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Glossary and Notation

Repeated game with incomplete
information A situation where several
players repeat the same stage game, the players
having different knowledge of the stage game
which is repeated.

Strategy of a player A rule, or program, describ-
ing the action taken by the player in any pos-
sible case which may happen.

Strategy profile A vector containing a strategy
for each player.

Lack of information on one side Particular case
where all the players but one perfectly know
the stage game which is repeated.

Zero-sum games 2-player games where the
players have opposite payoffs.

Value Solution (or price) of a zero-sum game, in
the sense of the fair amount that player 1 should
give to player 2 to be entitled to play the game.

Equilibrium Strategy profile where each
player’s strategy is in best reply against the
strategy of the other players.

Completely revealing strategy Strategy of a
player which eventually reveals to the other
players everything known by this player on
the selected state.

Non revealing strategy Strategy of a player
which reveals nothing on the selected state.

The simplex of probabilities over a finite
set For a finite set S, we denote by D(S) the
set of probabilities over S, and we identify D(S)
to {p = (ps)s� S � ℝS, 8s � S ps � 0 and
�s� S ps = 1}. Given s in S, the Dirac measure
on s will be denoted by ds. For p= (ps)s� S and
q = (qs)s� S in ℝS, we will use, unless other-
wise specified, kp � qk = �s� S j ps � qsj.

Definition of the Subject and Its
Importance

Introduction
In a repeated game with incomplete information,
there is a basic interaction called stage game
which is repeated over and over by several partic-
ipants called players. The point is that the players
do not perfectly know the stage game which is
repeated, but rather have different knowledge
about it. As illustrative examples, one may think
of the following situations: an oligopolistic com-
petition where firms do not know the production
costs of their opponents, a financial market where
traders bargain over units of an asset which termi-
nal value is imperfectly known, a cryptographic
model where some participants want to transmit
some information (e.g., a credit card number)
without being understood by other participants, a
conflict when a particular side may be able to
understand the communications inside the oppo-
nent side (or might have a particular type of
weapons),. . .

Natural questions arising in this context are as
follows. What is the optimal behavior of a player
with a perfect knowledge of the stage game? Can
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we determine which part of the information such a
player should use? Can we price the value of
possessing a particular information? How should
one player behave while having only a partial
information?

Foundations of games with incomplete infor-
mation have been studied in (Harsanyi 1967;
Mertens and Zamir 1985). Repeated games with
incomplete information have been introduced in
the sixties by Aumann and Maschler (1995), and
we present here the basic and fundamental results
of the domain. Let us start with a few well-known
elementary examples (Aumann and Maschler
1995; Zamir 1992).

Basic Examples In each example, there are two
players, and the game is zero-sum, i.e., player 2’s
payoff always is the opposite of player 1’s payoff.
There are two states a and b, and the possible stage
games are given by two real matrices Ga and Gb

with identical size. Initially a true state of nature
k � {a, b} is selected with even probability
between a and b, and k is announced to player
1 only. Then the matrix game Gk is repeated over
and over: at every stage, simultaneously player
1 chooses a row i, whereas player 2 chooses a
column j, the stage payoff for player 1 is thenGk(i, j),
but only i and j are publicly announced before
proceeding to the next stage. Players are patient
and want to maximize their long-run average
expected payoffs.

Example 1 Ga ¼ 0 0
0 �1

� �
and Gb ¼ �1 0

0 0

� �
.

This example is trivial. In order to maximize
his payoff, player 1 just has to play, at any stage,
the Top row if the state is a and the Bottom row if
the state is b.

Example 2 Ga ¼ 1 0
0 0

� �
andGb ¼ 0 0

0 1

� �
.

A naive strategy for player 1 would be to play
at stage 1: Top if the state is a, and Bottom if the
state is b. Such a strategy is called completely
revealing, or CR, because it allows player 2 to
deduce the selected state from the observation of
the actions played by player 1. This strategy of

player 1 would be optimal here if a single stage
was to be played, but it is a very weak strategy on
the long run and does not guarantee more than
zero at each stage t� 2 (because player 2 can play
Left or Right depending on player 1’s first action).

On the opposite, player 1 may not use his
information and play a nonrevealing, or NR, strat-
egy, i.e., a strategy which is independent of the
selected state. He can consider the average matrix

1
2G

a þ 1
2G

b ¼ 1=2 0
0 1=2

� �
and play indepen-

dently at each stage an optimal mixed action
in this matrix, i.e., here the unique mixed action
1
2 Topþ 1

2Bottom. It will turn out that this is here
the optimal behavior for player 1, and the value of
the repeated game is the value of the average
matrix, i.e., 1/4.

Example 3 Ga ¼ 4 0 2
4 0 �2

� �
andGb ¼ 0 4 �2

0 4 2

� �
.

Playing a CR strategy for player 1 does not
guarantee more than zero in the long-run, because
player 2 will eventually be able to play Middle if
the state is a, and Left if the state is b. But a NR
strategy will not do better, because the average

matrix 1
2G

a þ 1
2G

b is
2 2 0
2 2 0

� �
, hence has

value 0.
We will see later that an optimal strategy for

player 1 in this game is to play as follows. Initially,
player 1 chooses an element s in {T, B} as follows:
if k = a, then s = Twith probability 3/4, and thus
s= Bwith probability 1/4; and if k= b, then s= T
with probability 1/4, and s=Bwith probability 3/4.
Then at each stage player 1 plays row s, indepen-
dently of the actions taken by player 2. The condi-
tional probabilities satisfy: P (k = a|s = T) = 3/4,
and P (k = a|s = B) = 1/4. At the end of stage 1,
player 2 will have learnt, from the action played
by his opponent, something about the selected
state: his belief on the state will move from 1

2 aþ 1
2

b to 3
4 aþ 1

4 b or to
1
4 aþ 3

4 b. But player 2 still does
not know perfectly the selected state. Such a strat-
egy of player 1 is called partially revealing.
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General Definition
Formally, a repeated game with incomplete infor-
mation is given by the following data. There is a
set of players N and a set of states K. Each player
i in N has a set of actions Ai and a set of signalsUi,
and we denote by A = ∏i�N Ai the set of action
profiles and by U = ∏i�N Ui the set of signal
profiles. Every player i has a payoff function gi:
K � A ! ℝ. There is a signaling function q:
K � A ! D(U), and an initial probability p �
D(K � U). In what follows, we will always
assume the sets of players, states, actions, and
signals to be nonempty and finite.

A repeated game with incomplete information
can thus be denoted by G = (N, K, (Ai)i�N,
(Ui)i�N, (g

i)i�N, q, p). The progress of the game
is the following.

• Initially, an element k, ui0
� �

i

� �
is selected

according to p: k is the realized state of nature
and will remain fixed, and each player i learns
ui0 (and nothing more than ui0).

• At each integer stage t � 1, simultaneously
every player i chooses an action ait in Ai, and
we denote by at ¼ ait

� �
i

the action profile
played at stage t. The stage payoff of a player
i is then given by gi(k, at). A signal profile uti

� �
i

is selected according to q(k, at), and each
player i learns uti (and nothing more than uti )
before proceeding to the next stage.

Remarks
1. The players do not necessarily know their stage

payoff after each stage (as an illustration, ima-
gine the players bargaining over units of an
asset which terminal value will only be
known “at the end” of the game). This is with-
out loss of generality, because it is possible to
add hypotheses on q so that each player will be
able to deduce his stage payoff from his real-
ized stage signal.

2. Repeated games with complete information are
a particular case, corresponding to the situation
where each initial signal ui0 reveals the selected
state. Such games are studied in the chapter

▶ “Repeated Games with Complete
Information”

3. Games where the state variable k evolve from
stage to stage, according to the actions played,
are called stochastic games. These games are
not covered here, but in a specific chapter
entitled ▶ “Stochastic Games”.

4. The most standard case of signaling function is
when each player exactly learns, at the end of
each stage t, the whole action profile at. Such
games are usually called games with “perfect
monitoring,” “full monitoring,” “perfect obser-
vation” or with “observable actions.”

Strategies, Payoffs, Value, and Equilibria

Strategies
A (behavior) strategy for player i is a rule, or
program, describing the action taken by this
player in any possible case which may happen.
These actions may be chosen at random, so a
strategy for player i is an element si ¼ sit

� �
t�1

,

where for each t, sit is a mapping from
Ui � (Ui � Ai)t�1 to D(Ai) giving the lottery
played by player i at stage t as a function of the
past signals and actions of player i. The set of
strategies for player i is denoted by Si.

A history of length t in G is a sequence (k, u0,
a1, u1, . . ., at, ut), and the set of such histories is
the finite setK�U� (A�U)t. An infinite history
is called a play, and the set of plays is denoted by
O = K � U � (A � U)1 and is endowed with the
product s-algebra. A strategy profile s = (si)i
naturally induces, together with the initial proba-
bility p, a probability distribution over the set of
histories of length t. This probability uniquely
extends to a probability over plays and is denoted
by ℙp, s.

Payoffs
Given a time horizon T, the average expected
payoff of player i, up to stage T, if the strategy
profile s is played, is denoted by:
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giT sð Þ ¼ E ℙp,s
1

T

XT
t¼1

gi k, atð Þ
 !

:

The T-stage game is the game GTwhere simul-
taneously each player i chooses a strategy si in Si,

then receives the payoff giT sjð Þj�N

� �
.

Given a discount factor l in (0, 1], the
l-discounted payoff of player i is denoted by:

gil sð Þ ¼ E ℙp,s l
X1
t¼1

1� lð Þt�1gi k, atð Þ
 !

:

The l-discounted game is the game Gl where
simultaneously, each player i chooses a strategy si

in Si, then receives the payoff gil sjð Þj�N

� �
.

Remark A strategy for player i is called pure if it
always plays in a deterministic way. A mixed
strategy for player i is defined as a probability
distribution over the set of pure strategies
(endowed with the product s-algebra). Kuhn’s
theorem (see Aumann (1964), Kuhn (1953) or
Sorin (2002) for a modern presentation) states
that mixed strategies or behavior strategies are
equivalent, in the following sense: for each behav-
ior strategy si, there exists a mixed strategy ti of
the same player such that ℙp,si,s�i ¼ ℙ p,ti,s�i for
any strategy profile s�i of the other players, and
vice versa if we exchange the words “behavior”
and “mixed.” Unless otherwise specified, the
word strategy will refer here to a behavior strat-
egy, but we will also sometimes equivalently use
mixed strategies, or even mixtures of behavior
strategies.

Value of Zero-Sum Games
By definition the game is zero-sum if there are two
players, say player 1 and player 2, with opposite
payoffs. The T -stage game GT can then be seen as
a matrix game; hence, by the minmax theorem it
has a value vT ¼ sups1 infs2g

1
T s1,s2ð Þ ¼ infs2

sups1g
1
T s1,s2ð Þ . Similarly, one can use Sion’s

theorem (1958) to show that the l-discounted
game has a value vl ¼ sups1 infs2g

1
l s1,s2ð Þ ¼

inf s2 sups1g
1
l s1,s2ð Þ.

To study long term strategic aspects, it is also
important to consider the following notion of uni-
form value. Players are asked to play well uni-
formly in the time horizon, i.e., simultaneously in
all game GTwith T sufficiently large (or similarly
uniformly in the discount factor, i.e., simulta-
neously in all game Gl with l sufficiently low).

Definitions 1 Player 1 can guarantee the real
number u in the repeated game G if: 8e > 0,
∃s1 � S1, ∃T0, 8T � T0, 8s2 � S2, g1T s1,s2ð Þ
� u� e. Similarly, Player 2 can guarantee u inG if
8e > 0, ∃s2 � S2, ∃T0, 8T � T0, 8s1 � S1, g1T
s1,s2ð Þ � uþ e. If both player 1 and player 2 can
guarantee u, then u is called the uniform value of
the repeated game. A strategy s1 of player 1 satis-
fying ∃T0, 8T � T0, 8s2 � S2, g1T s1,s2ð Þ � u is
then called an optimal strategy of player 1 (optimal
strategies of player 2 are defined similarly).

The uniform value, whenever it exists, is nec-
essarily unique. Its existence is a strong property,
which implies that both uT, as T goes to infinity,
and ul, as l goes to zero, converge to the uniform
value.

Equilibria of General-Sum Games
In the general case, the T -stage game GT can be
seen as the mixed extension of a finite game and
consequently possesses a Nash equilibrium. Sim-
ilarly, the discounted game Gl always has, by the
Nash Glicksberg theorem, a Nash equilibrium.
Concerning uniform notions, couples of optimal
strategies are generalized as follows.

Definitions 2 A strategy profile s = (si)i�N is a
uniform Nash equilibrium of G if: (1) 8e > 0, s is
an e-Nash equilibrium in every finitely repeated
game sufficiently long, that is,∃T0, 8T� T0, 8i �
N, 8ti � Si, giT ti,s�ið Þ � giT sð Þ þ e, and (2) the

sequence of payoffs giT sð Þ
� �

i�N

� �
T
converges to

a limit payoff (gi(s))i � N in ℝN.

Remark The initial probability p will play a great
role in the following analyses, so we will often

write gi,pT sð Þ for giT sð Þ , uT (p) for the value uT,
etc. . .
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The Standard Model of Aumann and
Maschler

This famous model has been introduced in the
sixties by Aumann and Maschler (see the reedi-
tion (Aumann and Maschler 1995). It deals with
zero-sum games with lack of information on one
side and observable actions, as in the basic exam-
ples previously presented. There is a finite set of
states K, an initial probability p = (pk)k�K on K,
and a family of matrix games Gk with identical
size I � J. Initially, a state k in K is selected
according to p and announced to player 1 (called
the informed player) only. Then the matrix game
Gk is repeated over and over: at every stage,
simultaneously player 1 chooses a row i in I,
whereas player 2 chooses a column j in J, the
stage payoff for player 1 is then Gk(i, j), but only
i and j are publicly announced before proceeding
to the next stage. Denote byM the constant maxk,i,j
|Gk(i, j)|.

Basic Tools: Splitting, Martingale,
Concavification, and the Recursive Formula
The following aspects are simple but fundamen-
tal. The initial probability p = (pk)k�K represents
the initial belief, or a priori, of player 2 on the
selected state of nature. Assume that player
1 chooses his first action (or more generally a
message or signal s from a finite set S) according
to a probability distribution depending on the
state, i.e., according to a transition probability
x = (xk)k�K � D(S)K. For each signal s, the
probability that s is chosen is denoted
l(x, s) = �k p

kxk(s), and given s such that l(x,
s) > 0 the conditional probability on K, or a

posteriori of player 2, is p̂ x,sð Þ ¼ pkxk sð Þ
l x,sð Þ

� �
k �K

.

We clearly have:

p ¼
X
s� S

l x, sð Þp̂ x, sð Þ: (1)

So the a priori p lies in the convex hull of the a
posteriori. The following lemma expresses a
reciprocal: player 1 is able to induce any family
of a posteriori containing p in its convex hull.

Splitting Lemma 1 Assume that p is written as a
convex combination p = �s� S ls ps with positive
coefficients. There exists a transition probability x
� D(S)K such that 8s � S, ls = l(x, s) and ps
¼ p̂ x, sð Þ.

Proof Just put xk sð Þ ¼ lspks
pk if pk > 0. (Fig. 1)

Equation 1 not only tells that the a posteriori
contains p in their convex hull, but also that the
expectation of the a posteriori is the a priori. We
are here in a repeated context, and for every strat-
egy profile s one can define the process (pt(s))t � 0

of the a posteriori of player 2. We have p0 = p,
and pt(s) is the random variable of player 2’s
belief on the state after the first t stages. More
precisely, we define for any t � 0, ht = (i1, j1, . . .,
it, jt) � (I � J)t and k in K:

pkt s, htð Þ ¼ ℙ p,s kj htð Þ ¼
pkℙ dk ,s htð Þ
ℙ p,s htð Þ :

pt(s, ht) = (pkt (s, ht))k�K � D(K) (arbitrarily
defined if ℙp, s(ht) = 0) is the conditional proba-
bility on the state of nature given that s is played
and ht has occurred in the first t stages. It is easy to
see that as soon as ℙp, s(ht) > 0, pt(s, ht) does not
depend on player 2’s strategy s2, nor on player 2’s
last action jt. It is fundamental to notice that:

Martingale of a Posteriori Lemma 2 (pt(s))t�0

is a ℙp, s-martingale with values in D(K).

This is indeed a general property of Bayesian
learning of a fixed unknown parameter: the expec-
tation of what I will know tomorrow is what

Repeated Games with Incomplete Information,
Fig. 1 Splitting
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I know today. This martingale is controlled by the
informed player, and the splitting lemma shows
that this player can essentially induce any martin-
gale issued from the a priori p. Notice that to be
able to compute the realizations of the martingale,
player 2 needs to know the strategy s1 used by
player 1.

The splitting lemma also easily gives the fol-
lowing concavification result. Let f be a continu-
ous mapping from D(K) to ℝ. The smallest
concave function above f is denoted by cav f,
and we have:

cav f pð Þ ¼ max
X

s� S
lsf psð Þ, S finite, 8s

n
ls � 0, ps �D Kð Þ,

X
s� S

ls

¼ 1,
X

s� S
lsps ¼ pg

:

Concavification Lemma 3 If for any initial
probability p, the informed player can guarantee
f(p) in the game G(p), then for any p this player
can also guarantee cavf (p) in G(p).

Nonrevealing Games
As soon as player 1 uses a strategy which depends
on the selected state, the martingale of a posteriori
will move and player 2 will have learnt something
on the state. This is the dilemma of the informed
player: he cannot use the information on the state
without revealing information. Imagine now that
player 1 decides to reveal no information on the
selected state and plays independently of it. Since
payoffs are defined via expectations, it is as if the
players were repeating the average matrix game
G(p) = �k�K pkGk. Its value is:

u pð Þ ¼ max
x�D Ið Þ

min
y�D Jð Þ

X
i, j

x ið Þy jð ÞG pð Þ i, jð Þ

¼ min
y�D Jð Þ

max
x�D Ið Þ

X
i, j

x ið Þy jð ÞG pð Þ i, jð Þ:

u is a Lispchitz function, with constant M, from
D(K) to ℝ. Clearly, player 1 can guarantee u(p) in
the game G(p) by playing i.i.d. at each stage an

optimal strategy in G(p). By the concavification
lemma, we obtain:

Proposition 1 Player 1 can guarantee cavu(p) in
the game G(p).

Let us come back to the examples. In Example 1,

we have u pð Þ ¼ Va1
� 1� pð Þ 0
0 �p

� �
¼

�p 1� pð Þ, where p � [0, 1] stands here for the
probability of state a. This is a convex function of
p, and cavu(p) = 0 for all p. In Example 2,
u(p) = p(1 � p) for all p; hence, u is already
concave and cavu = u. Regarding Example 3,
the following picture shows the functions
u (regular line) and cavu (dashed line) (Fig. 2).

Let us consider again the partially revealing
strategy previously described. With probability
1/2, the a posteriori will be 3

4 aþ 1
4 b, and player

1 will play Top which is optimal in 3
4G

a þ 1
4G

b

¼ 3 1 1
3 1 �1

� �
. Similarly with probability 1/2,

the a posteriori will be 1
4 aþ 3

4 b and player 1 will
play an optimal strategy in 1

4G
a þ 3

4G
b . Conse-

quently, this strategy guarantees 1/2 u(3/4) + 1/2 u
(1/4) = cavu(1/2) = 1 to player 1.

Player 2 Can Guarantee the Limit Value
In the infinitely repeated game with initial proba-
bility p, player 2 can play as follows: T being
fixed, he can play an optimal strategy in the T -
stage gameGT (p), then forget everything and play
again an optimal strategy in the T -stage game
GT (p), etc. By doing so, he guarantees vT (p) in
the game G(p). So he can guarantee infT vT (p) in

Repeated Games with Incomplete Information,
Fig. 2 u and cavu
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this game, and this implies that lim supT
vT (p) � infT vT (p). As a consequence, we obtain:

Proposition 2 The sequence (vT (p))T converges
to infT vT (p), and this limit can be guaranteed by
player 2 in the game G(p).

Uniform Value: cavu Theorem
We will see here that limT vT (p) is nothing but
cavu(p), and since this quantity can be guaranteed
by both players, this is the uniform value of the
game G(p). The idea of the proof is the following.
The martingale (pt(s))t � 0 is bounded, hence will
converge almost surely, and we have a bound on
its L1 variation (see Lemma 4 below). This means
that after a certain stage the martingale will essen-
tially remain constant, so approximately player
1 will play in a nonrevealing way, so will not be
able to have a stage payoff greater than u(q),
where q if a “limit a posteriori.” Since the expec-
tation of the a posteriori is the a priori p, player
1 cannot guarantee more than max{�s� S lsu(ps),
S finite, 8s � S ls � 0, ps � D(K), �s� S ls = 1,
�s� S lsps= p}, that is, more than cavu(p). Let us
now proceed to the formal proof.

Fix a strategy s1 of player 1, and define the
strategy s2 of player 2 as follows: play at each
stage an optimal strategy in the matrix gameG(pt),
where pt is the current a posteriori in D(K).
Assume that s= (s1, s2) is played in the repeated
game G(p). To simplify notations, we write ℙ for
ℙp, s, pt (ht) for pt (s, ht), etc. We use everywhere
norms ||.||1. To avoid confusion between variables
and random variables in the following computa-
tions, we will use tildes to denote random vari-
ables, e.g., k~will denote the random variable of
the selected state.

Lemma 4

8T � 1,
1

T

XT�1

t¼0

E kptþ1 � ptk
� �

�
P

k�K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pk 1� pkð Þ

p
ffiffiffiffi
T

p :

Proof This is a property of martingales with
values in D(K) and expectation p. We have for

each state k and t � 0: E pktþ1 � pkt
� �2� �

¼

E E pktþ1 � pkt
� �2jHt

� �� �
, where Ht is the s-

algebra on plays generated by the first t action
profiles. So E pktþ1�pkt

� �2� �
¼E E pktþ1

� �2þ��
pkt
� �2�2pktþ1p

k
t jHtÞÞ¼E pktþ1

� �2� �
�E pkt

� �2� �
.

So E
PT�1

t¼0

�
pktþ1�pkt
� �2Þ¼E pkT

� �2� �
� pk
� �2

� pk 1�pk
� �

.By Cauchy-Schwartz inequality, we
also have for each k,

E 1
T

PT�1
t¼0 pktþ1 � pkt

		 		� �
�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
T E

PT�1
t¼0 pktþ1 � pkt

� �2� �r
and the result fol-

lows. □

For ht in (I� J)t,s1tþ1 k, htð Þ is the mixed action
in D(I) played by player 1 at stage t + 1 if the state
is k and ht has previously occurred, and we write
�s1tþ1 htð Þ for the law of the action of player 1 of
stage t + 1 after ht: �s1tþ1 htð Þ ¼

P
k �Kp

k
t htð Þs1tþ1

k, htð Þ�D Ið Þ:�stþ1 htð Þ can be seen as the average
action played by player 1 after ht and will be used
as a nonrevealing approximation for
s1tþ1 k, htð Þ
� �

k
. The next lemma precisely links

the variation of the martingale (pt(s))t � 0, i.e.,
the information revealed by player 1, and the
dependence of player 1’s action on the selected
state, i.e., the information used by player 1.

Lemma 5
8t � 0,8ht � I � Jð Þt, E kptþ1 � ptkht

� �
¼ E s

~k
tþ1 htð Þ � �stþ1 htð Þ




 


j ht� �
:

Proof Fix t� 0 and ht in (I� J)t s.t. ℙp, s(ht)> 0.
For (it + 1, jt + 1) in I � J, one has:

pktþ1 ht, itþ1, jtþ1

� �
¼ ℙ ~k ¼ kj ht, itþ1

� �
¼

ℙ ~k ¼ kj ht
� �

ℙ itþ1jk, htð Þ
ℙ itþ1j htð Þ

¼ pkt htð Þs1tþ1 k, htð Þ itþ1ð Þ
�s1tþ1 htð Þ itþ1ð Þ:

Consequently,

Repeated Games with Incomplete Information 7



E kptþ1 � ptk j ht
� �

¼
X
itþ1 � I

�s1tþ1 htð Þ itþ1ð Þ

X
k �K

j pktþ1 ht, itþ1ð Þ � pkt htð Þ j :

¼
X
itþ1 � I

X
k �K

j pkt htð Þs1tþ1 k, htð Þ itþ1ð Þ

� �s1tþ1 htð Þ itþ1ð Þpkt htð Þ j

¼
X
k �K

pkt htð Þks1tþ1 k, htð Þ � �s1tþ1 htð Þk

¼ E ks1tþ1
~k , ht
� �

� �s1tþ1 htð Þk j htÞ:
�

We can now control payoffs. For t� 0 and ht in
(I � J)t:

E G
~k ~itþ1,~jtþ1

� �
j ht

� �
¼
X
k �K

pkt htð ÞGk s1tþ1 k, htð Þ,s2tþ1 htð Þ
� �

�
X
k �K

pkt htð ÞGk �s1tþ1 htð Þ,s2tþ1 htð ÞÞ
�

þM
X
k �K

pkt htð Þks1tþ1 k, htð Þ

��s1tþ1 htð Þk � u pt htð Þð Þ
þM

X
k �K

pkt htð Þks1tþ1 k, htð Þ � �s1tþ1 htð Þk,

where u(pt(ht)) comes from the definition of s2.
By Lemma 5, we get:

E G
~k ~itþ1,~jtþ1

� �
jht

� �
� u pt htð Þð Þ

þM E kptþ1�ptk jht
� �

:

Applying Jensen’s inequality yields:

E G
~k ~itþ1,~jtþ1

� �� �
� cavu pð Þ

þM E kptþ1�ptk
� �

:

We now apply Lemma 4 and obtain:

g1,pT s1,s2
� �

¼ E 1

T

XT�1

t¼0

G
~k ~itþ1,~jtþ1

� � !

� cavu pð Þ þ Mffiffiffiffi
T

p
X
k �K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pk 1� pkð Þ

q
:

This is true for any strategy s1 of player 1. Con-
sidering the case of an optimal strategy for player
1 in the T -stage game GT (p), we have shown:

Proposition 3 For p in D(K) and T � 1,

vT pð Þ � cavu pð Þ þM
P

k �K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pk 1� pkð Þ

p
ffiffiffiffi
T

p :

It remains to conclude about the existence of
the uniform value. We have seen that player 1 can
guarantee cavu(p) and that player 2 can guarantee
limT vT (p), and we obtain from Proposition 3 that
limT vT (p) � cavu(p). This is enough to deduce
Aumann and Maschler’s celebrated “cavu”
theorem.

Theorem 1 Aumann and Maschler (1995). The
game G(p) has a uniform value which is cavu(p).

T -stage Values and the Recursive Formula
As the T -stage game is a zero-sum game with
incomplete information where player 1 is
informed, we can write:

vT pð Þ ¼ inf
s2 �S2

sup
s1 �S1

g1,pT sð Þ,

¼ inf
s2 �S2

sup
s1 �S1

X
k �K

pkg1,dkT sð Þ,

¼ inf
s2 �S2

X
k �K

pk sup
s1 �S1

g1,dkT sð Þ
 !

:

This shows that vT is the infimum of a family of
affine functions of p, hence is a concave function
of p. This concavity represents the advantage of
player 1 to possess the information on the selected
state. Clearly, we have vT (p) � u(p); hence, we

get the inequalities: 8T � 1, cavu pð Þ � vT pð Þ � c

avu pð Þ þMSk �K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pk 1� pkð Þ

p
ffiffiffiffi
T

p .
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It is also easy to prove that the T -stage value
functions satisfy the following recursive formula:

vTþ1 pð Þ ¼ 1

T þ 1
max

x�D Ið ÞK
min

y�D Jð Þ

G p,x,yð Þ þ T
X
i� I

x pð Þ ið ÞvT ðp̂ðx, i
�� !

,

¼ 1

T þ 1
min

y�D Jð Þ
max

x�D Ið ÞK

G p,x,yð Þ þ T
X
i� I

x pð Þ ið ÞvT ðp̂ðx, i
�� !

,

where x= (xk(i))i� I, k�K, with x
k the mixed action

used at stage 1 by player 1 if the state is k, G
(p, x, y) = �k,i,j p

kGk(xk(i), y( j)) is the expected
payoff of stage 1, x(p)(i) = �k�K pkxk(i) is the
probability that action i is played at stage 1, and
p̂(x, i) is the conditional probability on K given i.

The next property interprets easily: the advan-
tage of the informed player can only decrease as
the number of stages increases (for a proof, one
can show that vT + 1 � vT by induction on T, using
the concavity of vT).

Lemma 6 The T -stage value vT (p) is non-
increasing in T.

Vector Payoffs and Approachability

The following model has been introduced by
D. Blackwell (1956) and is, strictly speaking, not
part of the general definition given in section
“Definition of the Subject and Its Importance.”
We still have a family of I � J matrices
(Gk)k � K, where K is a finite set of parameters.
At each stage t, simultaneously player 1 chooses it
� I and player 2 chooses jt � J, and the stage
“payoff” is the full vectorG(it, jt)= (Gk(it, jt))k�K

in ℝK. Notice that there is no initial probability or
true state of nature here, and both players have a
symmetric role. We assume here that after each
stage both players observe exactly the stage vector
payoff (but one can check that assuming that the
action profiles are observed would not change the

results). A natural question is then to determine
the sets C in ℝK such that player 1 (for example)
can force the average long term payoff to belong
to C? Such sets will be called approachable by
player 1.

In section “Vector Payoffs and Approachability,”
we use Euclidean distances and norms. Denote by
F = {(Gk(i, j))k�K, i � I, j � J} the finite set of
possible stage payoffs and byM a constant such that
||u||�M for each u inF. A strategy for player 1, resp.
player 2, is an element s= (st)t� 1, where stmaps
Ft� 1 intoD(I), resp.D(J). Strategy spaces for player
1 and 2 are, respectively, denoted by S and T .
A strategy profile (s, t) naturally induces a unique
probability on (I � J � F)1 denoted by ℙs, t. Let
C be a “target” set that will always be assumed,
without loss of generality, a closed subset of ℝK.
We denote by gt the random variable, with value in
F, of the payoff of stage t, and we use �gt ¼ 1

tPt
t0¼1 gt0 � conv Fð Þ, and finally dt ¼ d �gt,Cð Þ for

the distance from ḡt to C.

Definition 3 C is approachable by player 1 if:
8e > 0, ∃s � S, ∃T, 8t � T , 8t � T , E s,t
(dt) � e. C is excludable by player 1 if there exist
d> 0 such that {z � ℝK, d(z, C)� d} is approach-
able by player 1.

Approachability and excludability for player
2 are defined similarly. C is approachable by
player 1 if for each e > 0, this player can force
that for t large we have E s,t (dt) � e, so the
average payoff will be e-close to C with high

Repeated Games with Incomplete Information,
Fig. 3 The Blackwell property
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probability. A set cannot be approachable by a
player as well as excludable by the other player.
In the usual case where K is a singleton, we are in
dimension 1 and theMinmax theorem implies that
for each t, the interval [t, +1] is either approach-
able by player 1 or excludable by player 2,
depending on the comparison between t and the
value maxx�D(I) miny�D(J) G(x, y) = miny�D(J)

maxx�D(I) G(x, y).

Necessary and Sufficient Conditions for
Approachability
Given a mixed action x inD(I), we write xG for the
set of possible vector payoffs when player 1 uses
x, i.e., xG = {G(x, y), y � D(J)} = conv {�i� I

xiG(i, j), j � J}. Similarly, we writeGy= {G(x, y),
x � D(I)} for y in D(J).

Definition 4 The set C is a B(lackwell)-set for
player 1 if for every z =2 C, there exists z0 � C and
x � D(I) such that: (i) ||z0 � z|| = d(z, C) and
(ii) the hyperplane containing z0 and orthogonal to
[z, z0] separates z from xG (Fig. 3).

For example, any set xG, with x in D(I), is a
B-set for player 1. Given a B-set for player 1, we
now construct a strategy s adapted to C as fol-
lows. At each positive stage t + 1, player 1 con-
siders the current average payoff �gt. If �gt �C, or if
t = 0, s plays arbitrarily at stage t + 1. Otherwise,
s plays at stage t + 1 a mixed action x satisfying
the previous definition for z = ḡt.

Theorem 2 If C is a B-set for player 1, a strategy
s adapted to C satisfies:

8t� T ,8t � 1 E s,t dtð Þ � 2Mffiffi
t

p and dt!t!10

ℙ s,t a:s:

As an illustration, in dimension 1 and for
C = {0}, this theorem implies that a bounded

sequence (xt)t of reals, such that the product xTþ1

1
T

PT
t¼1 xT

� �
is nonpositive for each T, Cesaro

converges to zero.

Proof Assume that player 1 plays s adapted to C,
whereas player 2 plays some strategy t. Fix t � 1,
and assume that �gt=2C. Consider z0 � C and x �
D(I) satisfying (i) and (ii) of Definition 4 for z ¼ �gt.
We have:

d2tþ1 ¼ d �gtþ1,C
� �2 � �gtþ1 � z0



 

2
¼ 1

tþ1

Xtþ1

l¼1

gl � z0













2

¼ 1
tþ1 gtþ1 � z0
� �

þ t
tþ1 �gt � z0ð Þ



 

2
¼ 1

tþ1

� �2
gtþ1 � z0


 

2 þ t

tþ1

� �2
d2t

þ 2t

t þ 1ð Þ2
< gtþ1 � z0,�gt � z0 > :

By hypothesis, the expectation, given the first
t action profiles ht � (I � J)t, of the above scalar

product is nonpositive, so E d2tþ1jht
� �

� t
tþ1

� �2
d2t

þ 1
tþ1

� �2
E gtþ1� z0


 

2jht� �

: Since

E gtþ1� z0


 

2jht� �

�E gtþ1� �gt


 

2jht� �

� 2Mð Þ2, we have:

E d2tþ1j ht
� �

� t

t þ 1

� �2

d2t þ
1

t þ 1

� �2

4M 2:

(2)

Taking the expectation, we get, whether �gt=2C
or not: 8t� 1,E d2tþ1

� �
� t

tþ1

� �2
E d2t
� �

þ 1
tþ1

� �2
4M 2. By induction, we obtain that for each t � 1,
E d2t
� �

� 4M2

t , and E dtð Þ � 2Mffiffi
t

p .

Put now, as in Sorin (2002), et ¼ d2t þ
P

t0>t
4M2

t02
. Inequality (2) givesE etþ1j htð Þ � et, so (et) is

a nonnegative supermartingale which expectation
goes to zero. By a standard probability result, we
obtain et! t!1 0ℙs, t a.s., and finally dt! t!1
0 ℙs, t a.s. □

This theorem implies that any B-set for player
1 is approachable by this player. The converse is
true for convex sets.

Theorem 3 Let C be a closed convex subset of
ℝK.
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(i) C is a B-set for player 1,
, (ii) 8y � D(J), Gy \ C 6¼ ∅,
, (iii) C is approachable by player 1,
, (iv) 8q�ℝK , max

x�D Ið Þ
min

y�D Jð Þ

X
k �K

qkGk x,yð Þ �

inf
c�C

< q,c >.

Proof The implication (i) ) (iii) comes from
Theorem 2. Proof of (iii) ) (ii): assume there
exists y � D(J) such that Gy\C = ∅. Since Gy
is approachable by player 2, then C is excludable
by player 2 and thus C is not approachable by
player 1. Proof of (ii) ) (i): Assume that Gy \ C
6¼∅ 8y � D(J). Consider z =2C and define z0 as its
projection onto C. Define the matrix game where
payoffs are projected towards the direction z0 � z,
i.e., the matrix game �k�K(z

0k � zk)Gk. By
assumption, one has: 8y � D(J), ∃x � D(I)
such that G(x, y) � C, hence such that:

< z0 � z,G x,yð Þ >� minc� c < z0 � z,c >¼
< z0 � z,z0 > :

So miny�D(J) maxx�D(I) < z0 � z, G(x, y) >
� < z0 � z, z0 >. By the minmax theorem, there
exists x in D(I) such that 8y � D(J), < z0 � z,
G(x, y) > � < z0 � z, z0 >, that is < z0 � z, z0 �
G(x, y) > � 0.

(iv) means that any half-space containing C is
approachable by player 1.

(iii) ) (iv) is thus clear. (iv)) (i) is similar to
(ii) ) (i). ▢

Up to minor formulation differences, Theo-
rems 2 and 3 are due to Blackwell (1956). Later
on, X. Spinat (2002) proved the following
characterization.

Theorem 4 A closed set is approachable for
player 1 if and only if it contains aB-set for player 1.

As a consequence, it shows that adding the
condition dt!t ! 10 ℙs, ta. s in the definition
of approachability does not modify the notion.

Approachability for Player 1 Versus
Excludability for Player 2
As a corollary of Theorem 3, we obtain that: A
closed convex set in ℝK is either approachable by
player 1, or excludable by player 2.

One can show that when K is a singleton, then
any set is either approachable by player 1, or
excludable by player 2. A simple example of a
set which is neither approachable for player 1 nor
excludable by player 2 is given in dimension 2 by:

G ¼ 0,0ð Þ 0,0ð Þ
1,0ð Þ 1,1ð Þ

� �
, and C = {(1/2, v),

0 � v � 1/4} [ {(1, v), 1/4 � v � 1} (see Sorin
2002).

Weak Approachability
On can weaken the definition of approachability
by giving up time uniformity.

Definition 5 C is weakly approachable by player
1 if: 8e > 0, ∃T, 8t � T, ∃s � S, 8t � T , E s,t
(dt) � e. C is weakly excludable by player 1 if
there exists d> 0 such that {z � ℝK, d(z, C)� d}
is weakly approachable by player 1.

N. Vieille (1992) has proved, via the consider-
ation of certain differential games:

Theorem 5 A subset of ℝK is either weakly
approachable by player 1 or weakly excludable
by player 2.

Back to the Standard Model
Let us come back to Aumann and Maschler’s
model with a finite family of matrices (Gk)k�K

and an initial probability p on D(K). By Theorem 1,
the repeated game G(p) has a uniform value which
is cavu(p), and Blackwell approachability will
allow for the construction of an explicit optimal
strategy for the uninformed player. Considering a
hyperplane which is tangent to cavu at p, we can
find a vector l in ℝK such that

< l, p >¼ cavu pð Þ and 8q�D Kð Þ, < l, q >
� cavu qð Þ � u qð Þ:
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Define now the orthantC= {z � ℝK, zk� lk 8k
� K}. Recall that player 2 does not know the
selected state, and an optimal strategy for him
cannot depend on player 10 strategy and conse-
quently on a martingale of a posteriori. He will
play in a way such that player 1’s long term payoff
is, simultaneously for each k in K, not greater than
lk if the state is k.

Fix q = (qk)k in ℝK. If there exists k with
qk > 0, we clearly have infc�C < q, c > =
� 1 � maxy�D(J) minx�D(I) �k�K qkGk(x, y).
Assume now that qk � 0 for each k, with q 6¼ 0.
Write s = �k(�qk).

inf
c�C

< q,c> ¼
X
k�K

qklk

¼ �s< l,
�q

s
>

� �s u
�q

s

� �
� �s max

x�D Ið Þ
min

y�D Jð Þ

X
k�K

�qk

s
Gk x,yð Þ

¼ max
y�D Jð Þ

min
x�D Ið Þ

X
k�K

qkGk x,yð Þ

This is condition (iv) of Theorem 3, adapted to
player 2. SoC is a B-set for player 2, and a strategy
t adapted to C satisfies by Theorem 2: 8s � S, 8k
� K,

E s,t
1

T

XT
t¼1

Gk ~it,~jt
� �

� lk
 !

� E s,t d
1

T

XT
t¼1

Gk ~it,~jt
� �

,C

 ! !
� 2Mffiffiffiffi

T
p ,

(whereM is here an upper bound for the Euclidean
norms of the vectors,(Gk(i; j))k�K

, with i � I and
j � J). So,

g1, pT s,tð Þ ¼
X
k �K

pk
1

T

XT
t¼1

s,t Gk ~it,~jt
� �� � !

� < p, l > þ 2Mffiffiffiffi
T

p ¼ cavu pð Þ þ 2Mffiffiffiffi
T

p :

As shown by Kohlberg (1975), the approach-
ability strategy t is thus an optimal strategy for
player 2 in the repeated game G(p).

No-Regret Strategies
The theory of approachability can also be used to
prove the existence of “no- regret strategies.”

Consider a decision-maker, who has to select at
each stage n some action in in a finite set I. The
environment (nature, adversary, other agents fol-
lowing their own goals) will select a stochastic
process (jn)n � 1 with values in a finite set J, and
the decision-maker knows a priori nothing about
the way the sequence (jn)n is chosen. There is a
given payoff function g: I� J!ℝ, known by the
decision-maker, and at the end of each stage n the
decision-maker observes jn and receives the pay-
off g(in, jn).

Basic Example I = J = {0, 1}, and g(i, j) = 1 if
and only if i = j: player 1 tries to guess at each
stage n the value jn (a stage could correspond to a
day, jn = 0 meaning there is no rain on day n,
jn = 1 meaning there is some rain on day n).

What means to play well for the decision-
maker? In the basic example, is it good to guess
correctly 90% of the stages? Probably not if it
happens that jn = 1 for each n.

A strategy for the decision-maker is an element
s = (st)t�1, where for each t st is a mapping from
(I � J)t�1 to D(I). A strategy for Nature is an
element t = (tt)t�1, where for each t tt is a map-
ping from (I� J)t�1 to D(J). The sets of strategies
of the decision-maker and Nature are, respec-
tively, denoted by S and T , and a strategy profile
(s, t) naturally induces a unique probability on
(I � J)1 denoted by ℙs, t. For each stage n,
gn = g(in, jn) is the random variable of the payoff
of stage n, and �gn ¼ 1

n

Pn
t¼1 gt.

Suppose that at the end of some stage n, (i1, j1,
. . ., in, jn) has been played. The average payoff for
the decision-maker is ḡn, and he can compare this
payoff with the payoff he would have got if he had
played constantly some action i in I. The differ-
ence 1

n

Pn
t¼1 g i, jtð Þ � �gn is called the regret of the

decision-maker for not having played constantly
action i.

Definition 6 A strategy s of the decision-maker
has no external regret if for all strategy t of
Nature,
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lim sup
n!1

max
i� I

1

n

Xn
t¼1

g i, jtð Þ � �gn

 !
� 0 ℙ s,ta:s:

We now define the stronger notion of internal
regret: for each pair of actions i and l in I, we do
not want the decision-maker to regret to have
played action 18 l at each stage where he actually
played action i. For n � 1, i and l in I, let us
introduce the random variable:

�Rn i,lð Þ ¼ 1

n

X
t � 1,::,nf g,it¼i

g l, jtð Þ � g it, jtð Þð Þ:

Definition 7 A strategy s of the decision-maker
has no internal regret if for each strategy t of
Nature,

max
i� I,l � I

�Rn i,lð Þ !
n!1

0 ℙs,ta:s:

Theorem 6 There exists a strategy s of the
decision-maker with no internal regret.

Proof Define K = I � I. Consider the dynamic
game with vector payoffs where at each stage
n player 1 chooses in in I, player 2 chooses jn in
J, and the vector payoff in ℝK is (r(in, jn))i,l with:

8 i,lð Þ�K, r in, jnð Þi,l ¼
g l, jnð Þ � g i, jnð Þ if in ¼ i

0 if in 6¼ i

�

If in= i, r(in, jn)i,l is the difference between the
payoff that the decision-maker could have got at
stage n by playing l and what he actually got. We
denote by rn = r(in, jn) the vector of regrets at
stage n in ℝK, and we write �rn ¼ 1

n

Pn
t¼1 rt. Notice

that rn̄ is nothing but the regret vector R ̄
n.

Let C ¼ ℝK
� be the negative orthant of ℝK.

We use the Euclidean norm in this proof. For
each r in ℝK, the projection of r to C is given by
pC (r) = (min{r(k), 0})k�K, and d(r, C) = kr+k,
where r+ = (max{r(k), 0})k � K.

We now show that condition (ii) of Theorem 3
is satisfied. Fix y = (yj)j� J in D(J) and consider i

�

achieving maxl� I g(l, y). r(i
�, y)i,l= 0 if i 6¼ i�, and

r(i�, y)i�,l= g(l, y)� g(i�, y)� 0. SoC is a B-set by
Theorem 3, and by Theorem 2 we have the exis-
tence of a strategy s of the decision-maker such
that for each strategy t of Nature:

8n � 1, E s,t k�rþn k
� �

� 2Mffiffiffi
n

p and

k�rþn k !
n!1

0 ℙs,t a:s:

where M is the constant maxi,j ||r(i, j)||. This con-
cludes the proof of Theorem 6: for each strategy t
of Nature, stage n and all i and l in I,

E s,t �Rn i,lð Þ � 2Mffiffiffi
n

p and

max
i� I,l � I

�Rn i,lð Þ !
n!1

0 ℙ s,t:

Zero-Sum Games with Lack of
Information on Both Sides

The following model has also been introduced by
Aumann and Maschler (1995). We are still in the
context of zero-sum repeated games with observ-
able actions, but it is no longer assumed that one
of the players is fully informed. The set of states is
here a product K � L of finite sets, and we have a
family of matrices (Gk, l)(k, l)�K�L with size I� J,
as well as initial probabilities p on K, and q on L.
In the game G(p, q), a state of nature (k, l) is first
selected according to the product probability
p � q, then k, resp. l, is announced to player 1,
resp. player 2 only. Then the matrix game Gk,l is
repeated over and over: at every stage, simulta-
neously player 1 chooses a row i in I, whereas
player 2 chooses a column j in J, the stage payoff
for player 1 isGk,l(i, j), but only i and j are publicly
announced before proceeding to the next stage.

The average payoff for player 1 in the
T-stage game is written: g1,p,qT s1,s2ð Þ ¼
E p,q

s1,s2
1
T

PT
t¼1 G

~k ,~l ~it,~jt
� �� �

, and the T -stage

value is written vT (p, q). Similarly, the
l-discounted value of the game will be written
vl(p, q).

The nonrevealing game now corresponds to
the case where player 1 plays independently of

Repeated Games with Incomplete Information 13



k and player 2 plays independently of l. Its value is
denoted by:

u p,qð Þ ¼ max
x�D Ið Þ

min
y�D Jð Þ

X
k,l

pkqlGk,l x,yð Þ: (3)

Given a continuous function f: D(K)� D(L)!
ℝ, we denote by cavI f the concavification of fwith
respect to the first variable: for each (p, q) in
D(K) � D(L), cavI f(p, q) is the value at p of the
smallest concave function from D(K) to ℝ which
is above f(., q). Similarly, we denote by vexII f the
convexification of f with respect to the second
variable. It can be shown that cavI f and vexII
f are continuous, and we can compose cavI vexII
f and vexII cavI f. These functions are both con-
cave in the first variable and convex in the second
variable, and they satisfy cavI vexII f (p, q)� vexII
cavI f (p, q).

Maxmin and Minmax of the Repeated Game
Theorem 1 generalizes as follows.

Theorem 7 Aumann and Maschler (1995) In the
repeated gameG(p, q), the greatest quantity which
can be guaranteed by player 1 is cavI vexII u(p, q),
and the smallest quantity which can be guaranteed
by player 2 is vexII cavI u(p, q).

Aumann, Maschler, and Stearns also showed
that cavI vexII u(p, q) can be defended by player 2,
uniformly in time, i.e., that 8e> 0,8s1, ∃T0, ∃s2

, 8T � T0, gp,qT s1, s2ð Þ � cavIvexIIu p, qð Þvþ e.
Similarly, vexII cavI u(p, q) can be defended by
player 1.

The proof uses the martingales of a posteriori
of each player, and a useful notion is that of the
informational content of a strategy: for a strategy
s1 of the first player, it is defined as: I s1ð Þ¼ sups2

E p,q
s1,s2

P
k�K

P1
t¼0 pktþ1 s1ð Þ�pkt s1ð Þ
� �2� �

,

where pt(s
1) is the a posteriori on K of player

2 after stage t given that player 1 uses s1. By
linearity of the expectation, the supremum can
be restricted to strategies of player 2 which are
both pure and independent of l.

Theorem 7 implies that cavI vexII u p,qð Þ ¼
sups1 �S1 lim inf T infs2 �S2 g1,p,qT s1,s2ð Þ

� �
, and

cavI vexII u(p, q) is called the maxmin of the
repeated game G(p, q). Similarly, vexII cavI u p,qð Þ
¼ infs2 �S2 limsupT sups1 �S1g1T s1,s2ð Þ

� �
is called

the minmax of G(p, q). As a corollary, we obtain
that the repeated game G(p, q) has a uniform value
if and only if: cavI vexII u(p, q) = vexII cavI
u(p, q). This is not always the case, and there
exist counter-examples to the existence of the
uniform value.

Example 4 K = {a, a0}, and L = {b, b0}, with
p and q uniform.

Ga,b ¼
0 0 0 0

�1 1 1 �1

� �

Ga,b0 ¼
1 �1 1 �1

0 0 0 0

� �

Ga0,b ¼
�1 1 �1 1

0 0 0 0

� �

Ga0,b0 ¼
0 0 0 0

1 �1 �1 1

� �

Mertens and Zamir (1971) have shown that
here, cavI vexII u p,qð Þ ¼� 1

4< 0¼ vexII cavI u p,qð Þ.

Limit Values
It is easy to see that for each T and l, the value
functions vT and vl are concave in the first variable
and convex in the second variable. They are all
Lipschitz functions, with the same constant
M = maxi,j,k,l |G

k,l(i, j)|, and here also, recursive
formulae can be given. In the following result, vT
and vl are viewed as elements of the set C of
continuous mappings from D(K) � D(L) to ℝ.

Theorem 8 Mertens and Zamir (1971) (vT)T, as
T goes to infinity, and (vl)l, as l goes to zero, both
uniformly converge to the unique solution f of the
following system:
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f ¼ vexII max u, ff g
f ¼ cavI min u, ff g

�

And the convergence of (vT), resp. (vl) is in

O 1
ffiffiffiffi
T

p� �
, resp. O(l).

The above system can be fruitfully studied
without reference to repeated games (see Laraki
2001a, b; Mertens and Zamir 1977; Sorin 1984b).

Remark LetU be the set of all nonrevealing value
functions, i.e., of functions fromD(K)�D(L) toℝ
satisfying Eq. (3) for some family of matrices
(Gk,l)k,l. One can easily show that any mapping
in C is a uniform limit of elements in U.

Correlated Initial Information
A more general model can be written, where it is
no longer assumed that the initial information of
the players is independent. The set of states is now
denoted by R (instead of K � L), initially a state
r in R is chosen according to a known probability
p = (pr)r�R, and each player receives a determin-
istic signal depending on r. Equivalently, each
player i has a partition Ri of R and observes the
element of his partition which contains the
selected state.

After the first stage, player 1 will play an action
x = (xr)r�R which is measurable with respect to
R1, i.e., (r ! xr) is constant on each atom of R1.
After having observed player 1’s action at the first
stage, the conditional probability on R necessarily
belongs to the set:

PI pð Þ ¼ arprð Þr�R,8rar � 0,
X
r

arpr ¼ 1 and

(

arð Þr is R1 �measurable

)
:

PI(p) contains p and is a convex compact
subset of D(R). A mapping f from D(R) to ℝ is
now said to be I-concave if for each p in D(R), the
restriction of f to PI(p) is concave. And given g:
D(R) ! ℝ which is bounded from above, we
define the concavification cavI g as the smallest
function above g which is I- concave. Similarly
one can define the set PII(p) and the notions of

II-convexity and II-convexification. With these
generalized definitions, the results of Theorem 7
and 8 perfectly extend (Mertens and Zamir 1971).

Nonzero-sum Games with Lack of
Information on One Side

We now consider the generalization of the stan-
dard model of section “The Standard Model of
Aumann and Maschler” to the nonzero-sum case.
Hence, two players infinitely repeat the same
bimatrix game, with player 1 only knowing the
bimatrix. Formally, we have a finite set of statesK,
an initial probability p on K, and families of
I � J-payoff matrices (Ak)k�K and (Bk)k�K. Ini-
tially, a state k in K is selected according to p, and
announced to player 1 only. Then the bimatrix
game (Ak, Bk) is repeated over and over: at every
stage, simultaneously player 1 chooses a row i in
I, whereas player 2 chooses a column j in J, the
stage payoff for player 1 is then Ak(i, j), the stage
payoff for player 2 is Bk(i, j), but only i and j are
publicly announced before proceeding to the next
stage. Without loss of generality, we assume that
pk > 0 for each k and that each player has at least
2 actions.

Given a strategy pair (s1, s2), it is here conve-
nient to denote the expected payoffs up to stage
T by:

apT s1,s2
� �

¼ E p,s1,s2
1

T

XT
t¼1

A
~k ~it,~jt
� � !

¼
X
k �K

pkakT s1,s2
� �

:

bpT s1,s2
� �

¼ E p,s1,s2
1

T

XT
t¼1

B
~k ~it,~jt
� � !

¼
X
k �K

pkbkT s1,s2
� �

:

Given a probability q on K, we write A(q)=�k

qkAk, B(q)=�k q
kBk, u(q)=maxx�D(I) miny�D(J)

A(q)(x, y) and v(q) = maxy�D(J) minx�D(I)

B(q)(x, y). If g = (g(i, j))(i, j)� I�J � D(I � J),
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we put A(q)(g) = �(i, j)� I�J g(i, j)A(q)(i, j) and
similarly B(q)(g) = �(i, j)� I�J g(i, j)B(q)(i, j).

Existence of Equilibria
The question of existence of an equilibrium has
remained unsolved for long. Sorin (1983) proved
the existence of an equilibrium for two states of
nature, and the general case has been solved by
Simon et al. (1995).

Exactly as in the zero-sum case, a strategy pair
s induces a sequence of a posteriori (pt(s))t�0

which is a ℙ p,s� martingale with values in D(K).
We will concentrate on the cases where this mar-
tingale moves only once.

Definition 8 A joint plan is a triple (S, l, g),
where:

– S is a finite non empty set (of messages),
– l = (lk)k�K (signaling strategy) with for each

k, lk � D(S) and for each s, ls
¼def

P
k �Kp

klks > 0,
– g = (gs)s� S (contract) with for each s, gs �

D(I � J).
The idea is due to Aumann, Maschler, and

Stearns. Player 1 observes k, then chooses s �
S according to lk and announces s to player
2. Then the players play pure actions
corresponding to the frequencies gs(i, j), for i in
I and j in J. Given a joint plan (S, l, g), we define:

– 8s � S, ps ¼ pks
� �

k �K
�D Kð Þ, with pks ¼

pklks
ls

for each k. ps is the a posteriori on K given s.
– ’ = (’k)k�K � ℝK, with for each k, ’k =

maxs� S A
k(gs).

– 8s � S, cs = B(ps)(gs) and c ¼
P

k �Kp
kP

s� S l
k
sB

k gsð Þ ¼
P

s� S lscs.

Definition 9 A joint plan (S, l, g) is an equilib-
rium joint plan if:

(i) 8s � S, cs � vexv(ps)
(ii) 8k � K, 8s � S s.t. pks > 0, Ak(gs) = ’k

(iii) 8q � D(K), < ’, q > � u(q)

Condition (ii) can be seen as an incentive con-
dition for player 1 to choose s according to lk.
Given an equilibrium joint plan (S, l, g), one
define a strategy pair (s1�, s2�) adapted to it. For
each message s, first fix a sequence ist , j

s
t

� �
t�1

of

elements in I � J such that for each (i, j), the
empirical frequencies converge to the corresponding
probability: 1

T j t, 1 � t � T , ist , j
s
t

� �
¼ i, jð Þ

� 
j

!T!1gs i, jð Þ . We also fix an injective mapping
f from S to I l, where l is large enough,
corresponding to a code between the players to
announce an element in S. s1� is precisely defined
as follows. Player 1 observes the selected state k,
then chooses s according to lk, and announces s to
player 2 by playing f(s) at the first l stages. Finally,
s1� plays ist at each stage t > l as long as player
2 plays jst . If at some stage t > l player 2 does not
play jst , then player 1 punishes his opponent by
playing an optimal strategy in the zero-sum game
with initial probability ps and payoffs for player 1
given by (�Bk)k�K. We now define s2�. Player 2
arbitrarily plays at the beginning of the game, then
compute at the end of stage l the message s sent by
player 1. Next he plays at each stage t > l the
action jst as long as player 1 plays ist . If at some
stage t > l, player 1 does not play ist, or if the first
l actions of player 1 correspond to no message,
then player 2 plays a punishing strategy s�2 such
that: 8e > 0, ∃T0, 8T � T0, 8s1 � S1, 8k � K,
ak s1,s�2ð Þ � ’k + e. Such a strategy s�2 exists
because of condition (iii): it is an approachability
strategy for player 2 of the orthant {x � ℝK, 8k �
K xk � ’k} (see section “Back to the Standard
Model”).

Lemma 7 Sorin (1983) A strategy pair adapted
to an equilibrium joint plan is a uniform equilib-
rium of the repeated game.

Proof The payoffs induced by (s1�, s2�) can be
easily computed:

8k, akT s1�,s2�ð Þ!T!1
P

s� S l
k
sA

k gsð Þ ¼ ’k

because of (ii), and bpT s1�,s2�ð Þ!T!1
P

k �K pkP
s� S l

k
sB

k gsð Þ ¼ c:
Assume that player 2 plays s2�. The existence

of s̄2 implies that no detectable deviation of
player 1 is profitable, so if the state is k, player
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1 will gain no more than maxs0 � S A
k gs0ð Þ. But this

is just ’k. The proof can be made uniform in
s1 and we obtain: 8e > 0 ∃T0 8T � T0, 8k � K,
8s1 � S1, akT s1,s2�ð Þ � ’k þ � . Finally assume
that player 1 plays s1�. Condition (i) implies that if
player 2 uses s2�, the payoff of this player will be
at least vex v(ps) if the message is s. Since vex
v(ps) (= � cav(�v(ps))) is the value, from the
point of view of player 2 with payoffs (Bk)k, of
the zero-sum game with initial probability ps,
player 2 fears the punition by player 1, and
8e > 0, ∃T0, 8T � T0, 8s2 � S2, bpT s1�,s2ð Þ
�
P

s� S lscs þ � ¼ cþ e. □

To prove the existence of equilibria, we then
look for equilibrium joint plans. The first idea is to
consider, for each probability r on K, the set of
payoff vectors ’ compatible with r being an a
posteriori. This leads to the consideration of the
following correspondence (for each r, F(r) is a
subset of ℝK):

F : D Kð Þ⇉ℝK

r 7! {(Ak(g))k � K, where g � D(I � J) satisfies
B(r)(g)� vex v(r)}. It is easy to see that the graph
ofF, i.e., the set {(r,’) � D(K)�ℝK,’ � F(r)},
is compact that F has nonempty convex values
and satisfies: 8r � D(K), 8q � D(K), ∃’ � F(r),
< ’, q > � u(q).

Assume now that one can find a finite family
(ps)s� S of probabilities on K, as well as vectors ’
and, for each s, ’s in ℝK such that: (1) p � conv
{ps, s � S}, (2) < ’, q > � u(q) 8q � D(K),
(3) 8s � S, ’s � F(ps), and (4) 8s � S, 8k � K,
’k
s � ’k with equality if pks > 0. It is then easy to

construct an equilibrium joint plan. Thus, we get
interested in proving the following result.

Proposition 4 Let p be inD(K), u:D(K)!ℝ be a
continuous mapping, and F: D(K) ⇉ ℝK be a
correspondence with compact graph and non-
empty convex values such that: 8r � D(K), 8q
� D(K), ∃’ � F(r),<’, q>� u(q). Then there
exists a finite family (ps)s� S of elements of D(K), as
well as vectors ’ and, for each s, ’s inℝ

K such that:

– p � conv {ps, s � S},
– < ’, q > � u(q) 8q � D(K),
– 8s � S, ’s � F(ps),
– 8s � S, 8k � K, ’k

s � ’k with equality if pks
> 0.

The proof of Proposition 4 relies, as explained
in Renault (2000) or Simon (2002), on a fixed
point theorem of Borsuk-Ulam type proved by
Simon et al. (1995) via tools from algebraic geom-
etry. A simplified version of this fixed point theo-
rem can be written as follows:

Theorem 9 Simon et al. (1995): Let C be a
compact subset of an n-dimensional Euclidean
space, x � C and Y be a finite union of affine
subspaces of dimension n � 1 of an Euclidean
space. Let F be a correspondence from C to Ywith
compact graph and nonempty convex values.
Then there exists L � @C and y � Y such that:
8l � L, y � F (l), and x � conv (L) (Fig. 4).

Notice that for n= 1 (corresponding to 2 states
of nature), the image by F of the connected com-
ponent of C containing x necessarily is a single-
ton; hence, the result is clear. In the general case,
one finally obtains:

Theorem 10 Simon et al. (1995): There exists an
equilibrium joint plan. Thus, there exists a uni-
form equilibrium in the repeated game G(p).

Characterization of Equilibrium Payoffs
Characterizing equilibrium payoffs, as the Folk
theorem does for repeated games with complete

Repeated Games with Incomplete Information,
Fig. 4 A Borsuk-Ulam type theorem by Simon, Spież,
and Toruńczyk
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information, has been a challenging problem. We
denote here by p0 the initial probability in the
interior of D(K). We are interested in the set of
equilibrium payoffs, in the convenient following
sense:

Definition 10 Avector (a, b) in ℝK � ℝ is called
an equilibrium payoff of the repeated game G(p0)
if there exists a strategy pair (s1�, s2�) satisfying:

(i) 8e > 0 ∃T0 8T � T0, 8k � K, 8s1 � S1,
akT s1,s2�ð Þ � akT s1�,s2�ð Þ þ e, 8e > 0 ∃T0
8T � T0, 8s2 � S2, bp0T s1�,s2ð Þ � bpT s1�,s2�ð Þ
þe, and (ii) akT s1�,s2�ð Þ

� �
k,T and bp0T s1�,s2�ð Þ

� �
T

respectively converge to a and b.
Since p lies in the interior of D(K), the first line

of (i) is equivalent to: 8e> 0 ∃T0 8T� T0, 8s1 �
S1, apT s1,s2�ð Þ � apT s1�,s2�ð Þ þ e . The strategy
pair (s1�, s2�) is thus a uniform equilibrium of
the repeated game, with the additional require-
ment that expected average payoffs of player 1
converge in each state k. In some sense, player 1 is
viewed here as |K| different types or players, and
we require the existence of the limit payoff of each
type. We will only consider such uniform equilib-
ria in the sequel.

Notice that the above definition implies: 8k �
K, 8e > 0, ∃T0, 8T � T0, 8s1 � S1, akT s1,s2�ð Þ
� ak þ e. So the orthant {x � ℝK, xk � ak 8k �
K} is approachable by player 2, and by Theorem 3
and subsection “Back to the Standard Model” one
can obtain that:

< a, q > � u qð Þ 8q�D Kð Þ (4)

Condition (4) is called the individual rational-
ity condition for player 1 and does not depend on
the initial probability in the interior of D(K).
Regarding player 2, we have: 8e> 0∃T0 8T� T0,
8s2 � S2,bp0T s1�,s2ð Þ � bþ e, so by Theorem 1:

b � vex v p0ð Þ: (5)

Condition (5) is the individual rationality con-
dition for player 2: at equilibrium, this player
should have at least the value of the game where

player 1’s plays in order to minimize player 2’s
payoffs.

Imagine now that s1� is a nonrevealing strategy
for player 1 and that the players play actions with
empirical frequencies corresponding to a given
probability distribution p = (pi,j)(i,j)� I�J �
D(I � J). We will have: 8k � K, ak = �i, j pi, j
Ak(i, j) andb ¼

P
k p

k
0

P
i, j pi, j B

k i, jð Þ, and if the
individual rationality conditions are satisfied, no
detectable deviation of a player can be profitable.
This leads to the definition of the following set,
where M is the constant max{|Ak(i, j)|, |Bk(i, j)|,
(i, j) � I � J}, and ℝM = [�M, M].

Definition 11 Let G be the set of triples a,b,pð Þ
�ℝK

M � ℝM � D Kð Þ satisfying:

1. 8q � D(K), < a, q > � u(q),
2. b � vexv(p),
3. ∃p � D(I � J) s.t. b = �kp

k �i, j pi, j B
k(i, j)

and 8k � K, ak��i, j pi, j A
k(i, j) with equality

if pk > 0.
We need to considerate every possible initial

probability because the main state variable of the
model is, here also, the belief, or a posteriori, of
player 2 on the state of nature. {(a, b), (a, b, p0) �
G} is the set of payoffs of nonrevealing equilibria
of G(p0). The importance of the following defini-
tion will appear with Theorem 11 below (which
unfortunately has not led to a proof of existence of
equilibrium payoffs).

Definition 12 G� is defined as the set of elements

g ¼ a,b,pð Þ�ℝK
M � ℝM � D Kð Þ such that there

exist a probability space (O, A, Q), an increasing
sequence (F n)n � 1 of finite sub-s-algebras of A,
and a sequence of random variables (gn)n�1 =
(an, bn, pn)n�1 defined on (O, A) with values in

ℝK
M � ℝM � D Kð Þ satisfying: (i) g1 = g a.s., (ii)

(gn)n�1 is a martingale adapted to (F n)n�1,
(iii) 8n � 1, an+1 = an a.s. or pn+1 = pn a.s., and
(iv) (gn)n converges a.s. to a random variable g1
with values in G.

Let us forget for a while the component of
player 2’s payoff. A process (gn)n satisfying (ii)
and (iii) may be called a bi-martingale; it is a
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martingale such that at every stage, one of the two
components remains a.s. constant. So the set G�

can be seen as the set of starting points of con-
verging bi-martingales with limit points in G.

Theorem 11 Hart (1985) Let (a, b) be inℝK�ℝ.

a,bð Þ is an equilibrium payoff of G p0ð Þ
, a,b, p0ð Þ�G�:

Theorem 11 is too elaborate to be proved here,
but let us give a few ideas about the proof. First
consider the implication) and fix an equilibrium
s� = (s1�, s2�) of G(p0) with payoff (a, b). The
sequence of a posteriori (pt(s

�))t � 0 is a ℙ p0,s��

martingale. Modify now slightly the time struc-
ture so that at each stage, player 1 plays first, and
then player 2 plays without knowing the action
chosen by player 1. At each half-stage where
player 2 plays, his a posteriori remains constant.
At each half-stage where player 1 plays, the
“expectation of player 1’s future payoff” (which
can be properly defined) remains constant. Hence,
the heuristic apparition of the bimartingale. And
since bounded martingale converge, for large
stages everything will be fixed and the players
will approximately play a nonrevealing equilib-
rium at a “limit a posteriori,” so the convergence
will be towards elements of G.

Consider now the converse implication(. Let
(a, b) be such that (a, b, p0) � G� and assume for
simplification that the associated bi-martingale
(an, bn, pn) converges in a fixed number N of
stages: 8n � N, (an, bn, pn) = (aN, bN, pN) � G.
One can construct an equilibrium (s1�, s2�) of
G(p0) with payoff (a, b) along the following
lines. For each index n, (an, bn) will be an equi-
librium payoff of the repeated game with initial
probability pn. Eventually, player 1 will play inde-
pendently of the state, the a posteriori of player 2
will be pN, and the players will end up playing a
nonrevealing equilibrium of the repeated game
G(pN) with payoff (aN, bN). What should be
played before? Since we are in an undiscounted
setup, any finite number of stages can be used for
communication without influencing payoffs. Let
n < N be such that an + 1 = an. To move from
(an, bn, pn) to (an, bn+1, pn+1), player 1 can simply

use the splitting lemma (Lemma 1) in order to
signal part of the state to player 2. Let now
n < N be such that pn + 1 = pn, so that we want
tomove from (an,bn, pn) to (an+1, bn+1, pn). Player 1
will play independently of the state, and both
players will act so as to convexify their future
payoffs. This convexification is done through pro-
cedures called “jointly controlled lotteries” and
introduced in the sixties by Aumann andMaschler
(1995), with the following simple and brilliant
idea. Imagine that the players have to decide
with even probability whether to play the equilib-
rium E1 with payoff (a1, b1) or to play the equi-
librium E2 with payoff (a2, b2). The players may
not be indifferent between E1 and E2, e.g., player
1 may prefer E1, whereas player 2 prefers E2.
They will proceed as follows, with i and i0, respec-
tively, j and j0, denoting two distinct actions of
player 1, resp. player 2. Simultaneously and inde-
pendently, player 1 will select i or i0 with proba-
bility 1/2, whereas player 2 will behave similarly

with j and j0.
j j0

i
i0

�
�

� �
. Then the equilibrium

E1 will be played if the diagonal has been reached,
i.e., if (i, j) or (i0, j0) has been played, and otherwise
the equilibrium E2 will be played. This procedure
is robust to unilateral deviations: none of the
players can deviate and prevent E1 and E2 to be
chosen with probability 1/2. In general, jointly
controlled lotteries are procedures allowing to
select an alternative among a finite set according
to a given probability (think of binary expansions
if necessary), in a way which is robust to devia-
tions by a single player. S. Hart has precisely
shown how to combine steps of signaling and
jointly controlled lotteries to construct an equilib-
rium of G1(p0) with payoff (a, b).

Biconvexity and Bimartingales
The previous analysis has led to the introduction
and study of biconvexity phenomena. The refer-
ence here is Aumann and Hart (1986). Let X and
Y be compact convex subsets of Euclidean spaces,
and let (O,F ,P) be an atomless probability space.

Definition 13 A subset B of X � Y is biconvex if
for every x in X and y in Y, the sections Bx.= {y0 �
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Y, (x, y0) � B} and B.y= {x0 � X, (x0, y) � B} are
convex. If B is biconvex, a mapping f: B ! ℝ is
called biconvex if for each (x, y) � X � Y, f (., y)
and f (x,.) are convex.

As in the usual convexity case, we have that if
f is biconvex, then for each a in ℝ, the set {(x, y)
� B, f (x, y) � a} is biconvex.

Definition 14 A sequence of random variables
Zn = (Xn, Yn)n � 1 with values in X � Y is called
a bimartingale if:

(1) There exists an increasing sequence (F n)n � 1

of finite sub-s-algebra ofF such that (Zn)n is a
(F n)n�1-martingale.

(2) 8n � 1, Xn = Xn + 1 a.s. or Yn = Yn+1 a.s.
(3) Z1 is a.s. constant.

Notice that (Zn)n�1 being a bounded martin-
gale, it converges almost surely to a limit Z1.

Definition 15 Let A be a measurable subset of
X � Y.

A� = {z � X � Y, there exists a bimartingale
(Zn)n�1 converging to a limit Z1 such that Z1 �
A a.s. and Z1 = z a.s.}.

One can show that any atomless probability
space (O, F , P), or any product of convex com-
pact spaces X � Y containing A, induces the same
set A�. One can also substitute condition (2) by:
8n � 1, (Xn = Xn+1 or Yn = Yn+1) a.s. Notice that
without condition (2), the set A�would just be the
convex hull of A.

We always have A � A� � conv (A), and these
inclusions can be strict. For example, if
X = Y = [0, 1] and A = {(0, 0), (1, 0), (0, 1)}, it
is possible to show that A� = {(x, y) � [0,
1]� [0, 1], x= 0 or y= 0}. A� always is biconvex
and thus contains biconv (A), which is defined as
the smallest biconvex set which contains A. The
inclusion biconv (A) � A� can also be strict, as
shown by the following example:

Example 5 Put X = Y = [0, 1], u1 = (1/3, 0),
u2 = (0, 2/3), u3 = (2/3, 1), u4 = (1, 1/3),
w1 = (1/3, 1/3), w2 = (1/3, 2/3), w3 = (2/3, 2/3)
et w4 = (2/3, 1/3), and A = {v1, v2, v3, v4}
(Fig. 5).

A is biconvex, so A = biconv (A). Consider
now the following Markov process (Zn)n�1, with
Z1 = w1. If Zn � A, then Zn+1 = Zn. If Zn = wi for
some i, then Zn+1 = wi+1(mod 4) with probability
1/2, and Zn + 1 = vi with probability 1/2. (Zn)n is a
bimartingale converging a.s. to a point in A, hence
w1 � A�\biconv (A).

We now present a geometric characterization
of the set A� and assume here that A is closed. For
each biconvex subset B of X� Y containing A, we
denote by nsc(B) the set of elements of B which
cannot be separated from A by a continuous
bounded biconvex function on A. More precisely,
nsc(B) = {z � B, 8f: B ! ℝ bounded biconvex,
and continuous on A, f (z) � sup{f (z0), z0 � A}}.

Theorem 12 Aumann and Hart (1986): A� is the
largest biconvex set B containing A such that
nsc(B) = B.

Let us now come back to repeated games and
to the notations of subsection “Characterization of
Equilibrium Payoffs.” To be precise, we need to
add the component of player 2’s payoff and con-
sequently to slightly modify the definitions. G is
closed in ℝK

M � ℝM � D Kð Þ. For B � ℝK
M � ℝM

�D Kð Þ, B is biconvex if for each a in ℝK
M and for

each p inD(K), the sections {(b, p0), (a, b, p0) � B}
and {(a0, b), (a0, b, p) � B} are convex. A real
function f defined on a biconvex set B is said to be
biconvex if 8a, 8p, f(a,.,.) and f(.,., p) are convex.

Repeated Games with Incomplete Information,
Fig. 5 The “four frogs” example of Aumann and Hart:
A� 6¼ biconv (A)
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Theorem 13 Aumann and Hart (1986): G� is the
largest biconvex set B containing G such that:
8z � B, 8f: B ! ℝ bounded biconvex, and con-
tinuous on A, f (z) � sup{f (z0), z0 � G}.

Nonobservable Actions

We now consider the case where, as in the general
definition of section “Definition of the Subject and
Its Importance,” there is a signaling function q:
K � A ! D(U) giving the distributions of the
signals received by the players as a function of
the state of nature and the action profile just
played. The particular case where q(k, a) does
not depend on k is called state independent sig-
naling. The previous models correspond to the
particular case of perfect observation, where the
signals received by the players exactly reveal the
action profile played.

Theorem 1 has been generalized (Aumann and
Maschler 1995) to the general case of signaling
function. We keep the notations of section “The
Standard Model of Aumann and Maschler.” Given
a mixed action x � D(I), an action j in J and a state
k, we denote by Q(k, x, j) the marginal distribution
onU 2 of the law�i� I x(i) q(k, i, j), i.e., Q(k, x, j)
is the law of the signal received by player 2 if the
state is k, player 1 uses x and player 2 plays j. The
set of nonrevealing strategies of player 1 is then

defined as: NR pð Þ ¼ x ¼ xk
� �

k �K �D Ið ÞK ,
n

8k
�K,8k0 �K s:t: pkpk 0 > 0,8j� J ,Q k, xk , j

� �
¼

Qðk0,xk0 , jg. If the initial probability is p and player
1 plays a strategy x in NR(p) (i.e., plays xk if the
state is k), the a posteriori of player 2 will remain
a.s. constant: player 2 can deduce no information
on the selected state k. The value of the non-
revealing game becomes:

u pð Þ ¼ max
x�NR pð Þ

min
y�D Jð Þ

X
k �K

pkGk xk ,y
� �

¼ min
y�D Jð Þ

max
x�NR pð Þ

X
k �K

pkGk xk ,y
� �

,

where Gk(xk, y) = �i, j x
k(i)y( j)Gk(i, j), and the

convention u(p)=�1 if NR(p)=∅. Theorem 1
perfectly extends here: The repeated game with

initial probability p has a uniform value given by
cavu(p).

The explicit construction of an optimal strategy
of player 2 (see section “Back to the Standard
Model” here) has also been generalized to the
general signaling case (see Kohlberg 1975;
Mertens et al. 1994, part B, p.234 for random
signals).

Regarding zero-sum games with lack of infor-
mation on both sides, the results of section “Zero-
Sum Games with Lack of Information on Both
Sides” have been generalized to the case of state
independent signaling (see Mertens 1972;
Mertens and Zamir 1971, 1977). Attention has
been paid to the speed of convergence of the
value function (uT)T, and bounds are identical for
both models of lack of information on one side
and on both sides, if we assume state independent
signaling: this speed is of order 1/T 1/2 for games
with perfect observation and of order 1/T 1/3 for
games with signals (these orders are optimal, both
for lack of information on one side and lack of
information on both sides, see (Zamir 1971,
1973). For state-dependent signaling and lack of
information on one side, it was shown by Mertens
(1998) that the convergence occurs with worst
case error 	 (ln n/n)1/3.

A particular class of zero-sum repeated games
with state dependent signaling has been studied
(games with no signals, see (Mertens and Zamir
1976b; Sorin 1989; Waternaux 1983). In these
games, the state k is first selected according to a
known probability and is not announced to the
players; then after each stage both players receive
the same signal which is either “nothing” or “the
state is k.” It was shown that the maxmin and the
minmax may differ, although limT uT always
exists.

In nonzero-sum repeated games with lack of
information on one side, the existence of “joint
plan” equilibria have been generalized to the case
of state independent signaling (Renault 2000) and
more generally to the case where “player 1 can
send non revealing signals to player 2” (Simon
et al. 2002). The existence of a uniform equilib-
rium in the general signaling case is still an open
question (see Simon et al. 2008).
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Advances

1. Zero-sum games with lack of information on
one and a half side

In games with lack of information on one side, it is
important that player 1 knows not only the
selected state k, but also the a priori p. Sorin and
Zamir (1985) provide an example of a game with
lack of information on “one and a half” side with
no uniform value. More precisely, in this example
nature first chooses p in {p1, p2} according to a
known probability and announces p to player
2 only; then k is selected according to p, and
announced to player 1 only; finally the matrix
game Gk is played.

2. vT and vl as a function of p

For games with lack of information on one
side, the value function vT is a concave piecewise
linear function of the initial probability p (see
Ponssard and Sorin 1980 for more generality).
On the contrary, the discounted value vl can be
quite a complex function of p: in Example 2 of
section “Definition of the Subject and Its Impor-
tance,” Mayberry (1967) has proved that for 2/
3 < l < 1, ul is, at each rational value of p,
nondifferentiable.

3. limT

ffiffiffiffi
T

p
uT pð Þ � cavu pð Þð Þ and the normal

distribution

Convergence of the value functions (uT)T and
(ul)l has been widely studied. We have already
mentioned the speed of convergence in section
“Non-Observable Actions,” but much more can
be said.

Example 6 Standardmodel of lack of information

on one side and observable actions.K= {a, b},Ga

¼ 3 �1
�3 1

� �
andGb ¼ 2 �2

�2 2

� �
. One can

show (Mertens and Zamir 1976a) that for each
p � [0, 1], viewed as the initial probability of

state a, the sequence
ffiffiffiffi
T

p
uT (p) converges to ’(p),

where ’ pð Þ ¼ 1ffiffiffiffi
2p

p e�x2p=2, and xp satisfies 1ffiffiffiffi
2p

p
Ð xp
�1

e�x2=2dx ¼ p . So the limit of
ffiffiffiffi
T

p
uT (p) is the

standard normal density function evaluated at its
p-quantile.

The apparition of the normal distribution is by
no way an isolated phenomenon, but rather an
important property of some repeated games
(de Meyer 1996a, b, 1998, 1999; de Meyer and
Moussa Saley 2003, . . .).

4. The dual game

B. de Meyer introduced the notion of “dual
game” (see the previous references and also de
Meyer and Marino 2005; de Meyer and
Rosenberg 1999; Laraki 2002; Rosenberg 1998).
Let us now illustrate this on the standard model of
section “The Standard Model of Aumann and
Maschler.”

Let z be a parameter in ℝK. In the dual game
G�
T zð Þ, player 1 first secretly chooses the state k.

Then at each stage t � T, the players choose as
usual actions it and jt which are announced before
proceeding to the next stage. With time horizon T,
player 1’s payoff finally is 1

T

PT
t¼1 G

k it, jtð Þ � zk .
This player is thus now able to fix the state equal
to k, but has to pay zk for it. It can be shown that
the T -stage dual gameG�

T zð Þhas a value wT (z). wT

is convex and is linked to the value of the primal
game by the conjugate formula:

wT zð Þ ¼ max
p�D Kð Þ

uT pð Þ� < p, z >ð Þ, and

uT pð Þ ¼ inf
z�ℝK

wT zð Þþ < p, z >ð Þ:

And (wT)T satisfies the dual recursive formula:

wTþ1 zð Þ ¼ min
y�D Jð Þ

max
i� I

T

T þ 1

wT
T þ 1

T
z� 1

T

X
j� J

yj G
k i, jð Þ

� �
k

 !

There are also strong relations between the
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optimal strategies of the players in the primal and
dual games, and this gives a way to compute
recursively optimal strategies of the uninformed
player in the finite game (see also Heuer 1992 on
this topic).

5. Approachability

Blackwell’s approachability theorem has been
extended to infinite dimensional spaces by Lehrer
(2003a). As we saw in Theorem 6, approachabil-
ity theory has strong links with the existence of
no-regret strategies (first studied in Hart and Mas-
Colell 2000), see also Cesa-Bianchi et al. (2006);
Foster and Vohra (1999); Hart (2005); Lehrer
(2003b); Rustichini (1999) and the book Cesa-
Bianchi and Lugosi (2006), but also with conver-
gence of simple procedures to the set of correlated
equilibria (Hart and Mas-Colell 2000) and cali-
bration (Foster 1999; Lehrer 2001). The links
between merging, reputation phenomena, and
repeated games with incomplete information
have been studied in (Sorin 1997), where several
existing results are unified. And no-regret and
approachability have also been studied when the
players have bounded computational capacities
(finite automata, bounded recall strategies)
(Lehrer and Solan 2003, 2006).

6. Markov chain games with lack of information

In Renault (2006), the standard model of lack
of information, as well as the proof of Theorem 1,
is generalized to the case where the state is not
fixed at the beginning of the game but evolves
according to a Markov chain uniquely observed
by player 1 (see also Neyman (2008) for non-
observable actions). The limit value is however
difficult to compute, as shown by the following
example from Renault (2006): K = {a, b}, the

payoff matrices areGa ¼ 1 0
0 0

� �
andGb ¼ 0 0

0 1

� �
,

the initial probability is (1/2, 1/2), and the state
evolves according to the Markov chain

M ¼ a 1�a
1�a a

� �
with parameter a. If a = 1

this is Example 2, and the limit value is 1/4 by
Theorem 1.

For a � [1/2, 2/3], the limit value is a
4a�1

(Marino 2005) for a = 2/3, (Ḧorner et al. 2010).
For a � [2/3, .719], the limit value u satisfies

(Bressaud and Quas 2006): 1u ¼ u0 þ u0u1 þ u0u1
u2 þ . . . , where (un) is defined by u0 = 1 and
un + 1 = max{c(un), 1 � c(un)}, with c uð Þ ¼ 3a
�1� 2a�1

u . What is the value for a = 0.9?
In Markov chain games with lack of informa-

tion on both sides, each player privately observes
his state variable, and both state variables follow
exogenous and independent Markov chains. For
such games, the existence of the limit value limT

vT = limlvl has been proved in Gensbittel and
Renault (2015). In the case of recurrent and ape-
riodic chains, the limit value is identified as the
unique solution of the Mertens-Zamir system of
Theorem 8, with an appropriate nonrevealing
function û instead of u, corresponding to the
limit value of the auxiliary dynamic game where
each player is restricted to play strategies that
reveal no information on the recurrence class of
his own state (such a nonrevealing function was
already considered in Renault (2006)).

In the nonzero-sum context, dynamic sender-
receiver games are Markov chain games with lack
of information on one side, where the payoffs only
depend on the actions of the uninformed player.
The set of equilibrium payoffs has been charac-
terized under a homothety (random shocks)
assumption on the Markov chain (Renault et al.
2013).

7. Extension to zero-sum dynamic gameswith state
process controlled and observed by player 1

It is known since (Sorin 1984a) that the uni-
form value may not exist in general for stochastic
games with lack of information on one side on the
payoff matrices (where the payoff matrices of the
stochastic game to be played are first randomly
selected and announced to player 1 only). Rosen-
berg et al. (2004) studied stochastic games with a
single controller and lack of information on one
side on the payoff matrices, showing the existence
of the uniform value if the informed player con-
trols the transition, and providing a counter-
example if the uninformed player controls the
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transitions. One can also consider the model of
general repeated games with an informed control-
ler (Renault 2012), generalizing the model of
Markov chain games with lack of information on
one side), i.e., dynamic games with finitely many
states, actions and signals, and state processes
controlled and observed by player 1.

A general repeated game is given by: 5 non
empty finite sets: a set of states or parameters K, a
set I of actions for player 1, a set J of actions for
player 2, a set C of signals for player 1, and a set
D of signals for player 2, an initial distribution p
� D(K � C � D), a payoff function g: K � I � J
to [0, 1] for player 1, and a transition function q:
K � I � J to D(K � C � D). The progress of the
game is the following: Initially, (k1, c1, d1) is
selected according to p, player 1 learns c1 and
player 2 learns d1. Then simultaneously player
1 chooses i1 in I and player 2 chooses j1 in J, and
the payoff for player 1 at stage 1 is g(k1, i1, j1),
etc. At any stage t � 2, (kt, ct, dt) is selected
according to q(kt�1, it�1, jt�1), player 1 learns ct
and player 2 learns dt. Simultaneously, player
1 chooses it in I and player 2 chooses jt in J. The
stage payoffs are g(kt, it, jt) for player 1 and the
opposite for player 2, and the play proceeds to
stage t + 1.

In repeated games with an informed controller,
it is moreover assumed that:

1) Player 1 is fully informed, in the sense that p
and q are such that he can always deduce the
state and player 2’s signal from his own signal.

2) Player 1 controls the transition, in the sense
that the marginal �q of the transition q on K�D
does not depend on player 2’s action.

In this setup, one can prove (Renault 2012) the
existence of the uniform value u�(p), satisfying:

u� pð Þ ¼ inf
n�1

sup
m�0

um,n pð Þ ¼ sup
m�0

inf
n�1

um,n pð Þ:

where vm,n(p) is the value of the game with payoff
E p,s,t 1n

Pmþn
t¼mþ1 gt

� �
, gt being the payoff of

stage t.
Moreover, one can prove for such games the

existence of the stronger notion of “general

uniform value.” Let us first define the values vy
(p) of the dynamic game with payoff gy p,s,tð Þ
¼ E p,s,t

P
t�1ytgt

� �
, where y is an evaluation

(yt)t�1 with nonnegative weights satisfying
�t�1yt = 1, and total variation denoted by TV(-
y) = �t j yt+1 � ytj. And u�(p) is the general
uniform value of the game with initial probability
p if for each e> 0 one can find a> 0 and a couple
of strategies s� and t� such that for all evaluations
y with TV (y) � a:

8t,gy p,s�,tð Þ � v� pð Þ � e and 8s,gy p,s,t�ð Þ
� v� pð Þ þ e:

Considering only Cesaro-evaluations (i.e., of
the type yt= 1/n for t� n,=0 for t> n for some n)
recovers our Definition 1. Renault and Venel
(2017) introduce a new distance (compatible
with the weak topology) on the belief space
D(D(K)) of Borel probabilities over the simplex
X = D(K) and prove the existence of the general
uniform value in general repeated games with an
informed controller. Clearly, the values only
depend on player 2’s belief p on the initial state,
and the limit value u� can be characterized as:

8p�X ,v� pð Þ¼ inf w pð Þ,w :D Xð Þ! 0,1½ 
 affine C0s:t:
�

1. 8p0�X ,w p0ð Þ � sup
a�D Ið ÞK

w �q p0,að Þð Þ

2. 8(z, y) � RR, w(z) � y}.

where �q p,að Þ ¼
P

k �K pk �q k,ak
� �

�D K � Dð Þ
gives the marginal of q on K � D, and RR =
{(z, y) � D(X) � [0, 1], there exists a: X !
D(I)K measurable s.t.

Ð
p�X �q p, a pð Þð Þdz pð Þ ¼ z

and
Ð
p�Xminj� J (�k�K p

kg(k, ak, j)) dz(p)= y}
can be seen as the set of invariant measures and
associated payoffs. In the standard model of
Aumann and Maschler, (1) is equivalent to
w being a concave function on D(K) and (2) is
equivalent to w being not lower than the non-
revealing function u: so v� is the smallest concave
function above u, and we recover the cavu theo-
rem (Theorem 1).

Finally, the existence of the uniform value has
been generalized to the case where Player
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1 controls the transitions and is more informed
than player 2 (but player 1 does not necessarily
observe the current state) in Gensbittel
et al. (2014).

8. Symmetric information

Another model deals with the symmetric case,
where the players have an incomplete, but identi-
cal, knowledge of the selected state. After each
stage, they receive the same signal, which may
depend on the state. A. Neyman and S. Sorin have
proved the existence of equilibrium payoffs in the
case of two players (see Neyman and Sorin 1998,
the zero-sum case being solved in Forges 1982;
Kohlberg and Zamir 1974).

This result does not extend to the case where
the stage evolves from stage to stage, i.e., to
stochastic games with incomplete information.
In the zero-sum symmetric information case
where at the end of each stage, the players observe
both actions but receive no further information on
the current state (hidden stochastic games), B.
Ziliotto provided in his PhD thesis an example
where limTvT and limlvl may fail to exist
(Ziliotto 2016).

One can also consider zero-sum general
repeated games with payoffs defined by the
expectation of a Borel function over plays. In the
public case where he players have the same infor-
mation at the end of every stage, the value exists
(Gimbert et al. 2016).

9. Continuous-time approach

A continuous time approach can also be used
to prove convergence results in general zero-sum
repeated games, and in particular Theorem 7,
embedding the discrete repeated game into a con-
tinuous time game and using viscosity solution
tools (Cardaliaguet et al. 2012). A generalization
of the cavu theorem (Theorem 1) to infinite action
spaces and partial information can be found in
Gensbittel (2015), using a probabilistic method
based on martingales and a functional method

based on approximation schemes for viscosity
solutions of Hamilton Jacobi equations.

10. The operator approach for zero-sum games

Repeated games with incomplete information,
as well as stochastic games, can also be studied in
a functional analysis setup called the operator
approach. This general approach is based on the
study of the recursive formula (Laraki 2001b;
Rosenberg and Sorin 2001; Sorin 2002).

11. Uncertain duration

One can consider zero-sum repeated games
with incomplete information on both sides and
uncertain duration. In these games, the payoff to
the players is the sum of their stage payoffs, up to
some stopping time ywhich may depend on plays,
divided by the expectation of y. Theorem 8 here
generalizes to the case of public uncertain dura-
tion process (as E yð Þ ! 1, with a convergence

inO 1=E
ffiffiffi
y

p� �� �
, see Neyman and Sorin (2010).

The situation is different if one allows for private
uncertain duration processes: any number
between the maxmin cavIvexIIu(p, q) and the
minmax vexIIcavIu(p, q) is the value of a long
finitely repeated game GTwhere players’ informa-
tion about the uncertain number of repetitions T is
asymmetric (Neyman 2012).

12. Frequent actions

One can consider a repeated game with incom-
plete information and fixed discount factor, where
the time span between two consecutive stages is
1/n. In the context of zero-sum Markov chain
games of lack of information on one side,
Cardaliaguet et al. (2016) show the existence of
a limit value when n goes to +1; this value is
characterized through an auxiliary stochastic opti-
mization problem and, independently, as the solu-
tion of an Hamilton-Jacobi equation.
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13. Repeated market games with incomplete
information

De Meyer and Moussa Saley studied the
modelization via Brownian motions in financial
models (de Meyer and Moussa Saley 2003). They
introduced a marked game based on a repeated
game with lack of information on one side and
showed the endogenous apparition of a Brownian
motion (see also de Meyer and Marino 2004 for
incomplete information on both sides, and de
Meyer 2010).

14. Cheap-talk and communication

In the nonzero-sum setup of section “Non
Zero-Sum Games with Lack of Information on
One Side,” it is interesting to study the number
of communication stages which is needed to con-
struct the different equilibria. This number is
linked with the convergence of the associated
bimartingales (see Aumann and Hart 1986;
Forges 1984, 1990; Aumann and Maschler
1995). Let us mention also that F. Forges (1988)
gave a similar characterization of equilibrium
payoffs, for a larger notion of equilibria called
communication equilibria (see also Forges 1985
for correlated equilibria). Amitai (1996b) studied
the set of equilibrium payoffs in case of lack of
information on both sides. Aumann and Hart
(2003) characterized the equilibrium payoffs in
two player games with lack of information on
one side when long, payoff-irrelevant, preplay
communication is allowed (see Amitai 1996a for
incomplete information on both sides).

15. Known own payoffs

The particular nonzero-sum case where each
player knows his own payoffs is particularly
worthwhile studying. In the two-player case with
lack of information on one side, this amounts to
say that player 2’s payoffs do not depend on the
selected state. In this case, Shalev (1994) showed
that any equilibrium payoff can be obtained as the
payoff of an equilibrium which is completely
revealing. This result generalizes to the nonzero-
sum case of lack of information of both sides (see

the unpublished manuscript Koren 1992), but uni-
form equilibria may fail to exist even though both
players known their own payoffs.

16. More than 2 players

Few papers study the case of more than
2 players. The existence of uniform equilibrium
has been studied for 3 players and lack of infor-
mation on one side (Renault 2001a), and in the
case of two states of nature it appears that a
completely revealing equilibria, or a joint plan
equilibria by one of the informed players, always
exists. Concerning n-player repeated games with
incomplete information and signals, several
papers study how the initial information can be
strategically transmitted, independently of the
payoffs (Renault 2001b; Renault et al. 2014;
Renault and Tomala 2004, 2008), with crypto-
graphic considerations. As an application, the
existence of completely revealing equilibria, i.e.,
equilibria where each player eventually learns the
state with probability one, is obtained in particular
cases (see also Ḧorner et al. 2011 for the related
notion of “belief-free” equilibria).

17. Perturbations of repeated games with com-
plete information

Repeated games with incomplete information
have been used to study perturbations of repeated
games with complete information (see Cripps and
Thomas 2003; Fudenberg and Maskin 1986) for
Folk theorem-like results (Aumann and Sorin
1989), for enforcing cooperation in games with a
Paretodominant outcome, and (Israeli 2010) for a
perturbation with known own payoffs). The case
where the players have different discount factors
has also been investigated (Cripps and Thomas
2003; Lehrer and Yariv 1999).

Future Directions

Several open problems are well formulated and
deserve attention. Does a uniform equilibrium
always exist in two-player repeated games with
lack of information on one side and general
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signaling or in n-player repeated games with lack
of information on one side? Does the limit value
always exist in zero-sum repeated games with
incomplete information and signals? More con-
ceptually, one should look for classes of n-player
repeated games with incomplete information
which allow for the existence of equilibria,
and/or for a tractable description of equilibrium
payoffs (or at least of some of these payoffs).
Regarding applications, there is certainly a lot of
room in the vast fields of financial markets, cryp-
tology, learning, and sequential decision
problems.
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