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Abstract

We propose a new class of performance measures for Hedge Fund (HF) returns

based on a family of empirically identifiable stochastic discount factors (SDFs). The

SDF-based measures incorporate no-arbitrage pricing restrictions and naturally em-

bed information about higher-order mixed moments between HF and benchmark

factors returns. We provide a full asymptotic theory for our SDF estimators to test

for the statistical significance of each fund’s performance and for the relevance of

individual benchmark factors within each proposed measure. We apply our method-

ology to a panel of 4815 individual hedge funds. Our empirical analysis reveals that

fewer funds have a statistically significant positive alpha compared to the Jensen’s

alpha obtained by the traditional linear regression approach. Moreover, the funds’

rankings vary considerably between the two approaches. Performance also varies

between the members of our family because of a different fund exposure to higher-

order moments of the benchmark factors, highlighting the potential heterogeneity

across investors in evaluating performance.
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1 Introduction

Investment management and portfolio performance evaluation go hand in hand. Pro-

fessional portfolio managers propose services to investors in the form of funds. Pension

committees, endowments or retail investors need to assess whether the proposed funds

achieve a superior performance to the portfolios they could form given their available

information. Investors will seek funds that deliver a superior performance achieved with

dynamic strategies built on a refined information set.

To evaluate performance, investors rely mainly on a series of ratios (Sharpe, Infor-

mation, Sortino, Treynor, Omega to name the main ones) or on a Jensen’s alpha with

respect to a set of benchmark assets. In a seminal paper, Chen and Knez (1996) propose

a general framework for evaluating the performance of a managed portfolio with respect

to a set of benchmarks and specify a set of conditions for a performance measure to be

admissible. They introduce a class of positive admissible performance measures α(.) that

can be represented by a linear functional α(RHF
i ) = E[mRHF

i − 1], with m > 0 being

a strictly positive admissible SDF. These conditions exclude the Jensen’s alpha measure

but still accept a large set of positive admissible measures that guarantee no-arbitrage

when evaluating managed returns. However, their empirical analysis, focused in analyz-

ing a subset of mutual fund returns, concentrates only on two versions of the Hansen and

Jagannathan (1991) SDF, the unconstrained and the non-negatively constrained ones.

The performance measures implied by these two SDFs are both admissible but not al-

ways positive. Positivity (or not) of these measures directly depends on the particular

dataset of observed benchmark returns.

In this paper, we aim at finding a family of admissible positive measures that are

particularly suited to evaluate the performance of complex dynamic strategies such as

the ones proposed by hedge funds. Performance evaluation for such funds has been

mainly conducted with linear factor models that include the index returns of main asset

classes and the returns on derivative positions with respect to these benchmarks (Fung

and Hsieh (2001) and Agarwal and Naik (2004) are two prominent examples of such an

approach). This approach recognizes that hedge funds can short assets and use derivatives

to manage their portfolios, creating highly nonlinear payoffs. However, the performance

measure is not guaranteed to be positive, and positivity is fundamental to rank managed
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funds consistently. Moreover, the linear exposure to the derivative factor payoffs does

not capture the concave relations between the individual hedge fund strategy and the

derivative benchmark returns since the inherent strike positions of the latter usually

differ from the fund position1.

We provide a broad set of strictly positive SDFs, all sensitive to higher moments of

the joint distribution of the benchmark assets and each generating a positive admissible

performance measure. The performance is shown to depend on all the co-moments of the

benchmark returns with each hedge fund returns, generalizing the linear factor models

that include co-skewness (Harvey and Siddique, 2000) and co-kurtosis (Dittmar, 2002)

with the market returns.

We minimize general convex functions of stochastic discount factors (SDF) called

Minimum Discrepancy (MD) measures (Corcoran, 1998) in order to obtain a projected

nonlinear SDF that prices exactly a set of selected reference assets (Almeida and Garcia,

2017). A well-known example of such discrepancy measures is the Kullback-Leibler in-

formation criteria (KLIC) or entropy2. Our family of discrepancy functions offers other

information criteria that have different implications for assessing performance.

The solutions for the nonlinear SDFs are obtained through dual portfolio problems

that are easier to solve than the primal problems. This extends the duality between the

minimum-variance SDF and the quadratic portfolio problem in Hansen and Jagannathan

(1991). The first-order conditions for these portfolio optimization problems provide so-

lutions for the optimal weights of the chosen reference assets. We provide a complete

estimation and inference theory for these weights and the resulting performance alpha,

which measures the expected discounted value of the fund return under the nonlinear

SDF. Given the small number of returns often found in individual hedge fund returns,

we complement these asymptotic tests with bootstrap tests.

From an investor perspective, our measures will give more weight to positive returns

in states of nature where marginal utility is high (bad times), a feature that traditional

performance measures fail to capture (Kosowski, 2011). An important element is that

1de Roon and Karehnke (2017) construct a put-writing strategy as in (Jurek and Stafford, 2015)
and show that a linear regression of this put on the market-excess returns is unable to account for the
concave, nonlinear relation between the put and the index.

2Stutzer (1996) used the KLIC entropy measure to extract risk-neutral probabilities to price a set
of options. Bansal and Lehmann (1997), Backus et al. (2011) and Backus et al. (2014) adopted the
Empirical Likelihood entropy as a measure of dispersion to compare asset pricing models.
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each measure will put different weights on the states of nature and in this sense can be

assimilated to an investor with a particular attitude towards risk. However, our approach

differs from the utility-based evaluation of performance since it is nonparametric and

based on pricing exactly the benchmark risk factors. In this paper, we emphasize the

potential divergence between investors in evaluating a particular fund. This contrasts

with the usual performance evaluation with ratios or with the Jensen’s alpha where all

investors share the same criterion. However, we keep the same economic interpretation

of the alpha as the difference between an active portfolio and a passive one invested

in benchmark assets, except that the active portfolio is chosen with different nonlinear

objective functions.

The implementation of the performance measurement tests involves the selection of

the benchmark factors, also called reference or basis assets. We choose four sets of

reference assets that have been used in the literature on alpha measurement in hedge

funds. The most popular set is the ten-factor model from Fung and Hsieh (2001), where

risk factors including equities, bonds, credit, currencies, and commodities are considered

together with several trend following strategies. We also include in our analysis a nine-

factor model where we replace the Fung and Hsieh (2001) trend following strategies by the

options strategies from Agarwal and Naik (2004). The Carhart (1997) four-factor model

(the three Fama and French (1993) factors plus the momentum factor), and the CRSP

value-weighted market portfolio are added for comparison purposes and completeness.

We evaluate the performance of hedge funds reporting to the Lipper-Tass database.

It is well-known that commercial hedge fund databases suffer from severe biases (e.g.

Fung and Hsieh (2001), Aggarwal and Jorion (2010), Patton et al. (2015), Bollen and

Pool (2009) and Aiken et al. (2013) among several others). Traditionally, the literature

focuses on two primary sources of bias: survivorship and backfill (e.g. Fung and Hsieh

(2001) and Aggarwal and Jorion (2010) respectively). Recent articles have raised some

additional issues. Straumann (2009) notes that several commercial databases (including

the one we used in this paper) suffer from serious problems such as an alarming number of

hedge funds with excessive zero returns, consecutive equal returns, and repeated “blocks”

of returns3. To conduct our evaluation of performance, we apply the strictest filters that

have been put forward to eliminate patterns that could bias our findings.

3Bollen and Pool (2012) investigated these suspicious patterns in returns and showed that several of
them are indicative of a heightened risk of fraud.
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In our empirical analysis, we will contrast our approach with the Jensen’s alpha as

well as the Hansen and Jagannathan (1991) measure used in Chen and Knez (1996).

Our family of measures will be indexed by a parameter γ that will capture the curvature

of the functions optimized in our dual portfolio problems. A Taylor expansion of our

performance measure shows the intrinsic relationship between the fund’s performance and

its sensitivity to the higher-order mixed moments with respect to the benchmark assets.

In particular, depending on the value of γ more or less weight is given to, say, co-skewness

and co-kurtosis. For values close to one (Hansen and Jagannathan case) the weights

assigned to higher-order moments are negligible, as in the case of the Jensen’s alpha.

On the contrary, moving to the negative values (γ < 0), positive weights are assigned

to co-skewness (consistent with Kraus and Litzenberger (1976) skewness preference) and

negative weights are assigned to co-kurtosis (kurtosis aversion, Dittmar (2002)). In the

latter two papers, the co-skewness and co-kurtosis statistics are computed with respect

to the market returns, while our method is neither restricted to a single asset nor does it

rely on imprecise estimates of higher-order co-moments.

As we mentioned, we want to put forward how different investors (indexed by the pa-

rameter γ) will evaluate the performance of a fund. It raises the issue of how a particular

investor will know which γ will correspond to his own risk preferences. We provide in

Section 6.3.1.6 a possible procedure to be followed based on the current portfolio of the

investor. We also indicate how much of this hedge fund should be added to the current

portfolio.

Our analysis puts forward several important empirical findings. First, we consider

the statistical significance of the selected reference assets. A reassuring fact is that

all investors4 will want to hold a statistically significant positive share of the market,

regardless of the set of factors we consider. With the Carhart (1997) set of factors, both

the high-minus-low and the momentum factors are significant and all investors are long in

these two factors in the dual portfolio. When we consider the Fung and Hsieh (2001) set

of factors, the credit spread appears as an additional significant asset held positively in all

portfolios, while the only significant trend following strategy is to short the stock lookback

straddle. The results for the Agarwal and Naik (2004) model, where we switch the trend-

following factors for the option portfolios, are somewhat consistent. The weights assigned

4We use a slight abuse of language by assimilating an investor to a particular values of γ in our
family of measures.
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to the S&P 500 index returns increase substantially when the options are introduced in

the estimation of the dual portfolios, and remarkably all investors short out-of-the-money

puts and buy the at-the-money ones.

Next, we compute the alpha performance measures for the categories of strategies

used in the Lipper-Tass data base to group the individual hedge funds based on their

own reporting. The first conclusion is that the estimated Jensen’s alpha and Hansen-

Jagannathan alpha (based on a non-negative linear SDF that prices exactly the reference

assets) are practically identical for all categories of hedge funds. More notable differences

appear for the other values of the curvature parameter γ. For several categories such

as CTA, fixed-income arbitrage, global macro, managed futures and funds of funds, the

estimate for very negative values of γ is significantly lower than in the linear case5 These

important differences at the aggregate level of fund categories are indicative of a strong

heterogeneity in performance at the individual fund level. In terms of cross-sectional

distributions, the estimated alphas differ considerably between the γs and across the

sets of reference assets. We also show that the ranking of the funds differs considerably

between the Jensen’s alpha measure and our new proposed measures putting more weight

on bad states of the world (see Figure 10).

We have already connected our paper to several strands of the literature on per-

formance evaluation and on hedge-fund data biases. We conclude this introduction by

mentioning several papers on the performance evaluation of hedge funds and how we do

relate to them. Kosowski et al. (2007) use a robust bootstrap procedure to evaluate the

performance of hedge funds. The bootstrap ensures that the performance measure is not

produced by luck and accounts, together with the Bayesian estimation method, for the

short-sample problem inherent in hedge fund returns. We also double our asymptotic

tests with bootstrap tests that are robust when testing for the significance of the hedge

funds alphas. Capocci and Hubner (2004) investigate the performance of hedge funds us-

ing various asset pricing models, including the Carhart (1997) and the Agarwal and Naik

(2004) models. We include these sets of factors in our analysis and extend their linear

specification to our family of nonlinear positive SDFs. Hubner et al. (2015) put forward

the key roles of US equity skewness and kurtosis in the hedge fund return generating

process. We show that the cross-section of hedge fund alphas indeed strongly depends on

5We refer here to the results based on the Agarwal and Naik benchmark assets (see Table A11).
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the co-skewness and co-kurtosis with the market returns. Goetzmann et al. (2007) char-

acterize manipulation-proof performance measures showing that, in general, they should

be similar to a power utility function averaged across time. Billio et al. (2013) extend

their work proposing utility-based measures that consider moments up to the fourth-order

to measure performance. Our nonparametric approach also provides manipulation-proof

performance measures, does not depend on specifying utility models, and endogenously

captures all moments of the joint distribution of the benchmark factors.

Our paper is also intimately related to the SDF performance measurement literature

(e.g. Beja (1971))6. More specifically, Farnsworth et al. (2002), Ferson and Mo (2016) and

Li et al. (2016) propose several SDF-based performance measures. As already mentioned,

our approach extends the traditional linear SDF approach in Hansen and Jagannathan

(1991) by providing a continuum of positive measures with different degrees of non-

linearities. As in Ferson and Mo (2016), investors with different attitudes towards risk

evaluate performance differently. However, our non-parametric SDFs have zero pricing

errors with respect to the benchmark assets.

The rest of the paper is organized as follows. In Section 2, we describe the theoret-

ical properties of our performance measures while section 3 offers an interpretation and

comparison of these measures with previously proposed alpha estimators. Section 4 de-

scribes our estimation method and the asymptotic properties of our estimators. Section

5 gives a detailed account of the data set and the multiple filters we apply to the data to

construct reliable measures of performance. Section 6 contains all our empirical findings.

First, we describe the estimated measures for the various sets of reference assets. Then

we report the performance measures and their asymptotic and bootstrap t-statistics both

for aggregate categories of funds and individual funds. Section 7 concludes. For space

considerations, we have placed all theorem and lemma proofs as well as many tables and

figures (with numbers preceded by an A) in an online Appendix.

2 A Family of Nonparametric Performance Measures

Let us first define the probabilistic and economic environments in which we are going

to analyze the performance of hedge fund investments. Let (Ω,F , P ) denote a probability

6For a careful review of this literature see Ferson (2013).
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space, where Ω is the set of states of nature, F a sigma-field on Ω, and P a probability

measure. Let RK = {R1, R2, ..., RK} represent a set of square-integrable benchmark

returns, i.e, for ∀i Ri ∈ L2(Ω), with L2(Ω) = {X : Ω → R : E(X2) < ∞}7. Denote by

Ss = {R ∈ L2(Ω) : ∃ s ∈ S, θ(s) ∈ RK s.t.
∑

k∈K θk(s) = 1 and
∑

k∈K θk(s)Rk = R}

the set of all achievable managed returns, where S denotes the collection of all private

signals available to investment managers, i.e. random variables containing information

about the benchmark assets that can be used to generate a rich set of trading strategies.

Note that for each private signal s, θ(s) is a normalized random vector representing a

trading strategy that is a function of s. We denote by Sp the set of investments available

to the general public. Sp is the subset of Ss where θ(s) does not depend on s, meaning that

the general public does not have access to private signals. In this context, a manager’s

non-null performance is achieved via exploring the private nature of signals to generate

complex payoffs that do not lie on the span of the publicly available investments Sp.

Throughout the paper, α : Ss → < will denote a generic performance measurement, RHF
i

the return of an individual hedge fund i, Rk the return of the kth benchmark portfolio,

with k ∈ {1, 2, ..., K}, and R = (R1, R2, ..., RK)′ the vector of benchmark returns.

In a seminal paper, Chen and Knez (1996) introduce an important class of positive

admissible performance measures. They prove that each of these measures α(.) can

be represented by a linear functional α(RHF
i ) = E[mRHF

i − 1], with m > 0 being a

strictly positive admissible SDF8. Each of these performance measures satisfies a set

of fundamental conditions that guarantees consistency in ranking any set of managed

returns. First, and most importantly, if a managed return, RHF
i , lies in the affine hull

of the set of basis assets RK (i.e., RHF
i ∈ Sp), then it should receive zero performance,

α(RHF
i ) = 0. In other words, passive portfolio management leads to zero performance.

In addition, positive admissible performance measures are: linear functions of returns,

such that no return rearranging by a manager can improve performance (α(β1R
HF
i +

β2R
HF
j ) = β1α(RHF

i )+β2α(RHF
j )); continuous in the sense that managed returns that are

similar should receive a similar performance value; nontrivial, i.e., it is not the case that

7Benchmark returns could be returns associated with indexes of stocks, bonds, credit securities,
currencies, as well as returns on options based on these indexes. See Fung and Hsieh (2001) and Agarwal
and Naik (2004) for concrete examples of sets of benchmarks adopted in the hedge fund performance
literature.

8An admissible SDF is a random variable m that prices all benchmark assets: E[mRk] = 1, Rk ∈ RK .
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α(RHF
i ) = 0 for all RHF

i ∈ Ss; and strictly positive, i.e. α(RHF
i ) > 0 whenever RHF

i > 0.9

Strict positivity is a fundamental condition to guarantee ranking consistency in the sense

that if a managed return RHF
1 dominates a managed return RHF

2 (RHF
1 > RHF

2 ), then

α(RHF
1 ) > α(RHF

2 )10.

Assuming a structure of arbitrage-free incomplete markets where there exists an infin-

ity of SDFs, Chen and Knez (1996) provide theoretical foundations for positive admissible

performance measures as well as some methodological guidance for future development

of such measures. Nonetheless, in empirical applications they fail to exhibit positive ad-

missible measures. Their empirical analysis, focused in analyzing a subset of mutual fund

returns, concentrates only on two versions of the Hansen and Jagannathan SDF, the un-

constrained and the non-negatively constrained ones. The performance measures implied

by these two SDFs are both admissible but not always positive. Positivity (or not) of

these measures directly depends on the particular dataset of observed benchmark returns.

In fact, depending on the realized history of benchmark returns, the non-negatively con-

strained implied SDF could achieve zeros in some states of nature, while the unconstrained

HJ SDF would achieve negative values in the corresponding states.

Figure 5 exhibits the non-negatively constrained HJ SDF implied by two typical sets

of benchmark factors, one adopted by Fung and Hsieh (2001) (left bottom) and the other

by Agarwal and Naik (2004) (right bottom). Note that for both datasets of benchmark

factors the constrained HJ SDF achieves zeros in respectively five and two states out of

a total of 250 states. This implies that, if we were analyzing hedge funds’ performance

based on the usual datasets of benchmark factors, both HJ performance measures could

potentially rank managed returns inconsistently. Moreover, since the performance mea-

sure implied by the unconstrained Hansen and Jagannathan SDF is equivalent to the APT

multi-factor version of the Jensen’s alpha (Chen and Knez, 1996) adopted in the hedge

fund literature, the Jensen’s alpha itself would also potentially rank managed returns

inconsistently. Therefore, it is important to propose alternative admissible measures to

analyze hedge fund performance.

The examples above make clear that the most significant challenge is to search for

9R > 0 means that R is non-negative and P (R > 0) > 0.
10It should be clear that Chen and Knez (1996) also define and analyze admissible performance

measures that can be represented by α(RHFi ) = E[mRHFi − 1], with m being any admissible SDF, not
necessarily positive. We are not particularly interested in those measures since they do not provide a
consistent ranking of funds.
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ways to identify strictly positive admissible SDFs (m) extracted from empirical data on

benchmark assets. Our main contribution is to propose a methodology to identify such

a family of strictly positive SDFs. We provide a broad set of strictly positive SDFs, all

sensitive to higher moments of the joint distribution of the benchmark assets and each

generating a positive admissible performance measure.

We now formally introduce our family of performance measures. We are looking for

admissible risk-adjustment weights, also known as stochastic discount factors, that make

the average weighted excess returns on the factors equal to zero:11

E[m (R− 1K)] = 0K . (1)

where 0K is a K-dimensional vector of zeros and R the K-dimensional vector of benchmark

returns.

In an incomplete market setting12 where the law of one price is satisfied, there are

many such weighting functions (see (Cochrane, 2001)). Therefore, we need to restrict

the set of such admissible SDFs. Hansen and Jagannathan (1991) find an admissible

linear SDF with minimum variance, obtained by minimizing a quadratic function in the

space of admissible SDFs. Instead, assuming absence of arbitrage on the market defined

by the benchmark assets (primitive risk-factors)13, we consider a convex discrepancy

function φ and we search for a Minimum Discrepancy (MD) SDF that solves the following

minimization problem in the more restricted space of admissible strictly positive SDFs:

mMD = arg min
m

E[φ(m)],

subject to E[m (R− 1K)] = 0K , E[m] = 1,m > 0.

(2)

In this optimization problem, conditions E[m (R− 1K)] = 0K and E[m] = 1 must

11We fix the SDF mean to one without loss of generality. If the SDF mean is not equal to one, the
bounds are easily obtained with Equation (1) taking the following form: E[m (R−RF 1K)] = 0K , where
RF represents the risk-free rate.

12Going from the population to the sample problem, we have a T ×K panel of benchmark data. In
this context, market incompleteness emerges in any one-period model where the number of states T is
higher than the number of benchmark assets K. Since typically the number of benchmark factors does
not exceed 15 while the minimum size of a time series of hedge fund returns analyzed in the literature is
of 24 monthly observations, the problem of identifying an admissible SDF is usually set in an incomplete
market environment.

13Absence of arbitrage on the market defined by the primitive risk-factors guarantees the existence of
at least one admissible SDF that is strictly positive (see (Cochrane, 2001)).
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be obeyed by any admissible SDF m with mean 1. In addition, we explicitly impose

a positivity constraint to guarantee that the implied MD SDF will generate a positive

admissible performance measure.14

The sample version of the problem above is:

m̂MD = arg min
{m1,...mT }

1
T

∑T
t=1 φ(mt),

subject to 1
T

∑T
t=1 mt (Rt − 1K) = 0K ,

1
T

∑T
t=1mt = 1,mt > 0 ∀t,

(3)

where Rt represents the realization of the vector of benchmark returns at time t.

The minimization, on its sample version, is based on the space of discrete strictly

positive SDFs with dimension T , which can become impractical. Moreover, the corre-

sponding problem in the population space (see Equation (2)) is an infinite dimensional

optimization problem in the space of risk neutral probability measures. Building on Bor-

wein and Lewis (1991), Almeida and Garcia (2017) show how the minimization problem

in (2), and its corresponding sample version, can be solved in a generally much smaller

finite-dimensional space of dimension K by using the following dual problem:

λ∗ = arg sup
α∈<,λ∈Λ

α− E[φ∗,+ (α + λ′ (R− 1K))], (4)

whose corresponding sample version is given by:

λ̂ = arg sup
α∈<,λ∈Λ

α−
T∑
t=1

1

T
φ∗,+ (α + λ′ (Rt − 1K)) , (5)

where Λ ⊆ <K and φ∗,+ denotes the convex conjugate of φ restricted to the positive real

line:

φ∗+(z) = sup
w>0

zw − φ(w). (6)

Note that any convex discrepancy function can be chosen to arrive at empirical esti-

mates of these minimum discrepancy SDFs. Following Almeida and Garcia (2017), we

14As shown by Almeida and Garcia (2017) and later in this section, the existence (or not) of a strictly
positive solution to the MD problem will directly depend on the φ function chosen.
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adopt the Cressie-Read (1984) family of discrepancies defined as:

φγ(m) =
(m)γ+1 − 1

γ(γ + 1)
, γ ∈ <, (7)

where each fixed value of γ implies one specific discrepancy function. Almeida and Garcia

(2017) show how to solve the dual problem and recover the admissible SDF from the

optimization problem above. Here we synthesize their results in Corollary 1, which will

be needed for us to develop the full asymptotic framework for our performance measures.

Corollary 1. Suppose we are interested in solving the minimization problem (2). Let

φ(m) be as in (7), and assume that there is no-arbitrage in the economy, such that

there exists at least one strictly positive admissible SDF15. Let Λ(R) = {λ ∈ RK :

(1 + γλ′(R− 1K)) > 0}. Then, the dual problem (4) specializes to:

(i) if γ > 0:

λ∗ = arg sup
λ∈RK

E

[
− 1

γ + 1
(1 + γλ′(R− 1K))

γ+1
γ IΛ(R)(λ)

]
(8)

where IA(x) = 1 if x ∈ A and 0 otherwise;

(ii) if γ < 0:

λ∗ = arg sup
λ∈RK

E

[
− 1

γ + 1
(1 + γλ′(R− 1K))

γ+1
γ − δ(λ|Λ(R))

]
(9)

where δ(x|A) = 0 if x ∈ A and +∞ otherwise;

(iii) if γ = 0, the following unconstrained problem:

λ∗ = arg sup
λ∈RK

E [exp (λ′(R− 1K))] . (10)

Note that by solving the corresponding sample version of (8), (9) or (10) in Corollary

1, for each choice of γ we obtain a distinct set of estimates for λ (λ̂γ) that will lead

to a different MD SDF (m̂γ). The MD SDF m̂γ is recovered by solving the first-order

conditions of the problem and is known in closed form.

15To ease the notation we specify Almeida and Garcia (2017) corollary for the case where the SDF
mean equals one.
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Corollary 2. Let λ̂γ be the solution of the sample version of either (8), (9) or (10) in

Corollary 1. Then, the corresponding MD implied SDF will be given by:

(i) if γ > 0:

m̂γ
t =

(
1 + γλ̂′γ (Rt − 1K)

) 1
γ
IΛ(Rt)(λ̂γ); (11)

(ii) if γ < 0:

m̂γ
t =

(
1 + γλ̂′γ (Rt − 1K)

) 1
γ

; (12)

(iii) if γ = 0:

m̂γ
t = exp

(
λ̂′0(Rt − 1K)

)
, (13)

for t = 1, 2, ..., T .

Since we search the Lagrange multipliers λ in Λ(R) = {λ ∈ RK : (1+γλ′(R−1)) > 0},

for any γ < 0 the implied MD SDF in (12) will be strictly positive. Moreover, for γ = 0

the implied MD SDF is exponential, hence strictly positive too. Therefore, considering

these two cases, we have already provided an infinite family of strictly positive SDFs

(indexed by the continuous parameter γ ≤ 0) that can be directly obtained from the time

series of a set of benchmark returns by solving the dual problems in Corollary 1. Given

each of these SDFs, a positive admissible performance measure is given by setting:

αγ(RHF
i ) = E[mγRHF

i − 1], (14)

whose sample version is:

αγ(RHF
i ) =

1

T

T∑
t=1

[mγ
tR

HF
it − 1]. (15)

Now, when γ > 0, a case that includes the Hansen and Jagannathan SDF with non-

negativity constraint, we note that due to the indicator function IΛ(Rt)(λ̂γ) that appears

within solution (11), the implied MD SDF will achieve zeros in all the states of nature

13



where (1 + γλ̂′γ(R− 1)) ≤ 0. As shown in Figure 5, typical benchmark datasets adopted

to analyze hedge fund performance make the implied SDF for γ = 1 (i.e, non-negatively

constrained HJ SDF) to have zeros in some states. Therefore, for implied MD SDFs

with γ > 0, we can only guarantee to generate non-negative admissible performance

measures. For some data sets these measures will be strictly positive, but not always. In

the empirical section we analyze two performance measures in this sub-class of positive

γ’s, namely the cases with γ = 0.5 and γ = 1.

We have underlined the fact that there might exist multiple SDFs that correctly

price the K benchmark assets chosen to evaluate performance. Moreover, in the inherent

incomplete-market setting that we described, the SDF might be investor dependent. That

is, even though each investor prices the benchmark (traded) assets equally, the internal

pricing structure might vary across investors (see Mas-Colell et al. (1995) for a formal

treatment). In the hedge fund performance framework this means that if the hedge fund

returns RHF
i are not spanned by the benchmark assets in the economy each investor

might have a different fund valuation. In particular, let mγ be the SDF that corresponds

to a particular investor with parameter γ. For this investor, the hedge fund performance

is measured as αγi (R
HF
i ) = E[mγRHF

i − 1].

Note that, as mentioned before, if RHF
i ∈ Sp, i.e. the hedge fund return is accessible

to the general public trough an affine combination of the benchmark assets’ returns, we

have that αγi (R
HF
i ) = 0 ∀γ ∈ <. This is true since by construction any admissible SDF

correctly prices all the benchmark assets and their corresponding affine combinations.

Nonetheless, hedge funds might achieve superior information by making use of a private

signal s ∈ S. This information can be used to construct state-dependent strategies such

that RHF
i is not spanned by the benchmark assets. In this case, αγ(RHF

i ) 6= 0, and

performance values will vary according to each investor (γ), precisely as when we price

unspanned payoffs (for instance, derivatives) in incomplete markets.

3 Interpretation and Comparison of our Performance

Measures

In this section, we characterize the theoretical properties of the alphas obtained with

various members of the Cressie Read family of SDFs and compare them with other
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available performance measures. We proceed with a Taylor expansion that links the

performance measure with the higher-order mixed moments between the hedge fund

return and the return of the optimal portfolio that solves the optimization on Corollary

1.

3.1 Linking our Performance Measures with Higher-Order Mo-

ments

For a fixed γ indexing the Cressie Read family of discrepancies, suppose that we solved

the dual optimization problem on Corollary 1. Let R̃ = R − 1K , denote the vector of

excess returns of benchmark assets over the risk-free rate RF , here assumed to be constant

and equal to 1. Let also W = −λ′γR̃ represent the excess return of the optimal portfolio

that solves the optimization on Corollary 1. Note that the specific problem (Equation

(8), (9), or (10)) is determined by the value of γ16.

Now, given the implied MD SDF mγ and the hedge fund return RHF
i , we define the

auxiliary function gγm,i, which gives the risk-neutralized hedge fund return:

gγm,i(λ
′
γR̃) = (1 + γλ′γR̃)1/γRHF

i (16)

To see how the alpha performance α(RHF
i ) (in Equation 14) will vary with the pa-

rameter γ and the co-moments of the benchmark returns with the hedge fund returns, we

Taylor expand gγm,i(λ
′
γR̃) around E[W ], the expected excess return of the implied optimal

portfolio. Expanding gγm,i(.) and taking expectations we obtain:

E[gγm,i(λ
′
γR̃)] = E[gγm,i(E[λ′γR̃])]

− (1− γE[W ])
1−γ
γ E[RHF

i (W − E[W ])]

+
1

2
(1− γ)(1− γE[W ])

1−2γ
γ E[RHF

i (W − E[W ])2]

− 1

6
(1− γ)(1− 2γ)(1− γE[W ])

1−3γ
γ E[RHF

i (W − E[W ])3] + . . .

(17)

The above expansion reveals several noteworthy features. First, the alpha of a fund

16Almeida and Garcia (2012) and Almeida and Garcia (2017) showed how to link our nonparametric
approach with the portfolio problem of an optimizing agent with HARA utility function. A key feature
of our analysis here is that the portfolio holdings of the agent are proportional to −λ.
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is shown to explicitly depend on the relationship between its return and the higher-order

mixed moments with the benchmark assets obtained via the optimal portfolio return W .

In particular, the expansion indicates that the alpha is naturally linked to the co-skewness

and co-kurtosis between the fund returns and the optimal portfolio return W = −λ′γR̃.

Ever since Kraus and Litzenberger (1976) a significant strand of the finance literature

focused on understanding the implications of higher-order moments for asset pricing.

In particular, Kimball (1993), and Dittmar (2002), among others, link investors’ utility

with their preferences for skewness and kurtosis. The all-important paper by Harvey and

Siddique (2000) analyzes empirically the implications of systematic skewness and kurtosis

for asset pricing17. In the hedge fund literature, Ranaldo and Favre (2003) show that

higher-order moments are relevant for characterizing the returns of some funds on top of

the market returns. In a related work, Billio et al. (2013) propose a new performance

measure that takes into account the hedge fund skewness and kurtosis.

In contrast to this literature, our performance measure embeds information from all

higher-order mixed moments with respect to the benchmark assets. In particular, two

features are worth highlighting. First, our performance measure naturally embeds infor-

mation about higher-order risks without estimating the risks themselves. This is a key

feature since we avoid two main statistical problems – introducing too many parameters

and facing the imprecise estimation of higher-order moments. Second, our measure con-

tains information about higher-order risks related to a meaningful portfolio: the linear

portfolio formed using all relevant benchmark assets. Note that the typical Harvey and

Siddique (2000) approach becomes rapidly unfeasible in the hedge fund context since too

many co-skewness and co-kurtosis statistics will have to be estimated for the numerous

risk factors used to characterize returns18.

Further exploring each of the terms multiplying the mixed moments in (17) and noting

that E[gm,i(E[λ′γR̃])] can be rewritten as (1 + γE[λ′γR̃])
1
γE[RHF

i ], we conclude that the

hedge fund alpha is linearly related to its average return and that this average is re-scaled

by the SDF evaluated at (minus) the mean value of the endogenous portfolio return. From

the Jensen’s inequality applied to the function (·)
1
γ , we note that for all γ < 1 (convex

17A number of papers further investigated the properties of skewness, kurtosis, and tail events in
different settings (e.g. Chang et al. (2013) focus on market skewness and the cross-section of stock
returns).

18In the empirical section we replicate Ranaldo and Favre (2003) results and further discuss issues
related to the linear approach of Harvey and Siddique (2000) in the hedge fund performance setting.
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function), 1 = E[m] ≥ (1+γE[λ′γR̃])
1
γ , which in turn implies that the hedge fund average

E[RHF
i ] is pinned down in the alpha computation. The opposite effect happens for γ > 1.

The linearity of the Hansen-Jagannathan SDF implies that the corresponding weight is

exactly equal to one when γ = 1.

Looking at the weights assigned to the higher-order mixed moments, we note that

they are linked both to the Cressie-Read parameter γ as well as to the optimal λγ.

From the SDF estimation, we have that 1 + γλ′γR̃ is nonnegative. This implies that,

1 + γE[λ′γR̃] ≡ 1 − γE[W ] is also non-negative. Therefore, the signs of the weights

are determined only by γ. In particular, γ > 1 (γ < 1) implies a negative (positive)

weight for co-skewness. As usual, when γ = 1 the estimator reduces to the Hansen and

Jagannathan case, and all higher-order mixed moments are disregarded. Furthermore,

the signs associated with weights on co-kurtosis are provided by a deterministic quadratic

term on γ. Therefore, except for the region where γ ∈ [0.5, 1] the weights on co-kurtosis

are all negative.

To give an idea of the behavior of these weights under the different settings we adopt

in the paper, Figure 1 plots the estimated weights for five different sets of basis assets:

(i) the CRSP value-weighted market portfolio, (ii) the Carhart (1997) four-factor model,

(iii) the Fung and Hsieh (2001) underlying factors (the five factors that generate the

trend-following strategies), (iv) the Fung and Hsieh (2001) ten factor model, and (v) the

five underlying factors from Fung and Hsieh with the addition of the option portfolios

fromAgarwal and Naik (2004)19. The figure is based on the full sample for the underlying

factors (January 1994 to June 2015) and a grid of γ = {−4,−3.5, . . . , 4} with 0.5 incre-

ments. It contains four panels, each indicating the weights for the hedge-fund average

return, covariance, co-skewness, and co-kurtosis respectively.

Starting with the weights on the hedge-fund average return, Figure 1 exemplifies the

effects of Jensen’s inequality. Note that for all γs different from 1 we have a significant

difference in weights depending on the benchmark factors. Figure 2 shows that the biggest

differences in weights are explained by the differences in the expected excess return of

the endogenous portfolio (E[−λ′γR̃]) as a function of the different benchmark factors.

In particular, the introduction of the trend-following or option factors generates a much

higher variation of E[−λ′γR̃] as a function of γ than when only linear benchmark factors

19The specific factors in each model are defined in section 5.2.
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are adopted. Correspondingly in Figure 1, we note that when γ < 1 the introduction

of the trend-following or option factors significantly reduces the weights on the average

hedge fund return. In aggregate, this reduction can be as high as 15%. Additionally,

the plot is steepest between −2 < γ < 1, revealing that the biggest effects of the non-

linearities occur in this region. The same analysis holds when γ > 1. However, in this

case, the Jensen’s inequality works the other way around: the alphas are increased in

comparison with the average hedge fund return.

The relationship between the hedge-fund alpha and the covariance with the basis

assets is also interesting. Here we note that, across all values of γ, the weights assigned

to this moment are monotonic. In particular, for all negative values this weight is higher

than minus one and somewhat stable across different sets of basis assets. The picture

changes radically for positive values: in this case, the introduction of the trend following

or option factors significantly amplifies the weights.

Finally, the weights on co-skewness and co-kurtosis behave as expected: (i) both are

zero for the Hansen and Jagannathan case, (ii) for co-skewness (co-kurtosis) they are a

decreasing (parabolic) function, and (iii) introducing the trend-following or option factors

significantly distorts these weights for all values of γ, with a higher effect for values greater

than 1. More importantly, for γ ≤ 0 the signs of the weights agree with theory: investors

like skewness and dislike kurtosis.

3.2 A Comparison with the Hansen-Jagannathan Estimator

Chen and Knez (1996) propose an empirical application relying on the Hansen and

Jagannathan (1991) stochastic discount factor to evaluate mutual fund performance.

In this section, we illustrate empirically the differences between the Cressie-Read risk

neutralization and that implied by Hansen and Jagannathan (1991) estimator. We tailor

our examples to illustrate the effects of higher-order moments on both the stochastic

discount factor estimation and the performance measurement.

We borrow from Almeida et al. (2017) and replicate their analysis using the full

sample of Fung and Hsieh (2001) factors to estimate the Cressie-Read implied SDFs.

Figure 3 plots the estimated risk neutral densities for three values of γ, −3.5,−0.5, 1.

The value γ = 1 collapses to the Hansen and Jagannathan estimator and γ = −0.5 is

the Hellinger estimator. We also select γ = −3.5 because this estimator gives substantial
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weight to skewness and kurtosis as seen in the Taylor expansion. Overall, the results in

this picture are quite instructive: while the Hansen and Jagannathan estimator is linear

in the returns both the Hellinger measure and γ = −3.5 generate non-trivial hyperbolic

nonlinearities20. Additionally, the risk neutral density for the negative gammas puts

significant more weight on adverse outcomes of the portfolio. This property translates to

an important feature when measuring performance: for negative values of gamma, hedge

funds performance can be significantly increased (penalized) if the fund generates returns

that are positively (negatively) correlated with the SDF.

We now address the effect on the non-linearities implied by the different Cressie-Read

estimators on the hedge fund alphas. For simplicity, we consider a model where the

only benchmark factor is the market return RM (CAPM), simulated from a Student-t

distribution. We simulate two hedge fund returns RHF
i , i = 1, 2, from two different dis-

tributions (Normal and Student-t), but we maintain the same mean E(RHF ), variance

var(RHF ) and covariance cov(RHF , RM) with the market return for both funds. There-

fore, by construction, each hedge fund is assigned the same OLS alpha E(RHF − RF )−
cov(RHF ,RM )
var(RM )

E(RM − RF ), where RF = 1 is the risk-free rate. Therefore, it is quite clear

that the linear model is not able to capture the higher-order moments of the hedge fund

distributions. As long as the correlation structure between the two hedge fund returns

and the factor in the model remains equal, the estimated alphas for the hedge funds are

identical21.

We apply the nonparametric methodology of the previous sections to the simulated

data for a grid of γs from [−5, 3] with 0.5 increments. The point-wise estimated alphas

and the bootstrapped confidence intervals (discussed further in section 4.4) are plotted

in Figure 4. The solid line and the dashed line feature the point-wise alphas when hedge

fund returns follow a normal and a Student-t distribution respectively. The alpha esti-

mates for negative values of gamma differ substantially between the two hedge funds. For

extreme negative values of γ the higher-order moments from the Student-t distribution of

the market return play a significant role. Indeed, one can see how the difference becomes

larger as we move towards more negative values of γ illustrating the difference in risk

20Note that when we refer to returns, we mean the endogenous portfolio returns, i.e., −λ′γR̃.
21Note that, even in more general linear factor models, if the correlation structure between the two

hedge funds and the underlying factors is the same then they should have identical alphas (assuming
here that the hedge funds have the same mean and standard deviation).
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compensation across SDFs. As expected, when γ = 1, the Hansen and Jagannathan

case, both hedge funds are assigned the same performance since the measure only takes

into account the first and second moments of the benchmark factor (RM) and linear in-

teractions between RM and RHF
i to calculate the alpha of each hedge fund. It is clear

that the large differences across alphas given by different Cressie Read performance mea-

sures come from the higher-order properties of the Student-t distribution of the market

return and from co-moments of this distribution with the hedge fund simulated returns

as observed in section 3.1.

The benchmark alpha for evaluating fund performance remains the Jensen’s alpha

obtained by an OLS regression of a fund’s returns on the risk factors. The constrained

Hansen-Jagannathan estimator will only differ from the OLS one for some particular sets

of benchmark factors where in some states of nature, negative SDF values are set to

zero. As it will be clear in the empirical section, even in these cases it turns out that the

contribution of the E[mγ=1εi] is small.

4 Estimation and Tests of the Performance Measures

Our measures are based on the computation of the Lagrange multipliers λγ associated

with the dual optimization problem in Corollary 1. In this section, we develop a consistent

estimator for these parameters and derive its asymptotic distribution. We then infer the

distribution of the implied performance measures αγi in (15) based on the SDFs defined

in Corollary 2 and computed with the estimated λ̂γ. Particular emphasis is given to

deriving the asymptotic variance of αγ to test whether the performance is significantly

different from zero.

4.1 Definitions

In order to derive the estimator of the Lagrange multipliers λ̂T
22 and its asymptotic

properties, we need to define functions that will enter in the objective function to be

maximized (20), as well as their first and second derivatives. For each fixed γ in the

family of Cressie-Read discrepancies, let us define the following functions:

22For clarity of expressions in this section we drop in λγ the subscript γ denoting a specific member
of the Cressie Read family and sometimes include the subscript T denoting the sample size.
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fγ(λ, R̃) =
(1 + γλ′R̃)

γ+1
γ

γ + 1
(18)

Mγ(λ, R̃) = E[fγ(λ, R̃)] (19)

with its sample version, Mγ
T (λ,R) :

Mγ
T (λ, R̃) =

T∑
t=1

1

T

[
(1 + γλ′R̃t)

γ+1
γ

γ + 1

]
(20)

To prove the asymptotic normality of the estimator we will need the Hessian and the

Fisher Information matrices that we denote by Hλλ(λ, R̃) and Sλ(λ, R̃) respectively.

The first derivative of fγ(λ,R) is given by:

hγ(λ, R̃) =
∂

∂λ′
fγ(λ, R̃)

= (1 + γλ′R̃)
1
γ R̃,

(21)

from which we can calculate the score vector:

UT (λ, R̃) =
∂Mγ

T (λ, R̃)

∂λ′
=

1

T

T∑
t=1

hγ(λ, R̃t)

=
1

T

T∑
t=1

(1 + γλ′R̃t)
1
γ R̃t

(22)

The expectation of the cross-product of the score vector by its transpose provides the

Fisher information matrix Sλ:

Sλ = E
(
UT (λ, R̃)UT (λ, R̃)′

)
(23)

The Hessian matrix Hλλ is given by:

Hλλ =
∂2Mγ(λ, R̃)

∂λ′∂λ′

= E
(

(1 + γλ′R̃)
1−γ
γ R̃R̃

′)
,

(24)

and its corresponding sample version Hλλ,T by:
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Hλλ,T =
∂2Mγ

T (λ, R̃)

∂λ′∂λ′

=
1

T

T∑
t=1

(1 + γλ′R̃t)
1−γ
γ R̃tR̃

′
t

(25)

We are also interested in characterizing the estimators when the SDF achieves zeros

in some states of nature, which may be the case for any member in the Cressie Read

family with parameter γ > 0. To that end, Let fγ+(λ, R̃) denote the following restricted

version of fγ(λ, R̃):

fγ+(λ, R̃) =

[
(1 + γλ′R̃)

γ+1
γ

γ + 1

]
I{1+γλ′R̃≥0} (26)

We also define a restricted version of Mγ(λ, R̃):

Mγ+(λ, R̃) = E[fγ+(λ, R̃)] (27)

and its corresponding sample version given by:

Mγ+
T (λ, R̃) =

T∑
t=1

1

T

{[
(1 + γλ′R̃t)

γ+1
γ

γ + 1

]
I{1+γλ′R̃t≥0}

}
(28)

Finally, let H+
λλ(λ, R̃) and S+

λ (λ, R̃) denote restricted versions of the Hessian and

Fisher Information matrices, and H+
λλ,T the corresponding sample version of H+

λλ(λ, R̃).

4.2 Estimator of the Lagrange Multiplier Vector and its Asymp-

totic Properties

Almeida and Garcia (2012) use Cressie-Read discrepancies to estimate parametric

models under the assumption of misspecification. Their procedure comprised the joint

estimation of the parameters of the models and of the Lagrange multipliers associated

with the dual problem. They proved the consistency of the estimator for the whole

parameter vector and derived its asymptotic distribution. Our problem is simpler since

we have to estimate only the Lagrange multiplier vector. Therefore we simplify their

approach to address the more specific estimation problem.

First we need to state two assumptions in order to establish the convergence in prob-

ability of our estimator (Theorem 1) and derive its asymptotic distribution (Theorem
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2).

Assumption 1. We assume that λ∗ is the unique solution to the following problem:

λ∗ = argmin
λ∈RK

Mγ(λ, R̃) (29)

Assumption 1 guarantees that the problem is well specified. This hypothesis parallels

Assumption (1.A) in Newey and Smith (2004). Under the assumption that E[R̃R̃
T

] is

non-singular, the Hessian of −Mγ is non-singular and negative definite. Thus, −Mγ is

strictly concave in λ. This, coupled with the fact that λ ∈ RK , is sufficient to guarantee

the uniqueness of λ∗23.

Using the notation defined in the previous section, the sample version of the dual

parameters λ̂T can be estimated as follows:

λ̂T = argmin
λ∈RK

Mγ
T (λ, R̃) (30)

Assumption 2.

(A) The process R̃t is stationary and ergodic.

(B) The process R̃t is strongly mixing with mixing coefficients αt satisfying
∑∞

t=1 α
1−1/b
n <

∞ and b > 1.

(C) E[R̃R̃
T

] is non-singular.

(D) V ar
(√

T
[
∂
∂λ
Mγ

T (λ∗, R̃)
])
→p Sλ > 0 when T →∞.

(E) Mγ(λ, R̃) <∞ for all vectors λ in a neighborhood of λ∗.

(F) Hλλ is of full rank, and for any λ ∈ RK , almost surely continuous as a function of

R̃.

Assumptions (A) and (B) guarantee that the basis assets returns are well-behaved.

In particular assumption (B) ensures that, given “sufficient time” between groups of

sequential observations of R̃t, these groups are independent. Assumption (C) guarantees

the absence of multicollinearity. Assumptions (D) to (F) are based on Kitamura and

23We focus on the case E[m] = 1, which is the one considered in our empirical applications. All the
results generalize to the case where E[m] = a, a ∈ R.
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Stutzer (1997) and allow us to apply a weak version of the law of large numbers and the

Central Limit theorem (CLT). In particular, (D) guarantees that the variance in the CLT

is well-defined (covariance stationarity condition), (E) can be relaxed with additional

algebraic costs (see comments in Kitamura and Stutzer (1997)). (F) allows us to prove

the asymptotic convergence of H−1
λλ,T to H−1

λλ by relying on the Continuous Mapping

Theorem.

Theorem 1. Under Assumption 2, λ̂T converges in probability to λ∗.

The proof of this theorem is available in Almeida and Garcia (2012) and relies on an

application of Theorem 2.7 of Newey and McFadden (1994).

Theorem 2. Under Assumption 2 we have that:

√
T (λ̂T − λ∗)→d N(0, Vλ) (31)

where Vλ is given by H−1
λλ SλH

−1
λλ .

See proof in the Appendix.

4.3 Imposing The Non-Negativity Constraint on the SDF

From Almeida and Garcia (2017) we know that imposing non-negativity restrictions

has different implications depending on three regions for the parameter γ that indexes

the Cressie-Read family: (i) γ > 0. (ii) γ < 0 and (iii) γ = 0 (see Corollary 1).

Starting with γ = 0, we have an unconstrained maximization problem. This comes

directly from the fact that when γ = 0 the Cressie-Read family converges to the expo-

nential tilting case, which is positive by construction. Thus, in this particular case, the

consistency of the estimator as well as the asymptotic normality follow directly from the

results in the previous section.

The second case is when γ < 0. In this region for γ, the optimization function

for λ is modified to be able to restrict the SDF to be strictly positive. Corollary 1

reveals that this restriction introduces a δ set-indicator function that takes value zero if

(1+γλ′R̃) > 0 and∞ otherwise. To prove consistency and asymptotic normality we must

guarantee the stability of the objective function near the solution. Here it is sufficient that

Mγ(λ, R̃) <∞ for all vectors λ in a neighborhood of λ∗. Note that this is exactly what
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is stated in Assumption 2 (E)24. Since there is an open neighborhood Γ̃(λ∗, ε̃) around λ∗

where δ(x|A) = 0, asymptotically the central arguments of the previous section hold25.

Finally, when γ > 0 we lose the point-wise differentiability of the objective function.

The objective function is affected by an indicator function for the set (1+γλ′R̃) ≥ 0, which

introduces a “kink” when the equality holds. Below we modify the previous framework

to allow us to still prove the asymptotic properties. For the consistency result the main

problem is to establish the validity of condition (iv) in Newey and McFadden (1994)’s

theorem. The basic idea for the normality convergence is to find an approximation

different from the Taylor expansion that holds even when we lose differentiability. To

that end, we extend results provided by Li et al. (2010) on the non-negatively constrained

Hansen and Jagannathan estimator to deal with the whole positive side of the Cressie-

Read family indexed by γ > 0. In the Appendix, we provide the corresponding modified

assumptions, denoted by Assumption 3, needed to prove consistency and asymptotic

normality of the Lagrange multipliers on the γ > 0 case.

Theorem 3. Under Assumption 3, λ̂T converges in probability to λ∗.

See proof in the Appendix.

For asymptotic normality, we need two lemmas stated below and proved in the Ap-

pendix. In what follows, let ET (X) = 1
T

∑T
t=1 Xt represent the empirical sample average

of a random variable.

Lemma 1. If Assumption 3 holds, we can write the following relation:

ET [fγ+(λ, R̃)] = E[fγ+(λ∗, R̃)] + (ET − E)[fγ+(λ∗, R̃)] + S̃+′

λ (λ− λ∗)

+
1

2
(λ− λ∗)′H+

λλ(λ− λ
∗) + o(‖λ− λ∗‖) + op(‖λ− λ∗‖T−1/2),

(32)

where S̃+
λ = (ET − E)

[
∂fγ+(λ,R̃)

∂λ

]
and H+

λλ = E
[
∂2fγ+(λ,R̃)

∂λ∂λ′

]
.

Lemma 2. If Assumption 3 holds, the following asymptotic approximation is valid:

24When Mγ(·, R̃) is a continuous function of the Lagrange Multipliers, which is the case with the
Cressie Read family, this condition is automatically satisfied.

25From an implementation viewpoint, within the sphere Γ̃(λ∗, ε̃) we can evaluate the objective function
by dropping the delta term.
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max
λ∈RK

ET [fγ+(λ, R̃)] = E[fγ+(λ, R̃)] + (ET − E)[fγ+(λ, R̃)]

− 1

2
S̃+′

λ H
+
λλS̃

+
λ + op(T

−1),

(33)

where S̃+
λ and H+

λλ were defined in Lemma 1.

Now, using these two lemmas, we can establish asymptotic normality of the estimator

λ̂T .

Theorem 4. If Assumption 3 holds, λ̂T has the following asymptotic distribution:

√
T (λ̂T − λ∗)→d N(0, Vλ) (34)

where Vλ is given by (H+
λλ)
−1S+

λ (H+
λλ)
−1.

See proof in the Appendix.

4.4 Alpha Performance Estimation and Testing

A fundamental question in fund performance evaluation is to determine whether the

performance measure α of a given fund is significantly different from zero. In the linear

APT/Jensen framework this is accomplished with a simple Student-t test. In our context,

given an estimated SDF mγ and a hedge fund return time series {RHF
it }t=1,...T , we estimate

its performance by simply calculating αγi ≡ αγ(RHF
i , λ̂γ) = 1

T

∑T
t=1[mγ

tR
HF
it − 1)]. The

question becomes: how to test whether αγi = 0? One simple way to proceed is to define

the following statistic (Chen and Knez, 1996):

HT = TwT (αγi )
2 (35)

where wT is the inverse of the variance of αγi . Additionally, note that we explicitly write

αγi as dependent on the first-step estimate λ̂γ of λ∗. Therefore wT should account for

the uncertainty attached to the estimates of the vector of parameters λ∗. Rewriting the

sample estimate of αγi taking into account the SDF estimation we have that:

(i) If γ > 0:

αγi =
1

T

T∑
t=1

[(
1 + γλ̂′γ (Rt − 1K)

) 1
γ
IΛ(Rt)(λ̂γ)R

HF
i,t − 1

]
(36)
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(ii) If γ < 0:

αγi =
1

T

T∑
t=1

[(
1 + γλ̂′γ (Rt − 1K)

) 1
γ
RHF
i,t − 1

]
(37)

(iii) If γ = 0:

αγi =
1

T

T∑
t=1

[
exp

(
λ̂′0(Rt − 1K)

)
RHF
i,t − 1

]
(38)

Using the above representation of the Cressie-Read performance measures, we observe

the explicit dependence of αγi on {R, RHF
i , λ̂γ}. Hence, by applying the delta method we

can compute the variance wT as follows:

(wT )−1 ≡ V ar(αγi ) =
∂αγi
∂λ

′

V ar(λ)
∂αγi
∂λ

(39)

where:

∂αγi
∂λ

=
1

T

T∑
t=1

∂mγ
t

∂λ
RHF
it (40)

and,

(i)
∂mγt
∂λ

= (Rt − 1K)
(

1 + γλ̂′γ (Rt − 1K)
) 1−γ

γ
IΛ(Rt)(λ̂γ), if γ > 0,

(ii)
∂mγt
∂λ

= (Rt − 1K)
(

1 + γλ̂′γ (Rt − 1K)
) 1−γ

γ
, if γ < 0,

(iii)
∂mγt
∂λ

= (Rt − 1K) exp
(
λ̂′0(Rt − 1K)

)
, If γ = 0.

Under the null of zero alpha, HT converges asymptotically to a χ2 distribution with

one degree of freedom.

Despite our asymptotic results, when using hedge fund data, it is essential to account

for the limited number of return observations typically available for a particular hedge

fund. Therefore, we also rely on bootstrap to address the small sample issue. We apply a

nonparametric bootstrap resampling technique (pairs bootstrap) where both the returns

of the benchmark assets and the individual hedge fund are resampled together to compute

the bootstrapped standard errors, following the methodology described in MacKinnon

(2006). Given that most hedge fund time series do not share the same sample period

27



we perform the bootstrap on a fund-by-fund basis. While this is costly in terms of

computational time, our sample characteristics significantly restrict other methods (joint

resampling of the full panel for instance). In the online appendix, we provide a detailed

comparison between the asymptotic and the bootstrapped t-statistics and provide some

results on the power of the asymptotic tests.

Instead of deriving the limiting distribution of the multipliers and of the alphas point-

wise in γ, it would be interesting to see for what region of γ the null of α(γ) = 0 is rejected

and for what is not26. In the online appendix we detail how to derive the limiting distri-

bution of the α(γ) as an empirical process over γ ∈ ΓS ⊂ Γ.

5 Hedge Fund Data and Filters

It is well-known in the finance literature that commercial hedge fund databases suffer

from severe biases (see Fung and Hsieh (2001), Aggarwal and Jorion (2010), Patton et al.

(2015), Bollen and Pool (2009) and Aiken et al. (2013) among others). Over the years,

researchers have applied stricter filters as it became obvious that some reporting issues

were severely biasing the performance results. Even though we use the Lipper-TASS

data set from Thomson Reuters, the problems we identified are in line with the former

literature.

Traditionally, the literature focused on two primary sources of bias: survivorship

and backfill (e.g. Fung and Hsieh (2001) and Aggarwal and Jorion (2010) respectively).

Given the lack of regulation, fund managers not only can choose when to report their

returns but also to which commercial database to report it. Fund managers also have the

discretion to change previously reported returns (Patton et al., 2015). All these issues

are carefully investigated in previous papers. Several conclusions can be drawn. The

consensus consists of using data post-1994 when most commercial databases started to

include defunct funds. This potentially alleviates the survivorship bias. To deal with

the backfill bias two possibilities are proposed: to exclude the first twelve months (or 24

months) of returns for all funds (e.g. Bali et al. (2011)) or, as proposed by Aggarwal and

Jorion (2010), to detect back-fillers according to the difference between the hedge fund

inception date and the data it started to report to TASS (or any data provider).

26We thank an associate editor for this suggestion.
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In addition to the usual biases addressed in the literature, there is a growing effort to

improve data quality in empirical applications. This is reflected in the number of papers

investigating data biases and data problems in commercial databases (e.g. Patton et al.

(2015) and Bollen and Pool (2009)). Despite this effort, recent articles raised additional

concerns. Straumann (2009) found several problematic idiosyncrasies in many databases

(including the one used in this paper). Specifically, the author found an alarming num-

ber of hedge funds with excessive zero returns, consecutive equal returns, and repeated

“blocks” of returns. Building on this, Bollen and Pool (2012) investigated these data

problems further and showed that several of them are indicative of future sanctions from

the Security Exchange Commission (SEC).

In our online appendix, we carefully describe the filters we apply to the original data

and explore the implications of the corrected data biases for performance measurement.

Following and expanding Straumann (2009), we consider seven filters (in addition to

the traditional ones): (1) funds with an abnormal number of zero returns; (2) funds

with repeated blocks of returns (e.g. repetitions of the block A,B,C with A,B,C ∈ R);

(3) funds with an unusual amount of repeated returns (e.g. A, A, A); (4) funds whose

returns calculated from reported net asset values (NAVs) do not coincide with reported

net returns; (5) funds with rounded returns; (6) funds that do not report assets under

management; (7) funds that share blocks of returns in the time series (e.g. two funds

share the same returns for, say, Jan - 2000 to Dec - 2000).

5.1 Summary Statistics for the Final Sample of Hedge Funds

Table 1 provides descriptive statistics for the whole set of selected hedge funds for

each year from 1994 to 2015. We report the number of hedge funds in the sample at

the beginning of the year, the number of entrants, the number of funds dissolved as well

as the number of hedge funds at year-end and their total assets under management (in

billions of dollars). Using all active hedge funds within a given year, we construct an

equally-weighted portfolio and compute its mean, median, standard deviation as well as

minimum and maximum returns27. Notably the number of hedge funds peaked around

2007 and fell sharply after the financial crisis. The same pattern applies to the assets

27Given the high number of hedge funds that do not declare their assets under management on a
consistent basis an AUM-weighted portfolio is impractical.
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under management. In fact, by the end of 2014, the AUM figure was less than half its peak

level observed in 2007. Overall, the mean and median returns are positive throughout

the sample. The exceptions are, as expected, 2008 and 2011, two crisis years where a

large number of hedge funds were dissolved.

Table 2 complements this analysis with information regarding the cross-section of

hedge funds. Here we present the average return across funds, the average assets un-

der management, fund age, management fee and performance fee. In contrast with the

equally-weighted index, we note that the mean is lower for the individual hedge funds

(0.57 versus a historical mean of 0.67 for the equally-weighted index). The same goes for

the individual standard deviation. Nonetheless, the minimum (maximum) returns are

significantly lower (higher) than those reported for the historical data appearing in Table

1. The fund age reveals an important piece of information for our empirical application:

the median fund has only 71 months of observable returns. Therefore, dealing with small

sample sizes is a first-order problem for inference. The median management and perfor-

mance fees are close to the industry 2/20 standard. Finally, we note that the median

hedge fund manages about 30 million dollars. When compared with the mean value of

130 million dollars this fact reveals that a small number of funds manage most of the

money. Overall our descriptive statistics are very close to Bali et al. (2011) who use a

similar data set.

We construct eleven indexes based on the primary strategy reported by each hedge

fund: Convertible Arbitrage, CTA, Emerging Markets, Equity Market Neutral, Event

Driven, Fixed Income Arbitrage, Funds of Funds, Global Macro, Long-Short Equity

Hedge, Managed Futures and Multi-Strategy. The summary statistics for these indexes

are presented in Table 3. Overall, we note a significant difference in the average return

across categories. While equity neutral hedge funds have an average return of 0.60%

per month, long-short funds produce a monthly average return of about 0.93%. The

difference in standard deviation is even higher, ranging from 0.88 for the market-neutral

index to 4.21 for the emerging market one. Consistent with previous papers we also docu-

ment a negative skewness for most of the primary-strategy groups (similarly to Kosowski

et al. (2007)). Regarding kurtosis, all the groups we analyze have distributions that are

leptokurtic.

A significant portion of our paper focuses on the higher-order properties of hedge fund
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returns and their implications for performance measurement. Table 4 reports summary

statistics (mean, standard deviation, skewness and kurtosis) for the cross-section of hedge

funds segregated by their self-declared primary strategy. Overall, we note a significant

difference in terms of average return across categories. While equity neutral hedge funds

have an average return of 0.44% per month, long-short funds produce an average of about

0.76%. Standard deviations are in general higher than for the indexes, and the difference

in standard deviation across strategies ranges from 2.61 to 6.12. In addition, similarly

to the indexes case, we also document negative skewness and leptokurtic distributions

for most of the primary-strategy groups. The magnitudes of the higher-order moments

change substantially with respect to the corresponding statistics of the indexes in Table

3. Thus, our empirical analysis focuses both on individual and index-level performance

measurement.

5.2 Summary Statistics for the Factors

In this paper, we stress two sources of nonlinearities and their implications for per-

formance measurement: the individual or index hedge fund returns and the benchmark

factor returns. Previous studies on hedge fund returns have typically used both linear

and nonlinear factors. To this end, we include the linear factors of Carhart (1997) and

two sets of factors explicitly designed to capture non-linear hedge fund strategies. First,

we adopt the workhorse model of Fung and Hsieh (2001). The updated model consists

of ten factors (see Fung’s website). Five of these factors are based on primitive trend

following strategies for bonds (PTFSBD), currencies (PTFSFX), commodities (PTFS-

COM), interest rate (PTFSIR) and stocks (PTFSSTK). The complementary factors are

the underlying portfolios used to construct the trend-following ones: the monthly returns

on the S&P 500, the spread between the Russell 2000 index total monthly returns and

the S&P 500 total monthly returns, the monthly total returns on the MSCI Emerging

Markets index, the change in constant maturity yield 10-year Treasury bonds, and the

change in the spread between Moody’s Baa and the 10-year Treasury28 29.

28The underlying data are acquired trough Datastream using the “RI” code, from the Federal Board
of Governors H15 forms and from St. Louis FRED dataset.

29An anonymous referee suggested to replace the changes in Treasury yields and corporate spreads by
total returns on a Treasuries index and High Yield corporate index. We re-estimated the Fung an Hsieh
SDF with these new factors for the Hedge Fund indexes and reported the results in Tables A20 and A21
in the online appendix.
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Agarwal and Naik (2004) propose a new set of nonlinear factors constructed using

option prices. We follow the authors and construct four portfolios of at and out of the

money put and calls using raw data from Option Metrics. In our empirical applications

with the option portfolios, we also add the same linear factors from Fung and Hsieh

(2001)30.

In Table 5 we report the summary statistics for all of the above-mentioned factors.

Overall, the sample properties are fairly close to the original factors of Carhart (1997),

Fung and Hsieh (2001), and Agarwal and Naik (2004). The statistics about primary

equity and size risk factors are without surprise - a mean close to 10% for the S&P

500 index and a spread of about 4% with the Russell index. The bond and the credit

factors exhibit much lower means (between -2% and 4%). Most indexes exhibit little

skewness and excess kurtosis. This is also the case for the Carhart (1997) factors. The

picture is radically different for the trend-following factors constructed by Fung and

Hsieh (2001). Means are sizable and typically negative. Additionally, the volatilities

are substantially higher than those of the underlying factors. The picture for the option

factors is even stronger: all means are extremely negative with substantial standard

deviations. Common to both option and trend-following factors is the high skewness of

the returns. In contrast, on average, the kurtosis is lower for these factors than for the

underlying. The only exception is the interest rate trend-following strategy, which has

an extremely high kurtosis.

6 Empirical Findings

In this section we apply the nonparametric measures defined in the previous sections

to evaluate the performance of hedge fund indexes and individual hedge funds over the

1994 to 2015 period. We first apply the estimation and testing methodologies developed in

Section 4 to identify the factors that are significant for evaluating performance depending

on investors’ preferences (proxied by our gamma parameter in the Cressie-Read family

of measures). We then proceed to assess alpha performance based on the estimated

SDFs. We test the hypothesis that the alphas are different from zero and measure their

30The SAS code to generate these factors is available upon request. Note that a version of the code
is available through WRDS. This version does not take into account recent changes in the expiration
schedule (see CBOE website).
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heterogeneity across sets of benchmark factors and strategies reported by the hedge funds.

We pay particular attention to the performance contribution of the nonlinear exposures

of hedge funds to risks. In particular we compare the effect of adding linearly higher-

order moments of factor returns, as it is usually done, to our nonparametric approach

that accounts functionally for the exposure to higher moments.

6.1 SDF Estimation Results

We compute the stochastic discount factor for different sets of basis assets (factors) and

a range of values for γs. We use linear models that are workhorse models in the empirical

finance literature (CAPM and Carhart four-factor models) and the two benchmark models

in the hedge fund literature, Fung and Hsieh (2001) and Agarwal and Naik (2004), that

include several asset classes and options as factors. For the Cressie-Read gammas, we

consider the following γ values: {−3.5, −2,−1,−0.5, 0, 0.5, 1}. This set includes the HJ

linear SDF with non-negativity constraint (γ = 1), a set of SDFs that give mild weights

to skewness and kurtosis (γ = −1,−0.5, 0, 0.5), and two SDFs that give larger absolute

weights to skewness and kurtosis (γ = −2 and − 3.5). This range of γ values is quite

representative of the Cressie-Read family and generates substantial variability in both

the estimated SDF as well as the hedge fund alphas. In particular, for γ << −3.5, the

implied SDF concentrates most of the probability density on a few states of nature. On the

contrary, for values of γ >> 1 the implied SDF assigns zero probabilities for several states

of nature in order to correctly price the basis assets. Both these features are uninteresting

for performance measurement, and thus we are comforted in the representativeness of

investors’ weighting of risks by the chosen γ values.

For the full-sample estimation results, from January 1994 to June 2015, we discuss

the estimated λs and the time-series dynamics of the estimated SDFs. The sign of the

lambdas indicates the position of the portfolio in the corresponding factors. Given the

presence of a negative sign in the optimization problem in Corollary 1 a negative sign

for lambda indicates a long position and vice versa. For space considerations, we include

the estimation results in the main text only for the Agarwal and Naik model (in Table

6), which includes four options portfolios on the S&P 500 along with the five indices

described earlier. The portfolio with the highest λ is precisely the S&P 500 (the one with

the highest mean), but all other underlying assets are insignificant or only marginally
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significant across all γs. For the options portfolios, the positions in the put options

are particularly striking. Across all γs the investor shorts out-of-the-money puts and

hedges out the position by buying at-the-money ones. This is consistent with the typical

results that selling insurance is profitable on average. In addition, the λs associated with

more negative γs are smaller in magnitude, which indicates that more risk averse agents

reduce their exposure to this strategy given the possibility of rare disastrous outcomes.

We should mention that the asymptotic and bootstrap t-statistics are close to each other

and concur on the significance of the factors.

The results for the three other sets of factors are reported in the online Appendix.

The results for the CAPM and Carhart models are reported in Tables A6 and A7. For

both specifications, the market portfolio emerges as a statistically significant factor with

a positive load. Second, the addition of the long-short portfolios, in the Carhart model,

slightly increases the absolute value assigned to the market portfolio across all γs. In

addition, the momentum portfolio also appears as a long and statistically significant

factor. The estimated λs for the Fung and Hsieh model are reported in Table A8. First,

two of the five underlying portfolios, i.e. the S&P 500 and the credit spread, are held

long and are statistically significant31. For the trend following strategies, only the S&P

500 lookback straddle appears statistically significant.

Our methodology to estimate the SDF is based on pricing exactly the risk factors. We

include in the aforementioned four tables the pricing error associated with each bench-

mark factor. The pricing errors are zero for most gamma values and benchmark factors.

For γ = 0.5, we observe very small pricing errors of the order of 0.05 basis points for

five factors (three trend following, bond and emerging markets index in the Fung Hsieh

dataset), and 0.1 basis points for the OTM CALL factor in the Agarwal and Naik (2004)

dataset. For both γ = 0 and γ = −3.5 we observe pricing errors of less than 0.1 basis

point for only one benchmark each (respectively market and size spread) out of 19 bench-

mark factors. Therefore a zero alpha performance for a fund will rightfully be indicative

of a static exposure to the factors.

In Figure 5, we plot the time series of the estimated SDFs for three selected values

of γ (1, 0 and -3.5) and for the four sets of basis assets. It appears clearly that the

SDFs without trend-following and options factors are much less volatile across all γs.

31Market is statistically significant for both asymptotic and bootstrap t-statistics while credit spread
only for the asymptotic t-statistics.
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Within the same set of basis assets, SDFs obtained with more negative gammas exhibit

a higher volatility. The SDFs with trend following and options portfolios also feature

large peaks at times of financial market stress (1998, 2002, 2006 and during the recent

financial crisis). The events are also visible in the SDFs without these portfolios but with

much less amplitude. Note finally the zero values assigned to some states of nature in

the Hansen and Jagannathan SDF (most notably in the figure for the Fung and Hsieh

set of factors).

6.2 Analyzing Hedge Fund Indexes

Hedge fund indexes are constructed according to the primary strategy reported by

individual hedge funds. Although pooling hedge fund returns hide some significant het-

erogeneity among the funds, we gain in two dimensions. First, the hedge fund indexes

allow us to construct portfolios with observed returns for the whole available sample.

This is in clear contrast with the median 71 observations for the individual hedge funds.

Second, by pooling the data, we are better able to contrast the performance across com-

binations of γ and benchmark assets since aggregate results are easier to present and

interpret.

6.2.1 Alpha Performance

For each hedge fund index, we calculate the full sample alpha as well as the associated

asymptotic and bootstrapped t-statistics. For completeness, we compare our estimates

to the Jensen’s alpha, the standard to evaluate fund performance32.

We focus mainly on the Fung and Hsieh set of factors because it contains the most

diverse exposures both in terms of asset indices and option-like trend-following factors.

We report the results in Table 7). Except for the convertible arbitrage index, all estimates

for the Jensen’s alpha are positive and statistically significant33, but the Cressie-Read

alphas offer a different picture. For example, for the CTA and the Managed Futures

indexes, we note a regular increase in the point-wise alpha as γ becomes more negative.

The funds in this category invest in financial and commodity futures markets and currency

32For the Jensen’s alpha, the bootstrapped t-statistics are calculated using the residual bootstrap
proposed by Kosowski et al. (2006).

33The OLS R2s, not reported in the table, increase substantially with the introduction of the Fung
and Hsieh non-linear factors in comparison to the CAPM model (54% versus 30%).
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markets around the world. A large proportion are trend followers (buy in an up market

and sell in a down market). This indicates that these funds provide investors with positive

returns in bad times, when their marginal utility is high. The same pattern is present for

convertible arbitrage but the magnitude of the alpha difference is not as marked.

The emerging markets category provides an excellent example of how non-linearities

introduced by the Cressie-Read estimates might alter the investors’ evaluation of perfor-

mance. The Jensen’s alpha obtained with the Fung and Hsieh factors is positive, sta-

tistically significant. However, the Cressie-Read estimates decrease as γ becomes more

negative and are not significantly different from zero. For most other categories the al-

phas are relative uniform across all values of γ and their statistical significance is also

similar according to both asymptotic and bootstrap t-statistics.

We report the alpha point estimates and their t-statistics for the CAPM, Carhart and

Agarwal and Naik models in Tables A9, A10 and A11 of the online appendix, respectively.

The first two sets of factors are missing the options exposures and the last one misses

options factors related to fixed income, commodities, and currencies. Because of this, the

results show a higher heterogeneity in performance and statistical significance across the

various values of γ34. For several strategies, we observe patterns that are very different

from those generated by the Fung and Hsieh factors. CTA and Managed Futures are

increasing with γ, since the options factors are only related to the S&P 500. The alpha

for the Funds of Funds category is reduced by half for the three sets of factors with respect

to the Fung and Hsieh factors and is not statistically different from zero according to the

bootstrap statistics. This is also the case for Global Macro for the Agarwal and Naik

set of factors. The variation between sets of factors is also interesting for the Long-short

equity hedge. Since the long-short strategies can be based on value, growth, or size, the

Carhart set is the only one that shows that this strategy can provide positive returns in

bad times since the alpha is higher for more negative values of γ.

To sum up, it is clear that the choice of benchmark factors matters crucially for evalu-

ating hedge fund performance. The heterogeneity in performance evaluation is enhanced

by the Cressie-Read measures with respect to the two linear measures. However, impos-

ing non-negativity in the Hansen and Jagannathan measure does not change performance

much compared to the Jensen’s alpha. These findings illustrate that the nonlinear ex-

34Note that the non-negatively constrained Hansen and Jagannathan and the OLS alphas are ex-
tremely close to each other.
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posures in the hedge funds strategies are evaluated differently by investors with different

attitudes towards asymmetry or tail risks.

In our analysis of the performance of hedge fund indexes, we have reported the results

for each index and for selected values of γ. We compare the magnitude and the sign of

the difference in alpha between the linear Jensen’s alpha and the nonlinear Cressie-Read

alpha. We observe that for some strategies, the performances concur for all values of

γ, while for others the negative values of γ change the sign or increase or decrease the

alpha substantially with respect to the Jensen’s alpha. If we were interested in testing

whether the alpha performance of a gamma-measure was superior to the Jensen’s alpha

considered as a benchmark, then the reality check proposed by White (2000) would allow

us to evaluate the distribution of the alpha performance measure by giving consideration

to the full set of strategies that led to the best-performing measure35.

In the next section, we add a comparison between an extended linear approach by

which higher moments of a portfolio returns are added to the alpha regression to capture

co-skewness and co-kurtosis to our nonlinear SDF approach.

6.2.2 Implications of Higher-Order Moments and SDF Non-Linearities

To analyze how the non-linearities affect the alpha estimates, we choose a simple

CAPM factor model36. We proceed by adding polynomial terms to the market factor in

the linear regression, as follows37:

R̃HF
i,t = αi + βi,RM (RM,t −RF,t) +

P∑
p=1

βi,p(RM,t −RF,t)
p+1 + εi,t. (41)

R̃HF
i,t denotes the excess return for fund i and RM,t − RF,t the return of the market

35The test will be based on the difference between Dγ = αγ − αJ , where αJ stands for the Jensen’s
alpha. For each hedge fund strategy, we will test the hypothesis H0 : V = max

γ∈Γs

Dγ ≤ 0, where Γs =

[−3.5,−2,−1,−0.5, 0, 0.5, 1]. We will compute the statistic V with the data and Vi, i = 1, . . . , B, over
B boostrap samples. The bootstrap method will be the nonparametric bootstrap resampling technique
(pairs bootstrap) where both the returns of the benchmark assets and the individual hedge fund are
resampled together to compute the statistic Vi. We compare V to the quantiles of Vi to obtain White’s
reality check p-value for the null hypothesis.

36In the hedge fund performance measurement literature, the typical approach relies on multiple fac-
tors, often the Fung and Hsieh 10 factors. Introducing polynomial terms with these more elaborate
models is unfeasible. In contrast, as seen in our Taylor expansion, our methodology provides a parsi-
monious higher-order exposure to an optimally chosen linear combination of all factors in the model.
Therefore, the number of factors is not a problem in our approach.

37This is similar to Agarwal et al. (2008), who investigate if higher moments of equity risk explain
hedge fund returns.
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portfolio in excess of the risk-free rate. The addition of polynomial terms is similar to the

models proposed by Harvey and Siddique (2000) for co-skewness and Ang et al. (2006)

for co-kurtosis38. We want to contrast the performance evaluation based on this linear

addition of non-linear terms to the performance implied by our SDF approach where the

non-linearities are weighted differently by diverse investors.

Table 8 puts forward the similarities and differences between the two approaches. It is

informative to compare the fourth-order linear model, which incorporates all higher-order

moments up to the fourth power, to the −3.5 value for γ in our nonparametric approach.

The two corresponding alphas are similar, positive and significantly different from zero for

strategies that are immune from market risk, Equity market neutral, Long-short equity

hedge, Event driven and Multi-strategy. In fact for these categories all specifications give

about the same performance assessment. It means that the strategies are market risk

neutral to many moments (see Patton (2009)). The two measures also agree in attributing

zero performance to the Convertible arbitrage and Funds of funds categories, in contrast

to all the other measures that do not penalize the high kurtosis associated with these

strategies.

The differences between the two measures are also striking. For CTA, Global Macro

and Managed Futures, the fourth-order specification attributes a zero-performance while

the −3.5 gamma estimates a positive and significant alpha. The latter measure likes the

positive skewness and the low kurtosis of these strategies. In contrast, introducing the

power terms in the linear regression reduces to zero the positive performance implied

by the CAPM. Finally for the Emerging markets, the Cressie-Read measure inverts the

positive alpha estimated with the fourth-order specification and puts it to a value of zero

both numerically and statistically.

A significant difference between the two approaches is that, for all indexes, we note a

monotonic relationship between the alphas and gammas in the SDF approach. It is not

the case for the polynomial approach. Moreover, the introduction of the polynomial terms

in the linear framework suppresses the typical “excess return” interpretation of the OLS

alpha. Our stochastic discount factor methodology naturally embeds different degrees of

nonlinearities and preserves the interpretation of the alphas as the risk-adjusted hedge

fund return. Furthermore, cross-correlation terms are already taken into account in the

38Ranaldo and Favre (2003) incorporate these higher-order moments to evaluate the performance of
hedge funds and show that they are relevant for some funds.
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λ’s estimation, allowing us to expand significantly the number of benchmarks used to

capture the nonlinearities in assessing performance.

6.3 Analyzing Individual Hedge Funds

To obtain the alpha of each hedge fund, we need to use a computationally-intensive

method. We need to match the sample period where the fund was alive to estimate the

SDF from the benchmark factors. If we were to estimate the SDF for the full sample,

we would use information that might not have been available during the period the fund

existed. Also, considering a sub-sample of an admissible SDF estimated with the full

sample will not be an admissible SDF anymore because it will not price exactly the

factors.

6.3.1 Individual Hedge Fund Performance

To capture the richness of results for individual alphas, we provide summary statistics,

draw kernel densities of alphas and their t-statistics, test for the difference of performance

between the linear and nonlinear estimators, compare fund rankings across estimators and

analyze investors’ divergence about fund performance.

6.3.1.1 Summary statistics Table 9 presents, for all four sets of basis assets and

all gamma values, the mean, standard deviation, skewness, kurtosis and the percentage

of alphas that are positive and statistically significant at the 10% level, based on boot-

strapped t-statistics. Similarly to hedge fund indexes, the average alpha estimate for the

CAPM model is quite similar across γs. However, across all performance measures, the

alpha estimates are larger for the two sets with nonlinear factors. Note also the difference

in the percentage of statistically significant alphas, from 22% for the linear/OLS measure

to 11% for γ = −3.5 in the Fung and Hsieh set of factors. Finally, the Agarwal and Naik

model increases substantially the variance of the cross-sectional alphas. The inclusion of

option strategies in the factor model generates alpha distributions with positive skewness

and higher kurtosis. Nonetheless, the percentages of significant alphas are similar to that

of the Fung and Hsieh model.

39



6.3.1.2 Comparisons of Cross-sectional Alpha Distributions between Estima-

tors In Table 10, we report a number of quantiles of the cross-sectional distributions

of all fund alphas for two sets of factors (Carhart and Agarwal and Naik) and the set of

positive and negative gamma values. The patterns for the two sets of factors are similar

but the distribution for the set including options returns is more widespread. Quantita-

tively the alphas for the 1%, 90% and 99% show significant differences between the two

sets. The mean spread, averaged across the values of gamma, is about 35 basis points

per month at the 1th percentile, 20 basis points per month at the 90th percentile and

100 basis points per month for the 99th percentile. Ignoring the use of options severely

underestimates the alphas of the top funds and overestimates those of the bottom funds.

To further illustrate the differences between the distributions, Figure 6 presents the

estimated kernel density of the difference between the Cressie-Read and Jensen’s alpha

for each fund, all γ values and the Carhart, Fung and Hsieh and Agarwal and Naik

sets of factors39. Overall, results behave as expected: (i) when we include the nonlinear

factors the heterogeneity increases substantially, in comparison with the Carhart model;

(ii) moving away from the Hansen and Jagannathan case further increases this hetero-

geneity. In particular, for negative γs, it is not rare to find funds with a difference

between OLS/linear and Cressie Read alphas of 0.25% per month, a sizable difference

when considering that the median Jensen’s alpha is about 0.20% per month. Note that

this difference allows us to capture the disagreement about fund performance between

investors as well as measure the influence of the higher-order moments on the difference

between the Cressie-Read alpha and the OLS one.

To formally test whether this difference in performance is statistically significant we

implement a paired mean test. Figure 7 plots the cross-sectional kernel density of the

estimated t-statistics for each set of benchmark factors across four panels. As expected,

for the CAPM and Carhart models, most estimated alpha differences are insignificant

since higher-order moments play a minor role. However, when we include the nonlinear

factors in the Fung and Hsieh and Agarwal and Naik models, the variance of the cross-

sectional distribution of the t-statistics increases substantially. In fact, for the later model,

when γ = −3.5, almost 10% of the funds have Cressie-Read alphas whose difference to

39For the CAPM and the Hansen and Jagannathan estimators, the heterogeneity is quite small,
making it harder to visualize the densities.
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their OLS counterparts are positive and statistically significant40. As before, for values

of γ close to 1 the alpha difference becomes less significant.

To analyze the cross-sectional fund performance across strategies, we choose the Fung

and Hsieh basis assets. In Table 11, we report for all categories of funds the average

and the 10% and 90% quantile alphas. A first unsurprising finding is that the average

alpha across all categories and estimators is less than the corresponding index ones41.

For the individual funds we average the alphas computed over different sample periods

while for the index we compute the discounted aggregate return over the full sample. The

variation of the average alpha over the estimators often parallels the variation observed

for the indexes but not always (convertible arbitrage and CTA are good examples). The

inter-quantile range tends to be larger for the negative gammas that weight more bad

states of nature penalizing bad funds.

6.3.1.3 T-statistics Comparisons between Estimators Figure 8 plots the cross-

sectional kernel densities of the asymptotic t-statistics for the four sets of factors, three

values of gamma and the Jensen’s alpha. The Cressie-Read cross-sectional t-statistics are

much more conservative than the OLS ones, but are very similar to one another. The

only significant difference is for the Agarwal and Naik estimates when γ = −3.5. In this

case, the cross-sectional distribution is slightly more positively skewed than for the other

gamma values.

Figure 9 plots the same set of figures for the bootstrapped t-statistics42. Interestingly,

the bootstrap distribution of the OLS alpha t-statistics is much closer to the Cressie-

Read alphas. This reveals that the asymptotic approximation in the OLS case bias the

t-statistics estimate upward. Focusing on the bottom two panels of Figure 9 we note

that the Hansen and Jagannathan bootstrapped t-statistics distribution is much more

concentrated around zero. Again, this arises from the fact that when γ > 0 the SDF may

assume a zero value in some states of nature and biases the alpha estimates towards zero,

40Note that having a difference in performance (between any Cressie Read and Jensen measures) that
is statistically significant does not imply that the absolute performance provided by each measure is
statistically significant.

41One exception is for the negative gammas in the event driven category.
42Note that to bootstrap the OLS alpha we adopt the procedure of Kosowski et al. (2006), while for

our procedure we rely on a non-parametric bootstrap. One advantage of our method, in comparison
with Kosowski et al. (2006), is that our approach re-samples both the hedge fund returns as well as the
underlying factors. Thus, we partially accommodate the critiques in Fama and French (2010) regarding
the joint sample of fund’s returns and factors.
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implying a more concentrated distribution.

6.3.1.4 Fund Ranking Comparisons between Estimators The comparisons of

alpha quantiles or distributions for the cross-sections of funds point to the absolute per-

formance differences between the various estimators but do not tell us how a particular

fund fares relatively to others (its performance rank) and how this rank changes from

one value of gamma to another. Table 12 gives a first answer to this question by showing

the regular correlations and rank correlations of alpha measures for each pair of gamma

values. We consider the two sets of factors that include non-linear factors (Fung and

Hsieh and Agarwal and Naik). Correlations are reported in the lower triangular matri-

ces while rank correlations are featured in the upper triangular matrices. Overall, the

main message is similar for both sets of factors. Correlations and rank correlations are

positive and decreasing as we move away from the more negative values to the positive

values of gamma and to the Jensen’s measure. The magnitudes are somewhat lower for

the Agarwal and Naik factors but are aligned with the values of the Fung and Hsieh

factors43.

To further illustrate the differences in ranking between the measures at the individual

fund level, Figure 10 plots densities of the ranking differences between the Jensen’s alphas

and the average of the negative Cressie-Read measures for the four sets of factors. Starting

with the CAPM, we see that the density is relatively concentrated around zero but the

tails appear fatter than for a normal distribution. The tails get thicker with the other sets

of factors, first with the Carhart but mainly for the two sets with nonlinear factors. The

probabilities are almost uniformly distributed for these two sets, with ranking differences

of 300 almost as frequent as a zero difference. This important divergence shows that

using the Jensen’s alpha to measure performance will not suit all investors, especially

when the fund returns have strong nonlinear exposures to the main sources of risk.

6.3.1.5 Investors’ Divergence about fund performance To capture the sub-

stantial variation in the fund-by-fund alpha estimates across estimators, we propose a

divergence measure Divi defined as the logarithm of the alpha variance for each fund

43The main difference is a slight increase in correlations for the Jensen’s alpha and negative Cressie
Read performance measures in the Fung and Hsieh set of factors when compared to the Agarwal and
Naik set.
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across γs. The median alpha variance for the two sets of nonlinear factors is in the order

of 33%. To better understand the variables that drive this divergence between investors,

we run the following regression:

Divi = β0 +
N∑
i=1

βiXi + εi (42)

where Xi includes both individual fund characteristics and co-moments of the funds with

the market, which we have identified as the most significant risk factor. As fund charac-

teristics, we include the mean return, the skewness and kurtosis of the fund returns, the

fund idiosyncratic volatility 44and the age and size of the fund. We add the co-skewness

and co-kurtosis of each hedge fund with the market return (CRSP value-weighted port-

folio), one lag of the fund returns to control for smoothing as well as strategy dummies.

We report the regression results in Table 13 for the four sets of basis assets. Except

for the CAPM, we note that the higher the hedge fund mean, the lower the disagreement

between investors. For the CAPM and Carhart sets of factors, both co-skewness and co-

kurtosis increase strongly and significantly the divergence. Theoretically, this is explained

by the different loads on these variables depending on the gammas used in the estimation

(see Figure 1). However the introduction of nonlinear option-return factors in the Fung

and Hsieh and Agarwal and Naik sets captures the nonlinear exposure of the funds with

respect to the market and risk neutralizes the fund returns with respect to higher moments

of market returns. Therefore the alphas for the various measures and the differences

between them is less sensitive to these higher co-moments45. For similar reasons the

skewness and kurtosis of the fund returns do not explain the divergence. Apart from the

fund mean, the main explanatory factors are the idiosyncratic volatility, which increases

the disagreement, and the age of the fund, which decreases divergence since it signals

quality.

6.3.1.6 How should an investor choose his performance measure? In our

approach the curvature of the dual portfolio objective function will change according to

44We measure the idiosyncratic volatility according to the Carhart factors as it is done in the literature.
Our results also hold for both the Fung and Hsieh factors as well as the Agarwal and Naik factors.

45This is definitely the case for the Agarwal and Naik set of factors, since all the options are on the
equity market. For the Fung and Hsieh factors the coefficient of co-skewness is bigger and statistically
significant but the lookback options are on many primary sources of risk not solely the equity market.
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each gamma. Therefore the performance evaluation will be different for each gamma and

the ranking of funds will change according to each gamma. This begs the question of how

does an investor identify the gamma that corresponds to the risk adjustment measure

he will be comfortable with. We suggest below a procedure that could be followed by a

potential hedge fund investor.

1. The problem of an investor is to add one or several hedge funds to manage the

risk of his/her current portfolio. He has to determine with which gamma he should

evaluate the performance of the candidate hedge funds and the share(s) of the

selected hedge fund(s) he should include in his new portfolio.

2. The first step is to determine the benchmark assets to use to evaluate performance.

This should correspond to the asset classes included in his or her current portfolio.

3. To choose the γ to use, the investor can compute the weights of the optimal portfolio

for each γ with the selected set of factors. He will choose the γ that implies weights

closest to his current portfolio weights according to a chosen metric (for instance

Euclidean) given these benchmark assets.

4. The investor will then select a number of candidate funds and evaluate their per-

formance with the SDF implied by the selected γ and the benchmark assets.

5. The investor can then rank the funds, select a few top performers and see how well

they will perform on a sample left out of the estimation process.

6. The last step is to determine how much of one or several funds to add to the current

portfolio. We suggest to include the returns of the selected funds in the previous

step with the benchmark asset returns and solve the dual problem to obtain the

optimal portfolio weights.

Given the length and the focus of the paper, we leave the implementation of such a

procedure for future research.

7 Conclusion

In this article, we build on and expand the performance measure methodology pro-

posed by Chen and Knez (1996). Under this general framework, we propose a novel
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class of performance measures based on Cressie-Read discrepancies that are easy to es-

timate, satisfy no-arbitrage restrictions, and contains both theoretical and empirical de-

sirable properties. These performance measures encompass the known non-negatively

constrained Hansen and Jagannathan estimator explored in Chen and Knez (1996) and

Li et al. (2010). Additionally, we demonstrate that departing from the quadratic case

(HJ) allows our performance measure to embed information about the higher-order mixed

moments of the hedge fund return with respect to the benchmark factors adopted in the

stochastic discount factor estimation.

Concerning hypothesis testing, we extend Almeida and Garcia (2012) and provide

a full set of asymptotic results for both the Lagrange multipliers, associated with the

stochastic discount factor estimation, as well as the performance measure. Given the

known non-normality of both hedge fund returns as well as the traditional hedge fund

benchmarks (e.g. Fung and Hsieh (2001)) we propose a nonparametric bootstrap to test

for the statistical significance of the individual hedge fund alpha estimates.

Empirically, we illustrate our methodology using a large set of individual hedge fund

data. We pay particular attention to the filtering of the raw data by combining a large

set of filters. We show that neglecting these filters might severely bias upwards the eval-

uation of performance. Our results reveal a sizable heterogeneity in the funds’ valuation

depending on the loadings on higher-order moments. In particular, we often find hedge

funds with statistically significant OLS alphas but insignificant, and even negative alphas,

for our nonparametric estimators. Moreover, we find meaningful economic differences be-

tween performance measures both in absolute terms as well as in relative terms (the

cross-section ranking of the hedge funds).
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Table 2: Summary Statistics for the Cross-section of Hedge
Funds

N Mean Median Std. Dev. Min Max

Avg. Ret 4815 0.57 0.53 0.83 -8.76 18.30
Avg. AUM 4815 0.13 0.03 0.41 0.00 17.44
Age 4815 85.43 71.00 53.52 24.00 258.00
Man. Fee 4806 1.50 1.50 0.72 0.00 8.00
Perf. Fee 4789 16.02 20.00 7.47 0.00 50.00

This table features cross-sectional summary statistics for the fi-
nal hedge fund sample after applying all the filters described in
the internet Appendix (4815 funds in total). From left to right,
we report the mean, median, standard deviation, minimum and
maximum of the average hedge fund returns (we compute the
average return for each hedge fund during the year and then we
compute the statistics, as well as the averages for the assets un-
der management, age, management fees and performance fees).

Table 3: Summary Statistics for Strategy Indexes

Category N Mean SD Skew Kurtosis

Convertible Arbitrage 103 0.61 2.20 -2.40 22.54
CTA 412 0.62 2.07 0.45 3.25
Emerging Markets 354 0.81 4.21 -1.08 7.93
Equity Market Neutral 176 0.60 0.88 -0.37 5.66
Event Driven 310 0.77 1.74 -1.51 8.61
Fixed Income Arbitrage 113 0.61 1.38 -2.87 19.27
Fund of Funds 1222 0.47 1.61 -0.48 5.61
Global Macro 187 0.65 1.72 0.76 4.48
Long/Short Equity Hedge 1162 0.93 2.71 -0.26 4.41
Managed Futures 351 0.64 2.89 0.28 2.80
Multi-Strategy 244 0.72 1.38 -0.82 5.43

This table features summary statistics (number of funds, mean,
standard deviation, skewness and kurtosis) for the equally-
weighted indexes of each strategy based on the final hedge fund
sample after applying all the filters described in the internet Ap-
pendix.
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Table 4: Summary Statistics for the Cross-section of Hedge Funds
Returns by Strategy

Category N Mean Std. Dev. Skewness Kurtosis

Convertible Arbitrage 103 0.53 2.61 -0.85 10.59
CTA 412 0.65 5.70 0.37 5.03
Emerging Markets 354 0.60 6.12 -0.41 7.79
Equity Market Neutral 176 0.44 2.43 -0.22 6.47
Event Driven 310 0.73 3.00 -0.46 7.44
Fixed Income Arbitrage 113 0.53 2.47 -1.40 14.45
Funds of Funds 1222 0.36 2.67 -0.75 7.25
Global Macro 187 0.58 4.26 0.24 6.29
Long/Short Equity Hedge 1162 0.76 4.98 -0.03 5.56
Managed Futures 351 0.53 5.44 0.13 5.61
Multi-Strategy 244 0.52 3.24 -0.42 8.18

This table features summary statistics (number, mean, standard deviation,
skewness and kurtosis) for each category of hedge funds based on their
self-reported strategy for the final hedge fund sample after applying all the
filters described in the internet Appendix. All statistics are calculated at
the fund level and then averaged across funds.
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Table 5: Summary Statistics for the Benchmark Risk Factors

Mean Median Std. Dev. Min Max Skewness Kurtosis

MKT 0.63 1.33 4.42 -17.23 11.35 -0.74 4.19
SMB 0.17 0.01 3.40 -17.17 22.08 0.81 11.76
HML 0.20 -0.01 3.11 -11.25 12.91 0.09 5.80
MOM 0.45 0.58 5.16 -34.58 18.38 -1.59 13.62
Bond -0.16 -0.71 6.07 -31.44 19.52 -0.23 6.52
Credit Spread 0.34 -0.36 6.41 -20.75 40.06 1.41 9.53
S&P 500 0.83 1.35 4.29 -16.80 10.93 -0.70 4.17
Size Spread 0.05 -0.01 3.29 -16.38 18.41 0.26 7.89
Emerging Mkts 0.67 0.85 6.71 -28.91 17.14 -0.70 4.97
PTFSBD -1.33 -3.70 15.31 -26.63 68.86 1.34 5.37
PTFSFX -0.61 -4.86 19.58 -30.13 90.27 1.38 5.60
PTFSCOM -0.28 -2.96 14.28 -24.65 64.75 1.09 4.65
PTFSIR -0.66 -5.75 25.84 -35.13 221.92 4.28 30.75
PTFSSTK -4.99 -6.89 13.38 -30.19 60.48 1.35 6.46
ATM PUT -16.74 -49.48 86.39 -96.63 333.20 1.43 4.78
OTM PUT -18.62 -56.83 90.00 -97.09 345.90 1.54 4.98
ATM CALL -6.15 -27.32 82.55 -99.55 241.70 0.70 2.44
OTM CALL -7.45 -32.38 87.23 -99.50 300.00 0.86 2.93

This table features summary statistics associated with the benchmark risk factors
that we use to evaluate the performance of hedge funds. The acronyms MKT, SMB,
HML and MOM in the first column refer respectively to the CRSP value-weighted
portfolio, the Small minus Big factor, the High minus Low factor and the Momentum
factor obtained from Kenneth French online Data Library. The Bond Market factor
and Credit Spread factor are constructed using the monthly change in the 10-Year
constant maturity yield and Moody’s Baa yield minus the 10-Year constant maturity
yield following Fung and Hsieh (2001) (available at the H15 forms, Federal Board of
Governors and at St. Louis FRED respectively). The S&P 500 return is constructed
using the total returns from Datastream (RI code) as in Fung and Hsieh (2001). The
size spread is constructed as in Fung and Hsieh (2001) using the difference between
the Russel 2000 and the S&P 500 total return from Datastream. The emerging
market factor is constructed using the MSCI Emerging Market index monthly total
return from Datastream. The trend following strategies (PTFS) are available in
Fung’s web site. The four option strategies are constructed following Agarwal and
Naik (2004) using raw data from Option Metrics. From left to right we report
the mean, median, standard deviation, minimum, maximum, skewness and kurtosis
statistics for each factor.
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Table 6: Agarwal and Naik (2004) Lambda Estimation

Gamma -3.5 -2 -1 -0.5 0 0.5 1

ATM PUT -1.33 -1.78 -2.03 -2.13 -2.09 -1.85 -1.49
T-Stat (Asym.) (-3.33) (-2.34) (-2.02) (-1.83) (-1.6) (-1.39) (-1.23)
T-Stat (Boots) (-2.2) (-1.74) (-1.55) (-1.43) (-1.26) (-1.12) (-1.09)
Pricing Error [0.0] [0] [0] [0] [0] [0.0] [0.0]
OTM PUT 1.29 1.76 2.10 2.26 2.27 2.08 1.76
T-Stat (Asym.) (3.93) (2.63) (2.35) (2.17) (1.95) (1.77) (1.64)
T-Stat (Boots) (2.52) (1.94) (1.82) (1.68) (1.54) (1.39) (1.42)
Pricing Error [0.0] [0] [0] [0] [0] [0.0] [0.0]
ATM CALL -0.62 -0.80 -0.82 -0.73 -0.49 -0.15 0.19
T-Stat (Asym.) (-1.01) (-0.97) (-0.73) (-0.55) (-0.35) (-0.11) (0.15)
T-Stat (Boots) (-0.76) (-0.7) (-0.5) (-0.41) (-0.25) (-0.08) (0.12)
Pricing Error [0] [0] [0] [0] [0] [0.0] [0.0]
OTM CALL 0.74 1.02 1.18 1.17 1.00 0.69 0.35
T-Stat (Asym.) (1.37) (1.39) (1.16) (0.98) (0.77) (0.54) (0.32)
T-Stat (Boots) (1.01) (0.99) (0.8) (0.72) (0.56) (0.41) (0.25)
Pricing Error [0] [0] [0] [0] [0] [0.1] [0.1]
Bond -0.71 -0.76 -0.59 -0.38 -0.18 -0.02 0.09
T-Stat (Asym.) (-1.24) (-0.87) (-0.53) (-0.31) (-0.14) (-0.01) (0.08)
T-Stat (Boots) (-0.87) (-0.64) (-0.41) (-0.25) (-0.12) (-0.01) (0.08)
Pricing Error [0] [0] [0] [0] [0] [0.0] [0.0]
Credit Spread -1.35 -1.80 -2.38 -2.67 -2.81 -2.66 -2.30
T-Stat (Asym.) (-1.65) (-1.48) (-1.83) (-2) (-2.06) (-1.98) (-2.08)
T-Stat (Boots) (-1.54) (-1.42) (-1.54) (-1.66) (-1.6) (-1.8) (-1.71)
Pricing Error [0] [0] [0] [0] [0] [0.0] [0.0]
SPX -4.34 -6.68 -9.10 -10.42 -11.11 -10.84 -9.83
T-Stat (Asym.) (-6.98) (-4.02) (-3.74) (-3.53) (-3.37) (-3.36) (-3.64)
T-Stat (Boots) (-2.87) (-2.94) (-3.05) (-2.92) (-2.74) (-3.2) (-3.34)
Pricing Error [0] [0] [0] [0] [0] [0] [0]
Size Spread -0.75 -0.71 -0.23 -0.04 -0.01 0.01 0.05
T-Stat (Asym.) (-0.6) (-0.42) (-0.11) (-0.02) (0) (0) (0.03)
T-Stat (Boots) (-0.54) (-0.36) (-0.1) (-0.02) (0) (0) (0.03)
Pricing Error [0] [0] [0] [0] [0] [0.0] [0.0]
Emerging 0.91 1.34 1.73 1.88 1.84 1.63 1.32
T-Stat (Asym.) (1.85) (1.66) (1.37) (1.2) (1.1) (1.05) (1.01)
T-Stat (Boots) (1) (1.03) (0.98) (0.99) (0.95) (0.99) (0.99)
Pricing Error [0] [0] [0] [0] [0] [0.0] [0.0]

This table presents the estimated Lagrange multiplier λ associated with the
Cressie Read stochastic discount factor when we take the CRSP value weighted
market returns as the only benchmark asset. Columns indicate the Cressie
Read γ used in the estimation. We report the estimated λ, the associated
t− statistics (in parenthesis) as well as the pricing errors from the estimation
in basis points (in brackets). T statistics are calculated using both asymptotic
distribution (Asym.) as well as a non-parametric pairs bootstrap with 1000
re-samples (Boots). The estimation is based on the full sample from January
1994 to June 2015.
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Table 7: Fung and Hsieh (2001) Alphas for Hedge Fund Indexes

-3.5 -2 -1 -0.5 0 0.5 1 Lin

Convertible Arbitrage 0.31 0.31 0.31 0.30 0.30 0.29 0.29 0.29
Stud. t (asymp.) (2.77) (2.53) (2.90) (3.06) (3.28) (3.54) (3.83) (1.74)
Stud. t (boot.) (2.37) (2.55) (2.61) (2.64) (2.49) (2.4) (2.36) (1.74)
CTA 0.70 0.67 0.63 0.61 0.60 0.59 0.58 0.58
Stud. t (asymp.) (3.94) (3.96) (5.31) (6.76) (8.67) (10.39) (11.39) (4.81)
Stud. t (boot.) (5.33) (5.41) (5.54) (5.36) (5.19) (5.21) (5.04) (4.85)
Emerging Markets 0.07 0.16 0.22 0.26 0.30 0.35 0.38 0.38
Stud. t (asymp.) (0.67) (0.54) (0.78) (0.98) (1.31) (1.69) (2.02) (2.28)
Stud. t (boot.) (0.32) (0.8) (1.24) (1.49) (1.86) (2.3) (2.56) (2.26)
Equity Market Neutral 0.35 0.35 0.35 0.34 0.34 0.34 0.35 0.35
Stud. t (asymp.) (9.15) (10.13) (14.63) (15.96) (16.22) (16.18) (16.56) (5.69)
Stud. t (boot.) (4.9) (5.46) (5.72) (6.14) (6.39) (6.11) (6.69) (5.58)
Event Driven 0.33 0.35 0.37 0.37 0.39 0.40 0.41 0.41
Stud. t (asymp.) (2.43) (2.12) (2.68) (3.11) (3.70) (4.27) (4.76) (5.06)
Stud. t (boot.) (3.79) (4.47) (4.85) (5.25) (5.68) (5.96) (6.38) (5.15)
Fixed Income Arbitrage 0.44 0.45 0.43 0.42 0.42 0.41 0.42 0.42
Stud. t (asymp.) (7.33) (7.51) (8.86) (8.98) (8.77) (8.74) (8.97) (4.39)
Stud. t (boot.) (4.92) (5.39) (5.46) (5.58) (5.22) (5.29) (5.54) (4.64)
Fund of Funds 0.20 0.21 0.20 0.20 0.20 0.21 0.21 0.21
Stud. t (asymp.) (2.40) (2.30) (2.74) (3.04) (3.47) (3.89) (4.27) (3.03)
Stud. t (boot.) (2.62) (2.93) (2.83) (2.94) (2.95) (3.14) (3.18) (2.95)
Global Macro 0.43 0.42 0.43 0.44 0.45 0.45 0.45 0.45
Stud. t (asymp.) (5.71) (6.07) (7.54) (7.95) (8.14) (8.37) (8.81) (4.97)
Stud. t (boot.) (3.74) (3.9) (4.47) (4.6) (4.88) (4.89) (4.79) (4.71)
Long/Short Equity Hedge 0.42 0.44 0.43 0.42 0.42 0.42 0.42 0.42
Stud. t (asymp.) (2.25) (1.92) (2.26) (2.46) (2.73) (2.99) (3.22) (4.58)
Stud. t (boot.) (4.8) (5.48) (5.72) (5.62) (5.65) (5.51) (5.53) (4.57)
Managed Futures 0.93 0.84 0.76 0.73 0.71 0.69 0.69 0.69
Stud. t (asymp.) (3.07) (3.16) (4.31) (5.63) (7.39) (8.98) (10.14) (3.91)
Stud. t (boot.) (3.94) (3.83) (3.81) (3.84) (3.7) (3.88) (3.83) (3.68)
Multi-Strategy 0.43 0.43 0.42 0.41 0.41 0.41 0.41 0.41
Stud. t (asymp.) (4.29) (4.34) (5.16) (5.51) (5.94) (6.30) (6.61) (5.85)
Stud. t (boot.) (7.09) (7.69) (7.54) (7.79) (7.52) (7.26) (7.35) (5.95)

This table presents the estimated non-parametric α measure for Hedge Fund indexes associated
with the Cressie Read stochastic discount factor when we use the Fung and Hsieh (2001) factors
as benchmark assets. In the last column we also add the OLS Jensen’s alpha for comparison.
For several values of the Cressie Read γ used in the estimation, we report the estimated α, the
asymptotic Student t−statistics as well as the bootstrapped Student t-statistics (calculated using
bootstrapped standard errors from 1000 re-samples). Bootstrapped t-statistics for the linear model
are obtained with the residual bootstrap method suggested by Kosowski et al. (2006). Asymptotic
t-statistics are calculated using the delta method (see section 4.4) to account for the dependence
of α on λ and the error associated with the estimation of the latter. Hedge Fund indexes are built
based on the primary strategy reported by each hedge fund by equally weighting their monthly
returns using all available data, after applying the filters described in the online Appendix. The
resulting estimation uses the full sample from January 1994 to June 2015.
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Table 8: CAPM Nonlinear Alphas for Hedge Fund Indexes

CAPM (2) (3) (4) γ = −3.5 γ = −1 γ = 0.5

Convertible Arbitrage 0.21 0.44 0.31 0.08 0.05 0.19 0.21
Stud. t (NW) (1.16) (2.61) (2.22) (0.54) (0.13) (0.72) (0.84)
Stud. t (boot.) (1.17) (2.5) (2.19) (0.55) (0.25) (1.32) (1.57)
CTA 0.43 0.16 0.22 0.03 0.49 0.45 0.43
Stud. t (NW) (3.58) (1.08) (1.5) (0.15) (3.26) (3.38) (3.34)
Stud. t (boot.) (3.51) (1.08) (1.46) (0.16) (3.57) (3.35) (3.38)
Emerging Markets 0.2 0.66 0.55 0.42 0.09 0.17 0.19
Stud. t (NW) (0.68) (2.4) (1.99) (1.43) (0.17) (0.4) (0.48)
Stud. t (boot.) (0.7) (2.38) (2.04) (1.41) (0.33) (0.79) (0.94)
Equity Market Neutral 0.34 0.38 0.38 0.36 0.34 0.34 0.34
Stud. t (NW) (5.92) (6.16) (6.22) (6.29) (4.71) (4.94) (5.02)
Stud. t (boot.) (6.09) (6.26) (6.73) (5.96) (6.9) (6.69) (6.79)
Event Driven 0.37 0.57 0.53 0.46 0.31 0.36 0.37
Stud. t (NW) (3.37) (6.03) (5.56) (4.37) (1.2) (1.85) (2.02)
Stud. t (boot.) (3.5) (6.02) (5.82) (4.42) (3.01) (4.36) (4.66)
Fixed Income Arbitrage 0.33 0.52 0.47 0.34 0.23 0.32 0.33
Stud. t (NW) (2.78) (4.18) (4.53) (2.92) (1.08) (2.19) (2.39)
Stud. t (boot.) (2.96) (4.3) (4.5) (3.08) (1.74) (3.46) (3.75)
Fund of Funds 0.11 0.23 0.22 0.08 0.07 0.1 0.11
Stud. t (NW) (1.13) (2.68) (2.56) (0.84) (0.36) (0.66) (0.73)
Stud. t (boot.) (1.19) (2.66) (2.47) (0.8) (0.75) (1.22) (1.36)
Global Macro 0.35 0.22 0.26 0.15 0.39 0.36 0.35
Stud. t (NW) (3.36) (1.89) (2.29) (1.18) (3.53) (3.25) (3.2)
Stud. t (boot.) (3.32) (1.95) (2.24) (1.2) (3.79) (3.46) (3.59)
Long/Short Equity Hedge 0.38 0.4 0.41 0.3 0.37 0.38 0.38
Stud. t (NW) (3.66) (3.76) (3.81) (2.68) (1.28) (1.6) (1.67)
Stud. t (boot.) (3.76) (3.95) (3.69) (2.57) (4.09) (4.31) (4.51)
Managed Futures 0.45 0.03 0.16 -0.18 0.55 0.48 0.46
Stud. t (NW) (2.73) (0.14) (0.82) (-0.79) (2.67) (2.68) (2.61)
Stud. t (boot.) (2.67) (0.14) (0.76) (-0.74) (2.78) (2.53) (2.53)
Multi-Strategy 0.36 0.41 0.42 0.33 0.35 0.36 0.36
Stud. t (NW) (4.32) (4.93) (5.06) (3.89) (2.15) (2.66) (2.78)
Stud. t (boot.) (4.78) (5.05) (5.06) (3.83) (5.34) (5.83) (6.29)

This table presents the estimated OLS Jensen’s α measure for Hedge Fund indexes when
we artificially add higher-order moments of the CRSP value weighted market portfolio in
the linear regression framework. For completeness we also include the same estimates for
selected values of γ. In the first column, we include the CAPM alpha to which we add, in
the subsequent columns, one at a time, polynomial terms of increasing order. We report the
estimated α, Newey-West and bootstrapped t-statistics. For the linear model we follow the
residual bootstrap suggested by Kosowski et al. (2006). NW t-statistics are calculated using
Newey and West (1987) heteroskedasticity and autocorrelation consistent standard errors
with the optimal number of lags given by b4(T/100)2/9c. Bootstrap Student t-statistics are
calculated using bootstrapped standard errors from 1000 re-samples with a nonparametric
pairs bootstrap method. Hedge Fund indexes are built based on the primary strategy
reported by each hedge fund by equally weighting their monthly returns using all available
data, after applying the filters described in the online Appendix. The resulting estimation
uses the full sample from January 1994 to June 2015.
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Table 9: Summary Statistics - Individual Fund Alphas

-3.5 -2 -1 -0.5 0 0.5 1 Lin

CAPM

Mean 0.21 0.21 0.21 0.21 0.21 0.22 0.22 0.22
Variance 0.63 0.59 0.57 0.56 0.55 0.54 0.53 0.53
Skewness -0.32 -0.33 -0.31 -0.31 -0.26 -0.20 -0.22 -0.22
Kurtosis 7.77 7.73 7.57 7.57 7.42 7.25 7.12 7.12
Percent 0.15 0.16 0.16 0.16 0.16 0.16 0.17 0.21

Carhart

Mean 0.18 0.18 0.17 0.17 0.16 0.16 0.16 0.16
Var 0.75 0.68 0.63 0.60 0.58 0.58 0.57 0.57
Skew -0.15 -0.06 -0.02 0.03 0.06 0.04 0.01 0.06
Kurt 8.40 8.10 7.95 7.97 7.80 7.90 8.05 7.97
Percentage 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.17

Fung and Hsieh

Mean 0.23 0.24 0.24 0.25 0.25 0.25 0.26 0.26
Variance 0.87 0.88 0.85 0.83 0.75 0.71 0.69 0.70
Skewness -0.14 -0.13 -0.09 0.04 0.08 0.15 0.16 0.21
Kurtosis 7.44 7.39 7.32 7.22 6.98 6.92 6.84 6.89
Percentage 0.11 0.11 0.12 0.12 0.12 0.13 0.13 0.22

Agarwal and Naik

Mean 0.28 0.26 0.25 0.23 0.23 0.23 0.23 0.23
Variance 1.04 1.06 1.02 0.98 0.90 0.88 0.83 1.00
Skewness 0.64 0.53 0.46 0.35 0.31 0.11 0.15 0.44
Kurtosis 8.85 8.92 8.51 8.43 8.07 7.71 7.38 9.49
Percentage 0.13 0.12 0.12 0.13 0.13 0.13 0.13 0.20

This table presents summary statistics for both Cressie-Read and
Jensen’s αs of the individual hedge funds in our sample. Each panel
corresponds to a different set of benchmark factors. Percentage
represents the percentage of alphas that are positive and statistically
significant at the 10% level. To calculate all statistics we winsorize
the sample at the 0.05% level.
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Table 10: Quantiles - Cross-Sectional Distribution
of Individual Fund Alphas

-3.5 -2 -1 -0.5 0 0.5 1

Carhart

1% -2.80 -2.56 -2.46 -2.41 -2.38 -2.36 -2.38
10% -0.65 -0.63 -0.60 -0.59 -0.59 -0.60 -0.60
50% 0.18 0.17 0.16 0.16 0.16 0.16 0.15
90% 1.03 1.00 0.96 0.94 0.93 0.93 0.92
99% 2.94 2.87 2.68 2.57 2.48 2.44 2.44

Agarwal and Naik

1% -2.80 -2.92 -2.96 -3.01 -2.71 -2.71 -2.57
10% -0.66 -0.70 -0.68 -0.70 -0.66 -0.64 -0.63
50% 0.24 0.22 0.21 0.21 0.20 0.20 0.20
90% 1.24 1.26 1.20 1.17 1.16 1.15 1.15
99% 4.09 3.90 3.96 3.69 3.42 3.31 3.17

This table presents five quantiles (1%, 10%, 50%, 90%
and 99%) for each Cressie-Read cross-sectional distri-
bution of individual hedge funds αs in our sample.
Each panel corresponds to a different set of bench-
mark factors.
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Table 11: Cressie-Read Alphas per Category of Hedge Funds

-3.5 -2 -1 -0.5 0 0.5 1

Convertible Arbitrage 0.16 0.17 0.20 0.20 0.22 0.23 0.24
10% -0.54 -0.42 -0.35 -0.31 -0.35 -0.31 -0.28
90% 0.76 0.76 0.70 0.70 0.71 0.75 0.85
CTA 0.39 0.38 0.38 0.40 0.41 0.42 0.41
10% -0.74 -0.78 -0.79 -0.78 -0.74 -0.79 -0.78
90% 1.89 1.84 1.86 1.78 1.69 1.58 1.57
Emerging Markets 0.11 0.14 0.13 0.18 0.18 0.19 0.21
10% -1.14 -1.22 -1.21 -1.12 -1.10 -1.07 -0.94
90% 1.27 1.34 1.28 1.36 1.25 1.22 1.29
Equity Market Neutral 0.19 0.20 0.21 0.20 0.20 0.20 0.19
10% -0.64 -0.56 -0.54 -0.55 -0.54 -0.55 -0.58
90% 1.07 1.07 1.09 1.10 1.02 0.93 0.88
Event Driven 0.38 0.39 0.38 0.39 0.39 0.39 0.39
10% -0.30 -0.30 -0.29 -0.31 -0.27 -0.25 -0.23
90% 1.13 1.11 1.10 1.07 1.10 1.09 1.04
Fixed Income Arbitrage 0.31 0.30 0.30 0.31 0.29 0.30 0.30
10% -0.48 -0.38 -0.31 -0.30 -0.28 -0.25 -0.27
90% 1.02 1.11 0.96 0.97 0.88 0.88 0.89
Fund of Funds 0.07 0.08 0.09 0.09 0.09 0.09 0.10
10% -0.49 -0.46 -0.44 -0.44 -0.43 -0.41 -0.42
90% 0.60 0.60 0.60 0.61 0.59 0.59 0.60
Global Macro 0.26 0.23 0.22 0.21 0.24 0.27 0.29
10% -0.86 -0.85 -0.91 -0.77 -0.71 -0.56 -0.51
90% 1.19 1.17 1.19 1.22 1.19 1.18 1.13
Long/Short Equity Hedge 0.26 0.32 0.32 0.31 0.33 0.33 0.33
10% -0.78 -0.79 -0.76 -0.72 -0.67 -0.67 -0.67
90% 1.31 1.27 1.21 1.21 1.22 1.21 1.21
Managed Futures 0.41 0.41 0.41 0.42 0.42 0.43 0.43
10% -0.98 -0.94 -0.94 -0.86 -0.86 -0.75 -0.72
90% 1.79 1.71 1.59 1.60 1.61 1.60 1.62
Multi-Strategy 0.22 0.20 0.20 0.20 0.19 0.21 0.21
10% -0.68 -0.65 -0.70 -0.64 -0.61 -0.56 -0.54
90% 1.07 1.04 1.02 1.01 0.95 0.97 0.94

This table presents the average alpha, as well as the 10th and 90th per-
centiles of the distribution of alphas for the various hedge fund categories
and across various Cressie-Read γs. To obtain the alphas, we use the Fung
and Hsieh ten factors as basis assets for the SDF estimation.
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Table 12: Alpha Correlations

Fung and Hsieh:

γ = −3.5 1.00 0.89 0.82 0.77 0.74 0.71 0.69 0.63
γ = −2 0.83 1.00 0.89 0.84 0.80 0.76 0.73 0.66
γ = −1 0.81 0.99 1.00 0.92 0.86 0.81 0.78 0.71
γ = −0.5 0.79 0.98 0.99 1.00 0.90 0.85 0.82 0.75
γ = 0 0.78 0.98 0.99 0.99 1.00 0.92 0.87 0.79
γ = 0.5 0.75 0.97 0.97 0.98 0.99 1.00 0.94 0.84
γ = 1 0.74 0.96 0.96 0.97 0.98 1.00 1.00 0.84
Linear 0.80 0.82 0.84 0.85 0.86 0.88 0.87 1.00

Agarwal and Naik:

γ = −3.5 1.00 0.86 0.77 0.73 0.70 0.68 0.66 0.60
γ = −2 0.95 1.00 0.87 0.81 0.77 0.74 0.72 0.65
γ = −1 0.89 0.96 1.00 0.90 0.85 0.80 0.77 0.71
γ = −0.5 0.87 0.93 0.95 1.00 0.91 0.85 0.81 0.76
γ = 0 0.87 0.93 0.94 0.97 1.00 0.90 0.87 0.81
γ = 0.5 0.84 0.89 0.92 0.94 0.97 1.00 0.94 0.85
γ = 1 0.83 0.88 0.89 0.93 0.96 0.99 1.00 0.86
Linear 0.73 0.77 0.82 0.85 0.88 0.92 0.91 1.00

This table presents regular correlations (in the lower triangular
matrix) and rank correlations (in the upper triangular matrix)
between the alphas of all funds for all pairs of gamma values. In
the upper panel, we report the statistics for the Fung and Hsieh
set of factors, while in the lower panel we consider the Agarwal
and Naik factors.
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Table 13: Explaining Investors’ Divergence
about fund performance

Basis Assets:

CAPM FFC FH AN

HF Mean 0.01 -0.05 -0.08 -0.07
(0.43) (-3.46) (-2.88) (-2.44)

Co-Skewness 0.14 0.13 0.07 0.04
(3.02) (3.71) (2.81) (1.80)

Co-Kurtosis 0.27 0.15 0.02 0.02
(5.86) (9.13) (0.64) (0.60)

Idios. Vol. 0.19 0.33 0.34 0.38
(3.73) (5.41) (4.89) (5.31)

HF Skewness -0.10 -0.07 -0.02 -0.00
(-3.76) (-2.37) (-0.78) (-0.01)

HF Kurtosis -0.08 -0.06 -0.03 -0.02
(-4.76) (-2.42) (-1.21) (-0.66)

AR(1) -0.10 -0.08 -0.06 -0.02
(-4.18) (-3.50) (-2.42) (-1.01)

Size 0.02 -0.00 -0.00 -0.01
(1.53) (-0.15) (-0.08) (-0.50)

Age -0.06 -0.22 -0.33 -0.17
(-2.95) (-5.98) (-22.49) (-7.67)

R2 0.11 0.24 0.34 0.28

This table presents the linear regression esti-
mates for the following regression: Divi = β0 +∑N

i=1 βiXi + εi, where Xi denotes the control
variables in the regression (lines in the table
above) and Divi is the logarithm of the cross-
sectional variance of the various Cressie-Read al-
phas. Columns indicate the set of factors used
in the alpha estimation (CAPM stands for the
CRSP value weighted market portfolio, FFC for
the Carhart four factor model, FH for the Fung
and Hsieh ten factor model, and AN for the Agar-
wal and Naik nine factor model). Although not
reported all regressions include dummies for the
hedge fund primary category. Student t-statistics
are computed using robust standard errors clus-
tered by primary category.
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Weights on Mixed Moments - Alpha Taylor Expansion

Figure 1: This figure plots the implied weights on the hedge fund average return, the
co-variance with the endogenous portfolio, the co-skewness and co-kurtosis based on a
Taylor expansion of the SDF alpha. Weights are calculated for five possible combinations
of basis assets: the CRSP value weighted market return, the Carhart (1997) factors, the
Fung and Hsieh (2001) underlying factors plus the full set of ten factors, and the Agarwal
and Naik (2004) factors. The specific factors in each model are defined in section 5.2.
Weights are calculated using the optimal λ for a grid of γs between -4 and 4 with 0.5
increments.
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Expected Excess Return of the Optimal Endogenous Cressie-Read Portfolio

Figure 2: This figure plots the expected excess return E[−λ′γR̃] of the optimal portfolio
solving the optimization problem in Corollary 1. The expected excess return is estimated
for five possible combinations of basis assets: the CRSP value weighted market return,
the Carhart (1997) factors, the Fung and Hsieh (2001) underlying factors plus the full
set of ten factors, and the Agarwal and Naik (2004) factors. Estimation is based on the
optimal λ (λ̂γ) for a grid of γs between -4 and 4 with 0.5 increments, and on a risk-free
rate RF = 1.

Implied Risk Neutral Distribution

Figure 3: This figure plots the estimated risk neutral distribution for γ = {−3.5,−0.5, 1}
against the endogenous portfolio (λ(γ,R)′R). To estimate the stochastic discount factor
we consider the full sample for the Fung and Hsieh (2001) factors and E[m] = 1.
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Estimated alpha in a one-factor example

Figure 4: This figure presents the estimated alpha for various values of γ when we use
a unique asset as basis for the stochastic discount factor estimation. To generate the
underlying data we simulate the market returns from a non-central Student t-distribution
with a non-centrality parameter equal to 0.2 and a number of degrees of freedom ν = 6.
The hedge fund returns are simulated from a non-central Student-t distribution with a
non-centrality parameter equal to 0.2 and a number of degrees of freedom ν = 4 and from
a Gaussian distribution that matches the mean and variance of the non-central Student-t
distribution. When generating our sample we force the sample mean and variance for
both hedge funds to be equal. Confidence intervals are calculated via bootstrap with
10,000 draws.
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Stochastic Discount Factor Time Series

Figure 5: This figure plots the time series of the estimated stochastic discount factors for
γ = {−3.5,−0.5, 1} when we consider four sets of basis assets: the CRSP value weighted
market return, the Carhart (1997) factors, the Fung and Hsieh (2001) factors, and the
Agarwal and Naik (2004) factors.

67



Cressie-Read Alpha vs. Jensen’s Alpha

Figure 6: This figure plots the kernel density for the difference between Cressie-Read
alphas and Jensen’s Alpha (estimate via OLS) for a combination of three sets of basis
assets and six values of γ. The basis assets are, respectively, the Carhart (1997) factors,
the Fung and Hsieh (2001) underlying factors plus the full set of ten factors, and the
Agarwal and Naik (2004) factors. The CAPM plot is omitted since alpha estimates for
most models are similar. The values of γ used are indicated below each plot. Alphas are
calculated for each hedge fund using an estimated SDF matching the fund time series.
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Cressie-Read Alpha vs. Jensen’s Alpha - T-statistics

Figure 7: This figure plots the kernel density for the cross-sectional t-statistics for a
test of equality between Cressie-Read and Jensen’s alpha estimates. Each panel plots
the distribution for a given set of basis assets and four values for the Cressie-Read γ.
The basis assets are, respectively, the CRSP value weighted market portfolio (CAPM),
the Carhart (1997) factors, the Fung and Hsieh (2001) underlying factors plus the full
set of ten factors, and the Agarwal and Naik (2004) factors. The values of γ used are
indicated below each plot. Alphas are calculated for each hedge fund using an estimated
SDF matching the fund time series. The t-statistics are calculated based on a paired test
using Newey and West (1987) standard errors.
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T-Statistics Comparison: Asymptotic Distribution

Figure 8: This figure plots the kernel density for the alpha Student t-statistics for four
sets of basis assets: the CRSP value weighted market return, the Carhart (1997) factors,
the Fung and Hsieh (2001) underlying factors plus the full set of ten factors, and the
Agarwal and Naik (2004) factors. Each plot contains the estimated t-statistics density
for four values of gamma (γ = {−3.5,−1, 0, 1}) and the Jensen’s Alpha (estimated via
OLS). Alphas and t-statistics are calculated for each hedge fund using an estimated SDF
matching the fund time series.
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T-Statistics Comparison: Bootstrap

Figure 9: This figure plots the kernel density for the Alpha Bootstrapped t-statistics for
four sets of basis assets: the CRSP value weighted market return, the Carhart (1997)
factors, the Fung and Hsieh (2001) underlying factors plus the full set of ten factors,
and the Agarwal and Naik (2004) factors. Each plot contains the estimated T-statistics
density for three values of gamma (γ = {−3.5,−1, 1}) and the Jensen’s Alpha (estimated
via OLS). Cressie-Read bootstrapped t-statistics are based on a non-parametric bootstrap
with 1000 re-samples for both hedge fund returns and basis factors. In each bootstrap
we re-estimate the SDF λ vector. Jensen’s Alpha bootstraps are based on the residual
bootstrap of Kosowski et al. (2006).
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Ranking Disagreement: Jensen’s - Average Cressie-Read (γ ≤ 0)

Figure 10: This figure illustrates the ranking differences between the Jensen’s alphas and
the average of the alpha rankings obtained with the negative values of gamma. The four
curves correspond to the four sets of factors considered: CAPM, Carhart, Fung and Hsieh
and Agarwal and Naik.
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