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Abstract

In this paper we study identification and inference of preference parameters in a single-agent, static,
discrete choice model where the decision maker may face attentional limits precluding her to ex-
haustively process information about the payoffs of the available alternatives. By leveraging on the
notion of one-player Bayesian Correlated Equilibrium in Bergemann and Morris (2016), we provide
a tractable characterisation of the sharp identified set and discuss inference under minimal assump-
tions on the amount of information processed by the decision maker and under no assumptions on
the rule with which the decision maker resolves ties. Simulations reveal that the obtained bounds
on the preference parameters can be tight in several settings of empirical interest.
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1 Introduction

Attentional limits have long been recognized to play a critical role in decision problems by
precluding agents’ ability to exhaustively process information about the value of every possible
alternative (e.g., Simon, 1955; 1959; Kaheman, 1973; Sims, 1998; 2003; 2006; Lacetera, Pope,
and Sydnor, 2012; Des Los Santos, Hortaçsu, and Wildenbeest, 2012; Matĕjka and McKay,
2015; Caplin, Dean, and Leahy, 2018). In this paper we offer a robust and tractable method
to explore the empirical content of attentional limits in decision problems. In particular, we
study identification and inference of preferences in a single-agent, static, discrete choice model
where the decision maker (hereafter, DM) may face attentional limits hampering her capacity
to learn about the payoff generated by each of the available alternatives.

More formally, we consider a static setting where the DM chooses an alternative from a
discrete feasible set. The payoff generated by the chosen alternative depends on the state of
the world.1 While in standard discrete choice models in the tradition of McFadden (1974) the
DM is assumed to observe the state of the world before choosing an alternative, here the DM
chooses an alternative possibly without being fully aware about the state of the world. Instead,
the DM has a prior about the state of the world. Moreover, before choosing an alternative, the
DM has the opportunity to investigate further the state of the world by processing additional
information (hereafter, information structure). Such information structure takes the form of
a noisy signal of the state of the world. Admissible information structures range from full
revelation of the state of the world to no information whatsoever, depending on the DM’s
attentional limits. The DM uses the acquired information structure to update her prior about
the state of the world and obtain a posterior. Lastly, the DM chooses an alternative maximising
the expected payoff, where the expectation is computed via the posterior. If there is more than
one maximising alternative, then the DM picks one of them according to some rule (hereafter,
selection rule).

Our objective is to study identification and inference of the parameters governing the DM’s
preferences by using the empirical choice probabilities. In developing identification and infer-
ence arguments, we remain agnostic about agents’ information structures and selection rules.
This is because information structures and selection rules are unobserved by the researcher and
potentially heterogenous across agents. In particular, heterogeneity of information structures
comes from the fact that different agents could have different attentional limits and, thus, sus-
tain different costs to gather information on the state of the world. Heterogeneity of selection
rules comes from the fact that different agents could resolve in different ways indifferences
between alternatives with the same expected payoff. Remaining agnostic about information
structures and selection rules implies that empirical results and counterfactual outcomes ob-
tained via our methodology are robust to restrictions imposed on agents’ cognitive skills and

1The state of the world is defined by variables like attributes of the available alternatives, tastes of the DM,
exogenous market shocks, etc.
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on how agents respond to equally ranked alternatives. Moreover, remaining agnostic about
information structures and selection rules permits our framework to nest various discrete
choice models analysed in the literature. Examples include standard discrete choice models
with complete information (e.g., McFadden, 1974; Berry, 1994) and discrete choice models with
uncertainty (e.g., Barseghyan, et al., 2018).

Leaving information structures and selection rules unrestricted raises the possibility of par-
tial identification of the preference parameters because the model is incomplete in the sense
of Tamer (2003). Consequently, this poses the challenge of tractably characterising the region
of preference parameter values that exhausts all the implications of the model and data (i.e.,
the sharp identified set). In fact, in order to determine whether a given value of the preference
parameters belongs to the sharp identified set, the researcher needs to establish whether the
empirical choice probabilities belong to the collection of choice probabilities predicted by the
model under a range of information structures and selection rules. The difficulty here lies in
the necessity of exploring all possible information structures and selection rules.

We approach the above problem by applying the notion of Bayesian Persuasion or one-player
Bayesian Correlated Equilibrium provided in Kamenica and Gentzkow (2011) and Bergemann
and Morris (2013; 2016). Specifically, we exploit Theorem 1 in Bergemann and Morris (2016) to
claim that the collection of choice probabilities predicted by our model for a range of information
structures and selection rules is equivalent to the collection of choice probabilities predicted
by our model under the notion of one-player Bayesian Correlated Equilibrium. That is, it
is equivalent to the collection of choice probabilities in a mediated decision problem where
the mediator directly provides recommendations to the DM and these recommendations are
incentive compatible. Further, such a collection is a convex set. Therefore, determining whether
a given value of the preference parameters belongs to the sharp identified set amounts to finding
whether the vector of empirical choice probabilities belongs to that convex set. By using
insights from Beresteanu, Molchanov, and Molinari (2011), Magnolfi and Roncoroni (2017), and
Syrgkanis, Tamer, and Ziani (2018), we argue that this corresponds to solving quadratically
constrained linear programming problems or linear programming problems (depending on
which objects the econometrician wants to recover). Thus, constructing the sharp identified set
becomes a computationally tractable exercise. Lastly, after having reformulated the identifying
restrictions as moment inequalities, we explain how inference on the sharp identified set can be
conducted by using the generalised moment selection procedure in Andrews and Shi (2013).

One concern with the above method could be that the one-player Bayesian Correlated Equi-
librium will have weak identification power because we make minimal assumptions. However,
simulations reveal that the collection of conditional choice probabilities predicted by the one-
player Bayesian Correlated Equilibrium is a strict and tight subset of the unit simplex under
various data generating processes. Further, our model can be informative about the sign and
magnitude of the preference parameters in several settings of economic interest.

Research questions similar to ours have been addressed in the empirical literature using
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two different approaches. The first approach consists in modelling the mechanism according
to which the DM acquires an information structure. This approach may allow the analyst
to obtain point identification of the preference parameters, however at the cost of possible
misspecification of agents’ information structures. For example, Mehta, Rajiv, and Srinivasan
(2003), Honka and Chintagunta (2016), and Abaluck and Compiani (2019) consider search
frameworks, where the DM follows a sequential protocol to learn about the payoffs generated
by the available alternatives. Csaba (2018) adopts a rational inattention perspective, where
the attentional costs sustained by the DM to process information structures are parametrically
modelled, along the lines of Matĕjka and McKay (2015), Fosgerau, et al. (2017), and Caplin,
Dean, and Leahy (2018).

The second approach relates to the econometric analysis of discrete choice models when
the sets of alternatives actually considered by the DM (hereafter, consideration sets) could be
strict subsets of the feasible set, heterogenous, and unobserved by the researcher. In fact, one
key implication of attentional limits is that, since attention is a scarce resource, the DM may
process an information structure inducing her to contemplate, in equilibrium, only a subset of
the available alternatives, ignoring all the others (Caplin, Dean, and Leahy, 2018).2,3 Several
papers have considered the issue of identifying and estimating preferences in discrete choice
models with heterogeneous and latent consideration sets. These papers can be grouped in three
categories. The first group of papers rely on auxiliary data about the composition or probabil-
ity distribution of consideration sets (e.g., Des Los Santos, Hortaçsu, and Wildenbeest, 2012;
Conlon and Mortimer, 2013). The second group of papers rely on exclusion restrictions (e.g.,
Goeree, 2008; Gaynor, Propper, and Seiler, 2016). The third group of papers rely on assump-
tions on the consideration set formation process (e.g., Abaluck and Adams, 2018; Barseghyan,
Molinari, and Teitelbaum, 2019; Barseghyan, et al., 2019; Cattaneo, et al., 2019; Crawford,
Griffith, and Iaria, 2019). The papers in the third group are close in spirit to our framework.
However, there are several differences. The papers in the third group are mostly concerned
with settings where the DM is unaware of the existence of (or, voluntarily ignores) some al-
ternatives in the feasible set. On the other hand, we consider the complementary problem of
imperfect information at the level of payoffs. Further, the papers in the third group assume
either that the DM is aware of the payoff generated by each alternative in her consideration
set (e.g., Abaluck and Adams, 2018), or that the DM computes the expected payoff of the
alternatives in her consideration set through distributions that are known, or estimable, by

2Recall that the DM’s information structure takes the form of a noisy signal of the state of the world.
Hence, an alternative belongs to the DM’s consideration set if the subset of the signal’s support inducing the
DM to choose that alternative has positive measure (Caplin, Dean, and Leahy, 2018).

3Limited attention in choice is not the only mechanism that can induce endogenous considerations sets in
discrete choice models. Consideration sets may arise also because of lack of awareness of some alternatives in the
feasible set (e.g., Goeree, 2008), deliberately ignoring some alternatives in the feasible set (e.g., Wilson, 2008),
incomplete product availability (e.g., Conlon and Mortimer, 2014), being offered the possibility of receiving
program access from outside an experiment (e.g., Kamat, 2019), and absence of market clearing transfers in
two-sided matching models (e.g., He, Sinha, and Sun, 2019).
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the analyst (e.g., Barseghyan, et al., 2019). Instead, we proceed without imposing any such
assumptions. In our framework the DM could still be imperfectly informed about the payoff
generated by some or all alternatives in her consideration set, depending on the information
structure that she processes, and about which the analyst remains ignorant.4

This paper also relates to two important works, Magnolfi and Roncoroni (2017) and Syrgka-
nis, Tamer, and Ziani (2018), that use the notion of Bayesian Correlated Equilibrium to
tractably characterise the sharp identified set while remaining agnostic about information
structures and selection rules. In particular, Magnolfi and Roncoroni (2017) use the notion
of Bayesian Correlated Equilibrium in an entry game framework, where each firm may or may
not know the payoff of the competing firms. Syrgkanis, Tamer, and Ziani (2018) use the notion
of Bayesian Correlated Equilibrium in an auction framework, where each participant may or
may not know the common value of the auctioned good (in common value auctions) or the
value of the auctioned good for the other participants (in private value auctions). We contribute
to this thread of literature by highlighting the empirical usefulness of the notion of Bayesian
Correlated Equilibrium in a single-agent, static, discrete choice model with attentional limits.

The remaining of the paper is organised as follows. Section 2 describes the model. Section 3
discusses identification. Section 4 presents simulations. Section 5 illustrates inference. Section
6 concludes.

Notation Capital letters are used for random variables/vectors/matrices and small case let-
ters for their realisations. Calligraphic capital letters are used for sets. Given a random vector
Z, PZ denotes its joint density when all the components of Z are continuous, mixed joint
density when some components of Z are continuous and some discrete, and probability mass
function when all the components of Z are continuous. However, for readability, sometimes in
the paper we generically refer to PZ as a density. Given a random vector Z, FZ represents its
cumulative distribution function. RK

+ denotes the K-dimensional positive real space. Given a
set, A, ∆(A) is the function space of all possible densities with support equal to or contained
in A. Given a set, A, |A| denotes A’s cardinality. Given two sets, A and R ⊆ A, A\R is the
complement of R in A. 0L is the L× 1 vector of zeros.

4There are other differences with the papers in the third group. For example, in Abaluck and Adams
(2018), Barseghyan, Molinari, and Teitelbaum (2019), Cattaneo, et al. (2019), and Crawford, Griffith, and
Iaria (2019) consideration sets are independent of preferences conditional on observables. In Barseghyan, et al.
(2019) consideration sets have at least size κ ≥ 2 with κ known by the analyst. In Abaluck and Adams (2018)
and Barseghyan, Molinari, and Teitelbaum (2019) there are observables with large support. In Cattaneo, et
al. (2019) the probability of a given consideration set decreases when the number of possible consideration sets
decreases. In Dardanoni, et al., (2018) unobserved heterogeneity is assumed away. In Crawford, Griffith, and
Iaria (2019) the analyst specifies how considerations sets evolve over time. In Lu (2018) there are restrictions
on the smallest possible consideration set. We do not impose these assumptions here. However, recall that
relaxing many of these assumptions simultaneously leads to partially identified preference parameters.
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2 The model

In this section we describe a single-agent, static, discrete choice model, where the DM may face
attentional limits hampering her capacity to learn about the payoff generated by each of the
available alternatives. In such a framework, different restrictions on the amount of information
processed by the DM typically lead to different optimal strategies. As what the DM knows is
unobserved by the researcher and potentially heterogenous across agents, we use Theorem 1
in Bergemann and Morris (2016) to characterise the set of optimal strategies under minimal
assumptions on the amount of information that is processed by the DM.

2.1 Baseline choice problem GGG

Suppose that the DM has to choose an alternative, y, from a finite set, Y , possibly without
having complete information about the state of the world. The state of the world is represented
by a triplet, (x, e, v). In particular, x is a realisation of some covariates, X, with support X . x
is observed by the DM and the researcher. e is a realisation of some tastes of the DM, ε, with
support conditional on x denoted by E .5 e is observed by the DM but not by the researcher.
e is drawn by nature from the density of ε conditional on x, Pε|X(·|x). v is a realisation of
some further (dis)value, V , that the DM can derive from the choice problem, with support
conditional on (x, e) denoted by V . v is not observed by the DM and the researcher. v is drawn
by nature from the density of V conditional on (x, e), PV |X,ε(·|x, e), which constitutes the DM’s
prior about V .

Let Pε|X ≡ {Pε|X(·|x) ∈ ∆(E) : x ∈ X} be a family of densities of ε conditional on every
realisation x of X. Here we would like to emphasise that our notation, Pε|X , assumes that
Pε|X contains one density for each x ∈ X . The same notational convention is maintained for
any family of conditional densities introduced below. Let PV |X,ε ≡ {PV |X,ε(·|x, e) ∈ ∆(V) : x ∈
X , e ∈ E} be a family of densities of V conditional on every realisation (x, e) of (X, ε). In what
follows, we refer to

G ≡
(
Y ,X , E ,V , u,PV |X,ε,Pε|X

)
,

as the baseline choice problem. As clarified later, G represents the minimal amount of infor-
mation available to the DM before choosing.

2.2 Information structure SSS and augmented choice problem (G,S)(G,S)(G,S)

This section augments the baseline choice problem G by allowing the DM to refine her prior
about V , PV |X,ε(·|x, e), upon reception of a private signal which may be informative about
the realisation, v, of V drawn by nature. In particular, let T be a random variable represent-
ing the private signal received by the DM, with support conditional on (x, e, v) and density

5Note that E can vary across x. However, to keep the notation simple, we suppress this dependence. We
adopt such notational convention for any conditional support considered in the paper.
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conditional on (x, e, v) denoted by T and PT |X,ε,V (·|x, e, v), respectively. The DM observes t,
uses PT |X,ε,V (·|x, e, v) to update her prior about V , and obtains the posterior, PV |X,ε,T (·|x, e, t).
Then, the DM chooses an alternative, y ∈ Y , maximising her expected payoff which is computed
using the posterior. Finally, the DM receives the payoff u(y, x, e, v), where u : Y×X×E×V → R
is the payoff function.

Let PT |X,ε,V ≡ {PT |X,ε,V (·|x, e, v) ∈ ∆(T ) : x ∈ X , e ∈ E , v ∈ V} be a family of densities of
T conditional on every realisation (x, e, v) of (X, ε, V ). In what follows, we refer to

S ≡
(
T ,PT |X,ε,V

)
,

as the information structure. S represents the additional information that the DM processes
to refine her prior about V .6 Lastly, the pair (G,S) constitutes what will be hereafter called
the augmented choice problem.

2.3 Optimal strategy of the augmented choice problem (G,S)(G,S)(G,S)

Let us define an optimal strategy of the DM in the augmented choice problem (G,S). A (mixed)
strategy in the augmented choice problem (G,S) is a family of probability mass functions of
Y conditional on every realisation (x, e, t) of (X, ε, T ), i.e.,

PY |X,ε,T ≡ {PY |X,ε,T (·|x, e, t) ∈ ∆(Y) : x ∈ X , e ∈ E , t ∈ T }.

PY |X,ε,T , is an optimal strategy of the augmented choice problem (G,S) if PY |X,ε,T (·|x, e, t)
maximises the DM’ expected payoff, for each x ∈ X , e ∈ E , and t ∈ T .

Definition 1. (Optimal strategy of the augmented choice problem (G,S)) PY |X,ε,T is an optimal
strategy of the augmented choice problem (G,S) if ∀x ∈ X , ∀e ∈ E , and ∀t ∈ T ,∫

V
u(y, x, e, v)PT |X,ε,V (t|x, e, v)PV |X,ε(v|x, e)dv ≥

∫
V
u(ỹ, x, e, v)PT |X,ε,V (t|x, e, v)PV |X,ε(v|x, e)dv,

∀y ∈ Y such that PY |X,ε,T (y|x, e, t) > 0, and ∀ỹ ∈ Y \ {y}.
�

Note that one can alternatively define an optimal strategy of the augmented choice problem
(G,S) as follows.

Definition 2. (Alternative definition) Given x ∈ X , e ∈ E , and t ∈ T , let Y∗x,e,t ⊆ Y be the
6We represent the latent variables (from the point of view of the analyst) constituting the state of the world

by using two terms, ε and V , to obtain a flexible framework. In particular, the model nests settings where ε is
a non-degenerate random variable and the DM knows more than the researcher about the state of the world.
This is because, first, the DM observes e and, second, the DM might refine her knowledge about v by observing
t. The model also nests settings where ε is a degenerate random variable and the DM might know more than
the researcher about the state of the world by observing t.
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set of alternatives maximising the expected payoff , i.e.,

Y∗x,e,t ≡ argmaxy∈Y
∫
V
u(y, x, e, v)PT |X,ε,V (t|x, e, v)PV |X,ε(v|x, e)dv.

Let P∗x,e,t be the family of probability mass functions of Y conditional on (x, e, t) that are
degenerate on Y∗x,e,t, i.e.,

P∗x,e,t ≡ {PY |X,ε,T (·|x, e, t) ∈ ∆(Y) : PY |X,ε,T (y|x, e, t) = 1, y ∈ Y∗x,e,t}.

Let Conv(P∗x,e,t) be the convex hull of P∗x,e,t. Then, PY |X,ε,T is an optimal strategy of the
augmented choice problem (G,S) if ∀x ∈ X , ∀e ∈ E , and ∀t ∈ T ,

PY |X,ε,T (·|x, e, t) ∈ Conv(P∗x,e,t).

�

Let S be the set of all admissible information structures. By using the continuity of the
expected payoff in Y , it is possible to show that an optimal strategy of the augmented choice
problem (G,S) exists for every S ∈ S, even though it may not be unique.

Proposition 1. (Existence of optimal strategy of the augmented choice problem (G,S)) The
augmented choice problem (G,S) admits an optimal strategy, PY |X,ε,T , for every S ∈ S. �

Note that the information structure has relevant implications on the behaviour of the DM.
If the DM receives an information structure that is informative about the realisation of V
drawn by nature, then her posterior and, hence, optimal strategy will reflect this information.
Thus, the more informative the information structure, the more the DM will adjust her strategy
according to the realisation of V . If the information structure is totally uninformative, then
the DM will base her strategy on her posterior that will be equal to the prior, PV |X,ε(·|x, e).

2.4 Some examples of the augmented choice problem (G,S)(G,S)(G,S)

This section provides some examples of models and information structures that are nested in
our framework. In such examples, we add the subscript i to our notation as a label for the DM
with the purpose of emulating standard notation in the empirical literature on discrete choice
models.

Multinomial Logit or Probit model Suppose that DM i must choose a transportation
mode to get to work among Y ≡ {0, 1, ..., L}, where “0” denotes the outside option of working
from home. Let Xi ≡ (Xi,1, ..., Xi,L) be a K × L matrix, where Xi,y is a vector of K charac-
teristics of transportation mode y ∈ Y \ {0}. These characteristics can be consumer specific
(hence, the subscript i). For example, for each transportation mode y ∈ Y \ {0}, Xiy could
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represent journey time, cost, and number of changes. Let εi ≡ (εi,0, ..., εi,L) be an (L + 1) × 1
vector, where εi,y represents the DM’s taste for transportation mode y ∈ Y , such as comfort.
Lastly, let Vi ≡ (Vi,0, ..., Vi,L) be an (L+ 1)× 1 vector, where Vi,y represents further (dis)value
that product y ∈ Y may generate for the DM and about which the DM is uncertain, such as
safety and pro-environmental features. In this framework, one can imagine that Vi is realised
before the choice is made, but such realisation may be hidden to the DM. For each y ∈ Y , the
payoff function, ui, is specified as

ui(y,Xi, εi, Vi) ≡

β
′
yXi,y + εi,y + Vi,y if y ∈ Y \ {0},

εi,0 + Vi,0 otherwise.

Before choosing the DM can process additional information to refine her prior about Vi. For
example, she can learn the technical features of each transportation mode, seek out reviews,
and so on.

Suppose that the DM processes enough information to discover the realisation of Vi drawn
by nature. That is, the DM’s information structure features, for each v ∈ V ,

T = {v}, PTi|Xi,εi,Vi(v|x, e, v) = 1, ∀x ∈ X ,∀e ∈ E ,

(hereafter, complete information structure). Further, suppose that Vi is continuously dis-
tributed conditional on (Xi, εi). Then, an optimal strategy exists, is almost surely unique,
and equal to

PYi|Xi,εi,Ti(·|x, e, t) ∈ ∆(Y) s.t. PYi|Xi,εi,Ti(y∗x,e,t|x, e, t) = 1, ∀x ∈ X ,∀e ∈ E ,∀t ∈ T , (1)

where y∗x,e,t ≡ argmaxy∈Y ui(y, x, e, t). In particular, almost sure uniqueness follows from the
fact that ties have zero measure because Vi is continuously distributed conditional on (Xi, εi).
Furthermore, if {εi,y + Vi,y}∀y∈Y are i.i.d. Gumbel with scale 1 and location 0 independent of
Xi, this is the classical multinomial Logit model. If {εi,y +Vi,y}∀y∈Y are i.i.d. standard normals
independent of Xi, this is the classical multinomial Probit model. Hence, our framework nests
discrete choice models in the tradition of McFadden (1974) where all agents are assumed to
process the complete information structure.

Alternatively, suppose that the DM has no time to investigate further about Vi. That is,
the DM’s information structure features

T = {t}, PTi|Xi,εi,Vi(t|x, e, v) = 1, ∀x ∈ X , ∀e ∈ E ,∀v ∈ V ,

for some t ∈ R (hereafter, degenerate information structure). Recall that under the degenerate
information structure the DM’s posterior is equal to the DM’s prior about Vi. Then, Definition
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1 reduces to: PYi|Xi,εi is an optimal strategy if for each x ∈ X and e ∈ E ,

E[ui(y, x, e, Vi)|Xi = x, εi = e] ≥ E[ui(ỹ, x, e, Vi)|Xi = x, εi = e].

for each y ∈ Y such that PYi|Xi,εi(y|x, e) > 0 and for each ỹ ∈ Y \ {y}, where expectations
are computed using the DM’s prior. Moreover, note that the set of optimal strategies could
be singleton or there could be multiple optimal strategies. In fact, given x ∈ X and e ∈ E , let
Y∗x,e be the set of alternatives maximising the expected payoff, i.e.,

Y∗x,e ≡ argmaxy∈Y E[ui(y, x, e, Vi)|Xi = x, εi = e].

Suppose that βy = 0K for each y ∈ Y \ {0}, Vi is independent of (Xi, εi), and {Vi,y}y∈Y are
i.i.d. standard normals. Then, for each y ∈ Y , x ∈ X , and e ∈ E ,

E[ui(y, x, e, Vi)|Xi = x, εi = e] = ey.

If εi is continuously distributed conditional on Xi, then Y∗x,e is almost surely singleton for each
x ∈ X and e ∈ E . Consequently, the only optimal strategy is PYi|Xi,εi such that, for each x ∈ X
and e ∈ E ,

PYi|Xi,εi(y∗x,e,|x, e) = 1,

where y∗x,e ∈ Y∗x,e. Instead, if εi has degenerate support {0L+1} conditional on Xi, then Y∗x,e = Y
for each x ∈ X and e ∈ E . In turn, this implies that the set of optimal strategies coincides
with the entire collection of possible strategies.

Nested Logit demand model Suppose that DM imust choose which product to buy among
Y ≡ {0, 1, ..., L}, where “0” denotes the outside option of purchasing none of the products. Let
X ≡ (X1, ..., XL) be a K × L matrix, where Xy is a vector of K characteristics of product
y ∈ Y \ {0} that are not consumer specific. Let εi ≡ (ξ, ηi), where ξ ≡ (ξ1, ..., ξL) is an L × 1
vector with ξy representing attributes of product y ∈ Y \{0} unobserved by the researcher, and
ηi represents the DM’s taste. Lastly, let Vi ≡ (Vi,0, ..., Vi,L) be an (L+ 1)× 1 vector, where Vi,y
represents further (dis)value that product y ∈ Y may generate for the DM and about which
the DM is uncertain. For each y ∈ Y , the payoff function, ui, is specified as

ui(y,X, εi, Vi) ≡

β
′Xy + ξy + ηi + λVi,y if y ∈ Y \ {0},

Vi,0 otherwise,

where λ ∈ (0, 1). Before choosing the DM can process additional information to refine her prior
about Vi. Suppose that the DM processes enough information to discover the realisation of Vi
drawn by nature, i.e., the DM is endowed with the complete information structure. Further,
let the DM’s tastes be i.i.d. and independent of (X, ξ), and the probability distribution of
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ηi + λVi,y be chosen to yield the familiar Nested Logit market share function, as illustrated
in Cardell (1997). Then, this is the Nested Logit demand model of Berry (1994), where the
“inside” goods are separated from the outside good.

Discrete choice models under risk Let Y ≡ {1, ..., L} be a menu of L insurance plans
against auto collision among which DM i must choose. Each plan y ∈ Y is represented by a
premium, Pi,y, and a deductible, Dy. The DM is endowed with a K × 1 vector of demographic
characteristics, Zi, such as wealth (denoted by Wi below), gender, age, insurance score, etc.
We collect (Pi,y, Dy) for each plan y ∈ Y and Zi in the vector Xi. The DM is also endowed
with a coefficient of absolute risk aversion, εi. Finally, the DM is endowed with some other
features, ηi, which determine the event of a claim together with Zi and about which the DM
is uncertain. In particular, let Vi be equal to 1 if the DM experiences a claim after the choice
is made and 0 otherwise, with

Vi = 1{Z ′iβ + ηi ≥ 0}. (2)

In contrast to the examples discussed above, here ηi (and, hence, Vi) is realised after an
insurance plan has been chosen and this causes the DM’s uncertainty about the realisation of
Vi. The payoff function, ui, belongs to the CARA family, i.e., for each y ∈ Y ,

ui(y,Xi, εi, Vi) ≡



1−exp[−εi×(Wi−Pi,y−Dy)]
εi

if Vi = 1, εi 6= 0,
1−exp[−εi×(Wi−Pi,y)]

εi
if Vi = 0, εi 6= 0,

Wi − Pi,y −Dy if Vi = 1, εi = 0,

Wi − Pi,y if Vi = 0, εi = 0.

Before choosing an insurance plan the DM has the opportunity of processing additional
information to refine her prediction about the realisation of Vi drawn by nature and refine her
prior. For example, she can check the technical features of her car, road and traffic conditions,
etc. Let Si ≡ (Ti,PTi|Xi,εi,Vi) denote the DM’s information structure and PVi|Xi,εi,Ti the family
of resulting posteriors. Then, given the realisation (x, e, t) of (Xi, εi, Ti), the DM chooses an
insurance plan y such that

y ∈ argmaxy∈Y



[1− Fηi|Xi,εi,Ti(z′β|x, e, t)]×
1−exp[−e×(w−py−dy)]

e

+Fηi|Xi,εi,Ti(z′β|x, e, t)×
1−exp[−e×(w−py)]

e if e 6= 0,

[1− Fηi|Xi,εi,Ti(z′β|x, e, t)]× [w − py − dy]

+Fηi|Xi,εi,Ti(z′β|x, e, t)× [w − py] if e = 0.

This example is a simplified version of the framework that has been used in the empirical
literature on risk preferences. Moreover, there the analysis is performed under the assumptions
that Si is the degenerate information structure (i.e., the posterior and prior about Vi are the
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same) and the prior about Vi is parametrically specified (see Barseghyan, et al., 2018 for a
review).

2.5 Robust predictions

Suppose the researcher knows that the DM faces the payoff environment G. Further, the
researcher is only aware that the DM processes some information structure, S ∈ S, to refine her
prior about V before choosing an optimal strategy as outlined in Definition 1. The researcher is
interested in characterising the collection of optimal strategies of the augmented choice problem
(G,S) while leaving S unrestricted. This is because S is unobserved by the researcher and
potentially heterogenous across agents. In particular, heterogeneity of information structures
comes from the fact that different agents could have different attention constraints and, thus,
sustain different costs to gather information on the state of the world. Therefore, specifying
or imposing assumptions on S could lead the researcher to make misleading predictions about
the DM’s optimal behaviour.

In this section we construct such characterisation of densities by using the notion of Bayesian
Persuasion or one-player Bayesian Correlated Equilibrium (hereafter, 1BCE) provided in Ka-
menica and Gentzkow (2011) and Bergemann and Morris (2013; 2016).7 Specifically, we exploit
Theorem 1 in Bergemann and Morris (2016) which shows that the collection of densities of
(Y, V ) conditional on (X, ε) that are predicted by the model if the DM were to process some
information structure, S ∈ S, is equal to the collection of 1BCE of the baseline choice problem
G.8 That is, it is equivalent to the collection of densities of (Y, V ) conditional on (X, ε) in a
mediated decision problem where the mediator directly provides recommendations to the DM
and these recommendations are incentive compatible. We now define a 1BCE of the baseline
choice problem G, as in Bergemann and Morris (2016).9

Definition 3. (1BCE of the baseline choice problem G) A family of densities of (Y, V ) condi-
tional on every realisation (x, e) of (X, ε),

PY,V |X,ε ≡ {PY,V |X,ε(·|x, e) ∈ ∆(Y × V) : x ∈ X , e ∈ E},

is a 1BCE of the baseline choice problem G if:
7The notions of Bayesian Persuasion and 1BCE coincide. Specifically, Kamenica and Gentzkow (2011)

consider a framework where a sender (planner) chooses an information structure, S ∈ S, to give to a receiver
(DM) and then the receiver chooses an alternative. Instead of letting the sender choose an S, Bergemann and
Morris (2019) finds that this is equivalent to letting the sender choose her favourite 1BCE.

8Recall that Theorem 1 in Bergemann and Morris (2016) is valid for a general n-player game, where n ≥ 1.
It is used here for a one-player game.

9The published version of Bergemann and Morris (2016) uses an equivalent, but slightly different, definition
of Bayesian Correlated Equilibrium. We adopt the working paper definition because it is more convenient for
our purpose of conducting identification and inference on the model’s primitives, as in Magnolfi and Roncoroni
(2017) and Syrgkanis, Tamer, and Ziani (2018).
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1. It is consistent with the baseline choice problem G, i.e., when integrating PY,V |X,ε(·|x, e)
with respect to Y , one obtains the DM’s prior, PV |X,ε(·|x, e), ∀x ∈ X and ∀e ∈ E . That
is, ∑

y∈Y
PY,V |X,ε(y, v|x, e) = PV |X,ε(v|x, e), ∀x ∈ X ,∀e ∈ E , ∀v ∈ V .

2. It is obedient, i.e., the DM who is recommended alternative y ∈ Y by an omniscient
mediator has no incentive to deviate. That is,∫

V
u(y, x, e, v)PY,V |X,ε(y, v|x, e)dv ≥

∫
V
u(ỹ, x, e, v)PY,V |X,ε(y, v|x, e)dv,

∀y ∈ Y ,∀ỹ ∈ Y \ {y},∀x ∈ X ,∀e ∈ E .

�

Note that, for each x ∈ X and e ∈ E , the set of 1BCE of the baseline choice problem G is
convex because it is characterised by linear equalities and inequalities, where the linearity is
in PY,V |X,ε(·|x, e). This property will be exploited in Section 3 to conduct identification on the
primitives of interest.

We now state Theorem 1 in Bergemann and Morris (2016) for our model.

Theorem 1. (Bergemann and Morris, 2016) PY,V |X,ε is a 1BCE of the baseline choice problem
G if and only if there exists an information structure, S ∈ S, and an optimal strategy, PY |X,ε,T ,
of the augmented choice problem (G,S), such that PY,V |X,ε is induced by PY |X,ε,T . �

Theorem 1 allows the researcher to make robust predictions about the DM’s optimal be-
haviour through the notion of 1BCE. This is because it captures all possible optimal behaviours
if the DM had access to some information structure S ∈ S that is left unspecified.

Theorem 1 is also useful to see why a 1BCE of the baseline choice problem G exists. Indeed,
take any information structure S ∈ S. Let PY |X,ε,T be an optimal strategy of the augmented
choice problem (G,S), which exists by Proposition 1. Let PY,V |X,ε be the family of densities of
(Y, V ) conditional on every realisation (x, e) of (X, ε) induced by PY |X,ε,T . Then, by Theorem
1, PY,V |X,ε is a 1BCE of the baseline choice problem G. Therefore, the set of 1BCE of the
baseline choice problem G is non-empty.

Furthermore, the set of 1BCE of the baseline choice problem G is typically non-singleton.
Indeed, if the set of 1BCE was a singleton, then information would be essentially irrelevant,
i.e., a certain alternative would be optimal regardless of any extra information that the DM
might process.

3 Identification

Section 2 exploits Theorem 1 in Bergemann and Morris (2016) to provide robust predictions
about the DM’s optimal behaviour, i.e., to find a map from the model’s primitives to the DM’s
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optimal behaviour that does not depend on the specification of the information structure,
S ∈ S, that is processed by the DM. In this section we study the inverse of such a map to
conduct robust identification, i.e., to see what can be learnt about the model’s fundamentals
given the DM’s optimal behaviour without restrictions on S.

We start by discussing our assumptions about the data generating process (hereafter, DGP).

Assumption 1. (DGP) The DM faces the baseline choice problem

Gθ0 ≡ (Y ,X , E ,V , uθ0 ,Pθ0
V |X,ε,P

θ0
ε|X).

The sets Y , X , E , and V are finite. The DM processes some information structure from the
set, S, of admissible information structures. Given such information structure, the DM chooses
an alternative from Y according to the notion of optimal strategy given by Definition 1.

The payoff function, uθ0 , has a parametric form indexed by the finite dimensional vector of
parameters θ1,0 ∈ Θ1 ⊆ RK1 . The probability mass functions collected in Pθ0

V |X,ε and P
θ0
ε|X belong

to parametric families indexed by the finite dimensional vectors of parameters θ2,0 ∈ Θ2 ⊆ RK2

and θ3,0 ∈ Θ3 ⊆ RK3 , respectively.
Gθ0 is known by the researcher up to θ0 ≡ (θ1,0, θ2,0, θ3,0) ∈ Θ ≡ Θ1×Θ2×Θ3 ⊆ RK1+K2+K3 ,

where the subscript “0” denotes the primitives of the true model and the true underlying DGP.
The information structure processed by the DM is unobserved by the researcher. Further, in
case of multiple optimal strategies (i.e., ties with non-zero measure), the DM selects an optimal
strategy according to a selection rule that is unobserved by the researcher.

The probability mass function of (Y,X) which results from the decision problem is denoted
by P 0

Y,X ∈ ∆(X ×Y). P 0
Y,X is nonparametrically identified by the sampling process and, hence,

treated as known in the identification analysis. �

Assumption 1 is similar to what is discussed in Magnolfi and Roncoroni (2017) and Syrgka-
nis, Tamer, and Ziani (2018) for an entry game setting and an auction setting, respectively. It
summarises the model of Section 2 and draws attention to the fact that the researcher is aware
only of the minimal amount of information available to the DM, consisting of the baseline choice
problem Gθ0 . The researcher remains agnostic about the information structure processed by
the DM, i.e., about how the DM’s prior on V may be updated. Also, the researcher is ignorant
of the DM’s selection rule, i.e., of how the DM resolves indifferences between alternatives with
the same expected payoff. The supports of X, ε, and V are assumed finite in order to make
the construction of the sharp identified set for θ0 tractable. When this is not the case, one can
discretise them, as is common in the empirical literature with partially identified parameters.

We choose to present a parametric setup to be consistent with most of the applied work
on discrete choice models in the literature. In particular, parameterising Pθ0

V |X,ε and Pθ0
ε|X

is necessary if the researcher wants to conduct welfare analysis via counterfactuals. This is
because running such counterfactuals requires recovering Pθ0

V |X,ε and Pθ0
ε|X . The researcher
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can proceed without parameterising Pθ0
V |X,ε and P

θ0
ε|X if interested only in the vector of payoff

parameters, θ1,0. In the main text we focus on the first (hereafter, parametric) case. We analyse
the second (hereafter, semiparametric) case in Appendix B. As discussed in Appendix B, the
semiparametric case is computationally easier. Intuitively, this is because the semiparametric
case requires recovering less objects. Specifically, while identification in the parametric case
entails solving quadratically constrained linear programming problems, identification in the
semiparametric case involves solving linear programming problems.

Note that Assumption 1 allows for endogeneity ofX. In the parametric case, the dependence
between X and (ε, V ) should be completely specified by the researcher up to some (unknown)
finite dimensional vector of parameters. In the semiparametric case the dependence between
X and (ε, V ) can be arbitrary.

Lastly, in order to nonparametrically identify P 0
Y,X , it is sufficient for the analyst to observe

the covariates and the alternative chosen by the DM for a large number of i.i.d. replications
of the decision problem. Note that the DM’s information structure and selection rule can vary
across such replications. In other words, we allow for heterogeneity of information structures
and selection rules across different agents in the population. We further discuss this aspect in
Equation (3) below.

Before continuing the analysis, let us introduce some useful notation. In what follows, we
denote by P0

Y |X the family of probability mass functions of Y conditional on every realisation
x of X induced by P 0

Y,X . We denote by θ ≡ (θ1, θ2, θ3) a generic element of Θ. For each x ∈ X
and PY |X(·|x) ∈ ∆(Y), let us rearrange the one-to-one image set of the mapping y ∈ Y 7→
PY |X(·|x) ∈ ∆(Y) into a |Y| × 1 dimensional vector. With some abuse of notation, let us still
denote such a vector by PY |X(·|x). Lastly, let us label the elements of Y as y1, ..., y|Y|−1, y|Y|.

Our objective is to investigate identification of θ0 under Assumption 1. Given the absence
of restrictions on information structures and selection rules, the model is incomplete in the
sense of Tamer (2003). This raises the possibility of partial identification and, consequently,
the challenge of tractably characterising the set of θs exhausting all the implications of the
model and data, i.e., the sharp identified set for θ0.

Intuitively, the sharp identified set for θ0 is the set of θs for which the model predicts a
probability mass function of (Y,X) that matches with P 0

Y,X . More formally, for each θ ∈ Θ and
S ∈ S, let Rθ,S be the collection of optimal strategies of the augmented choice problem (Gθ, S).
Lastly, for each θ ∈ Θ and x ∈ X , let R̄θ

Y |x be the collection of probability mass functions of Y
conditional on the realisation x of X that are induced by the model’s optimal strategies under
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θ, while remaining agnostic about the DM’s information structure and selection rule. That is,

R̄θY |x ≡ Conv
{
PY |X(·|x) ∈ ∆(Y) :

PY |X(y|x) =
∫
T ×V×E

PY |X,ε,T (y|x, e, t)PT |X,ε,V (t|x, e, v)P θV |X,ε(v|x, e)P θε|X(e|x)d(t, v, e) ∀y ∈ Y,

PY |X,ε,T ∈ Rθ,S , S ∈ S
}
,

(3)
where we have used the fact that Y is independent of V conditional on (X, ε, T ), because the
DM’s information on V is captured in the signal T .

Convexification allows us to include in R̄θ
Y |x probability mass functions of Y conditional

on the realisation x of X that are mixtures across information structures and selection rules.
Importantly, this implies that the DM’s information structure and selection rule can vary across
the many replications of the decision problem used to non parametrically identify P 0

Y,X . That
is, information structures and selection rules can be heterogenous across different agents in the
population.10 It follows that the sharp identified set for θ0 can be defined as

Θ∗ ≡ {θ ∈ Θ : P 0
Y |X(·|x) ∈ R̄θ

Y |x ∀x ∈ X}. (4)

Unfortunately, the definition of Θ∗ in (4) seems hardly useful in practice. This is because
computing R̄θ

Y |x is intractable due to the necessity of exploring the large class S. In what
follows we explain how to overcome such an issue by using Theorem 1 of Section 2.5. In
particular, for each θ ∈ Θ, let Qθ be the collection of 1BCEs of the baseline choice problem Gθ.
Moreover, for each θ ∈ Θ and x ∈ X , let Q̄θY |x be the collection of probability mass functions of
Y conditional on the realisation x of X that are induced by the 1BCEs of the baseline choice
problem Gθ, while remaining agnostic about the DM’s selection rule. That is,

Q̄θY |x ≡
{
PY |X(·|x) ∈ ∆(Y) :

PY |X(y|x) =
∑

(e,v)∈E×V
PY,V |X,ε(y, v|x, e)P θε|X(e|x) ∀y ∈ Y,PY,V |X,ε ∈ Qθ

}
.

(5)

Theorem 1 of Section 2.5 implies that R̄θ
Y |x = Q̄θY |x ∀x ∈ X and ∀θ ∈ Θ. Therefore, one

can rewrite Θ∗ by using the notion of 1BCE, as formalised in Proposition 2.

Proposition 2. (Characterisation of Θ∗ through the notion of 1BCE) Let

Θ∗∗ ≡ {θ ∈ Θ : P 0
Y |X(·|x) ∈ Q̄θY |x ∀x ∈ X}.

Under Assumption 1, Θ∗ = Θ∗∗. �
10This means that in our framework different agents may choose different alternatives because of taste

heterogeneity (different realisation of X and ε), different cognitive heterogeneity (different S), signal hetero-
geneity (different realisation of T , for a given S), different selection rule (different choice among equally ranked
alternatives), etc.
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As explained in Section 2.5, recall that the set of 1BCE of the baseline choice problem
Gθ is convex because it is defined by linear equalities and inequalities. Therefore, for each
x ∈ X and θ ∈ Θ, Q̄θY |x is also convex. Constructing Θ∗ as characterised in Proposition 2 is
computationally feasible by leveraging on the convexity of Q̄θY |x for each x ∈ X and θ ∈ Θ.
This is formalised in Proposition 3.

Let B|Y| be the unit ball in R|Y|, i.e., B|Y| ≡ {b ∈ R|Y| : bT b ≤ 1}. Let S|Y| be the unit sphere
in R|Y|, i.e., S|Y| ≡ {b ∈ R|Y| : bT b = 1}.

Proposition 3. (Construction of Θ∗) Under Assumption 1:

(i) For each θ ∈ Θ, θ ∈ Θ∗ if and only if

max
b∈B|Y|

min
PY |X(·|x)∈Q̄θ

Y |x

bT [P 0
Y |X(·|x)− PY |X(·|x)] = 0, (6)

∀x ∈ X .

(ii) For each θ ∈ Θ and x ∈ X , (6) can be rewritten as a quadratically constrained linear
maximisation problem.

(iii) For each θ ∈ Θ, θ ∈ Θ∗ if and only if

− bT


P 0
Y |X(y1|x)

...
P 0
Y |X(y|Y|−1|x)

+ max
PY |X(·|x)∈Q̄θ

Y |x

bT


PY |X(y1|x)

...
PY |X(y|Y|−1|x)

 ≥ 0 ∀b ∈ S|Y|−1, (7)

∀x ∈ X .

�

Proposition 3 (i) states that, in order to determine whether a candidate vector of parameters
belongs to Θ∗, the researcher should solve (6) for each x ∈ X . In fact, following Beresteanu,
Molchanov, and Molinari (2011), one can exploit the convexity of Q̄θY |x to rewrite the condition
P 0
Y |X(·|x) ∈ Q̄θY |x as

max
b∈B|Y|

[bTP 0
Y |X(·|x)− sup

PY |X(·|x)∈Q̄θ
Y |x

bTPY |X(·|x)] = 0, (8)

where the map
b ∈ R|Y| 7→ sup

PY |X(·|x)∈Q̄θ
Y |x

bTPY |X(·|x) ∈ R,

is the support function of Q̄θY |x. Some simple algebraic manipulations reveal that (8) is equal
to (6). (6) is a max-min problem and can be computationally costly to solve. However, note
that the inner constrained minimisation problem in (6) is linear in PY |X(·|x). Thus, it can

17



be replaced by its dual, which consists of a linear constrained maximisation problem. More-
over, the outer constrained maximisation problem in (6) has a quadratic constraint, bT b ≤ 1.
Therefore, as claimed by Proposition 3 (ii), (6) can be rewritten as a quadratically constrained
linear maximisation problem which is a tractable exercise. Lastly, Proposition 3 (iii) expresses
the identification problem as a collection of inequalities. Such alternative representation is
exploited in Section 5 to conduct inference. Similar results to Proposition 3 are discussed in
Section 3.3. and Appendix A of Magnolfi and Roncoroni (2017) for an entry game setting.

4 Simulations

In this section we investigate the informativeness of our model about the primitives of interest
under various data generating processes.

As a first exercise, we construct the collection of choice probabilities predicted by 1BCEs
under various DGPs. In particular, we consider the transport choice problem discussed in
Section 2.4 with Y ≡ {0, 1, 2} and no covariates, under the following DGPs.

1. εi is independent of Vi. The probability mass function of εi is obtained as the density
of a normal random vector with mean µε and variance covariance matrix Σε, discretised
and truncated to have support E ≡ {0, 1, ..., 5}3, i.e.,

Pε(e) =
1

2πdet(Σε)−
1
2 exp− 1

2 (e−µε)′Σ−1
ε (e−µε)∑

e∈E
1

2πdet(Σε)−
1
2 exp− 1

2 (e−µε)′Σ−1
ε (e−µε)

, (9)

for each e ∈ E . The probability mass function of Vi is obtained in an analogous way. In
particular, we consider:

(DGP1): µε = µV ≡ (2.5, 2.5, 2.5)′, Σε = ΣV ≡

1 0 0
0 1 0
0 0 1

. We denote by DGP1deg the case

where Vi is distributed as in DGP1 but εi is degenerate with support E ≡ {(0, 0, 0)′}.

(DGP2): µε ≡ (4.074, 4.529, 0.635)′, µV ≡ (4.567, 3.162, 0.488)′, Σε = ΣV ≡

1 0 0
0 1 0
0 0 1

. We

denote by DGP2deg the case where Vi is distributed as in DGP2 but εi is degenerate
with support E ≡ {(0, 0, 0)′}.

(DGP3): µε ≡ (3.221, 1.904, 3.315)′, µV ≡ (2.591, 3.834, 4.669)′, Σε ≡

3.164 0.977 0.378
0.977 3.235 0.361
0.377 0.361 3.544

,
ΣV ≡

3.090 0.215 0.865
0.215 3.239 0.659
0.865 0.658 3.031

. We denote by DGP3deg the case where Vi is distributed

as in DGP3 but εi is degenerate with support E ≡ {(0, 0, 0)′}. .
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2. (DGP4): {εi,0, εi,1, εi,1, Vi,0, Vi,1, Vi,1} are mutually independent and distributed as Pois-
sons with support {0, 1, ..., 5} and rates equal to {0.4, 0.1, 0.9, 0.2, 0.8, 0.5}, respectively.
We denote by DGP4deg the case where Vi is distributed as in DGP4 but εi is degenerate
with support E ≡ {(0, 0, 0)′}.

3. (DGP5): {εi,0, εi,1, εi,1, Vi,0, Vi,1, Vi,1} are mutually independent and distributed as Bino-
mials with number of trials equal to 5 and probability of success in each trial equal to
{0.587, 0.123, 0.611, 0.001, 0.801, 0.521}, respectively. We denote by DGP5deg the case
where Vi is distributed as in DGP5 but εi is degenerate with support E ≡ {(0, 0, 0)′}.

Let R̄θ0,comp
Y be the collection of choice probabilities induced by the model’s optimal strategies

when the researcher assumes that agents are endowed with the complete information structure.
Let R̄θ0,deg

Y be the collection of choice probabilities that are induced by the model’s optimal
strategies when the researcher assumes that agents are endowed with the degenerate informa-
tion structure. Finally, recall that Q̄θ0

Y is the collection of choice probabilities that are induced
by 1BCEs, as defined in Equation (5). Figure 1 represents the sets Q̄θ0

Y (black region), R̄θ0,comp
Y

(red region), and R̄θ0,deg
Y (blue region) under the DGPs described above. The pictures in the

left column are for DGP1, DGP2, DGP3, DGP4, and DGP5, respectively. The pictures in the
right column are for DGP1deg, DGP2deg, DGP3deg, DGP4deg, and DGP5deg respectively. By
Theorem 1, the collections of choice probabilities induced by the model’s optimal strategies
under the complete and the degenerate information structures are contained in the collection
of choice probabilities induced by 1BCEs. That is, R̄θ0,comp

Y and R̄θ0,comp
Y are subsets of Q̄θ0

Y .
Further, in all the DGPs considered, except DGP1deg, Q̄θ0

Y is a strict subset of the unit simplex.
Moreover, the collection of choice probabilities induced by 1BCEs is a relatively small subset
of all possible choice probabilities.

As a second exercise, we construct the sharp identified set for θ0 in various models. In par-
ticular, we consider the transport choice problem discussed in Section 2.4 with Y ≡ {0, 1, 2, 3},
Xi,y scalar for each transport option y ∈ Y \ {0}. To generate the data we obtain the proba-
bility mass function of Xi as the density of a normal random vector with mean and variance
covariance matrix

µX ≡ (0.629, 0.812,−0.746)′, ΣX ≡

3.913 0.455 0.531
0.455 3.547 0.558
0.531 0.558 3.971

,
respectively, discretised and truncated to have support X ≡ {−1, 0, 1} as done in (9). Further,
we impose

β0 ≡ (−2.5,−1.8− 0.9)′.

Also, we assume that (εi, Vi) is independent of Xi and that εi is independent of Vi. The
probability mass function of εi is obtained as the density of a normal random vector with mean
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and variance covariance matrix

µε ≡ 03×1, Σε ≡

1/2 ρ0 ρ0

ρ0 σ2
0 ρ0

ρ0 ρ0 σ2
0

,
respectively, discretised and truncated to have support E ≡ {0, 1, ..., 5}3 as done in (9). In
particular, we impose ρ0 ≡ 0.25 and σ2

0 ≡ 1.5. The variance of εi,1 is normalised to 1/2.
The probability mass function of Vi is obtained in an analogous way. Finally, the empirical
choice probabilities are derived under the assumption that half of the population processes
the complete information structure (i.e., half of the population observes the realisation of Vi)
and half of the population processes the degenerate information structure (i.e., half of the
population does not observe the realisation of Vi and decides by using a posterior equal to the
prior). Hereafter, we refer to this DGP as DGP6. The black regions in Figure 2 represent
the projections of the sharp identified set for θ0 ≡ (β0,1, β0,2, β0,3, ρ0, σ

2
0) along the axis of

β0,1, β0,2, β0,3. The red dots in Figure 2 represent β0,1, β0,2, β0,3. The black regions are tight
and informative about the signs and magnitudes of β0,1, β0,2, β0,3. Lastly, the projection of the
sharp identified for θ0 along the axis of ρ0 and σ2

0 are [−0.15, 0.45] and [0.25,∞).
We also consider the insurance choice problem discussed in Section 2.4 with Y ≡ {1, 2, 3, 4}

and deductibles D ≡ (100, 200, 500, 1000). For each insurance plan y ∈ Y , we generate the
data by assuming that the premium, Pi,y, is equal to P base

i × λy, where (λ1, λ2, λ3, λ4) ≡
(5/6, 7/10, 3/10, 1/10) and P base

i is uniformly distributed on {100, 200, 300}. Given that the
utility function belongs to the CARA family, payoffs can be computed without observing Wi.
We assume that Zi entering (2) is scalar and uniformly distributed on {2.0000, 2.4000, 2.8000}.
We also assume that ηi entering (2) is equal to ξi+ τi, where (ξi, τi) is distributed as a bivariate
normal with mean and variance covariance matrix

µη,τ ≡ (0, 5)′, Ση,τ ≡
(

2 0
0 0.5

)
,

respectively. We impose β0 ≡ 0.5 in (2). The probability mass function of the coefficient of
risk aversion, εi, is obtained as the density of a Beta distribution with parameters µ0,1 ≡ 1 and
µ0,2 ≡ 2, discretised and truncated in order to have support E ≡ {0.005, 0.010, 0.015, ..., 0.100}.
That is,

Pε(e) =
eµ0,1−1(1−e)µ0,2−1

B(µ0,1,µ0,2)∑
e∈E

eµ0,1−1(1−e)µ0,2−1

B(µ0,1,µ0,2)

,

for each e ∈ E , where B(µ0,1, µ0,2) ≡ Γ(µ0,1)Γ(µ0,2)
Γ(µ0,1+µ0,2) and Γ is the Gamma function. Finally, the

empirical choice probabilities are derived under the assumption that one third of the population
processes the complete information structure (i.e., one third of the population observes ηi), one
third of the population process the degenerate information structure (i.e., one third of the
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population does not observe ηi and decides by using a posterior equal to the prior), and one
third of the population observes ξi but not τi. Hereafter, we refer to this DGP as DGP7.
The black regions in Figure 3 represent the projections of the sharp identified set for θ0 ≡
(β0, µ0,1, µ0,2) along each axis. The red dots in Figure 3 represent β0, µ0,1, µ0,2. The black
regions are informative about the signs of all the parameters. Further, the projections for β0

and µ0,1 are bounded and tight, while the projection for µ0,2 is unbounded above.
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Figure 1: The pictures in the left column represent the sets Q̄θ0
Y (black region), R̄θ0,comp

Y (red
region), and R̄θ0,deg

Y (blue region) under DGP1, DGP2, DGP3, DGP4, and DGP5, respectively.
The pictures in the right column are for DGP1deg, DGP2deg, DGP3deg, DGP4deg, and DGP5deg
respectively. 22



Figure 2: The figure is based on DGP6. The black regions represent the projections of the
sharp identified set for θ0 ≡ (β0,1, β0,2, β0,3, ρ0, σ

2
0) along the axis of β1, β2, β3. The red dot

represents β0,1, β0,2, β0,3.

Figure 3: The figure is based on DGP7. The black regions represent the projections of the
sharp identified set for θ0(β0, µ0,1, µ0,2) along each axis. The red dot represents β0, µ0,1, µ0,2.
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5 Inference

Identification of the true parameter vector, θ0, relies on the assumption that the true density
of the observables, P 0

Y,X , is known by the researcher. However, when doing an empirical
analysis, the researcher should replace P 0

Y,X with its sample analogue resulting from having
i.i.d. observations, {Yi, Xi}ni=1. Given α ∈ (0, 1), this section illustrates how to construct a
uniformly asymptotically valid (1−α) confidence region, Cn,1−α, for each θ ∈ Θ∗. In particular,
we suggest to apply the generalised moment selection procedure by Andrews and Shi (2013)
(hereafter, AS), as detailed in Appendix B.1 of Beresteanu, Molchanov, and Molinari (2011)
(hereafter, BMM).11 Cn,1−α is obtained by inverting a test with null hypothesis H0 : θ0 = θ

for every θ ∈ Θ. Such a test rejects H0 if TSn > ĉn,1−α(θ), where TSn is a test statistic and
ĉn,1−α(θ) is a corresponding critical value. Thus, Cn,1−α ≡ {θ ∈ Θ: TSn(θ) ≤ ĉn,1−α(θ)}. The
remainder of the section explains how to compute TSn(θ) and ĉn,1−α(θ) for any θ ∈ Θ.

First, as claimed by Proposition 3 (iii), our model generates conditional moment inequali-
ties. In fact, Proposition 3 (iii) can be rewritten as

θ ∈ Θ∗ ⇔ E[m(Y,X; b, θ)|X = x] ≥ 0 ∀b ∈ S|Y|−1, ∀x ∈ X ,

where

m(Y, x; b, θ) ≡ −bT


1{Y = y1}

...

1{Y = y|Y|−1}

+ max
PY |X(·|x)∈Q̄θ

Y |x

bT


PY |X(y1|x)

...

PY |X(y|Y|−1|x)

 .

Second, Lemma 2 in AS shows that conditional moment inequalities can be transformed into
equivalent unconditional moment inequalities by choosing appropriate instruments, h ∈ H,
where H is a collection of instruments and h is a function of X. In particular,

θ ∈ Θ∗ ⇔ E[m(Y,X; b, θ, h)] ≥ 0 ∀b ∈ S|Y|−1,∀h ∈ H a.s., (10)

where
m(Y,X; b, θ, h) ≡ m(Y,X; b, θ)× h(X).

Further, observe that (10) is equivalent to

θ ∈ Θ∗ ⇔ min
{

0, min
b∈S|Y|−1

E[m(Y,X; b, θ, h)]
}

= 0 ∀h ∈ H a.s.

11Note that the characterisation of Θ∗ in Proposition 2 is equivalent to the characterisation in Theorem 2.1
of BMM. This is because the Aumann expectation of the random closed set of 1BCE alternative predictions is
equal to Q̄θY |x, for each θ ∈ Θ and x ∈ X .
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In light of these remarks, BMM proposes as test statistic

TSn(θ) ≡
∫
H

min
{

0, [ min
b∈S|Y|−1

√
nm̄n(b, θ, h)]2

}
dΓ(h),

where Γ is a probability measure on H as explained in Section 3.4 of AS, and

m̄n(b, θ, h) ≡ 1
n

n∑
i=1

m(Yi, Xi; b, θ, h).

Theorem B.2 in BMM shows that, under some regularity conditions, TSn(θ) satisfies Assump-
tions S1-S4 and M2 of AS. This implies that AS’s procedure is applicable. Moreover, given
that the set X is finite, the analyst can use the uniform probability measure as suggested by
Example 5 in Appendix B of AS. That is,

TSn(θ) ≡ 1
|X |

∑
x∈X

min
{

0, [ min
b∈S|Y|−1

1√
n

n∑
i=1

m(Yi, Xi; b, θ)1{Xi = x}]2
}
. (11)

In practice, to compute (11), the researcher should calculate, for each x ∈ X ,

min
b∈S|Y|−1

1√
n

∑
i s.t.
xi = x

[−bT1i + max
PY |X(·|x)∈Q̄θ

Y |x

bT P̃Y |X(·|x)], (12)

where 1i ≡


1{yi = y1}

...

1{yi = y|Y|−1}

 and P̃Y |X(·|x) ≡


PY |X(y1|x)

...

PY |X(y|Y|−1|x)

. By rearranging terms, Ex-

pression (12) becomes

min
b∈S|Y|−1

max
PY |X(·|x)∈Q̄θ

Y |x

bT [− 1√
n

∑
i s.t.
xi = x

1i + nxi=x√
n
P̃Y |X(·|x)], (13)

where nxi=x is the number of observations featuring xi = x. (13) can be rewritten as a
quadratically constrained linear minimisation problem by following similar steps to the proof
of Proposition 3 (ii). Once (13) is computed for each x ∈ X , the analysts easily obtains TSn(θ).

To compute the critical value, we follow AS’s bootstrap method consisting of the following
steps. Specifically, for each x ∈ X , let

m̄n(b, θ, x) ≡ 1
n

n∑
i=1

m(Yi, Xi; b, θ)1{Xi = x}.

We draw Wn bootstrap samples using nonparametric i.i.d. bootstrap. For each w = 1, ...,Wn,
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we compute

TSn,w(θ) ≡ 1
|X |

∑
x∈X

min
{

0, [ min
b∈S|Y|−1

(
√
n(m̄∗n,w(b, θ, x)− m̄n(b, θ, x)) + ϕn(b, θ, x))]2

}
,

where m̄∗n,w(b, θ, x) is calculated just as m̄n(b, θ, x), but with the bootstrap sample in place of
the original sample, ϕn(b, θ, h) ≡ 1{ 1

κn

√
nm̄n(b, θ, h) > 1}×Bn, and {κn}n∈N, {Bn}n∈N are se-

quences of constants satisfying Assumption G.1 in AS. In particular, we use κn ≡ (0.3 log(n))1/2

and Bn ≡
(

0.4 log(n)
log(log(n))

)1/2
as suggested in Section 9 of AS. Lastly, ĉn,1−α(θ) is the (1−α) sample

quantile of {TSn,w(θ)}Wn
w=1.

6 Conclusions

In this paper we consider a single-agent, static, discrete choice model in which agents can face
attentional limits. This implies that the DM may have imperfect information about the pay-
offs of the available alternatives that will affect her choice. Instead of explicitly modelling the
information constraints, which can be susceptible to misspecification, we study identification
and inference in settings where the researcher remains agnostic about the mechanism deter-
mining the amount of information processed by the DM. Moreover, we put no restriction on
how the DM resolves ties. We exploit Theorem 1 in Bergemann and Morris (2016) to provide
a tractable characterisation of the sharp identified set for the preference parameters and study
inference in our imperfect information set up. Simulations reveal that the obtained bounds on
the preference parameters can be tight in several settings of economic interest.

We are currently working on an empirical illustration to real data. We also leave to future
research the possibility of using our methodology to test for the true information assumption
underlying the DGP.
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A Proofs

Proof of Proposition 1 We proceed by construction. Take any S ≡ (T ,PT |X,ε,V ) ∈ S. First,
note that the set Y is finite and, hence, compact. Second, the map y ∈ Y 7→ u(y, x, e, v) ∈ R
is continuous using the discrete metric for each x ∈ X , e ∈ E , and v ∈ V . Given the linearity
of integrals, the map y 7→

∫
V u(y, x, e, v)PT |x,e,v(t)PV |x,e(v)dv is also continuous for each x ∈ X ,

e ∈ E , and t ∈ T . Therefore, Weierstrass theorem ensures the existence of the minimum
and maximum of such a map. Given x ∈ X , e ∈ E , and t ∈ T , let y∗x,e,t ∈ Y be one of the
maximisers. Then, an optimal strategy is PY |X,ε,T such that for each x ∈ X , e ∈ E , and t ∈ T ,

PY |X,ε,T (y∗x,e,t|x, e, t) = 1 and PY |X,ε,T (ỹ|x, e, t) = 0 ∀ỹ ∈ Y \ {y∗x,e,t}.

Proof of Proposition 2 Take any θ ∈ Θ and x ∈ X . We show that if PY |X(·|x) ∈ Q̄θY |x, then
PY |X(·|x) ∈ R̄θ

Y |x. If PY |X(·|x) ∈ Q̄θY |x, then, by definition of Q̄θY |x, there exists PY,V |X,ε ∈ Q̄θ

inducing PY |X(·|x). By Theorem 1, it follows that there exists S ∈ S and PY |X,ε,T ∈ Rθ,S

such that PY |X,ε,T induces PY,V |X,ε. Thus, PY |X,ε,T induces PY |X(·|x) by the transitive property.
Therefore, by definition of R̄θ

Y |x, PY |X(·|x) ∈ R̄θ
Y |x.

Conversely, we show that PY |X(·|x) ∈ R̄θ
Y |x, then PY |X(·|x) ∈ Q̄θY |x. First, let R̃θ

Y |x ⊆
R̄θ
Y |x be the non-convexified collection of probability mass functions of Y conditional on the

realisation x of X that are induced by the model’s optimal strategies under θ. That is,

R̃θY |x ≡
{
PY |X(·|x) ∈ ∆(Y) :

PY |X(y|x) =
∫
T ×V×E

PY |X,ε,T (y|x, e, t)PT |X,ε,V (t|x, e, v)P θV |X,ε(v|x, e)P θε|X(e|x)d(t, v, e) ∀y ∈ Y,

PY |X,ε,T ∈ Rθ,S , S ∈ S
}
.

Take PY |X(·|x) ∈ R̃θ
Y |x. Then, by definition of R̃θ

Y |x, there exists S ∈ S and PY |X,ε,T ∈ Rθ,S

such that PY |X,ε,T induces PY |X(·|x). By Theorem 1, it follows that there exists PY,V |X,ε ∈ Qθ

inducing PY |X,ε,T . Thus, PY,V |X,ε induces PY |X(·|x) by the transitive property. Hence, by
definition of Q̄θY |x, PY |X(·|x) ∈ Q̄θY |x. Now, take any K elements from R̃θ

Y |x, for any K.
Denote such elements by P 1

Y |X(·|x) ∈ R̃θ
Y |x, ..., P

K
Y |X(·|x) ∈ R̃θ

Y |x. Given the arguments above,
it holds that P 1

Y |X(·|x) ∈ Q̄θY |X(·|x), ..., PK
Y |X(·|x) ∈ Q̄θY |x. Moreover, any convex combination of

P 1
Y |X(·|x), ..., PK

Y |X(·|x) belongs to Q̄θY |x because Q̄θY |x is convex. Therefore, every PY |X(·|x) ∈
R̄θ
Y |x is also contained in Q̄θY |x.
One can conclude that R̄θ

Y |x = Q̄θY |x ∀θ ∈ Θ and ∀x ∈ X . This implies Θ∗ = Θ∗∗.

Proof of Proposition 3 Step 1 shows Proposition 3 (i). Step 2 shows Proposition 3 (ii).
Step 3 shows Proposition 3 (iii). Similar derivations are discussed in Section 3.3. and Appendix
A of Magnolfi and Roncoroni (2017) for an entry game setting.
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Step 1 Fix any θ ∈ Θ and x ∈ X . By convexity of Q̄θY |x,

P 0
Y |X(·|x) ∈ Q̄θY |x ⇔ bTP 0

Y |X(·|x)− sup
PY |X(·|x)∈Q̄θ

Y |x

bTPY |X(·|x) ≤ 0 ∀b ∈ R|Y|. (A.1)

By the positive homogeneity of the support function, ∀b ∈ R|Y|,

bTP 0
Y |X(·|x)− sup

PY |X(·|x)∈Q̄θ
Y |x

bTPY |X(·|x) ≤ 0 ⇔ bT

||b||
P 0
Y |X(·|x)− sup

PY |X(·|x)∈Q̄θ
Y |x

bT

||b||
PY |X(·|x) ≤ 0.

(A.2)
Hence, by (A.2), (A.1) is equivalent to

P 0
Y |X(·|x) ∈ Q̄θY |x ⇔ bTP 0

Y |X(·|x)− sup
PY |X(·|x)∈Q̄θ

Y |x

bTPY |X(·|x) ≤ 0 ∀b ∈ B|Y|. (A.3)

Note that
bTP 0

Y |X(·|x)− sup
PY |X(·|x)∈Q̄θ

Y |x

bTPY |X(·|x) = 0 when b = 0|Y|. (A.4)

Hence, by (A.4), (A.3) is equivalent to

P 0
Y |X(·|x) ∈ Q̄θY |x ⇔ max

b∈B|Y|
[bTP 0

Y |X(·|x)− sup
PY |X(·|x)∈Q̄θ

Y |x

bTPY |X(·|x)] = 0. (A.5)

Lastly, given that Q̄θY |x is closed and bounded, (A.5) is equivalent to

P 0
Y |X(·|x) ∈ Q̄θY |x ⇔ max

b∈B|Y|
[bTP 0

Y |X(·|x)− max
PY |X(·|x)∈Q̄θ

Y |x

bTPY |X(·|x)] = 0. (A.6)

Also, ∀b ∈ R|Y|,

− max
PY |X(·|x)∈Q̄θ

Y |x

bTPY |X(·|x) = min
PY |X(·|x)∈Q̄θ

Y |x

−bTPY |X(·|x). (A.7)

Hence, by (A.7), (A.6) is equivalent to

P 0
Y |X(·|x) ∈ Q̄θY |x ⇔ max

b∈B|Y|
min

PY |X(·|x)∈Q̄θ
Y |x

bT [P 0
Y |X(·|x)− PY |X(·|x)] = 0 (A.8)

Therefore, by combining Proposition 2 with (A.8), we get that

θ ∈ Θ∗ ⇔ max
b∈B|Y|

min
PY |X(·|x)∈Q̄θ

Y |x

bT [P 0
Y |X(·|x)− PY |X(·|x)] = 0 ∀x ∈ X , (A.9)

which concludes our proof of Proposition 3 (i).
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Step 2 We first introduce some useful notation. For each θ ∈ Θ, x ∈ X , e ∈ E , and
PY,V |X,ε(·|x, e) ∈ ∆(Y × V), we rearrange the one-to-one image set of the mapping (y, v) ∈
Y × V 7→ PY,V |X,ε(·|x, e) ∈ ∆(Y × V) into a (|Y| · |V|) × 1 dimensional vector. With some
abuse of notation, we still denote such a vector by PY,V |X,ε(·|x, e). Moreover, for simplicity of
exposition and without loss of generality, we assume that ε and V are jointly independent of X
and that V is independent of (X, ε). The proof can be replicated without such independence,
at the cost of increasing notational complexity.

Fix any θ ∈ Θ and x ∈ X . Consider the max-min problem on the right-hand-side of (A.8),

max
b∈B|Y|

min
PY |X(·|x)∈Q̄θ

Y |x

bT [P 0
Y |X(·|x)− PY |X(·|x)] (A.10)

By using Definition 3 to write explicitly the feasible set Q̄θY |x, (A.10) is

max
b∈R|Y|

min
PY |X(·|x) ∈ R|Y|+

PY,V |X,ε(·|x, e) ∈ R|Y|·|V|+ , ∀e ∈ E

bT [P 0
Y |X(·|x)− PY |X(·|x)],

s.t. [b ∈ B|Y|]: bT b ≤ 1,

[1BCE-Consistency]:
∑
y∈Y

PY,V |X,ε(y, v|x, e) = P θV (v) ∀v ∈ V,∀e ∈ E ,

[1BCE-Obedience]: −
∑
v∈V

PY,V |X,ε(y, v|x, e)[uθ(y, x, e, v)− uθ(y′, x, e, v)] ≤ 0

∀y ∈ Y,∀y′ ∈ Y \ {y},∀e ∈ E ,

[1BCE-model predictions]: PY |X(y|x) =
∑

(e,v)∈E×V

PY,V |X,ε(y, v|x, e)P θε (e) ∀y ∈ Y,

[Probability requirements]:
∑

(y,v)∈Y×V

PY,V |X,ε(y, v|x, e) = 1 ∀e ∈ E .

(A.11)

We simplify (A.11) by introducing new variables. Let Z1 be the |Y| × 1 vector P 0
Y |X(·|x)−

PY |X(·|x) . Let Z2 be the (|Y| · |V| · |E|) × 1 vector collecting PY,V |X,ε(·|x, e) for each e ∈ E .
Lastly, let Z be the (|Y|+ |Y| · |V| · |E|)× 1 vector collecting Z1 and Z2. Given that Q̄θY |x is a
subset of the (|Y| − 1)-dimensional simplex, (A.11) can be rewritten as

max
b∈R|Y|−1

min
Z1 ∈ R|Y|

Z2 ∈ R|Y|·|V|·|E|+

[
bT 0 0T|Y|·|V|·|E|

]
Z,

s.t. bT b ≤ 1,

Aeq Z = Beq,

Aineq Z ≤ 0dineq ,

(A.12)

where Aeq is the matrix of coefficients multiplying Z in the equality constraints of (A.11) with
deq rows, Beq is the vector of constants appearing in the equality constraints of (A.11), and
Aineq is the matrix of coefficients multiplying Z in the inequality constraints of (A.11) with
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dineq rows.
Further, the inner constrained minimisation problem in (A.12) is linear. Hence, by strong

duality, can be replaced with its dual. This allows us to solve one unique maximisation problem.
Precisely, the solution of (A.12) is equivalent to the solution of

max
b ∈ R|Y|−1

λeq ∈ Rdeq

λineq ∈ Rdineq
+

[
−BT

eq 0Tdineq

]
λ,

s.t. bT b ≤ 1,

[AT ]1:|Y|λ =
−b

0

 ,
− [AT ]|Y|+1:|Y|+|Y|·|V|·|E|λ ≤ 0|Y|·|V|·|E|,

(A.13)

where λ is the (deq + dineq) × 1 vector collecting λeq and λineq, A is the (deq + dineq) × (|Y| +
|Y| · |V| · |E|) matrix obtained by stacking one on top of the other the matrices Aeq and Aineq,
and [A]i:j denotes the sub-matrix of A containing the rows i, i+ 1, ..., j of A.

Therefore, the solution of (A.10) is equivalent to the solution of (A.13). Moreover, (A.13) is
a quadratically constrained linear maximisation problem. In particular, the first constraint in
(A.13) is quadratic. The objective function and the remaining constraints in (A.13) are linear.

Step 3 Fix any θ ∈ Θ and x ∈ X . (A.1) is equivalent to

P 0
Y |X(·|x) ∈ Q̄θY |x ⇔ − bTP 0

Y |X(·|x) + sup
PY |X(·|x)∈Q̄θ

Y |x

bTPY |X(·|x) ≥ 0 ∀b ∈ R|Y|. (A.14)

By (A.2), (A.14) is equivalent to

P 0
Y |X(·|x) ∈ Q̄θY |x ⇔ − bTP 0

Y |X(·|x) + sup
PY |X(·|x)∈Q̄θ

Y |x

bTPY |X(·|x) ≥ 0 ∀b ∈ S|Y|. (A.15)

Moreover, given that Q̄θY |x is closed and bounded, (A.15) is equivalent to

P 0
Y |X(·|x) ∈ Q̄θY |x ⇔ − bTP 0

Y |X(·|x) + max
PY |X(·|x)∈Q̄θ

Y |x

bTPY |X(·|x) ≥ 0 ∀b ∈ S|Y|. (A.16)

Lastly, given that Q̄θY |x is a subset of the (|Y|− 1)-dimensional simplex, (A.16) is equivalent to

− bT


P 0
Y |X(y1|x)

...
P 0
Y |X(y|Y|−1|x)

+ max
PY |X(·|x)∈Q̄θ

Y |x

bT


PY |X(y1|x)

...
PY |X(y|Y|−1|x)

 ≥ 0 ∀b ∈ S|Y|−1. (A.17)
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Therefore, by combining Proposition 2 with (A.17), we get that

θ ∈ Θ∗ ⇔ −bT


P 0
Y |X(y1|x)

...
P 0
Y |X(y|Y|−1|x)

+ max
PY |X(·|x)∈Q̄θ

Y |x

bT


PY |X(y1|x)

...
PY |X(y|Y|−1|x)

 ≥ 0 ∀b ∈ S|Y|−1. (A.18)

which concludes our proof of Proposition 3 (iii).

B Semiparametric case

Suppose that the researcher is interested in identifying only the vector of payoff parameters,
θ1,0. In such a case, the researcher can proceed without parameterising the probability mass
functions contained in PV |X,ε and Pε|X . Further, determining whether a candidate vector of
parameters belongs to the sharp identified sets amounts to solving some linear programming
problems. We formalise these arguments below.

Let θ0 ≡ θ1,0. Following Proposition 2, the sharp identified set for θ0 can be characterised
as

Θ∗ = {θ ∈ Θ : ∃ Pε|X and PV |X,ε s.t. P 0
Y |X(·|x) ∈ Q̄θ,Pε|X ,PV |X,εx ∀x ∈ X}. (B.1)

Proposition B.1 explains how one can construct Θ∗.

Proposition B.1. (Construction of Θ∗) For each θ ∈ Θ and x ∈ X , consider the follow-
ing linear program with unknowns PY |X(·|x) ∈ ∆(Y), PY,V |X,ε(·|x, e) ∈ ∆(Y × V) ∀e ∈ E ,
PV |x,e(·|x, e) ∈ ∆(V) ∀e ∈ E , and Pε|X(·|x) ∈ ∆(E):

[Data=model predictions] P 0
Y |X(y|x) = PY |X(y|x) ∀y ∈ Y,

[1BCE-Consistency]:
∑
y∈Y

PY,V |X,ε(y, v|x, e) = PV |X,ε(v|x, e) ∀v ∈ V,∀e ∈ E ,

[1BCE-Obedience]: −
∑
v∈V

PY,V |X,ε(y, v|x, e)[uθ(y, x, e, v)− uθ(y′, x, e, v)] ≤ 0

∀y ∈ Y,∀y′ ∈ Y \ {y},∀e ∈ E ,

[1BCE-model predictions]: PY |X(y|x) =
∑

(e,v)∈E×V

PY,V |X,ε(y, v|x, e)Pε|X(e|x) ∀y ∈ Y,

[Probability requirements]:
∑

(y,v)∈Y×V

PY,V |X,ε(y, v|x, e) = 1 ∀e ∈ E .

(B.2)

Under Assumption 1, for each θ ∈ Θ,

θ ∈ Θ∗ ⇔ (B.2) is feasible ∀x ∈ X .

�

Proposition B.1 states that, in order to determine whether a candidate vector of parameters
belongs to Θ∗, the researcher should determine whether the linear program (B.2) is feasible.
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A similar result is discussed in Section 2 of Syrgkanis, Tamer, and Ziani (2018) for an auction
setting. We now provide the proof of Proposition B.1.

Proof of Proposition B.1 By (B.1), a candidate vector of parameters, θ ∈ Θ, belongs to
Θ∗ if and only if, for each x ∈ X , there exists PY |X(·|x) ∈ ∆(Y), PY,V |X,ε(·|x, e) ∈ ∆(Y × V)
∀e ∈ E , PV |x,e(·|x, e) ∈ ∆(V) ∀e ∈ E , and Pε|X(·|x) ∈ ∆(E) such that PY |X(·|x) = P 0

Y |X(·|x)
and PY |X(·|x) ∈ Q̄θ,Pε|X ,PV |X,εx . Further, by Definition 3, the condition PY |X(·|x) ∈ Q̄θ,Pε|X ,PV |X,εx

consists of these constraints:

[1BCE-Consistency]:
∑
y∈Y

PY,V |X,ε(y, v|x, e) = PV |X,ε(v|x, e) ∀v ∈ V,∀e ∈ E ,

[1BCE-Obedience]: −
∑
v∈V

PY,V |X,ε(y, v|x, e)[uθ(y, x, e, v)− uθ(y′, x, e, v)] ≤ 0

∀y ∈ Y,∀y′ ∈ Y \ {y},∀e ∈ E ,

[1BCE-model predictions]: PY |X(y|x) =
∑

(e,v)∈E×V

PY,V |X,ε(y, v|x, e)Pε|X(e|x) ∀y ∈ Y,

[Probability requirements]:
∑

(y,v)∈Y×V

PY,V |X,ε(y, v|x, e) = 1 ∀e ∈ E .

(B.3)

Therefore, θ ∈ Θ∗ if and only, for each x ∈ X , there exists PY |X(·|x) ∈ ∆(Y), PY,V |X,ε(·|x, e) ∈
∆(Y × V) ∀e ∈ E , PV |x,e(·|x, e) ∈ ∆(V) ∀e ∈ E , and Pε|X(·|x) ∈ ∆(E) such that PY |X(·|x) =
P 0
Y |X(·|x) and (B.3) is satisfied. This amounts to checking whether (B.2) is feasible for each
x ∈ X .
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