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Abstract

A notion of multivariate depth, resp. quantile region, was introduced
in [Chernozhukov et al., 2017], based on a mass transportation approach.
In [Faugeras and Rüschendorf, 2017], this approach was generalized by
defining quantiles as Markov morphisms carrying suitable algebraic, or-
dering and topological structures over probability measures. In addition, a
copula step was added to the mass transportation step. Empirical versions
of these depth areas do not give exact level depth regions. In this paper, we
introduce randomized depth regions by means of a formulation by depth
functions, resp. by randomized quantiles sets. These versions attain the
exact level and also provide the corresponding consistency property. We
also investigate in the case of continuous marginals a smoothed version
of the empirical copula and compare its behavior with the unsmoothed
version. Extensive simulations illustrate the resulting randomized depth
areas and show that they give a valid representation of the central depth
areas of a multivariate distribution, and thus are a valuable tool for their
analysis.

1 Introduction

1.1 The combined copula-mass transportation approach
to multivariate quantiles and depth areas

In [Chernozhukov et al., 2017], a mass transportation approach has been pro-
posed to the definition of multivariate quantiles and depth areas. The basic
idea in their paper is that balls give a natural definition of central regions of
a spherical distribution. By mass transportation, these central ball regions are
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mapped to central center-outward quantile domains, i.e. depth regions, in the
observation domain.

Mass transportation can be regarded as a quantitative approach for trans-
forming measures. Under regularity assumptions, the optimal mass transporta-
tion is indeed induced by mappings– in general, it is induced by Markov kernels.
Transformation of measures by mappings can also be studied from a more qual-
itative and geometric viewpoint, by pushing forward a non-atomic measure by
a cyclically monotone mapping, see [Smith and Knott, 1987], [Rüschendorf and
Rachev, 1990], [McCann, 1995]. This was used in [Hallin, 2017] and [del Barrio
et al., 2018] to defining a multivariate quantile function only at the observed
sample points by solving an empirical optimal matching problem. Note that
the idea of defining a multivariate quantile by a push-forward from a reference
distribution can be traced back to early ideas in [Easton and McCulloch, 1990],
where the authors looked for the optimal matching between a sample of ob-
served values and a dataset sampled from a reference distribution, in order to
construct multivariate Q−Q plots.

In [Faugeras and Rüschendorf, 2017], the mass transportation approach of
[Chernozhukov et al., 2017] and [del Barrio et al., 2018] was generalized by defin-
ing a quantile as a Markov kernel between such a reference spherical distribution
and the multivariate distribution under consideration, compatible with corre-
sponding algebraic, ordering and topological structures. In addition, a copula
step is introduced, so that the regularity assumptions are satisfied and that the
optimal transportation step, now between the reference spherical measure and
the copula measure, is indeed induced by a mapping.

More precisely, the setting and notations of [Chernozhukov et al., 2017],
[del Barrio et al., 2018], and [Faugeras and Rüschendorf, 2017] are as follows:
for a multivariate random vector X ∈ Rd with c.d.f. F , we denote by G =
(G1, . . . , Gd) the vector of marginal cdfs, i.e. Gi(xi) := F (∞, . . . ,∞, xi,∞, . . . ,∞).
We consider the spherical distribution PS of a r.v. S on the unit ball B1 = {s ∈
Rd; ||s|| ≤ 1}. Identifying s ∈ B1 with the pair (r,a), where the radial part
r ∼ U[0,1] is uniformly distributed on the interval [0, 1], and the angular part a

is uniformly distributed on the unit sphere in Rd, such a spherical distribution
PS gives natural depth regions of PS mass τ as the balls Bτ of radius τ , since
PS(Bτ ) = τ . The basic idea of [Chernozhukov et al., 2017] and [del Barrio
et al., 2018] is then to transform these balls Bτ into depth regions of level τ in
the observational space, by setting

Aτ := QF (Bτ ), (1)

where QF is the multivariate “quantile” optimal mass transportation mapping
obtained by pushing forward PS to PX by optimal transport, i.e.

QF#PS = PX. (2)

QF is the optimal mapping in the solution of the Monge-Kantorovich Wasser-
stein metric,

W 2
2 (PS, PX) = inf

∫
||x− y||2γ(dx,dy),
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where the infimum is over all couplings γ of (PS, PX). By noting RF the
corresponding “rank” reciprocal optimal mass transportation mapping, i.e.

RF#PX = PS, (3)

one gets that

PX(Aτ ) = P (QF (S) ∈ QF (Bτ ))

= P (S ∈ RF ◦QF (Bτ )) = PS(Bτ ) = τ . (4)

For (2), (3) and thus (4) to hold, one needs moment and regularity conditions
on the distribution PX (see [Rüschendorf and Rachev, 1990], [Brenier, 1991],
and [McCann, 1995], where the moment assumption is dropped). These regular-
ity assumptions are e.g. not satisfied when PX has a discrete component, so, in
particular, when PX is replaced by the empirical measure PX∗n := n−1

∑n
i=1 δXi

based on an ergodic sample realization X1,X2, . . . of X. Thus, the empirical
versions of the depth areas in [Chernozhukov et al., 2017] require a smoothed
version of the empirical measure and regularity assumptions. In order to al-
leviate these issues, and also for obtaining depth areas fully equivariant w.r.t.
to marginal monotone transformations, [Faugeras and Rüschendorf, 2017] in-
troduce a preliminary copula step based on the distributional transform and do
instead the optimal transportation step between the reference spherical mea-
sure PS and the copula measure. This combined copula-mass transportation
approach modifies (1) and is summarized as follows:

1. Transform X ∼ F into its copula representer U = G(X,V), whose c.d.f.
C is the copula of F . Here, V is a vector with i.i.d. components uniformly
distributed on [0, 1], and X → G(X,V) is the multivariate marginal dis-
tributional transform, see [Faugeras and Rüschendorf, 2017]. Note that,
under the assumption that PX is either discrete or absolutely continu-
ous, PU is always absolutely continuous, see Lemma 6.1 in Appendix 6.1.
Hence, the regularity assumptions are satisfied for that the optimal trans-
portation plans between PU and PS be induced by mappings.

2. Transport PU into the spherical reference distribution PS via optimal
mass transportation maps QC ,RC , i.e.

QC#PS = PU, RC#PU = PS. (5)

3. The balls Bτ of PS-mass τ , are mapped into depths regions Aτ at the
copula level of PU-mass τ :

Aτ := QC(Bτ ), PU(Aτ ) = τ. (6)

4. Use the multivariate marginal quantile transform G−1 = (G−1
1 , . . . , G−1

d ),
whose components are the inverse marginal distribution functions, to de-
fine depth regions Zτ in the observational space as

Zτ := G−1(Aτ ). (7)
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Under regularity assumptions on the marginal c.d.f.s. (e.g. each marginal
c.d.f. is continuous and strictly increasing), one obtains depth regions of
level τ at the observational PX level, i.e.

PX(Zτ ) = τ.

The procedure can be formulated in terms of transformations of probability
measures via Markov kernels, as in Figure 1.

PS PU PX

QC

RC

G−1

D

Figure 1: Markov morphisms of probability measures

We denote by QC ,RC ,G−1 the degenerate Markov morphisms induced by
the mappings QC ,RC ,G

−1, e.g. QC(s, .) = δQC(s)(.). D denotes the (non-
degenerate) Markov kernel corresponding to the distributional transform X →
U = G(X,V), i.e. D(x, .) = PU|X=x(.) = PG(x,V)(.), since V is chosen inde-
pendent of X.

1.2 Inspection of empirical depth areas

The empirical version of these central quantile areas requires a modified treat-
ment, as we now proceed. It is described by the following diagram in Figure 2,
with notations similar as in Figure 1:

PS PUn PX∗n

QCn

RCn

G−1
n

Dn

Figure 2: Markov morphisms of empirical probability measures

Here, we have:

1. X∗n ∼ Fn is, conditionally on the sample, a bootstrap replication, dis-
tributed according to the empirical c.d.f. Fn. Un = Gn(X∗n,V) is the
empirical copula representer, whose c.d.f. is the empirical copula function
Cn, obtained by the empirical distributional transform with corresponding
Markov kernel Dn.

2. QCn ,RCn are the optimal transportation maps between the empirical cop-
ula and reference measures, viz.

QCn#PS = PUn , RCn#PUn = PS. (8)
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3. Defining, similarly to (6) and (7) the depth regions

An := QCn(Bτ ), Zn := G−1
n (An), (9)

for a fixed level 0 < τ < 1, one obtains PUn(An) = τ , but in general Zn is
not of exact PX∗n -level τ . If τ is not in the range of values {0, 1/n, . . . , 1}
of the empirical measure PX∗n , it is clear that Zn can not be a set of PX∗n -
mass τ . A more fundamental reason comes from the fact that since D (in
the case of a discrete X) and Dn (in every case) are non-degenerate Markov
kernels (due to the presence of the randomizer Z in the distributional
transforms), sets like A (resp. An) are no longer transformed into sets
by the contravariant action of the Markov kernels D (resp. Dn), but into
randomized sets or functions, see Sections 2 and 3 for details.

1.3 Outline

As a consequence of the above given discussion, for a general distribution and
also at the empirical level, the natural constructions (9) lead to depth domains
of inexact level, which also induces problems in the proof of the consistency
result of Corollary 6.4 in [Faugeras and Rüschendorf, 2017]. In this paper, we
show how these issues can be circumvented by three possible approaches: in
the first approach in Section 2, we abandon the idea of having depth areas of
given exact level τ in the observation space, getting only depth areas at the
copula level, and introducing instead membership functions. These member-
ship functions generalize indicator functions of sets and specify for any point
x with which probability it is contained in a corresponding randomized depth
area. This allows to turn depth area at the level of the reference distribution PS

into depth region functions at the observation level. In Section 3, we introduce
randomized depth areas as random sets, which attain the exact level τ . Both
descriptions are closely connected and allow to deal with the empirical versions
as well as to prove consistency results. In Section 4, we circumvent the issues
related to the nondegeneracy of the distributional transform kernel by intro-
ducing a preliminary smoothing of the empirical measure. For a continuous
PX, this allows to retain the advantage of the copula + mass transportation
approach while obtaining only degenerate Markov kernels and depth areas as
proper deterministic sets. Eventually, we show in Section 5 by simulations how
the different versions of the depth areas introduced can be used as a data an-
alytical tool for the analysis of multivariate distributions. An auxiliary result
of independent interest on the absolute continuity of copula measures of abso-
lutely continuous distributions is proven in Appendix 6.1. Proofs of the main
results are relegated to Appendix 6.2 and technical details of the simulations
and supplementary numerical illustrations are to be found in Appendix 7.

1.4 Setting and notation

We write Rd-valued elements, like random vectors X or sets A, in bold letters,
and interpret operations between vectors componentwise. PX will stand for the
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law associated with its representing variable X. We follow the framework and
assumptions established in [Faugeras and Rüschendorf, 2017]:

• Ergodicity hypothesis:
let X1,X2, . . . be an ergodic sample realization of PX defined on some
probability space (Ω,A, P ). It will be understood that all random vari-
ables defined in this article, S,U,X,V, and Sn,Un,X

∗
n of Sections 2-4,

Ŝn, Ûn, X̂
∗
n of Section 4, are defined on the auxiliary probability space

(Ω∗,A∗, P ∗) on which Skorohod’s Theorem in Theorem 6.2 in [Faugeras
and Rüschendorf, 2017] holds, i.e. on the auxiliary probability space
(Ω∗,A∗, P ∗) which allows to construct representers X∗n of the empirical
measure, X of PX s.t., with P -probability one has

X∗n
P∗a.s.−→ X, (10)

see steps one and two in the proof of Theorem 6.2 in [Faugeras and
Rüschendorf, 2017]. (Compared to the notation in [Faugeras and Rüschen-
dorf, 2017], we simplify notation and drop the ∗ in the X∗, which reminded
that X∗ representing PX was defined on this auxiliary probability space
(Ω∗,A∗, P ∗)). We will denote, for simplicity, e.g. by PS the law of S, and
not by P ∗S.

• Regularity assumption on PX:
Unless stated otherwise, PX will be assumed either discrete or absolutely
continuous w.r.t. λd, the d−dimensional Lebesgue measure.

2 Depth areas defined by membership functions

2.1 Membership functions

At the categorical level, the issue mentioned in the introduction arises from the
fact that the morphisms of the category of measurable spaces are the measur-
able mappings, whereas in the category of (probability) measures (or dually in
the category of measurable functions), the morphisms are the Markov kernels.
Only kernels K : PX → PY := KPX, arising from a transformation of a non-
atomic probability measure PX, can be identified with a measurable mapping
f : (X ,A(X )) → (Y,A(Y)) between the underlying measurable spaces, as K
becomes in this case degenerate, i.e.

K(x, dy) = δf(x)(dy). (11)

The consequence for sets and their transformations is the following: whereas
measurable sets are transformed into measurable sets by the morphisms– mea-
surable mappings, in the category of measurable spaces, in the category of mea-
surable functions (dual to the category of probability measures), non-degenerate
Markov kernels K transforms measurable sets A ∈ A(Y ) into measurable non-
binary functions x → K(x,A). Indeed, sets A ∈ A(Y ) can be identified with
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their indicator functions y→ 1A(y) whose contravariant transformation by the
Markov kernel K yields the function

x→ K(x,A) =

∫
A

K(x,dy). (12)

When K is degenerate of the form (11), (12) writes

K(x,A) =

∫
A

δf(x)(dy) = 1f−1(A)(x)

and the latter, as a binary function, can be identified with the measurable set
f−1(A) ∈ A(X ). For a non-degenerate Markov kernel, this is no longer the
case, as the function (12) is in general non-binary. Therefore, one can not hope
to obtain depth sets from transformations by non-degenerate kernels.

These considerations suggest that a first approach to introduce the equivalent
of depth areas of exact level τ is to consider depth functions instead of depth
sets. This is done by embedding sets into indicator functions, and considering
transformation by Markov kernels of these indicator functions. To that purpose,
we introduce membership functions which describe for a point x in the space
considered the probability with which x belongs to a (randomized) depth areas.

The precise formulation of this idea is as follows. Let us fix the level 0 <
τ < 1 throughout the paper. We will simplify notations and simply write the
sets Bτ ,Aτ ,Zτ of (6), (7) without the subscript τ . For the set B := Bτ in
the spherical reference space B1, with PS(B) = τ , we define the corresponding
membership function b by the indicator function,

b(s) = 1B(s), s ∈ B1.

At the level of S, B is a set of level τ , viz.

PS(b) =

∫
b(s)PS(ds) = P (S ∈ B) = τ.

We get the membership function a on the copula space [0, 1]d and z on the
sample space Rd by letting the Markov kernels act in a contravariant fashion:

a := RC(b), z := Da = DRCb, (13)

i.e.

a(u) =

∫
Rc(u,ds)b(s), (14)

and

z(x) =

∫
D(x,du)a(u) =

∫ (∫
Rc(u,ds)b(s)

)
D(x,du). (15)

In diagram form, these relations are represented as in Figure 3, the dual diagram
of Figure 1.
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b a zRC D

Figure 3: Depth regions functions–population version

For the empirical versions of the depth areas in terms of membership func-
tions, one defines similarly,

an := RCnb, zn := Dnan = DnRCnb, (16)

as shown in Figure 4.

b an znRCn Dn

Figure 4: Depth regions functions–empirical version

Since RC , RCn are degenerate Markov kernels induced by the mappings RC ,
RCn , with reciprocal functions QC , QCn , the membership functions a, an are
proper indicator functions defining proper subsets in the copula space

a(u) = 1QC(B)(u) = 1A(u), an(u) = 1QCn (B)(u) = 1An(u), (17)

with A,An previously defined as in (6) and (9). Indeed, by (13),

a(u) =

∫
RC(u,ds)1B(s) =

∫
B

δRC(u)(ds)

= 1RC(u)∈B = 1u∈R−1
C (B) = 1u∈QC(B) = 1A(u)

Thus the membership functions a, an can be identified with the sets A = QC(B),
An = QCn(B), images of the depth ball B under the transportation maps
QC ,QCn .

In contrast to this case, in the case of non-Lebesgue continuous PX, D is a
non-degenerate Markov kernel and, in general, the empirical Dn is always non-
degenerate. Therefore, the membership functions z, zn of (13) and (16) are no
longer indicator functions of some deterministic depth set, but only determines
a “random” depth sets by their membership probabilities, as is explained below.

2.2 Interpretation of the membership functions z, zn

As explained in Remark 4.5 in [Faugeras and Rüschendorf, 2017], on Polish
spaces , non-degenerate Markov morphisms such as D,Dn can be considered as
degenerate Markov morphisms on an enlarged probability space. In the case
of D,Dn this representation is implicit in the construction of D,Dn as ran-
dom transformations X → G(X,V) and X∗n → Gn(X∗n,V), with independent
randomizer V ∈ [0, 1]d. In other words, if one considers the enlarged joint
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distributions P (X,V) = PX ⊗ PV, P (U,V) (and similarly P (X∗n,V), P (Un,V) for
the empirical counterpart), the corresponding Markov morphisms transform-
ing these probability measures are degenerate and induced by the pair of joint
mappings

(G(X,V),V)
(G,id)←− (X,V)

(U,V)
(G−1,id)−→ (X,V).

Dually, this means that the membership functions z, zn obtained from D,Dn
can be construed as indicator functions of sets on the enlarged (X,V) space Rd×
[0, 1]d. More precisely, one has that for the multivariate distributional transform
with V made of independent components, D(x, .) is the uniform distribution on
the box [G(x−),G(x)], if G(x−) 6= G(x):

D(x,du)) =
du

m(x,G)
1[G(x−),G(x)](u), for G(x) 6= G(x−),

where we have set m(x,G) := Πd
i=1Gi(xi) − Gi(xi−). As a consequence, the

image of an indicator function 1[u1,u2] by D becomes, for G(x) 6= G(x−) and
[u1,u2] ⊂ [G(x−),G(x)],

(D1[u1,u2])(x) =

∫
du

m(x,G)
1[G(x−),G(x)](u)1[u1,u2](u)

=
λd([G(x−),G(x)] ∩ [u1,u2])

m(x,G)
, for G(x) 6= G(x−),

where λd is the d−variate Lebesgue measure on [0, 1]d (i.e. the distribution of
V), see Figure 5.

Thus, the z function, which is the image of 1A by D, writes at a jump point
x with positive mass as

z(x) =
λd([G(x−),G(x)] ∩A)

m(x,G)
, for G(x) 6= G(x−),

and similarly for zn. As a conclusion, the functions z, zn have an interpretation
as a sort of generalized indicator function: it is one if [G(x−),G(x)] ⊂ A, zero
if [G(x−),G(x)] ∩A = ∅ and amounts to the relative portion of mass of A in
[G(x−),G(x)].

In particular, for the empirical membership function zn, one can construe it
as a subset of the original cloud of sample points X1,X2, . . . ,Xn, each attached
with a portion of the “ghost” [0, 1]d space, standing for the amount of mass
required to obtain PX∗n expectation τ : it can be phenomenologically interpreted
as sort of a random set of Rd, where each point is selected with a randomization
weight corresponding to a fraction of the volume in the enlargement space [0, 1]d.
The precise description of these enlarged sets of Rd × [0, 1]d as random sets of
Rd will be given in Section 3.
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Figure 5: Interpretation of the membership functions z. We represent in the
univariate case, i.e. for one marginal G := Gi of G, the transformation of an
indicator function 1[u1,u2] in the copula space at a discontinuity point x of G
by the Markov morphism D. One obtains the fraction of mass in orange of the
interval [u1, u2], divided by the marginal mass of the jump G(x) − G(x−). In
the multidimensional case, one obtains a similar, yet harder to visualize, figure,
where z(x) stands for the d-dimensional Lebesgue measure of the box [u1,u2]
divided by the product of marginals jump mass m(x,G).

2.3 Properties of depth region and membership functions

The following theorem clarifies what can be expected for the depth regions and
membership functions, and corrects Corollary 6.4 in [Faugeras and Rüschendorf,
2017]:

Theorem 2.1. With P−probability one,

1. At the copula level:

(a) A is exactly of PU-mass τ , An is exactly of PUn-mass τ :

PU(A) = PUn(An) = τ.

(b) With P−probability one, the empirical depth area An at the copula
level is asymptotically of PU-mass τ :

PU(An)→ τ, as n→∞.

(c) With P−probability one, the L1(PU) distance between the member-
ship functions an and a, (equivalently the PU symmetric distance
between the depth sets An and A) is asymptotically null:

PU(|an − a|) = PU(An∆A)→ 0, (18)

as n→∞, with P−probability one.
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2. At the observational X level,

(a) the depth set Z is of PX-mass at least τ , the depth set Zn is of
PX∗n-mass at least τ ,

PX(Z) ≥ τ, PX∗n(Zn) ≥ τ.

while the membership functions z, zn are of exactly PX, PX∗n-expectation
τ :

PX(z) = τ, PX∗n(zn) = τ.

If PX is continuous, then Z is exactly of PX-mass τ : PX(Z) = τ .

(b) With P−probability one, if PX is continuous, the PX symmetric
distance between Z and Zn becomes asymptotically negligible,

PX(Zn∆Z)→ 0,

so that Zn is asymptotically of PX-mass τ :

PX(Zn)→ τ.

(c) With P−probability one, the L1(PX) distance between the member-
ship functions zn and z, is asymptotically null:

PX(|z − zn|)→ 0,

as n→∞, with P -probability one.

3 Randomized depths areas

The discussion in Section 2 of the Markov kernels D, resp. Dn, corresponding
to the multivariate distributional transforms G(X,V), resp. Gn(X∗n,V), gives
us a tool to define directly a random depth area as a random set.

3.1 Definitions

Let the level 0 < τ < 1 remain fixed as before. Define, for v ∈ [0, 1]d, the set

Zv := {x ∈ Rd : G(x,v) ∈ A}. (19)

The randomized depth area at level τ is then defined as the random set ZV,
where V is the randomizer used in the distributional transforms U = G(X,V)
and Un = Gn(X∗n,V).

These randomized depth regions are random subsets of Rd of exact mass τ :
By definition, we get

PX(ZV) = P ∗(X ∈ ZV)

= P (X,V)({(x,v) : x ∈ Zv})
= P (X,V)({(x,v) : G(x,v) ∈ A})
= P ∗(G(X,V) ∈ A) = P ∗(U ∈ A)

= P ∗(S ∈ B) = τ.
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Similarly, for their empirical counterparts, set

Zv,n := {x ∈ Rd : Gn(x,v) ∈ An}. (20)

and define the empirical randomized depth region as ZV,n. These empirical
randomized depth regions are also random subsets of Rd of exact mass τ :

P ∗(X∗n ∈ ZV,n) = P ∗(Gn(X∗n,V) ∈ An) = P ∗(Un ∈ An) = τ.

3.2 Convergence of the randomized depth region

The consistency properties of these empirical randomized depth areas is stated
in the following theorem:

Theorem 3.1. The empirical randomized depth area ZV,n is asymptotically
consistent in the PX-symmetric difference distance towards ZV: one has

PX(ZV,n∆ZV)→ 0,

as n→∞, with P -probability one.

Remark 1 (On the regularity of the transportation maps). The regularity the-
ory of optimal transportation maps is a delicate matter (see [Figalli, 2017]), and
is surveyed in [De Philippis and Figalli, 2014]. The classical Cafarelli’s regular-
ity theory in [Caffarelli, 1992] requires convexity of the support of the destination
measure and that both the source and destination densities be bounded away from
0 and infinity. Here, as in [Chernozhukov et al., 2017], a difficulty comes from
the fact that the destination density of PS has a singularity at 0, see equation
(1.1) in [Figalli, 2018]. Hence, one can not use the classical Cafarelli’s regular-
ity, and one has to use the theorems on partial regularity developed in [Figalli
and Kim, 2010], [Figalli, 2010], which requires only that the source and desti-
nation densities be bounded away from 0 and infinity, or the regularity theory in
[Figalli, 2018], which sets the source as PS and requires only boundedness away
from zero and infinity for the destination measure. In particular, [Figalli, 2018]
gives the missing homeomorphism condition (C) for the validity of Theorem A.2
in [Chernozhukov et al., 2017]. In our setting, another difficulty comes from the
fact that if PX absolutely continuous, it may happen that the source measure
PU has an infinite or zero density on points in the frontier of its support, as
e.g. is the case for a Gaussian copula where the density is unbounded at 0 and
1. Hence, we use the restriction argument to obtain a copula density bounded
away from zero and infinity on L (and K). Note also that PUn is always abso-
lutely continuous, since the randomizer V ∼ λd. For the same reason, if PX is
discrete, then PU has the same properties as those of PUn .

3.3 Connection with the depth functions z, zn of Section 2

The membership depth functions z, zn have a natural connection with these
randomised sets ZV,ZV,n, as their conditional expectations:

z(x) = (D1A)(x) = P ∗(G(x,V) ∈ A) = E∗[1ZV
(x)] = E∗[1ZV

(X)|X = x]
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and similarly for zn

zn(x) = (Dn1An)(x) = E∗[1ZV,n
(x)] = E∗[1ZV,n

(X)|X = x].

As a direct corollary, one obtains a simple proof of the coverage probabili-
ties of the membership functions and of the asymptotic nullity of the L1(PX)
distance z and zn:

Corollary 3.2. 1. PX(z) = PX∗n(zn) = τ .

2. With P -probability one, as n→∞,

PX|zn − z| → 0.

Proof. 1. By the law of total expectation, PX(z) = E∗z(X) = P ∗(X ∈
ZV) = τ , and similarly for zn.

2. By the elementary properties of conditional expectation,

PX|zn − z| = E∗|zn(X)− z(X)| = E∗|E∗[1ZV,n
(X)− 1ZV

(X)|X]|
≤ E∗

(
E∗[|1ZV,n

(X)− 1ZV
(X)||X]

)
= E∗[|1ZV,n

(X)− 1ZV
(X)|]

= PX(ZV,n∆ZV)→ 0

by Theorem 3.1.

4 Empirical depth areas obtained from a smoothed
empirical measure

4.1 Motivation and setting

The previous sections showed how to circumvent the complications induced by
the discreteness of the empirical measure in order to obtain empirical mem-
bership functions zn, which can be thought of as a set in the enlarged space
Rd × [0, 1]d, or empirical random depth sets ZV,n. If PX is continuous, ZV,n

is a cloud of the sample points, whereas the population depth set Z is a “con-
tinuum” of Rd. Similarly for the (enlarged) set interpretation of the function
zn. One may consider that this renders these proposals not visually appealing
as depth region.

In that regard and in view of the discussion of Section 2, one is naturally
inclined in the continuous case to consider a smoothing of the empirical measure
in order to obtain a continuous empirical measure. The corresponding trans-
formations of measures are then induced by mapping, i.e. degenerate Markov
morphisms, and sets are now transformed into sets.

A probabilistic description of the (kernel) smoothing procedure is as follows:
on (Ω∗,A∗, P ∗) where the r.v.s. live, add to the bootstrap representer X∗n of
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the empirical measure a small “scaled error” with multivariate bandwidth hn
from some fixed independent r.v. W with continuous distribution function K,
i.e. define

X̂∗n := X∗n + hnW. (21)

The law of X̂∗n is the convolution of the empirical measure with the law of hnW,
i.e.

P X̂∗n = PX∗n ∗ PhnW.

Denote by F̂n, Ĝn the corresponding joint and marginal (continuous) c.d.f.s. of

X̂∗n. F̂n corresponds to the well-known kernel smoothed empirical cdf,

F̂n(x) =
1

n

n∑
i=1

K

(
x−Xi

hn

)
,

where K is the joint cdf of W. Since F̂n is continuous, one can define the empir-
ical copula representer Ûn via the Multivariate Marginal Probability Integral
Transform,

Ûn := Ĝn(X̂∗n), (22)

and denote by Ĉn its (copula) c.d.f. The rest of the procedure is as before:

Monge-mass transport P Ûn to PS by the transport map RĈn
with inverse QĈn

.

Eventually, Ŝn is obtained by setting Ŝn = RĈn
(Ûn). One has transformed all

corresponding measures by push-forwarding them by mappings and so we can
reason at the level of random variables according to the diagram in Figure 6.

Ŝn Ûn X̂∗n

QĈn

RĈn

Ĝ−1
n

Ĝn

Figure 6: Transformations of the smooth empirical measure by mappings of the
corresponding random variables

For a continuous PX, the distributional transform X→ G(X,V) reduces to
the probability integral transform X→ G(X), so the population counterparts of
(21) and (22) are obtained similarly by transformations of random variables by
non-randomized mappings, as in the diagram in Figure 7. (Recall that S,U,X
are defined on (Ω∗,A∗, P ∗)).

S U X

QC

RC

G−1

G

Figure 7: Transformations of random variables–population version for a contin-
uous X
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One obtains for both the empirical and the population depths areas at the
X level genuine sets Z, Ẑn, defined naturally as

Z = G−1(QC(B)), Ẑn = Ĝ−1
n (QĈn

(B)).

Remark 2 (On bandwidth and kernel choice). In (21) it is recommended to
choose W with independent components, i.e. a product kernel K, so that one
does not introduce artificial dependence in the components of X̂∗n. Moreover,
Ûn in (22) is obtained from X̂∗n by the transform Ĝn which acts marginal by
marginal. Therefore, for the choice of the multivariate bandwidth hn, one can
use univariate bandwidth choice techniques for each component of Ĝn and op-
timize each marginal bandwidth of hn separately.

4.2 Asymptotic results

The following Proposition is the analogue of the main Theorem 6.2 in [Faugeras
and Rüschendorf, 2017]:

Proposition 4.1. If PX is absolutely continuous, and hn↓ 0, one has, with P
probability one,

(X̂∗n, Ûn, Ŝn)
P∗a.s.−→ (X,U,S).

In turn, Proposition 4.1 translates at the level of depth sets as follows:

Corollary 4.2. With P−probability one, if PX is continuous, the PX sym-
metric distance between the population depth area Z and its empirical smoothed
counterpart Ẑn becomes asymptotically negligible,

PX(Ẑn∆Z)→ 0,

so that Ẑn is asymptotically of PX-mass τ : PX(Ẑn)→ τ.

Proof. Similar to the proof of Theorem 2.1 1. (c) and 2. (b).

5 Simulations

In this section, we provide some extensive numerical illustrations of the proposed
multivariate quantile and depth areas, illustrate their properties and compare
them with results of [Chernozhukov et al., 2017] and [del Barrio et al., 2018].

5.1 Basic algorithm and numerical implementations of op-
timal transport

The most crucial step for obtaining the empirical quantile areas is the computa-
tion of the optimal transport map between the reference spherical distribution

PS on the unit ball and the empirical copula distribution PUn (or P Ûn). Nu-
merical implementation of optimal transport is a subject of active research, see
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[Peyré et al., 2019] for a survey of available methods. Optimal transportation
between discrete distributions reduces to a finite dimensional linear program,
which further reduces to an optimal matching problem when the mass of each
Dirac is constant and the two measures have the same number of Dirac masses,
see e.g. [Peyré et al., 2019] Chapters 2 and 3. Therefore, and also for com-
parison purposes with [Chernozhukov et al., 2017] and [del Barrio et al., 2018],
we chose to implement algorithms of optimal transport for discrete to discrete

distributions. This requires to discretize PS and PUn (or P Ûn), and is done as
explained thereafter.

The general procedure to compute the proposed randomized depth areas of
Section 3 is described as follows:

1. Sample n data points X1, . . . ,Xn from the PX distribution to be analyzed.

2. Discretize the empirical copula measure as follows: Since PUn is the law
of Gn(X∗n,V), with X∗n ∼ Fn, one can simply obtain its discretization
by generating n i.i.d. realizations V1, . . . ,Vn of the randomizer V, uni-
formly distributed on [0, 1]d, and computing the empirical copula points
as Gn(Xi,Vi), for i = 1, . . . , n.

Note also that for large sample size, one can speed up the computations by
bypassing this distributional transform step, and compute an approximate
empirical copula sample by simply taking Gn(Xi), for i = 1, . . . , n as
empirical copula points.

3. Discretize the unit ball where PS lives into a regular grid of n points.

4. Compute the optimal transportation matrix from the n points of the dis-
cretized ball into the n empirical copula points, and deduce the corre-
sponding optimal transportation map QCn .

5. Generate the quantile areas/contours from the unit ball by picking the
points inside/on the sphere Bτ of radius τ . Obtain the empirical quantile
areas/contours An = QCn(Bτ ) in the copula space [0, 1]d by mapping
those points with the optimal transportation map of step 4.

6. Obtain the empirical quantile areas/contours Zn = G−1
n (An) in the sam-

ple space Rd of PX by mapping the quantile contour points An in the
copula space [0, 1]d with the marginal empirical quantile transform G−1

n ,
computed from the sample of step 1.

For the smoothed version of Section 4, the algorithm is similar, with using the
smoothed version F̂n, Ĝn instead of the empirical measure in steps 2 and 6.
Note also that one does not need randomizers in this case, see (22).

We implemented the linear programming version of optimal transportation,
as in [del Barrio et al., 2018]. However, it runs into memory trouble for sample
size nboot exceeding 800 points on our computer (the codes were written in
Mathematica, on a computer with 8Gb RAM). Therefore, we also implemented
the entropy regularised optimal transportation method introduced by [Cuturi,

16



2013]. Although it gives only an approximate optimal transport matrix, the
computations are extremely fast, even for large sample size, and is thus our
recommended method. In addition, two variants (the mode method and the
barycenter method) are proposed in the Sinkhorn algorithm for the computation
of the optimal transportation map from the transportation plan.

Details on the implementation and comparison of algorithms are presented
in Appendix 7. The randomized depth areas approach of Section 3 and the
smoothed approach of Section 4 give similar results, with the smoothing ap-
proach yielding the most visually appealing graphics, while the randomized
depth areas approach is slightly faster. The implementation by the Sinkhorn al-
gorithm + barycenter method works well for distributions with “nice”, convex,
connected support, while the Sinkhorn algorithm + mode method, by mapping
to an exact point of the sample which therefore will fall inside the support and
respect its geometry, should be preferred otherwise. See Appendix 7 for the
definitions of the methods considered.

5.2 Some numerical illustrations

We present below some numerical illustrations of the properties of the quan-
tile areas obtained. For obvious graphical reasons, we only consider bivariate
models.

5.2.1 Distributions with non-convex or non-connected support

In order to illustrate the ability of the proposed approach to pick the correct
geometry of a distribution with non-convex support, we simulated n = 5000
observations from the regression model Y = −1 + X2 + ε, with X ∼ U[−2,2]

independent of ε ∼ U[−1,1], see Figure 8. By construction, the distribution of
X := (X,Y ) has a non-convex support: it is a band curved around a parabola.
Such a distribution has a “banana” shape similar to the one in Figures 1 and 2
in Chernozhukov et al. [2017].
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Figure 8: Scatterplot of n = 5000 i.i.d. observations from the regression model
X = (X,Y ), Y = −1 +X2 + ε, with X ∼ U[−2,2] independent of ε ∼ U[−1,1].

In Figure 9, we displayed the τ = 0.5 quantile region obtained using Sinkhorn’s
algorithm with extraction of the transportation map by the mode method
in the observation space. The observed sample points which fall inside the
0.5−quantile region are represented by red circles, and those outside by blue
filled squares: the half central quantile area nicely adapts to the non-convex
“banana” geometry of the distribution considered.
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Figure 9: τ = 0.5 non-convex quantile region obtained using Sinkhorn’s algo-
rithm with extraction of the transportation map by the mode method. (Red)
circles: sample points inside the 0.5−quantile region, (Blue) filled squares: sam-
ple points sample points outside the 0.5−quantile region.

Analogously, we illustrate the ability of the proposed method to pick non-
connected quantile areas in Figure 10: we simulated n = 5000 observations from
a distribution uniformly distributed on two disjoint unit disks. By construction,
the distribution has a disconnected support. The τ = 0.5 quantile region ob-
tained using the same implementation of the algorithm as above is displayed by
the points marked by red circles: the quantile region is also a non-connected
central area in the disjoint support of the two disks.
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Figure 10: τ = 0.5 non-connected quantile region obtained using Sinkhorn’s al-
gorithm with extraction of the transportation map by the mode method. (Red)
circles: sample points inside the 0.5−quantile region, (Blue) filled squares: sam-
ple points sample points outside the 0.5−quantile region.

5.2.2 Convergence of depth areas

In order to illustrate the convergence properties of the empirical quantile areas
to their population counterparts as the sample size increases, we take for X a
standard bivariate Gaussian distribution, whose theoretical quantile areas are
known and easy to calculate: they are disks whose radius is the corresponding
quantile of the Rayleigh distribution.

Figure 11 illustrates Corollaries 4.2, 3.2 of the smoothed approach of Section
4). We have drawn the empirical quantile contours for τ = .25, .50, .75, .90
(colored lines) together with their theoretical counterparts (shaded disks) and
sample data clouds. Compared to Figure 2.1 in [del Barrio et al., 2018], one
also obtains nicely converging nested regions, as expected, somehow slightly less
“spiked”. The unsmoothed approach of Section 3 gives a similar picture, and is
therefore omitted. Notice that for high quantile areas (τ = 0.9), the convergence
takes longer to occur, as one enters the domain of application of extreme value
theory.
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Figure 11: Smoothed empirical quantile contours (probability contents .25(blue)
.50 (brown), .75 (green), .90 (red)) computed from n = 100, 200, 500, 1000,
2000, 5000 i.i.d. observations from a bivariate standard Gaussian distribution,
along with their (spherical) theoretical counterparts (shaded disks). (Sinkhorn
algorithm + barycenter method)

5.2.3 Monotone invariance

For illustrating the monotone equivariance property of the proposed quantile
areas w.r.t. monotone transformations of the marginals, we drew the empirical
quantile contours in the copula space [0, 1]d and in the original sample space Rd
for a Frank copula model with varied marginals (smoothed approach).

In Figure 12, we simulated n = 1000 sample points from a Frank (with
parameter θ = 500) copula distribution with uniform marginals. As expected
with uniform marginals, we obtain the same quantile contours in the copula
space [0, 1]2 (left panel) as in the sample space R2 (right panel).
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Figure 12: Smoothed empirical quantile contours (probability contents .25(blue)
.50 (brown), .75 green), .90 red)) computed from n = 1000 i.i.d. observations
from a Frank (θ = 500) copula distribution with Uniform marginals. The left
panel shows the empirical contours in the copula space together with the boot-
strap sample from the empirical copula. The right panel shows the empirical
contours in the original sample space together with the observed data. (Sinkhorn
algorithm + barycenter method)

In Figure 13, we simulated n = 1000 sample points from the same Frank
copula, but with both marginals changed to two Exponential Exp(2) distribu-
tions. In the copula space (left panel), one obtains, up to sample fluctuations,
the same contour regions as in Figure 12, which is to be expected since copulas
are invariant w.r.t monotone increasing marginal transformations. However, in
the original sample space, one now obtains empirical quantile regions stretched
by the Exponential marginal transformation, which gives depth areas nicely
located in the concentration areas of the data.
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Figure 13: Smoothed empirical quantile contours (probability contents .25(blue)
.50 (brown), .75 green), .90 red)) computed from n = 1000 i.i.d. observations
from a Frank (θ = 500) copula distribution with Exponentials Exp(2) marginals.
The left panel shows the empirical contours in the copula space together with
the bootstrap sample from the empirical copula. The right panel shows the
empirical contours in the original sample space together with the observed data.
(Sinkhorn algorithm + barycenter method)

5.2.4 Gaussian Mixtures

For comparison sake, we also plotted the empirical contours obtained for some
of the mixture distributions studied in [del Barrio et al., 2018], Section 2.3.2.
Figure 14 is the analogue of Figure 2.2 in [del Barrio et al., 2018] for the sym-

metric Gaussian mixture distributions 1
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(right panel). We obtain a similar shape of the quantile con-

tours as in del Barrio et al. [2018], slightly more regular. As in [del Barrio et al.,
2018], we emphasize the difference between quantile regions and level-sets of the
density: here, the quantile regions obtained in this example are central, con-
nected and nested areas, whereas the density level sets would give disconnected
regions separating the two modes of the mixture.
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Figure 14: Smoothed empirical quantile contours (probability contents .25(blue)
.50 (brown), .75 (green), .90 (red)) computed from n = 2000 i.i.d. observations
from symmetric Gaussian mixture distributions .
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Conclusion

We proposed three multivariate notions of central quantile regions: membership
functions z, randomized depth areas ZV, and marginally smoothed depth areas
Ẑ. These are based on the copula and mass transportation approach of [Faugeras
and Rüschendorf, 2017] to multivariate quantiles. In particular, their empirical

counterpart zn, ZV,n, Ẑn attain the exact level and are also strongly consistent.
These results correct Corollary 6.4 in [Faugeras and Rüschendorf, 2017], and
improve on those of [Chernozhukov et al., 2017]. Simulations illustrate how
these “depth areas” can be numerically obtained and show that they give a
valid representation of the central quantile area of a multivariate distribution,
and thus are a valuable tool for their analysis. Let us stress the interest of our
proposed approach and summarize the results obtained:

• The method of a single probability space we used in the proofs, see (10),
allows to obtain convergence P−a.s., and not only in P -probability as in
[Chernozhukov et al., 2017]. Also, let us stress that the copula step allows
to reduce the optimal transportation problem to measures on bounded
domains, and so one does not need assumptions on the existence of second
moment of PX, nor compactness of its support as in [Chernozhukov et al.,
2017].

• As may appear surprising at first sight, the Markov morphism view on
multivariate quantiles we advocate in [Faugeras and Rüschendorf, 2017]
and in this paper allows to define multivariate quantile objects even for
a discrete distribution PX! The price to be paid is a conceptual change
in the corresponding notion of “multivariate central quantile areas”: one
either has to introduce membership functions z, (which can be interpreted
as indicators of a genuine set, but in an enlarged space), or consider ran-
domized quantile sets ZV. This is also convenient for their statistical
counterparts zn and ZV,n, where one must make inference from the dis-
crete empirical measure PX∗n .

• The copula approach based on the distributional transform allows to ob-
tain genuine absolutely continuous empirical copulas, see [Faugeras, 2015],
[Faugeras, 2017]. This results in a nonparametric estimation procedure
without any bandwidth to optimize. In particular, the empirical member-
ship function zn and randomized depth area ZV,n are bandwidth free. For

the marginally smoothed quantile areas Ẑn, one simply has d-univariate
bandwidths to optimize in the kernel smoothing step, which is much easier
than smoothing a d-variate distribution, as in [Chernozhukov et al., 2017],
where one has in practice a d × d positive definite matrix of bandwidths
to optimize. Note also that multivariate density estimation is subject to
the curse of dimensionality.

• Because copulas are invariant w.r.t. monotone increasing transformations
of the marginals, see e.g. Theorem 2.4.3 in [Nelsen, 2006], one obtains

25



depth areas which are fully equivariant w.r.t. monotone increasing trans-
formations of the marginals of X. In other words, if X is transformed into
T(X) := (T1(X1), . . . , Td(Xd)), where each map T1, . . . , Td are strictly in-
creasing, the depth areas will remain the same at the copula level, and will
be transformed at the X level by the corresponding T. One has therefore a
key feature of univariate quantiles, equivariance w.r.t. a nonlinear mono-
tone change of scale, extended to the multivariate setting. This is more
general than the affine equivariance of [Chernozhukov et al., 2017]. Note
also that requiring equivariance of the quantile region under a multivariate
affine transformation x → Tx + b, where T a d × d matrix, as argued in
[del Barrio et al., 2018], seems ill-suited from a physical standpoint: if the
components of X stands for quantities expressed in different units (say
X1 =mass in (kg), X2 =speed in (m.s−1), etc.), it does not make sense to
take linear combination of them, as the variables are non-commensurable.
To the contrary, the copula transformation step in the present approach
encodes the different magnitudes scales into a single, common, dimension-
less propensity scale, as marginal quantile and distribution functions are
in Galois connections of each other, see Faugeras and Rüschendorf [2017].
Hence, the proposed combined copula and mass transportation approach
to multivariate quantile is robust w.r.t. general (nonlinear) changes of
scales.

• On the practical and numerical side, the proposed depth areas are eas-
ily computable thanks to a fast implementation of the optimal transport
step using the entropy regularised / Sinkhorn algorithm. This give a new
valuable tool to the applied scientist for the analysis of multivariate data.
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6 Appendix 1: Proofs

6.1 Absolute continuity of copula measures of absolutely
continuous distributions

If F is continuous, the copula is unique and PU is the push-forward of PX by
G. If, in addition, PX is absolutely continuous, it is not immediately clear that
PU is also absolutely continuous, since G may have flat spots (the result would
be obvious if the marginals of X had strictly positive densities). Intuitively, the
points were the components of G have a zero derivative are those which are not
charged by PX. The following lemma on the absolute continuity of the copula
measure gives a proof of this statement and is of independent interest.

Lemma 6.1. If PX � λd, then PU � λd.
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Proof. The proof is based on the transformation formula Theorem 7.26 in Rudin
[1987] p. 154: for every measurable function h : Rd 7→ [0,∞], one has∫

T(N)

hdλd =

∫
N

(h ◦T)|JT|dλd, (23)

for a Lebesgue measurable set N ⊂ O ⊂ Rd, s.t. O is open, T : O 7→ Rd is
continuous, T differentiable and one-to-one on N, and λd(T(O \N)) = 0.

Let G(x) = (G1(x1), . . . , Gd(xd)) be the probability integral transform of
X ∼ F , with marginals G. Let f denotes the density of PX = fλd, with gi the
density of the ith component of f . Let A ∈ B([0, 1]d) be a Borel-measurable set
s.t. λd(A) = 0.

Let E = {x ∈ Rd : f(x) > 0} and M =

o︷ ︸︸ ︷∏
{xi ∈ R : gi(xi) > 0} be the

open interior. If x ∈ Mc, then ∃i ∈ {1, . . . , d} s.t. 0 = gi(xi) =
∫
f(x)dλd−1

−i ,
where the integration is w.r.t. all coordinates x1, . . . , xd, except xi. Therefore,
f(x) = 0 a.e. Hence, E ⊂M a.e.

Thus, one has

PU(A) = PG(X)(A) =

∫
1A(G(x))PX(dx)

=

∫
1A(G(x))1E(x)f(x)(dx) =

∫
1A(G(x))1E∩M(x)f(x)(dx).

On G(M), G−1 is differentiable, one-to-one, with inverse G continuous. More-
over, the Jacobian of G−1 is well defined on G(M) and writes as |JG−1(u)| =(∏

gi(G
−1
i (ui))

)−1
. Therefore, one has that

PU(A) =

∫
1G−1(A)∩G−1(G(E∩M))(x)f(x)(dx)

=

∫
G−1(A∩G(E∩M))

f(x)(dx)

=

∫
A∩G(E∩M)

f(G−1(u))∏
gi(G

−1
i (ui))

du, (24)

where (24) follows, by regularity of the Lebesgue measure, from (23) applied to
T := G−1 and N := A ∩G(E ∩M).

For any L > 0, let

L := {u ∈ [0, 1]d : f(G−1(u)) ≤ L, and
∏

gi(G
−1
i (ui)) ≥ 1/L}.

On G(E∩M), 0 < f(G−1(u))∏
gi(G

−1
i (ui))

<∞, hence L ⊂ G(E∩M). Thus, by (24), one

has that PU(A∩L) ≤ λd(A). By assumption, λd(A) = 0, hence PU(A∩L) = 0,
for all L > 0. By monotone convergence, this entails PU(A) = 0, i.e. PU � λd.
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6.2 Proofs of the main results

6.2.1 Proof of Theorem 2.1

Proof. 1. (a) follows from the definitions of the Markov morphisms:

PU(A) = PU(a) = PU(RCb) = (PURC)(b) = PS(b) = τ,

and similarly

PUn(An) = PUn(an) = PUn(RCnb) = (PUnRCn)(b) = PS(b) = τ.

(b) |PU(an − a)| ≤ PU|an − a| → 0, as n→∞ by Theorem 2.1 1. (c).

(c) One has

PU(|an − a|) = PU(|1An
− 1A|)

= P ∗(U ∈ A,U /∈ An) + P ∗(U /∈ A,U ∈ An)

:= (I) + (II)

with

(I) = P ∗(U ∈ A,U /∈ An,Un ∈ An) + P ∗(U ∈ A,U /∈ An,Un /∈ An),

where U,Un are the coupling constructions of Theorem 6.2 in [Faugeras
and Rüschendorf, 2017]. Let d be the Euclidean distance on Rd. By
the triangle inequality,

d(U,An) ≤ d(U,Un) + d(Un,An)

By Theorem 6.2 in [Faugeras and Rüschendorf, 2017], d(U,Un)
P∗a.s.−→

0, and if Un ∈ An then d(Un,An) = 0. Therefore, if Un ∈ An, then
d(U,An) → 0, i.e. U ∈ An asymptotically with probability one.
Hence, P ∗(U ∈ A,U /∈ An,Un ∈ An) → 0. Similarly, P ∗(U ∈
A,U /∈ An,Un /∈ An) ≤ P ∗(S ∈ B,Sn /∈ B). By the triangle
inequality,

d(Sn,B) ≤ d(Sn,S) + d(S,B).

By Theorem 6.2 in [Faugeras and Rüschendorf, 2017], d(S,Sn) → 0
and S ∈ B implies Sn ∈ B asymptotically with probability one.
Hence, P ∗(S ∈ B,Sn /∈ B)→ 0. The treatment of (II) is similar. All
statements occur w.r.t. the original P -probability one.

2. (a) By definition of the Markov morphisms, one has P ∗ a.s.

S ∈ B ⇔ RC(U) ∈ B⇔ U ∈ R−1
C (B) = QC(B) = A

⇒ G−1(U) ∈ G−1(A) = Z⇔ X ∈ Z (25)

where X ∼ F also sits on the probability space (Ω∗,A∗, P ∗) of The-
orem 6.2 in [Faugeras and Rüschendorf, 2017], and (25) follows from
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the fact that G−1(U) = X, P ∗-a.s., by definition of the distributional
transform. Therefore, τ = P (S ∈ B) ≤ P (X ∈ Z). The proof for Zn
is similar: for Sn = RCn(Un),

Sn ∈ B⇔ Un ∈ An ⇒ X∗n ∈ Zn (26)

The proof that PX(z) = PX∗n(zn) = τ follows as in Theorem 2.1 1.
(a) from the definitions of the Markov morphisms.

In case PX is continuous, the distributional transform X→ G(X,V)
reduces to X→ G(X) and the implications in (25) become equiva-
lences P ∗ a.s.,

S ∈ B⇔ U ∈ A⇔ X ∈ Z, (27)

which yields PX(Z) = τ .

(b) One has

PX(|1Zn − 1Z|) = P ∗(X ∈ Z,X /∈ Zn) + P ∗(X /∈ Z,X ∈ Zn)

:= (I) + (II)

with

(I) = P ∗(X ∈ Z,X /∈ Zn,Un ∈ An) + P ∗(X ∈ Z,X /∈ Zn,Un /∈ An)

:= (Ia) + (Ib)

By the implication in (26), one has

(Ia) := P ∗(X ∈ Z,X /∈ Zn,Un ∈ An) ≤ P ∗(X ∈ Z,X /∈ Zn,X
∗
n ∈ Zn)

≤ P ∗(X /∈ Zn,X
∗
n ∈ Zn)

The triangle inequality gives

d(X,Zn) ≤ d(X,X∗n) + d(X∗n,Zn)

By Theorem 6.2 in [Faugeras and Rüschendorf, 2017], d(X,X∗n)→ 0
as n→∞, and X∗n ∈ Zn implies d(X∗,Zn)→ 0. Therefore, (Ia)→
0.

For PX continuous, by the equivalences in (26) and (27),

(Ib) := P ∗(X ∈ Z,X /∈ Zn,Un /∈ An)

≤ P ∗(S ∈ B,Sn /∈ B)

The triangle inequality gives

d(Sn,B) ≤ d(Sn,S) + d(S,B)

By Theorem 6.2 in [Faugeras and Rüschendorf, 2017], d(Sn,S) → 0
as n→∞, and S ∈ B implies d(Sn,B)→ 0. Therefore, (Ib)→ 0.

The treatment of (II) is similar. PX(Zn)→ τ follows.

(c) See Corollary 3.2.
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6.2.2 Proof of Theorem 3.1

Proof. One has, with P and P ∗-probability one,

{X ∈ ZV} = {G(X,V) ∈ A} = {U ∈ A} = {S ∈ B}
{X ∈ ZV,n} = {Gn(X,V) ∈ An} = {RCn ◦Gn(X,V) ∈ B}.

Therefore,

P ∗(X ∈ ZV \ ZV,n) = P (X,V)({(x,v) : G(x,v) ∈ A,Gn(x,v) /∈ An})
= P ∗(G(X,V) ∈ A,Gn(X,V) /∈ An)

= P ∗({S ∈ B} \ {RCn ◦Gn(X,V) ∈ B})

By ergodicity, for all x ∈ Rd, with P -probability one,

|Gn(x−)−G(x−)| → 0,

|Gn(x)−G(x)| → 0.

Therefore, for all x ∈ Rd, v ∈ [0, 1]d, with P -probability one, Gn(x,v) →
G(x,v), which yields

Gn(X,V)→ G(X,V) = U, (28)

with P and P ∗-probability one.
For PX discrete or absolutely continuous, one has that PU is absolutely

continuous w.r.t. λd, (see Lemma 6.1 in Appendix 6.1 for the case PX � λd).
Therefore, the probability that U lies on the frontier of its support is null:

P ∗(U ∈ ∂(supp(PU))) = 0.

Together with (28), this imply that there exists some ε > 0 and some N0, s.t.
for all n ≥ N0, Gn(X,V) ∈ L := B(U,ε) ⊂ int(supp(PU)), with P ∗ probability
one, where B(u,ε) is the open convex ball of center u and radius ε, together
with some N1 > N0, such that

∀n ≥ N1, Gn(X,V) ∈ K := B(U,ε/2), (29)

with P ∗ probability one, where B(u,ε/2) is the closed convex ball of center u
and radius ε/2.

Consider the restrictions PU|L and PS|RC(L), normalized to be of unit

mass, i.e. PU|L(A) := PU(1A∩L)
PU(L)

, for a Borel set A ⊂ [0, 1]d, and similarly

for PS|RC(L). The density of PU|L is bounded away from 0 and ∞ (see Re-
mark 1). By Theorem 1.3 in [De Philippis and Figalli, 2014] (if 0 /∈ RC(L))),
or Theorem 1.1 in [Figalli, 2018] (if 0 ∈ RC(L)), there exists two relatively
closed sets Σ1 ⊂ RC(L) and Σ2 ⊂ L , of zero Lebesgue measure, s.t. the
optimal transport map T : RC(L) \ Σ1 → L \ Σ2 sending PS|RC(L) towards
PU|L is a bi-Hölder homeomorphism. Obviously, the optimal transport map of
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the restricted measures is the restriction of the optimal transport map of the
unrestricted measures, i.e. T = QC |RC(L), see e.g. Proposition 2.3 in [Cuesta-
Albertos et al., 1997]. One has therefore that its inverse RC is continuous on L,
up to a null set. A fortiori, RC is continuous on K, up to a null set. Moreover,
also by restriction, condition (C) of Theorem A.2 in [Chernozhukov et al., 2017]
is satisfied between PU|K and PS|RC(K), which yields uniform convergence on
K of RCn towards RC , up to a null set.

These two statements entails the continuous convergence of RCn towards RC

on K, up to a null set. By (28), (29), and the extended continuous mapping,
Theorem 1.11.1 in [van der Vaart and Wellner, 1996], one has that, with P−
probability one,

RCn ◦Gn(X,V)
P∗a.s.−→ RC ◦G(X,V) = S.

This implies that

P ∗(X ∈ ZV \ ZV,n) = P ∗({S ∈ B} \ {RCn ◦Gn(X,V) ∈ B})→ 0,

since B is a continuity set of PS. One has similarly, for the other inclusion,

P ∗(X ∈ ZV,n \ ZV)→ 0,

which yields the result.

6.2.3 Proof of Proposition 4.1

Proof. The proof follows the main arguments of Theorem 6.2 in [Faugeras and
Rüschendorf, 2017], with minor modifications. On the auxiliary probability
space (Ω∗,A∗, P ∗) on which (10) holds, hn ↓ 0 and (10) in (21) yields, with
P -probability one,

X̂∗n
P∗a.s.−→ X. (30)

We have the decomposition,

Ûn−U = Ĝn(X̂∗n)−G(X̂
∗
n)+G(X̂

∗
n)−G(X)

≤ ||Ĝn−G||∞+G(X̂
∗
n)−G(X), (31)

where the operations are to be understood componentwise. By ergodicity, one
has that ∀x ∈ Rd, Gn(x) → G(x). Since G is continuous, this implies by
Polya’s Theorem [Pólya, 1920], a Glivenko-Cantelli type Theorem for Gn, i.e.

||Gn −G||∞ → 0,

with P -probability one. Obviously PhnW d→ δ0, so one has, as in [Winter, 1973]
Theorem 2, that

||Ĝn −G||∞ → 0, (32)

with P -probability one. (See also [Yamato, 1972/73], [Singh et al., 1983], [Yu-
kich, 1989] where (32) was obtained in the i.i.d. case, but extends readily in the
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ergodic setup. See [Rao, 1962]). Hence, (32) in (31), and continuity of G with
(30) entails

Ûn
P∗a.s.−→ U,

with P -probability one. The rest of the proof is as Theorem 6.2 in [Faugeras
and Rüschendorf, 2017]: by [Cuesta-Albertos et al., 1997] Theorem 3.4, one gets

Ŝn
P∗a.s.−→ S,

with P -probability one.

7 Appendix 2: Technical details for the simula-
tion methods

7.1 Implementation with Linear Programming

We implemented the linear programming version of the algorithm using the
LinearProgramming command of Mathematica, which yields the optimal trans-
portation matrix. The optimal transportation map is then obtained by picking
the position of the non-zero values of the transportation matrix. Figure 15
shows an implementation of the algorithm for a sample of n = 800 points from
a standard bivariate Gaussian distribution. The (red circles) points of the dis-
cretized unit disk are sent by the optimal transportation map to a (unique)
realization of the empirical copula (blue filled squares). We drew arrows from
the τ = 0.5 quantile contour of the unit disk towards the copula space.
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Figure 15: Optimal Transportation from the discretized unit disk (Red circles)
to the empirical copula points (Blue points). The arrows show the optimal
transportation map sending the red points on the circle of radius τ = 0.5 towards
their counterparts in the (empirical) copula space. Computed from n = 800 i.i.d.
observations from a bivariate standard Gaussian distribution.

Figure 16 complements Figure 15 by displaying the resulting empirical quan-
tile area An in the copula space as represented by the (red filled squares) points.
We naively joined the copula points on the τ = 0.5 quantile contour with
a straight line to obtain a continuous quantile contour outside of the sample
copula points. A more sophisticated approach would be to use the cyclically
monotone interpolant proposed in [del Barrio et al., 2018].
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Figure 16: Empirical quantile area An of level τ = 0.5 in the copula space
(red filled squares). The blue empty squares points are the remaining empirical
copula sample points.

These (red filled square) points in the copula space [0, 1]2 are then mapped
by the marginal quantile transform map G−1

n towards the original sample points
from PX. One then obtains in Figure 17 the empirical τ = 0.5 quantile area
Zn in the original sample space R2, represented as red filled circles. The theo-
retical quantile disk of level τ = 0.5 is represented by the shaded disk, and the
remaining sample points outside the central quantile region are displayed with
blue circles.
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Figure 17: Empirical quantile area Zn of asymptotic level τ = 0.5 in the sample
space (red filled circles inside the broken line). The theoretical quantile disk of
level τ = 0.5 is represented by the shaded disk.

7.2 Implementation with the Entropic regularization method
and Sinkhorn algorithm

The linear programming code slows down as the sample size increase and defi-
nitely runs into memory trouble for sample size n exceeding 800 points on our
computer. In addition, it is known that the best algorithms for optimal assign-
ments have at least a O(n3) computational cost, hence all known algorithms
that can solve the optimal transport problem scale at least super-cubicly in
n. To alleviate these issues, [Cuturi, 2013] recently proposed to use an entropic
regularization of the optimal transport cost, which we briefly explain. See Peyré
et al. [2019] for details.

For two probability measures PX and PY, the entropic regularisation method
solves

Wγ(PX, PY) := inf
P (X,Y)∈Π(PX,PY)

∫
||x− y||2dP (X,Y)(x,y) + γH(P (X,Y)),

(33)
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where the infimum is on the set Π(PX, PY) of all joint distributions P (X,Y) with
marginals PX and PY. γ > 0 is a parameter andH(P (X,Y)) is the entropy of the
coupling distribution (in practice, P (X,Y) is a discrete distribution so the entropy
is well-defined). Heuristically, by adding a penalization term which is minimal
for “spread-out” distributions, the entropic regularization method forces the
transportation plan of (33) to be induced by a non-degenerate Markov morphism
instead of a mapping, in a fashion reminiscent of Kantorovich’s relaxation of
Monge Problem. One can show, see e.g. [Peyré et al., 2019] Chapter 4, that the
regularized problem is strongly convex (hence stabilizing computations), and
that its solution converges exponentially to the original, nonregularised (i.e.
for γ = 0) optimal transportation solution, as γ → 0. Moreover, (33) can be
rewritten as a Kullback-Leibler projection of the Gibbs distribution ζ(dx, dy) :=

e
−||x−y||2

γ dxdy,

Wγ(PX, PY) = inf
P (X,Y)∈Π(PX,PY)

KL(P (X,Y), ζ). (34)

The solution of (34) is a diagonal scaling of ζ, which can be found efficiently
through the well-known IPFP [Deming and Stephan, 1940]/ Sinkhorn [Sinkhorn,
1964, 1967, Sinkhorn and Knopp, 1967] algorithm, see [Peyré et al., 2019] Chap-
ter 4. For discrete PX and PY, the optimal P (X,Y) is akin to a matrix which can
be simply computed by vector-matrix and elementary operations. In practice,
the regularisation parameter γ must be small enough so that the solution be
close to the unregularised solution sought, but large enough to prevent division
by zero. We used γ = 0.01 in all our simulations.

From the optimal transportation matrix solution of (33), one can obtain the
optimal transportation map in several ways:

• mode method: Since the solution of (33) converges, as γ → 0, to the
optimal transportation plan, which is, for discretized distributions with
the same number of points, a (rescaled) permutation matrix, one can get
the optimal transportation map by selecting the position y corresponding
to the highest value on each line X = x, i.e. by taking the mode of
PY|X=x.

• barycenter method: [Peyré et al., 2019] recommends to extract an (ap-
proximate) optimal transportation map by computing the conditional ex-
pectation E[Y|X = x]. This amounts to computing a barycenter of the
Y points, weighted by the regularized optimal transportation solution of
(33). This creates an additional smoothing/convexification effect, which
somehow makes the quantile contours more regular and visually appealing.
However, it only gives an approximate transportation map, since the cloud
of barycenters points obtained is slightly different from the original cloud
of destination points, see Figure 19 below. Also, for nonconvex quantile
regions, the convexification induced by taking barycenters is undesirable,
as it modifies its shape.
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The following figures illustrate the procedure, with the same experimental
setting as in Figures 15, 16, 17. The number of iterations in Sinkhorn’s algorithm
is controlled by computing the relative error of the marginals of P (X,Y) to their
target marginal distribution. Figure 18 shows the relative error in the matching
of the marginals of the transportation plan as the number of iteration increases:
we found that 300 iterations were enough to guarantee an error around 10−12,
in all our simulations.

Figure 18: Log error in Sinkorn’s algorithm on the matching of the first marginal
of the optimal transportation plan (left panel) and the second marginal (right
panel). n = 800.

Figure 19 illustrates how the optimal quantile areas are computed: the left
panel shows the discretized unit disk with its τ = 0.5 spherical depth area. These
points are then mapped into the copula by the optimal approximate transporta-
tion map derived from Sinkhorn algorithm + barycenter method (center panel),
which are subsequently mapped by the empirical marginal quantile transform
G−1
n (right panel).

Figure 19: Discretized unit disk with τ = 0.5 depth area (left panel). Mapping
of the unit disk in the copula space (center panel) and in the sample space (right
panel). n = 800.

Figure 20 illustrates the τ = 0.5 quantile areas obtained: the left panel show
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the τ = 0.5 quantile area in the copula space together with the empirical copula
points, while the right panel shows the τ = 0.5 quantile area in the sample space
together with the theoretical quantile area (shaded disk) and the original data
points.

Figure 20: τ = 0.5 quantile area in the copula space with the sample from the
empirical copula (left panel), τ = 0.5 quantile area in the sample space with
the original sample data and the theoretical quantile area (shaded disk)(right
panel). n = 800.

Note the slight discrepancies between the original sample points (in the
observational space and in the copula space) in Figure 20 and the reconstructed
points obtained by the barycenter method, as in Figure 19.

For the smoothed approach of Section 4, we show in Figure 21 its imple-
mentation using the same Sinkorn algorithm + barycenter method as in Figure
20. We get a τ = 0.5 empirical quantile area very close to the theoretical one
(represented as a the shaded disk).
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Figure 21: τ = 0.5 smoothed quantile area in the copula space with the sample
from the smoothed empirical copula (left panel), τ = 0.5 smoothed quantile
area in the sample space with the original sample data and the theoretical
quantile area (shaded disk)(right panel). n = 800. Implementation= Sinkhorn
+ barycenter method

Eventually, for comparison purposes with the right panel of Figure 21, we
show in Figure 22 the implementation of the smoothed approach of of Section
4 with the Sinkorn algorithm + mode method.
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Figure 22: τ = 0.5 smoothed quantile area in the sample space with the orig-
inal sample data and the theoretical quantile area (shaded disk). n = 800.
Implementation= Sinkhorn + barycenter method

7.3 Comparison of the algorithms

Comparing Figures 16 and 17 (randomized depth approach with Linear pro-
gramming), with Figure 20 (randomized depth approach with Sinkhorn algo-
rithm + barycenter method), and with Figure 21 (smoothed depth approach
with Sinkhorn algorithm + barycenter method), the randomized depth approach
of Sections 3 and smoothed depth approach of Section 4 give close results, with
the smoothed depth approach yielding the most visually appealing results and
closest to the theoretical quantile area.

Comparing the implementations of the mass transportation step, the entropy
regularised version with the Sinkhorn algorithm is the most efficient (e. g.
computations take about 35 seconds for 5000 points, and a couple of seconds for
800 points) and is highly recommended compared to the linear programming
method (which breaks down for more than 800 points). For computing the
optimal transportation map, the barycenter method works well for distributions
with “nice”, convex, connected support, while the mode method, by mapping to
an exact point of the sample, thus giving a depth area falling inside the support
and respecting its geometry, should be preferred.

On the computational side, the smoothing approach of Section 4 requires
more time compared to the randomized depth approach, as one needs to opti-
mize the bandwidths and do more complicated computations.
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