Figure 47: Comparison between Query 1 and Query 10 .. 89

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 12

Table Index

Table 1: Description of table used to test the approaches’ performance ... 49

Table 2: Queries used to test the approaches’ performance .. 50

Table 3: Test results in seconds of Approach 1... 54

Table 4: Query Legend .. 54

Table 5: Test results in seconds of Approach 2... 59

Table 6: Query Legend .. 59

Table 7: Test results in seconds of Approach 3... 64

Table 8: Query Legend .. 65

Table 9: Results test Approach 4 .. 66

Table 10: Query Legend .. 67

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 13

This page is intentionally left blank

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 14

1. Introduction

Today, specialized database management systems (DBMS) are used for storing and managing

data. To these systems, the ever increasing volume of data [1] is a significant challenge that

necessitates continuous adaption and innovation for existing DMBS. Thus there are two major

requirements for a new database management system: data from various sources have to be

combined in a single database management system and this data has to be analysed in real-time

to support interactive decision taking. [1]

Companies are more data driven than ever before. For example, during manufacturing a much

higher amount of data is produced, e.g. by manufacturing robots or assembly line sensors.

Moreover, companies process data at a much larger scale to support management decisions.

There are four main types of data and they come from several different sources: [1]

- Transactional data, data entry. Sources: machines, transactional apps, user interaction, e.g.

ERP systems.

- Event processing, stream data. Sources: machines, sensors, typically high volume systems.

- Real-time analytics, structured data. Sources: planning, simulation, reporting.

- Text analytics, unstructured data. Sources: web, logs, support systems, etc.

All this kind of data in large volumes has to be handled by current DBMS. This is particularly

challenging as these systems are optimized either for daily transactional or analytical workloads.

As a result, data is often stored twice and redundant in separated systems. This separation also

influences the way data is stored and processed internally, e.g. the underlying persistency layers

are storing this data in row or column format. [1] In database management systems, data is kept in

secondary storage, i.e. disk, but if the data would be stored in main memory, which is the primary

persistence for data, this will lead to a different organization of data that only works if data is

always available in memory. There are already some systems that take advantage of that fact,

supporting their success in an advanced memory management. For example, Oracle has a system

where its physical structures are not so evolved but its buffering really is.

Hardware is also an aspect to take into account. Current DBMS must also take advantages of

the improvement of hardware. According to Rock's Law [3] hardware is getting cheaper, this

means access to an increasing amount of memory, number of CPUs and CPUs cores [1],

computation cycles and more storage capacity at higher speeds for the same budget, enabling the

design of bigger and more efficient parallel systems.

Having all this aspects above in mind, SAP has developed a new relational DBMS: SAP HANA. It

is an implementation of in-memory database technology designed for enterprise computing.

A formal and technical definition is showed here: “HANA takes advantage of the low cost of

main memory data processing […] to deliver better performance of analytical and transactional

applications. It offers a multi-engine query processing environment […] as well as graph and text

processing for semi and unstructured data management within the same system.” [2]

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 15

Since HANA is the database we are working on and it works in main memory, it is necessary to

separate the data into cold data and hot data as an approach to handle the increasing, but still

limited capacity of main memory efficiently while keeping all data available for reporting needs.

Data in a database has its own life cycle and it can be separated into hot and cold states. The

sequence of events certain data has passed through determines its state. The term cold data

refers to data that has become passive and can be stored in disk if it will not be changed any

longer and, thus, this data will be accessed less often. [1]

This kind of data will still be used for example, reporting. In the other hand, the term hot data

is used to refer data that is frequently accessed. Probably, more than 90% of all queries are going

against hot data. [1] Hot and cold data can be treated differently as access patterns differ, e.g., read-

only access in cold data versus read and writes access in hot data. Different data partitioning,

other storage media and different materialization strategies can further be used dependent on the

state of the data.

Another concept to take into account is storing data column-wise instead of row-wise. In

column-orientation complete columns are stored in adjacent blocks. This can be contrasted with

row-oriented storage where complete rows (tuples) are stored in adjacent blocks. Column-

oriented storage is well suited for reading consecutive entries from a single column and this can

be useful for column scans or aggregations.

We are working with a pure main memory database where data is stored column-wise. But of

course, the data is stored on disk as well for durability reasons. The advantage of such a main

memory approach is the query speed and the ability to guarantee response times. The

disadvantage is the memory consumption especially for data which are rarely accessed, this

means cold data.

For all the above, the goal of the thesis is to establish some mechanisms of streaming cold data

in/out disk without using any kind of buffering and measure their query performance.

1.1. Document Structure

The document structure is detailed in this section. After the Introduction chapter is the

Framework chapter where the work done by others that somehow ties in with this thesis is

highlighted, it is work that the thesis is based on.

The next chapter is High-level architecture. This chapter gives an overview of the

components of the prototype designed, what their functionality is and how they interact.

Afterwards, Design and Implementation chapters are detailed and explained. Design

chapter addresses the question “what do the approaches do?” and explains how the solution

given to the problem to solve has been found. Implementation chapter contains descriptions

of the implementation of each of the different solutions designed to solve the problem. It is

about to explain “how do the approaches work?”

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 16

The next chapter is Evaluation and it will present the results obtained for each

implemented approach. Each of these solutions has its own evaluation section and it consists

of graphics and its explanation. There will be also a comparison between approaches with

their advantages and disadvantages and one of the solutions will be chosen as the best for the

purpose of the project.

Then, in the Conclusion and Future Work chapter, a summary of the thesis and possible

future work to improve the prototype implemented of other approaches is presented.

The penultimate chapter is the References chapter and the last chapter is the Graphics

Appendix and it will present more results obtained for each implemented approach due to

completeness reasons and that have not been showed in the Evaluation chapter.

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 17

2. Framework

This chapter surveys previous work in database management systems (DBMS), more

particularly of in-memory data management and in-memory columnar databases.

Something that is much sought and prized for database architecture research is to find a

solution that is scalable and speedy, stable and secure, small and simple and self-managing.

Almost forty years of relational database technology seemingly converged into one commonly

accepted system construction lore but in the meanwhile, the hardware landscape changed

considerably. [4] High performance applications requirements posed by e.g., business/intelligence

analytic applications; typically as part of a data warehouse (central repository for all or significant

parts of the data that an enterprise’s various business systems collect). [7] Similarly, data being

managed changed from relational tables only through object-oriented, putting increasing

complexity onto existing systems. These aspects combined, caused a major shift in how database

management solutions can be created. [4]

The abundance of main memory makes it the prime choice for current database processing.

However, effective use of CPU caches became crucial. Designing a DBMS from the perspective of

large main memories and multiple data models called for a re-examination of the basic storage

structured needed. Column-store architecture have become crucial because they reduce the

amount of data manipulated within a database engine and also because columns form an ideal

building block for realizing more complex structures (tables, objects, trees or graphs). [4]

Column Store is the design of a read-optimized relational DBMS that contrasts with most of the

systems that existed years ago, which was write-optimized. With the row store architecture, a

single disk write sufficed to push all the fields of a single record out to disk. Hence, high

performance writes are achieved, so this is a write-optimized system. These are especially

effective on OLTP-style applications (OLTP: OnLine Transaction Processing). In contrast, systems

oriented toward ad-hoc querying of large amounts of data should be read-optimized. These are

OLAP systems (OLAP: OnLine Analytical Processing). Data warehouses represent one class of

read-optimized system, electronic library catalogs, etc. [5] In such environments, a column store

architecture, in which the values for each single column are stored contiguously, should be more

efficient. Products like Sybase IQ [6], [8] demonstrate this efficiency. Column storage was

successfully used for many years in OLAP and really surged when main memory became

abundant. [10]

With a column store architecture, a DBMS need only read the values of columns required for

processing a given query and can avoid bringing intro memory irrelevant attributes. In

warehouse environments where typical queries involve aggregates performed over large

numbers of data items, a column store has a sizeable performance advantage. In past DBMS,

values were stored in their native format because it was though that it was too expensive to shift

data values onto byte or word boundaries in main memory for processing. However, CPUs are

getting faster at much greater rate than disk bandwidth is increasing. Hence, it makes sense to

trade CPU cycles, which are abundant, for disk bandwidth, which is not. This trade-off appears

especially profitable in read-mostly environment. [5]

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 18

But main memory is the new bottleneck and it is required to minimize access to it. Accessing a

smaller number of columns can do this on the one hand; so only required attributes are queried.

On the other hand, decreasing the number of bits used for data representation can reduce both

memory consumption and memory access times. Dictionary encoding builds the basis for several

other compression techniques. [9] The main effect of dictionary encoding is that long values, such

as texts, are represented as short integer values. This technique is relatively simple and it works

column-wise. [1] It consists of two structures: dictionary and index. Dictionary is structure that

contains all the distinct values of a column alphabetically sorted and index is a structure where

every distinct value of the column is replaced by a distinct integer value. The benefits come to

effect with values appearing more than once in a column. The more often identical values appear,

the greater the benefits. Since enterprise data has low entropy [1], dictionary encoding is well

suited and grants a good compression ratio.

With respect to the in-memory databases (IMDB, also known as a main memory database or

MMDB) is a database whose data is stored in main memory to facilitate faster response times.

Source data is loaded into system memory in a compressed format. In-memory databases

streamline the work involved in processing queries. An IMDB is one type of analytic database,

which is a read-only system that stores historical data on metrics for business

intelligence/business analytics applications, typically as part of a data warehouse. These systems

allow users to run queries and reports on the information contained, which is regularly updated

to incorporate recent transaction data from an organization’s operational systems. [11]

All the previous research and evolution explained before was taken into account by SAP. In

order to take away the different systems for OLAP and OLTP, their mixed workloads [15] and to

combine them all in one unique system, SAP started to develop a hybrid system called SAP HANA.

The overall goal of the SAP HANA database is to provide a generic but powerful system for

different query scenarios, both transactional and analytical, on the same data representation

within a highly scalable execution environment. [12]

SAP HANA database is a main-memory centric database system full ACID. The main features of

the SAP HANA database for the scope of typical business applications are:

- The HANA database contains a multi-engine query that offers different data abstractions

supporting data different degrees of structure from well-structured relational data to

irregularly structured data graphs to unstructured text data. [12]

- It supports the representation of application-specific business objects directly inside the

database engine. [12]

- HANA database is optimized to efficiently communicate between the data management and

the application layer. [12]

- The SAP HANA database supports the efficient progressing of both transactional and

analytical workloads on the same physical database leveraging a highly-optimized column-

oriented data representation. [12]

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 19

 The system provides life cycle management for an individual database record. The SAP HANA

conceptually propagates records through different stages of a physical representation. [12] There

are three stages for records within a regular table as showed in Figure 1 and the most important

and related with the thesis are explained below.

Figure 1: Overview of the unified table concept [12]

- L2-delta: The L2-delta structure represents the second stage of the record life cycle and is

organized in the column store format. The L2-delta employs dictionary encoding to achieve

better memory usage. However, for performance reasons, the dictionary is unsorted

requiring secondary index structures to optimally support point query access patterns. The

L2-delta is well suited to store up to 10 million of rows. [12]

- Main store: The main store represents the core data format with the highest compression

rate exploiting a variety of different compression schemes. All values within a column are

represented via the position in a sorted dictionary and stored in a bit-packed manner to

have a tight packing of the individual values [13]. Combinations of different compression

techniques are applied to further reduce the main memory footprint [14].

In relation with the storage mechanisms and the I/O performance and to optimize data

transfer to and from mass storage, relational DBMSs have organized records in slotted disk pages

using the N-ary Storage Model (NSM). This technique stores records contiguously starting from

the beginning of each disk page, and uses an offset table at the end of the page to locate the

beginning of each record. [21] To minimize unnecessary I/O, the Decomposition Storage Model

(DSM) was proposed [23]. DSM partitions an n-attribute relation vertically into n sub-relations,

each of which is accessed only when the corresponding attribute is needed. Queries that involve

multiple attributes from a relation, however, must spend tremendous additional time to join the

participating subrelations together.

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 20

A new data organization model appeared on 2001: Partition Attributes Across (PAX). For a

given relation, PAX stores the same data on each page as NSM. Within each page, however, PAX

groups all the values of a particular attribute together on a mini page. At the same time, all parts

of the record are on the same page. To reconstruct a record one needs to perform a mini-join

among mini pages, which incurs minimal cost because it does not have to look beyond the page.

[22]

To store a relation with degree n, PAX partitions each page into n mini pages. Then it stores

values of the first attribute in the first mini page, values of the second attribute in the second mini

page, and so on. There is also a header structure which contains pointers to the beginning of each

mini page, the number of attributes, the attributes sizes, the current number of records on the

page and the total space available on the page. Each mini page consists on fixed-length (at the end

of each mini page there is a vector with one entry per record that denotes null values) or variable-

length attribute values (at the end of the each mini page there is a vector with pointers to the end

of each value). Each newly allocated page contains a page header and as many mini pages as the

degree of the relation. [22] This design is shown in Figure 2.

Figure 2: An example PAX page [22]

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 21

3. High-level architecture

As it has stated in the Introduction chapter, the goal of the thesis is to establish some

mechanisms of streaming cold data in/out disk without using any kind of buffering and measure

their query performance.

The high-level architecture gives an overview of the components of the prototype designed and

implemented, what their functionality is and how they interact. Some figures are showed for a

better understanding of the prototype.

Figure 3 is a general vision of the prototype.

Figure 3: Prototype

- Main Table: this component of the prototype is in charge of parsing a .csv (Comma

Separated Values) file from disk and loads each column of the table in main memory. It

interacts with the disk, the Column component and the Column Binary File Generator

component: the interaction with the disk is done during the parsing of the .csv file, the

interaction with the Column component is done once the .csv file is parsed and one Column

object has to be created and loaded in main memory for each column of the table (each

value of a row of the .csv file is a column of a table) and the interaction with the Column

Binary File Generator is performed when the table loaded in main memory has to be

written to a binary file on disk.

- Column: represents a column object from a table in main memory. The columns are loaded

in main memory with compression; this means that a column is represented by two

concepts: index and dictionary. These two concepts are explained in the Framework

chapter. Column component interacts with the Main Table component and with the Column

Binary File Generator component as explained above.

- Column Binary File Generator: this component of the prototype is responsible of writing

the table columns that are in main memory in a binary file. It interacts with the Store

Engine component to choose the method to perform the writing of the binary file.

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 22

- Storage Engine: this part represents the engine in charge of writing the table columns in a

binary file using a certain approach and it is also in charge of reading the binary file from

disk using a certain approach. It interacts with the disk to read/write the binary file and it

interacts with the Aged Data Storage component because it is the main part of the

prototype and it is in charge of choosing the approach to use for read/write the binary file.

- Query Engine: this element of the prototype represents the engine in charge of executing

the queries detailed in the Evaluation Design section of chapter 6. It interacts with the

Storage Engine component because it uses this component to read the data of the binary

file from disk and perform the query operations. This component is responsible of

identifying the resources required by the query, retrieve the necessary information from

disk invoking the Storage Engine, making the processing and creating the structure where

the results will be stored.

- Aged Data Storage: the last element is the Aged Data Storage which is the main component.

Its functionality consists of execute the whole process: get the .csv file from disk, parse it,

load the columns in main memory, write the columns from main memory to a binary file on

disk, read the binary file from disk and execute the queries to test the performance.

Figure 4 is a component diagram of the main parts of the prototype. There is a main

component, Aged Data Storage, which is used to make the I/O operations with the disk and the

queries. This component is dependent from the Query Engine and the Storage Engine

components.

The Storage Engine component is the element that writes and reads a binary file to/from disk

following certain approach or method to write or read the data to/from disk.

The Query Engine component is the element that performs the query operations to test the

performance of the method used to write the binary file to disk. That is why it is dependent from

the Storage Engine component, because it uses this component to read the data of the binary file

from disk.

Figure 4: Component Diagram

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 23

There are four different approaches or solutions for the I/O operations; therefore each type of

approach has its own component. This is shown in Figure 5. The different approaches are

explained in the Design and Implementation chapters but their names are:

- Approach 1: Column Store.

- Approach 2: Column Store with compression.

- Approach 3: Row Store without compression.

- Approach 4: Partition Attributes Across (PAX).

Figure 5: Storage Engine Component Diagram

Just as there are four approaches of storing and retrieving data on disk, there are four ways to

test the performance of these approaches. Each of them corresponding to a different approach:

Query Engine Approach 1 is the engine to test the performance of the Storage Engine Approach 1;

Query Engine Approach 2 is the engine to test the performance of the Storage Engine Approach 2,

etc. This Query Engine is shown in Figure 6.

Figure 6: Query Engine Component Diagram

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 24

4. Analysis and Design

This chapter contains the descriptions of the different approaches. This chapter addresses the

question “what do the approaches do?” and explains how the solution given the problem to solve

has been found.

The purpose of the project is to design and implement some mechanisms of streaming data in

and out of disk; hence some algorithms were designed and implemented before the final

approaches.

As explained in previous chapters HANA is a database in-memory so one of the requirements

to test the possible approaches was to design and implement a little prototype of one of the parts

of this database instead of work directly with HANA.

The basic idea is: having a .csv file, load it in columns in main memory. To achieve this, the file

is read and parsed as a table in columns and then these columns are stored in main memory. This

is the Main Store. Once the columns of the table are in main memory, they have to be stored in

disk.

Since main memory is the new bottleneck [1], it is required to minimize access to it. Decreasing

the number of bits used for data representation can reduce both memory consumption and

memory access times. Therefore, the columns are loaded in main memory with compression; this

means that a column is represented by two concepts: index and dictionary.

As it was expected this technique of compression works column-wise and the benefits come to

effect with values appearing more than once in a column.

Various ideas were considered and implemented before the final approaches. These attempts

do not strictly belong to the project but they show how the design has evolved to the final

solutions. The next section will explain some of those ideas and possible solutions.

- Two binary files per column: one dictionary file and one index file. Read the whole

dictionary file and store it in memory and read the whole index file and store it in memory.

Then, for the queries, work with this two structures in memory. The advantage of this

solution is the possibility of working with the entire content of the files in memory without

any additional operations (chunking, etc.). The disadvantage of this solution is obvious: the

memory consumption could be huge with a big data file.

- Two binary files per column: one dictionary file and one index file. Both index and

dictionary files are read in chunks of certain size and loaded in main memory. Therefore,

the two files are loaded entirely in main memory without causing high memory

consumption during reading (due to petitions of chunks of memory), but at the same time

they cause high memory consumption being entirely in main memory. For the queries,

work with this two structures in memory. Hence, the read operation in chunks of memory

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 25

has no effect. The disadvantage of this solution is obvious: the memory consumption as in

the previous approach.

- Two binary files per column: one dictionary file and one index file. Both index and

dictionary files are read in chunks of certain size and loaded in main memory. Each chunk

is processed for the query after load it in main memory. In order to not to cause high

memory consumption, the files are read in small chunks but this produces a lot of read

operations and low performance for the queries.

- Pointers to the dictionary. In an attempt to take up less memory and read big chunks of

data, the reading of the binary file for the index was implemented as pointer-based. Using a

structure of pointers to the strings, there is no copy of the strings in main memory when

the string is needed and the result is the same. This structure of string pointers had the

same length as the index and each element pointed to its equivalent dictionary value. This

approach was not valid due to the need of materialization of the result.

All these alternatives worked with some mechanisms of intermediate buffering and the real

need was to find a mechanism that would make the data stream as real as possible, directly from

disk. Hence, the alternatives above are not valid.

The objective is the performance I/O operations that are made on the disk: the way the disk is

accessed to write/read, where there must not be any kind of structure of intermediate buffering

whereas performing these operations, the read operation above all.

Keeping all the above in mind, the final approaches for the project are presented in the next

pages and they are divided in two subsections: writing files and reading files. The first one

contains the design of the writing algorithm to store the file on disk with and the second one

contains the design of the reading algorithm to retrieve the file from disk.

4.1. Approach 1: Column Store

This first solution is based on Column Store principle. A table of cold data is to be stored

on disk in a columnar way without any kind of compression. All the columns will be stored on

disk as they are in the table.

The next sections explain the way data is written in a file as well as its reading from file,

this means mechanisms of I/O.

4.1.1. Writing files

Write binary file: a unique binary file is created. It contains the column itself without

any compression (index or/and dictionary), every string is also stored with its length

and in chunks of the buffer size, in order to make the reading easier. While storing the

data in chunks in the file, if there is any free space in one block due to the length of the

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 26

string to store (it does not fit in this chunk and it will be in the next chunk), the free

space will be completed with the end of word character “/0”.

The graphic representation is shown in Figure 7:

Figure 7: Write column no compression in file

4.1.2. Reading files

Read binary file: in order to read each string of the file, the length of the string is

read first and then the number of bytes specified by the length; thus, the string will be

read, too.

This read operation is performed differently depending on the type of the query that

is executed. For example, reading the file in order to retrieve all the values of a column

is done in a different way from reading the file to retrieve some values of a column (in

case of a selective query). Each different case to read the column is explained below.

- Read column: with this operation a full scan of the column can be performed.

With this approach there is no index, which is why the writing of the file was done

in blocks, allowing an easier reading of the whole column or a part of it. To carry

out this operation the column is read in chunks of size given by the buffer size and

inside of each chunk the length of each string is read with the string itself.

- Read column for a projection with a selection: the first thing to perform is the

selection and it consists of getting all the row indexes where the selected value is

found. In this case, each element of the column is read and if it is the selected value,

its row number is stored. Once the result of the selection is retrieved, all the values

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 27

of the projected column have to be read in order to get only their row index and

check if they match with the selected ones in the selection process.

4.2. Approach 2: Column Store with compression

This second approach is also based in the Column Store principle. A table of cold data is to

be stored on disk in a columnar way with an index and a dictionary per column. The

dictionary contains all the possible unique values of the column alphabetically ordered and

the index represents all the values of the column with integer values.

4.2.1. Writing files

Write dictionary: a binary file is created with all the unique values of a column, the

dictionary. In order to make the later reading of the data easier, these values are stored

with its own length in chunks. The size of the chunks is given by the buffer size used for

the reading part. While the storing of data in chunks in the file, if the string to store

does not fit in the chunk due to its length, there will be some free space at the end of the

page and the string will be stored in the next page. This free space will be completed

with the end of string character “/0”. The graphic representation is shown in Figure 8:

Figure 8: Write dictionary in file

Write index: given that the index of a column consists only in numbers, each one of

them representing a value of the dictionary, a binary file is created with all these

numbers having each of them 4 bytes long. The graphic representation is shown in

Figure 9:

Figure 9: Write index in file

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 28

4.2.2. Reading files

Read dictionary: in order to read each string of the dictionary: the length of the

string is read first and then the number of bytes specified by the length; thus, the string

will be read too. The dictionary is read in chunks of a size given by a buffer size.

Read index: this operation is performed differently depending on the type of the

query that is executed. For example, reading the index in order to retrieve all the values

of a column is done in a different way from reading the index to retrieve some values of

a column (in case of a selective query). The index is read in chunks of a size given by a

buffer size. Each different case of how to read the index is explained below:

- Read the index for a projection: since the length of the element is known (4

bytes), each element of the index is read and the materialization is done there (get

each dictionary value for each index element), immediately obtaining the result.

- Read the index for a projection with a selection: the first operation to perform is

the selection and it consists of getting all the row indexes where the selected value

is found. In this case, each element of the index is read and their value for the

dictionary is materialized. If the value obtained is the selected value, its row

number is stored. Once the result of the selection is retrieved, only the values of

the projected column index are read and materialized.

4.3. Approach 3: Row Store without compression

In order to compare the performance of different approaches with different storage

methods, the row store approach is designed and evaluated. This third approach is based on

the Row Store principle. A table of cold data is to be stored on disk row wise in contrast to the

previous approaches but as in the first approach, no compression is used on the data;

therefore, there will only be one binary file where the cold data will be stored and read.

4.3.1. Writing files

Write binary file: a unique binary file is created. The data are stored in rows in pages

of certain size. Each row is stored complete in the file; in case that the row does not fit

into the page it will be stored in the next page of the binary file.

As in previous approaches, the length of each string will be stored before the string

itself in order to make the reading easier. An additional integer is added at the

beginning of each row in this approach, the length of the complete row.

The graphic representation is shown in Figure 10 and blank spaces are added in the

graphic representation for ease of reading. The character “/0” in Figure 10 denotes the

end of string.

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 29

Figure 10: Write rows in binary file

4.3.2. Reading files

In this approach a specific read operation is designed for each specific operation of

querying.

For example there is an operation to read the file for a projection query and there is

a different operation to read the file for a projection with two or more selection clauses.

The file is read in chunks or pages of a size given by a buffer size for all types of reading.

Each different case to read the file depending on the query is explained below.

- Read file for a full scan column / projection query: once the file is opened and

all the pages of the file are not read yet: get the length of the row, get the length of

the first string and read all the values of the row until the attribute of the

projection is reached. (For example, if the attribute office is the projection and it is

in the fourth position of the row, the three first values have to be read first and

then the value of office will be read). Then the value is read and stored in a memory

structure. The next point to start to read will be calculated with the length of the

row. The next step is to follow the same mechanism as explained above with all the

pages of the file.

- Read file for a selection query (with projection): once the file is opened and all

the pages of the file are not read yet: read all the values of the row until the

attribute or column of the selection is reached, and then read its value. If the value

read is the value searched for in the selection, read again all the values of the row

until the attribute of the projection are reached and store it in a memory structure.

The next step is to follow the same mechanism as explained above with all the

pages of the file.

- Read file for a multiple selection query (with projection): this operation is

derived from the previous one; the only difference is the number of attributes to

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 30

check. If the first attribute of the selection is true, the next attribute is checked,

otherwise not. If all the attributes of the selection are true, then the attribute of the

projection is read and stored in a memory structure. The next step is to follow the

same mechanism as explained above with all the pages of the file.

- Read file for a full scan table query: once the file is opened and all the pages of

the file are not read yet: for each column, read each value of the row and store it in

a memory structure. The next step is to follow the same mechanism as explained

above with all the pages of the file.

- Read file for a full scan table with multiple selection query: this operation uses

the design of the “read file for a multiple selection query (with projection)”

operation in order to get which values fulfil the conditions. For each column of the

table all the values that fulfil the conditions are stored in a memory structure. The

next step is to follow the same mechanism as explained above with all the pages of

the file.

4.4. Approach 4: Partition Attributes Across (PAX)

This fourth approach is based also on column store principle and a variation of the PAX

(Partition Attributes Across) strategy explained in the Framework chapter.

A table of cold data is to be stored on disk in a columnar way as in the previous

approaches, but in this case there is a special strategy for placing records of the table on a file.

The structure of each mini page is: values of the same column are stored in the same mini

page and at the end of it there is section of pointers to the end of each value. Obviously, all

mini pages that belong to the same page have the same number of records stored. The

graphical representation of this approach is shown in Figure 11:

Figure 11: Approach 4 design

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 31

The number of records that fit into each mini page is the same for all mini pages of the

same page and this number is calculated from the column with longer strings. That is, the

column of the table that contains the longer strings will determine the number of values of

the column that fit in each mini page.

The next sections explain the way data is written in a file as well as its reading from file,

this means mechanisms of I/O.

4.4.1. Writing files

Write binary file: a unique binary file is created. The data are stored in pages of

certain size and following the design explained in the introduction of this approach.

Due to the need of having the same number of elements for all mini pages of the

same page, the number is pre-calculated and used to know how many elements fit in

the mini pages of one page. This number is calculated from the column with the longest

strings. If only 4 strings fit in the mini page of the column of the longest strings, 4

strings will be stored in the rest of the mini pages. This is done because the column

with the longest strings delimits the rest of the columns since it consumes more space

than the other columns.

4.4.2. Reading files

Read operations are associated with query operations so reading and querying are

designed together. This is explained below:

- Read file for a full scan column / projection query: once the file is opened, the

header of each page is read as the pointers of the end of the mini page of the

attribute corresponding to the projection. Then, for each pointer of the end of the

mini page, the values of the mini page are read and stored in a memory structure.

The next step is to read the next page and follow the same mechanism as explained

above and so on.

- Read file for a selection query (with projection): once the file is opened, the

header of each page is read as the pointers of the end of the mini page of the

attribute corresponding to the projection. Then, for each pointer of the end of the

mini page, each value of the mini page is read and if it is equal to the value of the

selection, the value read is stored in a memory structure. The next step is to read

the next page and follow the same mechanism as explained above and so on.

- Read file for a multiple selection query (with projection): once the file is

opened, the header of each page is read. Then, the pointers of the mini page of the

projection attribute are read and for each value, pointed by these pointers, is

checked whether it fulfil the multiple selection query (if the first condition is true,

the next condition is checked, otherwise the next condition is not checked). If the

values of the multiple selection query fulfil all the conditions its corresponding

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 32

selection value is read from its mini page (value of the same row that fulfil the

conditions). The next step is to read the next page and follow the same mechanism

as explained above and so on.

- Read file for a full scan table query: once the file is opened, the header of each

page is read. Then for each column of the table, each set of pointers of the end of a

mini page is read and for each pointer each value of the mini page is read. This

read value is stored in a memory structure row-wise. The next step is to read the

next page and follow the same mechanism as explained above and do it with all the

pages of the file. So, in order to read one page, all the values of one mini page are

read first, then all the values of the second mini page and so on.

- Read file for a full scan table with multiple selection query: this operation uses

the design of the “read file for a multiple selection query (with projection)”

operation in order to get which values fulfil the conditions. For each column of the

table all the values that fulfil the conditions are returned.

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 33

5. Implementation

The Implementation chapter contains descriptions and aspects about the prototype

developing. This part is about to explain “how does the approach work?” The programming

language is C++ and development environment used is Visual Studio 2010 Professional on

Windows 7. The application is developed in 32-bit but it is also test in 64-bit.

Within Visual Studio on Windows 7, there is a Windows programming function that can create

binary files [16] where one of its parameters is a flag that prevents no intermediate buffering. This

flag indicates that the file is being opened with no system caching for data reads and writes, so

that it does not affect hard disk caching. The flag gives complete and direct control over data I/O

buffering. There are data alignment requirements that must be considered:

- File access sizes must be for a number of bytes that is an integer multiple of the volume

sector size. For example, if the sector size is 512 bytes, an application can request reads

and writes of 512, 1024, 1536 or 2048 bytes, but not of 335, 981, or 7171 bytes. [19]

- File access buffer addresses for read and write operations should be physical sector-

aligned, which means on addresses in memory that are integer multiples of the volume’s

physical sector size. Depending on the disk, this requirement may not be enforced. [19]

All the approaches use Windows functions on C++ on the reading [18] sections of the code; these

functions were not used in the writing sections since the performance is measured with the

reading part of the approaches. The meaning is that is not that important to use Windows

functions when writing the binary files because the performance of the approach is measured

with the queries and get the data directly from disk is done in the reading part.

As already mentioned above, there are certain requirements or restrictions when using

Windows functions and the flag for no file buffering (this flag disables system caching of data

being read or write to the file).

To meet the two requirements of file access sizes and file access buffer, the following criteria

was used in all the approaches: use a variable that indicates the number of bytes to write/read

that is a multiple of 512 bytes as the disk sector size is 512 bytes. This variable is called

BUFFERSIZE and is defined in every class for the storage using #define pre-processor macro.

Because buffer addresses for read and write operations must be sector-aligned, the application

must have direct control of how these buffers are allocated. One way to sector-align buffers is to

use the VirtualAlloc function to allocate the buffers. [19] More criteria have to be considered:

- VirtualAlloc allocates memory that is aligned on addresses that are integer multiples of the

system’s page size. Page size is 4096 bytes on x64 systems. [19]

- Sector size is 512 bytes. [19]

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 34

For all the above, the file is read/write in chunks of a size given by a buffer size with a

granularity (512*n).

In the implementation of all the approaches the function VirtualAlloc is called in the

constructor of the class that implements the methods to write and read the binary files, it is a void

pointer. That statement is:

 this->indexp = VirtualAlloc(NULL, BUFFERSIZE, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);

Where the parameters are: NULL meaning that the system determines where to allocate the

region, BUFFERSIZE is the size of the region in bytes, MEM_RESERVE | MEM_COMMIT reserves

and commit pages in one step (MEM_COMMIT allocates memory charges from the overall size of

memory and the paging files on disk for the specified reserved memory pages and MEM_RESERVE

reserves a range of the process’s virtual address space without allocating any actual physical

storage in memory or in the paging file on disk).

This function can be used to reserve a region of memory within the virtual address space of a

specified process. This region of memory can then be used to map physical pages from/to virtual

memory as required by the application.

When this region of allocated memory is no longer needed, the VirtualFree function of

Windows is called from the destructor of the class:

 VirtualFree(this->indexp, BUFFERSIZE, MEM_RELEASE);

Where the parameters are: the pointer (indexp) to the base address of the region of pages to be

freed, BUFFERSIZE is the region of memory to be freed in bytes and MEM_RELEASE releases the

specified region of pages.

To make the measurement of performance, boost library has been used for timing. [20]

Another important thing to take into account is the way the results are returned to the user

once a query is executed: for the materialization of the query, some memory structure has to be

returned to the user, so it would make sense to use the return statement in every query to send

back the result. But there is an inconvenience using this statement and is its performance. When

using the return by value statement, the compiler is forced to do an unnecessary copy-in-return

when the constructor is invoked and this copy operation has a negative effect in the performance,

consuming a lot of time.

An advantage of return by value is that variables that involve local variables declared within

the function can be returned. There are no problems when the variable goes out of scope at the

end of the function due to the copy made before.

A high performance is the most important feature to achieve in the project, therefore the

return statement cannot be used due to the copy that its constructor performs. When a projection

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 35

of a column is executed, a large number of values must be placed in memory and then sent back,

so they take up a large space on memory.

If for example, there is a table with one million rows and a query as SELECT column FROM

table is executed, a million values have to be returned in some kind of memory structure. In our

case, a vector<string> is used, so the vector<string> would be in memory with a million of

elements; if in addition each element is a very long string, the space taken in memory is much

higher. A return statement will generate a copy of this structure, having more taking memory, so

this is something to be avoided.

The possible solution is to passing an argument by reference and this argument will be the

result. This is a better solution when the function needs to modify the values of an array or a

vector (as in our case). In this case is more efficient and clearer to have the function modify the

actual vector passed to it, rather than trying to return something back to the caller. When the

function is called, the parameter passed by reference will become a reference to the argument.

Since a reference to a variable is treated exactly the same as the variable itself, any changes made

to the reference are passed through to the argument. But the most important thing is that a copy

of the argument is not made, it is faster, even when used with large structures. []

Running some tests, only the return statement took 50 seconds of the total time of the query,

which was 54 seconds. Using the parameter by reference, it only takes ~4 seconds. Hence, this

method of passing the arguments by reference has been used in all the approaches for all the

queries.

Keeping all the above in mind, the implementation of the final approaches for the project are

presented in the next pages and they are divided in two subsections: writing files and reading

files. The first one contains the implementation of the writing algorithm to store the file on disk

with and the second one contains the implementation of the reading algorithm to retrieve the file

from disk.

5.1. Approach 1: Column Store

In this section the implementation of the first approach is described by some text and

pseudo-code algorithms.

5.1.1. Writing files

The following section explains the algorithm used to write one file per column.

Write column in binary file without compression: as explained in previous

chapters, the Main Store of the prototype implemented contains in memory the

columns of a table coding in index and dictionary. Therefore, the first thing to do is to

undo the index and dictionary and load the column in memory without any

compression. The next thing is to create the binary file with the name of the column and

open it.

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 36

Then, a “for loop” is needed to write all the elements of the column in the file: get

each element of the column, get its length and if the element fits in the chunk

(determined by BUFFERSIZE), write the length, write de element. Otherwise, write

many “\0” characters (padding) as free space remains in the chunk. Once the loop is

done, the last step is to close the file.

------- Pseudo-code to write column without compression -------

1. Create a name for the binary file depending on the name of the column

2. Create and open binary file

3. For (iterate over all the elements of the column)

4. Get i- nth string from the vector<string> that contains the column

5. Get its length

6. Bytes to be written = string length + size of int + 1 (1 due to \0)

7. If the string does not fit in the chunk

8. Write many “\0” as free space remains in the chunk

9. Bytes written will be 0

10. End if

11. Write the length of the string

12. Write the string itself

13. Update bytes written

14. End for loop

15. Close the binary file

5.1.2. Reading files

The following section explains the algorithms used to read the files depending on

the query. Since there is no compression on the file, the values can be directly read and

returned.

Read column for a projection: create the handle of the file with the flag of NO

BUFFERING (explained in the introduction of this chapter). While there are bytes to

read in the file, read them in chunks determined by BUFFERSIZE and while reading all

the bytes of the chunk is not finished, get the length of the element. If the length of the

element is 0, it is the end of the page. Otherwise, read the element, push it in a memory

structure and update the bytes read until this moment. The last step is to close the

handle of the binary file.

------- Pseudo-code to read column for a projection -------

1. Create file handle with flag of NO BUFFERING active

2. Do-while (bytes read == BUFFERSIZE)

3. Read next BUFFERSIZE bytes of file

4. While (bytes read until this moment < bytes read)

5. Get the length of the string

6. If the length of the string is 0 (end of page)

7. Bytes read until this moment = bytes of the string read

8. End if

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 37

9. Read the string

10. Push the string in a vector<string>

11. Update the bytes read until this moment

12. End while loop

13. End do-while loop

14. Close handle of the binary file

Read column for a selection: the code implemented for this operation is the same

as the previous one but with one difference: once the element is read, it is checked if

the element is equal to the element of the selection. If this is true, the row index of the

element is stored in a memory structure.

------- Pseudo-code to read column for a selection -------

1. Create file handle with flag of NO BUFFERING active

2. Do-while (bytes read == BUFFERSIZE)

3. Read next BUFFERSIZE bytes of file

4. While (bytes read until this moment < bytes read)

5. Get the length of the string

6. If the length of the string is 0 (end of page)

7. Bytes read until this moment = bytes of the string read

8. End if

9. Read the string

10. If the string read == string of selection

11. Store row index in vector<string>

12. End if

13. Update the bytes read until this moment

14. End while loop

15. End do-while loop

16. Close handle of the binary file

Read column for a selection with a projection: create the handle of the file with

the flag of NO BUFFERING (explained in the introduction of this chapter). Then, iterate

over the result of the previous operation (Read column for a selection). While there are

bytes to read in the file corresponding to the projection column, read them in chunks

determined by BUFFERSIZE and while reading all the bytes of the chunk is not finished,

get the length of the element. If the length of the element is 0, it is the end of the page.

Otherwise, read the element and if it is the element searched, push it in a memory

structure and update the bytes read until this moment. The last step is to close the

handle of the binary file.

------- Pseudo-code to read column for a selection with a projection -------

1. Create file handle with flag of NO BUFFERING active

2. Iterator over the positions where the value is found (iterator it)

3. Do-while (bytes read == BUFFERSIZE)

4. Read next BUFFERSIZE bytes of index file

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 38

5. While (bytes read until this moment < bytes read and the iteration is not

finished)

6. Read the length of the string

7. If the length of the string == 0 (end of page)

8. Bytes read until this moment = bytes read

9. End if

10. Read the string

11. If the string read is the string wanted (string_read == element pointed

by the iterator)

12. Push in the vector<string> result the string

13. Update iterator index (++it)

14. End if

15. Update the bytes read until this moment

16. End while loop

17. End do-while loop

18. Close handle of the binary file

5.2. Approach 2: Column Store with compression

In this section the implementation of the second approach is described by some text and

pseudo-code algorithms.

5.2.1. Writing files

The following text and pseudo-code represents the algorithm to write the index and

the dictionary in binary files on disk.

Write index in binary file: having the index and the dictionary of a column in main

memory, the only thing to do to write the index in a binary file is: create the name for

the file depending on the name of the column, create and open the binary file, write the

whole index (each element has the size of an unsigned integer) and close the binary file.

Since this implementation is very simple there is no need of pseudo-code to explain this

algorithm.

Write dictionary in binary file: write the dictionary is a little bit harder than write

the index in a binary file since the elements to write are strings and not integers but

this process is done as in the first approach to write the column without compression:

Create the binary file with the name of the column and open it. Then, a “for loop” is

needed to write all the elements of the column in the file: get each element of the

column, get its length and if the element fits in the chunk (determined by BUFFERSIZE),

write the length, write de element. Otherwise, write many “\0” characters (padding) as

free space remains in the chunk. Once the loop is done, the last step is to close the file.

The pseudo-code of this algorithm is detailed below:

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 39

------- Pseudo-code to write dictionary -------

1. Create a name for the binary file depending on the name of the column

2. Create and open binary file

3. For (iterate over all the elements of the column)

4. Get i- nth string from the vector<string> that contains the column

5. Get its length

6. Bytes to be written = string length + size of int + 1 (1 due to \0)

7. If the string does not fit in the chunk

8. Write many “\0” as free space remains in the chunk

9. Bytes written will be 0

10. End if

11. Write the length of the string

12. Write the string itself

13. Update bytes written

14. End for loop

15. Close the binary file

5.2.2. Reading files

The following section explains the algorithms used to read the files depending on

the query.

Read dictionary: the algorithm and pseudo-code of this operation is the same as in

section 7.1.2 (Read column for a projection).

Read index for a projection: this operation undo the index replacing each integer

element by its corresponding value in the dictionary. The first step is to create the

handle of the file with the flag of NO BUFFERING (explained in the introduction of this

chapter). While the file has pages left, read the file in chunks determined by

BUFFERSIZE and then a “for loop” is needed to read all the integer elements of the

chunk read: store in a memory structure the result of the dictionary corresponding

with the index value. Then update the bytes read until this moment. The last step is to

close the handle of the binary file.

------- Read index for a projection -------

1. Create file handle with flag of NO BUFFERING active

2. While (file has pages left)

3. Read next BUFFERSIZE bytes of index file

4. For (read all the elements (int) in page)

5. Store in the corresponding position of the vector the result of the int

that is read from the file page, the string of the dictionary that

correspond with the index value:

result[(current_page * (BUFFERSIZE/4)) + i] = dictionary[offset[i]];

6. End for loop

7. Update total read size and current page

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 40

8. End while loop

9. Close handle of the binary file

Read index for a selection: the code implemented for this operation is the same as

the previous one but with one difference: once the element is read, it is checked if the

element is equal to the element of the selection. If this is true, the row index of the

element is stored in a memory structure. There is no need of pseudo-code of this

operation.

Read index for a selection with a projection: the easiest way to explain this

algorithm is with the pseudo-code.

------- Pseudo-code to read index for a selection with a projection -------

1. Create file handle with flag of NO BUFFERING active

2. While (file has pages left)

3. Read next BUFFERSIZE bytes of index file

4. Get the page number that we are reading

5. Get first element of the page

6. Do-while (page_number == current_page and value indexes from the selection

(values_in_where) is not process completely)

7. Get the dictionary value that corresponds to the row number that is

stored in values_in_where

8. Store the dictionary value in a vector<string>

9. Update the offset of values_in_where

10. If values_in_where is not process completely

11. Update page number

12. End if

13. Update total read size and current page

14. End while loop

15. Close handle of the binary file

5.3. Approach 3: Row Store without compression

In this section the implementation of the third approach is described by some text and

pseudo-code algorithms.

5.3.1. Writing files

The following section explains the algorithm used to write the table in one file with a

row-wise organization.

Write table in binary file (row store): as explained in previous chapters, the Main

Store of the prototype implemented contains in memory the columns of a table coding

in index and dictionary. Therefore, the first thing to do is to undo the index and

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 41

dictionary and load the table in memory without any compression. The next thing is to

create the binary file and open it.

Two nested loops are necessary to write all the rows of the table in the file: the first

loop iterates over the rows and the second loop iterates over the columns calculating

the length of the row (adding the length of each string of each column of the same row).

Once the length of the row is calculated, if the row fits in the available chunk, the length

of the row is written and another loop begins to write each length and each element of

the row. Otherwise, padding is added at the end of the chunk. The last two steps are to

update the bytes written in one loop and once all the iterations are done, close the file.

------- Pseudo-code to write binary file row store -------

1. Create a name for the binary file

2. Create and open binary file

3. For (number of rows: row_index)

4. For (number of columns: column_index)

5. Calculate the length of the row

6. End for loop

7. If there is no more space in the page

8. Write “\0” character from the last character written until the end of the

page

9. End if

10. Write the length of the row

11. For (number of columns)

12. Value = column.at(column_index).at(row_index)

13. Write the length of the value

14. Write the value

15. End for loop

16. Update bytes written

17. End for loop

18. Close the binary file

5.3.2. Reading files

The following section explains the algorithms used to read the files depending on

the query.

Taking into account that a row in the binary looks like:

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 42

Figure 12: Row represented in the binary file

Read file for a full scan column / projection query: create the handle of the file

with the flag of NO BUFFERING (explained in the introduction of this chapter). While

there are pages of the file to read, read them in chunks determined by BUFFERSIZE.

A variable called “offset” is created and it is an unsigned pointer to the data that has

been read. “Do-while” loop: get the length of the word (second unsigned value of the

data read: &offset[1]) and get the word ((char*)&offset[2]). Inside this loop another

loop is necessary (“for loop”) to read each element of the row until the value of the

projection column is reached; hence, the length and the word itself have to be

calculated in each iteration of the loop.

When the element of the projection column is read in the row, the element is stored

in a memory structure and some variables are updated. The last step is to close the

handle of the binary file.

------- Pseudo-code to read file for a full scan column / projection query -------

1. Create file handle with flag of NO BUFFERING active

2. While (pages read <= pages to read)

3. Read next BUFFERSIZE bytes of the binary file

4. Offset = (unsigned*) data read. Unsigned pointer to the chunk read.

5. Do-while (bytes read < BUFFERSIZE and length of row != 0)

6. Word length = (unsigned *)&offset[1]

7. Word = (char *)&offset[2]

8. For (number of the column of the projection)

9. Get all the previous values of the columns of the row until the value

of the projection column is reached (calculate in the loop the word

length and the word again)

10. End for loop

11. Store the value in a memory structure

12. Update the position of the memory structure where the value is stored

13. Update bytes read

14. Update the offset to read the next row

15. End do-while loop

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 43

16. Update pages read

17. End while loop

18. Close handle of the binary file

Read file for a selection query (with projection): this algorithm works as the

previous one but it has a difference: for each element of the projection column of the

row, its value is compared with the value searched for. If these two values are equal, the

value of the selection column of the row is read (another “for loop” is necessary to read

all the previous values until the value of the selection column of the row is reached);

otherwise, the next row has to be read.

Read file for full scan table query: create the handle of the file with the flag of NO

BUFFERING (explained in the introduction of this chapter). While there are pages of the

file to read, read them in chunks determined by BUFFERSIZE.

A variable called “offset” is created and it is an unsigned pointer to the data that has

been read. “Do-while” loop: read each element of the row and store it in a memory

structure while there are still bytes to read and the length of the row is different from

zero; hence, the length of the word and the word itself have to be calculated in each

iteration of the loop. The last step is to update de number of pages read and at the end,

close the handle of the binary file.

------- Pseudo-code to read file for a full scan table query -------

1. Create file handle with flag of NO BUFFERING active

2. While (pages read <= pages to read)

3. Read next BUFFERSIZE bytes of the binary file

4. Offset = (unsigned*) data read. Unsigned pointer to the chunk read.

5. Do-while (bytes read < BUFFERSIZE and length of row != 0)

6. For (number of columns)

7. Get each value of the row and store it in a memory structure

8. End for loop

9. Update bytes read

10. Update the offset to read the next row

11. End do-while loop

12. Update pages read

13. End while loop

14. Close handle of the binary file

Read file for a full scan table with multiple selection query: having in mind all

the algorithms explained before, the easiest way to explain this algorithm is with the

pseudo-code.

--- Pseudo-code to read file for a full scan table with multiple selection query --

1. Create file handle with flag of NO BUFFERING active

2. While (pages read <= pages to read)

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 44

3. Read next BUFFERSIZE bytes of the binary file

4. Offset = (unsigned*) data read. Unsigned pointer to the chunk read.

5. Do-while (bytes read < BUFFERSIZE and length of row != 0)

6. If the row fulfil all conditions

7. For (number of columns)

8. Get the name of the attribute of the column

9. Get the value of the attribute

10. Push the value in a memory structure

11. End for loop

12. Push the previous memory structure in other memory structure

13. End if

14. Update bytes read

15. Update the offset to read the next row

16. End do-while loop

17. Update pages read

18. End while loop

19. Close handle of the binary file

5.4. Approach 4: Partition Attributes Across (PAX)

In this section the implementation of the fourth approach is described by some text and

pseudo-code algorithms.

5.4.1. Writing files

The following text and pseudo-code represents the algorithm to write the table of

cold data following the design of this approach. Since to write the data with this design

is something tricky some methods are implemented and explained below.

Write a binary file with the PAX modified design is divided in methods:

Method 1: PAX Storage. This is the main method to write one file for one table with

the design of the fourth approach. The pseudo-code is easy:

------- Pseudo-code PAX Storage -------

1. While (number of elements written < total number of elements to write)

2. Calculate number of elements that fit in one mini page

3. For (number of columns)

4. PAXStorageColumn

5. End for loop

6. End while loop

Method 2: PAX Storage Column. This is the method to write n elements of a

column in a mini page. The method also stored a memory structure of the pointers to

the end of each value of each mini page.

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 45

The first step is to create the name for the binary file and create it. If the column to

write in the file is the first of the table, the header of the page has to be written first:

Then, the elements of the column can be written. For this step a “for loop” is needed

(the loop is repeated as many times as the number of elements indicates): get the

element of the column, calculate the number of bytes to be written, write the element,

update the bytes written, update the pointer to the end of the element (byte number

where the element ends) and add this last value to a memory structure. The last step is

to update the total number of elements written and to update the end of the mini page.

------- Pseudo-code PAX Storage Column -------

1. Create a name for the binary file

2. Create and open binary file

3. If the column is the first of the table

4. WriteHeader

5. End if

6. For (number of elements per minipage)

7. Get the item of the column

8. Calculate the bytes to be written (item size + 1 + size of int)

9. Write the item

10. Update bytes written (bytes written += bytes to be written)

11. Update the pointer of the item written (pointer_offset += item size + 1)

12. Add this pointer_offset to a memory structure

13. Update number of elements written

14. End for loop

15. EndOfMinipageUpdate

16. Close file

Method 3: Write Header. This is the method to write the header of each page. The

first step is to create a memory structure to store all the values of the header. Then

store in the memory structure the following information: header size, values of the

pointers to the beginning of each mini page, number of columns, and number of

elements per mini page. As a last step, write this memory structure in the file.

Method 4: Update the end of mini page. This is the method to write the set of

pointers at the end of each mini page. Before writing the set of pointers, some padding

has to be added from the end of the last element to the first position of the set of

pointers that is going to be written. The next step is to reverse the vector of pointers

that has the values on bytes of the ending of each value of the column in the binary file,

write this vector in the file and update the bytes written.

5.4.2. Reading files

The following text and pseudo-code represents the algorithms to read the file

depending on the query operation.

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 46

For understanding some of the reading algorithms, some descriptive figures have

been included.

Figure 13: Page header example of Approach 4

Read file for a full scan column / projection query: this algorithm reads each

mini page of the same column in the binary file. Once the file handle with the flag of NO

BUFFERING active is created, a “while loop” is necessary to read all the pages of the file:

while there are pages of the file to read, read them in chunks determined by

BUFFERSIZE. Since the first thing of each page is the header, an unsigned pointer to the

bytes read is created and initialized. With this pointer, the info of the header is

accessible.

The next step is to get the mini page number; since the table contains 8 columns,

each page will have 8 mini pages (one per column) so the mini pages are numbered as

follows: first column is mini page number 0, second column is mini page number 1,

third column is mini page number 2, etc. This is done to get the position and the value

of the pointer of the header that point to the beginning of the mini page.

The following step is a “for loop” from 0 to the number of elements allow per mini

page. The following figure is showed for a better understanding:

Figure 14: Mini page example of Approach 4

The length of each element of the column is calculated in two different cases:

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 47

- If it is the first iteration: it is the first element of the column to be read. The

length of the element is to be read and it is calculated with the last pointer of

the pointers at the end of the mini page minus the header size.

- If it is not the first iteration: the length of the element is to be read and it is

calculated with its corresponding pointer of the pointers at the end of the mini

page minus the length of the previous element. Taking Figure 14 as an example

the length of the element “Lorena Prieto Horcajo” is calculated subtracting the

byte number where the element ends minus the byte number where the

previous element (“Gonzalo Canelada Purcell”) ends. Hence, if “Gonzalo

Canelada Purcell” ends on the byte number 50 (this value is contained on the set

of pointers) and “Lorena Prieto Horcajo” ends on the byte number 72 (this value

is contained in the set of pointers), the length of “Lorena Prieto Horcajo” will be

22 (72 - 50).

Once the length of the element is calculate, the element itself can be retrieved

creating the string and store it in a memory structure. When the “for loop” is finished,

one mini page has been read.

All the algorithm explained above will be repeated in the “while loop” for all the

pages of the file.

------- Pseudo-code to read file for a full scan column / projection query -------

1. Create file handle with flag of NO BUFFERING active

2. While (pages read <= pages to read)

3. Read next BUFFERSIZE bytes of the binary file

4. int* header = (int*) data read

5. Get the mini page number of the projection column

6. Get the value of the pointer to the beginning of the mini page of the

projection column

7. For (number of elements per mini page (k))

8. If k = 0

9. bytes per word = (pointers end mini page[header[9]-k-1] – header size)

10. End if

11. Else

12. bytes per word = (pointers end mini page[header[9]-k-1] – pointers end

mini page[header[9]-k])

13. End else

14. Create the string s = string(&data read[beginning of the word], bytes per

word)

15. Store the string in a memory structure

16. End for loop

17. Update pages read

18. End while loop

19. Close handle of the binary file

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 48

Read file for a selection query (with projection): the next algorithm is similar to

the previous one but the difference comes with the selection. Once the element of the

projection query has been read, the element is compared to the value searched in the

selection. If it is the element searched for, the length and the value of the projection

column corresponding to the element, is retrieved and stored in a memory structure.

Read file for a full scan table query: this algorithm is used to read all the mini

pages of all pages of the file and retrieved row-wise. Once the file handle with the flag of

NO BUFFERING active is created, a “while loop” is necessary to read all the pages of the

file: while there are pages of the file to read, read them in chunks determined by

BUFFERSIZE. Since the first thing of each page is the header, an unsigned pointer to the

bytes read is created and initialized. With this pointer, the info of the header is

accessible.

The next step is a “for loop” iterating over the number of columns, so all the mini

pages of the page read are going to be read. For each mini page, its set of pointers at the

end of the mini page is retrieved and every element of the mini page is read and stored

in a memory structure (the length of each element is calculated following the steps

explained in the first algorithm of this section). Therefore, the next thing is to process

the next mini page until all the mini pages of the same page are processed. Then, read

the next page and follow the algorithm and so on.

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 49

6. Evaluation

The next chapter will introduce the queries that will be used to evaluate the approaches and

the workloads used. It also presents the results obtained and their evaluation for each

implemented approach.

6.1. Evaluation design

The table of data used to test the performance of the approaches designed is a table of 8

columns and 1 million rows. Table 1 specifies the types and values of each column.

The first column contains the names of each column of the table, the second column contains

the number of possible distinct values of the column, third column has the average number of

characters of each column and the last column contains the type of length of the column, i.e.

variable or fixed. All the values of the table are strings of characters, although column age and

column salary are numbers but they are treated also as strings of characters.

Table 1: Description of table used to test the approaches’ performance

Column Distinct values
Average number

of characters
Element length

in column
Name 26 22 Variable
Age 15 2 Fixed

Office 15 6 Fixed
Car 19 6 Variable
City 7 8 Variable

Department 10 11 Variable
Hair 5 5 Variable

Salary 15 4 Fixed

This table has been chosen to test the performance of the approaches due to the following

aspects:

- All data is generated by randomly, selecting elements from a set of values fixed for each

column.

- Each column contains elements of variable or fixed length (not both in the same column).

- Variable length values are both short and long to test how these lengths affect the

performance.

- The number of rows is large enough to produce large files on disk.

- The number of distinct values is high enough to test the performance of some algorithms

used in the approaches, e.g. binary search.

Table 2 shows the queries chosen to test the performance of the approaches with the workload

explained above.

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 50

Table 2: Queries used to test the approaches’ performance

Since the work is done in an in-memory database with columnar organization and the

mechanisms to be implemented and evaluated are only I/O operations of read and write, the

queries above are chosen as the best ones to be considered to test the performance of the

approaches. And since the kind of data is cold data, it has been considered that no deletes or

updates operations would be performed.

Queries 1 to 8 are full scans of one column and these types of queries are well suited for the

column-oriented storage (consecutive entries in main memory). The projection queries are also

simple, but they are used to take basis measurements of reading and how the data model chosen

behaves and they serve as baseline to compare the rest of queries.

Both queries 1 and 2 are projections or full scans of one column but they are chosen since the

difference between them is that the first one is a full scan over the attribute with the largest

length while the second one is a full scan over the attribute with the shortest length.

Queries 4 to 9 have also the selection operator of relational algebra represented by the “where”

clause in the queries. This operator was also chosen for the queries to test how these additional

clauses affects the performance of the approaches in terms read operations needed, time to

execute the query, etc.

Queries 3 and 4 have the same projection column but Query 4 has a restrictive clause which is

a selection of another attribute. These queries are chosen to show the performance difference

between a single projection and a projection with a selection.

Query 6 is also selected to show the performance difference with Query 4. Both queries have

the same selection clause but the projection attribute is different: selection attribute in Query 4 is

the one with the largest length of the table while selection attribute in Query 6 is the one with the

shortest length of the table.

The “and” operator of Query 8 and 9 was chosen to make the results of the first selection clause

affect the following results of the second selection clause to take measure of how the read

operation affects: “does the read operation cause more effect on the final result or does the

processing of the data cause more effect on the final result?”.

QUERY 1 SELECT name FROM table

QUERY 2 SELECT age FROM table

QUERY 3 SELECT name WHERE age = "16"

QUERY 4 SELECT name WHERE department = "Human Resources"

QUERY 5 SELECT department WHERE city = "Walldorf"

QUERY 6 SELECT age WHERE department = "Human Resources"

QUERY 7 SELECT salary WHERE car = "BMW"

QUERY 8 SELECT name WHERE age="16" AND city="Walldorf"

QUERY 9 SELECT * WHERE age="16" AND city="Walldorf"

QUERY 10 SELECT * FROM table

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 51

Queries 3 and 8 have the same projection attribute but Query 8 has an additional selection

clause, which causes a more restrictive result. Query 8 was selected to compare its performance

with the performance of Query 3, to show the difference performance with more selection clauses

in the query.

Queries 9 and 10 are full scans of the table which, in contrast to the rest of the queries, are

operations well suited for row-oriented storage and being cold data not all the data table will be

always retrieved from disk, but these two queries have also been chosen to test the performance

of the designed and implemented approaches. The difference between them is that Query 10 has

to return all the columns for all the rows of the table while Query 9 has two restrictive clauses and

it has to return all the columns but not for all the rows and this is a more expensive operation.

The queries are simple to implement to reduce the computation required to perform them and

to give more importance to the readings and the elements to read instead of the processing

thereof. They increase in complexity (the first ones are the simplest) and in number of necessary

read operations so the expected result is to have a longer time from one query to the next.

6.2. Evaluation implementation

A computer with a specific hardware and software setup has been used to perform this

evaluation. The hardware setup is an Intel Xeon CPU X650 @ 2.67 GHz (2 processors) and 24GB

of RAM and a hard disk of 1TB, 7200 rpm. The software setup is a 64-bit Operating System

Windows 7 Enterprise. The programming language is C++ and development environment used is

Visual Studio 2010 Professional.

The test suite for every approach consists on the average times of execution of the queries

(showed in the previous section) with different buffer sizes; each of them executed one 1000

times. The buffer size is increased by the power of 2, starting with 512 Bytes and 1048576 Bytes

(1 MB) as the maximum size.

As already said, each query is executed 1000 times for each approach. The performance of each

query is given by the average of the results of these 1000 tests. This number was chosen to have a

large enough sample and to avoid that the possible variations in the results alter the final

outcome. In relation to the buffer sizes, 512 bytes is the minimum buffer size due to the

restriction explained in the introduction of the Implementation chapter. And in order not to

consume memory capacity in an application that is permanently in main memory (SAP HANA),

the fact of reserving some of it for cold data functions impacts the performance as it cannot take

advantage of all the memory available, so the less space required by the functions, the better.

Hence, the use of different buffer configurations to identify which is the optimal point between

performance and this memory consumption with the buffer sizes.

The system followed to evaluate each of these solutions consists of an advantages and

disadvantages section that will be confirmed in another section with the tests results and charts,

measuring the performance of each solution. The charts that will be included will be

representative cases to evaluate the approach, as explained in chapter 6 in section 6.1: Evaluation

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 52

Design. These charts are comparison between Query 1 and Query 2, comparison between Queries

1, 3 and 8 and comparison between Query 9 and Query 10.

The first chart will show the comparison between the first two queries, Query 1 and Query 2.

Both queries are projections of the column name and the column age, respectively. This means to

return all the values of the column name and the column age.

Queries 3, 8 and 1 will be the second chat. They have the same projection attribute but Query 8

has an additional selection clause, which causes a more restrictive result. Query 8 was selected to

compare its performance with the performance of Query 3, to show the difference performance

with more selection clauses in the query. Query 1 is also included in the chart to observe the

difference of time of a query without the selection clause but the same projection clause.

In contrast to the rest of the queries, Queries 9 and 10 are full scans of the table, but these two

queries have also been chosen to test the performance. The difference between them is that

Query 10 has to return all the columns for all the rows of the table while Query 9 has two

restrictive clauses and it has to return all the columns but not for all the rows and this is a more

expensive operation.

Unexpected results will be presented too. Further on, there will be a comparison between

approaches and one of them will be chosen as the best one for the purpose of the project.

The expected result for every query is a curve where the maximum time value will be in the

512 bytes buffer size, while the minimum time value will be in the 1048576 bytes buffer size.

NOTE: Not all the queries that have been tested are graphically shown in this chapter. The rest of

the queries are shown in the Graphics Appendix with its own analysis an explanation for

completeness reasons.

The next sections present the results of each approach and its own analysis. The last section of

this chapter presents de discussion and contrast or comparison of all the approaches.

6.3. Approach 1: Column Store

This section consists of the supposed advantages and disadvantages of the Column Store

approach and its test and evaluation. In this last sub-section the pros and cons of the

approach will be confirmed along with the unexpected results.

6.3.1. Advantages and disadvantages

One of the obvious advantages of this approach is that only one binary file needs to

be created per column and since there is no compression, there is only need of reading

the column itself, no decode is required, only to read the values of the column.

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 53

With the design of the algorithm the response times of the queries are expected to

be faster since there is no compression. In order to retrieve a column, it only has to be

read and no decoding process is necessary. But since the CPU is designed to perform

operations on numbers not on characters this could be also a disadvantage. The

hardware and the CPU in particular, are more tuned to work with numbers than to

work with characters.

When dealing with a data model that does not use compression in the file

representation, there are two main disadvantages: files are larger on disk because all

elements must be present with the same representation, in the same quantity and

order and as a side effect, dealing with the raw representation of data, strings of

characters, becomes cumbersome compared with the usage of integers as mentioned

before about the hardware and CPUs design.

If a search has to be performed on the column to find a concrete value or the

positions where a value is stored, another disadvantage arises because there is not a

sorted dictionary of the different values of the column, where a search algorithm, as the

binary search method, can be applied to. When retrieving a value of a column, the

average time for the lookup process is O(n), which means a full scan through the

column and this adversely affects the performance.

6.3.2. Results and Evaluation

The following table, Table 3, shows the obtained results of the first approach

running the test suite detailed on the beginning of this chapter with the use cases

showed.

The first column of the table represents the buffer size used in each test and the first

row represents the queries. The last row of the table is the average time for each query

with all the buffer sizes. Each cell of time is the average from the 1000 tests executed

for each buffer size. For ease of reading the legend of the queries is included again

below the table.

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 54

Table 3: Test results in seconds of Approach 1

BUFFER-
SIZE

QUERY 1 QUERY 2 QUERY 3 QUERY 4 QUERY 5 QUERY 6 QUERY 7 QUERY 8 QUERY 9 QUERY
10

512 15,88411 2,070758 18,29083 19,01149 14,15534 8,890834 8,600166 20,85332 53,23201 48,14598

1024 6,314296 0,947796 6,92179 6,287686 3,25403 2,68004 3,33858 8,354936 19,67373 15,24396

2048 2,458011 0,52664 2,525592 2,909549 1,943017 1,514178 1,501533 3,278412 8,516658 8,327812

4096 1,524178 0,379651 2,721006 2,167867 1,533224 1,162605 1,595058 3,381247 6,383748 6,112135

8192 1,228236 0,281473 2,258852 1,874396 1,201054 0,9056 1,402479 3,058193 4,624783 5,435573

16384 1,05476 0,290194 1,479477 1,675923 1,07949 0,85424 0,95571 2,716522 4,664581 4,577379

32768 1,001261 0,241654 1,361605 1,575289 0,883566 0,712553 0,611009 1,707528 3,972928 3,825141

65536 0,625099 0,166471 0,753698 0,926592 0,625043 0,503016 0,441067 1,003077 2,661765 2,637225

131072 0,469847 0,119585 0,548246 0,67185 0,446036 0,35346 0,279252 0,735778 1,921701 1,920491

262144 0,356084 0,083878 0,375535 0,471778 0,329274 0,255602 0,201629 0,517685 1,439237 1,534103

524288 0,318697 0,09022 0,330827 0,388924 0,258891 0,233721 0,182124 0,434861 1,071454 1,269056

1048576 0,308109 0,089687 0,327138 0,364709 0,244077 0,229286 0,170154 0,427777 1,054032 1,268848

AVERAGE 2,725224 0,440667 3,241216 3,193882 2,162753 1,524443 1,6311563 4,005778 8,934719 8,358142

Table 4: Query Legend

The first chart is shown in Figure 15. It makes sense that if the column is not

compressed in any way, the application only has to read the column from the binary file

in chunks and there is no need to decompress or decode the data as in the second

approach (Column Store with index and dictionary). The chunk of file read has to be

processed only to get the strings.

SELECT name FROM table QUERY 1

SELECT age FROM table QUERY 2

SELECT name WHERE age = "16" QUERY 3

SELECT name WHERE department = "Human Resources" QUERY 4

SELECT department WHERE city = "Walldorf" QUERY 5

SELECT age WHERE department = "Human Resources" QUERY 6

SELECT salary WHERE car = "BMW" QUERY 7

SELECT name WHERE age="16" AND city="Walldorf" QUERY 8

SELECT * WHERE age="16" AND city="Walldorf" QUERY 9

SELECT * FROM table QUERY 10

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 55

Figure 15: Comparison between Query 1 and Query 2

Query 1 has a sharp descent line from 512 Bytes to 1024 Bytes, meaning that the

number of necessary readings to read the entire file is drastically reduced since the

double amount of buffer allows the reading of strings in a single read operation, not so

in Query 2 with a buffer size of 1024 Bytes.

Query 1 takes much longer than Query 2 and between them there is a high

difference of time with the smallest buffer sizes. More strings of 2 bytes length (column

age) than strings of 22 bytes length (column name) can be read with a single read

operation; therefore, the time of the query is reduced.

In summary, for small buffer sizes, more read operations are needed in order to

retrieve the full column from the file on disk. Moreover if the strings are long as it

occurs with the column name.

One of the advantages of the design is proved here: the simplicity of the query

operations, since there is no compression, there is only need of reading the column

itself. And also a disadvantage is proved: difficulty to manage the strings since there is

no compression and the time that this entails causing a bad performance time.

NOTE: An important thing to take into account in this last chart in Figure 15 is the

scale. Both curves have the same shape, but due to the scale it cannot be appreciated.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576

T
IM

E
 (

se
co

n
d

s)

BUFFERSIZE

Comparison Q1/Q2 QUERY 1

QUERY 2

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 56

It is also interesting to appreciate the difference between Query 3, Query 8 and

Query 1, shown in Figure 16.

Figure 16: Comparison between Query 3 and Query 8

Query 3 is a projection with a selection, where all the values of the name column

that fulfil the condition of having an age of 16, must be returned. This entire operation

take more time than a simple projection since the age column has to be read completely

in order to find the row indexes where the value 16 is contained and then read the

complete name column to get the values that fulfil the condition described by the

projection.

The performance result has a fast decrease with little buffer sizes due to the smaller

number of necessary input operations to read the entire file from disk and return their

values. The higher decrease occurs with a buffer size of 1024 bytes where the time

decreases from about 19 seconds to 7 seconds.

As the graphic shows, there is not so much difference between Query 3 and Query 8,

although one of them has one selection clause and the other has two selection clauses.

Both queries take very similar time in all configurations of buffer size, where Query 8

takes, in average, a little more time.

This extra time is consistent with the increased computation and reading needed to

process the second conditions in the selection clause. The difference on the time

measurement for each buffer size is the result of the execution of two added tasks,

reading and processing the column for the extra selection clause, where the reading

task takes up for the majority of the added computation time.

0

2

4

6

8

10

12

14

16

18

20

22

512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576

T
IM

E
 (

se
co

n
d

s)

BUFFERSIZE

Comparison Q1/Q3/Q8
QUERY 3

QUERY 8

QUERY 1

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 57

As the buffer size increases the time needed to read the file decreases with the

number of reads needed. The computation time for the extra condition is constant

through all the runs but its impact on the overall time is small as limited by the row

selection done when processing all the previous conditions in the selection clause, in

this case, just one.

The next chart in Figure 17 shows the comparison between Query 9 and Query 10.

Both queries are a full scan of the table but Query 9 has two selection clauses.

Figure 17: Comparison between Query 9 and Query 10

Query 9 shows a longer time comparing to Query 10 for little buffer sizes, this is due

to the selection clauses of the query. It takes more time to make the selection for the

first “where” clause which means to read the whole column string by string to lookup

for the first value (age = 16) and with the resultant values, acting as a previous filter,

lookup for the second value (city = Walldorf) and then return all the values for the

projection column that fulfil all the two conditions than just return all the values for all

columns.

An interesting thing to mention is marked in red circle in Figure 17. With an 8192

bytes buffer size is the only configuration where Query 10 takes more time than Query

9 for all the tests. These tests were executed two times to ensure that the result was

correct. The measurements are done with the average of many tests to have into

account all the possible variations of them and do not affect the actual outcome too, but

in this precise case should not occur. At this point, the results go against the

assumptions but, we believe that it is not important since it could happen because of

the machine load, etc.

0

10

20

30

40

50

60

512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576

T
IM

E
 (

se
co

n
d

s)

BUFFERSIZE

Comparison Q9/Q10
QUERY 9
QUERY 10

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 58

6.4. Approach 2: Column Store with compression

6.4.1. Advantages and disadvantages

One of the obvious advantages of this approach is the compression obtained using

indexes and dictionaries instead of using any other kind of compression; the binary

files will take up less space in disk due to the index structure. The main effect of this

kind of encoding or compression is that long values, such as texts or long strings, are

represented as short integer values. The benefits come to effect with values appearing

more than once in a column, the more often identical values appear, the greater the

benefits.

With this data model, when searching a value in the column it has to be searched in a

sorted dictionary where the lookup process speeds up from O(n), which means a full

scan through the dictionary, take on average O(log(n)), because values in the dictionary

can be found using binary search. Hence, using dictionaries is also an advantage.

The optimization of sorted dictionaries comes at a cost: every time a new value is

added to the dictionary which does not belong at the end of the sorted sequence of the

existing values, the dictionary has to be re-sorted. Even the insertion of only one value

somewhere except the end of the dictionary causes a re-sorting, since the position of

already present values behind the inserted value has to be moved on position up. While

sorting the dictionary is not that costly, updating the corresponding index is. But the

advantage remains in this design because there are no new insertions in the table

because is cold data, neither the dictionary, nor the index needs resorting, which is a

very expensive operation.

One of the key advantages of using this compression scheme, apart from reducing

the memory footprint, is that many of the repetitive operations are now done using

indexes, this means numbers. The hardware, and the CPU in particular, is more tuned

to work with numbers than to work with characters, by indexing the contents and

referring to the different values using an integer placeholder an implicit speedup is

achieved on every operation.

The disadvantage of this approach could be the materialization of the encoded

values of the indexes but the impact is rather small. Generally, the result set is small

compared to the total table size, so the lookup of all other selected columns to

materialize the query result is not that expensive.

With large dictionaries that contain many different values, binary search can

negatively impact the overall performance looking up some value. This is a

disadvantage of this design. In addition, the design to read the dictionary is inefficient

because the dictionary has to be completely in memory in order to work with it. In case

of a large dictionary, it will take up a lot of memory.

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 59

One additional more disadvantage of this method is the requirement to have two

binary files per column. If the table has a high number of columns, there will be a high

number of files to manage.

6.4.2. Results and Evaluation

The following table shows the obtained results of the first approach running the test

suite detailed on the beginning of this chapter with the use cases showed in the first

section of this chapter, section 6.1.

The first column of the table represents the buffer size used in each test and the first

row represents the queries. The last row of the table is the average time for each query

with all the buffer sizes. Each cell of time is the average from the 1000 tests executed

for each buffer size. For ease of reading the legend of the queries is included again

below the table.

Table 5: Test results in seconds of Approach 2

BUFFER-
SIZE

QUERY 1 QUERY 2 QUERY 3 QUERY 4 QUERY 5 QUERY 6 QUERY 7 QUERY 8 QUERY 9 QUERY
10

512 1,071061 0,783271 1,72485 1,850089 1,750618 1,698466 1,589399 2,441837 8,050246 7,540087

1024 0,935173 0,446217 1,245572 0,951614 0,89328 0,864064 0,932733 1,641914 5,067397 6,461451

2048 0,518768 0,318007 0,54417 0,515546 0,497534 0,57424 0,4319 0,704631 3,418749 4,823176

4096 0,409264 0,217999 0,448162 0,374434 0,385321 0,337661 0,367374 0,560978 2,69625 3,509498

8192 0,275989 0,168048 0,307435 0,292218 0,298216 0,276833 0,258735 0,40267 1,203444 1,794673

16384 0,243702 0,15116 0,287577 0,295286 0,285859 0,26223 0,243372 0,380178 1,130282 1,65248

32768 0,19978 0,116584 0,231369 0,265227 0,230255 0,212257 0,195188 0,30951 0,903614 1,305517

65536 0,164631 0,083938 0,162828 0,167308 0,16434 0,150071 0,127556 0,21148 0,691004 0,983414

131072 0,14646 0,061082 0,118296 0,127387 0,123026 0,108814 0,123191 0,160551 0,44922 0,797713

262144 0,135921 0,046207 0,0854 0,103 0,093 0,0834 0,1 0,125 0,3223 0,6911

524288 0,12932 0,045061 0,07519 0,095179 0,092145 0,070155 0,090652 0,115546 0,30951 0,64498

1048576 0,124167 0,043775 0,0621965 0,083153 0,090309 0,075409 0,066097 0,073309 0,127846 0,271343

AVERAGE 0,362853 0,221668 0,441087 0,426703 0,408659 0,3928 0,377791 0,593993 2,030822 2,539619

Table 6: Query Legend

SELECT name FROM table QUERY 1

SELECT age FROM table QUERY 2

SELECT name WHERE age = "16" QUERY 3

SELECT name WHERE department = "Human Resources" QUERY 4

SELECT department WHERE city = "Walldorf" QUERY 5

SELECT age WHERE department = "Human Resources" QUERY 6

SELECT salary WHERE car = "BMW" QUERY 7

SELECT name WHERE age="16" AND city="Walldorf" QUERY 8

SELECT * WHERE age="16" AND city="Walldorf" QUERY 9

SELECT * FROM table QUERY 10

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 60

As the query legend shows, the queries tested with the second approximation are

the same as the queries tested with the first approximation. This is obviously done in

order to compare the results obtained with all the approximations.

The first chart, Figure 18, shows the comparison between the first two queries,

Query 1 and Query 2.

Figure 18: Comparison between Query 1 and Query 2

It takes a lot of time to read the column with little buffer size: many read operations

are needed in order to read the whole index. Once the size of the buffer is 8192 bytes

the number of necessary readings cannot decrease no more, hence the improvements

obtained increasing the buffer sizes are only reflected in a little portion of the total

time.

Times of Query 1 are higher since it has to read all the names and build the

materialization having strings with an average of 22 characters (22 bytes); however

Query 2 reads all the ages having only strings of 2 characters (2 bytes) and a smaller

dictionary. Hence, the query operation is the same but the length of the data produces

the timing difference.

Certainly the two curves almost have the same shape, as expected, having the same

interval of time difference within the curve; but there is a big difference between the

times with 1024 Bytes buffer (marked with a red circle in the graphic).

0

0,2

0,4

0,6

0,8

1

1,2

512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576

T
IM

E
 (

se
co

n
d

s)

BUFFERSIZE

Comparison between Q1/Q2
QUERY 1

QUERY 2

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 61

Query 2 has a sharp descent line from 512 Bytes to 1024 Bytes, meaning that the

number of necessary readings to read the entire index file is drastically reduced since

the double amount of buffer allows the reading of more index elements in a single read

operation, not so in Query 1 with a buffer size of 1024 Bytes.

The previous explanation is valid once Query 1 has a buffer size of 2048 bytes,

which is when its time is reduced. Since the number of index elements read is the same

for all buffer sizes, this should occur with the same buffer size as Query 2 (1024 bytes)

but it does not. The difference could be in the materialization of the result: it takes

more time to materialize longer strings (column name from Query 1) than shorter

strings (column age from Query 2).

These tests were executed two times to ensure that the result was correct. The

measurements are done with the average of many tests to have into account all the

possible variations of them and do not affect the actual outcome too, but in this precise

case it does not occur.

The time of the materialization is also a factor to take into account. It is more

expensive to read and materialize strings with an average of 22 bytes than the

materialization of strings of 2 bytes.

As a next performance comparison, two queries with the same projection clause but

different number of conditions in the selection clause are compared. Query 1 is also

included in the graph to observe the difference of time of a query without a selection

clause.

The expected result could be two curves (Query 3 and Query 8) that have their point

of inflexion with a buffer of 2048 bytes of buffer size since the projection query over

the column name has its point of inflexion with this buffer size. Also, another expected

result is that the query which has more conditions to fulfil would be the most longer in

time.

Query 3 is a projection over a selective query; the column age is retrieved and

materialized in order to know which of its values has age = 16. Once is known which

indexes of the table contain the value 16, only the values of the column name that match

the given indexes have to be materialized.

Query 8 is a projection over a multiple selective query; the column age is retrieved

and materialized in order to know which of its values has age = 16 and city = Walldorf.

Once is known which indexes of the table contain the value 16, only the same indexes of

the column city will be tested to know which city = Walldorf . Then, only the values of

the column name that match the given index (result of the checking of the two

conditions) have to be materialized.

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 62

Figure 19: Comparison between Query 3 and Query 8

It can be observed that Query 8 is more restrictive than Query 3. Both curves show

almost the same shape but the difference rests in the number of conditions in the

selection clause: Query 8 has to make more read operations than Query 3, since it has

two indexes to read while Query 3 only has to read one index (besides the rest of

operations).

And as it was expected, the point of inflexion is on 2048 bytes. With this buffer size

the number of needed readings cannot decrease no more, henceforth the improvement

of having a bigger size of buffer to put the data and read it, is not doing much effect in

the overall time.

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

2,2

2,4

2,6

512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576

T
IM

E
 (

se
co

n
d

s)

BUFFERSIZE

Comparison between Q1/Q3/Q8
QUERY 3

QUERY 8

QUERY 1

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 63

The next chart shows the comparison between Query 9 and Query 10; both of them

retrieve and materialize all the columns but the first query uses the projection of the

rows that comply with the selection clause.

Figure 20: Comparison between Query 9 and Query 10

The second query takes more time than first query due to the significant increase in

memory petitions (one for each element in each column that is part of the final result).

Each memory allocation takes time and is the huge number of them that counts for the

computing time difference.

An unexpected result is marked with a red circle in the graph. Query 9 has a longer

first time than Query 10. These tests were executed two times to ensure that the result

was correct. The measurements are done with the average of many tests to have into

account all the possible variations of them and do not affect the actual outcome too, but

in this precise case it does not occur.

0

1

2

3

4

5

6

7

8

9

512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576

T
IM

E
 (

se
co

n
d

s)

BUFFERSIZE

Comparison between Q9/Q10
QUERY 9

QUERY 10

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 64

6.5. Approach 3: Row Store without compression

6.5.1. Advantages and disadvantages

One of the main advantages of this approach is that the data model only needs one

binary file needs to be created for the whole table. Another evident advantage is that

the performance for queries where all the row has to be retrieved, as for example full

scans, is better because the full row is already been read.

The data model designed and implemented allows skipping rows by having the

length of the complete row written preceding each row in the file. This is an advantage

because rows that are not necessary to process for certain operation can be avoided at

the cost of increasing the size of the file that leads to the needed of more read

operations.

When dealing with a data model that does not use compression in the file

representation, there are two main disadvantages: files are larger on disk because all

elements must be present with the same representation, in the same quantity and

order and as a side effect, dealing with the raw representation of data, strings of

characters, becomes cumbersome compared with the usage of integers as mentioned in

6.3.1 about the hardware and CPUs design.

Row-wise design is not optimal for full scans of one column or projections since

many read operations have to be performed and the full table has to be read, the read

operation cannot be limited to the data the query needs.

6.5.2. Results and Evaluation

The following table shows the obtained results of the third approach running the

test suite detailed in the beginning of this chapter.

The first column of the table represents the buffer size used in each test and the first

row represents the queries. Each cell of time is represented in seconds and it is the

average from the 1000 tests executed for each query. For ease of reading a legend of

the queries is included below the table. For this approach, the queries were only tested

with one buffer size, the biggest buffer size which is 1048576 bytes (1 MB) due to time

reasons.

Table 7: Test results in seconds of Approach 3

BUFFER-
SIZE

QUERY 1 QUERY 2 QUERY 3 QUERY 4 QUERY 5 QUERY 6 QUERY 7 QUERY 8 QUERY 9 QUERY
10

1048576 0,502046 0,44223 0,444136 0,467686 0,464154 0,44283 0,443668 1,283264 2,139836 4,341184

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 65

Table 8: Query Legend

No graphics are showed in this section since there are not sufficient test results to

show a curve of the performance. So the evaluation of this approach is made with the

following graphic where the total time is represented for each query with the bigger

buffer size, which is 1048576 bytes (1 MB).

Figure 21: Approach 3 performance

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

QUERY 1 QUERY 2 QUERY 3 QUERY 4 QUERY 5 QUERY 6 QUERY 7 QUERY 8 QUERY 9 QUERY 10

T
O

T
A

L
 T

IM
E

 (
se

co
n

d
s)

Row Store (Approach 3) performance
APPROACH 3

SELECT name FROM table QUERY 1

SELECT age FROM table QUERY 2

SELECT name WHERE age = "16" QUERY 3

SELECT name WHERE department = "Human Resources" QUERY 4

SELECT department WHERE city = "Walldorf" QUERY 5

SELECT age WHERE department = "Human Resources" QUERY 6

SELECT salary WHERE car = "BMW" QUERY 7

SELECT name WHERE age="16" AND city="Walldorf" QUERY 8

SELECT * WHERE age="16" AND city="Walldorf" QUERY 9

SELECT * FROM table QUERY 10

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 66

6.6. Approach 4: Partition Attributes Across (PAX)

This section consists of the advantages and disadvantages of the Partition Attributes

Across (PAX) approach and its test and evaluation. In this last sub-section the pros and cons

of the approach will be confirmed along with the unexpected results.

6.6.1. Advantages and disadvantages

The major advantage of this design is the kind of storage of the data. Each page is

composed of mini pages, each of which stores a certain number of values of a column.

Therefore, the complete row can be accessed with one read operation. Having this

design with mini pages the access to specific values is constant and fairly fast.

Another advantage is the set of pointers at the end of each mini page that point to

the end of each value and make easier the reading in case of one specific value is

needed. The same thing occurs with the pointers to the beginning of each mini page

that are contained in the header of each page; these pointers make easy the access to

one specific mini page without having to read the previous mini pages in case of

needing a specific one.

The major disadvantage of this design is the waste of space in the file. A lot of space

is wasted since the number of records that fit in one mini page is calculated from the

column with the longer strings. For example, if the column that has the longer strings is

the column name and only 4 strings fit in the mini page, the rest of the mini pages will

only contain 4 values of minor length, wasting space of these mini pages.

Another disadvantage is the process to store the data with this design, it could be

difficult and tedious and it also depends on the table (number of columns, column with

the longest strings, etc.) So this design and implementation is strongly linked with the

data contained on the table.

6.6.2. Results and Evaluation

The following table shows the obtained results of the fourth approach running the

test suite detailed in the beginning of this chapter. As in the previous approaches, the

first column of the table represents the buffer size used in each test and the first row

represents the queries. For ease of reading a legend of the queries is included below the

table.

Table 9: Results test Approach 4

BUFFER-
SIZE

QUERY 1 QUERY 2 QUERY 3 QUERY 4 QUERY 5 QUERY 6 QUERY 7 QUERY 8 QUERY 9 QUERY 10

524288 27,43313 27,01344 26,895939 27,02318 26,86866 26,99713 26,8466 55,13187 208,49220 309,12881

1048576 0,98027 0,876418 0,877144 0,893608 0,897592 0,88717 0,878904 2,370254 14,105144 16,067754

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 67

Table 10: Query Legend

But in this approach only two buffer sizes were tested due to time reasons, as it can

be observed in Table 9.

No graphics are showed in this section since there are not sufficient test results to

show a curve of the performance. So the evaluation of this approach is made with the

following chart where the total time is represented for each query with the bigger

buffer size, which is 1048576 bytes (1 MB).

Figure 22: Approach 4 performance

0

2

4

6

8

10

12

14

QUERY 1 QUERY 2 QUERY 3 QUERY 4 QUERY 5 QUERY 6 QUERY 7 QUERY 8 QUERY 9 QUERY 10

T
O

T
A

L
 T

IM
E

 (
se

co
n

d
s)

Approach 4 performance
APPROACH 4

SELECT name FROM table QUERY 1

SELECT age FROM table QUERY 2

SELECT name WHERE age = "16" QUERY 3

SELECT name WHERE department = "Human Resources" QUERY 4

SELECT department WHERE city = "Walldorf" QUERY 5

SELECT age WHERE department = "Human Resources" QUERY 6

SELECT salary WHERE car = "BMW" QUERY 7

SELECT name WHERE age="16" AND city="Walldorf" QUERY 8

SELECT * WHERE age="16" AND city="Walldorf" QUERY 9

SELECT * FROM table QUERY 10

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 68

Almost all the queries have a performance of 1 second but the last three queries

have a higher performance time.

The high time on Query 8 is due to the two conditions that the program has to check.

This is done as explained in the design and implementation chapters: the first condition

is checked and if it is true, the second condition is checked and so on. Since in this

approach the data is divided in pages and mini pages it has the advantage that with one

read operation, one page is read, so all the columns for n records are available in

memory. The columns of the projection can be checked with only one read operation

but check two or more conditions has a penalty time on the overall time, therefore, the

higher time of Query 8.

The long time on Query 9 and Query 10 is due to the operation itself among other

factors. Query 10 is a full scan of the table so all the rows for all the columns have to be

returned (row-wise). If Query 1 is taken as an example where all the rows must be

returned for one column (projection query) and it takes 1 second, to return all the rows

for all the columns should take (1 second * number of columns); that is 8 seconds. Some

seconds have to be added to these 8 seconds taking into account that some columns

have longer strings than others and reading them takes much longer. And finally it

takes time to read each page, then all the values of each mini page and place each read

string in its corresponding row and column in the result. So at the end the result time of

this query can be 11 seconds as showed in the graph of results.

Query 9 has to return all the columns for the rows that fulfil two conditions and this

operation takes more time than Query 10 since it has to check the conditions and then

return the values row-wise.

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 69

6.7. Discussion

This section consists on the comparison between the different approaches designed and

implemented. Through this analysis, it can be prove which the best approach for the

workload chosen is, how the behaviour of each approach is and how the performance is in

general, etc.

The first graph shows the comparison between Approach 1: Column Store and Approach

2: Column Store with compression for all the queries quoted in the Evaluation Design section

and used to test the performance.

Figure 23: Comparison between Approach 1 and Approach 2, average time

As it can be clearly seen, the second approach shows better average time for all queries

and therefore a better performance. Dictionary and index encoding of the second approach

shows a better performance: having an index in a file allows reading a greater amount of data

since the elements are integers and not characters, the time to translate these integers to

strings of characters has a minimum influence in the overall time.

The compression or encoding technique also produces a smaller number of read

operations, i.e. the number of read operations required to read the entire file is much smaller

if the file to read is a file with an index (compression) than a file with strings of characters (no

compression).

0

1

2

3

4

5

6

7

8

9

10

QUERY 1 QUERY 2 QUERY 3 QUERY 4 QUERY 5 QUERY 6 QUERY 7 QUERY 8 QUERY 9 QUERY 10

A
V

E
R

A
G

E
 T

IM
E

 (
se

co
n

d
s)

Comparison Approach 1 and Approach 2 APPROACH 1

APPROACH 2

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 70

The sorted dictionary encoding is also a benefit: retrieving a value from a sorted

dictionary speeds up the lookup process from O(n), which means a full scan through the

dictionary, to O(log(n)), because values in the dictionary can be found using the binary search

method; while not having a dictionary requires a full scan operation through the complete

column or file to find the value searched for.

The next graph shows the comparison between Approach 3: Row Store and Approach 4:

PAX for all the queries quoted in the Evaluation Design section and used to test the

performance. The times showed in this graph are the resultants of using the maximum buffer

size, i.e. 1MB (1048576 bytes).

Figure 24: Comparison between Approach 3 and Approach 4, 1 MB buffer size

In this case Approach 3: Row Store has a better performance than Approach 4: PAX, but

there is not a big time difference in the performance between the two approaches as in the

previous comparison (Approach 1 vs. Approach 2). For all the queries except the last two,

times in Approach 4 are multiplied by a factor of two compared to the times in Approach 3.

The main reason for the better performance on Approach 3 is that the algorithm performs a

smaller number of read operations since the file where the data is stored does not waste

space.

There is also a big difference between the performance time in Query 9 and Query 10.

These queries perform full scans of the table so it is logical to have a better performance if the

data is stored in rows than if the data is stored in columns. PAX store the data in pages and

data from a same column in mini pages and the number of items per mini page is given by the

column that has the longest strings, so a lot of space is wasted in the rest of mini pages of the

0

2

4

6

8

10

12

14

QUERY 1 QUERY 2 QUERY 3 QUERY 4 QUERY 5 QUERY 6 QUERY 7 QUERY 8 QUERY 9 QUERY 10

A
V

E
R

A
G

E
 T

IM
E

 (
se

co
n

d
s)

Comparison Approach 3 and Approach 4 APPROACH 3

APPROACH 4

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 71

same page. Read operations to retrieve all rows from the table, where the data is stored in

this way, are very expensive.

The last graph is a comparison between all the approaches: Column Store, Column Store

with compression, Row Store and PAX.

Figure 25: Comparison between all approaches, 1 MB buffer size

With a first look at the chart, the best approach is Approach 2: Column Store with

compression. Its performance is superior in all queries, showing a difference of time with the

rest of solutions. The evaluation of this chart is made in two parts: full scan queries over one

column and full scan queries over the table:

- Full scan queries over one column: these are the first eight queries of the use cases.

These queries are projections of one column and some of them have additional clauses

that are restrictive and therefore, take more time to execute as it has been showed in this

Evaluation chapter. If the queries are projections of one column, an approach based on

the column store principle will show a better performance than an approach based on

the row store approach. Hence, Approach 3: Row Store is not well suited for the first

0

1

2

3

4

5

6

7

8

9

10

11

12

13

QUERY 1 QUERY 2 QUERY 3 QUERY 4 QUERY 5 QUERY 6 QUERY 7 QUERY 8 QUERY 9 QUERY 10

A
V

E
R

A
G

E
 T

IM
E

 (
se

co
n

d
s)

Comparison between all approaches
APPROACH 1
APPROACH 2
APPROACH 3
APPROACH 4

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 72

eight queries. Approach 1 is neither well suited for these kind of queries since Approach

2 has a better performance with the same data model organization.

- Full scan queries over the table: these are covered and test in the queries of the last two

use cases. These queries have to retrieve all the values in the columns for each row of the

table and a data model organization based on the row store approach will performance

better than other type of organization. But results contradict this hypothesis: Column

Store with compression approach shows better performance than Row Store approach.

An important thing to take into account is that the final result of these two queries is

returned in a different way: in the Column Store with compression approach the table is

returned with a column format, i.e. the table is a set of columns; while in the Row Store

approach the table is returned with in row format. The result is the same but if the table

has to be returned in rows, the second approach would need an additional step to

transform or transpose the columns into rows. And this takes time but the estimation is

that although this transposition algorithm has an impact in the performance it would not

be large enough to meet the time resulting in Approach 3: Row Store provided that the

workload is the same as used in this thesis. If the workload would be different, as for

example, a major number of columns the impact would be larger and the performance

could be the same for both approaches or even Approach 3 could be better than

Approach 2. Approach 4: PAX shows large times for this kind of queries and, as it has

been explained before, is due to the waste of space in the file and the high number of

read operations to be performed.

For all the explained above, using the workload and queries of the Evaluation Design

section, the best approach is Approach 2: Column Store with compression.

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 73

7. Conclusions and future work

Data in large volumes has to be handled by today’s DBMS and it is kept in secondary storage,

i.e. disk, but if the data would be stored in main memory, which is the primary persistence for

data, this will lead to a different organization of data that only works if data is always available in

memory. [1]

With this objective of a database that works in the primary persistence, SAP has developed a

new relational DBMS: SAP HANA. It is an implementation of in-memory database technology

designed for enterprise computing. And it is necessary to separate the data into cold data and hot

data as an approach to handle the increasing, but still limited capacity of main memory efficiently

while keeping all data available for reporting needs. Data in a database has its own life cycle and it

can be separated into hot and cold states. The term cold data refers to data that has become

passive and can be stored in disk. This data will not be changed any longer and will be accessed

less often. [1]

We are working with a pure main memory database where data is stored column-wise. But of

course, the data is stored on disk as well for durability reasons. Thus, this thesis is about to

develop some mechanisms of streaming cold data in/out disk without using any kind of

intermediate buffering that make the data stream as real as possible, directly from disk.

Performance of these mechanisms is also tested and evaluated.

Four different mechanisms/approaches were designed, implemented and evaluated to store a

table of cold data on disk:

Approach 1: Column Store. Data organization is done in a columnar way without any kind of

compression. All the columns will be stored on disk as they are in the table. One binary file per

column is created.

Approach 2: Column Store with compression. Data organization is done in a columnar way

using some compression mechanisms: index and dictionary. Two binary files per column are

created, one file is the index and the other is the dictionary.

Approach 3: Row Store. Row-wise organization. All the rows will be stored on disk as they are

in the table. One binary file for the whole table is created.

Approach 4: PAX (Partition Attributes Across) version modified. Values for the same column

are grouped together in mini pages; one page consists on many mini pages as many columns the

table has.

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 74

Evaluating the performance and comparing of all these techniques, it can be conclude that Row

Store approach is not well suited for operations where all the values or some values of the column

have to be retrieved since its data model is row-wise organized and many read operations are

necessary. Modified version of PAX also produces a poor performance with these types of

operations because a lot of space is wasted in the binary file when there is a big difference in the

length of the elements stored (~22 characters). Column Store approach generates good

performance because the whole column can be read with less read operations than the previous

approaches; however when the column has larger length values, as mentioned above, many read

operations are necessary. Column Store with compression has the best performance comparing

with the rest of approaches. Using the compression technique of index and dictionary makes the

number of read operations, required to read a column, much lower, since it must read numbers of

fixed length and not strings of characters of variable length. The process of “translation” to obtain

the dictionary values that are equivalent to the index numbers is not expensive and does not

affect the overall performance.

Compression techniques produce good results; hence another kind of indexes could be used as

future work to increase the performance: inverted indexes. These indexes optimize the speed of

the query: querying in a forward index requires sequential iteration through all the elements to

verify a matching value; nevertheless, querying in an inverted index the query can be resolved by

jumping to the value id (via random access). [23]

Future work must build upon the results gathered during the evaluation of the approaches, to

complete the border cases and to improve the performance should be two very desirable goals.

When dealing with cold data, where typical operations have less impact or barely exist, such as

delete and when the necessity is to limit the solution field to this kind of data, there are some real

world examples than can be overlooked, like deleting or updating records. But some operations

get a more important role. An objective for future work is to include a bigger subset of conditions

for retrieval of data such as other operators (or, <, >), etc.

The results obtained are very dependent on the implementation of the algorithms and the data

used to test those algorithms, hence one the first steps to fulfil these goals would be to create new

data tables. These tables would have a higher number of columns, with a different distribution of

data, longer values, empty columns, etc. The best possible scenario would be to use real data from

a real application. Developed algorithms also allow multiple solutions for the same problem and

the implementation used for the evaluation of the objectives and the inclusion of data models in

each approach fulfilled a two part role: performance and simplicity. These features were

accomplished primarily by using the native implementation of the read/write libraries that

Windows provides within their operative system and the algorithms were written trying to

maintain the readability; by sacrificing this aspect, a more efficient code could be developed,

using different data structures to represent the data model that use code tuned to the needs of the

application, use dynamic templates, etc. There is also a lot of improvement that can be done when

tuning the algorithms for specific data such use compiler optimizations to gain prized CPU cycles.

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 75

The evaluation was done on a single machine with a fixed hardware and software setup.

Although this setup was powerful enough, current hardware trends dictate that is possible that

this type of labour, storing data and processing it from permanent storage, will be accomplished

with systems that use a faster, more expensive and scarcer technology as SSD technology. It

would be very beneficial to include this setup in the evaluation of future work.

There was also one limitation to the project, due to time constraints. This was to use a single

thread execution to perform the algorithms; by including the segmentation to parallel processes,

a higher performance could be achieved than by limiting it to one unique process. This also

impacts on the available resources for this computation.

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 76

8. References

[1] Hasso Plattner, Alexander Zeier. In-Memory Data Management: Technology and Applications.
Springer, 2012.

[2] Wikipedia. SAP HANA (online): http://en.wikipedia.org/wiki/SAP_HANA

[3]Wikipedia. Rock’s law (online): http://en.wikipedia.org/wiki/Rock%27s_law

[4] Peter A. Boncz, Stefan Manegold and Martin L. Kersten. Database architecture evolution: Mammals
flourished long before dinosaurs became extinct. In PVLDB, 2009.

[5] M. Stonebraker, D.J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira, E. Lau, A. Lin, S. R. Madden,
E. J. O’Neil, P. E. O’Neil, A. Rasin, N. Tran and S. B. Zdonik. C-Store: A Column-Oriented DBMS. VLDB,
2005 (online): http://people.csail.mit.edu/tdanford/6830papers/stonebraker-cstore.pdf

[6] Sybase. Product Sybase IQ (online): http://www.sybase.com/products/datawarehousing/sybaseiq

[7] W. H. Inmon, "What is a Data Warehouse?" Prism Tech Topic, Vol. 1, No. 1, 1995.

[8] Clark D. French. One Size Fits All Database Architectures. Do Not Work for DSS. SIGMOD, 1995
(online): http://lambda.csail.mit.edu/~chet/papers/others/f/french/french95sigmod.pdf

[9] Daniel Abadi, Samuel Madden, and Miguel Ferreira. Integrating Compression and Execution in
Column-Oriented Database Systems. SIGMOD, 2006 (online):
http://db.lcs.mit.edu/projects/cstore/abadisigmod06.pdf

[10] Hasso Plattner. A Common Database Approach for OLTP and OLAP using an In-Memory Column
Database. SIGMOD, 2009 (online): http://www.sigmod09.org/images/sigmod1ktp-plattner.pdf

[11] “Definition: in-memory database.” Whatls.com, August 2012 (online):
http://whatis.techtarget.com/definition/in-memory-database

[12] Vishal Sikka, Franz Färber, Wolfgang Lehner, Sang Kyun Cha, Thomas Peh, Christof Bornhövd.
Efficient Transaction Processing in SAP HANA Database – The End of a Column Store Myth. SIGMOD,
2012.

[13] Thomas Willhalm, Nicolae Popovici, Yazan Boshmaf, Hasso Plattner, Alexander Zeier, Jan
Schaffner. SIMD-Scan: Ultra-Fast in-Memory Table Scan using on-Chip Vector Processing Units. VLDB,
2009 (online): http://www.vldb.org/pvldb/2/vldb09-327.pdf

[14] Marcus Paradies, Christian Lemke, Hasso Plattner, Wolfgang Lehner, Kai-Uwe Sattler, Alexander
Zeier, Jens Krueger. How to Juggle Columns: An Entropy-Based Approach for Table Compression.
IDEAS10, 2010.

[15] Anja Bog, Kai Sachs, Alexander Zeier, Hasso Plattner. Normallization in a Mixed OLTP and OLAP
Workload Scenario (online): http://www.dvs.tu-darmstadt.de/publications/pdf/TPCTCpaper.pdf

[16] C++ Windows function CreateFile (online): http://msdn.microsoft.com/en-
us/library/aa914735.aspx

[17] Returning values by value, reference and address. Learncpp.com (online):
http://www.learncpp.com/cpp-tutorial/74a-returning-values-by-value-reference-and-address/

[18] C++ Windows function ReadFile (online): http://msdn.microsoft.com/en-
us/library/windows/desktop/aa365467(v=vs.85).aspx

http://en.wikipedia.org/wiki/SAP_HANA
http://en.wikipedia.org/wiki/Rock%27s_law
http://people.csail.mit.edu/tdanford/6830papers/stonebraker-cstore.pdf
http://www.sybase.com/products/datawarehousing/sybaseiq
http://lambda.csail.mit.edu/~chet/papers/others/f/french/french95sigmod.pdf
http://db.lcs.mit.edu/projects/cstore/abadisigmod06.pdf
http://www.sigmod09.org/images/sigmod1ktp-plattner.pdf
http://whatis.techtarget.com/definition/in-memory-database
http://www.vldb.org/pvldb/2/vldb09-327.pdf
http://www.dvs.tu-darmstadt.de/publications/pdf/TPCTCpaper.pdf
http://msdn.microsoft.com/en-us/library/aa914735.aspx
http://msdn.microsoft.com/en-us/library/aa914735.aspx
http://www.learncpp.com/cpp-tutorial/74a-returning-values-by-value-reference-and-address/
http://msdn.microsoft.com/en-us/library/windows/desktop/aa365467(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa365467(v=vs.85).aspx

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 77

[19] File Buffering in Windows (online): http://msdn.microsoft.com/en-
us/library/windows/desktop/cc644950(v=vs.85).aspx

[20] Boost library for timers (online):
http://www.boost.org/doc/libs/1_51_0/libs/timer/doc/index.html

[21] R. Ramakrishnan and J. Gehrke. Database Management Systems. McGraw-Hill, 2000.

[22] Anastassia Ailamaki, David J. DeWitt, Mark D. Hill, Marios Skounakis. Weaving Relations for Cache
Performance. VLDB, 2001 (online): http://www.vldb.org/conf/2001/P169.pdf

[23] G. P. Copeland and S. F. Khoshafian. A Decomposition Storage Model. SIGMOD, 1985.

[24] Wikipedia. Inverted indexes (online): http://en.wikipedia.org/wiki/Inverted_index

http://msdn.microsoft.com/en-us/library/windows/desktop/cc644950(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/cc644950(v=vs.85).aspx
http://www.boost.org/doc/libs/1_51_0/libs/timer/doc/index.html
http://www.vldb.org/conf/2001/P169.pdf
http://en.wikipedia.org/wiki/Inverted_index

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 78

9. Graphics Appendix

This will present more results obtained for each implemented approach due to completeness

reasons and that have not been showed in the Evaluation chapter.

9.1.Approach 1: Column Store graphs

This section contains evaluation graphics for the Column Store approach.

The first two charts show the first two queries individually and that were explained in the

Evaluation chapter making a comparison between them.

Figure 26: Query 1 performance

Figure 27: Query 2 performance

0

5

10

15

20

512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576

T
IM

E
 (

se
co

n
d

s)

BUFFERSIZE

SELECT name FROM table

0

0,5

1

1,5

2

2,5

512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288

T
IM

E
 (

se
co

n
d

s)

BUFFERSIZE

SELECT age FROM table

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 79

The next graph shows the performance of Query 3. This query is a projection with a

selection, where all the values of the column name that fulfil the condition of having an

age of 16, must be returned. This entire operation take more time than a simple

projection since the age column has to be read completely in order to find the row

indexes where the value 16 is contained and then read the complete name column to

get the values that fulfil the condition described by the projection.

Figure 28: Query 3 performance

Next query is also a projection over a selective query; the column name is retrieved and

materialized in order to know which of its values has department = Human Resources.

An obvious result of this query compared to the last one, it could be a longer time with

every buffer size given that it is more expensive to materialize the strings of the department

column than the strings of the age column. Following, the graphic for the fourth query is

showed.

Figure 29: Query 4 performance

0

2

4

6

8

10

12

14

16

18

20

512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576

T
IM

E
 (

se
co

n
d

s)

BUFFERSIZE

SELECT name WHERE age = "16"

0

5

10

15

20

512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576

T
IM

E
 (

se
co

n
d

s)

BUFFERSIZE

SELECT name WHERE department = "Human Resources"

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 80

It can be perceived that the general trend is that the time it takes to execute the queries is

greatly reduced once the read buffer size is 1024 bytes. That is, the time it takes to read and

process the data chunks decreases significantly once the buffer size is 1024 bytes. The

number of necessary readings cannot decrease anymore; hence the improvements obtained

increasing the buffer sizes are only reflected in a little portion of the total time. This trend

appears in all the next queries.

Figure 30: Query 5 performance

Figure 31: Query 6 performance

Figure 32: Query 7 performance

0

5

10

15

512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576

T
IM

E
 (

se
co

n
d

s)

BUFFERSIZE

SELECT department WHERE city = "Walldorf"

0

2

4

6

8

10

512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576

T
IM

E
 (

se
co

n
d

s)

BUFFERSIZE

SELECT age WHERE department = "Human Resources"

0

2

4

6

8

10

512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576

T
IM

E
 (

se
co

n
d

s)

BUFFERSIZE

SELECT salary WHERE car = "BMW"

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 81

Another query graphic shows here one more projection with a selection clause but this

time, the selection clause is composed by two different selections. As the other queries where

a selection and a projection were performed, its time decreases so fast with the first buffer

sizes while the rest of the buffer sizes almost do not make any difference in the final time

result.

Having two conditions in the “where” clause would imply more time and worse

performance since both conditions has to be tested and then produce a common result where

the column name fulfil both conditions.

Figure 33: Query 8 performance

The next graphic shows a full scan of the table with a double selection clause. This means

that all the columns of the table have to be retrieved and materialized provided that their

values fulfil both conditions.

Evidently, having two conditions the execution of the query will take more time than a

regular full scan of the table. If the previous results of selections are observed, the expected

result for this query could be a slope curve from 512 bytes to 2048 or 4096 bytes with a

minor decrease for the next buffer sizes.

Figure 34: Query 9 performance

0

5

10

15

20

25

512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576

T
IM

E
 (

se
co

n
d

s)

BUFFERSIZE

SELECT name WHERE age="16" AND city="Walldorf"

0

10

20

30

40

50

60

512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576

T
IM

E
 (

se
co

n
d

s)

BUFFERSIZE

SELECT * WHERE age="16" AND city="Walldorf"

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 82

The last query tested is the table full scan where all the columns are retrieved and

materialized.

Figure 35: Query 10 performance

0

10

20

30

40

50

60

512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576

T
IM

E
 (

se
co

n
d

s)

BUFFERSIZE

SELECT * FROM table

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 83

9.2.Approach 2: Column Store with compression graphs

This section contains evaluation graphics for the Column Store with compression

approach.

The first two graphs show the first two queries individually and that were explained in the

Evaluation chapter making a comparison between them.

Figure 36: Query 1 performance

Figure 37: Query 2 performance

The next graph shows the performance of Query 3. This query is a projection with a

selection, where all the values of the column name that fulfil the condition of having an

age of 16, must be returned. This entire operation take more time than a simple

projection since the age column has to be read completely in order to find the row

indexes where the value 16 is contained and then read the complete name column to

get the values that fulfil the condition described by the projection.

0

0,2

0,4

0,6

0,8

1

1,2

512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576

T
IM

E
 (

se
co

n
d

s)

BUFFERSIZE

SELECT name FROM table

0

0,2

0,4

0,6

0,8

1

1,2

512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576

T
IM

E
 (

se
co

n
d

s)

BUFFERSIZE

SELECT age FROM table

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 84

Figure 38: Query 3 performance

Next query is also a projection over a selective query; the column name is retrieved and

materialized in order to know which of its values has department = Human Resources.

An obvious result of this query compared to the last one, it could be a longer time with

every buffer size given that it is more expensive to materialize the strings of the department

column than the strings of the age column. Following, the graphic for the fourth query is

showed.

Figure 39: Query 4 performance

As expected, Query 4 has a little higher result than Query 3 since it is more expensive to

materialize large strings.

If these Query 4 and Query 6 are compared, the expected result would be two curves of the

same shape being the curve of Query 6 under the first curve since it would have better

performance times due to the speedup in the materialization of the data: it is faster to decode

2 bytes long strings corresponding to the column age than strings of 22 bytes long in average

of the column name. The comparison between these two queries is showed here:

0

0,3

0,6

0,9

1,2

1,5

1,8

2,1

512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576

T
IM

E
 (

se
co

n
d

s)

BUFFERSIZE

SELECT name WHERE age = "16"

0

0,5

1

1,5

2

512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576

T
IM

E
 (

se
co

n
d

s)

BUFFERSIZE

SELECT name WHERE department = "Human Resources"

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 85

Figure 40: Comparison between Query 4 and Query 6

This graph shows the comparison between two queries with the same selection clause but

a different projection. Both curves shows almost the same shape; the reason is that although

the time of reading the dictionaries and index of each selected column are meaningful and

decreases as the buffer size increases, the time is determined by the processing time of the

“where” clause (reading index and dictionary and find the positions where the value

appears).

The fact here is that the queries have to make readings for the selection or “where” clause

and for the projection clause and the bigger size of the strings of the column name over the

column age, does not have much impact in the overall time when the result of the query has

less values than a full scan or is not selecting all the values.

Here it is the graphic for Query 5, where the column department is retrieved and

materialized. Just like the previous two queries, this query has the same curve and similar

times.

Figure 41: Query 5 performance

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576

T
IM

E
 (

se
co

n
d

s)

BUFFERSIZE

Comparison between Q4/Q6
QUERY 4

QUERY 6

0

0,3

0,6

0,9

1,2

1,5

1,8

2,1

512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576

T
IM

E
 (

se
co

n
d

s)

BUFFERSIZE

SELECT department WHERE city = "Walldorf"

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 86

Query 6 is also a projection over a selective query. Its times are comparable to the last

queries. The largest drop of time occurs between 512 and 1024 bytes, where the time is

halved and keeps dropping until the end but in a milder form.

Figure 42: Query 6 performance

The next graphic shows another projection with a selection clause. This query has a fast

decreasing in the first points due to the increasing buffer size; meanwhile with the other

buffer sizes it has a more mild decrease in the times.

Figure 43: Query 7 performance

Another query graphic shows here another projection with a selection clause but this time,

the selection clause is composed by two different selections. As the other queries where a

selection and a projection were performed, its time decreases so fast with the first buffer

sizes while the rest of the buffer sizes almost do not make any difference in the final time

result.

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576

T
IM

E
 (

se
co

n
d

s)

BUFFERSIZE

SELECT age WHERE department = "Human Resources"

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576

T
IM

E
 (

se
co

n
d

s)

BUFFERSIZE

SELECT salary WHERE car = "BMW"

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 87

Having two conditions in the “where” clause would imply more time since both conditions

has to be tested and then produce a common result where the column name fulfil both

conditions.

Figure 44: Query 8 performance

Actually the result is similar than the previous ones with this type of query, the only

difference comes with the overall times. Whereas a query with a single condition takes 1.5

seconds in the worst case, a query with two conditions takes almost 2.5 seconds.

The next graphic shows a full scan of the table with a double selection clause. This means

that all the columns of the table have to be retrieved and materialized provided that their

values fulfil both conditions.

Evidently, having two conditions the execution of the query will take more time than a

regular full scan of the table. If the previous results of selections are observed, the expected

result for this query could be a slope curve from 512 bytes to 4096 bytes with a minor

decrease for the next buffer sizes.

Figure 45: Query 9 performance

0

0,3

0,6

0,9

1,2

1,5

1,8

2,1

2,4

2,7

512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576

T
IM

E
 (

se
co

n
d

s)

BUFFERSIZE

SELECT name WHERE age="16" AND city="Walldorf"

0

1

2

3

4

5

6

7

8

9

512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576

T
IM

E
 (

se
co

n
d

s)

BUFFERSIZE

SELECT * WHERE age="16" AND city="Walldorf"

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 88

Again it takes a lot of time to read the indexes and dictionaries of columns age and city and

obtain all the row indexes where those values appear (age = 16 and city = Walldorf) and as

the last step of the query get all the values that accomplish the two conditions for all the

columns. It is the query that takes longer from the set of tested queries (~8.1 seconds) in the

worst case (512 bytes of buffer).

Many read operations are necessary in order to read both indexes for the double selection

clause along with the indexes of all columns for the projection clause; once the size of the

buffer is 8192 bytes, the number of needed readings cannot decrease no more, hence the

improvement obtaining increasing the buffer sizes are only reflected in a little portion of the

total time.

The last query tested is the table full scan where all the columns are retrieved and

materialized.

Figure 46: Query 10 performance

Next graph shows the comparison between Query 1 and Query 10, where the column

name and all the columns are retrieved and materialized respectively.

0

1

2

3

4

5

6

7

8

512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576

T
IM

E
 (

se
co

n
d

s)

BUFFERSIZE

SELECT * FROM table

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 89

Figure 47: Comparison between Query 1 and Query 10

Logically, Query 1 takes less time than Query 10 because the first query only has to

retrieve and materialize one column while the other query needs to retrieved and

materializes all the columns.

The shape of Query 1 curve is the same as the curve of Query 10 but due to the scale it

cannot be properly seen.

It makes sense that if retrieve and materialize the column with the longest strings takes

more than a second in the worst case (512 bytes), retrieve and materialize 8 columns would

take 8 seconds or less time and that is exactly the time of the query that performs the full

scan in the table (7.54 seconds). But in the best case (1 MB = 1048576 bytes) the time for

Query 10 is not more than eight times higher than in Query 1, but the double: Query 1 is 0.12

seconds while Query 10 is 0.27 seconds.

0

1

2

3

4

5

6

7

8

512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576

T
IM

E
 (

se
co

n
d

s)

BUFFERSIZE

Comparison between Q1/Q10
QUERY 1

QUERY 10

Final Project
Lorena Prieto Horcajo

SAP-UC3M

Page | 90

