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Abstract

This paper studies the design of e¢ cient mechanisms for repeated trade in

settings where (i) traders� values and costs evolve randomly with time, and

(ii) the traders become ready and available to participate in the mechanism

at random times. Under a weak condition, analogous to the non-overlapping

supports condition of Myerson and Satterthwaite (1983), e¢ cient trade is only

feasible if the mechanism runs an expected budget de�cit. The smallest such

de�cit is attainable by a sequence of static mechanisms.
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1 Introduction

The Myerson and Satterthwaite (1983) theorem can be counted among a few central

results in information economics and mechanism design. The result considers two

potential traders of a single unit with relevant private information (the buyer�s value

and the seller�s cost). The result states that e¢ cient trade in mechanisms satisfying

(Bayesian) incentive compatibility and (interim) individual rationality is impossible

without running an expected budget de�cit. Recently, however, several papers ex-

amine how the classic impossibility result can be overturned in settings with repeated

trade; see Athey and Miller (2007), Athey and Segal (2007, 2013), Skrzypacz and

Toikka (2015), Lamba (2013) and Yoon (2015). The key observation is that, when

trade is repeated, when players are su¢ ciently patient, and when values and costs

evolve stochastically with time, trade surplus that is expected in the future can be

promised to players as a reward for participation, thus relaxing participation con-

straints. One interpretation is that these papers call into question the universality

of Myerson and Satterthwaite�s impossibility result.1

While the relevant private information in the above work is the trading partners�

values and costs, the purpose of the present paper is to introduce an additional source

of information. Namely, we suppose each party is privately informed of the date at

which they become "ready to trade". We argue that this additional source of in-

formation restores the impossibility of e¢ cient trade in budget-balanced mechanisms

satisfying requisite incentive and participation constraints.

Our conclusion depends on our understanding of an agent�s "readiness to trade"

as the state of being ready and able to participate in a trading agreement; hence,

the key friction is agents�readiness to enter a (possibly long-term) contract rather

than the technological feasibility of trade per se (or the possibility that such trade is

mutually bene�cial).2 Our notion of readiness follows from our view that agents are

1Other work exhibiting the possibility of e¢ cient and budget-balanced trade in static set-
tings (with continuous type distributions) involves departures from the assumption of risk-neutral
Bayesian agents with common priors. See, in particular, Wolitzky (forthcoming) where agents are
ambiguity averse and Garratt and Pycia (2016), where agents are risk averse.

2A common observation in the dynamic mechanism design literature has been that contracting
with parties as early as possible enriches the implementable outcomes (an observation which holds,
at least in a weak sense, by a revelation principle for dynamic mechanisms). For instance, inducing
participation in dynamic contracts at an early stage, when parties are relatively uninformed, can
permit a reduction in their information rents. This paper limits the possibilities for early contracting
by assuming that parties�readiness to contract arrives stochastically over time.
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often either unprepared to enter a given contractual relationship, or even unaware of

the possibility, but that this may be resolved with time. In the �rst case, akin to

the incomplete contracting literature, agents may need to devote scarce attention to

understanding a (dynamic) trading agreement, attention that may become available

only randomly and after a delay (see Simon, 1955, for an early discussion of the

di¢ culties of evaluating payo¤s from complex contracts). In the second case, an

agent may fail to pay attention to a contractual o¤er. This seems a particularly

pertinent problem in large organizations, where the decision to contract can only be

taken once news of the o¤er has reached the right node of the organizational hierarchy.

In either case, delays in readiness to trade should be expected especially in settings

where gains from trading a particular good are di¢ cult to anticipate in advance.3

Our model features a buyer and seller who each become ready to participate in a

(potentially dynamic) contract at a random moment (we often refer to this moment

as the "arrival date"). From the arrival date onwards (into the in�nite future), they

remain ready and able to participate and communicate with the mechanism.4 Once

both buyer and seller arrive, they can trade a single unit of a perishable good in

each period. On arrival, the buyer and seller draw, respectively, a value and a cost,

and these subsequently evolve over time according to �rst-order Markov processes.

E¢ cient trade is trade which occurs if and only if both buyer and seller have arrived

and the buyer�s value exceeds the seller�s cost.

Implementing e¢ cient trade requires permitting buyer and seller participation in

an e¢ cient mechanism on any possible arrival date. Hence, unlike the aforemen-

tioned literature on repeated trade, an agent cannot be barred from participating

only because he fails to do so at a particular instance. This makes participation

constraints more di¢ cult to satisfy, since an agent who just arrived has the option to

wait and participate later, e¤ectively mimicking later arrival. When values and costs

evolve with time, this implies that even a buyer with the lowest value or a seller with

the highest cost at his arrival date can still expect a positive rent in any mechanism

implementing e¢ cient trade.

We state simple necessary conditions for budget-balanced e¢ cient trade (in an

3There are other reasons why agents may not be willing or able to participate, at least until after
some delay. One is that regulatory compliance needs to be assured before parties can be con�dent
that entering a trading relationship is legally permissible. Another is that the agents may need to
be co-located in order to communicate or transact in any way.

4Random exogenous exits could, however, be easily accommodated.
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incentive-compatible mechanism satisfying all participation constraints). When the

buyer and seller arrive at each moment with positive probability, a necessary condition

is that there be at least one date for which gains from trade are certain given that

both the buyer and seller have arrived. In other words, the supports of the (marginal)

distributions over values and costs at that date must not overlap. This may be seen

as a dynamic analogue of the condition for a static environment due to Myerson and

Satterthwaite (1983).

One way to understand this result is in view of the rents that the buyer and seller

must be granted to ensure participation. As noted above, an agent who fails to

participate necessarily retains the option to participate at a later date. Dissuading

late participation then requires rents so large that (at least when the supports of

values and costs always overlap and the traders may arrive at any moment) any

e¢ cient mechanism satisfying incentive-compatibility and participation constraints

runs an expected budget de�cit. The smallest feasible budget de�cit turns out to

equal that from a sequence of static mechanisms, each designed to ensure participation

in the static mechanism alone. A possible interpretation is that, at least for reducing

the expected budget de�cit from e¢ cient trade, truly dynamic mechanisms can be of

limited use.5

The main outline of the paper is as follows. Following a discussion of the literature,

Section 2 presents the model. Section 3 then presents our central results, while

Section 4 provides a discussion of various caveats and extensions. Section 5 concludes.

Proofs of all results are provided in the Appendix.

1.1 Related literature

As noted above, the key reference point for this paper is work on budget-balanced

repeated trade when trading partners are known to be available to contract from the

outset.6 This agenda was �rst developed in papers such as Athey and Miller (2007)

and Athey and Segal (2007, 2013). While Athey and Miller consider values and costs

drawn i.i.d. in each period, Athey and Segal consider persistent processes. Athey

and Segal (2013) show, among other things, how to construct an e¢ cient and budget-

5We show, however, that, when budget-balanced e¢ cient trade is feasible, it may only be feasible
through a dynamic mechanism in which participation at a given date gives rise to future obligations
for the participants.

6The results in these papers continue to apply if agents instead arrive (stochastically) over time,
but arrival dates are directly contractible.
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balanced "team mechanism" in which truthful strategies form a perfect Bayesian

equilibrium of a game in which agents�past reports are public information. When

types follow an ergodic �nite-state Markov process, they show that participation

constraints can be satis�ed provided players are su¢ ciently patient.

Subsequently, Skrzypacz and Toikka (2015) and Lamba (2013) provide further

analysis of mechanisms implementing e¢ cient trade while satisfying budget balance

and individual rationality constraints. Notably, Skrzypacz and Toikka provide a nec-

essary and su¢ cient condition for the existence of such mechanisms analogous to the

condition developed for static problems by Makowski and Mezzetti (1994), Krishna

and Perry (1998) and Williams (1999). This condition can be derived using payo¤

equivalence to a VCG mechanism in which each agent earns the surplus from trade.

While such a mechanism runs a de�cit itself equal to the surplus from trade, an in-

terim individually rational mechanism can be designed in which agents pay additional

fees equal to the expected gains from trade conditional on their "worst" type. In

a static mechanism, these fees do not cover the de�cit unless type distributions do

not overlap (an insight originally due to Myerson and Satterthwaite, 1983; see also

Chatterjee and Samuelson, 1983, for a related analysis). In a dynamic setting with

stochastically changing preferences (and commonly known arrival dates), however,

fees to participate in a repetition of the above VCG mechanisms can often cover the

expected de�cit if players are su¢ ciently patient. We make heavy use of such ideas

in the analysis that follows, building especially on the observations of Skrzypacz and

Toikka.

There has been a long held interest in allocation problems where players arrive

over time. Recent examples include Board and Skrzypacz (2016) and Gershkov,

Moldovanu and Strack (2016), who study "revenue management" problems, where

revenue-maximizing mechanisms are designed that allocate goods to forward-looking

buyers who arrive over time. While in these papers, buyers can perfectly antic-

ipate their values from their arrival date onwards, Deb and Said (2015), Garrett

(2016, forthcoming), and Ely, Garrett and Hinnosaar (forthcoming) consider settings

in which buyers arrive over time, and these buyers also learn about their preferences

over time. Our motivation in studying traders who arrive dynamically is closely re-

lated, but we focus on the question of implementing e¢ cient allocations, rather than

pro�t maximization.

Note that agents�private information on arrival times plays a central role in our
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setting, unlike what is seen in existing work on e¢ cient dynamic mechanisms. For

instance, Bergemann and Valimaki (2010) provide an e¢ cient mechanism (the "dy-

namic pivot mechanism") which is ex-post incentive compatible, ex-post individually

rational and satis�es e¢ cient exit conditions. They note that their approach extends

to the stochastic arrival of agents (privately informed of their arrival dates), assuming

those who have not arrived are modeled as being in an "inactive state" in which their

participation does not contribute to social surplus. Athey and Segal (2013, p 2477)

similarly suggest that their approach extends readily to dynamic populations. The

central message of our paper is di¤erent: agents having private information about

arrival times can severely hamper the ability to implement e¢ cient allocations. As

explained above, this hinges on our view that an agent�s "arrival" occurs on the �rst

date the agent is able to contract rather than the �rst date at which an agent can

contribute to surplus (as well as our desire for mechanisms that satisfy budget balance

and induce agent participation in the mechanism at all arrival dates).7

More generally, our paper is related to the literature on mechanism design for

agents whose preferences evolve stochastically (where the objective is often pro�t max-

imization rather than e¢ ciency); see, among others, Baron and Besanko (1984), Be-

sanko (1985), Courty and Li (2000), Battaglini (2005), Eso and Szentes (2007, forth-

coming), Boleslavsky and Said (2013), Pavan, Segal and Toikka (2015), Battaglini

and Lamba (2015) and Krahmer and Strausz (2015). Two connections to this lit-

erature are worth noting. First, we make direct use of insights in this literature, in

particular by relying on the "dynamic payo¤ equivalence property", as formalized in

Pavan, Segal and Toikka (see our Assumption 1 and the subsequent discussion below).

Second, our result concerning the optimality of static mechanisms for reducing the

budget de�cit (while implementing e¢ cient allocations) is reminiscent of Krahmer

and Strausz�s �nding that static mechanisms are often pro�t-maximizing in settings

with agent withdrawal rights. However, the reason for our result is di¤erent: it stems

7By interpreting an agent�s "arrival" date as the �rst date at which he can contribute to surplus,
we mean that each agent is available to contract at the beginning. Arrival would then be captured
by supposing the buyer�s value is initially too low for any trade, while the seller�s cost is too high.
The buyer would then "arrive" on the �rst date his value is high enough for e¢ cient trade to be
possible; for the seller, it would be the �rst date when his cost is su¢ ciently low. This case can be
handled by the existing literature, see especially Proposition 1 of Skrzypacz and Toikka (2015). The
same principles as in that literature suggest that e¢ cient allocations could often be implemented
with budget balance when agents are su¢ ciently patient: it would generally be enough that values
and costs are not too persistent following each agent�s random "arrival".
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from agents�abilities to obtain e¢ cient allocations even if they failed to contract in

the past, rather than an ability to rescind the original contract.

2 Model

Arrival of traders. We consider bilateral trade set in discrete time, with at most

one unit of a perishable good sold each period. To �x ideas, and to ensure that each

agent has the opportunity to engage in repeated trade irrespective of his arrival date,

we suppose that the horizon is in�nite.8 Periods are labeled t = 1; 2; : : : . Agents

are labeled i 2 fB; Sg, with �i denoting the potential trading partner of i. We

term one agent the buyer (i = B) and the other the seller (i = S). These agents

become "ready to trade" (equivalently, "arrive" to the market) at some dates �B and

�S, which are the �rst dates they can enter a contract. The ability to contract and

participate in the mechanism persists for the rest of time; in particular, neither buyer

nor seller exit after, respectively, �B or �S.

Payo¤s and e¢ ciency. In each period t � max f�B; �Sg, a period-t allocation
xt 2 f0; 1g is determined with xt = 1 if the seller trades the good with the buyer.

The resulting period-t payo¤ for the buyer is �B;txt + pB;t, where �B;t is the buyer�s

period-t value and pB;t is the date-t transfer paid to the buyer. The period-t payo¤

for the seller is pS;t � �S;txt, where �S;t is the seller�s cost and pS;t the transfer paid
to the seller. Both agents have a common discount factor � 2 (0; 1). Throughout,

we refer to �B;t and �S;t as the "payo¤ types" of the buyer and seller respectively,

to distinguish from private information on the arrival times �B and �S. We denote

vectors of payo¤ types for each agent i by �ti;s = (�i;s; �i;s+1; : : : ; �i;t).

Stochastic processes. Each agent i 2 fB; Sg independently draws an arrival
time � i from a distribution Gi with full support on the set of periods N. Thus, let

the probability that agent i arrives at date � i be gi (� i) > 0. As noted, date � i is

the �rst date that agent i can participate in (equivalently, communicate with) the

mechanism, and is i�s private information. Below, we will abuse notation by writing

�i;t = ; if agent i has not arrived by time t (although ; is not a "payo¤ type").
The evolution of payo¤types is also independent across agents. The set of possible

(payo¤) types at date t for agent i is denoted �i;t =
�
�i;t;

��i;t
�
� R+. Assume the

8The results below are easily adapted to a �nite horizon.
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set [t�1�i;t is bounded for each i. If an agent i 2 fB; Sg arrives at any date � i, he
draws at that date a type �i;� i from an absolutely continuous distribution F

i;In
� i

(�i;� i)

which has full support on �i;� i. Subsequently, at each date t > � i, if the date t� 1
type is �i;t�1 2 �i;t�1, then he draws �i;t from an absolutely continuous conditional

distribution F i;T rt (�i;tj�i;t�1) with support on an interval
�
�i;t (�i;t�1) ;

��i;t (�i;t�1)
�
�

�i;t and a density f
i;T r
t (�i;tj�i;t�1). Assume further that each F i;T rt (�i;tj�i;t�1) is

continuous in �i;t�1 uniformly across (�i;t�1; �i;t) 2 �i;t�1 ��i;t for each i; t.
The above description of the process encodes our assumption that (payo¤) types

evolve according to a (possibly time-varying) �rst-order Markov process. The role

of the restriction that the support of F i;T rt (�i;tj�i;t�1) be contained in �i;t will be
discussed in detail in Section 4.2. For now, note that it is arguably quite mild, since

it is implied if we take F i;In� i
, for each i and � i � 2, to be the marginal distribution

at date � i of the payo¤-type process conditional on arrival at date 1. In this case,

we can view each agent i�s payo¤ types as following a common (latent) process from

date 1, with the arrival time � i determined independently of this process.

We presently leave further restrictions on the evolution of payo¤ types unspeci-

�ed, but will follow Skrzypacz and Toikka (2015) in requiring that a certain "payo¤-

equivalence property" holds. This property (introduced formally in Assumption

1 below) can be shown to hold under mild additional restrictions on the stochas-

tic process (see Pavan, Segal and Toikka, 2014, as well as Skrzypacz and Toikka),

and we give a su¢ cient condition below. Many stochastic processes will satisfy

our conditions. A commonly used example is the �rst-order autoregressive process

�i;t = �i;t�1 + (1� )mi + "i;t, with  2 (0; 1), mi 2 R+ the long-run mean of �i;t,
and "i;t a mean-zero random variable, with appropriate regularity conditions on the

distribution of the initial type and subsequent innovations "i;t.

Mechanisms. Without loss of generality, we study direct mechanisms. Each

agent imakes a report of his (payo¤) type �̂i;�̂ i 2 �i;� i on the �rst date of participation
�̂ i, and then continues to provide updates of these types at each date. In particular,

if agent i reported �̂i;t�1 at date t � 1, then he is permitted a report in the support
of F i;T rt

�
�j�̂i;t�1

�
at date t. The reports of each agent i up to date t may then be

denoted �̂
t

i;�̂ i
.

A direct mechanism 
 = hxt; pB;t; pS;tit�1 then speci�es a sequence of allocations
xt for each date t and transfers pB;t and pS;t to the buyer and seller respectively. A
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date-t allocation is xt
�
�̂
t

B;�̂B
; �̂
t

S;�̂S

�
2 f0; 1g for each possible pair of report sequences�

�̂
t

B;�̂B
; �̂
t

S;�̂S

�
2 �ts=�̂B�B;s � �

t
s=�̂S

�S;s.9 Similarly, date-t payments to agent i are

pi;t

�
�̂
t

i;�̂ i
; �̂
t

�i;�̂�i

�
2 R for reports

�
�̂
t

i;�̂ i
; �̂
t

�i;�̂�i

�
. Both allocations and transfers

are assumed throughout to be measurable functions of the agents� reports. Note

here that the length of the report sequences that are arguments to the payment and

allocation rules indicate the arrival times of the agents (for instance, if �̂B = �̂S = t

for some t, then pi;t
�
�̂
t

i;�̂ i
; �̂
t

�i;�̂�i

�
= pi;t

�
�̂i;t; �̂�i;t

�
give the �rst payments received

by each agent i, since the length of each report sequence is 1).

It may now be helpful to delineate the timing of events in each period. At

the beginning of each period t, each agent i has made a sequence of reports �̂
t�1
i;�̂ i

2
�t�1s=�̂ i

�i;s if the agent already participated in the mechanism at some date �̂ i < t. If

agent i arrived before date t, then he (privately) draws a date-t payo¤ type �i;t from

the distribution F i;T rt (�i;tj�i;t�1), where �i;t�1 denotes agent i�s true (payo¤) type at
t � 1. If he arrives at date t, then he (privately) draws �i;t from F i;Int . He then

(simultaneously with agent �i) makes a report �̂i;t 2 �i;t to the mechanism. If this
is the �rst report, then it amounts to a claim that the arrival time is �̂ i = t (and �̂ i is

then agent i�s reported arrival time). At this point, the allocation xt
�
�̂
t

B;�̂B
; �̂
t

S;�̂S

�
can be determined and the transfers pi;t

�
�̂
t

i;�̂ i
; �̂
t

�i;�̂�i

�
paid.

3 Analysis of satisfactory mechanisms

3.1 Preliminaries

Information. An important consideration is the amount of information available to
each agent i at each date t regarding the past reports of the other agent �̂

t�1
�i;�̂�i. As

Myerson (1986) noted, incentive constraints are most easily satis�ed when agents are

least informed. However, realistically in most settings of interest, some information

"leaks" through agents observing outcomes, their payo¤s, or both. This creates the

potential complication of (i) specifying precisely what agents observe (the outcome

xt at each t, the transfers of di¤erent agents, and/or their reports), and (ii) deducing

mechanisms which most e¤ectively hide information from agents while implementing

9Random allocations xt
�
�̂
t

B;�̂B ; �̂
t

S;�̂S

�
2 (0; 1) could readily be permitted, but are not needed in

what follows.
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the e¢ cient allocation in an incentive-compatible manner.

Avoiding these complications, we focus on so-called "blind" mechanisms in which

each agent never receives any information about the other�s past reports. This corre-

sponds to an environment in which neither trade outcomes nor payo¤s are observed.

Our focus makes sense in light of Myerson�s (1986) observation and because we are

chie�y interested in negative results (for instance, we will use that, if budget-balanced

e¢ cient trade cannot be supported in the blind mechanism, then the same is true in

any mechanism with information "leakage"). Nonetheless, where blind mechanisms

exist satisfying various desiderata (e¢ ciency, incentive compatibility, willingness to

participate, budget neutrality, etc.), it is of interest to understand whether we can

also satisfy the same desiderata when each agent is informed about the other�s past

decisions. Of particular interest is the "public mechanism" in which all past reports

are publicly revealed (and available to any agent, irrespective of his arrival date). If

the public mechanism satis�es the relevant incentive constraints, then any less infor-

mative mechanism will do so as well (with a less informative mechanism, the relevant

constraints are merely "pooled" and hence continue to be satis�ed).

Agent continuation payo¤s. Consider a public mechanism 
. The buyer�s

expected continuation payo¤ in 
 when reporting truthfully after a history of reports�
�t�1B;�B

�t�1S;�S

�
(if any), when his date-t value is �B;t, is10

V 
B;t
�
�tB;�B ; �

t�1
S;�S

�
= E

24 1X
s=t

�s�t

0@ pB;s

�
~�
s

B;�B
; ~�
s

S;~�S

�
+~�B;s xs

�
~�
s

B;�B
; ~�
s

S;~�S

� 1A ����~�
t

B;~�B
= �tB;�B ;

~�
t�1
S;~�S

= �t�1S;�S

35 . (1)

Analogously, if the seller�s date-t cost is �S;t, then his expected continuation value is

V 
S;t
�
�tS;�S ; �

t�1
B;�B

�
= E

24 1X
s=t

�s�t

0@ pS;s

�
~�
s

S;�S
; ~�
s

B;~�B

�
�~�S;s xs

�
~�
s

B;~�B
; ~�
s

S;�S

� 1A ����~�
t

S;~�S
= �tS;�S ;

~�
t�1
B;~�B

= �t�1B;�B

35 . (2)

In the blind mechanism, the other agent�s reports are not available, and so we simply

write V 
B;t
�
�tB;�B

�
and V 
S;t

�
�tS;�S

�
. By the law of iterated expectations, we have

10We use tildes to denote random variables.
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V 
i;t
�
�ti;� i

�
= E

h
V 
i;t

�
�ti;� i ;

~�
t�1
�i;��i

�i
for each agent i.

Incentive compatibility. Our notion of incentive compatibility depends on

whether the mechanism is blind or public. To de�ne incentive compatibility, suppose

that each agent i reports to the mechanism on the arrival date � i. A blind mechanism

is then Bayesian incentive compatible (BIC ) if, for each i and participation date � i, his

expected payo¤s are maximized by reporting payo¤types truthfully (thus V 
i;� i (�i;� i) is

equal to the supremum of his expected continuation payo¤ over all possible reporting

strategies, for each i, each � i, and each �i;� i 2 �i;� i). A public mechanism is perfect-

Bayesian incentive compatible (PIC ) if the reporting game speci�ed above, assuming

both agents participate at their arrival dates,11 has a perfect-Bayesian equilibrium

in which each agent reports truthfully upon arrival and then continues to report

truthfully provided he was truthful in the past. Note here that, having restricted the

space of reports (namely, to the support of the conditional distribution F i;T rt

�
�j�̂i;t�1

�
for each i, date t, and previous report �̂i;t�1 2 �i;t�1), no report sequence is ever
"o¤-path".12 Hence, each agent�s beliefs over the other agent�s types in the public

mechanism are simply those given by truthful reporting with probability one.

Participation constraints. We assume that agents can commit to their future
participation in the mechanism. Hence, we impose a sequence of constraints to ensure

agents participate upon arrival, but there will be no constraints relating to continued

participation. Clearly, this only strengthens our results regarding the absence of

satisfactory mechanisms for e¢ cient trade.

Note that each agent i�s payo¤ type �i;t is a su¢ cient statistic for the evolution of

i�s future types. Hence, and given our restriction on the supports of
�
F i;T rt

�
t�2
, an

agent who delays participation (say by one period) �nds himself in the same situation

as if he arrived at a later date (the date after his true arrival date).

Given the above, we specify an agent strategy of participating at all dates such

that participation has not yet occurred, irrespective of the realization of the actual

arrival time (or past information). By the one-shot deviation principle, it is enough

to check deviations in which each agent delays participation by one period. In the

11Hence, both our notions of incentive compatibility relate only to reports of payo¤ types and
not arrival times at the mechanism. Constraints on agents�willingness to participate in (incentive-
compatible) mechanisms are considered next.
12See Skrzypacz and Toikka (2015) for the same assumption.
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public mechanism, such a deviation is never pro�table for agent i at date � i if

V 
i;� i

�
�i;� i ; �

� i�1
�i;��i

�
� �E

h
V 
i;� i+1

�
~�i;� i+1;

~�
� i
�i;~��i

�
j~�i;� i = �i;� i ; ~�

� i�1
�i;~��i = �

� i�1
�i;��i

i
(3)

for all �i;� i 2 �i;� i and all past reports �� i�1�i;��i for agent �i. In the blind mechanism,
the deviation is never pro�table provided simply that

V 
i;� i (�i;� i) � �E
h
V 
i;� i+1

�
~�i;� i+1

�
j~�i;� i = �i;� i

i
(4)

for all �i;� i 2 �i;� i. We say that a mechanism in which (3) always holds satis�es

"public participation constraints" (or PPC ), while if (4) always holds it satis�es

"blind participation constraints" (or BPC ).

Budget balance. Amechanism is said to be budget balanced (BB) if pB;t
�
�tB;�B ; �

t
S;�S

�
+

pS;t
�
�tS;�S ; �

t
B;�B

�
= 0 for all report sequences

�
�tB;�B ; �

t
S;�S

�
. It runs an expected bud-

get surplus (or satis�es EBS) if

U1 � �E
" 1X
t=1

�t�1 pB;t

�
~�
t

B;~�B
; ~�
t

S;~�S

�
+

1X
t=1

�t�1 pS;t

�
~�
t

S;~�S
; ~�
t

B;~�B

�#
(5)

is non-negative.

Here, U1 is the ex-ante pro�t of a "third-party broker", in the spirit of the broker

introduced by Myerson and Satterthwaite (1983), so we refer to U1 as the "broker�s

expected surplus". Recall that the strongest version of Myerson and Satterthwaite�s

impossibility result for the static environment was that the third-party broker cannot

break even in a mechanism implementing e¢ cient trade. Likewise, one of our main

concerns is whether e¢ cient trade can be sustained while satisfying EBS.

E¢ cient mechanisms. Our focus is on mechanisms that are e¢ cient (E), i.e.

those which set xt
�
�tB;�B ; �

t
S;�S

�
= xE (�B;t; �S;t), the e¢ cient allocation which is taken

to equal one in case t � max f�B; �Sg and �B;t � �S;t, and zero otherwise.

Payo¤ equivalence. Following Skrzypacz and Toikka (2015), we restrict atten-
tion to environments in which a version of "payo¤ equivalence" holds. We assume

the following.

Assumption 1 The stochastic processes de�ned by F i;In� i
and F i;T rt for all i 2 fB; Sg ;

and all periods � i and t � 2, satisfy the "payo¤-equivalence property" meaning that

12



the following holds. Consider any two BIC blind mechanisms 
 = hxt; pB;t; pS;tit�1
and 
0 =



x0t; p

0
B;t; p

0
S;t

�
t�1 satisfying xt = x

0
t for all t. There exist real-valued scalars

(bi;� i)i2fB;Sg;� i�1 such that, for each agent i, and each date � i, V


i;� i
(�i;� i) = b� i +

V 

0

i;� i
(�i;� i) for all �i;� i 2 �i;� i.

Considering blind mechanisms, the relevant notion of payo¤ equivalence is simply

that each agent i�s expected payo¤ from participating at date � i is the same, up to

a constant bi;� i, for any BIC mechanism with the same allocation rule. This need

not guarantee the same is true for the public mechanism, where the other agent�s

reports up to � i are revealed, even permitting that the constants bi;� i can depend

on the information revealed prior to � i. While we could state an analogous payo¤

equivalence property for the public environment, this turns out not to be necessary

for what follows.

While more general conditions are available (see, especially, Pavan, Segal and

Toikka, 2014), payo¤ equivalence holds if the following two criteria are satis�ed: (i)

there exists, for each i 2 fB; Sg, a sequence of continuously di¤erentiable func-
tions (zi;t)t�2, with zi;t : �i;t�1 � [0; 1] ! �i;t such that, when ~" is uniformly dis-

tributed on [0; 1], zi;t (�i;t�1; ~") is distributed according to the conditional distribu-

tion F i;T rt (�j�i;t�1), and (ii) there exists k < 1
�
such that

���@zi;t(�i;t�1;")@�i;t�1

��� � k for all

(�i;t�1; ") 2 �i;t�1 � [0; 1]. The condition implies that the distribution of an agent�s
date-t payo¤ type is not too sensitive to the realization of his previous period�s payo¤

type.

No Ponzi schemes. While the above requirements are natural analogues of

conditions considered in the earlier literature, one additional restriction on mecha-

nisms (already implicit in the above) is worth emphasizing. In particular, we restrict

attention throughout to mechanisms such that the expression (5) is well-de�ned, and

refer to this condition as "no Ponzi schemes" (or NPS). This terminology is jus-

ti�ed on the grounds it implies that the expected discounted payo¤s of the broker,

the buyer and the seller are well-de�ned and sum to the expected discounted surplus

from trade. For an e¢ cient blind mechanism 
, this is the statement that

U1 + E
h
�~�B�1V 
B;~�B

�
~�B;~�B

�i
+ E

h
�~�S�1V 
S;~�S

�
~�S;~�S

�i
= E

24 1X
t=maxf~�B ;~�Sg

�t�1 xE
�
~�B;t; ~�S;t

� �
~�B;t � ~�S;t

�35 . (6)
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Condition NPS will be important for, in the blind environment, there exist BB mech-

anisms failing NPS which guarantee arbitrary values of the expected payo¤s from

participation, V 
i;� i (�i;� i), essentially permitting participation constraints to be satis-

�ed "for free". Given that the mechanism is BB, no third-party broker is required to

facilitate trade, so it arguably makes sense that the calculation in (5) is redundant.

To see how a Ponzi scheme can work in the absence of NPS, we could start

with a mechanism satisfying E, BB and BIC, but not necessarily BPC (suppose any

participant faces a sequence of AGV mechanisms, following d�Aspremont and Gérard-

Varet, 1979). Then note that any level of the expected continuation payo¤V 
i;� i (�i;� i)

could be assured for any agent i participating at � i through an appropriate system

of type-independent transfers, while leaving payo¤s for agent i unchanged for other

participation dates, and the other agent �i�s payo¤s unchanged at all dates. In

particular, suppose we want to increase V 
i;� i (�i;� i) by one unit, holding the payo¤s

V 
i;�̂ i (�i;�̂ i) constant for all other participation dates �̂ i 6= � i, and holding the other

agent�s payo¤s V 
�i;��i
�
��i;��i

�
constant for all participation dates ��i. Then, we

could require agent �i to pay agent i the amount 1
�g�i(� i+1)

if agent �i arrives at
� i + 1. If �i arrives at date � i + 1, then his expected additional payment to i is
gi(� i)

�g�i(� i+1)
. Thus, if �i arrives at date � i+1 and i at date � i+2, require i to pay to �i

the amount
gi(�i)

�g�i(�i+1)
�gi(� i+2)

(hence, the expected payo¤ of �i remains unchanged relative
to the original mechanism). We can then ask agent �i to compensate agent i in case
i arrives at � i + 2 and �i at � i + 3, and so forth.
There are several reasons to impose NPS. First, for mechanisms satisfying BB but

failing NPS, agents�ex-ante expected payments are not well-de�ned, and this might

be viewed as rendering agents�ex-ante expected payo¤s ambiguous. This could be

important, for instance, if agents are required to take some ex-ante decision (say at

date zero) as to whether to remain "receptive" to trade (for instance, agents may need

to incur some initial cost in order to arrive to the mechanism at the rates implied

by Gi, i 2 fB; Sg). Second, there is considerable precedent in the literature for

considering condition EBS (recall, for instance, Myerson and Satterthwaite�s, 1983,

concern with expected broker surplus, and Athey and Miller�s, 2007, concern with

actuarially fair insurance). However, the condition EBS only makes sense if U1 in (5)

is well-de�ned. Third, if NPS fails, then the expected magnitude of transfers at each

date cannot be uniformly bounded, and this may seem an undesirable feature of any
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trading mechanism.13 Fourth, the Ponzi schemes envisaged above do not work in the

environment where agents�reports are public (and we ask for mechanisms satisfying

BB, E, PIC and PPC).14 This follows because, once an agent i is commonly known

to have participated at � i, any payments to him from �i at dates � i + 1 or later
must either a¤ect the expected present value of �i�s payo¤s or be compensated by
i conditional on having arrived at � i (hence leaving his expected payo¤ conditional

on arrival at � i unchanged). Hence, our impossibility result will apply to e¢ cient

trade in the public environment subject to BB, PIC and PPC without additional

restrictions on transfers.15

3.2 Main results

With these de�nitions in hand, we can now state the �rst step of the analysis.

Lemma 1 If a blind mechanism 
 maximizes the broker�s expected surplus U1 among
mechanisms satisfying E, BIC and BPC, the following condition holds for each i 2
fB; Sg and each date � i 2 N:

inf
�i;�i2�i;�i

n
V 
i;� i (�i;� i)� �E

h
V 
i;� i+1

�
~�i;� i+1

�
j ~�i;� i = �i;� i

io
= 0. (7)

The reason for this result is simple. At date � i, among mechanisms satisfying

BIC and inducing agent i�s participation at date � i+1, agent i�s date-� i participation

constraint is given by (4). This states that agent i must prefer to participate at date

� i than delay until � i + 1, taking his chances to participate with the new realized

payo¤ type. Analogously to static mechanism design, minimizing agent expected

rents then requires this participation constraint to bind. Indeed, this must be the

case in a mechanism that maximizes U1, since lowering V 
i;� i (�i;� i) does not interfere

with willingness to participate at dates � i � 1 or earlier.
We now show that, to maximize the broker�s surplus, it is enough to rely on a

sequence of static mechanisms. We begin by considering the static VCG mechanism

which ensures each agent a payo¤ equal to the surplus from trade, i.e.

13The mechanisms we construct for our positive results below satisfy NPS and do not have this
feature.
14More formally, the analogue of Condition (6) for the public environment must hold in any

incentive-compatible mechanism (where agent payo¤s at participation, as de�ned by (1) and (2), are
always well-de�ned).
15The same is true for our weaker budgetary condition, EBS.
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(�B;t � �S;t) xE (�B;t; �S;t) for date t. At date t, the lowest realization of the ex-

pected surplus for an agent i over date-t payo¤ types �i;t 2 �i;t, given only that the
other agent �i has arrived by date t, is

inf
�i;t2�i;t

E
h�
~�B;t � ~�S;t

�
xE
�
~�B;t; ~�S;t

�
j ~�i;t = �i;t; ~��i;t 6= ;

i
. (8)

The lowest realizations occur for the lowest value of the buyer and highest cost of

the seller. Assuming payments occur only when both agents participate in the

mechanism, then agents could be charged this minimal surplus as a �xed participation

fee. In particular, they would still be willing to participate and report truthfully in the

static (date-t) mechanism for all realizations of �i;t (here, assuming that participation

in the date-t static mechanism does not a¤ect the opportunities or obligations of the

agents at future dates). We then de�ne (perhaps abusively) a "VCG-* mechanism"

to be one with the e¢ cient allocation rule xE and with payments in case both agents

have arrived by date t (i.e., �B; �S � t) given by

pV CG��B;t

�
�tB;�B ; �

t
S;�S

�
= ��S;t xE (�B;t; �S;t)

�E
h�
�B;t � ~�S;t

�
xE
�
�B;t;

~�S;t

�
j ~�S;t 6= ;

i
(9)

for the buyer, and

pV CG��S;t

�
�tS;�S ; �

t
B;�B

�
= �B;t x

E (�B;t; �S;t)

�E
h�
~�B;t � ��S;t

�
xE
�
~�B;t; ��S;t

�
j ~�B;t 6= ;

i
(10)

for the seller. If one or both agents have not arrived by date t, then there is no trade

and no transfers are made. We then �nd the following.

Proposition 1 The broker�s expected surplus U1 is maximized (among mechanisms
satisfying E, BIC and BPC) by running a blind VCG-* mechanism at each date t;

that is, by setting 
 =
�
xE; pV CG��B;t ; pV CG��S;t

�
t�1. The same value U1 is attainable in

a public mechanism that is E, PIC and PPC.

The reason for this result is as follows. Running a sequence of VCG mechanisms,

one each period, is a simple way to implement the e¢ cient allocation. If the transfers

are augmented by �xed (i.e., type-independent) participation fees as in (9) and (10),
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then, at each date t, the buyer with the lowest value �B;t and the seller with the highest

cost ��S;t obtain an additional expected payo¤ of zero by participating in the date-

t mechanism, rather than delaying participation to the subsequent period. Hence

participation constraints always bind. Using the "payo¤ equivalence property" of

Assumption 1, we then show that the sequence of VCG-* mechanisms generates the

highest expected surplus for the broker among mechanisms implementing e¢ ciency

and satisfying the condition of Lemma 1 at each date t. The result for public

mechanisms is then shown by describing a public mechanism (also a sequence of

static VCG mechanisms, but with di¤erent fees) satisfying E, PIC and PPC, and

which attains the same value of U1 as the aforementioned blind mechanism.16

What is the broker�s surplus U1 in the broker-optimal e¢ cient mechanism? First,

recall that the VCG mechanism that we took as our starting point runs a budget

de�cit in the bilateral trade problem equal to the total surplus

(�B;t � �S;t) xE (�B;t; �S;t) at each date t. However, the VCG-* mechanisms collect

fees equal to (8) from each agent i. We therefore have the following result.

Proposition 2 The largest value of the broker�s expected surplus in a blind mecha-
nism satisfying E, BIC and BPC (alternatively, in a public mechanism satisfying E,

PIC and PPC) is

U1 =
1X
t=1

�t�1GB (t)GS (t)	t; (11)

where

	t =

�E
h�
~�B;t � ~�S;t

�
xE
�
~�B;t; ~�S;t

�
j~�B;t 6= ;; ~�S;t 6= ;

i
+E

h�
�B;t � ~�S;t

�
xE
�
�B;t;

~�S;t

�
j~�S;t 6= ;

i
+E

h�
~�B;t � ��S;t

�
xE
�
~�B;t; ��S;t

�
j~�B;t 6= ;

i . (12)

There exists a blind mechanism that satis�es BB, E, BIC and BPC if and only if U1 �
0. A su¢ cient condition for U1 < 0 is that �B;t \�S;t has positive length for each t,
meaning that the distributions Pr

�
~�B;t � �B;tj~�B;t 6= ;

�
and Pr

�
~�S;t � �S;tj~�S;t 6= ;

�
have "overlapping supports" for all t.

Equation (11) should be understood as a weighted average of the broker�s maximal

expected surplus under e¢ cient trade in static mechanisms, as calculated, for instance,

16That this is enough follows because the broker�s surplus can be no higher in a public mechanism
satisfying PIC and PPC than in a blind mechanism with the same allocation rule satisfying BIC
and BPC.
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by Makowski and Mezzetti (1994). In particular, if we consider the broker-optimal

(e¢ cient) static mechanism at some date t, with type distributions determined by

conditioning only on the arrival of both agents by date t, then the broker�s expected

surplus is precisely 	t. Indeed, this corresponds to the broker�s expected surplus in

a VCG-* mechanism as de�ned above. The weights in (11) comprise the discount

factor �t�1 and the probability that both agents arrive by date t, GB (t)GS (t).17

If 	t < 0 for all t, as is the case when the supports of the aforementioned dis-

tributions overlap (a result originally due to Myerson and Satterthwaite, 1983), then

budget-balanced e¢ cient trade is infeasible (whether in blind or public mechanisms).

Conversely, if 	t � 0 at a given date t, then an e¢ cient and budget-balanced static
mechanism exists at date t; indeed, gains from trade must be assured conditional on

both agents arriving by date t, and so e¢ cient trade can be implemented through a

type-independent posted price. Hence, if 	t � 0 for all t, budget-balanced trade is
achievable through a sequence of posted prices.

If 	t < 0 for some t and yet the expression in (11) is non-negative, then a blind

mechanism can be chosen to satisfy E, BB, BIC and BPC. The mechanism con-

structed in the Appendix is simply a sequence of (static) AGV mechanisms with ad-

ditional �xed (i.e., independent of payo¤ type) payments between the agents. Note

that, given that 	t < 0 for some t, some of these additional payments must be made

after the play of a given static mechanism in the sequence. In other words, playing

the mechanism at a given date t gives rise to dynamic obligations, and these oblig-

ations are essential for "spreading" surplus across periods, thus ensuring willingness

to participate at each date. In this sense, while a sequence of static mechanisms is

enough to maximize the broker�s expected surplus U1, truly "dynamic" mechanisms

may be needed to obtain budget balance.

Finally, note that Proposition 2 does not extend immediately to the existence of

public mechanisms satisfying BB, E, PIC and PPC. Consider the case where U1 � 0,
and where 	1 > 0 but 	t < 0 for all t � 2. If the information that no agent arrived at
date 1 becomes public, then the continuation mechanism from date-2 onwards must

17Note that the broker�s expected surplus (11) thus depends only on the distributions of

arrival times and the marginal distributions of payo¤ types, Pr
�
~�B;t � �B;tj~�B;t 6= ;

�
and

Pr
�
~�S;t � �S;tj~�S;t 6= ;

�
, at each date t. Hence, unlike the existing literature on repeated trade

reviewed above, the degree of persistence of agent payo¤ types over time is irrelevant for calculating
the broker�s surplus.

18



be run with an expected loss for the broker (assuming it satis�es E, PIC and PPC),

and so budget-balanced e¢ cient trade is not feasible. This observation stands in

contrast to the environment where agents arrive at the outset with probability one,

and so there is a single constraint for each agent�s participation at the initial date.

Then, Skrzypacz and Toikka (2015; Proposition 1, cases (ii) and (iii)) show that, if

there exists a blind mechanism that satis�es E, EBS, BIC and the initial participation

constraint for each agent, then there exists a public mechanism satisfying E, BB, PIC

and the same participation constraints.18

4 Extensions and discussion

4.1 One-sided uncertainty

The above insights can be readily adapted to settings in which arrival is known not

to occur at some dates. For instance, consider the case where the seller is commonly

known to be in the market at date 1 (similar results hold when instead the buyer is

commonly known to be present at date 1). Then we have the following analogue of

Proposition 2.

Proposition 3 Suppose that the seller is commonly known to be in the market at
date 1, but that the buyer may arrive at any date (i.e., GB (�) continues to have full
support on N). The largest value of the broker�s expected surplus in a blind mechanism
satisfying E, BIC and BPC (alternatively, in a public mechanism satisfying E, PIC

and PPC) is

�U1 =

1X
t=1

�t�1GB (t) �	t, (13)

where

�	t =

�E
h�
~�B;t � ~�S;t

�
xE
�
~�B;t; ~�S;t

�
j~�B;t 6= ;

i
+E

h�
�B;t � ~�S;t

�
xE
�
�B;t;

~�S;t

�i
+E

h�
~�B;t � ~�S;t

�
xE
�
~�B;t; ~�S;t

�
j~�B;t 6= ;; ~�S;1 = ��S;1

i . (14)

A mechanism satisfying BB, E, BIC and BPC exists if and only if �U1 � 0. In case
�U1 � 0, there exists also a public mechanism satisfying BB, E, PIC and PPC.

18The implication in Skrzypacz and Toikka does extend to our setting, however, if just one of the
agents has a commonly known arrival date, which is the case we consider next.
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The expression (13) can be understood as follows. Consider �rst running a (static)

VCGmechanism at each date, such that each agent earns a payo¤equal to the surplus

from trade. Both agents will participate in these mechanisms whenever possible and

report truthfully, so the ex-ante expected present value of the budget de�cit is

1X
t=1

�t�1GB (t)E
h�
~�B;t � ~�S;t

�
xE
�
~�B;t; ~�S;t

�
j~�B;t 6= ;

i
.

Now suppose that the buyer is charged a �xed participation fee equal to

E
h�
�B;t � ~�S;t

�
xE
�
�B;t;

~�S;t

�i
for participation in the VCGmechanism at each date.

At each date t, the buyer is willing to participate (given that the mechanism is blind

and participation does not a¤ect the mechanism he faces at any future date), and he

is indi¤erent for the lowest value realization �B;t. If the seller has the highest date-1

cost ��S;1, then his expected payo¤ in the sequence of VCG mechanisms is

1X
t=1

�t�1GB (t)E
h�
~�B;t � ~�S;t

�
xE
�
~�B;t; ~�S;t

�
j~�B;t 6= ;; ~�S;1 = ��S;1

i
. (15)

This type of the seller is just willing to participate if charged a participation fee

equal to (15), given that he is permitted to participate in the mechanism only if

participating at date 1 (and hence his payo¤ if declining to participate at date 1 is

zero). All lower cost types are then willing to participate as well. Expression (13)

then comprises the budget de�cit of the original VCG mechanisms, plus the sum of

the expected fees.

Compared to the case with uncertain arrival for both agents, e¢ cient trade is

easier to sustain while satisfying EBS, since there are fewer participation constraints.

For instance, EBS may be satis�ed (say, in a blind mechanism that is E, BIC and

BPC) even if the supports of Pr
�
~�B;t � �B;tj~�B;t 6= ;

�
and Pr

�
~�S;t � �S;t

�
overlap at

each date t. The following example is illustrative.

Example 1 Suppose that the seller arrives at date 1 for sure, while the buyer has an
uncertain arrival time, distributed according to GB (t) with full support on all periods

N. Suppose that all payo¤ types are drawn i.i.d. in each period, with full support

on
�
�B;

��B
�
for the buyer and full support on

�
�S;
��S
�
for the seller. If �B � �S

and ��B � ��S, then �U1 de�ned in (13) is strictly negative for any blind mechanism

satisfying E, BIC and BPC. Conversely, if either �B > �S or ��B > ��S, then there
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exists �� such that, for all � 2
�
��; 1
�
, �U1 � 0 for some blind mechanism satisfying these

desiderata.

The result implies that budget-balanced e¢ cient trade is infeasible in case the

lowest value type for the buyer and the highest cost type for the seller anticipate no

gains from trade. In this case, �	t, as de�ned by (14), is equal to zero for all t � 2,
while it is equal to �E

h�
~�B;1 � ~�S;1

�
xE
�
~�B;1; ~�S;1

�
j~�B;1 6= ;

i
for t = 1. Conversely,

if either �B > �S or ��B > ��S, then gains from trade are anticipated with positive

probability by either the lowest-value buyer or the highest-cost seller, and so �	t > 0

for all t � 2. We then have that �U1 becomes non-negative for any � close enough to
one.

The environment of Example 1 is comparable to that in Athey and Miller (2007),

where both agents are present from the beginning and the buyer and seller draw values

and costs i.i.d. in each period from a common interval
�
�; ��
�
(with both the value

and cost distributions having full support on this interval). While Athey and Miller

show that e¢ cient trade can be sustained with an ex-ante budget surplus provided

the discount factor � is at least one half, introducing uncertain arrival on just one side

of the market renders this impossible for all � 2 (0; 1).19 Example 1 shows, however,

that such a conclusion depends on the supports of buyer and seller values and costs.

This dependence parallels observations in the literature on static trade with more

than two traders: for instance, while Gresik and Satterthwaite (1989) observed that

e¢ ciency is unattainable irrespective of the number of traders when the support is

common, Makowski and Mezzetti (1993) derived possibility results for a setting with

at least two potential buyers and a support satisfying ��B > ��S.

4.2 Restriction on the supports of payo¤ types

We now comment on our support assumption; namely that, for all �i;t�1 2 �i;t�1,�
�i;t (�i;t�1) ;

��i;t (�i;t�1)
�
� �i;t. This implies that, in any e¢ cient mechanism, an

agent who fails to participate at his arrival date, but who participates at the next

19Example 1 should also be compared to Gershkov, Moldovanu and Strack (2015) who analyze the
limits to e¢ cient implementation in a dynamic model where buyers arrive over time and where the
planner learns through arriving buyers about the future arrival rate. While unrestricted subsidies
can ensure an e¢ cient allocation, limits on payments (in particular, a restriction to "winner pays")
can jeopardize e¢ icency. Relatedly, Example 1 shows how limiting transfers by ruling out budget
de�cits jeopardizes e¢ ciency in a setting where buyers arrive over time.
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opportunity and then reports payo¤types truthfully, induces e¢ cient allocations from

then on. This e¤ectively �by payo¤ equivalence �ties the hands of the designer,

nullifying any scope for punishing the deviation of delayed participation.20 When

our support restriction is not satis�ed, budget-balanced e¢ cient trade may be feasible

even when the expression in (11) is negative as in the following example.

Example 2 Suppose that the buyer�s and seller�s arrival dates are uncertain, with GB
and GS each having full support on the dates N. Suppose that, for each i 2 fB; Sg,
each arrival date � i, and each t > � i, �i;t is drawn i.i.d. from a non-degenerate and

absolutely continuous distribution on
�
�; ��
�
, a �nite interval in R+. Finally, suppose

that, for each �B, �B;�B is smaller than �, while for each �S, �S;�S is larger than
��, implying that surplus enhancing opportunities to trade do not exist at either the

buyer�s or seller�s arrival dates. Then there exists a blind mechanism satisfying E,

BB, BIC and BPC, and a public mechanism satisfying E, BB, PIC and PPC for any

value � 2 (0; 1).

To understand the result in Example 2, we explain only why EBS is satis�ed

by a blind mechanism satisfying E, BIC and BPC (leaving a proof for this example

to the Appendix). Suppose the environment is blind, and consider a sequence of

VCG mechanisms, one per period, with each agent earning the realized surplus from

trade at each date. Now suppose that, to access these VCG mechanisms, each agent

pays a fee on participation equal to the expected gains from trade from that date

onwards. Paying this fee just once entitles the agent to participate forever after.

Each agent then has an expected payo¤ from participation of exactly zero, so is

willing to participate given that he can earn at most zero by participating in future.

Hence the broker�s ex-ante surplus is equal to the expected present value of all gains

from trade.

Example 2 is "extreme" in the sense that, dropping the budget-balance require-

ment, e¢ cient trade can be implemented while ensuring agents earn zero expected

rents. This is e¤ectively achieved by "punishing" an agent who delays participation

by denying the possibility of e¢ cient trade until one period after participation (in

particular, an agent who participates one period later incurs a one period delay in

20The same would be true if our support restriction were not satis�ed, but mechanisms were
required to implement e¢ cient allocations also "o¤ path", i.e. for agents who have deviated in the
past, say by failing to participate.
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the �rst date he can trade, potentially denying an e¢ cient trade). Two assumptions

jointly permit the absence of buyer and seller rents in this example: (i) payo¤ types

are drawn independently across periods, and (ii) opportunities for e¢ cient trade are

absent at each agent�s arrival date. However, the idea that weakening our support

restriction permits the designer �exibility to punish delayed participation by imposing

an ine¢ cient trading rule applies more generally.

It is also worth noting the close parallel between violations of our support as-

sumption and the possibility that agents are known not to arrive at certain dates (as

discussed in Section 4.1). In both cases, agent rents can be reduced by committing

to an ine¢ cient policy in case of a deviation. For instance, when one of the agents

is known to arrive at date one, a commitment can be made not to permit any trade

if the agent fails to participate at that date (we discuss relaxing such commitments

in Section 4.4 below).

4.3 Constrained-e¢ cient mechanisms

A natural question, which turns out to be intimately related to the preceding discus-

sion on payo¤-type supports, is constrained-e¢ ciency. For instance, in environments

where any e¢ cient mechanism eliciting truthful reporting runs an expected budget

de�cit, what allocation (xt (�; �))t2N maximizes the ex-ante surplus

E

24 1X
t=maxf~�S ;~�Bg

�t�1
�
~�B;t � ~�S;t

�
xt

�
~�
t

B;�B
; ~�
t

S;�S

�35 (16)

subject to either EBS or BB?

A preliminary observation is that, at least when payo¤ types are not too persis-

tent (in a sense formalized by the "impulse responses" introduced by Pavan, Segal

and Toikka, 2014), e¢ cient allocations can be implemented at dates long after con-

tracting without ceding large information rents to agents who have favorable initial

information (say, to a buyer with a high initial value, or a seller with a low initial

cost).21 We should therefore anticipate that the fraction of surplus foregone by a

21For instance, the mechanism may specify no trade for any agent until at least m periods since
participation, and e¢ cient trade thereafter (provided the other agent has also participated for at
least m periods). Such a mechanism can be found that is incentive compatible and lowers agent
rents relative to a mechanism stipulating e¢ cient trade at all dates.
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constrained-e¢ cient mechanism (as envisioned above) would often vanish as the dis-

count factor � approaches one. This is not to say that dynamic arrivals do not lead

to large reductions in the fraction of surplus attainable for �xed values of �.

While we do not provide a full exploration of constrained-e¢ cient mechanisms, a

simple example will be suggestive of the forces at play. To this end, suppose that,

for each agent i, in each period t from the arrival date � i onwards, agent i makes

an i.i.d. draw of �i;t from an absolutely continuous distribution Fi with support on�
�i;
��i
�
. Suppose these supports overlap: i.e., ��B > �S and �B < ��S. Following the

same steps as in Garrett (2016), one can deduce that the smallest expected rents in

a BIC blind mechanism with allocation rule (xt (�; �))t2N equal

E

24�~�B�1GB (~�B)
gB (~�B)

1� FB
�
~�B;~�B

�
fB

�
~�B;~�B

� x~�B

�
~�B;~�B ;

~�
~�B
S;~�S

�35 (17)

for the buyer and

E

24�~�S�1GS (~�S)
gS (~�S)

FS

�
~�S;~�S

�
fS

�
~�S;~�S

� x~�S �~�~�SB;~�B ; ~�S;~�S�
35 (18)

for the seller.

To understand these expressions, note that (in a mechanism that minimizes agent

rents conditional on the allocation rule) an agent i�s expected information rents if

arriving at � i do not depend on allocations for dates t > � i. This follows because

payo¤ types are independent across time, and so agents lack private information

about future payo¤ types at the time of contracting. Consider the buyer�s case. If

the arrival date �B were certain and commonly known (with the seller�s arrival date

still uncertain), then the only source of information rents would be the date �B value

�B;�B , and the buyer�s ex-ante expected rents would hence equal

E

24��B�11� FB
�
~�B;�B

�
fB

�
~�B;�B

� x�B

�
~�B;�B ;

~�
�B
S;~�S

�35 ;
which is the standard expression from static mechanism design. The expression (17),

however, is more than simply its expectation over uncertain realizations of �B. In
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particular, when the buyer�s arrival time is uncertain, inducing participation at all

dates before some participation date �B requires the same rent to be attributed to

the buyer if arriving at any earlier date, an event that has probability GB (�B � 1).
This explains why the ratio GB(~�B)

gB(~�B)
(which captures the likelihood of earlier arrival

relative to arrival at date ~�B) appears in expression (17). An analogous observation

holds for the seller.

The requirement that a broker �nancing trade breaks even in expectation (i.e.,

constraint EBS) can then be written as

E

264 �~�B�1GB(~�B)gB(~�B)

1�FB(~�B;~�B)
fB(~�B;~�B)

x~�B

�
~�B;~�B ;

~�
~�B
S;~�S

�
+�~�S�1GS(~�S)

gS(~�S)

FS(~�S;~�S)
fS(~�S;~�S)

x~�S

�
~�
~�S
B;~�B

; ~�S;~�S

�
375

� E

24 1X
t=maxf~�B ;~�Sg

�t�1
�
~�B;t � ~�S;t

�
xt

�
~�
t

B;~�B
; ~�
t

S;~�S

�35 , (19)

which states that the expected surplus from trade covers expected rents. A �rst

pass at maximizing e¢ ciency subject to the broker breaking even would then be to

maximize (16) subject to (19). The solution to this "relaxed program" coincides

with the solution to the problem of interest provided that 1�FB(�)
fB(�) is non-increasing

and FS(�)
fS(�) is non-decreasing (which will ensure monotonicity of the allocation in each

agent�s payo¤ type).

Example 3 Suppose that each agent �{�s payo¤ types are drawn i.i.d. in each pe-
riod from Fi (as de�ned above), that the supports overlap, and that

1�FB(�)
fB(�) is non-

increasing while FS(�)
fS(�) is non-decreasing. Consider the allocation rule (x

�
t (�; �))t2N that

maximizes ex-ante surplus (16) in a blind mechanism satisfying BIC, BPC and EBS.

This sets x�t
�
�tB;�B ; �

t
S;�S

�
equal to one if

�B;t � �S;t �

8>>>>>>><>>>>>>>:

�
1+�

�
GB(�B)
gB(�B)

1�FB(�B;�B)
fB(�B;�B)

+ GS(�S)
gS(�S)

FS(�S;�S)
fS(�S;�S)

�
for t = �B = �S

�
1+�

GB(�B)
gB(�B)

1�FB(�B;�B)
fB(�B;�B)

for t = �B > �S

�
1+�

GS(�S)
gS(�S)

FS(�S;�S)
fS(�S;�S)

for t = �S > �B

0 for t > max f�B; �Sg

, (20)

where � > 0 is the Lagrange multiplier on (19), and zero otherwise. The same
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allocation is part of a public mechanism that satis�es PIC, PPC and EBS, which is

hence constrained-e¢ cient among public mechanisms satisfying these desiderata.

A few comments are in order. First, because payo¤ types are not persistent over

time, allocations are e¢ cient as soon as both agents have participated in the past (the

example is a limiting case of the settings with limited type persistence, as discussed

above). Allocations are more distorted (i.e., more trade that is e¢ cient fails to occur)

on a date t if both agents arrive at that date (i.e., if t = �B = �S) than if only one

agent arrives at that date while the other has already arrived (i.e., if t = �B > �S

or t = �S > �B). Since distorted trade lasts exactly one period, with e¢ cient trade

occurring thereafter, the lost surplus due to the constraint EBS shrinks to zero as a

fraction of the total e¢ cient surplus as � approaches one.

While trade is distorted only on the �rst date it can occur (i.e., the �rst date at

which both agents have arrived), the size of distortions depend both on the timing

of this event and the distributions GB and GS of agent arrival times. A natural

possibility is that Gi(t)
gi(t)

is increasing in t, which is the case for instance if each Gi is the

geometric distribution with parameter �i 2 (0; 1) (in which case Gi (t) = 1� (1� �i)
t

for each i). In such cases, distortions are larger if the �rst date where trade is possible

(i.e., max f�B; �Sg) occurs later. This re�ects that distortions introduced at a given
date reduce the rents that must be left to agents arriving at all earlier dates, and

that the probability of such earlier arrival necessarily increases with time. Under our

maintained assumption that Gi has full support on the set of all dates N, notice that
Gi(t)
gi(t)

necessarily grows without bound. After enough time, the �rst trading date is

hence characterized by large distortions: trade only takes place at this date if either

the buyer�s value is very close to ��B or the seller�s cost is very close to �S (both are

required if the buyer and the seller arrive simultaneously, i.e. if �B = �S).

Finally, note that the result in Example 3 considers the constraint that the broker

must expect a surplus (i.e., condition EBS). In the blind environment, it is possible

to take the constrained-e¢ cient mechanism satisfying BIC, BPC and EBS, and adjust

transfers so that it also satis�es BB. For instance, following the same approach as

for AGV mechanisms (as in d�Aspremont and Gérard-Varet, 1979), it is possible

to adjust transfers period by period so that BB holds while BIC continues to be

satis�ed. As in the proof of Proposition 2, one can then make "dynamic" adjustments

to transfers that redistribute surplus across time and between players to ensure BPC.

However, when the mechanism is public, analogous steps are often not possible; i.e.,
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the allocation (x�t (�; �))t2N of Example 3 cannot be implemented by a mechanism that
satis�es BB, PIC and PPC. For instance, when Gi (t) is the geometric distribution

for each i, we see that

E

264 �~�B�1GB(~�B)gB(~�B)

1�FB(~�B;~�B)
fB(~�B;~�B)

x�~�B

�
~�B;~�B ;

~�
~�B
S;~�S

�
+�~�S�1GS(~�S)

gS(~�S)

FS(~�S;~�S)
fS(~�S;~�S)

x�~�S

�
~�
~�S
B;~�B

; ~�S;~�S

� j~�B;1 = ~�S;1 = ;

375
< E

24 1X
t=maxf~�B ;~�Sg

�t�1
�
~�B;t � ~�S;t

�
x�t

�
~�
t

B;~�B
; ~�
t

S;~�S

�
j~�B;1 = ~�S;1 = ;

35 . (21)
This follows by a comparison to constraint (19), which holds with equality for the

allocation (x�t (�; �))t2N. In particular, conditional on no arrival at date 1, the future
evolution of arrivals, values and costs from date 2 onwards is the same as at the

beginning of the game, yet future trade is more distorted. The inequality (21) implies

that the allocation (x�t (�; �))t�2 can be implemented by a PIC and PPC mechanism
that generates a strict budget surplus from date 2 onwards, conditional on the event

that no agent arrives at date 1. Alternatively, since budget balance requires the

surplus to be fully distributed between the agents, any budget balanced mechanism

must yield continuation payo¤s larger than the smallest possible value in any PIC

and PPC mechanism implementing (x�t (�; �))t2N. This implies that a broker in this
arrangement must expect an ex-ante loss, and hence that budget-balanced trade is

infeasible.

4.4 Limited designer commitment

Our results shed light on a strong form of commitment relied on in the existing pos-

sibility results for e¢ cient repeated bilateral trade (reviewed above). In particular,

we have noted that the assumption that agent arrival times are commonly known

permits a designer with commitment ability to exclude agents who fail to participate

on these dates. We have shown that this commitment can be crucial for reducing

agent rents, and hence obtaining criteria such as EBS or BB subject to incentive

and participation constraints. However, commitments to exclude may not be cred-

ible in some allocation problems. Any central authority charged with designing a

mechanism for e¢ cient outcomes would presumably face pressure to still implement

e¢ cient outcomes in case one of the trading partners failed to participate in the cho-
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sen mechanism at the anticipated date. In a decentralized environment, we might

expect potential trading partners to renegotiate, at least to prevent the complete

break down of trade, if one of these partners turned up to the bargaining table later

than expected.

To see the implications of a lack of commitment more concretely, suppose that

agents draw values and costs i.i.d. in each period from a commonly known arrival

date (say t = 1), and suppose that these distributions have common support. While

the ability to exclude non-participants permits e¢ cient and budget-balanced trade for

any � � 1=2, such trade is infeasible for any � if the mechanism instead implements

e¢ ciency from the �rst date at which both agents have participated (no matter when

that happens to be).22

This observation contrasts with what is seen in many dynamic mechanism design

problems with the objective of e¢ ciency. For instance, Bergemann and Valimaki

(2010, p 772) note that: "the dynamic pivot mechanism is time-consistent and the

social choice function can be implemented by a sequential mechanism without any ex

ante commitment by the designer". Yet, if there are constraints on transfers (such as

EBS or BB), we have seen that this is not a general property of e¢ cient mechanisms.

4.5 Other allocation problems

Our main characterization results can be easily extended to many other allocation

problems where agents have quasi-linear payo¤s, such as public goods problems and

trade involving more than two agents. For instance, as in Proposition 1, if agents�

arrival times have full support across all dates and are their private information, the

maximum expected broker surplus among e¢ cient mechanisms satisfying incentive

compatibility and participation constraints is attainable by a sequence of appropri-

ately chosen VCG mechanisms. In turn, this permits a characterization of envi-

ronments in which e¢ cient allocations are feasible satisfying revenue neutrality or

budget balance constraints. Again, the relevant condition is a "weighted average" of

the condition for static problems.

22Here, we use that the designer continues to believe that values and costs are drawn from the
same common support in each period, even after a deviation to non-participation. While this makes
sense in light of i.i.d. draws, the question of designer beliefs is more subtle when values and costs
are correlated over time.
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4.6 Allocation-dependent processes

Another possible extension is to permit the evolution of payo¤ types to depend on

past allocations or actions; see Bergemann and Valimaki (2010) and Athey and Segal

(2013) for models in which this is permitted. While care would be needed to adapt our

results to this case, it seems reasonable to conjecture that budget-balanced trade can

become possible even in instances when the distributions of values and costs overlap.

In particular, if trade of the good itself tends to increase the buyer�s future values

and lower the seller�s future costs, then these stochastic "improvements" could act as

a reward for early participation in the mechanism, relaxing participation constraints.

5 Conclusions

We conclude by reiterating a central theme of this paper. Following Myerson and

Satterthwaite (1983), among others, it is well understood that balanced-budget re-

quirements provide a severe impediment for e¢ cient trade under standard incentive-

compatibility and participation constraints. Following a number of elegant contri-

butions, repeated trade, with dynamically evolving payo¤ types, has since emerged

as a way to restore e¢ cient allocations. A key message of the present paper, then,

is that such a conclusion can be too optimistic. If agents have private information

on their readiness to participate in a dynamic mechanism (i.e., if they arrive over

time and their arrival dates are privately known), or if the designer cannot commit to

shutting down trade in the event of late participation, then e¢ cient budget-neutral

trade can be (much) more di¢ cult to sustain. In the classic bilateral trade problem,

overlapping supports for buyer and seller values is enough to render budget-balanced

and e¢ cient trade infeasible.
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Appendix: Proofs of results

Proof of Lemma 1. Given our assumption on the evolution of payo¤ types

and focus on BIC mechanisms, a necessary condition for agent i to be willing to

participate at date � i when his date�� i type is �i;� i is given by (4). This implies

that the expression in the left-hand side of (7) is non-negative in any blind mechanism

satisfying BIC and BPC. If the expression is strictly positive, for any i and � i, we can

increase the broker�s surplus U1 simply by reducing pi;� i
�
�i;� i ; �

� i
�i;��i

�
by a uniform

constant less than the positive value in question. This reduces V 
i;� i (�i;� i) by the

same amount, relaxing the constraint (4) for agent i at � i � 1, but without violating
it at any other date. In particular, if the original mechanism satis�es BIC and BPC,

then the adjusted mechanism satis�es these conditions as well.

Proof of Proposition 1. Consider any blind mechanism satisfying E, BIC, BPC

and the condition of Lemma 1 for all dates. Given our continuity assumption on

F i;T rt , there exists for each i and t a ��i;t 2 �i;t satisfying

V 
i;t
�
��i;t
�
= �

h
V 
i;t+1

�
~�i;t+1

�
j~�i;t = ��i;t

i
.

Hence, for each i and t,

V 
i;t
�
��i;t
�
= �V 
i;t+1

�
��i;t+1

�
+ �E

h�
V 
i;t+1

�
~�i;t+1

�
� V 
i;t+1

�
��i;t+1

��
j~�i;t = ��i;t

i
.

Iterating, we can write, for any l 2 N,

Vi;t
�
��i;t
�
=

lX
s=1

�sE
h�
V 
i;t+s

�
~�i;t+s

�
� V 
i;t+s

�
��i;t+s

��
j~�i;t+s�1 = ��i;t+s�1

i
+�lV 
i;t+l

�
��i;t+l

�
.

Since the option is always available to never participate, we must have V 
i;t+l
�
��i;t+l

�
�

0 for all l. This, together with the assumption of bounded payo¤ types, implies that

liml!+1 �
lV 
i;t+l

�
��i;t+l

�
= 0 in any mechanism that maximizes U1. Hence, the small-

est feasible value of V 
i;t
�
��i;t
�
is

1X
s=1

�sE
h�
V 
i;t+s

�
~�i;t+s

�
� V 
i;t+s

�
��i;t+s

��
j~�i;t+s�1 = ��i;t+s�1

i
.
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By the payo¤ equivalence property of Assumption 1, V 
i;t+s (�i;t+s)� V 
i;t+s
�
��i;t+s

�
is the same across all blind mechanisms satisfying BIC and E, and this is true for all

s � 1. Thus, any mechanism that is BIC and E, and which satis�es the condition of
Lemma 1 at all dates as well as liml!+1 �

lV 
i;t+l
�
��i;t+l

�
= 0, has the same value of U1.

One example of such a mechanism is the sequence of VCG-* mechanisms speci�ed

in the proposition. Such mechanisms are BIC because the static VCG mechanism

is incentive compatible, and the mechanism an agent faces at future dates does not

depend on current reports. Each agent is also guaranteed a non-negative payo¤ from

participating in a given date-t mechanism, while retaining the right to participate in

the same future mechanisms he would engage in if delaying participation. So the

mechanism satis�es BPC. The buyer with the lowest value and the seller with the

highest cost at a given date t are precisely indi¤erent between participating at t and

waiting and participating at date t + 1 (i.e., ��B;t = �B;t and �
�
S;t =

��S;t). Hence,

the condition of Lemma 1 is satis�ed. Also, using that payo¤ types are bounded,

limt!+1 �
t�1V 
i;t

�
��i;t
�
= 0 for each i. Hence agent rents are as small as possible.

Hence U1 is as large as possible in a blind mechanism satisfying E, BIC, BPC and

NPS.

For the public environment, consider a sequence of e¢ cient static mechanisms

with payments given, if both agents have arrived by date t, by

pV CG���PB;t

�
�tB;�B ; �

t
S;�S

�
= ��S;t xE (�B;t; �S;t)

�E
h�
�B;t � ~�S;t

�
xE
�
�B;t;

~�S;t

�
j ~�t�1S;�S

= �t�1S;�S
; ~�S;t 6= ;

i
for the buyer, and

pV CG���PS;t

�
�tS;�S ; �

t
B;�B

�
= �B;t x

E (�B;t; �S;t)

�E
h�
~�B;t � ��S;t

�
xE
�
~�B;t; ��S;t

�
j ~�t�1B;�B

= �t�1B;�B
; ~�B;t 6= ;

i
for the seller. If at least one of the agents has not arrived by date t, then no payments

are made. Again each static mechanism is incentive compatible, and an agent�s

reports do not a¤ect his payments in future (static) mechanisms, so the sequence of

static mechanisms is PIC. Agents earn non-negative payo¤s by participating in each

static mechanism (and such participation does not impose future obligations) so the

sequence of static mechanisms satis�es PPC. Finally, note that, by the law of iterated
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expectations, the ex-ante expectation of payments are identical under the mechanism

for the blind environment as for the one speci�ed here for the public environment.

Hence the broker�s expected surplus U1 is identical for both mechanisms (and hence

is the highest surplus achievable in the public environment).

Proof of Proposition 2. The expression (11) for U1 follows from the arguments

in the main text. As we have noted, budget-balanced e¢ cient trade is infeasible if

U1 < 0.

If U1 � 0, then we can construct a blind mechanism satisfying BB, E, BIC

and BPC as follows. Recall that a date�t budget-balanced, e¢ cient and incentive-
compatible static mechanism 
statict =



xE; pB;t; pS;t

�
is such that

W

statict
B;t

�
�B;t

�
+W


statict
S;t

�
��S;t
�
= 	t,

with 	t given by (12) and whereW

statict
i;t (�i;t) gives the expected payo¤ from truthful

reporting in the static mechanism conditional on both agents having arrived by t, and

on i�s date-t payo¤ type �i;t.23 This observation is standard and can be understood

from payo¤ equivalence to the static VCG mechanism. An example of such a static

mechanism is the AGV mechanism, following d�Aspremont and Gérard-Varet (1979).

Given such a budget-balanced mechanism, it is then possible to construct a se-

quence of budget-balanced static mechanisms 
#t such that expected payo¤s from

participating (with value �B;t for the buyer and ��S;t for the seller, and assuming the

other agent participates) are given by

W

#t
B;t

�
�B;t

�
= min f0;	tg

W

#t
S;t

�
��S;t
�
= max f0;	tg .

This simply requires adding "�xed" (i.e., type-independent) transfers at each date

t to redistribute the expected surplus between the buyer and seller. Under our

maintained assumption that each agent is blind as to whether the other is par-

ticipating, the buyer�s expected payo¤ from participating in the static mechanism


#t is GS (t)min f0;	tg when his value for the good is �B;t, while the seller�s is
GB (t)max f0;	tg when his cost is ��S;t.
23Note that we are only conditioning on agents having arrived by date t, and hence view all agents

who have arrived by date t as participating in 
statict .
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We can then modify the sequence of static mechanisms
�

#t

�
t�1

by arranging

for further transfers between the agents. The result need no longer be a sequence

of static mechanisms, since participation at a given date t may (at least along some

realizations of uncertainty) give rise to further payments at later dates. It will be

enough to ensure that each agent is willing to participate at each date for all possible

payo¤ types, irrespective of whether he participated in the past.

One way to proceed is as follows. If 	1 < 0, then in the �rst period t such

that 	t > 0, require the seller (if participating) to pay the buyer either
GS(1)j	1j
�t�1GS(t)

, or
GB(t)	t
GB(1)

if the latter is smaller. In the �rst case, the buyer with payo¤ type �B;1 is

indi¤erent to participating at date 1, while in the latter the seller with payo¤ type
��S;t is indi¤erent to participating (since he makes a payment

GB(t)	t
GB(1)

with probability

GB (1)). In the latter case, we continue to the next date t0 > t such that 	t0 > 0 and

require a payment to the date-1 participating buyer of either
GS(1)j	1j�

	tGB(t)GS(t)�
t�1

GB(1)

�t
0�1GS(t0)

,

or GB(t
0)	t0

GB(1)
if the latter is smaller. Continuing this way, we can ensure that the

expected loss of the buyer arriving at date 1 with type �B;1, i.e. GS (1) j	1j, is paid
for by the seller (in expectation), if

GS (1) j	1j �
1X
t=2

�t�1max

�
GB (t)	t
GB (1)

; 0

�
GS (t) ,

or equivalently

GB (1)GS (1) j	1j �
1X
t=2

�t�1max fGB (t)GS (t)	t; 0g ,

which is true because U1 � 0.
We can then proceed sequentially by ensuring participation of buyers in every

date-t mechanism. At a generic date t, we specify payments from the seller starting

with the �rst date s at which the highest-cost seller, ��S;s, expects positive rent from

participating in the date-s mechanism. Ensuring participation of buyers up to date t

in a budget-balanced mechanism (while maintaining seller participation at all dates)

is then feasible provided that, for each s � t,

��s�1GB (s)GS (s)min f	s; 0g � ys
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for (ys)
t
s=1 satisfying

tX
s=1

ys �
1X
s=1

�s�1max fGB (s)GS (s)	s; 0g .

This is guaranteed for all t by U1 � 0. Hence, participation can be guaranteed at all
dates while maintaining budget balance.

It remains to check that the adjusted mechanism satis�es NPS. Note �rst that

all payments given by
�

#t

�
t�1

are uniformly bounded across realizations of agents�

information, because payo¤ types are uniformly bounded. Hence their discounted

sum is uniformly bounded. Second, note that the additional payments from the seller

are always positive and have expected present value no greater than

1X
t=1

�t�1max fGB (t)GS (t)	t; 0g < +1.

Also, the additional payments to the buyer are always positive, with the expected

present value equal to

1X
t=1

�t�1 jmin fGB (t)GS (t)	t; 0gj < +1.

These observations together imply that NPS is satis�ed.

The �nal part of the result, i.e. the su¢ cient condition for U1 < 0, follows from

arguments in the main text.

Proof of Proposition 3. That the broker�s expected surplus �U1 is given by (13)

in any broker-optimal mechanism implementing e¢ cient trade follows using payo¤

equivalence to the sequence of VCG-* mechanisms described in the main text (the

proof follows closely those of Propositions 1 and 2, and is hence omitted). It is then

immediate that budget-balanced e¢ cient trade is infeasible when �U1 < 0.

In case �U1 � 0 we construct a public mechanism satisfying BB, E, PIC and PPC,
from which follows the existence of a blind mechanism satisfying BB, E, BIC and

BPC.

Suppose �rst that (i) the seller reports his costs in each period from date 1, and

(ii) if the buyer participates at �B, then a "balanced team mechanism", as described

by Athey and Segal (2013), is played from �B onwards (calculated by taking the
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seller�s cost at �B � 1 to be the reported one). This de�nes a dynamic mechanism in
which the seller participates from date 1 and the buyer participates from his arrival

date onwards. However, the seller may �nd it suboptimal to participate at date 1,

while the buyer may �nd it suboptimal to participate at the arrival date �B. We

now explain how to ensure participation constraints bind at each date for the lowest

realization of the buyer�s value,24 with the implication that the seller is willing to

participate at date 1 for all realizations of his date-1 type �S;1.

Let 
TEAM be the balanced team mechanism described above. Let

V 

TEAM

B;�B
(�B;�B ; �S;�B�1) be the expected payo¤ of a buyer who arrives at �B with

value �B;�B when the seller has reported �S;�B�1 in the previous period. We can

modify the balanced team mechanism 
TEAM as follows. First require that the

buyer, if he arrives at date 1, make a payment to the seller at date 1 equal to

V 

TEAM

B;1

�
�B;1

�
� �E

h
V 


TEAM

B;2

�
~�B;2; ~�S;1

�
j~�B;1 = �B;1

i
.

The buyer is then willing to participate at date 1 for all realizations of �B;1, and earns

the lowest payo¤ possible in a mechanism satisfying E, PIC and PPC, and which

treats the buyer, if arriving at date 2 or later, precisely as in 
TEAM . We then say

that the mechanism has been "modi�ed" at date 1.

We de�ne subsequent modi�cations, i.e. for t � 2, as follows. Suppose the

mechanism has been modi�ed up to date t� 1, and in particular that the mechanism
satis�es E, PIC and PPC, while ensuring the buyer�s rents if participating at date

t � 1 or earlier are as small as possible, subject to E, PIC and PPC, and to the

mechanism played by buyers participating from t onwards being speci�ed by 
TEAM .

Then require any buyer who participates at date s � t to pay the seller an amount,
conditional on �s�1S;1 , equal to

�s;t
�
�s�1S;1

�
� �t�sE

h
V 


TEAM

B;t

�
�B;t;

~�S;t�1

�
� �V 
TEAMB;t+1

�
~�B;t+1; ~�S;t

�
j~�B;t = �B;t; ~�S;s�1 = �S;s�1

i
on the participation date. Note that this ensures the buyer is willing to participate

24That the buyer gains least from participating immediately (rather than waiting until the next
period) when his value is at its lowest (i.e., �B;�B for each participation date �B) can be seen from
considering the repetition of (static) VCG mechanisms and using the payo¤ equivalence property of
Assumption 1.
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for all arrival times up to and including t (and report truthfully thereafter), while

ensuring that his expected payo¤ at each participation date s � t is as small as

possible in an e¢ cient mechanism where buyers participating at date t + 1 or later

receive the same treatment as under 
TEAM . Note that the latter holds because

participation constraints bind at �B;s for each date s � t and for each possible history
of seller reports �s�1S;1 .

Note then that the aforementioned payments a¤ect the seller�s incentives to report

truthfully at dates t� 1 and earlier. To resolve this, for each date s from 2 up to t,

have the buyer, if participating at s�k for k 2 f1; 2; : : : ; s� 1g, pay on participation
the amount

�kgB (s)

gB (s� k)

�
E
h
�s;t

�
~�
s�1
S;1

�
j~�s�k�1S;1 = �s�k�1S;1

i
� E

h
�s;t

�
~�
s�1
S;1

�
j~�s�kS;1 = �

s�k
S;1

i�
. (22)

Note that these payments are constructed to precisely "undo" the e¤ect on the seller�s

incentive to misreport of the payment �s;t
�
�s�1S;1

�
made by the buyer when participat-

ing at s � t.
By the law of iterated expectations, the expectation of the payment given in

(22), conditional on �s�k�1S;1 for the buyer in case arriving at s � k, is equal to zero.
Hence, the additional payments in (22) do not a¤ect the buyer�s expected payo¤

given that the seller truthfully reports his costs. Moreover, the payments in (22) are

independent of the buyer�s reported values, and do not a¤ect incentives to report these

truthfully. It follows that the modi�ed mechanism is E, PIC and PPC, and ensures

the buyer earns the smallest rents possible in an e¢ cient mechanism which subjects

any participant at t+ 1 or later to the original mechanism 
TEAM . Proceeding this

way, we inductively de�ne a public mechanism satisfying E, PIC and PPC, and such

that the buyer�s participation constraints are binding at each date t for the lowest

buyer value �B;t. It is then easy to see that the buyer�s expected payo¤s are as small

as possible in a public mechanism satisfying E, PIC and PPC.25

Finally, suppose we can show that the expected present value of the seller�s payo¤

25To see this, note that the above de�nes a mechanism which, when blind, satis�es E, BIC and
BPC, and is such that buyer participation constraints bind at �B;t for any possible participation
date t 2 N. Using that the buyer�s expected payo¤s from participating remain bounded across
participation dates t, and the payo¤ equivalence property of De�nition 1, the above blind mechanism
must imply the minimal buyer rents among all blind mechanisms satisfying E, BIC and BPC (in
particular, minimizing expected rents at each participation date t). But buyer expected rents cannot
be lower in a public mechanism satisfying E, PIC and PPC, which implies the result.
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at date 1, conditional on each �S;1 2 �S;1, is well-de�ned (so that the expected present
value of the buyer and seller�s combined payo¤s, conditional on �1, equal the expected

present value of surplus from e¢ cient trade). Then, using payo¤ equivalence to a

sequence of VCG mechanisms (with �xed participation fees paid by the buyer to

ensure participation constraints always bind at the lowest value), the seller�s date-1

expected payo¤when his initial cost is ��S;1 must equal �U1 � 0.26 Assuming the seller

may only participate at date 1 (so that his payo¤ from not participating at date 1 is

zero), the seller�s participation constraint is satis�ed.

It therefore remains to check that the seller�s payo¤ is well-de�ned (and hence

NPS is satis�ed), which is true if the expected present value of payments to the seller

is well-de�ned. First, note that a buyer who participates at date a makes payments

associated with the team mechanism which are uniformly bounded, and hence have a

date-a present value that is uniformly bounded across all realizations of uncertainty.

The expected present value of payments to the seller in the team mechanism are

therefore well-de�ned. If the buyer participates at date a, then he also makes a

date�a payment given the realization of seller costs �aS;1 equal to the amount

1X
t=a

�t�a

8>>>>>>>>><>>>>>>>>>:

E
h
V 


TEAM

B;t

�
�B;t;

~�S;t�1

�
� �V 
TEAMB;t+1

�
~�B;t+1; ~�S;t

�
j~�B;t = �B;t; ~�S;a�1 = �S;a�1

i

+GB(t)�GB(a)
gB(a)

0BBBBBB@
E

24 V 

TEAM

B;t

�
�B;t;

~�S;t�1

�
��V 
TEAMB;t+1

�
~�B;t+1; ~�S;t

� �� ~�B;t=�B;t;

~�S;a�1=�S;a�1
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TEAM

B;t

�
�B;t;
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�
��V 
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�
~�B;t+1; ~�S;t

� ��~�B;t=�B;t;
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We can then note that, because payo¤ types are uniformly bounded, and by de�nition

of the balanced team mechanism,

V 

TEAM

B;t

�
�B;t; �S;t�1

�
� �E

h
V 


TEAM

B;t+1

�
~�B;t+1; ~�S;t

�
j~�B;t = �B;t; ~�S;t�1 = �S;t�1

i
is uniformly bounded across all t and �S;t�1 2 �S;t�1. Hence, the expected present

value of the absolute value of all buyer payments (conditional on each �S;1 2 �S;1) is
�nite, and the expected present value of buyer payments is well-de�ned.

26Given Assumption 1, payo¤equivalence must be applied by considering these mechanisms played
blind. That is, we can consider payo¤ equivalence between the constructed mechanism, which is
BIC, E, and yields the lowest rents to buyers, and the aforementioned sequence of VCG mechanisms,
which has the same properties.
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Proof of Example 1. Follows from arguments in the main text.

Proof of Example 2. Consider the mechanism in which (i) no trade occurs and no

payments are made until one period or more after both agents have participated, and

(ii) after both agents have participated for at least one period, an AGV mechanism

is played, with the buyer receiving an additional amount from the seller on each

such date which ensures his ex-ante expected payo¤ from each AGV mechanism is

zero. After an agent has participated, he is bound to participate forever after. The

above mechanism is clearly E and BIC in the blind environment or PIC in the public

environment. While the buyer�s ex-ante expected payo¤ from each AGV mechanism

is zero, the seller�s expected payo¤ is zero conditional on the highest cost �� (i.e., the

seller�s ex-ante expected payo¤from each AGVmechanism is positive). It follows that

the buyer expects zero from participating in the mechanism (either if the mechanism

is blind, or if it is public then for any history of seller reports). The seller strictly

prefers to participate at the �rst opportunity (either if the mechanism is blind, or if

it is public then for any history of buyer reports).

Proof of Example 3. The expression for agent rents in (17) and (18) follow from

the same arguments as in Garrett (2016), and are explained in the main text. The

"relaxed program" for choosing the constrained-e¢ cient allocation then consists of

maximizing (16) subject to (19). The Lagrangian objective for this problem is

E

24 1X
t=maxf~�S ;~�Bg

�t�1
�
~�B;t � ~�S;t

�
xt

�
~�
t

B;�B
; ~�
t

S;�S

�35

+�

0BBBB@
E
hP1

t=maxf~�B ;~�Sg �
t�1
�
~�B;t � ~�S;t

�
xt

�
~�
t

B;~�B
; ~�
t

S;~�S

�i
�E

264 �~�B�1GB(~�B)gB(~�B)

1�FB(~�B;~�B)
fB(~�B;~�B)

x~�B

�
~�B;~�B ;

~�
~�B
S;~�S

�
+�~�S�1GS(~�S)

gS(~�S)

FS(~�S;~�S)
fS(~�S;~�S)

x~�S

�
~�
~�S
B;~�B

; ~�S;~�S

�
375

1CCCCA (23)

for a multiplier �. Permitting the allocation xt to take values in [0; 1] for all t, by

linearity, the optimization of (23) has a bang-bang solution for each � � 0 given

by (20). Given that (19) varies continuously in the allocation, and given that the

constraint (19) fails for the e¢ cient allocation rule (by Proposition 2, since the payo¤-

type supports overlap), there exists a unique value for the multiplier, �� > 0, such

that (19) holds with equality.
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The result in the example then follows if a public mechanism implementing (x�t )t�1
can be found satisfying PIC, PPC and EBS. The possibility to �nd a PIC mechanism

follows because the allocation (x�t )t�1 is monotone in agents� payo¤ types, which

follows from the monotonicity of 1�FB(�)
fB(�) and FS(�)

fS(�) . Transfers can then be adjusted

by �xed (type-independent) payments such that, if agent i participates for the �rst

time at date � i with i�s "worst" payo¤ type (�B for the buyer or ��S for the seller), he

expects the same payo¤ as from delaying participation by exactly one period (where

this expectation is calculated conditional on agent �i�s reports up to � i � 1). In

particular, this expected payo¤ is set to equal

X
t=�B+1

�t��BE

241� FB
�
~�B;t

�
fB

�
~�B;t

� x�t

�
~�B;t; ~�

t

S;~�S

�
j~��B�1S;~�S

= ��B�1S;~�S
; ~�B;t 6= ;

35
for the buyer participating at �B (when his value is �B and the seller has made reports

��B�1S;�S
up to �B � 1), and to

X
t=�S+1

�t��SE

24FS
�
~�S;t

�
fS

�
~�S;t

� x�t �~�tB;~�B ; ~�S;t� j~�~�S�1B;~�B
= ��S�1B;~�B

; ~�S;t 6= ;

35
for the seller participating at �S (when his cost is ��S and the buyer has made reports

��S�1B;~�B
up to �S � 1). The adjusted mechanism is then PIC and PPC and leads to

the smallest expected rents for the agents among mechanisms implementing (x�t )t�1
(whether among blind mechanisms satisfying BIC and BPC or public mechanisms

satisfying PIC and PPC). Expected agent rents are then given by (17) and (18), and

the constraint (19) is satis�ed with equality, meaning that constraint EBS is satis�ed.
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