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Université Toulouse 1 Capitole,

Manufacture des Tabacs, 21 Allée

de Brienne, 31000 Toulouse,

France
2Abteilung für Mathematische

Stochastik, Albert-Ludwigs

University of Freiburg,

Eckerstrasse 1, D-79104 Freiburg,

Germany,

Full list of author information is

available at the end of the article
†ruschen@stochastik.uni-

freiburg.de

Abstract

The main aim of this paper is to introduce the notion of risk excess measure, to
analyze its properties, and to describe some basic construction methods. To
compare the risk excess of one distribution Q w.r.t. a given risk distribution P ,
we apply the concept of hemi-metrics on the space of probability measures. This
view of risk comparison has a natural basis in the extension of orderings and
hemi-metrics on the underlying space to the level of probability measures. Basic
examples of these kind of extensions are induced by mass transportation and by
function class induced orderings. Our view towards measuring risk excess adds to
the usually considered method to compare risks of Q and P by the values ρ(Q),
ρ(P ) of a risk measure ρ. We argue that the difference ρ(Q)− ρ(P ) neglects
relevant aspects of the risk excess which are adequately described by the new
notion of risk excess measure. We derive various concrete classes of risk excess
measures and discuss corresponding ordering and measure extension properties.
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1 Introduction
1.1 Motivation

The evaluation and comparison of risks are basic tasks of risk analysis. For the

evaluation of risks, the notion of risk measures—in particular of coherent and convex

risk measures—has been introduced in an axiomatic way for real risks in [1], [6],

[11] and has been extended to vector risks in [13], [3], and many others. This notion

leads to the comparison of two risks X,Y (resp., distributions Q,P ) by ρ(X)−ρ(Y )

(resp., ρ(P ) − ρ(Q)). If the main interest is to compare a risk X to a benchmark

risk Y w.r.t. a common risk measure ρ, then the one-sided distance

D+(X,Y ) = (ρ(X)− ρ(Y ))+, (1.1)

respectively,

D+(Q,P ) = (ρ(Q)− ρ(P ))+, (1.2)

is the induced comparison of risks (where x+ = max(x, 0) denotes the positive part

of x).

We argue that the comparisons in (1.1), (1.2) neglect some relevant part of mea-

suring the risk excess. This deficit can be seen in the analog simple case where for

the basic space E = Rd, the risk of a vector x = (x1, . . . , xd) ∈ Rd is measured by
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the Euclidean norm ρ(x) = |x|. In this case,

D+(x,y) = (|x| − |y|)+ (1.3)

gives a quantitative comparison of the new risk x w.r.t. a benchmark risk y, which

is not informative enough. If |x| = |y|, then the comparisons in (1.3) would not take

into account whether some or many components of x might be essentially larger

than those of y. A better measure for the risk excess would be

D+(x,y) =

d∑
i=1

(xi − yi)+. (1.4)

Another motivation comes from the fact that some concepts which have an impact

on the notion of risk are better defined in a relative manner than in absolute terms:

for example, the concept of “heavy tailedness” of a distribution (and the subsequent

idea of “tail risk”) is easier to define by comparing the “size of the tail” or “speed

of decrease of the density” of the distribution F to the corresponding “size of the

tail” or “speed of decrease of the density” of a benchmark distribution G (say, the

standard Gaussian one). These comparisons can be operationalized in a quantitative

measure of tail risk, e.g., by computing the difference of mass of the distribution F

over an α-quantile w.r.t. to the corresponding mass for the benchmark distribution

G over the same α-quantile, viz.,

Tα(F,G) :=

∫ 1

α

(
F−1(u)−G−1(u)

)
+
du

or, for operationalizing the comparisons of “speed of decrease of the density” by

something like,

τα(F,G) :=
F−1(α)− F−1(0.5)

F−1(0.75)− F−1(0.5)
×
(

G−1(α)−G−1(0.5)

G−1(0.75)−G−1(0.5)

)−1

see, e.g., [5, p. 45], [25]. See also the motivation in section 4.

1.2 Outline

In this paper, we propose to measure the risk excess of a risk distribution Q over

a given risk distribution P by a hemi-metric on the space of probability measures.

Hemi-metrics are a suitable tool for one-sided comparison of risks. When measuring

the risk excess of Q compared to P , it is natural to associate a one-sided distance

D+(Q,P )

on the space (M1(E),�) of probability measures, where � is a given stochastic

(pre)order � (see the forthcoming definition 2.3 in section 2). The stochastic order

� is related to the ordering ≤ on the underlying space E. This allows to consider

for a quantitative one-sided comparison of risks at the level of probability measures

as an extension of the order and distance structure on E.
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We discuss several classes of risk excess measures D+(Q,P ) and consider the ques-

tion when these are given as order extensions of hemi-distances d+ on the underlying

space E. Several relevant hemi-distances are induced by mass transportation and

thus give access to natural interpretation. One particular extension is given by a

version of the Kantorovich–Rubinstein theorem for hemi-distances. The paper de-

velops basic tools and notions for measuring the one-sided risk excess of a risk

distribution Q compared to P .

The paper is organized as follows: in section 2, we introduce the notion of hemi-

metrics which are basic for obtaining a quantitative description of one-sided distance

in a preordered space (E,≤). The risk excess measure D+(Q,P ) of Q w.r.t. P is

then introduced as a one-sided hemi-metric on the space of probability measures

M1(E). The ordering � on M1(E) is chosen consistent with the preorder ≤ on E

and describing a positive risk excess, i.e., Q � P if Q has no positive risk excess

w.r.t. P . We discuss several examples to describe the meaning of this notion and

the interplay of order and distance.

In section 3, we study several classes of interesting risk excess comparison measures

and corresponding extension properties of the preorderings on the underlying space.

A general class of risk comparison measures is introduced by considering worst-case

comparison over suitable classes of increasing functions. This is analog to the worst-

case representation of convex and coherent risk measures. There are several classes

of examples.

In section 4, we describe risk excess measures D+(X,Y ) on the space of random

variables. The class of compound risk excess measures is obtained for those mea-

sures which depend only on the joint law of the random elements (X,Y ). Mass

transportation gives a natural way to obtain minimal extensions of compound risk

excess measures to risk excess measures in the space of distributions, i.e., which

depend only on the marginal laws of X and Y . Dual representations of these risk

excess measures are obtained by a version of the Kantorovich–Rubinstein theorem

for hemi-metrics. Several examples illustrate these constructions.

In section 5, we introduce the concept of weak risk excess measure, which is a

risk excess measure without the weak identity property. Similarly to section 4, a

mass transportation formulation gives a way to obtain weak risk excess measures

as the maximal extension of compound risk excess measures. We also give a dual

representation of this risk excess measure and introduce several examples of weak

excess risk measures constructed from mass transportation problems.

Finally, in section 6, we consider dependence restrictions on the class of risk

pairs (X,Y ) and consider maximal and minimal excess risks with these restrictions.

These maximal and minimal excess risks do not define risk excess measures, but

give relevant and well-motivated bounds. For one and two-sided restrictions, we

obtain explicit formulas for the bounds.

2 Hemi-metrics and measuring risk excess
2.1 Hemi-metrics

As a motivation for the introduction of measuring the risk excess of distributions,

one could argue that, from the structural and phenomenological point of view, the

concept of risk combines aspects of the metric structure (a risk measure evaluates
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some “size” or “norm” on the space of distributions) and of the order structure

(there is an underlying preorder structure on the space of distributions which allows

one to say when one risk is larger than another). Such “quantitative measure of the

order” is encapsulated in the notion of hemi-metric, see [12, Chap. 6, p. 203]. (The

terminology is not completely standard and the notion of hemi-metric is also known

of as pseudo quasi-metric in the topology literature, while [19, p. 61] calls it a semi-

metric). We use the following definition:

Definition 2.1 (Hemi-metric) A hemi-metric or hemi-distance d+ on a set E is an

application d+ : E×E → R which satisfies the following axioms: for all x, y, z ∈ E,

(A1) positivity: d+(x, y) ≥ 0;

(A2) weak identity: x = y ⇒ d+(x, y) = 0;

(A3) triangle inequality: d+(x, z) ≤ d+(x, y) + d+(y, z).

The main difference with the notion of metric is the omittance of the symmetry

condition, and assuming only the weak identity property. For establishing a connec-

tion with a preorder ≤ on E, we introduce the notion of a one-sided hemi-metric.

Definition 2.2 (One-sided hemi-metric) Let d+ be a hemi-metric on a preordered

set (E,≤). Then, d+ is called a one-sided hemi-metric on (E,≤) if

(A4) x ≤ y ⇔ d+(x, y) = 0.

For two comparable elements, the one-sided hemi-metric of a smaller element x

to a larger element y is zero.

Remark 2.1 1 If E is a set and d+ a hemi-metric on E, one can endow E

with a preorder structure by setting

x ≤ y ⇔ d+(x, y) = 0. (2.1)

Then, by construction of ≤, we obtain that d+ is a one-sided hemi-metric on

E.

2 Hemi-norms and hemi-metrics:

When E has a vector space structure, a metric d can be induced in a natural

way by a norm ρ, as d(x, y) := ρ(x − y). Similarly, a hemi-norm ρ+ on E,

(i.e., a subadditive, positive homogeneous, non-negative functional ρ+ : E → R
satisfying the weak separation condition x = 0E ⇒ ρ+(x) = 0) defines a hemi-

metric d+ by setting

d+(x, y) := ρ+(x− y). (2.2)

In addition, if E has a preorder ≤ and ρ+ is a hemi-norm which has the

property that

x ≤ 0E ⇔ ρ+(x) = 0, (2.3)

then d+ in (2.2) defines a one-sided hemi-metric.
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More generally, if (E,≤, ρ) is a lattice-ordered normed vector space, one can

construct a one-sided hemi-metric compatible with ≤ by setting

d+(x, y) := ρ((x− y) ∨ 0E),

where ∨ is the least upper bound operation.

3 To any hemi-metric d+ on E, one can associate its dual hemi-metric d−,

obtained by symmetrization of d+,

d−(x, y) := d+(y, x). (2.4)

When d+ is a one-sided hemi-metric associated with the order ≤ on E, d−

is a one-sided hemi-metric associated with the corresponding dual order ≥ on

E.

A hemi-metric d+ induces a distance d by symmetrization

d∞(x, y) := max(d+(x, y), d−(x, y)),

or by taking the positive linear combination, say

d1(x, y) := αd+(x, y) + βd−(x, y), α, β > 0.

More generally, a hemi-metric allows defining a “one-sided” topology by set-

ting the open balls as

B+(x, r) := {y ∈ X , d+(x, y) < r}. (2.5)

4 The concept of a hemi-metric is implicit in several notions encountered in

analysis, probability, and statistics. For example, recall that a real-valued func-

tion f on a metric space (E, d) is upper semi-continuous at x0 iff

∀ε > 0,∃δ > 0, d(x, x0) ≤ δ ⇒ db+(f(x), f(x0)) ≤ ε,

where db+(x, y) := ρ+(x − y) = max(x − y, 0) is the usual basic one-sided

hemi-metric on (R,≤, |.|) (see Example 2.3 and (2.9) below).

2.2 Risk excess measures

After the discussion of hemi-metrics, we are now in a position to introduce the

main object of this paper, which is a measure of the risk excess of a distribution Q

w.r.t. P . To that aim, we assume that a preorder � is defined on the set M1(E)

of probability measures on a measurable space (E, E): P � Q describes that Q has

more risk than P .

Definition 2.3 (Risk excess measure) A risk excess measure D+ is defined as

an one-sided hemi-metric on the preordered space (M1(E),�), (or on a subset

M⊂M1(E)). D+(Q,P ) is called the risk excess of Q w.r.t. P .
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We illustrate below this concept with the following examples. A general class of

risk excess measure will be presented in a systematic way in section 3.

Example 2.1 (Stochastic ordering) On E = Rd, we consider the componentwise

order ≤, which is closely connected with the stochastic order �st: for a measurable

set B ⊂ E, define B↑ = {y ∈ E; ∃x ∈ B s.t. y ≥ x} and say that B is an

increasing set if B = B↑. Denote by I(E) the set of measurable increasing sets of

E.

The stochastic order �st is defined on M1(Rd) by

Q �st P ⇔ Q(B) ≤ P (B),

for all measurable sets B ∈ I(E). A corresponding risk excess measure is given by

Dst
+ (Q,P ) := sup{(Q(B)− P (B))+;B ∈ I(E)}. (2.6)

There exists no risk excess of Q w.r.t. P , i.e.,

Dst
+ (Q,P ) = 0 ⇔ Q(B) ≤ P (B), ∀B ∈ I(E),

⇔ Q �st P.

By the well-known Strassen theorem (see [31] and e.g., [29, Theorem 1.18, p. 22]

), this is equivalent to the existence of random vectors X ∼ Q, Y ∼ P s.t. X ≤ Y

a.s.

In other words, the distribution Q is considered more safe than P if one can

construct representations X of Q and Y of P s.t. all coordinates of X are lower than

those of Y. Q has a positive risk excess w.r.t. P if some of the components of any

representation X of Q exceed the corresponding components of any representation

Y of P . Of course, this gives a very strict notion of no risk excess.

Example 2.2 (Levy–Prokhorov) Let E be a space with a hemi-metric d+. Define

a “one-sided” topology on E by setting the open balls as in (2.5). Let E be the

corresponding Borel σ−algebra. For two probability measures P,Q ∈ M1(E, E) ,

define

DLP
+ (Q,P ) = inf{ε > 0 : Q(A) ≤ P (Aε) + ε, A open}, (2.7)

where Aε := {x ∈ E : ∃a ∈ A, d+(a, x) < ε} = ∪x∈AB+(x, ε). Then, DLP
+ is a

one-sided risk excess measure and DLP
+ (Q,P ) = 0 iff Q(A) ≤ P (A) for all A ∈ E.

One can replace Aε by Aε] := {x ∈ E : ∃a ∈ A, d+(a, x) ≤ ε}, and the open

sets by the closed set in the definition (2.7), see [7], [8, sect. 8], [9, Chap. 11.3].

For the one-sidedness, if Q(A) ≤ P (A) for all A ∈ E, then, for every ε > 0,

Q(A) ≤ P (A) ≤ P (Aε) + ε, since A ⊂ Aε. Hence, DLP
+ (Q,P ) ≤ ε. Letting ε ↓ 0

yields DLP
+ (Q,P ) = 0. Conversely, if DLP

+ (Q,P ) = 0, there exists a sequence εn ↓ 0

s.t. for all closed sets A, Q(A) ≤ P (Aεn) + εn. Since Aεn ↓ A = A , this yields

Q(A) ≤ P (A) for all closed sets A. Hence, Q(A) ≤ P (A) also for all A ∈ E.
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2.3 Examples of hemi-metrics

Hemi-metrics are suitable tools to measure one-sided distances. We illustrate the

meaning of this notion and the interplay of order and distance via the following

example, which will be used constantly throughout the paper.

Example 2.3 (Standard examples on (E,≤))

1 Discrete one-sided hemi-metric:

Let (E,≤) be a preordered space, then

d≤+(x, y) =

0 if x ≤ y
1 else

(2.8)

defines a one-sided hemi-metric on (E,≤), which we call the discrete one-sided

hemi-metric on (E,≤).

2 lp hemi-metric:

On E = R1, one can decompose the absolute value into its positive and neg-

ative parts |x| = x+ + x− = ρ+(x) − ρ+(−x), viz., into two hemi-norms

satisfying (2.3). As a consequence of (2.2), the metric

|x− y| = d+(x, y)− d+(−y,−x) = d+(x, y) + d−(x, y)

is decomposed as a sum of two one-sided hemi-metrics (d+, d−) associated

with the dual orders (≤,≥). The basic one-sided hemi-metric

db+(x, y) := (x− y)+ (2.9)

describes in a quantitative way the ordering relationship ≤. Compared to the

discrete hemi-metric (2.8), it also contains information on the magnitude of

the one-sided departure of two elements.

Similarly on (E,≤) = (Rd,≤) supplied with the componentwise (product) or-

der

x ≤ y⇔ xi ≤ yi, 1 ≤ i ≤ d,

the lp hemi-norms, defined as

lp+(x) := (

d∑
i=1

(x+
i )p)1/p, 1 ≤ p <∞, (2.10)

l∞+ (x) := max{x+
i }

induce the one-sided lp hemi-metrics

dp+(x,y) := lp+(x− y), 1 ≤ p ≤ ∞.

Several of the hemi-metrics have a direct interpretation and extensions as risk

measures for probability distributions. We give two examples:
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Example 2.4 1 τ−quantiles:

Consider on the real line E = R1, the hemi-norm

ρτ (x) := τx+ + (1− τ)x− = τx+ + (1− τ)(−x)+, 0 < τ < 1 (2.11)

induces, by Remark 2.1 and (2.2), a hemi-metric

dτ (x, y) := ρτ (x− y). (2.12)

It is well known that this hemi-metric can be used to define τ−quantiles qτ (Y )

(viz., the Value at Risk) of a random variable Y as a minimizer of E[ρτ (Y −
y)], i.e.,

qτ (Y ) := F−1
Y (τ) = arg inf

y
E[ρτ (Y − y)] (2.13)

= arg inf
y
E[dτ (Y, y)] = V aRτ (Y ), (2.14)

see [15, p. 5]. Note, however, that the order induced by dτ reduces to the trivial

order =, as dτ (x, y) = 0 iff x = y.

2 Half-space depth, departure in direction u:

A multivariate generalization of the preceding example can be defined as fol-

lows. On E = Rd, we define for any unit vector u an ordering (the length in

the direction u), by

x ≤u y⇔ uT (y − x) ≥ 0, (2.15)

where xT denotes the transpose of x. With this ordering,

du+(x,y) =

1 if uT (y − x) > 0

0 else
(2.16)

defines, as in (2.8), a one-sided hemi-metric. It is one if the length of y in

direction u is greater than that of x, and is zero else.

This one-sided hemi-metric has, as basic application, the definition of the half-

space depth function, which describes the degree of outlyingness of a point

x ∈ Rd w.r.t. a probability measure P on Rd. It is defined as

D+(x, P ) := inf
u∈Sd−1

∫
du+(x, y)dP (y)

= inf
u∈Sd−1

∫
1{uT (y−x)>0}dP (y), (2.17)

where Sd−1 is the unit sphere of Rd. Several modifications of this definition are

useful to describe a one-sided degree of outlyingness (or risk) or quantitative

versions of it. Two relevant examples are

D1
+(x, P ) := inf

u∈S+
d−1

∫
1{uT (y−x)>0}dP (y), (2.18)
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or

D2
+(x, P ) := inf

u∈S+
d−1

∫
(uT (y − x))+dP (y),

where S+
d−1 = Sd−1 ∩ Rd,+ is the part of the unit sphere in the positive cone

x ≥ 0. We mention that a very general approach to multivariate quantiles can

be found in [10].

At last, we briefly mention some examples of one-sided hemi-metrics which may

appear in related contexts.

Example 2.5 1 Schur-order ≤S on Rd:

The majorization, or Schur order ≤S, is useful to compare vectors x,y ∈
Rd with identical sums w.r.t. their degree of dispersion, see e.g., [17]. In a

natural way, this ordering extends to an ordering on M1(Rd), comparing the

relative degree of dispersions of two measures. Let x,y ∈ Rd, Γ(d) the set of

permutations of {1, . . . , d}. The Schur-ordering on Rd x ≤S y is defined by,

d∑
k=l

xγ(k) ≤
d∑
k=l

yβ(k), l = 2, . . . , d,

d∑
k=1

xγ(k) =

d∑
k=1

yβ(k) (2.19)

where γ, β ∈ Γ(d) are the decreasing rearrangements of x and y:

xγ(1) ≥ xγ(2) ≥ . . . ≥ xγ(d), yβ(1) ≥ yβ(2) ≥ . . . ≥ yβ(d).

≤S is a preorder: x ≤S y and y ≤S x only imply that the components of each

vector are equal, but not necessarily in the same order. Geometrically, x ≤S y
if and only if x is in the convex hull of all vectors obtained by permuting the

coordinates of y. When x,y stands for a pair of discrete probability measures

on the same set of d-points, the norming condition (2.19) is satisfied as the

sum is normalized to one.

Say that x and y are Schur-comparable if
∑n
i=1 xi =

∑n
i=1 yi. The degree

of dispersion is measured by the following one-sided hemi-metric: for Schur-

comparable elements x,y, define

d+(x,y) := sup
l=2,...,d

(
d∑
k=l

[xγ(k) − yβ(k)]

)
+

.

One has, for Schur-comparable elements:

x ≤S y iff d+(x,y) = 0.

Specialized to discrete probability measures, this gives a one-sided hemi-metric

measuring the degree of dispersion or “variance”.
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2 One-sided Hausdorff hemi-metric on closed subsets:

Let (E, d) be a metric space. Set

d+(A,B) := sup
y∈A

inf
x∈B

d(x, y). (2.20)

Then, for closed sets A,B, it holds that d+(A,B) = 0⇔ A ⊂ B, and d+ is a

one-sided hemi-metric on (C(E),⊂), the set of closed subsets of E.

3 Risk excess measures induced by function classes
3.1 Motivation and definition

For a law invariant, convex risk measure ρ on M1(Rd), one has a representation of

the form

ρ(Q) = sup
ν∈A

(Eν(X)− α(ν)) , (3.1)

where X ∼ Q, A is a class of scenario measures and α(ν) is a penalization term,

see [11]. This representation suggests to consider for a class F of real functions on

E the following hemi-metric

DF+(Q,P ) := sup
f∈F

(∫
fd(Q− P )

)
+

. (3.2)

LetMF := {P ∈M1(E) : supf∈F
(∫
fdP

)
+
<∞} and define onMF the preorder

P �F Q⇔
∫
fdP ≤

∫
fdQ, ∀f ∈ F . (3.3)

Then, DF+ is a risk excess measure on (MF ,�F ).

Another motivation comes from the theory of probability metrics, where some

metrics on the space of probability measures are defined by duality from a class of

functions: DF+ in (3.2) is the natural one-sided analog of the probability metrics DF

induced by a functional class F ,

DF (Q,P ) = sup
f∈F

∣∣∣∣∫ fd(Q− P )

∣∣∣∣ ,
which go under the name of probability metrics with a ζ-structure in [21] or integral

probability metrics in [18]. We are thus naturally inclined to define:

Definition 3.1 (F-induced risk excess measure) The risk excess measure DF+ on

(MF ,�F ) defined in (3.2) is called the F-induced risk excess measure.

Example 3.1 Example 2.1 can be regarded as an F-induced excess risk measure,

by considering F = {1B : B ∈ I(E)}.

Remark 3.1 On a probability space (Ω,B, µ), let X be a random variable with

image measure µX = Q. By (3.1), any law-invariant convex coherent risk measure
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ρ has a representation of the form DF+(Q, δ0) where F = {x dν
X

dµX
(x), ν ∈ A}, µ is an

underlying measure dominating A, µX and νX the image measures of µ, ν by X.

Indeed,

Eν(X) =

∫
Xdν =

∫
X
dν

dµ
dµ =

∫
x
dνX

dµX
dµX =

∫
x
dνX

dµX
dQ.

So the notion of risk excess measure can be seen as an extension of the notion of

risk measures.

3.2 Extension and restrictions of orders and hemi-metrics

For risk excess measures, an important aspect is to have a kind of consistency w.r.t.

some ordering ≤ on E, i.e., F consists of increasing functions w.r.t. ≤. In this

respect, the following order extension properties are useful.

Proposition 3.2 (Extension and restriction of order)

1 If � is a preorder on M1(E), then, the relation ≤r, defined, for x, y ∈ E, by

x ≤r y ⇔ δx � δy, (3.4)

defines a preorder on E. ≤r is called the restriction of the preorder � on

M1(E).

2 Conversely, if ≤ is a preorder on E, then the stochastic order �st defines a

partial order on M1(E), such that its restriction ≤r is identical to ≤.

Proof 1 The proof follows by direct verification.

2 By definition, we have

x ≤r y ⇔ δx �st δy ⇔ 1B(x) ≤ 1B(y),∀B ∈ I(E)

⇔ [x ∈ B ⇒ y ∈ B, ∀B ∈ I(E)]. (3.5)

In particular, restricted to principal up-sets B = {z}↑, the implication (3.5)

becomes

x ≥ z ⇒ y ≥ z, for all z ∈ E,

which is equivalent to x ≤ y. Therefore, x ≤r y ⇒ x ≤ y. Conversely, if x ≤ y,

(3.5) is satisfied, by definition of an up-set.

Remark 3.2 For a closed partial order ≤ on a Polish space E, the result follows

directly from Strassen theorem (see Example 2.1).

Analogously, we can also extend and restrict in a consistent way the discrete one-

sided hemi-metric d≤+ of Example 2.3, equation (2.8) into the risk excess measure

Dst
+ (Q,P ) = sup{(Q(B)− P (B))+ ;B ∈ I(E)}.

of Example 2.1.
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Proposition 3.3 (Extension and restriction of discrete hemi-metrics)

1 If D+ is a risk excess measure on (M1(E),�), then

dr+(x, y) := D+(δx, δy)

defines a one-sided hemi-metric on (E,≤r), called the restriction of D+ on

E.

2 If d≤+ is the discrete hemi-metric on (E,≤) of (2.8) , then Dst
+ is an extension

of d≤+ into a risk excess measure on (M1(E),�st) such that the restriction dr+
of Dst

+ is equal to d≤+.

Proof 1 The proof follows by direct verification and Proposition 3.2.

2 The restriction of Dst
+ to E writes

dr+(x, y) := Dst
+ (δx, δy) = sup{(1B(x)− 1B(y))+ ;B ∈ I(E)},

which is {0, 1}−valued and a one-sided hemi-metric on E by Proposition 3.3

part 1. By Proposition 3.2 part 2,

dr+(x, y) = 0⇔ x ≤r y ⇔ x ≤ y.

Therefore, dr+(x, y) = 1x�y = d≤+(x, y).

Remark 3.3 The construction of the previous proposition, based on the Dst
+ of

Example 2.1, which encodes the order ≤ into �st, is consistent w.r.t. the order ≤, in

the sense that the restriction of Dst
+ is the discrete one-sided hemi-metric dr+ = d≤+,

which encodes the original order ≤. However, for a one-sided hemi-metric d+ on

(E,≤) different from the discrete one, the extention Dst
+ is in general inconsistent

w.r.t. the hemi-metric d+, in the sense that the restriction of the risk excess measure

Dst
+ is not the original d+ but is again the discrete one-sided hemi-metric d≤+. This

is illustrated in the following diagram:

(E,≤) (M1(E),�)

d+ d≤+ Dst
+

x 7→δx

≤r

dr+

The question of consistently extending/restricting a one-sided hemi-metric d+ into

a risk excess measure D+, according to the diagram,
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(E,≤) (M1(E),�)

d+ D+

x 7→δx

≤r

dr+

will be treated by mass transportation in section 4.

It is interesting to observe that, in general, there may exist many extensions of

a one-sided hemi-metric on E to a risk excess measure on M1(E), as seen in the

following example. We will discuss some general extensions in section 4.

Example 3.2 (Positive orthant ordering) On E = Rd, consider the class Fuo of

upper orthant indicators,

Fuo := {1[z,∞), z ∈ Rd} = {1{z}↑ , z ∈ Rd}.

Fuo induces on M1(E) the upper orthant ordering �uo defined by

Q �uo P ⇔ F (z) ≤ G(z),∀z ∈ Rd,

where F (z) = Q([z,∞)) and G(z) = P ([z,∞)) stand for the survival functions of

Q and P . So it will be easier for Q to be less risky than P for this order than for

the stochastic order, where the comparison has to be made for all increasing sets.

The Fuo-induced risk excess measure DFuo+ is given by

Duo
+ (Q,P ) := DFuo+ (Q,P ) = sup

z∈Rd
(F (z)−G(z))+.

Note that the restriction ≤uo on E = Rd of the partial order �uo in the sense of

Proposition 3.2 is identical to the usual componentwise ordering, i.e., ≤uo=≤. The

restriction duo+ of the risk excess measure Duo
+ in the sense of Proposition 3.3 is the

discrete one-sided hemi-metric d≤+ (see Example 2.3 and (2.8)):

duo+ (x,y) := Duo
+ (δx, δy) =

0 if x ≤ y

1 if x � y
= d≤+(x,y).

As a consequence, both risk excess measures Duo
+ and Dst

+ of Example 2.1 induce

the same componentwise ordering ≤ on E = Rd and also induce the same restriction

as hemi-metric on E. Duo
+ and Dst

+ are both extensions of the same discrete one-

sided hemi-metric d≤+ on E from Example 2.3 (a), as is illustrated in the diagram

below:
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(M1(E),�uo) (E,≤) (M1(E),�st)

Duo
+ d≤+ Dst

+

≤r

x7→δx
x 7→δx

≤r

dr+

dr+

Example 3.3 (Increasing convex ordering) On E = R, consider the class of

excess functions Ficx := {πt, t ∈ R}, with πt(x) := (x − t)+. Then, on the class of

distributions M1
1 with finite first moment, the induced ordering �Ficx is identical

to the increasing convex order,

�Ficx=�icx .

For X ∼ Q and Y ∼ P in M1
1, the generated risk excess measure DFicx+ is given by

Dicx
+ (Q,P ) := DFicx+ (Q,P ) = sup

t∈R
(ΠX(t)−ΠY (t))+ , (3.6)

where ΠX(t) := E(X − t)+ = Eπt(X), ΠY (t) := E(Y − t)+ = Eπt(Y ) are the

mean excess functions. Dicx
+ measures the risk excess of Q w.r.t. P in terms of

the corresponding mean excess functions. When restricted to the class of probability

measures with identical first moments, �Ficx is also identical to the convex ordering,

�Ficx=�icx=�cx .

In this example, the restriction dicx+ of Dicx
+ is

dicx+ (x, y) := Dicx
+ (δx, δy) = sup

t∈R
(πt(x)− πt(y))+ .

On the one hand,

dicx+ (x, y) = 0 ⇔ πt(x) ≤ πt(y),∀t ∈ R

⇔ [x ≥ t⇒ y ≥ t],∀t ∈ R

⇔ x ≤ y.

On the other hand, if x > y, then dicx+ (x, y) = supt∈R (πt(x)− πt(y)). By considering

all cases, t ≤ y, y ≤ t ≤ x, and x ≤ t, one sees that the supremum takes the value

x− y. Hence, the restriction dicx+ of Dicx
+ is given by

dicx+ (x, y) = (x− y)+ = db+(x, y),

which is the basic one-sided hemi-metric of (2.9).
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(R,≤) (M1(R),�icx)

db+ Dicx
+

x7→δx

≤r

dr+

4 Risk excess measures for random variables and minimal
extension by mass transportation

4.1 Compound risk excess measures

So far we have considered risk excess measures as one-sided hemi-metrics on the

space of probability distributions, i.e., as a mapping D+ :M×M 7→ [0,∞], forM⊂
M1(E), acting on a pair (Q,P ) of probability measures on E. Like for risk measures

ρ : X 7→ R defined on a space of random variables X ⊂ L0
E = L0

E(Ω,A, µ) := {X :

Ω→ E} (see e.g., [11]), it is natural to define risk excess measures D+ : X×X 7→ R,

also on a space X of random variables.

This allows to consider the risk of a random element X ∈ E as a relative property:

there is a joint modeling of the vector (X,Y ) ∈ X2, defined on a common probability

space (Ω,A, µ), so that the risk of X : Ω 7→ E can be considered in relation to the

random element Y : Ω 7→ E, regarded as a benchmark. In the context of insurance

and financial mathematics, Y can stand for the value of an alternative portfolio,

of a hedge, of a market indicator, or the wealth of an insurer. For example, an

insurer, facing the prospect of losing a claim amount X, may wish to evaluate its

perceived risk with respect to its reserve capital Y : the ”risk” X does not have the

same potential consequences whether Y is small or large compared to X. In the

same vein of reasoning, because of the fluctuating and (usually) inflating nature

of fiat money in the post-1973, petro-dollar based, current monetary system, one

may be interested in evaluating the value of a financial asset X w.r.t. the price of

a commodity Y considered as a standard, like gold or oil, whose supply is limited

in essence.

For X ⊂ L0
E = L0

E(Ω,A, µ) a set of random variables on (Ω,A, µ) with values in

(E,≤), we consider the pointwise ordering on X induced by ≤. We identify random

elements in L0
E which are identical a.s. and similarly X ≤ Y means that X ≤ Y

µ-a.s.

Definition 4.1 (Risk excess measure on X) For X ⊂ L0
E, a risk excess measure

D+ on X is a one-sided hemi-metric on X.

Definition 4.2 (Compound risk excess measure on X) A risk excess measure Dc
+

on X is called a compound risk excess measure on X if Dc
+(X,Y ) depends only on

the joint distribution µ(X,Y ) of (X,Y ).

Example 4.1 1 An example of a risk excess measure on X which is not com-

pound is

D+(X,Y ) := sup
ω∈Ω

(X(ω)− Y (ω))+.



Faugeras and Rüschendorf Page 16 of 35

However, since random elements in L0
E which are identical µ-a.s are identified,

it is natural to consider only compound risk excess measure, e.g., the essential

supremum version

D+(X,Y ) := esssupµ(X − Y )+

instead.

2 On (Ω,A, µ), let A0 ∈ A, with 0 < µ(A0) < 1, be a class of scenarios consid-

ered as “low risk”, while its complement A1 := Ω \ A0 is considered as “high

risk”. Then, for some safety coefficient α > 1,

D+(X,Y ) := esssupµ,A0
(X − Y )+ + α esssupµ,A1

(X − Y )+,

with esssupµ,A(X − Y )+ := inf{c ∈ R;µ((X − Y )+ ≥ c) ∩A) = 0}, or

D+(X,Y ) :=

∫
A0

(X − Y )+dµ+ α

∫
A1

(X − Y )+dµ,

define non-compound risk excess measures, which values α times more the risk

excess (X − Y )+ for the high risk scenarios than for the low risk ones.

Remark 4.1 1 The notation Dc
+ in Definition 4.2 stresses that Dc

+ depends

on the joint distribution µ(X,Y ) and not solely on the marginals µX , µY of

(X,Y ), as is the case in Definition 2.3. See also [34], [21] for the similar

notion of compound probability metric. For risk measures ρ(X) on X, there

is the analog notion of law-invariant risk measures which depend only on the

law µX of the random variable.

2 There are two main reasons why compound risk measures on X are of particu-

lar importance. Firstly, they allow to define extensions as excess risk measures

D+ :M×M→ [0,∞] on subclasses M⊂M1(E) defined by the induced set

of distributions of elements of X (see section 4.3). Secondly, the fact that they

depend only on the joint distribution µ(X,Y ) induces the possibility of statis-

tical estimation of the risk excess D+(X,Y ) by their empirical analogs. This

property is most relevant for the application of risk excess measures.

3 Like in the case of probability metrics, it is also possible to describe compound

risk excess measures formally on the subclass M(2) of bivariate laws µ(X,Y )

for X,Y ∈ X. For details in the case of probability metrics, see [21].

4.2 Construction of a compound risk excess measure from a one-sided hemi-metric d+

on E

There is a natural way to construct such a compound risk excess measure on a

set X of r.v. in (E,≤): let d+ be a one-sided hemi-metric on (E,≤), and let X be

the set of random variables X s.t. there exists x, y ∈ E s.t. Ed+(X,x) < ∞ and

Ed+(y,X) <∞. The notion of excess risk of Y w.r.t. X is measured by d+(X,Y ).

The latter can be turned into a deterministic value, e.g., by taking its expectation,

so that one obtains a hemi-metric on X,

Dc
+(X,Y ) := Ed+(X,Y ). (4.1)
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Note that (4.1) depends only on the joint distribution of (X,Y ): it is indeed a

compound risk excess measure defined on a space X of random variables.

Indeed, one has:

Proposition 4.3 For any measurable one-sided hemi-metric d+ on (E,≤), (4.1)

defines a finite one-sided compound risk excess measure on X.

Proof For all X,Y ∈ X, there exists x, y ∈ E s.t. Ed+(X,x) <∞ and Ed+(y, Y ) <

∞. Hence, by the triangle inequality,

Ed+(X,Y ) ≤ Ed+(X,x) + d+(x, y) + Ed+(y, Y ) <∞.

(4.1) is therefore well defined and is obviously a compound risk excess measure.

For the one-sidedness property, X ≤ Y a.s. ⇔ d+(X,Y ) = 0 a.s. ⇔ Dc
+(X,Y ) = 0

follows from the one-sidedness and non-negativity of d+.

Remark 4.2 Formula (4.1) gives a natural way to obtain a compound excess risk

measure from a one-sided hemi-metric d+ on the ambient space E. Note that not

all compound excess risk measures can be written in this form. For example, let

(d+,i)i∈I be a countable family of one-sided hemi-metrics on E, then

Dc
+(X,Y ) := sup

i∈I
Ed+,i(X,Y )

defines a compound excess risk measure which can not be written as in (4.1) for

some d+.

4.3 Minimal extension of a compound risk excess measure

A compound risk excess measure Dc
+, depending on the joint distribution µ(X,Y ),

can be turned by mass transportation into a risk excess measure on M1(E), i.e.,

depending only on the pair of marginals µX , µY , whereM1(E) is supplied with the

stochastic ordering �st consistent with the underlying order ≤ on X.

Definition 4.4 Let Dc
+ be a compound excess risk excess measure. The minimal

extension Dinf
+ on M1(E) of Dc

+ by mass transportation is given by

Dinf
+ (Q,P ) := inf

X,Y ∈X,X∼Q,Y∼P
Dc

+(X,Y ). (4.2)

The fact that Dinf
+ is indeed a one-sided risk excess measure on the space of

probability measures is given in the following proposition:

Proposition 4.5 1 If (E,≤) is a Polish space with a closed partial order, and

if Dc
+ is weakly lower-semicontinuous, in the sense that

(Xn, Yn)
d→ (X,Y )⇒ Dc

+(X,Y ) ≤ lim inf Dc
+(Xn, Yn), (4.3)

then Dinf
+ is a one-sided risk excess measure on (M1(E),�st), where �st is

the stochastic order.
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2 If Dc
+(X,Y ) = Ed+(X,Y ), as in (4.1), for d+ a lower semi continuous one-

sided hemi-metric on (E,≤), then Dinf
+ is a one-sided risk excess measure on

(M1(E),�st).

Proof 1 (A1) is obvious. (A2) follows from the fact that Dc
+ satisfies (A2): for

X ∼ Q, 0 ≤ Dinf
+ (Q,Q) ≤ Dc

+(X,X) = 0. Regarding (A3): for (Ω,A, µ) a

non-atomic probability space and E a Polish space, any bivariate measure

α ∈M1(E2) can be obtained as the image measure of µ by some measurable

mapping, see e.g., [2]. Therefore, for all ε > 0, there exists random variables

(X,Y1) ∼ α = αQP , where α ∈ M1(E2) has marginals Q,P and there exists

random variables (Y2, Z) ∼ β = βPR with marginals P,R s.t.

Dinf
+ (Q,P ) +

ε

2
≥ Dc

+(X,Y1), and Dinf
+ (P,R) +

ε

2
≥ Dc

+(Y2, Z).

By the gluing lemma, see e.g., [33, p. 208], there exists a trivariate measure

γ = γQPR s.t. its projection on the first two marginals is α and its projection

on the last two marginals is β. In addition, γ can be obtained as the image

measure of µ for some measurable mapping. In other words, there exists a joint

construction of a random vector (X̃, Ỹ , Z̃) on the probability space (Ω,A, µ)

s.t. µX̃,Ỹ ,Z̃ = γ and

Dinf
+ (Q,P ) +

ε

2
≥ Dc

+(µX̃,Ỹ ), and Dinf
+ (P,R) +

ε

2
≥ Dc

+(µỸ ,Z̃). (4.4)

By (A3) for the compound risk excess Dc
+,

Dc
+(µX̃Z̃) ≤ Dc

+(µX̃Ỹ ) +Dc
+(µỸ Z̃)

which gives with (4.4),

Dinf
+ (Q,R) ≤ Dc

+(µX̃Z̃) ≤ Dinf
+ (Q,P ) +Dinf

+ (P,R) + ε.

Letting ε ↓ 0 gives (A3) for Dinf
+ .

For the one-sidedness property (A4), if Dinf
+ (Q,P ) = 0, then there exists a

sequence (Xn, Yn) of random variables on (Ω,A, µ), all with fixed marginals

Q,P , s.t. Dc
+(Xn, Yn) → 0. Since M1(Q,P ) the set of probability measures

on E×E with marginals Q,P is weakly compact inM1(E2), one can extract

a subsequence n′ s.t. (Xn′ , Yn′)
d→ (X,Y ) for some (X,Y ) with marginals

Q,P . By the assumption on Dc
+,

Dc
+(X,Y ) ≤ lim inf Dc

+(Xn, Yn) = 0

which entails X ≤ Y , µ-a.s. by (A4’). The latter is equivalent to Q �st P by

Strassen theorem (see Theorem 1.18 in [29]). The converse is obvious.

2 If (Xn, Yn)
d→ (X,Y ), by Skorohod’s representation theorem, there exists

(X̃n, Ỹn)
a.s.→ (X̃, Ỹ ), with (X̃n, Ỹn)

d
= (Xn, Yn), (X̃, Ỹ )

d
= (X,Y ). Therefore,
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lower semi-continuity of d+ and Fatou’s lemma entails,

Dc
+(X,Y ) = Ed+(X̃, Ỹ ) ≤ E[lim inf d+(X̃n, Ỹn)]

≤ lim inf Ed+(X̃n, Ỹn) = lim inf Dc
+(Xn, Yn),

i.e., (4.3) is satisfied.

4.4 Dual representations of minimal extensions

Define L1 := L1({P,Q}) as the set of functions f : E → R integrable w.r.t. P and Q,

Cb as the set of bounded continuous functions f : E → R, and Lip1 = Lip1(E, d+)

as the set of 1-Lipschitz functions f : E → R w.r.t. d+, i.e., s.t. for all x, y ∈ E,

f(y)− f(x) ≤ d+(y, x)

holds. Note that for f ∈ Lip1(E, d+) and y ≤ x, we have f(y)−f(x) ≤ d+(y, x) = 0,

i.e., f is increasing w.r.t. the order induced by d+ on E. Hence, Lip1(E, d+) is a

subset of the set of increasing functions.

For a compound excess risk measureDc
+ of the kind in (4.1), the minimal extension

Dinf
+ onM1(E) of Dc

+ by mass transportation, as in (4.2), admits a representation

as a F-induced risk excess measure, as in (3.2), which is given by the following

Kantorovich–Rubinstein-type theorem for hemi-metrics:

Theorem 4.6 (Kantorovich–Rubinstein theorem for minimal risk excess measure)

On a Polish space E, supplied with a closed order ≤, and a lower semi-continuous

one-sided hemi-metric d+, the minimal extension Dinf
+ of the compound risk excess

measure Dc
+(X,Y ) = Ed+(X,Y ) has the dual form

Dinf
+ (Q,P ) = sup

f∈Lip1∩L1

(∫
fd(Q− P )

)
+

(4.5)

= sup
f∈Lip1∩Cb

(∫
fd(Q− P )

)
+

.

In other words, Dinf
+ is identical to a F-induced risk excess measure DF+ of (3.2),

with F = Lip1
b , the class of bounded Lipschitz functions w.r.t. d+.

Proof The proof is similar to the method used to prove the Kantorovich–Rubinstein

theorem for metric spaces, see e.g., [24], [33], with some slight modifications. Let

M1(Q,P ) be the set of probability measures π on E ×E with marginals Q,P . For

(f, g) ∈ L1(Q)× L1(P ), set

J(f, g) :=

∫
fdQ+

∫
gdP.

Let

Φd+ := {(f, g) ∈ L1(Q)× L1(P ); f(x) + g(y) ≤ d+(x, y), for all x, y ∈ E} ,
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and C2
b be the set of pairs of real-valued functions (f, g) which are continuous and

bounded. Set

S(Q,P ) := sup
Φd+

J(f, g). (4.6)

• Step one: One has the easy inequality,

DLip1∩L1

+ (Q,P ) ≤ Dinf
+ (Q,P ). (4.7)

Indeed, for all f ∈ Lip1(d+) ∩ L1 and π ∈M(Q,P ),(∫
f(x)Q(dx)−

∫
f(y)P (dy)

)
+

=

(∫
(f(x)− f(y))π(dx, dy)

)
+

≤
∫
d+(x, y)π(dx, dy).

Taking the inf on the right and the sup on the left entails the stated inequality

(4.7).

• Step two: Kantorovich’s duality, Dinf
+ (Q,P ) = S(Q,P ) = supΦd+

J(f, g).

Since d+ ≥ 0 is l.s.c., this follows from [24, Theorem 2.3.1 (b)] or [33, Theorem

1.3].

• Step three: in view of the first two steps, it remains to show that

D
Lip1∩L1(Q)
+ (Q,P ) ≥ Dinf

+ (Q,P ),

i.e., that

sup
f∈Lip1∩L1(Q)

(∫
fd(Q− P )

)
+

≥ sup
Φd+

J(f, g).

Assume that d+ is bounded.

For f continuous bounded, define the d+− convex conjugate of f by

f∗(y) := inf
x∈E
{d+(x, y)− f(x)}.

One obviously has f(x) + f∗(y) ≤ d+(x, y), for all x, y ∈ E. Therefore, if x 7→
d+(x, y) is bounded l.s.c. and f ∈ Cb, then f∗ is well defined and bounded.

Moreover, by the triangle inequality, one also has

d+(x, y)− f(x) ≤ d+(x, y′) + d+(y′, y)− f(x).

Taking the infimum on x on both sides yields

f∗(y)− f∗(y′) ≤ d+(y′, y) = d−(y, y′),

where d− is the opposite dual hemi-metric defined in (2.4): f∗ is d−-Lipschitz.

Note that if f(x) + g(y) ≤ d+(x, y) for all x, y, then f∗(y) ≥ g(y).
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Define the double conjugate by

f∗∗(x) := inf
y∈E
{d+(x, y)− f∗(y)}.

One has f∗∗(x) ≥ f(x): by definition,

f∗∗(x) = inf
y∈E

sup
x′
{d+(x, y)− d+(x′, y) + f(x′)}

≥ f(x),

by taking x = x′ in the last equation.

Moreover, f∗∗ is this time d+-Lipschitz: the triangle inequality d+(x, y) −
f∗(y) ≤ d+(x, x′) + d+(x′, y) − f∗(y) yields, by taking the infimum on y,

f∗∗(x)− f∗∗(x′) ≤ d+(x, x′).

We obtain: f∗∗(x) = infy{d+(x, y) − f∗(y)} ≤ −f∗(x) by taking y = x. On

the other hand, since f∗ is 1-Lipschitz w.r.t. d−, one has

−f∗(x) ≤ d+(x, y)− f∗(y),

which yields −f∗(x) ≤ f∗∗(x). Hence, f∗∗ = −f∗ .

Denoting φ := −f∗, and since f∗ is d−-Lipschitz, φ is d+-Lipschitz (and

bounded thus integrable). In view of all of the above, (f, g) ∈ Φd+ ∩C2
b implies

(f∗∗, f∗) ∈ Φd+ and J(f, g) ≤ J(f∗∗, f∗) = J(φ,−φ). Hence,

sup
Φd+∩C

2
b

J(f, g) ≤ sup
φ∈Lip1∩L1(Q)

J(φ,−φ) ≤ sup
φ∈Lip1∩L1(Q)

(∫
φd(Q− P )

)
+

,

(4.8)

which had to be proved.

Combining (4.7) with (4.8), yields the desired result for the case of a bounded

hemi-metric d+.

• Step 4: One can remove the assumption that d+ is bounded. For d+ a general

l.s.c. hemi-metric, one can reason as in [33, Theorem 1.3, step 3] with dn+ =

d+/(1 + n−1d+), so that 0 ≤ dn+ ≤ d+ and dn+ ↑ d+ pointwise.

Remark 4.3 The dual formulation of Theorem 4.6 gives another proof of the sec-

ond part of Proposition 4.5, since the set of increasing bounded Lipschitz functions

generates the stochastic order (see the argument in Example 3.3).

4.5 Examples of minimal risk excess measures

The following propositions give explicit representations of the minimal risk excess

measure for several hemi-metrics. We first consider the discrete hemi-metric d≤+:

Proposition 4.7 (Minimal risk excess measure arising from the stochastic order)
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1 Let E = Rd be supplied with the (closed) component-wise order ≤. The discrete

hemi-metric d≤+ of (2.8) generates, via Proposition 4.3, the compound risk

excess measure

Dc
+(X,Y ) = µ(X � Y ). (4.9)

This induces, as minimal extension by mass transportation on M1(Rd), the

stochastic ordering one-sided risk excess measure of (2.6):

Dinf
+ (Q,P ) = Dst

+ (Q,P ). (4.10)

2 A dual representation of (4.10) is given by

Dinf
+ (Q,P ) = sup

f↑,0≤f≤1

(∫
fd(Q− P )

)
+

. (4.11)

Proof 1 Since ≤ is a closed order, C := {(x, y) ∈ E × E, x � y} is an open

set and d≤+(x, y) = 1C(x, y) is a {0, 1}-valued l.s.c. function. By [14] and [26,

Lemma 1], (see also [33, Theorem 1.27]),

Dinf
+ (Q,P ) = sup

{
Q(A)− P (AC), A ⊂ E,A closed

}
,

where AC := {y ∈ E,∃x ∈ A, (x, y) /∈ C} = {y ∈ E,∃x ∈ A, x ≤ y} = A↑.

Since A ⊂ A↑,

Dinf
+ (Q,P ) = sup

{
Q(A)− P (A↑), A ⊂ E,A closed

}
= sup {(Q(A)− P (A))+, A ∈ I(E), A closed} = Dst

+ (Q,P ).

2 By Kantorovich–Rubinstein Theorem 4.6,

Dinf
+ (Q,P ) = sup

f∈Lip1(Rd,d+)

(∫
fd(Q− P )

)
+

= sup
f↑,0≤f≤1

(∫
fd(Q− P )

)
+

. (4.12)

Note that one can restrict to the set of increasing functions such that 0 ≤ f ≤ 1

by shifting the function by a constant.

Next, we consider, for E = R, the basic one-sided hemi-metric db+(x, y) = (x−y)+,

introduced in (2.9), describing the magnitude of one-sided departure in a quantita-

tive way. For X = L1(µ) the set of random variables on (Ω,A, µ) with finite first

moment, d+ induces the compound one-sided risk excess measure

Dc
+(X,Y ) = Edb+(X,Y ) = E(X − Y )+ (4.13)

on X. The corresponding minimal risk excess is given in the following result:
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Proposition 4.8 (Minimal risk excess arising from mean exceedance) 1 The

minimal extension of (4.13) to a risk excess measure on M1(R) by mass

transportation is given by

Dinf
+ (Q,P ) = inf

X∼Q,Y∼P
E(X − Y )+

= sup
f∈Lip1,f↑

(∫
fd(Q− P )

)
+

= DLip1,↑

+ (Q,P ),

where Lip1,↑ the class of increasing, 1-Lipschitz functions (w.r.t. |.|).

The ordering induced by Dinf
+ on M1(R) is the stochastic order �st.

2 One has the following explicit representation:

Dinf
+ (Q,P ) = E(F−1(U)−G−1(U))+, (4.14)

where F,G are the distribution functions of Q,P , and U ∼ U[0,1] is uniformly

distributed on [0, 1].

Proof 1 With the assumption on X, Kantorovich–Rubinstein Theorem 4.6 spe-

cializes to

Dinf
+ (Q,P ) = sup

f∈Lip1(R,db+)

(∫
fd(Q− P )

)
+

. (4.15)

Note that f ∈ Lip1(R, db+) is equivalent to f(y) − f(x) ≤ (y − x)+, i.e., f

increasing and 1-Lipschitz w.r.t. the absolute value |.| norm.

The fact that the order induced by Dinf
+ on M1(R) is the stochastic order

�st follows from Proposition 4.5. Alternatively, a direct proof is as follows: let

n ≥ 1 be a positive integer, X ∼ Q, Y ∼ P . By Markov’s inequality,

P (X − Y ≥ n−1) ≤ P ((X − Y )+ ≥ n−1) ≤ nE[(X − Y )+].

Taking the infimum over X ∼ Q,Y ∼ P yields that Dinf
+ (Q,P ) = 0 implies

that X − Y < n−1 with probability one. Letting n → ∞ yields X ≤ Y a.s.

Hence,

Dinf
+ (Q,P ) = 0 iff there exists X ∼ Q,Y ∼ P s.t. X ≤ Y a.s.

and the latter is equivalent to Q �st P , by Strassen theorem.

2 f(x) = x+ is convex, hence f(x− y) is submodular (or quasi-antitone in the

terminology of [4], or supernegative or 2-negative in the terminology of [32]).

This implies (4.14) by results of [4, Theorem 2], or [32, Corollary 2.3 ] (see

also [29]).

Remark 4.4 (Comparison with the stop-loss metric) Note that for t ∈ R, the

compound one-sided risk excess measure Dc
+(X, t) = E(X − t)+ = ΠX(t) is the
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average risk excess over the threshold t, which stands for the stop-loss premium

of a reinsurer in insurance theory. Rachev and Rüschendorf [23] consider the stop

loss metric as the difference of two stop loss premiums, which would write with our

conventions of notations (see equation (2.2) in [23]) as,

Ds(X,Y ) = sup
t∈R
|ΠX(t)−ΠY (t))|.

One could obtain from it the corresponding hemi-metric which was introduced in

(3.6), in relation to the increasing convex order,

Ds
+(X,Y ) = sup

t∈R
(ΠX(t)−ΠY (t)))+,

which is distinct from the minimal risk excess Dinf
+ . This follows from the triangle

inequality for (X − t)+:

(X − t)+ − (Y − t)+ ≤ (X − Y )+

and taking the infimum yields that

Ds
+(X,Y ) ≤ Dinf

+ (Q,P ).

In other words, the hemi-metric obtained by a one-sided comparison of risks through

their stop-loss premiums is always majorized by the minimal risk excess. See also

remark 4.5 for similar considerations for the tail risk.

In risk theory, it is also of interest to compare the expected risks above their

distributional α-quantiles: this is the basis for the conditional tail expectation

CTEα(X) := E[X|X ≥ qα(X)], CTEα(Y ) := E[Y |Y ≥ qα(Y )],

where qα(X), qα(Y ) denote the corresponding α−quantiles of X ∼ Q with c.d.f. F ,

Y ∼ P , with c.d.f. G. In order to obtain a coherent risk measure and to generalize

to possibly non-continuous distributions (see [3]), it is useful to instead consider the

expected shortfall. Define, for λ ∈ [0, 1], the extended c.d.f.s of F , G as

F (x, λ) := P (X < x) + λP (X = x) = F (x−) + λ(F (x)− F (x−))

G(y, λ) := P (Y < y) + λP (Y = y) = G(y−) + λ(G(y)−G(y−)).

Define also the distributional transforms of X and Y as

U1 := F (X,V ), U2 := G(Y, V ), (4.16)

where V ∼ U(0,1) is independent of (X,Y ), see [28]. The expected shortfalls are

then defined as ESα(X) := E[X|U1 ≥ α], respectively as ESα(Y ) := E[Y |U2 ≥ α].
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For the one-sided comparison of the risk excess ofX w.r.t. Y over their α-quantiles,

we therefore consider the excess risk of their expected shortfall defined by the fol-

lowing one-sided compound risk excess measure Dα,c
+ (X,Y )

Dα,c
+ (X,Y ) = E (X1U1≥α − Y 1U2≥α)+ , (4.17)

where U1, U2 are as in (4.16). We obtain the following result:

Proposition 4.9 (Minimal tail risk excess) 1 The minimal extension of (4.17)

to a risk excess measure on M1(R) by mass transportation has the represen-

tation

Dα,inf
+ (Q,P ) := inf

X∼Q,Y∼P
EDα,c

+ (X,Y )

= E
[
(F−1(U)−G−1(U))+1U≥α

]
, (4.18)

where U ∼ U[0,1] is uniformly distributed on [0, 1].

2 The ordering �α induced by Dα,inf
+ is given by

Q �α P ⇔ F−1(u) ≤ G−1(u) ∀u ≥ α,

which corresponds to the classical stochastic order restricted to the upper tail.

Proof 1 Denote by Fα the law of Xα := X1U1≥α = X1F (X,V )≥α and by Gα the

law of Yα := Y 1U2≥α = Y 1G(Y,V )≥α. Then,

Dα,inf
+ (Q,P ) = inf

Xα∼Fα,Yα∼Gα
.E(Xα − Yα)+

Since Xα = F−1(U1)1U1≥α with U1 ∼ U[0,1], Fα is the image of the Lebesgue

measure on [0, 1] induced by the transformation u 7→ F−1(u)1u≥α. Similarly,

Gα is the image of the Lebesgue measure on [0, 1] induced by the transfor-

mation u 7→ F−1(u)1u≥α. Therefore, for U ∼ U(0,1), the comonotone pair of

random variables X̃α = F−1(U)1U≥α and Ỹα = G−1(U)1U≥α is admissible

for (Fα, Gα).

By submodularity, as in Proposition 4.8,

E(Xα − Yα)+ ≥ E[(F−1(U)−G−1(U))+1U≥α],

which implies the result.

2 Follows from (4.18).

Remark 4.5 It is interesting to note that the expected shortfall of X is given by

ESα(X) =
1

1− α
E[F−1(U)1U≥α].



Faugeras and Rüschendorf Page 26 of 35

As expected, the minimal extension risk excess measure dominates the normalized

one-sided difference of expected shortfalls:

Dα,inf
+ (Q,P ) ≥ (1− α) (ESα(X)− ESα(Y ))+ ,

where Y ∼ P,X ∼ Q.

5 Weak risk excess measures
5.1 Motivation and definition

In view of the mass transportation approach of (4.2), one may inquire whether

there exist other schemes of obtaining a risk excess measure D+(Q,P ), in the sense

of Definition 2.3, from a compound risk excess measure Dc
+(X,Y ), in the sense

of Definition 4.2. In particular, it is natural to investigate the following “maximal

extension” in the sense of mass transportation,

Dsup
+ (Q,P ) := sup

X,Y ∈X,X∼Q,Y∼P
Dc

+(X,Y ). (5.1)

Obviously, Dinf
+ (Q,P ) ≤ Dsup

+ (Q,P ).

However, Dsup
+ is not a risk excess measure: although (A1) and (A3) are obviously

satisfied, (A2) is not. Indeed,

Dsup
+ (Q,Q) = 0⇔ X ∼ Q,Y ∼ Q implies Dc

+(X,Y ) = 0.

This implies that X ≤ Y a.s. for all possible realizations X ∼ Q,Y ∼ Q. But for

X,Y independent with the same law Q, this would require that X ≤ Y a.s. which

is only true for Q being a one-point distribution. These considerations imply that

Dsup
+ can not be compatible with a reflexive order relation: axiom (A4) can not be

satisfied either.

Nonetheless, Dsup
+ , as a supremum over all joint constructions of (X,Y ) ∼ (Q,P ),

gives the best possible upper bound on the compound risk excess measure in the

sense of mass transportation,

Dc
+(X,Y ) ≤ Dsup

+ (Q,P ),

and therefore has a natural interpretation as a worst-case comparison, which is

appealing for risk applications.

These considerations motivate the introduction of a weakened notion of risk excess

measure, without axiom (A2) and with axiom (A4) restricted to a strict order ≺, i.e.,

a transitive and irreflexive relation. Therefore, we propose the following definitions:

Definition 5.1 (Weak risk excess measure) Let ≺ be a strict order on M1(E).

A one-sided weak risk excess measure Dw
+ on (M1(E),≺) is an application Dw

+ :

M1(E)×M1(E)→ R which satisfies axioms (A1), (A3), and (A4).

Definition 5.2 (Maximal extension) Let Dc
+ be a compound excess risk measure.

The maximal extension Dsup
+ on M1(E) of Dc

+ by mass transportation is given by

(5.1).
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Remark 5.1 1 The concept of one-sided weak risk excess measure is an asym-

metric analog of the concept of moment function in the theory of probability

metrics, see [21, Chap. 3.3], or [22, Chapters 3.4. and 8.2]. In addition, the

adjunction of axiom (A4) makes it compatible with a notion of order. Obvi-

ously, a one-sided risk excess measure for a preorder � is a one-sided weak

risk excess measure for the strict order ≺ defined by

P ≺ Q⇔ P � Q and P 6= Q.

2 The relation between the minimal Dinf
+ and maximal Dsup

+ extensions obtained

from a compound risk excess measure Dc
+, is given in the following improved

triangle inequality:

Dsup
+ (Q,R) ≤ Dinf

+ (Q,P ) +Dsup
+ (P,R),

where P,Q,R are three probability measures on E, see [22, Theorem 3.4.1].

Define on M1(E) the following strict order ≺sup by

Q ≺sup P ⇔ sup(supp(Q)) ≤ inf(supp(P )), (5.2)

where supp(.) denotes the support of a distribution. The analog of Proposition 4.5

for the maximal extension, which shows that Dsup
+ is indeed a one-sided weak risk

excess measure, is given in the following proposition:

Proposition 5.3 Dsup
+ obtained in (5.1) from a compound excess risk measure

Dc
+(X,Y ) = Ed+(X,Y ) of the form (4.1) is a one-sided weak risk excess measure

on (M1(E),≺sup).

Proof (A1) and (A3) are trivially satisfied. For (A4), if Dsup
+ (Q,P ) = 0, then for

all X ∼ Q,Y ∼ P , Ed+(X,Y ) = 0. Markov’s inequality entails that for all ε > 0,

d+(X,Y ) ≤ ε a.s. Hence, d+(X,Y ) = 0 a.s., i.e X ≤ Y a.s. for all X ∼ Q,Y ∼ P .

This can only hold if the support of Q is completely to the left of the support of P .

The converse direction is trivial: if Q ≺sup P , then for all couplings X ∼ Q, Y ∼ P ,

X ≤ Y a.s., and thus supX∼Q,Y∼P Ed+(X,Y ) = 0.

5.2 Dual representation of maximal one-sided weak risk excess measure

A dual representation of the maximal one-sided weak risk excess measure Dsup
+

associated with the compound risk excess measure Dc
+(X,Y ) = Ed+(X,Y ) of the

form in (4.1) is given in the following theorem:

Theorem 5.4 (Dual Representation) Let E be a Polish space, supplied with the

one-sided hemi-metric d+, and let Dc
+(X,Y ) = Ed+(X,Y ) be the corresponding

compound excess risk measure,
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1 if d+ is upper or lower semi-continuous, then duality holds:

Dsup
+ (Q,P ) = inf

Ψd+

{∫
fdQ+

∫
gdP

}
,

where

Ψd+ := { (f, g) ∈ Lip1(d+)× Lip1(d−), f(x) ≥ 0, g(y) ≥ 0,

f(x) + g(y) ≥ d+(x, y), (x, y) ∈ E2}.

2 if d+ is upper semi-continuous, then the supremum is attained for some prob-

ability measure.

Proof 1 Since a lower or upper semi-continuous function is a supremum or infi-

mum of continuous functions, d+ is a Baire function. Hence, the duality The-

orem 2.3.8 (a) in [24] applies, since d+ ≥ 0 is obviously majorized from below

(i.e., belongs to Pm(S) in the notation of Theorem 2.3.8 in [24]). Therefore,

Theorem 2.3.8 (a) entails

sup

{∫
d+(x, y)µ(dx, dy)

}
= inf{

∫
fdQ+

∫
gdP}, (5.3)

where the infimum on the right side is taken in

Ψ1 := {f ∈ L1(Q), g ∈ L1(P ), d+(x, y) ≤ f(x) + g(y), (x, y) ∈ E2}.

Let γ1, γ2 two real-valued constants s.t. γ1 + γ2 = 0 and set for (f, g) ∈ Ψ1,

(f̃ := f − γ1, g̃ := g − γ2). Then, (f̃ , g̃) ∈ Ψ1 and J(f, g) =
∫
fdQ +

∫
gdP

remains invariant when one replaces (f, g) by (f̃ , g̃), i.e., J(f, g) = J(f̃ , g̃).

Therefore, if f takes some negative values, then, setting γ1 = inf f(x) entails

f̃ ≥ 0 and the infimum in (5.3) can be restricted to

Ψ2 := {f ∈ L1(Q), g ∈ L1(P ), f(x) ≥ 0, d+(x, y) ≤ f(x) + g(y), (x, y) ∈ E2}.

By symmetry, the infimum in (5.3) can further be restricted to

Ψ3 := {f ∈ L1(Q), g ∈ L1(P ), f(x) ≥ 0, g(y) ≥ 0, d+(x, y) ≤ f(x)+g(y), (x, y) ∈ E2}.

Assume d+ is upper bounded. For (f, g) ∈ Ψ3, set f∗(y) := supx(d+(x, y) −
f(x)) and f∗∗(x) := supy(d+(x, y) − f∗(y)). Then, (f∗∗, f∗) ∈ Ψ1, g ≥ f∗,

f ≥ f∗∗. Hence, J(f, g) ≥ J(f∗∗, f∗). Moreover, by the triangle inequality,

d+(x, y)− g∗(y) ≤ d+(x, x′) + d(x′, y)− f(y)

and taking the supremum in y yields

f∗∗(x)− f∗∗(x′) ≤ d+(x, x′).
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Hence, f∗∗ ∈ Lip1(d+), whereas a similarly calculation shows that f∗ ∈
Lip1(d−). Therefore, the infimum in (5.3) can further be restricted to Ψd+ , as

claimed.

The general case, for d+ unbounded, proceeds by approximation, as in Theo-

rem 4.6.

2 Follows from Theorem 2.3.10 in [24].

5.3 Examples of maximal extensions

We discuss for some of the examples in section 4 the corresponding worst-case risk

excess Dsup
+ . First, we consider the discrete one-sided hemi-metric d≤+ of (2.8) on

E = Rd, supplied with the product order ≤. The associated compound risk excess

measure is given by (4.9):

Dc
+(X,Y ) = µ(X � Y ),

for X ∼ Q,Y ∼ P , and its minimal extension (4.11) coincides with the induced risk

excess measure Dst
+ (see (2.6)) compatible with the stochastic order. The maximal

extension is given in the following proposition:

Proposition 5.5 (Maximal Risk excess for stochastic ordering) 1 Let D≤,sup+

be the one-sided weak risk excess measure on (M1(R),≺sup) obtained by max-

imal extension of the discrete compound risk measure Dc
+ in (4.9). D≤,sup+

has the representation:

D≤,sup+ (Q,P ) = 1− sup
x∈Rd

(F (x)−G(x)), (5.4)

where F,G are the c.d.f.s of Q,P , respectively.

2 The restriction of D≤,sup
+ on E, obtained by setting d<+(x, y) := D≤,sup

+ (δx, δy),

defines a weak one-sided hemi-metric compatible with the strict order <, i.e.,

d<+(x, y) = 1x≥y,

with d<+ satisfying axioms (A1), (A3), and (A4) for the strict order < associ-

ated with ≤.

Proof 1 Note that by Strassen theorem, (see, e.g., [24, Theorems 3.5.1 and 3.5.5]

or [27, Theorems 4 and 5]),

D≤,sup+ (Q,P ) = sup
X∼Q,Y∼P

µ(X � Y ) = 1− inf
X∼Q,Y∼P

µ(X ≤ Y )

= 1− sup(Q(B1) + P (B2)− 1),

where the supremum is over all pair of subsets B1, B2 ⊂ E s.t. B1 × B2 ⊂
B := {(x, y);x ≤ y}. But for B1×B2 ⊂ B, it follows that B↓1×B

↑
2 ⊂ B, where

B↓1 = {x ∈ Rd : ∃x̄ ∈ B1 s.t. x ≤ x̄} and B↑2 = {y ∈ Rd : ∃ȳ ∈ B2 s.t. y ≥ ȳ}
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are the decreasing, resp. increasing, completions of B1, B2. Then, it is easy to

see that one can enlarge B↓1 , B
↑
2 to intervals of the form (−∞, x], [x,∞). As

a result the maximal extension is given by

D≤,sup+ (Q,P ) = 2− sup
x∈Rd
{F (x) +G(x)}

= 1− sup
x∈Rd
{F (x)−G(x)},

where G(x) = P ([x,∞)).

2 Formula (5.4) yields

D≤,sup+ (δx, δy) = 1− sup
z∈Rd
{1z≥x − 1z≥y} = 1x≥y.

Remark 5.2 Comparing this result with those of Proposition 3.3 and Example

3.2, one sees that the discrete one-sided hemi-metric d≤+(x, y) = 1y�x and the cor-

responding compound risk excess measure has many extensions on M1(Rd) and, in

particular, we obtain

Duo
+ ≤ Dst

+ ≤ D
≤,sup
+ .

The following diagram illustrates the different embeddings of structures, through

their hemi-metrics:

(E,<) d<+ D≤,sup+ (M1(E),≺sup)

(E,≤) d≤+ Dst
+ (M1(E),�st)

Duo
+ (M1(E),�uo)

dr+

min

sup

dr+

dr+

Next, we investigate the maximal one-sided weak risk excess extension for the

basic hemi-metric (2.9): on E = R, for X ∼ F, Y ∼ G, let Dc
+(X,Y ) = E(X − Y )+

be the average risk excess as in (4.13). The maximal risk excess extension by mass

transportation is given by the following proposition.

Proposition 5.6 (Risk excess from exceedance in average) Let Db,sup
+ (Q,P ) be

the maximal one-sided weak risk excess extension, obtained by mass transportation

of the compound risk excess measure Dc
+(X,Y ) = E(X − Y )+. One has the repre-

sentation

Db,sup
+ (Q,P ) = E[

(
F−1(U)−G−1(1− U)

)
+

], (5.5)

where F,G are the c.d.f.s of Q,P , respectively.
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Proof The argument for the maximal risk excess extension is similar to that of the

minimal risk excess extension.

In the previous propositions, the order induced by the maximal extension is very

strong. For insurance applications, in particular for comparing tail risk, it is of inter-

est to restrict the comparisons to the upper tails of the distributions, see Proposition

4.9 in section 4. Finally, we give the result for the tail excess compound risk measure

Dc,α
+ (X,Y ) in (4.17), which induces a more interesting order:

Proposition 5.7 (Tail risk excess) 1 Let 0 < α < 1, then the maximal exten-

sion Dα,sup
+ is given by

Dα,sup
+ (Q,P ) = (1− α)Dsup

+ (Qα, Pα), (5.6)

where Qα, Pα are the conditional distributions of Q,P on their upper α-

quantiles intervals [qα(Q),∞), [qα(P ),∞).

2 Correspondingly, a suitable consistent ordering ≺α on M1(R) is given by

Q ≺α P ⇔ G−1(u) ≤ F−1(1− u+ α), for all α ≤ u ≤ 1,

where F,G are the c.d.f.s of Q,P . For the maximal extension, the random

variables are chosen counter-monotonic in the upper part of the distribution.

Proof Similar to the proof of Proposition 5.6.

6 Extensions with dependence constraints
6.1 Setup

In sections 4 and 5, we considered risk excess measures D+(Q,P ) obtained as min-

imal and maximal extensions obtained by mass transportation of a compound risk

excess measure, i.e., over the class of all dependence structures of (Q,P ). In this

section, we consider a relevant modification of this method by restricting the class

of possible dependence structures. This setup allows to take into consideration some

known side information on the dependence structure of (Q,P ), like various bounds

on positive or negative dependence, see e.g., [29, Chapter 5].

We consider the setup E = R with hemi-metric d+ and the compound excess

risk measure Dc
+(X,Y ) = Ed+(X,Y ) of the kind (4.2), where X,Y ∈ X have

marginals Q,P . If C = CX,Y is a copula of (X,Y ), we also write ECd+(X,Y ) to

stress the dependence on C, and we denote by C the set of all bivariate copula

functions. Let D ⊂ C denote a subclass of copulas which describe the information

on the dependence structure. Then, it is natural to consider the worst and best-case

extension of Dc
+ over D.

Definition 6.1 (Minimal and maximal extension with dependence restriction) For

a subclass D ⊂ C:

• The minimal extension with dependence restriction D of Dc
+ is defined as

DD,inf+ (Q,P ) := inf{ECd+(X,Y ), X ∼ Q,Y ∼ P,C ∈ D}. (6.1)
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• Similarly, the maximal extension with dependence restriction D is defined as

DD,sup+ (Q,P ) := sup{ECd+(X,Y ), X ∼ Q,Y ∼ P,C ∈ D}. (6.2)

In the case without dependence restriction, i.e., when D = C, we get the minimal

and maximal extensions Dinf
+ , Dsup

+ of (4.2) and (5.1) considered in sections 4 and

5.

Remark 6.1 By the previous discussion of section 4 (see Proposition 4.5), it is

clear that DD,inf+ is a risk excess measure on (M1(E),�st) only in case that D
contains the upper Fréchet bound M , defined by M(u, v) = min(u, v), 0 ≤ u, v ≤ 1.

So typically the restricted extensions will not satisfy the properties (A2) and (A4)

of a one-sided risk excess measure on (M1(E),�st).

Despite that, the extensions (6.1) and (6.2) have a natural motivation as best,

resp., worst-case excess risk taking into account the dependence restrictions. On the

level of random variables, the class of pairs (X,Y ) with CXY ∈ D and X ≤ Y may

be empty even if Q �st P . Therefore, the unrestricted extensions Dinf
+ , resp., Dsup

+ ,

would under, resp., over estimate the real risk excess. As a consequence, this is a

strong indication for the relevance of the notion of minimal, resp., maximal risk

excess with dependence restriction D.

6.2 Explicit results for extensions with positive and negative dependence restriction

We now consider two particular classes of dependence restrictions D which allow

determination of the minimal, resp., maximal, extensions in explicit form. Denote

for copulas C0, C1 ∈ C by

D≤(C0) := {C ∈ C;C ≤ C0} (6.3)

and by

D≥(C1) := {C ∈ C;C ≥ C1} (6.4)

the class of all copulas which are smaller than C0, resp., bigger than C1, in the

lower orthant ordering �lo (equivalently in the upper orthant ordering �uo). (6.3)

describes a negative dependence restriction, (6.4) a positive dependence restriction:

for the case C0 = C1 = Π, the independence copula Π(u, v) = uv, 0 ≤ u, v ≤ 1, these

restrictions correspond to negatively quadrant dependent (NQD), resp., positively

quadrant dependent (PQD), random variables, as defined by [16], see [20, p. 186].

Then, for d+(x, y) = (x− y)+, we obtain the following explicit result.

Proposition 6.2 (Minimal and maximal risk excess with positive/negative depen-

dence restriction)

1 For D = D≤(C0), we obtain the explicit formula for the minimal risk excess

extension

DD,inf+ (Q,P ) = EC0
(X0 − Y 0)+, (6.5)

where X0 ∼ Q,Y 0 ∼ P and CX0,Y 0 = C0.



Faugeras and Rüschendorf Page 33 of 35

2 For D = D≥(C1), we obtain the explicit formula for the maximal risk excess

extension

DD,sup+ (Q,P ) = EC1(X1 − Y 1)+, (6.6)

where X1 ∼ Q,Y 1 ∼ P and CX1,Y 1 = C1.

Proof 1 For (X,Y ) with X ∼ Q,Y ∼ P and CX,Y = C ≤ C0, it follows from

the submodularity argument, as in the proof of Proposition 4.8 that

E(X − Y )+ ≥ E(X0 − Y 0)+,

since f(x− y) = (x− y)+ is submodular and (X,Y ) ≤sm (X0, Y 0), with ≤sm
the supermodular ordering. Taking the infimum yields the result.

2 The argument is similar.

Remark 6.2 • Taking for D the two-sided dependence information

D = D(C0, C1) = {C ∈ C;C1 ≤ C ≤ C0},

we obtain for DD,inf+ the same formula as in (6.5) and for DD,sup+ the same

formula as in (6.6). Thus, this information simultaneously shrinks the upper

and the lower bound for the risk excess.

• The concept of minimal, resp., maximal risk excess can also be introduced for

the general case (E,≤) and general compound risk excess measures Dc
+. In this

case, D denotes a class of dependence structures of random elements X,Y ∈
E. Even if Dinf

+ and Dsup
+ do not satisfy on the level of distributions the risk

excess measure axioms (A2) and (A4), they describe the relevant bounds for

the risk excess with dependence information D.

7 Conclusion
We proposed a quantitative one-sided comparison of probabilistic risks via the con-

cept of risk excess measures, obtained as order extensions of hemi-metrics on the

underlying space E. Like for the case of risk measures, the choice of a suitable

hemi-metric and corresponding excess risk measure for a particular application will

depend on the problem considered and the notion of order one wants to quantify.

For reliability, insurance mathematics, finance, epidemiology, etc... different notions

of orders and distances are related to the problem at hand. In this regard, the ex-

amples proposed, together with their explicit formulas, are helpful. Together with

the extension/restriction properties of section 3, and the dual representations of

sections 4 and 5, they can serve as a guide for the interpretation of the excess risk

measure and coherence w.r.t. order and distance on the ambient space E.

We leaved aside the statistical aspects, but let us just mention that one can obtain

empirical versions of the various risk excess measures D+(P,Q) presented here by

replacing P,Q in their definitions by the corresponding empirical measures Pn, Qn.
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For excess risk measures which have an explicit formula, statistical estimation is

straightforward by plugging in the empirical measures Pn, Qn instead of P,Q. For

the F-induced risk excess measures of section 3, and for risk excess measures ob-

tained by minimal and maximal extensions (sections 4 and 5) of a compound one,

their dual representation as a supremum (or infimum) over a functional class al-

lows to consider their estimation via Glivenko–Cantelli-type theorems indexed by

function classes. This is one supplementary interest of these dual formulations. For

example, for the F-induced risk excess measure of (3.2), since x+ ≤ |x|, one has

obviously that

DF+(Qn, Pn) = sup
F∈F

(∫
fd(Qn − Pn)

)
+

≤ sup
F∈F

∣∣∣∣∫ fd(Qn − Pn)

∣∣∣∣ ,
i.e., the risk excess measure is majorized by the corresponding integral probability

metric and the convergence of the latter follows from classical results on abstract

empirical process, see e.g., [30].
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3. Burgert, C. and Rüschendorf, L. (2006) Consistent risk measures for portfolio vectors. Insurance Math.

Econom., 38, 289–297. URL: http://dx.doi.org/10.1016/j.insmatheco.2005.08.008.

4. Cambanis, S., Simons, G. and Stout, W. (1976) Inequalities for Ek(X,Y ) when the marginals are fixed. Z.

Wahrscheinlichkeitstheorie und Verw. Gebiete, 36, 285–294. URL: http://dx.doi.org/10.1007/BF00532695.
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