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Abstract

The odds-ratio measure is widely used in Health and Social sur-
veys where the aim is to compare the odds of a certain event between
a population at risk and a population not at risk. It can be defined
using logistic regression through an estimating equation that allows
a generalization to continuous risk variable. Data from surveys need
to be analyzed in a proper way by taking into account the survey
weights. Because the odds-ratio is a complex parameter, the analyst
has to circumvent some difficulties when estimating confidence inter-
vals. The present paper suggests a nonparametric approach that can
take advantage of some auxiliary information in order to improve on
the precision of the odds-ratio estimator. The approach consists in
B-spline modelling which can handle the nonlinear structure of the
parameter in a flexible way and is easy to implement. The variance
estimation issue is solved through a linearization approach and confi-
dence intervals are derived. Two small applications are discussed.
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1 Introduction

In health and social surveys, the Odds Ratio (OR) is used to quantify the
association between the levels of a response variable Y and a risk variable
X. The value taken by Y is yi and the value taken by X is xi for the i-th
individual in a population U = {1, . . . , N}. Let pi = P (Y = 1|X = xi) and
the logistic regression

logit(pi) = log
pi

1− pi
= β0 + β1xi, i ∈ U

implying that pi = exp(β0 + β1xi)(1 + exp(β0 + β1xi))
−1. The odds ratio is

defined as [Agresti, 2002]:

OR =
odds(Y = 1|X = xi + 1)

odds(Y = 1|X = xi)
= exp β1, (1)

where odds(Y = 1|X = xi+1) = P (Y = 1|X = xi+1)/P (Y = 0|X = xi+1).
The estimator of the parameter β1 is obtained as a solution of a popula-

tion estimating equation. Then, the method suggested in Binder [1983] can
be used to estimate β1 with survey data. In the context of surveys, Korn and
Graubard [1999] and Heeringa et al. [2017] give details and examples of esti-
mating an odds ratio but without taking into account auxiliary information.
Concerning auxiliary information, Korn and Graubard [1999], p. 169-170,
advocate the use of weighted odds ratios and Rao et al. [2002] suggest using
poststratification information to estimate parameters of interest obtained
as solutions of estimating equations. In the present paper, we propose to
study the estimation of the odds ratio parameter when auxiliary information
is available. Results are derived from Goga and Ruiz-Gazen [2014] who use
auxiliary information to estimate nonlinear parameters through nonparamet-
ric methods. The solutions of estimating equations are particular nonlinear
parameters but Goga and Ruiz-Gazen [2014] give few details for such esti-
mators.

In Section 2, we propose a B-spline nonparametric estimator for the odds-
ratio. In Section 3, we use linearization to derive the asymptotic variance of
the estimator under broad assumptions. We also suggest a variance estimator
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and give asymptotic normal confidence intervals. In Section 4, we illustrate
our approach on two real data sets and conclude in Section 5 with a short
discussion.

2 Odds ratio estimation in surveys using B-

spline regression

2.1 Maximum likelihood estimation at the population
level

In order to estimate the parameter OR, we estimate first the regression coeffi-
cient β = (β0, β1)

′ by β̂ = (β̂0, β̂1)
′, where ′ denotes the transpose, and obtain

the estimator ÔR = exp β̂1. The estimators of the regression parameters β0
and β1 are obtained by maximization of the population likelihood:

L(y1, . . . , yN ;β) =
∏
i∈U

pyii (1− pi)1−yi .

Let xi = (1 xi)
′ and µ(x′iβ) = exp(x′iβ)(1+exp(x′iβ))−1. Under the logistic

regression model, the maximum likelihood estimator of β satisfies:∑
i∈U

xi(yi − µ(x′iβ)) = 0 (2)

or
∑

i∈U ti(β) = 0 with ti(β) = xi(yi − µ(x′iβ)).This equation is called also
the score equation and ti(β) the score function. The regression estimator of
β is defined as an implicit solution of the estimating equation (2) and we use
iterative methods such as the Newton-Raphson algorithm to compute it.

2.2 Estimation at the sample level using B-spline non-
parametric models

For a sample s selected from the population U according to a sample design
p(·) , we denote by πi > 0 the probability of unit i to be selected in the
sample and πij > 0 the joint probability of units i and j to be selected in the
sample with πii = πi. We look for an estimator of β and of OR taking the
auxiliary variable Z, with values z1, . . . , zN , into account.
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The regression coefficient β is a nonlinear finite population function of
totals defined by the implicit equation (2). The functional method by Deville
[1999], extended to the nonparametric case by Goga and Ruiz-Gazen [2014],
is used to build a nonparametric estimator of β. Let M =

∑
i∈U δyi be the

finite measure assigning the unit mass to each yi, i ∈ U , and zero elsewhere,
where δyi is the Dirac function at yi, δyi(y) = 1 for y = yi and zero elsewhere.
Consider also the functional T defined by

T (M ;β) =
∑
i∈U

xi(yi − µ(x′iβ)) =
∑
i∈U

ti(β). (3)

Then, the regression coefficient β is the solution of the implicit equation

T (M ;β) = 0. (4)

The measure M may be estimated by using the Horvitz-Thompson weights
di = 1/πi or the linear calibration weights [Deville, 1999]. The functional
method allows us to use nonparametric weights for estimating the logistic
regression coefficient. Remark that the method is general and may be applied
for any parameter β defined as a solution of estimating equations.
Goga [2005] suggests using nonparametric weights based on B-spline regres-
sion to estimate totals for variables which are related nonlinearly to the
auxiliary information and Goga and Ruiz-Gazen [2014] suggest penalized B-
spline regression to estimate totals or nonlinear parameters such as a Gini
index. The B-splines functions [Dierckx, 1995] are known for their flexibility
to model nonlinear trend in the data and by their numerical stability and
ease of implementation. Let B1, . . . , Bq, where q = m + K denote the B-
spline functions of degree m and with K interior knots. Then, the B-spline
nonparametric weights [Goga, 2005] are given by:

wbis = di

(∑
k∈U

b(zk)

)′(∑
k∈s

dkb(zk)b
′(zk)

)−1
b(zi), (5)

where b(zi) = (B1(zi), . . . , Bq(zi))
′. The weights wbis depend only on the

auxiliary variable and are similar to calibration weights [Deville and Särndal,
1992]. They allow to estimate exactly the population size N,

∑
i∈sw

b
is = N,

and the total of the auxiliary variable Z,
∑

i∈sw
b
iszi =

∑
i∈U zi. We use here

wbis to estimate the logistic regression coefficient and the odds ratio efficiently.

More exactly, we estimate M by M̂ =
∑

i∈sw
b
isδyi . Plugging M̂ into the
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functional expression of β given by (4) yields the B-spline nonparametric

estimator β̂ of β:

T (M̂ ; β̂) = 0, (6)

which means that β̂ is the solution of the implicit equation
∑

i∈sw
b
isxi(yi −

µ(x′iβ̂)) = 0.

An iterative Newton-Raphson method is used to compute β̂. Consider for
that the derivative of the functional T given in (3) with respect to β :

∂T

∂β
= −

∑
i∈U

ν(x′iβ)xix
′
i = X′Λ(β)X := J(β), (7)

with X = (x′i)i∈U and Λ(β) = −diag(ν(x′iβ)) with ν(x′iβ) = µ(x′iβ)(1 −
µ(x′iβ)). The 2× 2 matrix X′Λ(β)X is invertible and J(β) is definite nega-
tive. From (7), the matrix J(β) is unknown and may be estimated by using
the nonparametric weights wbis:

Ĵw(β) = −
∑
i∈s

wbisν(x′iβ)xix
′
i = X′sΛ̂(β)Xs, (8)

where Λ̂(β) = −diag(wbisν(x′iβ))i∈s and Xs = (x′i)i∈s. Then, the r-th step of
the Newton-Raphson algorithm is:

β̂r = β̂r−1 − Ĵw(β̂r−1)T (M̂ ; β̂r−1), (9)

where β̂r−1 is the value of β̂ obtained at the (r − 1)-th step. Ĵw(β̂r−1)

is the value of Ĵw(β) and T (M̂ ; β̂r−1) the value of T (M̂ ;β) evaluated at

β = β̂r−1. Iterating to convergence produces the nonparametric estimator β̂

and the estimated Jacobian matrix Ĵw(β̂). The odds ratio is estimated by

ÔR = exp(β̂1) and Ĵw(β̂) is used in Section 3 to estimate the variance of β̂.

3 Variance estimation and confidence inter-

vals

3.1 Asymptotic variance of the B-spline estimator of
OR

The coefficient β of the logistic regression defined in (2) is a nonlinear func-
tion of totals and the nonparametric weights wbis add even more nonlinearity.
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We approximate β̂ in (6) by a linear estimator in two steps: we first treat the
nonlinearity due to β, and second the nonlinearity due to the nonparametric
estimation. This procedure is different from Deville [1999]. From the implicit

function theorem, there exists a unique functional T̃ such that

T̃ (M) = β and T̃ (M̂) = β̂. (10)

The functional T̃ is Fréchet differentiable with respect to M . The derivative
of T̃ with respect to M , called the influence function, is defined by

IT̃ (M, ξ) = lim
λ→0

T̃ (M + λδξ)− T̃ (M)

λ
,

where δξ is the Dirac function at ξ. Under the assumptions given in Goga
and Ruiz-Gazen [2014], we obtain the following first-order expansion:

T̃ (M̂) = T̃ (M) +
∑
i∈U

(wbis − 1)IT̃ (M, yi) + op(n
−1/2). (11)

For i ∈ U , IT̃ (M, yi) = ui is called the linearized variable of T̃ (M) = β
and equals:

ui = −
(
∂T

∂β

)−1
IT (M, yi;β) = − (X′Λ(β)X)

−1
xi(yi − µ(x′iβ))

= −J−1(β) · ti(β). (12)

The linearized variable ui = (ui,0, ui,1)
′ is a two-dimensional vector de-

pending on the unknown parameter β and on totals contained in the ma-
trix J(β). The second component ui,1 of ui is the linearized variable of
β1. Note that with a binary variable X, the odds ratio is given by OR =
(N00N11)/(N01N10) where N00, N01, N10, and N11 are the population counts
associated with the contingency table. In this case, the linearized variable of
β1 has the expression:

ui,1 =
1{xi=0,yi=0}

N00

+
1{xi=1,yi=1}

N11

−
1{xi=1,yi=0}

N10

−
1{xi=0,yi=1}

N01

(13)

and the same expression is obtained from (12) after some algebra.
Relation (11) may be written as:

β̂ − β '
∑
i∈s

wbisui −
∑
i∈U

ui, (14)
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namely, the B-spline nonparametric regression estimator β̂ is approximated
by the weighted estimator

∑
i∈sw

b
isui of the finite population total of the

linearized variable ui. In the following, the aim is to derive the asymptotic
variance of β̂.

Using the weights di instead of wbis in (14) implies that the asymptotic
variance of β̂ is:

AV(β̂) = Var

(∑
i∈s

diui

)
=

∑
i∈U

∑
j∈U

(πij − πiπj)didjuiu′j

= J−1(β) Var(t̂d(β)) J−1(β), (15)

where Var(t̂d(β)) is the variance of t̂d(β) =
∑

i∈s diti(β) with ti(β) = xi(yi−
µ(x′iβ)):

Var(t̂d(β)) = Var

(∑
i∈s

diti(β)

)
=
∑
i∈U

∑
j∈U

(πij − πiπj)didjti(β)t′j(β). (16)

Note that Binder [1983] gives the same asymptotic expression for the vari-
ance.

For B-spline basis functions formed by step functions on intervals between
knots (m = 1), the weights wbis yield the post-stratified estimator of β [Rao
et al., 2002]. Linear calibration weights lead to the case treated by Deville
[1999]. Consider now the general case of nonparametric weights wbis given
in (5), then the right hand side of (14) is a nonparametric estimator for the
total of the linearized variable ui and a supplementary linearization step is
needed. It can be written as a generalized regression estimator (GREG):∑

i∈s

wbisui −
∑
i∈U

ui =
∑
i∈s

di(ui − θ̂
′
ub(zi))−

∑
i∈U

(ui − θ̂
′
ub(zi)),

where θ̂u = (
∑

i∈s dib(zi)b
′(zi))

−1(
∑

i∈s dib(zi)u
′
i). In order to derive the

asymptotic variance of the nonparametric estimator of β, we assume that
||xi|| < C for all i ∈ U with C a positive constant independent of i and
N , and || · || is the Euclidian norm. Then, the linearized variable verifies
N ||ui|| = O(1) uniformly in i, because

N ||ui|| ≤ ||NJ−1(β)||2 ||xi|| |yi − µ(x′iβ))| = O(1).

where the matrix norm || · ||2 is defined by ||A||22 = tr(A′A).
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Under the assumptions of Theorem 7 in Goga and Ruiz-Gazen [2014] on
theB-splines functions and the sampling design, the nonparametric estimator∑

i∈sw
b
isui is asymptotically equivalent to∑

i∈s

wbisui −
∑
i∈U

ui '
∑
i∈s

di(ui − θ̃
′
ub(zi))−

∑
i∈U

(ui − θ̃
′
ub(zi)), (17)

where θ̃u = (
∑

i∈U b(zi)b
′(zi))

−1∑
i∈U b(zi)u

′
i. This states that the B-spline

nonparametric estimator of
∑

i∈U ui is asymptotically equivalent to the gen-
eralized difference estimator. We interpret this result as fitting a nonpara-
metric model on the linearized variable ui taking into account the auxiliary
information zi. Nonparametric models are a good choice when the linearized
variable obtained from the first linearization step does not depend linearly
on zi, as it is the case in the logistic regression, which implies a second
linearization step.

Putting together (14) and (17), we can approximate the variance of β̂ by

the Horvitz-Thompson variance of the residuals ui − θ̃
′
ub(zi),

AV(β̂) =
∑
i∈U

∑
j∈U

(πij − πiπj)didj
(
ui − θ̃

′
ub(zi)

)(
uj − θ̃

′
ub(zj)

)′
. (18)

The B-spline nonparametric fitting allows large flexibility and implies that

the residuals ui− θ̃
′
ub(zi) have a smaller dispersion than with a linear fitting

regression.
We write the asymptotic variance in (18) in a matrix form similar to (15).

We have
ui − θ̃

′
ub(zi) = −J−1(β)

(
ti(β)− θ̃

′
tb(zi)

)
with

θ̃t = (
∑
i∈U

b(zi)b
′(zi))

−1
∑
i∈U

b(zi)t
′
i(β)

and ti the score functions. Then, the asymptotic variance of β̂ becomes:

AV(β̂) = J−1(β) Var(êd(β)) J−1(β) (19)

where êd(β) =
∑

i∈s diei(β) is the Horvitz-Thompson estimator of the resid-

ual ei(β) = ti(β)− θ̃
′
tb(zi) of ti(β) using B-spline nonparametric estimation

and Var(êd(β)) is obtained as in (16). Result given in (19) shows that im-
proving the estimation of β is equivalent to improving the estimation of the
score functions ti = xi(yi − µ(x′iβ)).
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3.2 Variance estimation and confidence interval for the
odds ratio

The linearized variable ui is unknown and is estimated by:

ûi = −Ĵ−1w (β̂) xi(yi − µ(x′iβ̂)) = −Ĵ−1w (β̂) t̂i

where the matrix Ĵw is computed according to (8) and t̂i is the estimation

of ti(β) with β = β̂. Assuming that all πij > 0, the asymptotic variance

AV(β̂) given in (18) or (19) is estimated by the Horvitz-Thompson variance
estimator with ui replaced by ûi:

V̂ (β̂) =
∑
i∈s

∑
j∈s

πij − πiπj
πij

didjûiû
′
j = Ĵ−1w (β̂) V̂ht(êd(β̂)) Ĵ−1w (β̂) (20)

where V̂ht(êd) is the Horvitz-Thompson variance estimator of êd(β̂) =∑
i∈s diêi(β̂) with êi(β̂) = t̂i−θ̂

′
t̂b(zi) and θ̂t̂ = (

∑
i∈s dib(zi)b

′(zi))
−1∑

i∈s dib(zi)t̂
′
i.

The variance estimator of β̂1 is obtained from (20) as:

V̂ (β̂1) = Ĵ−1w (β̂) V̂ht(êd,2(β̂)) Ĵ−1w (β̂),

where êd,2(β̂) is the second component of êd(β̂) so that, under regularity
conditions, the (1− α)% normal interval for OR is:

CI1−α(OR) =

[
exp

(
β̂1 − zα/2

(
V̂ (β̂1)

)1/2)
, exp

(
β̂1 + zα/2

(
V̂ (β̂1)

)1/2)]
,

where zα/2 is the upper α/2-quantile of aN (0, 1) variable. It is not symmetric
around the estimated odds ratio but provides more accurate coverage rates
of the true population value for a specified α [Heeringa et al., 2017]).

4 Two small applications

We compare the asymptotic variance of different estimators of the odds ratio
in the simple case of one binary risk variable using two data sets. As previ-
ously mentioned, in this context, the odds ratio is a simple function of four
counts. We focus on the simple random sampling without replacement and
compare three estimators. The first one is the Horvitz-Thompson estimator
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which does not use the auxiliary variable and whose asymptotic variance is
given by (15). The second estimator is the generalized regression estimator
which takes the auxiliary variable into account through a linear model, fitting
the linearized variable against the auxiliary variable. The third estimator is
the B-spline calibration estimator with an asymptotic variance given by (19).
In order to gain efficiency, the auxiliary variable has to be related to the lin-
earized variable. In the context of one binary factor, the linearized variable
is given by (13) and takes four different values, which depend on the values of
the variables X and Y . In order to be related to the linearized variable, the
auxiliary variable has to be related to the product of the two variables X and
Y , which is a strong property. Moreover, because ui,1, X, and Y are discrete,
using auxiliary information does not necessarily lead to an important gain
in efficiency as illustrated by the first health survey example. The gain in
efficiency however is significant in some other cases. In the second example
using labor survey data, the gain in using the B-splines calibration estima-
tor compared to the Horvitz-Thompson estimator is significant because the
auxiliary variable is related to the variable Y but also to the factor X; X
and Y being related to one another, too.

Example from the California Health Interview Survey
The data set comes from the Center for Health Policy Research at the

University of California. It was extracted from the adult survey data file of
the California Health Interview Survey in 2009 and consists of 11074 adults.
The response dummy variable equals one if the person is currently insured;
the binary factor equals one if the person is currently a smoker. The auxiliary
variable is age and we consider people who are less than 60 years old. The
data are presented in detail in Lumley [2011].

We compare the Horvitz-Thompson, the generalized regression, and the
B-splines calibration estimators in terms of asympotic variance. In order
to calculate the B-splines functions, we use the SAS procedure transreg and
take K = 15 knots and B-splines of degree m = 3. The gain in using the
generalized regression estimator compared to the Horvitz-Thompson estima-
tor is only 0.01%. It is 1.5% when using B-splines instead of the generalized
regression. When changing the number of knots and the degree of the B-
spline functions, the results remain similar and the gain remains under 2%.
In this example, there is no gain in using auxiliary information even with
flexible B-splines, because the auxiliary variable is not related enough to the
linearized variable. The linearized variable takes negative values for smokers
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without insurance and non smokers with insurance, positive values for smok-
ers with insurance and non smokers without insurance. Age is not a good
predictor for this variable, because we expect to find sufficient people of any
age in each of the four categories (smokers/non smokers × insurance/no in-
surance). Incorporating this auxiliary information brings no gain.

Example from the French Labor Survey
We consider 14621 wage-earners under 50 years of age, from the French

labour force survey. The initial data set consists of monthly wages in 2000
and 1999. A dummy variable W00 equals one if the monthly wage in 2000
exceeds 1500 euros and zero otherwise. The same for W99 in 1999. The
population is divided in lower and upper education groups. The value of the
categorical factor DIP equals one for people with a university degree and
zero otherwise. W00 corresponds to the binary response variable Y while
the diploma variable DIP corresponds to the risk variable X. The variable
W99 is the auxiliary variable Z. In this context, the odds ratio is a simple
function of four counts. We focus on the simple random sampling without
replacement and compare three estimators. The first one is the Horvitz-
Thompson estimator which does not use the auxiliary variable and whose
asymptotic variance is given by (15). The second estimator is the generalized
regression estimator which takes the auxiliary variable into account through
a linear model, fitting the linearized variable against the auxiliary variable.
The third estimator is the B-spline calibration estimator with an asymptotic
variance given by (19).

To compare the Horvitz-Thompson estimator with the generalized regres-
sion estimator and the B-splines calibration estimator, we first calculate the
gain in terms of asymptotic variance. We consider K = 15 knots and the
degree m = 3. The gain in using the generalized estimator compared to
the Horvitz-Thompson estimator is 20%. It is 33% when using B-splines.
The result is almost independent of the number of knots and, of the degree
of B-spline functions. When the total number of knots varies from 5 to 50
and the degree varies from 1 to 5, the gain is between 32% and 34%. The
nonlinear link between the linearized variable of a complex parameter with
the auxiliary variable explains the gain in using a nonparametric estimator
compared to an estimator based on a linear model [Goga and Ruiz-Gazen,
2014]. For the odds ratio with one binary factor, the linearized variable is
discrete and the linear model does not fit the data.
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5 Discussion

In the presence of one auxiliary variable known for all the population units, a
B-splines approach is easy to implement and can improve on the precision of
the Horvitz-Thompson estimator for an odds-ratio parameter if the auxiliary
variable is well related with the variable of interest. It is possible to take into
account more than one auxiliary variable by using some generalized additive
model and consider some B-splines estimator as proposed above for each of
the additive components. The theory however needs further development.

Acknowledgement: we thank Benôıt Riandey for drawing our attention to
the odds ratio.
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