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Abstract

When they grow in size, knowledge bases (KBs) tend to include sets of axioms which

are intuitively absurd but nonetheless logically consistent. This is particularly true

of data expressed in OWL, as part of the Semantic Web framework, which favors the

aggregation of set of statements from multiple sources of knowledge, with overlapping

signatures.

Identifying nonsense is essential if one wants to avoid undesired inferences, but

the sparse usage of negation within these datasets generally prevents the detection

of such cases on a strict logical basis. And even if the KB is inconsistent, identifying

the axioms responsible for the nonsense remains a non trivial task.

This thesis investigates the usage of automatically gathered linguistic evidence in

order to detect and repair violations of common sense within such datasets. The main

intuition consists in exploiting distributional similarity between named individuals of

an input KB, in order to identify consequences which are unlikely to hold if the rest

of the KB does. Then the repair phase consists in selecting axioms to be preferably

discarded (or at least amended) in order to get rid of the nonsense.

A second strategy is also presented, which consists in strengthening the input KB

with a foundational ontology, in order to obtain an inconsistency, before performing a

form of knowledge base debugging/revision which incorporates this linguistic input.
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This last step may also be applied directly to an inconsistent input KB.

These propositions are evaluated with diferent sets of statements issued from

the Linked Open Data cloud, as well as datasets of a higher quality, but which were

automatically degraded for the evaluation. The results seem to indicate that distri-

butional evidence may actually constitute a relevant common ground for deciding

between conĆicting axioms.
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Chapter 1

Introduction

A knowledge base (KB) may be described as an elaborated form of database, more

expressive than a traditional relational database (RDB), with a focus on (mostly

deductive) reasoning, in order for instance to infer additional knowledge out of the

explicitly expressed one.

As a very simple illustration, just like a RDB, a KB may express the fact that

ŞReva Gerstein was born in TorontoŤ. In Ąrst-order logic (FOL), this could be ex-

pressed with the formula:

(1) birthplace(Reva Gerstein, Toronto)

This is actually a real statement, extracted from the KB DBPedia [MJB12],1 as well

as all examples used in this introduction, unless explicitly mentioned. The nota-

tion is simpliĄed here for readability: each predicate (like birthplace) or individual

constant (like Reva Gerstein) has a longer and non-ambiguous identiĄer in this KB

(precisely, an IRI 2), such that no confusion can be made with another Reva Ger-

1DBpedia will be introduced in more details in Chapter 5 Section 5.1.1
2For “Internationalized Resource Identifier”. IRIs are extensions of URIs (“Universal Resource

Identifiers”) to Unicode characters.
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stein, another Toronto, or another birthplace. Similarly, the following statement

expresses the fact that the occupation of Reva Gerstein is Psychologist.

(2) occupation(Reva Gerstein, Psychologist)

A predicate may appear in multiple statements. For instance, birthplace and

occupation also appear in the following ones:

(3) birthplace(Rob Shuter, Birmingham)

(4) occupation(Rob Shuter, Gossip columnist)

A KB may also express the fact that the second argument of the predicate birthplace

is a place, i.e.:

(5) ∀�, � : birthplace(�, �)⊃ Place(�)

In this case, it can be inferred that Toronto and Birmingham are instances of the

predicate Place, i.e. the formulas Place(Toronto) and Place(Birmingham) are con-

sequences of statements 1 to 5, although they are not explicitly stated in the KB.

Explicitly stated formulas like statements 1 to 5 are often called axioms in the knowl-

edge representation community, and this is also the terminology adopted in this

thesis. As a further illustration, here are a few additional axioms:3

(6) ∀� : Place(�)⊃ ¬Agent(�)

(7) ∀�, � : knownFor(�, �)⊃ Person(�)

(8) ∀� : Person(�)⊃ Agent(�)

Now let us assume that axioms 1 to 8 are extended with an additional axiom ã =

knownFor(Toronto,Canadian National Tower).4 Then the KB composed of these 9

3still extracted from DBpedia
4ã is not a real DBpedia statement, which is the only reason why it is not designated with axiom

9 here.
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axioms is logically inconsistent: Agent(Toronto) is a consequence of axioms ¶7, 8♢ ∪

¶ã♢, but from axioms ¶1, 5, 6♢, one may also infer ¬Agent(Toronto).

Important eforts have been devoted in the last 15 years to the promotion of such

forms of knowledge representation (see [HKR09]). In particular, successful standards

for data exchange have been designed, the most inĆuential being arguably the ones

developed by the W3C, as part of the Semantic Web (SW) project.

An important advantage of KBs and logic-based knowledge representation lan-

guages is Ćexibility. A KB can not only be viewed, but also manipulated as a set

of logical statements: axioms can be added, deleted or edited, with very few con-

straints other than being syntactically valid. For instance, in the above example, the

inconsistency can be solved by directly editing the axioms of the KB. Among other

possibilities,5 one may decide to get rid of axiom 7, 8 or ã, or even weaken axiom

5 into ∀�, � : birthplace(�, �) ⊃ (Place(�) ∨ Organization(�)). An important

diference from RDBs is that both the data (sometimes called the ABox, i.e axioms

¶1, 2, 3, 4♢∪¶ã♢ above) and the data schema (sometimes called the TBox, i.e. axioms

{5,6,7,8}) of a KB may be edited. In contrast, the data schema of a RDB is viewed

as constraining the data, and cannot be easily updated without compromising the

data.

Another important advantage is modularity (see for instance [SSZ09] for an in-

troduction). It is possible in theory to build a KB for a given application out of

fragments of other KBs. For instance, in the above example, one may be inter-

ested in knowledge pertaining to the city of Toronto only, in which case only axioms

{1,5,6,7,8} and ã are relevant (the case of (2) remains debatable). Other Toronto

related axioms may be added from other source KBs, provided they are expressed

5Potentially an infinite number of them, if “solving the inconsistency” is not defined more for-
mally. This notion will be made more precise in the following.
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in the same logic (or a less expressive one), yielding a Toronto focused KB. Ideally,

if the overlap in the signatures of the diferent source KBs goes beyond Toronto, i.e.

if other predicates or individual constants are shared by these sources (e.g. Agent,

birthPlace or Reva Gerstein), some additional knowledge may be inferred from the

Toronto KB, which could not be inferred from the source KBs individually. This

is one of the reasons why shared vocabularies among KBs (or alternatively align-

ments6 between the signatures of diferent KBs, see [ESo07]) are at the core of the

SW project.

Flexibility and modularity can both be viewed as a blessing and a curse though.

When they grow in size or integrate axioms from multiple sources, KBs also tend to

have undesired properties, one of the most obvious ones being logical inconsistency,

illustrated above. But a consistent KB may have undesired properties as well. These

may be computational: for instance, in some very expressive Description Logics

(such as �ℛ�ℐ�, described in [HKS06]), even if all axioms of a consistent KB are

syntactically valid when considered individually, this may not be suicient to ensure

decidability of entailment, and additional syntactic constraints on the KB as a whole

may need to be respected. Even in less expressive logics, some (diferent) constraints

on the KB as a whole may be needed in order to ensure tractability of some reasoning

tasks.

But a consistent KB may also have undesired semantic properties, which is the

focus of the work presented in this thesis. As an illustration, consider the above

6 A set � of alignments is a set of formulas expressing equivalence (or sometimes subsumption)
between predicates or individual constants from the signatures of two KBs �1 and �2. For instance,
an alignment may express the fact that the predicate PhysicalPlace in �1 is equivalent to the
predicate Place in �2, or more specific. More complex alignments are also possible, involving
multiple predicates or individual constants appearing in �1 and �2. But alignments are themselves
axioms, so formally, one may as well consider that the signatures of�1∪� and�2 overlap. Therefore
in the following, a “signature overlap” will be used as a generic term to designate both genuine
overlap and overlap with alignments.
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example, without axiom ã, and extended with the two following DBpedia axioms:

(9) ∀�, � : occupation(�, �)⊃ PersonFunction(�)

(10) occupation(Montgomery C. Meigs, Smithsonian Institution)

From axioms {2,4,9,10}, the Smithsonian Institution is a PersonFunction just like

Psychologist and Gossip columnist are, which is arguably counterintuitive. But the

KB composed of axioms {2,4,9,10} is nonetheless logically consistent. More impor-

tantly, it turns out that no information within DBpedia can be used to detect this

nonsense on a logical basis (this claim will be made more explicit in section 1.1.2).

Worse, such cases tend to be the norm rather than exceptions, because statements

expressing some form of negation (like axiom 6) are very infrequent in practice, at

least among datasets adopting the SW standards, as will be illustrated.

KB debugging deals with the detection and/or repair of undesired properties of

an input KB. This is not restricted to inconsistency, and KB debugging encompasses

a wide variety of techniques, reviewed in Chapter 3. For consistent KBs though,

automated debugging remains limited to syntactic veriĄcations which generally do

not address the type of semantic errors just illustrated, or only accidentally. On

the other hand, for inconsistent7 KBs, current approaches sufer from the number

of candidate outputs. Among other contributions, this thesis investigates the use of

linguistic evidence automatically gathered from web pages in order to address both

of these issues, which to our knowledge is an original proposal. Repair is understood

as the automated weakening of the input KB. An additional phase may be needed

afterwards, which consists in rephrasing the information lost during the weakening

phase, but this posterior reformulation falls out of the scope of this work.

7or incoherent in its technical sense in the Description Logics community, defined in Chapter 2
Section 2.3.5
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The focus is put on KBs expressed in OWL, a knowledge representation language

based on Description Logics (DLs), and a widely used W3C standard. The latest

version of OWL is OWL 2, deĄned by Ąve W3C recommendations published in

2012.8 DLs are decidable fragments of FOL, for which numerous algorithms have

been designed, covering a variety of tasks, like checking satisĄability or subsumption,

but also computing modules, minimal conĆicts. . . 9

Section 1.1 further illustrates and characterizes the problem at hand, whereas

Section 1.2 lists some of the main constraints and commitments underlying this work,

positioning it wrt to alternative existing approaches. Section 1.3 brieĆy introduces

the concrete solutions proposed in this thesis, and Section 1.4 reviews the content of

the diferent chapters.

1.1 Semantic Web and violations of common sense

1.1.1 Multiple meanings of a constant or predicate

OWL is a knowledge representation language designed as part of the SW framework,

in order to publish, share and reuse structured data issued from multiple sources.

In particular, data publishers are encouraged to reuse predicates or constants from

already published datasets. In other words, interoperability between two OWL KBs

is primarily understood as a signature overlap.

Integrating knowledge from diferent sources can easily lead to intuitively ab-

surd sets of axioms though, due to multiple and incompatible meanings of the same

constants or predicates. This may be the case when two diferent datasets with over-

8http://www.w3.org/TR/2012/REC-owl2-overview-20121211/#Documentation_Roadmap
9An introduction to Description Logics is provided in Chapter 2, Section 2.3.
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lapping signature are (partially) merged, or queried altogether. But this phenomenon

is also frequent within large datasets, in particular in cross-domain and (partially)

collaborative KB such as Freebase [BEP+08] or DBpedia.

The introductory example given above remained very simple on purpose, and

could easily be solved manually. The following is a more in-depth illustration of the

issue, even though it is composed of 12 DBpedia axioms only. When the syntactic

formulations difer, the axioms are given both in DL and FOL:

Ex 1.1.1.(1) keyPerson(Caixa Bank, CEO)

(2) keyPerson(Sina Bank, CEO)

(3) occupation(Peter Munk, CEO)

(4) keyPerson(BrookField Office Properties, Peter Munk)

(5) ⊤ ⊑ ∀keyPerson.Person

∀�, � : keyPerson(�, �)⊃ Person(�)

(6) occupation(Montgomery C. Meigs, Smithsonian Institution)

(7) ⊤ ⊑ ∀occupation.PersonFunction

∀�, � : occupation(�, �)⊃ PersonFunction(�)

(8) ∃hasPersonName.⊤ ⊑ PersonFunction

∀�, � : hasPersonName(�, �)⊃ PersonFunction(�)

(9) occupation(Ernest Noel, Ernest Noel 1 )

(10) occupation(Ernest Noel, Ernest Noel 2 )

(11) employer(Frederick Knab, Smithsonian Institution)

(12) ⊤ ⊑ ∀employer.Organisation

∀�, � : employer(�, �)⊃ Organisation(�)

Axioms 1 to 5, when considered altogether, violate some common sense intu-

itions, for instance the fact that nothing (CEO here) should be both a key person
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of something, and the occupation of someone (Peter Munk) who is himself a key

person of something. Two intuitively incompatible meanings of keyPerson coexist.

In axioms 1 and 2, the intending meaning of keyPerson seems to be Şhas as a key

person someone whose occupation isŤ, whereas it seems to be Şhas as a key personŤ

in axioms 4 and 5.

Three diferent meanings of the predicate occupation can also be observed in

axioms 3, 6, 7, 9 and 10: it takes an organization (Smithsonian Institution) as object

in axiom 6, but a profession (CEO) in axiom 3. The meaning of occupation in

axioms 9 and 10 is less obvious: Ernest Noel 1 and Ernest Noel 2 actually stand

for ŞErnest Noel as a businessmanŤ and ŞErnest Noel as a member of ParliamentŤ

respectively,10 such that occupation ranges this time over individual roles (akin to

the qua-individuals of [MGV+05]) which are speciĄc to a given human being. This

last view is reinforced by axiom 8, which suggests a mapping from such roles to

person names. Finally, the intended meaning of occupation in axiom 7 remains

unclear. It may be in line with its use in axiom 3, in which case a PersonFunction

in axiom 7 should be understood as an activity (like CEO). Or occupation in axiom

7 should be understood as it is in axioms 9 and 10, in which case PersonFunction

has the same meaning of individual role in axioms 7 and 8.

This kind of nonsense hinders the reliability of a KB, limiting its potential use.

It may in particular lead to undesired inferences. For instance, according to axioms

1, 2 and 5, Caixa Bank and Sina Bank have the same Person as a keyPerson,

which was certainly not intended, and turns out to be false (they do not share a

key employee). This thesis investigates several strategies in order to automatically

detect such violations of common sense, and suggest one or several weaker version(s)

10which can be seen from additional DBpedia statements, not reproduced here. This example is
discussed in more details in Chapter 7 Section 7.1.
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of the input KB as a repair.

Two additional useful observations can be made about this example:

∙ These axioms when taken individually do not convey erroneous information

(like director(Citizen Kane,Woody Allen)), neither outdated information (like

president(USA,George W. Bush)), but they are nonetheless absurd when con-

sidered together. Even axiom 6 (occupation(Montgomery C. Meigs, Smith-

sonian Institution)) has an intuitively clear (and factually correct) intended

meaning, i.e. this use of occupation may appear as incorrect only if axiom 6

if compared to other axioms where occupation appears.

∙ Identifying mutually exclusive sets of axioms in this small sample is already

non-trivial, which suggests that a manual repair for realistically sized KBs can

be potentially very complex.

∙ In most cases, deciding from this sample only which of the two or three in-

compatible meanings of a same predicate is the correct one may arguably be

perceived as an arbitrary choice. Instead, the dominant meaning of this predi-

cate within the whole KB should probably be taken into account. For instance,

if keyPerson is mostly understood within DBpedia as ranging over person func-

tions like ���, then statements 4 and 5 are the erroneous ones. If it mostly

ranges over human beings instead (like Peter Munk), then statements 1 and 2

are the outliers.
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1.1.2 Lack of negation and consistency by default

Another interesting observation about example 1.1.1 is the absence of explicit con-

tradiction, i.e. the fact that this set of axioms is logically consistent,11 even though

intuitively absurd.

Some form of negation is required for an inconsistency to be derived. For in-

stance, nothing in example 1.1.1 explicitly prevents a same individual to be both

a Person and a PersonFunction (like CEO is), or both a PersonFunction and

an Organisation (like the Smithsonian Institution is). It turns out that nothing

prevents it in DBpedia either. More generally, aside from cardinality restrictions

(like functional restriction on datatyProperties, described in Chapter 2 Section 2.3),

negation is very sparsely used in datasets published as part of the SW project. As

an illustration, according to the LODstats survey tool [ADML12], which provides

statistics about a sample of the Linked Open Data Cloud (described in [BHBL09]),

the two OWL constructs involving concept negation, namely owl:disjointWith

and owl:complementOf, which are possibly the two most straightforward ways to

express negation in OWL,12 have been observed 333 times and twice respectively,

against more that 89 000 occurrences of the construct rdfs:subClassOf.

This does not mean that these datasets are necessarily consistent.13 For instance,

taken as a whole, DBpedia is inconsistent, as illustrated by the following set of

statements:

(a) creator(News Bites, Studio 23 )

11 and logically coherent in the DL sense, defined in Chapter 2 Section 2.3.5
12but not the only ones. Among other possibilities are the cardinality restrictions already men-

tioned, but also non-identity between individual constants (the unique name assumption is not
made by default in OWL), and nominals. These constructs are reviewed in Chapter 2 Section 2.3.

13or coherent
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(b) Place(Studio 23 )

(c) ⊤ ⊑ ∀creator.Person

∀�, � : creator(�, �)⊃ Person(�)

(d) Person ⊑ Agent

∀� : Person(�)⊃ Agent(�)

(e) Place ⊑ ¬Agent

∀� : Place(�)⊃ ¬Agent(�)

But the inconsistency of DBpedia is independent from the common sense violations

identiĄed among some of the 12 axioms of example 1.1.1. For instance, axioms 1 and

4 of example 1.1.1 involves two intuitively incompatible meanings of the predicate

keyPerson. But there is no subset � of DBpedia such that ¶1, 4♢ ⊖ �, � ⊢ ⊥,

and for all �′ ⊆ �, �′ ̸⊢ ⊥. In other words, in any proof of the inconsistency of

DBpedia, at least one of axioms 1 and 4 is not needed. This does not hold of {1,4}

only, but also of all minimal intuitively absurd sets of axioms of example 1.1.1, like

¶2, 4♢, ¶1, 5♢, ¶3, 6♢, ¶6, 7♢, etc. As a consequence, even if it could be done, solving

the inconsistency is very unlikely to address the problems identiĄed in example 1.1.1

(at best marginally and as a non-intended side efect, provided axiom 1 or axiom 4

for instance appears in a minimal inconsistent subset � of DBpedia).

Another consequence of this sparse usage of negation within SW OWL datasets

is that a KB built out of fragments of other KBs, like the Toronto KB mentioned

in introduction, is very likely to be consistent, even if it contains intuitively absurd

sets of statements, and even if some of the source KBs are inconsistent.
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1.2 Specification

The automated weakening of an input KB in order to get rid of undesired con-

sequences has already been studied in the Ąelds of KB debugging and belief revi-

sion/contraction (with an emphasis on inconsistent input KBs for the latter). This

section introduces a list of formal or informal requirements adopted for the work de-

scribed in this thesis, which motivate the choices presented in the following chapters,

ruling out alternative proposals made in the literature.

1.2.1 Intended meaning

The Ąrst (informal) principle followed in this work aims at avoiding the coexistence

of two conĆicting meanings of a same predicate or constant in the (deductive closure

of) the output KB. Let � be the input KB, and ã an axiom of �, such that ã is

still a consequence of the output KB � ′. If � is an element of the signature of ã

(a constant or a predicate), then ideally, there should be no consequence å of � ′

such that the meaning of � in å is incompatible with its meaning in ã. For instance,

consider the 4 following axioms:

Ex 1.2.1.� = ¶

(1) director(Museum of the Rockies, Smithsonian Institution)

(2) director(Hannah and her sisters, Woody Allen)

(3) ∃director.⊤ ⊑ Movie

∀�, � : director(�, �)⊃ Movie(�)

(4) ⊤ ⊑ ∀director.Person

∀�, � : director(�, �)⊃ Person(�) ♢

And let ã be axiom 1. If ã is still implied by the output KB � ′, then no con-
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sequence å of � ′ should be such that the meaning of either director, Museum

of the Rockies or Smithsonian Institution in å is incompatible with its meaning

in ã. In particular, this rules out some proposals like the one made by [QLB06]

for instance (introduced in Chapter 3, Section 3.6.1), and inspired by belief set revi-

sion/contraction [AGM85], which, when applied to FOL (or some DLs), may amount

to hard-coding exceptions. These views are motivated by minimal information loss

expressed as a semantic distance between sets of models (in the model-theoretic

sense). Let us assume that one wants to rule out the possibilities that the Mu-

seum of the Rockies is a Movie and that the Smithsonian institution is a Person, or

in other words, Movie(Museum of the Rockies) and Person(Smithsonian Institution)

have been identiĄed as two undesired consequences of �. Then according to the ap-

proach of [QLB06],14 any KB equivalent to15 the following would be an admissible

solution for example 1.2.1:

� ′ = ¶

(1) director(Museum of the Rockies, Smithsonian Institution)

(2) director(Hannah and her sisters, Woody Allen)

(3Š) ∃director.⊤ ⊑ Movie ⊔ ¶Museum of the Rockies♢

∀�, � : director(�, �)⊃ Movie(�) ∨ � = Museum of the Rockies

(4Š) ⊤ ⊑ ∀director.Person ⊔ ¶Smithsonian Institution♢

∀�, � : director(�, �)⊃ Person(�) ∨ � = Smithsonian Institution }

Axioms 3 and 4 have been weakened in order to accommodate for axioms 1, 2, and

the fact that Movie(Museum of the Rockies) and Person(Smithsonian Institution)

14 Specifically, the approach of [QLB06] applies to the case of revision, i.e. assuming here that
� is revised by {¬Person(Smithsonian Institution), ¬Movie(Museum of the Rockies)} understood
conjunctively. See Chapter 3 Section 3.6 for an introduction to revision.

15The syntactic formulation of � ′ is not relevant here, as explained in section 1.2.3.
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should not hold. The predicate director must now have a Şmovie or the Museum

of the RockiesŤ as its Ąrst argument, and a Şperson or the Smithsonian InstitutionŤ

as its second argument. � ′ is strictly weaker than �. In particular, Movie(Museum

of the Rockies) and Person(Smithsonian Institution) are not consequences of � ′, as

intended. But it still holds that Woody Allen directed Hannah and her sisters just

like the Smithsonian Institution directed the Museum of the Rockies, such that if å

is 2 (an axiom is also a consequence), then the meaning of director in å does not

correspond to its meaning in ã, which contradicts the above principle.

1.2.2 Consistency and preserved knowledge

As will be seen in Chapter 3, KB debugging and belief set revision/contraction have

largely focused on inconsistent input KBs, or on KBs for which a set of undesired

consequences is already identiĄed. But as explained in Section 1.1.2, absurd but

nonetheless consistent OWL KBs are a common phenomenon. Therefore it is as-

sumed that the input KB may or may not be logically consistent.16 And that some

undesired consequences may have been identiĄed beforehand or not. In other words,

the detection of nonsense may be an integral part of the process, and not only the

repair.

The output KB on the other hand should be consistent, and if there were unde-

sired consequences, they should not be entailed by it.

Additionally, it may be desirable to preserve some subset Θ of the input KB �

during the debugging process, if Θ is considered more reliable than the rest of �.

This possibility should be granted, provided Θ is consistent.

16or logically coherent
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1.2.3 Syntax dependent debugging

Debugging strategies based on belief set revision/contraction are also characterized

by their independence from syntax. The input KB � and the output of the process

are primarily viewed as (deductively closed) theories, regardless of their syntactic

formulations. For instance, let ã1 = � ⊑ � (in FOL, ∀� : �(�) ⊃ �(�)), let

ã2 = � ⊑ �, and ã3 = � ⊑ � ⊓ � (in FOL, ∀� : �(�) ⊃ (�(�) ∧ �(�)). And

let �1 = ¶ã1, ã2♢, and �2 = ¶ã3♢. According to this view, although they difer

syntactically, �1 and �2 would be considered as the same input KB.

Another approach to KB debugging, more widespread in the DL community

[SC03, Sch05, BP10], requires that the output KB � ′ be a syntactic subset of the

input KB. In this case, � ′ cannot be identical for �1 and �2, unless � ′ = ∅. This

view may seem counterintuitive, but is often relevant in order to ensure traceability,

i.e. to keep track of the original formulation (together with the source) of the axioms

of the input KB. It is generally the case for SW datasets, which tend to rely on the

integration of axioms imported from other KBs. Therefore this is also the approach

followed in this thesis.

Another motivation for this choice, illustrated by example 1.1.1, is the fact that

axioms tend to make sense when considered individually, even if the KB as a whole

is intuitively absurd. Therefore it may be useful to keep track of the initial syntactic

formulation of the discarded knowledge as well, in order to rephrase these axioms

accordingly (as mentioned in introduction though, this posterior reformulation falls

out of the scope of this work).

An additional and more technical argument for syntax dependent debugging is

discussed in Chapter 3. To our knowledge, aside from model-based semantic distances

like the one just mentioned in Section 1.2.1, belief set revision (but not contraction)

30



for certain DLs does not currently provide an efective principle which guarantees

minimal information loss. On the other hand, syntax dependent debugging ofers a

relatively intuitive solution, which is maximality wrt set inclusion among semanti-

cally admissible candidate subbases of �.

A Ąnal advantage of syntax dependent debugging is that some preference relation

over the axioms of � may be used to guide the debugging process. This preference

relation may for instance come from diferent conĄdence levels attributed to the

respective sources of the axioms of �. Or it may come from an external source of

knowledge, in particular from linguistic evidence, as illustrated in Chapter 8.

1.2.4 ABox/TBox

Let us focus again on the 5 Ąrst axioms of example 1.1.1:

Ex 1.2.2.� = ¶

(1) keyPerson(Caixa Bank, CEO)

(2) keyPerson(Sina Bank, CEO)

(3) occupation(Peter Munk, CEO)

(4) keyPerson(BrookField Office Properties, Peter Munk)

(5) ⊤ ⊑ ∀keyPerson.Person

∀�, � : keyPerson(�, �)⊃ Person(�) ♢

One may choose to consider that facts or so-called ABox axioms (see Chapter

2, Section 2.3.7), like 1, 2, 3 and 4, as more reliable than an abstract axiom like 5,

called a TBox axiom, because assessing a raw fact is arguably less error-prone that

coining an abstract property. According to this view, the meaning of keyPerson

which should prevail is Şhas as a key person someone whose occupation isŤ, because

it is dominant among ABox axioms. Conversely, one may consider that TBox axioms
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as more fundamental due to their structuring role for the KB, by analogy to a RDB

schema. According to this latter view, the meaning of keyPerson which should

prevail in example 1.2.2 is Şhas as a key personŤ.

By default, the choice is made in this thesis to remain agnostic, i.e. to consider

that neither the ABox or the TBox should prevail a priori. It turns out for instance

that both the DBpedia ABox and the DBpedia TBox can be edited (directly or

indirectly) by anonymous contributors. But if this is justiĄed by the application, or

by the sources of the data, the debugging solutions presented in chapters 6 and 8 are

Ćexible enough to either enforce the preservation of a consistent ABox or TBox, or

prioritize the removal of axioms from one of the two.

There is also a more technical argument supporting this view, explained in Chap-

ter 2, Section 2.3.5, which is that the ABox/TBox distinction tends to blur for ex-

pressive Descriptions Logics, as soon as so-called nominals are allowed.

As a consequence, without further information, either the Ąrst or the second

meaning of keyPerson may prevail in example 1.2.2, and according to the principle

introduced in Section 1.2.1, at most one of them can be preserved in the output KB.

1.2.5 Ontological debugging

The term ŞontologyŤ has seen an important gain in popularity in knowledge rep-

resentation in recent years. The most cited deĄnition is probably the one given in

[Gru95], where an ontology as a computational artifact is presented as an Şexplicit

speciĄcation of a conceptualizationŤ. This is unfortunately not formal enough for the

work presented here, and there seems to be no consensus among computer scientists

about what an ontology concretely is.

For instance, in the DL community, ŞontologyŤ is generally a synonym for KB.
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Similarly, an ontology is essentially characterized as a (function-free) Ąrst-order the-

ory in [GOS09], with a standard model-theoretic semantic for FOL (introduced in

Chapter 2 Section 2.3.4), with the additional (informal) requirement that it should

be as faithful as possible, i.e. that the actual models of the theory should ideally cor-

respond to the models intended by the KB engineer. But another widespread usage

consists in using the term ŞontologyŤ to refer to a TBox exclusively,17 or sometimes

only part of it.

An illustration of this terminological ambiguity can for instance be found on the

web page describing the DBpedia ontology.18 On the one hand, the ABox compo-

nent is presented as part of the ontology (ŞThe DBpedia Ontology currently contains

about 4,233,000 instancesŤ), including binary predicates instances (labeled as ŞDB-

pedia Ontology other A-Box propertiesŤ). On the other hand, in Şthe ontology is a

directed-acyclic graph, not a tree. Classes may have multiple superclasses. . . Ť, the

term ontology apparently refers to part of the TBox, namely its taxonomy. The term

ŞtaxonomyŤ itself is ambiguous. It may designate the set of all statements of a KB

of the form � ⊑ � (∀� : �(�) ⊃ �(�) in FOL), where � and � are atomic DL

concepts, like Person or Organization. But it may or may not include so-called

disjointness axioms, i.e. axioms of the form � ⊑ ¬� (∀� : �(�)⊃ ¬�(�) in FOL).

Furthermore, it may or may not include formulas of these two types which are not

explicitly stated, but are part of the deductive closure of the KB.

This is the reason why the terms ŞKBŤ and ŞTBoxŤ, arguably less ambiguous,

are preferred in this thesis. But the term Şontological debuggingŤ is nonetheless

used, and with a very speciĄc meaning, which needs to be speciĄed. ŞOntologicalŤ

here refers to a more philosophical understanding of the term, used for instance in

17or the union of the TBox and the so-called RBox of a DL KB, see Chapter 2 Section 2.3.7
18 http://wiki.dbpedia.org/services-resources/ontology
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[GG95]. It indicates that the input data are not just factually erroneous, but absurd,

and that this is the type of errors targeted by the debugging strategies proposed in

the following chapters. In other words, considered as a whole, an input set of state-

ments like example 1.1.1 violates intuitions about reality which may be viewed as

necessary, as opposed to contingent ones. For instance, it violates Şnothing can be

both a person and the occupation of a personŤ, which would probably be viewed by

many as a necessary truth, whereas ŞPeter Munk is a CEOŤ would rather be viewed

as a contingent one. Another illustration is ŞWoody Allen is a movie director and has

an entrance feeŤ, which may be viewed as a necessarily false, as opposed to ŞWoody

Allen directed Citizen KaneŤ, which may be viewed as factually false only. This

distinction is prototypically the one modeled by epistemic or alethic modal logics,

which DLs under standard Ąrst-order semantic cannot express. The distinction is

also possibly subjective, but a relative consensus is nonetheless often evidenced by

natural languages, which is of particular interest for this work. Syntactically cor-

rect but semantically ill-formed sentences are a well-attested linguistic phenomenon,

notoriously illustrated by Noam ChomskyŠs ŞColorless green ideas sleep furiouslyŤ.

Similarly, many English speakers would consider Şduring Woody AllenŤ or Şclosing

Woody AllenŤ as improbable phrases. On the other hand, picking up a random sen-

tence containing ŞOrson WellesŤ from the web and replacing it by ŞWoody AllenŤ

will probably yield a semantically well-formed sentence, even if factually incorrect.
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1.3 Proposals

1.3.1 Distributional evidence

Section 1.2 listed some of the requirements to be met (strictly for some of them,

ideally for others) by the debugging strategies proposed in this thesis. But almost no

indication has been given yet regarding the efective selection of adequate subset(s)

of the input KB.

One of the main contributions of this work is the use of linguistic evidence

automatically gathered from web pages for that purpose.19 More exactly, linguis-

tic evidence allows for the identiĄcation of marginal meanings of some constants

and predicates within the input KB. The approach is based on relatively simple

techniques issued from named entity classiĄcation/ontology population, and makes

use of distributional semantics (for an introduction to distributional semantics, see

[TPo10, Cla13], as well as Chapter 4 section 4.3). The underlying assumption is

that individuals which instantiate the same concepts in a consistent/coherent KB

also tend to share the same linguistic contexts, and conversely. It can be viewed as a

generalization of a well-known linguistic phenomenon named selectional preferences

[Res97], i.e. the fact that some words (verbs, adjectives, prepositions, . . . ) tend to

select select nouns or noun phrases of a certain semantic or ontological type as their

syntactic arguments. For instance, ŞX was born inŤ tends to select a human being,

whereas ŞX was launchedŤ does not. The assumption adopted here can be viewed

as a generalization of this phenomenon, in that it is not restricted to a small list of

abstract semantic types (like Person, Place, Event, . . . ), but applies to arbitrary

19 This is not the only investigated possibility. In particular, Chapter 7 focuses on an alternative
(or possibly complementary) approach, which is the detection of nonsense on a logical basis, by
manually introducing explicit ontological distinctions.
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unary predicates of the signature of the input KB. As such, it was successfully used

for ontology population by [TM08] or [GG08]. But the proposals made in Chapter

4 Section 4.2 actually go further in that direction, investigating the applicability of

this hypothesis to so-called complex DL concepts (deĄned in Chapter 2 Section 2.3.2),

more speciĄcally to the complement of an atomic concept (i.e. the complement of a

unary predicate in FOL), as well as concepts such as Şthings which have an authorŤ

or Şthing that own somethingŤ.

If � is a candidate subbase of the input KB � (possibly � itself), and if å is a

consequence of � of the form �(�), with � a (possibly complex) DL concept and �

a constant, then it should be possible to evaluate whether å is likely to hold if the

rest of � does, according to linguistic evidence. As an illustration, consider the 3

following axioms from example 1.2.1:

Ex 1.3.1.Δ = ¶

(1) director(Museum of the Rockies, Smithsonian Institution)

(2) director(Hannah and her sisters, Woody Allen)

(3) ⊤ ⊑ ∀director.Person

∀�, � : director(�, �)⊃ Person(�) }

And let us assume that these 3 axioms are part of a larger consistent20 KB �.

Then the following formulas are all consequences of �:

(�1) Person(Smithsonian Institution)

(�2) Person(Woody Allen)

(�3) ∃director.⊤(Museum of the Rockies)

∃� : director(Museum of the Rockies, �)

(�4) ∃director.⊤(Hannah and her sisters)

20and coherent in the DL sense
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∃� : director(Hannah and her sisters, �)

(�5) ∃director⊗.⊤(Smithsonian Institution)

∃� : director(�, Smithsonian Institution)

(�6) ∃director⊗.⊤(Woody Allen)

∃� : director(�,Woody Allen)

Now let us assume that there are other instances of Person according to �, and that

these individuals are human beings, for instance:

� ⊢ Person(Margaret Atwood)

� ⊢ Person(Elizabeth Iorns)

� ⊢ Person(Peter Munk) . . .

Then one may expect the linguistic behavior of the linguistic term ŞWoody AllenŤ

to be relatively similar to the behaviors of terms denoting other instances of Person

according to � (precisely, more similar than it is to the behavior of a random indi-

vidual of �). Conversely, one may expect the similarity between Şthe Smithsonian

InstitutionŤ and terms denoting other instances of Person according to � to be

relatively low. For instance, sequences of words like ŞWoody Allen was bornŤ or

ŞWoody Allen grew upŤ are more probable than Şthe Smithsonian institution was

bornŤ or Şthe Smithsonian institution grew upŤ. Therefore, and ceteris paribus,

Person(Woody Allen) would be identiĄed as likely to hold if the rest of � holds, and

Person(Smithsonian Institution) as unlikely.

Similarly, let us assume that the second argument of the relation director ac-

cording to � is generally a movie director, for instance:

� ⊢ ∃director⊗.⊤(Orson Welles)
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� ⊢ ∃director⊗.⊤(Terry Gilliam) . . .

Then again, one may expect the linguistic behavior of ŞWoody AllenŤ (ŞWoody

AllenŠs workŤ, ŞWoody Allen was bornŤ, . . . ) to be relatively similar to the behavior

of terms denoting other instances of ∃director⊗.⊤, and that it is not the case for

Şthe Smithsonian InstitutionŤ.

Finally, let us assume that the Ąrst argument of the relation director according

to � is generally a movie, for instance:

� ⊢ ∃director.⊤(Citizen Kane)

� ⊢ ∃director.⊤(The meaning of life) . . .

Then again, one may expect the linguistic behavior of ŞHannah and her sistersŤ to be

relatively similar to the behavior of terms denoting other instance of ∃director.⊤

(ŞHannah and her sisters was released onŤ, Şplayed in Hannah and her sistersŤ, . . . ),

and that it is not the case for Şthe Museum of the rockiesŤ.

In order to keep the example simple, let us make the following additional assump-

tions:

∙ within �, only the 3 axioms of Δ are candidate for removal

∙ � ∖Δ ̸⊢ Person(Smithsonian Institution)

� ∖Δ ̸⊢ Person(Woody Allen)

� ∖Δ ̸⊢ director.⊤(Museum of the Rockies)

etc.

Then according to the requirements listed in Section 1.2, there is only one way Δ

can be weakened in order to get rid of the 3 unlikely consequences above (�1, �3 and

�5), and retain the 3 likely ones (�2, �4 and �6), namely discarding axiom 1, which is

also the intuitive solution.
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Several conditions must be met for this approach to be applied. First, it focuses

on the contexts of individual constants (an in-depth discussion of this choice is pro-

vided in Chapter 4 Section 4.2.1), therefore the input KBŠs signature should contain

individual constants, and they should have linguistic labels (like ŞWoody AllenŤ is a

linguistic label for the constant Woody Allen). A second condition for this approach

to be applied is that it should be possible to retrieve with a search engine a suicient

number of web pages where these linguistic labels appear.

1.3.2 Debugging strategies

This form of linguistic evidence in incorporated to several of the debugging strategies

proposed (and for some of them evaluated) in Chapter 6 and Chapter 8.

For each candidate subbase � and each consequence å of � of the form �(�)

decribed above, a score sc�(å) called a plausibility score and based on distributional

semantics is computed, which evaluates to what extent å is likely to hold if the rest

of � does. These scores are then used to select optimal subbases of �, returned as

output of the process.

If the input KB � is consistent, two alternative algorithms are proposed in Chap-

ter 6 Section 6.3.2, which select subbases of � as outputs, based on plausibility

scores.

If the input KB � is inconsistent,21 an original form of base debugging is proposed

in Chapter 8, which relies on the previous computation of all minimal conĆicts or

justifications for the inconsistency. For each potentially faulty axiom ã of � (i.e.

involved in the inconsistency of �), two bases �ã and �∖ã are computed, which

represent the part of � which would necessarily be preserved if ã was respectively

21or incoherent
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retained or discarded, according to the minimal information loss principle mentioned

in Section 1.2.3, (i.e. that an output subbase must be maximal wrt set inclusion

among consistent subbases of �). �ã and �∖ã may in particular be evaluated on

a linguistic basis,22 which yields a preference relation over all candidate axioms for

removal. Then a form a prioritized base debugging is performed, which favors the

removal of least preferred axioms while respecting this minimal information loss

principle.

A third option is also investigated in Chapter 7, which consists in manually ex-

tending a consistent input KB with a foundational ontology, introducing fundamental

distinction between abstract concepts, in order to yield an inconsistency. The result-

ing inconsistent KB may then serve as input to the second debugging strategy just

introduced, with the additional requirement that the foundational ontology should

be preserved during the debugging process.

1.3.3 Evaluation

Two very diferent categories of input are used for the diferent evaluations described

in the following chapters. The Ąrst category consists of sets of logical statements (up

to ≡ 8000 axioms) automatically extracted from DBpedia.

Such data are likely to contain intuitively nonsensical sets of statements, as il-

lustrated by example 1.1.1, and therefore are relevant application scenarios for these

debugging strategies.

But it turns out that manually evaluating the performance of a debugging algo-

rithm on a real dataset is non trivial, as illustrated by example 1.1.1. As noted in

Section 1.1.1, three conĆicting meanings of occupation seem to coexist, and accord-

22this is only one possibility
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ing to the commitment made in Section 1.2.1, at most one of them should be retained.

But it is not obvious for a human evaluator to decide which of these 3 meanings is

the correct one, and therefore which axioms should be preferably discarded.

This is why a second and fully automated evaluation protocol was also designed.

It takes as input sets of statements of an arguable higher quality (described in Chap-

ter 5, Section 5.2), but automatically degraded, by generating random additional

axioms out of their signatures, the underlying assumption being that these random

axioms are very likely to be absurd. A debugging strategy is then evaluated based

on its ability to automatically spot the randomly generated axioms.

1.4 Content

This section gives an overview of the organization of the thesis. Due its interdisci-

plinary character, technical reviews of existing works are not all grouped into a single

chapter, although most of them are at least introduced in Chapter 3.

In addition, in order to avoid possible misunderstandings, it should be noted that

the succession of the diferent chapters is essentially dictated by readability, and is not

meant to reĆect a unique global debugging process, neither the chronological order

in which the respective contributions were made. More generally, this thesis should

be viewed a series of relatively independent and more or less practical/theoretical

contributions, all motivated by the same objective, namely the detection and/or

repair of nonsense in an OWL KB.
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1.4.1 Chapter 2: notation and preliminary notions

This chapter introduces Description Logics, as well as the main notational conven-

tions adopted throughout the thesis.

1.4.2 Chapter 3: KB debugging, state of the art

This chapter is a general overview of KB debugging techniques, with a strong em-

phasis on algorithms involving some form of reasoning, as well as an introduction to

belief change.

1.4.3 Chapter 4: linguistic evidence

This chapter focuses on linguistic aspects. Section 4.1 gives an overview of some of

the main paradigms used in information extraction/ontology learning, and discusses

their applicability to the problem at hand. The main proposals of this chapter are

made in Section 4.2. A so-called plausibility score is Ąrst deĄned which, for a given

consequence å of a candidate output base � of a debugging process, evaluates to

what extent å is likely to hold if the rest of � does, assuming some distributional

representations of the linguistic labels of the individuals of the input KB �. Then

four alternative preference relations over the family of candidate output bases are

deĄned, based on the plausibility scores of their respective consequences. These pref-

erence relations will be used to guide some of the debugging processes introduced in

Chapters 6, and to a lesser extent in 8. Finally, Section 4.3 discusses the computa-

tion of distributional representations of individual labels, and introduces the speciĄc

distributional settings used for the experiments described in the following chapters.

Most proposals made in Chapter 4 were published in [CAGV15a].
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1.4.4 Chapter 5: datasets

Chapter 5 describes the datasets (and linguistic corpora) used for the experiments of

chapters 6, 7 and 8. The choice was made to group the presentation of all datasets

in a single chapter, because some of them are used multiple times in the following

ones. Two very diferent types of datasets are presented. Datasets of the Ąrst type

are automatically extracted subsets of DBpedia (up to several thousands of axioms),

which are likely to contain violations of common sense of the kind presented in

example 1.1.1. As an alternative, datasets of the second type are arguably more

reliable KBs, issued from academic research projects, but automatically degraded

for the sake of the diferent evaluations, i.e. extended with random axioms generated

out of their signature, the assumption being that such axioms are very likely to be

absurd wrt to the rest of the KB.

1.4.5 Chapter 6: trimming a consistent KB

Chapter 6 investigates the usage of linguistic evidence to debug a consistent input KB

�. Section 6.1 evaluates the plausibility score deĄned in Chapter 4, and section 6.2

evaluates the four preference relations over candidates subbases (deĄned in Chapter

4 too), but for the case where a single faulty axiom needs to be identiĄed. Both

evaluations rely on the automatically degraded datasets presented in Chapter 5.

Section 6.3 addresses the identiĄcation of sets of faulty axioms within �. It Ąrst

discusses the diiculty of computing exactly the optimal subbases according to at

least two of the four preference relations deĄned in Chapter 4. Two algorithms are

then proposed, and the Ąrst one evaluated with both real and automatically degraded

datasets. The third algorithm is a more complex procedure, which yields all optimal

subbases of � wrt one of the aforementioned four preference relations. Correctness
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is proven, together with the fact that given a Ąnite set Ψ of consequences of �

with plausibility scores, worst-case complexity for this problem is identical to that of

computing for each å ∈ Ψ the family of maximal subsets of � which do not entail

å. A small part of the work described in Chapter 6 was published in [CAGV15d]

and [CAGV15a].

1.4.6 Chapter 7: introducing explicit ontological distinc-

tions

As an alternative (or complement) to linguistic evidence, Chapter 7 investigates the

identiĄcation of common sense violations within � on a logical basis, and in par-

ticular the possibility of extending � with domain-independent explicit distinctions

issued from the Ąeld of formal ontology. A shallow manual extension strategy is pro-

posed and evaluated, which relies on an external foundational ontology. The main

motivation behind this proposal is to limit the manual cost of the operation, as op-

posed to deeper but time-consuming methodologies like Ontoclean [GW00]. If � is

the resulting inconsistent KB, then among other possibilities, a syntax-based revision

process like the ones presented in Chapter 8 may be applied to � as a follow-up to

this manual extension.

This work was published in [CAGV15b].

1.4.7 Chapter 8: syntax-based contraction/revision

Chapter 8 focuses on a speciĄc form of KB debugging, which aims at identifying

sets of axioms to be preferably discarded from an inconsistent input KB. The prob-

lem has been designated in the literature as syntax-based contraction/revision, base

contraction/revision, or diagnosis.
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Section 8.1 characterizes the problem, and identiĄes two issues which are inherent

to the task, namely the number of candidate output bases (or equivalently the number

of diagnoses), and computational cost.

Section 8.2 reviews solutions proposed in the literature in order to address these

two issues, showing their respective limitations. The approach adopted to deal with

the Ąrst issue is known as prioritized base contraction/revision. Intuitively, provided

a preference relation ○� over the axioms of the input KB �, it consists in prioritizing

the removal of least preferred axioms wrt ○� until consistency is reached, together

with discarding minimal sets of axioms wrt to set inclusion.

Section 8.4 proposes an algorithm which performs prioritized base contraction/

revision, provided the family of justiĄcations (deĄned in Chapter 3 Section 3.5) for

the inconsistency is known, but without the need to compute all diagnoses (deĄned

in Chapter 3 Section 3.6.2.2).

Section 8.5 proposes a general framework in order to obtain the preference relation

○�, in the form of two bases �ã and �∖ã which, for each candidate axiom ã for

removal, represent what part of the input KB would necessarily be retained if ã was

respectively retained or discarded. In particular, it is shown that these two bases

can be computed in polynomial time if the justiĄcations for the inconsistency of �

are known.

Section 8.6 Ąnally evaluates this strategy, for the speciĄc case where the com-

pliance (as deĄned in Chapter 4) of �ã and �∖ã to some automatically gathered

linguistic input is used to rank candidate axioms for removal.

Part of the proposals made in Chapter 8 were published in [CAGV15c].
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Chapter 2

Notation and preliminary notions

2.1 Sets

If � is a set, 2� will designate the power set of �, and 22X

will stand for 2(2X), i.e.

the power set of 2� .

2.2 Ordering

If ○ is a total or partial preorder (transitive, reĆexive, but not necessarily antisym-

metric) over some Ąnite set Δ, then:

∙ min○ Δ (resp. max○ Δ) is the set of minimal (resp. maximal) elements of Δ

wrt ○.

∙ Ó1 ∼ Ó2 stands for Ó1 ○ Ó2 and Ó2 ̸○ Ó1.

ŞminŤ (resp. ŞmaxŤ) may also be used without subscript, and in this case, it

should be understood as min⊘ (resp. max⊘).

If ○� is a total preorder over some Ąnite set Δ, then:
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∙ ≍� is the equivalence relation over Δ induced by ○�.

∙ Δ/≍� denotes the quotient set of Δ by ≍�.

∙ Δ○a = (Δ○a

1 , ..,Δ○a
� ) is the list of ordered elements of Δ/≍�, such that

1 ⊘ � < � ⊘ � if for all Ó ∈ Δ○
� , and for all Ó′ ∈ Δ○

� , Ó ∼ Ó′ holds.

2.3 Description Logics

The prototypical target input KBs for the debugging strategies presented in this

work are expressed in OWL, although many proposals apply to other knowledge

representation languages as well.

The expression Şexpressed in OWLŤ is actually slightly misleading, because OWL

is a family of languages, not a single language. OWL is a W3C recommendation since

2004, the latest version (2012) being available at this address: http://www.w3.

org/TR/2012/REC-owl2-overview-20121211/. Most languages of the OWL family

correspond to a Description Logic (DL), and all DL based languages of the OWL

family to date are at most as expressive as OWL 2, which corresponds to the DL

�ℛ�ℐ�(�). Therefore this is the DL introduced in this section (provided a slight

simpliĄcation pertaining to datatypeProperties, explained in Section 2.3.1, such that

the presented DL is actually �ℛ�ℐ�, without the (�) superscript). �ℛ�ℐ�(�) and

less expressive DLs are decidable fragments of First Order Logic (FOL).

This upper bound on expressiveness remains a theoretical limitation though. For

instance, most current of-the-self libraries to reason with OWL datasets do not sup-

port all OWL 2 features. The full expressiveness of OWL 2 / �ℛ�ℐ�(�) is also

rarely used in practice within a single dataset. In particular, none of the datasets
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introduced in Chapter 5 makes use of all �ℛ�ℐ�(�) logical operators (the corre-

sponding least expressive DL is indicated for each of them).

Several syntaxes for languages of the OWL family have been deĄned, but the

choice is made in this thesis to use (whenever possible) the DL notation instead, due

to its conciseness.

2.3.1 Datatypes and datatypeProperties

OWL languages support the usage of so-called datatypes and datatypeProperties.

Datatype properties can be viewed as binary predicates whose second argument, or

value, is an element of a predeĄned and normalized concrete domain, like the domain

of integers, the domain of real numbers, the domain of dates, the domain of strings,

etc.

For instance, let us consider the four following axioms:

Ex 2.3.1.� = ¶

(1) population(Virginia, Ş96205Ť)

(2) releaseDate(Hannah and her sisters, Ş1986-02-07Ť)

(3) director(Virginia, Woody Allen)

(4) ∃population.⊤ ⊑ PopulatedPlace

∀�, � : population(�, �)⊃ PopulatedPlace(�)

director in axiom 3 is a so-called objectProperty in OWL, i.e. it can be un-

derstood as a regular FOL binary predicate, whereas population and releaseDate

are datatypeProperties, whose values must be of a certain datatype (integer for

population, date for releaseDate).

Concrete domains (the domain of integers, of dates, . . . ) are disjoint from the

domain of predication in the standard model theoretic semantic for OWL (presented
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in Section 2.3.4). Additionally, an element of a concrete domain can only appear as

the second argument of a datatypeProperty, and therefore cannot be freely predicated

over. For instance, Ş96205Ť above can only appear as the value of a datatypeProperty.

Detecting or repairing errors pertaining to datatypeProperty values (for instance

the fact that a real number is implausibly high) clearly falls out of the scope of

this work, as can be seen from the examples given in Chapter 1 of semantic er-

rors targeted in this thesis. This is why datatypeProperties are treated in what

follows as unary predicates (or atomic concepts in the DL terminology), regardless

of their value. For instance, in example 2.3.1 axiom 1, the only relevant information

for the purpose of this work is the fact that Virginia is said to have a population,

regardless of its number of inhabitants. Similarly, in axiom 2, the only relevant

information is that Hannah and her sisters is said to have a release date, regard-

less of the actual date. So axiom 1 is simply treated as Haspopulation(Virginia),

where Haspopulation is a unary predicate standing for Şhas a populationŤ. Simi-

larly, axiom 2 is treated as HasreleaseDate(Hannah and her sisters). Axiom 4 becomes

Haspopulation ⊑ PopulatedPlace, or ∀� : Haspopulation(�) ⊃ PopulatedPlace(�)

in FOL. An exception is made for built-in datatypeProperties like rdfs:comment,

rdfs:label, etc. The corresponding axioms are considered as metadata, not as

axioms, and are therefore excluded from the logical representation of the KB.

Constraints on admissible values (for instance the fact that it should be an in-

teger superior to 2000) are naturally ignored as well. This is also the case of car-

dinality constraints on datatypeProperties (like declaring a datatypeProperty to be

functional), which become irrelevant, because the identity of two values cannot be

veriĄed anymore.

The (�) superscript in �ℛ�ℐ�(�) stands for the usage of datatypes and datatype-

Properties, which is why the DL presented in this section is �ℛ�ℐ�, and not
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�ℛ�ℐ�(�).

2.3.2 Syntax

�ℛ�ℐ� is a decidable fragment of FOL, and generally considered as a very expres-

sive DL. Non-logical symbols in �ℛ�ℐ� are of 3 types:

∙ DL/OWL individuals (like Virginia or Woody Allen), which correspond to FOL

individual constants.

∙ DL atomic concepts (like PopulatedPlace or Person), also called classes in

OWL, which correspond to FOL unary predicates.

∙ DL atomic roles (like director), which correspond to FOL binary predicates.

In OWL, these are called objectProperties

Most DLs allow for the inductive construction of arbitrarily complex concepts out

of the atomic ones. For instance, if LawFirm and Accountant are atomic concepts,

and if worksFor is an atomic role, then Accountant⊓∃worksFor.LawFirm is a com-

plex concept, which intuitively designates accountants working for a law Ąrm. An

atomic concept may also be represented extensively as a set of DL individuals, using

so-called nominals. For instance, ¶Orson Welles,Woody Allen♢ is an atomic concept.

Extensional representations of concepts can be used in the construction of complex

concepts as well, for instance in Movie ⊓ ∃director.¶Orson Welles,Woody Allen♢

which would designate movies directed by Orson Welles or Woody Allen.

The construction of complex DL roles is comparatively very limited, restricted to

the application of the inverse operator Ş.⊗Ť. For instance hasEmployer⊗ stands for

the inverse of hasEmployer, i.e. intuitively Şis the employer ofŤ. Role chains, like

hasEmployer◇hasActivity can also be build, but their only appear in some speciĄc
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ã ::= ãABox ♣ ãTBox ♣ ãRBox

ãABox ::= �(�) ♣ �(e, e) ♣ ¬�(e, e) ♣ e = e ♣ e ̸= e
ãTBox ::= � ⊑ �
ãRBox ::= � ⊑ � ♣ Dis(�,�) ♣ Asy(�)
� ::= A ♣ ⊤ ♣ ⊥ ♣ ¶�♢ ♣ ¬� ♣ � ⊔ � ♣ � ⊓ � ♣

∃�.� ♣ ∀�.� ♣ ⊙n �.� ♣ ⊘n �.� ♣ ∃�. self
� ::= e ♣ e, �
� ::= � ♣ � ◇�
� ::= � ♣ �
� ::= Q ♣ Q⊗

Figure 2-1: Syntax of �ℛ�ℐ�

axioms expressing role subsumption, as opposed to atomic roles or their inverse,

which may for instance appear in complex concepts. Similarly, role negation (¬�)

only appears in some speciĄc formulas (namely in formulas of the form ¬�(�1, �2),

or (implicitly) in formulas of the form Dis(�1, �2)). Therefore, following [HKS06],

role chains and negated roles are not considered in what follows as complex DL roles,

or in other words, the term DL role will refer exclusively to atomic roles and their

inverse.

The syntax of �ℛ�ℐ� is given by Ągure 2-1 (the semantic of all operators will

be given in Section 2.3.4). Terminal non logical symbols are in bold font: A for

an atomic concept, Q for an atomic role, e for an individual, and n for a positive

integers. All other terminal symbols are logical symbols. In particular, ⊤ and ⊥

are built-in atomic concepts, and � is a built-in atomic DL role, called the universal

role. ŞselfŤ is also a logical symbol, with a particular semantic, explained in Section

2.3.4.

This grammar is far from being minimal semantically, in that all symbols are

not needed to have the full expressiveness of �ℛ�ℐ�. For instance, � ⊕ � can

be viewed as syntactic sugar for � ⊑ � and � ⊑ �, as well as ∃�.� for ¬∀�.¬�,
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or ¶�1, . . . , ��♢ for ¶�1♢ ⊔ . . . ⊔ ¶��♢. This non-minimal syntax is preferred here for

readability, but also on order to comply to conventions in use in the DL community

(in particular, some of these symbols are needed in less expressive DLs).

In order to ensure decidability, some additional syntactic constraints are put on

the KB as a whole (and not on each axiom individually). They pertain to role chain

characterizations (i.e. axioms of the form �1 ◇ . . . ◇ �� ⊑ �, where �1, . . . , ��, �

are DL roles), as well as roles appearing both in role chains and qualiĄed number

restrictions (like ⊙� �.�). These constraints can be found in [HKS06], but are

not detailed here, because they are never discussed in this thesis. It will simply be

assumed that an input KB is a valid �ℛ�ℐ� dataset, i.e. that it veriĄes these

constraints together with the above grammar.

Some other DLs will be mentioned in this thesis, all of which are syntactic subsets

of �ℛ�ℐ�. The DL �ℒ� in particular is one of the most studied in the literature,

and is equivalent (under standard Ąrst-order model-theoretic semantic, introduced in

Section 2.3.4) to the so-called modal fragment of FOL. The syntax of �ℒ� is given

by Ągure 2-2.

The name of a DL generally encodes its expressiveness (although this is not

systematic). For instance, �ℒ� is an extension of the so-called attributive language

�ℒ with complex concept negation, represented by the letter � in �ℒ�. Extending

�ℒ� with atomic role inclusions (i.e. formulas of the form � ⊑ �, with � and

� atomic DL roles) yields �ℒ�ℋ, where ℋ stands for atomic role subsumption.

Similarly, extending �ℒ� with nominals (represented by ¶�♢ in the grammar of

Ągure 2-1) yields �ℒ��, where � stands for nominals, and the extension of �ℒ�

with both atomic role inclusions and nominals is �ℒ�ℋ�. The letter � in �ℛ�ℐ�

is a shortcut for�ℒ� with transitive roles, such that �ℛ�ℐ� is actually�ℒ�ℛ�ℐ�

with transitive roles. An exhaustive presentation of the (complex) naming convention
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ã ::= � ⊑ �
� ::= A ♣ ⊤ ♣ ⊥ ♣ ¬� ♣ � ⊔ � ♣ � ⊓ � ♣∃�.� ♣ ∀�.�

Figure 2-2: Syntax of �ℒ�

scheme of DLs is of little interest for the work presented in this dissertation, and the

reader is referred to [BCM+03] for further details.

Another important DL which will be mentioned in this thesis is �ℋ�ℐ� , less

expressive than �ℛ�ℐ�, but still considered a very expressive DL. �ℋ�ℐ� un-

derlies the OWL DL language, which can be viewed as a former version OWL 2,

before the OWL 2 speciĄcation was adopted. Other important (families of) DLs are

ℰℒ and DL-Lite, underlying the OWL 2 profiles OWL 2 EL and OWL 2 QL respec-

tively. Both are tractable (families of) DLs, the Ąrst one mostly used for building

terminologies, and the second one tailored for query answering.

2.3.3 Signature

If � is either a DL individual, concept, role, formula, or a set of DL formulas,

then �Ind(�), �Con(�) and �Role(�) will designate respectively the sets of DL in-

dividuals, atomic concepts, and atomic roles appearing in �. For instance, if � =

Accountant⊓∃worksFor.LawFirm, then�Ind(�) = ∅, �Con(�) = ¶Accountant, LawFirm♢,

and �Role(�) = ¶worksFor♢.

If�Ind(�), �Con(�) and�Role(�) are mutually disjoint, then sig(�) = �Ind(�)∪

�Con(�)∪�Role(�) will be called the signature of �. By default, i.e. unless explic-

itly, it is assumed for any concept, role, formula, or a set of DL formulas� considered

in what follows that �Ind(�), �Con(�) and �Role(�) are mutually disjoint.

A signature �1 will be said to be a subsignature of a signature �2 if the sets
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⊤ℐ = Δℐ

⊥ℐ = ∅
¬�ℐ = Δℐ ∖ �ℐ

(� ⊓�)ℐ = �ℐ ∩�ℐ

(� ⊔�)ℐ = �ℐ ∪�ℐ

(∃�.�)ℐ = ¶� ♣ there is a � such that < �, � >∈ �ℐ and � ∈ �ℐ♢
(∃�. self)ℐ = ¶� ♣ < �, � >∈ �ℐ♢
(∀�.�)ℐ = ¶� ♣ for all � such that < �, � >∈ �ℐ , � ∈ �ℐ♢
(⊙� �.�)ℐ = ¶� ♣ ♣¶� ♣ < �, � >∈ �ℐ and � ∈ �ℐ♢♣ ⊙ �♢
(⊘� �.�)ℐ = ¶� ♣ ♣¶� ♣ < �, � >∈ �ℐ and � ∈ �ℐ♢♣ ⊘ �♢

Figure 2-3: Standard model-theoretic semantic for �ℛ�ℐ� concepts

of individuals, atomic concepts and atomic roles of �1 are subsets of the sets of

individuals, atomic concepts and atomic roles of �2 respectively.

2.3.4 semantic

The standard model-theoretic semantic for DLs (also called descriptive semantic in

[BCM+03]) is the same as for FOL.

Let sig(�) = �Ind(�) ∪�Con(�) ∪�Role(�) be a DL signature. Then an inter-

pretation ℐ for sig(�) is a pair < Δℐ , .ℐ >, where Δℐ is a nonempty set called the

domain of ℐ, and .ℐ : sig(�) ↦⊃ (2∆)� is an interpretation function, with 1 ⊘ � ⊘ 2.

For each � ∈ �Ind(�), �ℐ ∈ Δℐ . For each � ∈ �Con(�), �ℐ ⊖ Δℐ . And for each

� ∈ �Role(�), �ℐ ⊖ (Δℐ)2.

The unique name assumption is not made by default in OWL, therefore it is not

made here either, i.e. if ¶�1, �2♢ ⊖ �Ind(�), �1 ̸= �2, and ℐ is an interpretation for

sig(�), then it may be the case that �ℐ
1 = �ℐ

2 .

The interpretation of complex concepts is then build inductively as in table 2-3,

and the interpretation of roles, role negations and role compositions as in table 2-4.
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�ℐ = (Δℐ)2

(�⊗)ℐ = ¶< �, � > ♣ < �, � >∈ �ℐ♢
(�1 ◇ �2)

ℐ = � ℐ
1 ◇ �

ℐ
2 (where ◇ on the right-hand side stands for

the composition of two relations)

Figure 2-4: Standard model-theoretic semantic for �ℛ�ℐ� roles

Let:
�, �1, �2 be DL individuals,
�,�1, �2 be DL concepts,
and �,�1, . . . , ��, �� be DL roles.

Then:
ℐ ♣= �(�) if �ℐ ∈ �ℐ

ℐ ♣= �(�1, �2) if < �ℐ
1 , �

ℐ
2 >∈ �

ℐ

ℐ ♣= ¬�(�1, �2) if < �ℐ
1 , �

ℐ
2 ≯∈ �

ℐ

ℐ ♣= �1 ⊑ �2 if �ℐ
1 ⊖ �ℐ

2

ℐ ♣= �1 ⊑ �2 if �ℐ
1 ⊖ �ℐ

2

ℐ ♣= �1 ◇ . . . ◇�� ⊑ �� if �ℐ
1 ◇ . . . ◇�

ℐ
� ⊖ �ℐ

�

ℐ ♣= Dis(�1, �2) if �ℐ
1 ∩�

ℐ
2 = ∅

ℐ ♣= Asy(�) if for all < �1, �2 >∈ �
ℐ , �ℐ

1 ̸= �ℐ
2

Figure 2-5: Standard model-theoretic truth conditions for �ℛ�ℐ�

If ã is a �ℛ�ℐ� formula, and ℐ an interpretation for a signature � such that

< �Ind(ã), �Con(ã), �Role(ã) > ⊖ �Ind(�)×�Con(�)×�Role(�), then ℐ verifies ã,

also written ℐ ♣= ã, if the truth conditions for ã described in table 2-5 are satisĄed

by ℐ. For instance, if � is a KB and ã an axiom of � of the form �(�), with � a

(possibly complex) DL concept and � ∈ �Ind(�), then ℐ verifies ã if �ℐ ∈ �ℐ .

ℐ is called a model of � if for all ã ∈ �, ℐ ♣= ã holds.

The set of all models of a set Γ of formulas will be denoted with mod(Γ)

55



2.3.5 Consistency and coherence

A KB is said to be consistent if it has at least one model.

Another desirable property of a KB, often used in the DL literature, is coherence.

A DL concept � is said to be satisfiable wrt to a KB � if there is a model ℐ of �

such that �ℐ ̸= ∅. Then a KB � is coherent if for all � ∈ �Con(�), � is satisĄable.

In particular, a KB can be consistent and incoherent.1

2.3.6 Entailment

If Γ is a set of DL formulas, and å a DL formula, then å is a consequence of Γ,

noted Γ ⊢ å if all models of Γ are models of ¶å♢. The notation å ∈ Cn(Γ) will

also be used for Γ ⊢ å. If � is a signature, then Cn�(Γ) will designate the set of all

consequences of Γ whose signature is a subsignature of �.

If Γ is a set of DL formulas, then Γ ⊢ ⊤ ⊑ ⊥ will sometimes be abbreviated

as Γ ⊢ ⊥. This should be without ambiguity, as ⊥ is not a syntactically valid DL

formula. This convention will also be used for other logics, i.e. is Γ is a set of

formulas in a given logic ℒ, then Cn(Γ) = Cn(ℒ) will sometimes be abbreviated as

Γ ⊢ ⊥.

A theory is a set of formulas closed under consequence, i.e. Γ is a theory if

Γ = Cn(Γ).

Like FOL or propositional logic, DLs are Tarskian, i.e. given a DL signature, if ℒ

is the set of formulas which can be built over this signature, then for all Γ,Γ1,Γ2 ∈ 2ℒ,

the following intuitive properties hold:

(inclusion) Γ ⊖ Cn(Γ)

1 It may also be inconsistent but coherent in the limit case where �Con(�) = ∅
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(iteration) Cn(Γ) = Cn(Cn(Γ))

(monotonicity) if Γ1 ⊖ Γ2, then Cn(Γ1) ⊖ Cn(Γ2)

On the other hand, [Rib13] identiĄed some properties which may or may not be

veriĄed by a Tarskian and compact logic, and appear to play an important role for

the applicability of the classical postulates for belief change, introduced in Chapter

3. Some of these properties, like complementarity, are not veriĄed by most DLs of

interest here.

2.3.7 TBox/ABox

A DL KB is traditionally partitioned into 2 subsets (or 3, depending on the authors).

The ABox of a DL KB is the set of all axioms derivable from the ãABox non terminal

symbol in the grammar of table 2-1. Intuitively, the ABox is the assertional part of

the KB, expressing facts about individuals. The TBox is the terminological part of

the KB, which characterizes its predicates. It is often deĄned as the complement of

the ABox in the KB, or, for some authors, as the set of all axioms derivable from

the ãTBox non terminal symbol in the grammar of table 2-1. In this latter view,

the remaining axioms (i.e. the axioms derivable from the ãRBox symbol) form the

so-called RBox.

It should be noted though that for DLs with nominals (i.e. allowing extensionally

deĄned atomic concepts, like {Woody Allen}), this distinction between assertional

and terminological knowledge becomes inadequate, because an ABox assertion can

be expressed with a semantically equivalent TBox axiom. For instance, the formulas

�(�), �1 ̸= �2 and�(�1, �2), can be respectively translated into ¶�♢ ⊑ �, ¶�1♢ ⊑ ¬¶�2♢

and ¶�1♢ ⊑ ∃�.¶�2♢. The converse is not true though, so the ABox may be more

accurately deĄned as the set of axioms of the input KB which can be expressed as
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formulas derivable from ãABox. But this deĄnition is still not completely satisfying.

For instance, the TBox axiom ¶�1♢ ⊑ ¶�2, �3♢ expresses the fact that a least �2 or

�3 is identical to �1. This is arguably knowledge about individuals, and there is no

equivalent ABox formulation.

Similarly, the distinction between TBox and RBox tends to blur for very expres-

sive DLs. For instance, as noted by [HKS06], the formula ∃�.⊤ ⊑ ∃�. self expresses

a form of reĆexivity for the role �, but it is syntactically part of the TBox.

By default, i.e. unless explicitly stated, in the rest of this thesis, the following

syntactic convention will be used:

∙ The ABox of a KB � will designate all axioms of � derivable from the symbol

ãABox in the grammar of table 2-1.

∙ The TBox of a KB � will designate all axioms of � derivable either from the

symbol ãTBox or from the symbol ãRBox in the grammar of table 2-1.

2.3.8 Reasoning

An in-depth description of reasoning tasks and corresponding algorithms for DLs

would be of-topic in this thesis. Section 2.3.8.1 simply introduces generic but useful

considerations on the subject. Section 2.3.8.2 sketches the execution of a standard

tableau algorithm for consistency in DLs, which played a prominent role in the

development of expressive DLs. A basic understanding of tableau algorithms will

also be required in chapters 3 and 8, when so-called glass-box debugging algorithms

will be discussed.
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2.3.8.1 Tractable and intractable DLs

Standard reasoning tasks in expressive DLs are typically intractable in the worst

case. For instance, satisĄability is PSpace-complete in the well studied DL �ℒ�

(which is a notational variant of the modal fragment of FOL, or equivalently of the

multi-modal logic ��). And for �ℛ�ℐ�, it is NExpTime-hard.

In practice though, algorithms developed for these tasks tend to behave relatively

well on most inputs. These empirical considerations have led to the development of

very expressive DLs in the recent years, guided by decidability more than tractability,

resulting in the adoption of �ℛ�ℐ�(�) as the logic underlying OWL 2 (and previ-

ously �ℋ�ℐ� (�) as underlying the language called OWL DL). Of-the-shelf reason-

ing libraries can be found for a variety of tasks in diferent fragments of �ℋ�ℐ� (�)

/ OWL 2, which behave relatively well for moderately large datasets.

Concurrently, other works have focused on tractable DLs, most notably the DL-

Lite [CDGL+05] and ℰℒ [BBL08] families of logics. The former is tailored for query

answering, and underlies the OWL 2 QL proĄle, whereas the latter is mostly used

to build terminologies, and underlies the OWL 2 EL proĄle.

2.3.8.2 Tableau algorithm

The canonical purpose of a tableau algorithm for DLs is to decide satisĄability of a

(possibly complex) DL concept, or consistency of a set of axioms. From a more the-

oretical perspective, termination of a tableau algorithm has also been used to prove

decidability of several problems in very expressive DLs. For readability purposes, the

choice is made here to focus on the case of consistency. The execution of a tableau

algorithm to decide consistency of a set Φ of axioms can intuitively be viewed as an

attempt to build a model for Φ. This section provides a relatively high-level and in-
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formal description of the execution of such an algorithm. For a more comprehensive

introduction, the reader is referred to [BCM+03].

A tableau algorithm to decide the consistency of a set Φ of axioms updates a

family � of sets of DL formulas, such that at each step, Φ is consistent if at least

one � ∈ � is consistent. The successive states of the family � will be designated

with �0, ..,��, such that �� is the state of � after termination of the procedure.

A set of so-called expansion rules is iteratively applied to the elements of �

throughout the execution. For instance, if there is a � ∈ �� for some � ∈ ¶0, .., �♢

such that �(�) ∈ � and � ⊑ � ∈ � but �(�) ̸∈ � , then � can be expanded,

i.e. replaced in � by �
′

= � ∪ ¶�(�)♢, or in other words �� becomes ��+1 =

(� ∖ ¶�♢) ∪ ¶�
′
♢. Some rules may cause � to be replaced by two new sets of

formulas. For instance, if �1 ⊔ �2(�) ∈ � but �1(�) ̸∈ � and �2(�) ̸∈ � , then �

can be replaced in� by ¶�
′
,�

′′
♢, with �

′
= � ∪¶�1(�)♢, and �

′′
= � ∪¶�2(�)♢.

Fresh individuals may also be introduced in the expansion of � , for instance if �

contains the formula ∃�.⊤(�), but there is no �′ such that �(�, �′) ∈ � .

A possible set of expansion rules for �ℒ� will be given2 in Chapter 8 Section

8.3.2, together with an example of execution.

If � ∈ �� for some � ∈ ¶0, 1, .., �♢, let expans*(� ) denote the family of sets

of axioms composed of � and all expansions transitively derived from � during

the execution, i.e. expans*(� ) is composed of � itself, the expansion(s) of � ,

the expansion(s) of its expansion(s), etc. A tableau algorithm for DLs generally

relies on blocking conditions in order to ensure that expans*(� ) is Ąnite. Otherwise,

some expansion rules may be applied an inĄnite number of times, due to cycles

in the terminology and existential quantiĄcation, for instance in the case where

2 for a slightly more complex type of tableau algorithm than the one described here though,
with a so-called tracing mechanism

60



� = ¶�(�), � ⊑ ∃�.�,� ⊑ ∃�.�♢.

A clash in generally deĄned as a minimal set of formulas which instantiates an

element of a set of pre-identiĄed clash patterns. Prototypical clash patterns are

¶�(�),¬�(�)♢, with � an atomic concept and � an individual, or ¶⊥(�)♢. These

are also the two clash patterns considered in the following discussions about tableau

algorithms, in particular in Chapter 3 Section 3.5.1 and Chapter 8 Section 8.3.2.

But other clash patterns may be used, depending on the implementation and the DL

under consideration.

Let Γ be deĄned by Γ = ¶⊤(�) ♣ � ∈ �Ind(Φ)♢ if �Ind(Φ) ̸= ∅, and Γ = ¶⊤(�′)♢

otherwise, with �′ a fresh DL individual. After a syntactic normalization of each

axiom in Φ, the algorithm may be initiated with �0 = ¶Φ ∪ Γ♢. If at any moment

during the execution there is a � ∈ � which cannot be expanded and contains no

clash, then a model ℐ of Φ can immediately be build out of the atoms of � . The

other termination condition is the case where all elements of � contain a clash. In

this case, Φ is inconsistent.

For very expressive DLs (such as �ℛ�ℐ�) with an RBox, a preliminary extension

of Φ with some consequences of Φ may be required, like the one described in [HKS06].

2.4 Typographical conventions

2.4.1 Predicate names, individual names and linguistic la-

bels

Predicate and constant names in OWL are normalized strings known as IRIs, for

ŞInternationalized Resource IdentiĄersŤ (which are themselves extensions of URIs or

ŞUniform Resource IdentiĄersŤ to Unicode characters).
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For instance, http://dbpedia.org/ontology/director is an atomic DL role in the

signature of the DBpedia ontology.

Similarly, http://dbpedia.org/Smithsonian_Institution is a DL individual in

the signature of DBpedia.

If there is no ambiguity, a shorter notation is adopted here, such that the two

above IRIs will be written director and Smithsonian Institution respectively.

Moreover, DL atomic concepts names (like Person or Movie) and atomic role

names (like director) are written with a teletype font,3 the former with a capi-

tal Ąrst letter and the latter without, whereas individuals names (like Smithsonian

Institution) are in italics.

Linguistic terms (like Şthe Smithsonian InstitutionŤ, Şthe SmithsonianŤ, . . . )

are quoted. Note that Woody Allen and ŞWoody AllenŤ are two diferent objects,

respectively a DL individual name and a linguistic label associated to that individual

name (ŞW. AllenŤ for instance could be another linguistic label associated with

Woody Allen).

2.4.2 Variables

Whenever possible, the following typographical conventions for variables are fol-

lowed :

∙ � and � for DL atomic concepts

∙ � and � for possibly complex DL concepts

∙ � and � for DL atomic roles4

3This is not the case for variables representing DL concepts and roles, as explained in Section
2.4.2.

4 � is also used in Chapter 8 for consistent subbases of the input KB.
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∙ � for an individual

∙ ã and å for DL formulas. Additionally, given a KB �, ã will be preferred for

an axiom of �, and å for a consequence of �.5

∙ Capital Greek letters (Φ,Ψ,Γ,Θ, �, . . . ) by default for sets of formulas. But

also capital Latin letters in some cases, when the set of formulas is an element

of a family of set of formulas (see the following point).

∙ Capital cursive Latin letters (e.g. �) for families of sets of formulas. In this

case, the corresponding capital Latin letters (e.g �) are used for the sets which

are elements of this family (e.g. � = ¶�1, .., ��♢).

5Axioms of � are consequences of �, but the converse does not hold in general.
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Chapter 3

Knowledge base debugging: state

of the art

This chapter is an overview of existing Knowledge Base (KB) debugging techniques.

It is by no means an exhaustive state of the art, but a selection of approaches which

are either related to the proposals made in the following chapters, or relevant to

the speciĄc problem addressed in this thesis, namely the coexistence of incompatible

meanings of a predicate or constant in an input KB. In particular, an important

part of this review is dedicated to debugging techniques which involve some form

of reasoning, with an emphasis on Description Logics (DL). It is also a relatively

high-level introduction. The choice is made to provide more technical and/or critical

reviews of existing approaches in the relevant chapters, for readability.
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3.1 Typology

A strict classiĄcation of existing KB debugging strategies is diicult to establish.

Some useful distinctions are nonetheless listed in this section, but without necessarily

referring to existing works, which will instead be reviewed in sections 3.2 to 3.6. The

reason is that none of these distinctions provides a clear-cut partition of the Ąeld,

i.e. for each of them, there is at least one approach in the literature exemplifying

both aspects.

Therefore the following state of the art is not organized according to these distinc-

tions. They are instead used locally in order to give a better understanding of some

approaches from the literature. These distinctions are also helpful for positioning

the proposals made in this thesis.

3.1.1 Strengthening/weakening

A Ąrst methodological distinction can be made between approaches which focus on

strengthening the input KB, and the ones which focus on weakening it.

At Ąrst sight, KB strengthening (i.e. extending a KB with additional knowledge)

may seem irrelevant to the problem considered here. Indeed, a large number or

approaches which aim at completing a KB do not pertain to debugging. This is the

case in particular of techniques inspired by Inductive Logic Programming or Formal

Concept Analysis, which focus on the acquisition of TBox axioms. Another example

is knowledge extraction/ontology learning from texts (discussed in Chapter 4, but

for other reasons).

But a slightly diferent view on the problem, inspired by database modeling,

considers the TBox of a KB (or only part of it) as a set of constraints on the rest
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of the KB, by analogy to a data schema in a relational database. For instance, the

TBox Γ = ¶⊤ ⊑ ∀receivesAward.Award, Award ⊑ ¬Organization♢ prevents the

usage of the receivesAward role with an organization as a second argument.

This is not the only function of a TBox, which may also be used to infer data for

instance. The analogy between ABox/TBox on the one hand and data/data schema

on the other hand is not technically accurate either. First, negation can also appear

in the ABox, even for moderately expressive DLs. And more generally, as explained

in Chapter 2 Section 2.3.7, the distinction between ABox and TBox tends to blur

for expressive DLs. This analogy is nonetheless a widespread one in the knowledge

representation community, and can be enforced to a certain extent by additional

syntactical constraints on the KB (for instance giving a name to each extensively

deĄned concept, banning concept negation in the ABox, . . . ).

So in the case where it is viewed as a data schema, the TBox may be not be con-

straining enough for applicative requirements, which is the reason why strengthening

the TBox may be viewed as a form of debugging. In a similar vein, meta-modeling

generally amounts to adding second order constraints on a KB (prototypically on

the TBox).

For the work presented in this dissertation, the literature on KB weakening is

clearly more relevant than the one on KB strengthening, but as will be discussed

in Chapter 7, a preliminary extension phase may be a useful step in the process,

in particular for loosely constrained KBs, i.e. from a logical point of view for KBs

where negation is sparsely used.

The line between weakening and strengthening is also not always clear for semi-

automated approaches to debugging, where the goal is to rewrite some axioms, and

therefore both operations are involved.
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3.1.2 Automating detection and repair

Most of the following approaches involve a part of manual correction, but the degree

to which repair is automated may vary. At one end of the spectrum lies for instance

inconsistency detection. It is certainly useful to know that a KB is inconsistent, but

this provides almost no information as to how it can be optimally modiĄed in order

to restore consistency. At the other end of the spectrum, some typos, redundancies

or violations of syntactic conventions can be repaired in a fully automated fashion.

What is meant by repair may also vary. In particular, diagnosis techniques (see

Section 3.6.2.2 below) produce as an output (sets of) statements to be preferably

discarded to get rid of an error. But no suggestion is made as to how these statements

could reformulated, i.e. how the axioms intended by the KB author(s) may be

recovered. This is also the case of most of the strategies developed in this thesis, the

reformulation of faulty statements being left as a following debugging step.

3.1.3 Syntactic/semantic verifications

The errors to be spotted may be of a semantic or syntactic nature. A syntactic

error here is understood as an error whose correction does not afect the semantic

of the KB, or in other words yields an equivalent theory. Among those, one may

mention redundant assertions (e.g � ⊑ � and � ⊑ � ⊓ �), erroneous or missing

linguistic label for an individual or atomic concept, or non-compliance with good

engineering practices which do not afect the semantic of the KB, such as the ones

given in [Rec03].

This should be distinguished from syntactic patterns which have empirically been

identiĄed as likely to indicate a semantic error. For instance, in OWL, deĄning a

binary relation � as its own inverse, using the owl:inverseOf construct (� ⊕ �⊗
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in DL), is considered in [PVSFGP12] as likely to indicate an error. There is indeed

a good reason to think that the authorŠs intention was not to express that � is

symmetric: a speciĄc OWL construct owl:symmetric (� ⊑ �⊗ in DL) already

exists for that purpose. Similarly, the same authors identiĄed that a cycle in the

subsumption relation involving more that 2 concepts (�1 ⊑ �2 ⊑ �3 ⊑ �1) was likely

to indicate a semantic error. These are considered as cases of semantic debugging,

because the purpose of such patterns is the detection of underlying semantic mistakes.

As already mentioned, the proposals made in the following chapters exclusively

focus on semantic errors, i.e. errors which have an impact of the possible interpreta-

tions of a KB.

3.1.4 Abstract characterization/concrete debugging

As will appear in Section 3.6.1, a large part of the literature on belief change focuses

on abstract characterization of operations on KBs viewed as deductively closed the-

ories. In many cases, no practical implementation of these operations is provided (at

least outside of propositional logics). On the more concrete side, an important num-

ber of works in the DL community provide algorithms and complexity bounds for dif-

ferent debugging tasks, but without empirical evaluation. Finally, some approaches

are primarily guided by empirical considerations, not only in terms of computational

cost, but also qualitatively.

The diferent proposals made in this thesis pertain to the two latter categories.
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3.2 Reviewing models

A Ąrst family of debugging strategies rely on a review of some of the models (in

the model-theoretic sense, see Chapter 2 Section 2.3.4) of the input KB. These ap-

proaches pertain to TBox strengthening, as explained above in Section 3.1.1. Intu-

itively, the objective is to help the modeler identify missing constraints in the input

KB, which is particularly relevant for datasets where negation is sparsely used.

This may for instance address a relatively widespread misunderstanding of the

rdfs:domain and rdfs:range constructs, noted among others by [RDH+04]. If �

is a DL atomic role and � a DL concept, the rdfs:range construct can be used to

express the DL formula ã = ⊤ ⊑ ∀�.�. Let � be a consistent KB such that � ̸⊢ ã,

� ̸⊢ ¬�(�2), but � ⊢ �(�1, �2) and � ⊢ �(�2), with �1, �2 two DL individuals and

� an atomic DL concept. Then a common modeling mistake is to consider that

� ∪ ¶ã♢ must be inconsistent, assuming that � ⊢ ¬�(�2) holds by default. This

could be the case for instance if � ⊑ ¬� was a statement of �. In other words, in

the absence of explicit negation in �, the rdfs:domain and rdfs:range constructs

should not be viewed as the type constraints used in a database schema.1.

[FR12] developed a tool in order to assist the manual strengthening of a TBox.

The idea is to present to the user some ABox statements which are admissible as-

sertions wrt the current state of the TBox of the input KB �. Then if the user

identiĄes among these assertions a formula Ò which should be ruled out, the system

suggests a stronger version � ′ of �, such that � ′∪¶Ò♢ is inconsistent. This may be

viewed as a form of manual model checking, where Ò represents a property veriĄed

by some of the models of � (or intuitively some possible worlds according to �),

1unless the closed-world assumption is made, which does not correspond to the standard semantic
for OWL
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and the strengthening phase aims at ruling out these interpretations.

A comparable approach was implemented by [BGBA10], as part of the OntoUML

editor, in order to assist the conception of database schemas in UML. The tool

is based on the generation of visual representations of minimal or almost minimal

models of the current schema, viewed as a logical theory. The user can then rule out

the non-admissible interpretations by strengthening the KB.

3.3 Formal ontology

Formal ontology provides axiomatizations of philosophically grounded principles which,

among other applications, may be used to identify probable mistakes within a KB.

One of the most inĆuential examples of such a debugging strategy is the Ontoclean

methodology, introduced in [GW00].

A review of the Ontoclean methodology and its implementations is provided in

Chapter 7, followed by a series of experiments which are similar in spirit, but rely

on top-level ontology instead, allowing for the introduction of negations in loosely

constrained datasets with a very limited amount of manual work.

3.4 Syntactic patterns

Another family of DL KB debugging strategies are characterized by a strong empirical

focus, with an emphasis on tractability. They rely on the identiĄcation within an

input KB of syntactic patterns which are likely to indicate a modeling mistake,

without requiring the use of a full-Ćedged reasoning service. In particular, the input

KB may or may not be consistent/coherent.

Some representative works are the OOPS! validation tool [PVSFGP12], and the
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ŞantipatternsŤ by [RZ13] or [SBG12]. An antipattern is a syntactic pattern likely

to indicate an error. Some of them are related to the inĆuential work of [RDH+04]

on the identiĄcation of mistakes commonly made by occasional users of logic-based

knowledge representation languages. The errors which may be spotted are extremely

diverse, even for a same tool. As a consequence, a more detailed description of these

approaches is diicult without an exhaustive enumeration of the syntactic patterns,

which would be irrelevant here. In particular, some of the errors being spotted have

nothing to do with the logical formulation of the KB. For instance, [PVSFGP12]

allows for spotting irregular naming conventions (capital letters, underscore, . . . ) in

the signature of a KB, as well as missing annotations or linguistic labels (which are

considered as meta properties of the input KB, and not part of its logical formula-

tion). Another example is the (second-order) declaration of an atomic concept � (for

instance stating that Person is an atomic concept) when this concept is not used in

any (Ąrst-order) logical statement of the KB, identiĄed as a mistake in [RZ13] and

[PVSFGP12].

For semantic mistakes now, the patterns may either spot missing information

(indicating that the KB is too weak), or point at incorrect sets of statements (in-

dicating that the KB is too strong). The absence of explicit domain and range for

a DL role, spotted by [PVSFGP12], is an example of probably missing information.

An example of a probably incorrect set of statements, still in [PVSFGP12], consists

in declaring two roles as each otherŠs inverse when the declared domain of the former

is not identical to the declared range of the latter. It should be noted though that a

KB containing this pattern may still be consistent/coherent.

More generally, debugging patterns are based on what may be viewed as a gen-

eralized notion of typo. Although violations of such patterns may indeed indicate

semantic errors, errors of the type introduced in Chapter 1 (namely the coexistence
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of multiple meanings of a predicate or individual within a KB) usually go unno-

ticed when such patterns are applied, especially for datasets with a relatively low

expressiveness. For instance, in example 1.1.1, each formula is syntactically very

basic (of the form � ⊑ �,�(�), �(�1, �2),⊤ ⊑ ∀�.�, ..). And by using a diferent

signature, it is actually easy to Ąnd a replacement for each element of sig(�) in

this example, such that the whole set of statements after replacement is not absurd

anymore. As an illustration, let us replace each individual in example 1.1.1 which

does not denote a human being by a human being: for instance Caixa Bank becomes

Margaret Atwood, CEO becomes Woody Allen, etc. Let us also replace each DL role

(keyPerson, occupation, . . . ) by a relation which may hold between two human

beings, like knows, worksWith, or hasRelative, and let us replace the DL atomic

concepts PersonFunction and Organization by LivingThing and Agent respec-

tively. The resulting set of statements could be factually wrong (maybe Margaret

Atwood and Woody Allen do not know each other), but it would not contain viola-

tions of common sense. And from a syntactic point of view, it is identical to example

1.1.1. This shows that no possible syntactic pattern is able to spot the nonsense in

example 1.1.1.

The patterns used by [SBG12] are slightly diferent, in that they are not only

based on common mistakes or syntactic typos, but also grounded philosophically.

These patterns identify violations of (second-order) constraints formalized by the

foundational ontology UFO [Gui05]. The input KB before debugging must already

comply to the OntoUML speciĄcation[Gui05] though, which is a UML proĄle based

on UFO. Therefore these patterns do not apply in general to standard OWL KBs,

falling out of the scope of this work.2.

2Providing an example of such a pattern here would require the introduction of the specific
philosophical terminology used in OntoUML, which also falls out of the scope of this work.

72



Finally, the degree to which repair can be automatized varies with the type of

errors being spotted. Non-compliance to syntactic conventions can sometimes be

repaired automatically. But for patterns indicating a possible semantic mistake (see

section3.1.3), the repair may be a more complex and ad-hoc task.

3.5 Justifications

An important amount of work has been dedicated in the DL community to the

computation of minimal subsets of an input KB which entail some (usually undesired)

consequence(s). This problem is also closely related to the computation of maximal

subsets which do not entail this consequence, as will be explained in Section 3.6.2.2.

Given a consequence å of an input KB �, a justification for å is a minimal subset

of � having å as a consequence. Minimality is understood here wrt set inclusion,

i.e. the set of all justiĄcations for å in � is � = min⊖¶Δ ⊖ � ♣ Δ ⊢ å♢. In other

words, if � ⊖ � is a justiĄcation for å, then � ⊢ å, and for any � ′ ⊆ � , � ′ ̸⊢ å. A

justiĄcation is a possible explanation for å being a consequence of �, which can be

helpful for debugging � if å has been identiĄed as an undesired consequence of �.

There may be several justiĄcations for a given å ∈ Cn(�) though, and they may

overlap.

A case of particular interest is the one where å = ⊤ ⊑ ⊥. In this case, a

justiĄcation for å can be viewed as an explanation for the inconsistency of �, also

called a minimal conflict in the diagnosis literature [Rei87]. Another well studied

possibility for DLs is å = � ⊑ ⊥, where � is an atomic concept in the signature of

�, i.e. � ∈ �Con(�). In this case, a justiĄcation for å has been called a MUPS (for

minimal unsatisĄability preserving sub-TBox) in [SC03].

If å is equivalent to neither of these, and if � is consistent, then computing
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justiĄcations for å in � can generally be reduced to computing justiĄcations for

⊤ ⊑ ⊥ in � ∪¶å♢, where å is a formula such that for all Δ ⊖ �, Δ∪¶å♢ ⊢ ⊤ ⊑ ⊥

if Δ ⊢ å. Then if � is a justiĄcation for ⊤ ⊑ ⊥ in � ∪ ¶å♢, it must be the case

that å ∈ � , and � ′ = � ∖ ¶å♢ is a justiĄcation for å ∈ �. As a simple example,

if å = �(�), with � a DL concept and � an individual, then å = ¬�(�) (up to

equivalence). Another example is å = � ⊑ �, with � and � DL concepts, and

å = � ⊓ ¬�(�), with � a fresh individual, i.e. such that � ̸∈ �Ind(�).

The notion of justiĄcation has also been generalized to a set Ψ of consequences.

This is useful for most DLs, which are closed neither under conjunction nor dis-

junction. Two diferent generalizations can be made, depending on whether Ψ is

understood conjunctively or disjunctively. In the conjunctive case, if Ψ ⊖ Cn(�),

then a justiĄcation � for Ψ in � is a subset of � such that Ψ ⊖ Cn(�), and for all

� ′ ⊆ � , Ψ ̸⊖ Cn(� ′). In the disjunctive case, if Ψ ⊖ Cn(�), then a justiĄcation � for

Ψ in � is a subset of � such that Cn(�)∩Ψ ̸= ∅, and for all � ′ ⊆ � , Cn(�)∩Ψ = ∅.

In particular, in the disjunctive case, if Ψ = ¶� ⊑ ⊥ ♣ � ∈ �Con(�)♢, a justiĄca-

tion for Ψ has been called a MIPS (for minimal incoherence preserving sub-TBox)

in [SC03]. This last case corresponds to the notion of incoherence introduced in

Chapter 2 Section 2.3.5, i.e. each MIPS is a justiĄcation for the incoherence of �,

and conversely.

Laconic justification have also been deĄned and explored in depth in [Hor11].

They can be viewed as Ąner-grained form of explanations. Intuitively, a laconic

justiĄcation � ′ is a weaker version of a justiĄcation � for å, such that each axiom of

� has been individually weakened to produce � ′,3 and such that � ′ ⊢ å still holds.

3It would not be perfectly accurate to say “maximally weakened” here, although this is clearly
the general intuition. It turns out that the notion of laconic justification used in [Hor11] is more
subtle. In particular, in some specific cases, there may be two laconic justifications � ′ and � ′′ for
å, obtained out of a same (non-laconic) justification � , and such that � ′′ ⊆ Cn(� ′).
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Among the motivations behind laconic justiĄcations are the fact that � ′ is easier to

read, but also that there may be several laconic justiĄcations for a same � .

The rest of this section introduces some of the main algorithms proposed to com-

pute (non-laconic) justiĄcations for DLs, and is largely based on [Hor11]. References

to these algorithms will be made in the following chapters, which is why the reviews

provided here are more detailed than the reviews of the previous sections.

Two problems can be identiĄed, computing one, and computing all justiĄcations

for a given (set of) consequence(s) of the input KB. A distinction introduced in

[PSK05] is also traditionally made between so-called glass-box, and black-box algo-

rithms. The former are modiĄcations of some existing algorithm to check consistency

of satisĄability, whereas the latter use a reasoner as an external library.

3.5.1 Glass-box algorithms

In �ℒ� and more expressive DLs, a glass-box algorithm to compute justiĄcations

for a set of consequences of a KB is prototypically a customization of some existing

tableau algorithm used to decide consistency or satisĄability, like the tableau for con-

sistency brieĆy described in Chapter 2 Section 2.3.8.2. The technique was introduced

in [BH95] to compute a so-called pinpointing formula (deĄned in section 3.5.1.2) for

the inconsistency of a set Φ of statements. It was then speciĄcally applied to the

computation of one or several justiĄcations by [SC03], [KPSH05] or [Lam07] among

others, each work dealing with speciĄc DLs and/or a particular set Ψ of undesired

consequences (inconsistency, incoherence, . . . ). A more general formalization was

also proposed by [BP10].

For the sake of readability, the focus is put here on the speciĄc case where jus-

tiĄcations for the inconsistency of a set Φ of axioms needs to be computed. But
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as already mentioned at the beginning of Section 3.5, the generalization to an arbi-

trary set Ψ of undesired consequences is generally straightforward, because deciding

entailment in these DLs can most often be reduced to deciding consistency.

3.5.1.1 Computing one justification.

As a reminder (see Chapter 2 Section 2.3.8.2 for details), if Φ is a (Ąnite) set of DL

axioms, a tableau algorithm to decide the consistency of Φ updates a family � of

sets of DL formulas, whose cardinality may increase during the execution, and such

that at each step, Φ is consistent if there is a consistent � ∈ �. Again, �0, ..,��

will designate the successive states of � during the execution. Let Γ be deĄned by

Γ = ¶⊤(�) ♣ � ∈ �Ind(Φ)♢ if �Ind(Φ) ̸= ∅ and Γ = ¶⊤(�′)♢ otherwise, with �′ a fresh

DL individual, and let �0 = Φ∪Γ. A tableau algorithm for the consistency of Φ may

start with �0 = ¶�0♢, provided a prior syntactic normalization of each axiom in Φ.

The execution then consists in iteratively expanding each � ∈ �, replacing � in

� by one or two sets of statements, until either no expansion rule can be applied to

some clash-free element of � , or all of them contain a clash. A rule is triggered by

the presence of some formulas ¶Ò1, .., Ò�♢ in � , and produces one or two expansions

of � . If �
′

is an expansion of � , then �
′

= � ∪ Γ′, with Γ′ a nonempty set of

derived formulas. Again, expans*(� ) will denote � and all expansions transitively

derived from � during the execution.

In its simplest form, a glass-box algorithm to compute justiĄcations proceeds by

keeping track, for each derived DL formula Ò in each � ∈ �, of the axioms of Φ

which were used to derive it. To this end, in each � ∈ �, each Ò ∈ � is mapped

to a subset lab(�, ¶Ò♢) of Φ.

For each ã ∈ Φ, lab(�0, ¶ã♢) is initiated with lab(�0, ¶ã♢) = ¶ã♢, and for each
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Ò ∈ Γ, lab(�0, ¶Ò♢) is initiated with lab(�0, ¶Ò♢) = ∅.

If �
′

is an expansion of � , then for each derived DL formula Ò′ in �
′
∖� , the

set of axioms lab(�
′
, ¶Ò′♢) associated to Ò′ in �

′
is the union of the sets of axioms

associated in � to each DL formula which triggered the rule. For instance, let us

assume that �(�) ∈ � , � ⊑ � ∈ � , but �(�) ̸∈ � , such that � is expanded

as �
′

= � ∪ ¶�(�)♢. Then lab(�
′
, ¶�(�)♢) = lab(�, ¶�(�)♢) ∪ lab(�, ¶� ⊑ �♢).

On the other hand, the sets of axioms assigned to non-derived formulas in �
′

(in

this example, �(�) and � ⊑ �) remain unchanged, i.e. for each Ò ∈ � ∩ � ′,

lab(�
′
, ¶Ò♢) = lab(�, ¶Ò♢).

As mentioned in Chapter 2 Section 2.3.8.2, if � at some point during the execu-

tion contains several sets of formulas, this is due the presence of disjunctions (⊔) in

(the syntactically normalized version of) Φ, such that each � ∈ � can be viewed

as an alternative attempt to build a model for Φ.

If Φ is inconsistent, then at the end of the execution, each � ∈ �� contains

a clash. Let clash(� ) ⊖ � denote the clash identiĄed in some � ∈ ��. If

lab(�, clash(� )) is the union the axioms of Φ associated to each Ò ∈ clash(� ), i.e.

if lab(�, clash(� )) =
⎷

Ò∈clash(� )
lab(�, ¶Ò♢), then lab(�, clash(� )) can intuitively

be viewed as an explanation for the inconsistency of � . Now if � is the union of all

axioms involved in each clash after termination, i.e. if � =
⎷

�∈�
lab(�, clash(� )),

then � is an inconsistent subset of Φ, and as such can be viewed as an explanation

for the inconsistency of Φ.

This inconsistent subset of Φ is not always minimal though. Here is a very simple

example, borrowed from [Hor11].

Ex 3.5.1. ã1 = �1(�1),

ã2 = �1 ⊑ �2 ⊓ ∃�.(�3 ⊓ ¬�3),
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ã3 = �2 ⊑ ⊥,

Φ = ¶ã1, ã2, ã3♢

If �0 is initiated with ¶�0♢ such that �0 = Φ ∪ ¶⊤(�1)♢, then lab(�0, ¶ã1♢) =

¶ã1♢, lab(�0, ¶ã2♢) = ¶ã2♢, lab(�0, ¶ã3♢) = ¶ã3♢, and lab(�0, ¶⊤(�1)♢) = ∅. A

Ąrst application of an expansion rule may yield �1 = ¶�1♢, with �1 = �0 ∪ ¶�2 ⊓

∃�.(�3 ⊓ ¬�3)(�1)♢, and lab(�1, ¶�2 ⊓ ∃�.(�3 ⊓ ¬�3)(�1)♢) = ¶ã1, ã2♢. Then ex-

panding �1 may yield �2 = ¶�2♢, with �2 = �1 ∪ ¶�2(�1),∃�.(�3 ⊓ ¬�3)(�1)♢,

and for each Ò ∈ �2 ∖�1, lab(�2, ¶Ò♢) = ¶ã1, ã2♢. At this point, one may choose to

extend �2 either with ¶⊥(�1)♢, or with ¶�(�1, �2), �3 ⊓¬�3(�2),⊤(�2)♢. In the Ąrst

case, this yields �3 = ¶�3♢, with �3 = �2 ∪ ¶⊥(�1)♢, and lab(�3, ¶⊥(�1)♢) =

lab(�2, ¶�2(�1)♢) ∪ lab(�2, ¶ã3♢) = Φ. Because ¶⊥(�1)♢ is a clash in �3 and

�3 = ¶�3♢, the procedure terminates, and the explanation for the inconsistency

is �1 =
⎷

�∈�3

lab(�, clash(� )) = Φ. In the second case, this yields �3 = ¶�4♢,

with �4 = �2 ∪ ¶�(�1, �2), �3 ⊓ ¬�3(�2),⊤(�2)♢, and for each Ò ∈ �4 ∖ �2,

lab(�4, ¶Ò♢) = ¶ã1, ã2♢. Finally, expanding �4 one step further may yield �4 =

¶�5♢, with �5 = �4∪¶�3(�2),¬�3(�2)♢, and for each Ò ∈ �5 ∖�4, lab(�5, ¶Ò♢) =

¶ã1, ã2♢. Similarly, because ¶�3(�2),¬�3(�2)♢ is a clash in �5 and �4 = ¶�5♢,

the procedure terminates. But in this case, the explanation for the inconsistency is

�2 =
⎷

�∈�4

lab(�, clash(� )) = ¶ã1, ã2♢. So as �2 ⊆ �1, the Ąrst possible execution

yields an inconsistent subset of Φ which is not a justiĄcation.

The solution to this problem proposed by [Hor11] consists in adding a subsequent

black-box reduction phase, as described in Section 3.5.2, in order to obtain a minimal

explanation for the inconsistency of Φ.
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3.5.1.2 Computing all justifications

Glass-box algorithms used to compute all justiĄcations are more complex customiza-

tions of tableau algorithms. The Ąrst reason is the termination condition of a stan-

dard tableau algorithm. Only one clash needs to be found in each � ∈ ��, i.e. if

� contains a clash, it is not expanded any further. But if instead expansion rules

can still be applied to an element of� which already contains a clash, then multiple

clashes may be present in a same element of �� (i.e. after termination). Example

3.5.1 above is an illustration, where the explanation for of the two clashes in � is a

subset of the explanation for the other. But it may also be the case for some element

� ∈ �� that no explanation for a clashes in � is a subset of the explanations for

all others. As a very simple illustration, let us consider the following input set of

axioms Φ:

Ex 3.5.2. ã1 = �1(�),

ã2 = ¬�1(�),

ã3 = ¬�2(�),

ã4 = �1 ⊑ �2,

Φ = ¶ã1, ã2, ã3, ã4♢

And let us assume that �0 is initiated with �0 = ¶�0♢, such that �0 = Φ ∪

¶⊤(�)♢. Then ¶ã1, ã2♢ is the only clash in �0. Because �0 contains a clash and

�0 = ¶�0♢, a standard tableau algorithm would immediately terminate with�0 =

�� = ¶�0♢, yielding the explanation �1 =
⎷

�∈�n

lab(�, clash(� )) = ¶ã1, ã2♢. But

expanding �0 one step further may yield �1 = ¶�1♢, with �1 = �0 ∪ ¶�2(�)♢,

and lab(�1, ¶�2(�)♢) = lab(�0, ¶ã1♢ ∪ lab(�0, ¶ã4♢) = ¶ã1, ã4♢. Then �1 contains

two clashes, namely ¶ã1, ã2♢ and ¶ã3, �2(�)♢. If the latter is selected as a clash in

�1 instead of the former, a diferent explanation �2 will be obtained, namely �2 =
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¶ã1, ã3, ã4♢. And as opposed to example 3.5.1, �1 and �2 are both justiĄcations for

the inconsistency of Φ.

For this reason, the modiĄed tableau algorithm proposed for instance in [SC03]

is a saturated tableau, which means that expansion rules are applied to each � ∈ �

even if � contains a clash, until no rule can be triggered anymore. After termination,

each � ∈ �� may contain several clashes, therefore clash(� ) for a saturated tableau

will designate in what follows a set of clashes, and not a single clash. Then each

selection of one clash per � ∈ �� may yield a diferent explanation, such that the

number of computed explanations in the worst case is exponential in ♣��♣.

Another diference from the previous algorithm is due to the fact that if � ′ ∈

expans*(� ) for some � ∈ �� and some � ∈ ¶1, .., �♢, then there may be other

alternative ways to derive � ′ from � , involving diferent subsets of Φ. Here is a

simple example:

Ex 3.5.3. ã1 = �1(�1),

ã2 = �1 ⊑ �2,

ã3 = ¬�2(�1),

ã4 = �(�2, �1),

ã5 = ⊤ ⊑ ∀�.�2,

Φ = ¶ã1, ã2, ã3, ã4, ã5♢

Let �0 = ¶�0♢, with �0 = Φ∪ ¶⊤(�1),⊤(�2)♢. Then �1 = �0 ∪ ¶�2(�1)♢ is an

expansion of �0, and the derivation of �1 can be triggered either by ¶ã1, ã2♢, or by

¶ã4, ã5♢. In addition, there is only one clash in any element of expans*(�1), namely

¶�2(�1),¬�2(�1)♢, and in the absence of disjunction, even if expansion rules are

applied until saturation, the cardinality of � after termination is still 1, i.e. �� =

¶��♢ for some �� ∈ expans*(�1). So the only explanation for the inconsistency of
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Φ which can be computed during the execution is lab(��, ¶�2(�1),¬�2(�1)♢). But

if the derivation of �1 is triggered by ¶ã1, ã2♢, then lab(��, ¶�2(�1),¬�2(�1)♢) =

¶ã1, ã2, ã3♢, whereas if it is triggered by ¶ã4, ã5♢, then lab(��, ¶�2(�1),¬�2(�1)♢) =

¶ã3, ã4, ã5♢. In both cases, lab(��, clash(��)) is a justiĄcation, but depending on

the order in which expansion rules are triggered, only one of them can be computed.

A solution to this problem consists in setting each element � of � to be a set

of pairs < Ò,Λ > instead of a set of formulas, with Λ ⊖ Φ. A clash in � in this

case is a set of pairs ¶< Ò1,Λ1 >, .., < Ò�,Λ� >♢. For instance, ¶< �(�),Λ1 >,

< ¬�(�),Λ2 >♢ is a possible clash. If � is a clash, let �(�) designate the set of all

axioms of Φ involved in � , i.e. �(�) =
⎷

<Òj ,Λj>∈�
Λ�. And once again, let clash(� )

designate the set of all clashes present in some � ∈ �.

Then saturated tableaux with tracing to compute � like the one implemented by

[SC03], are based on the following observation:

Theorem 3.5.1.1. � = min⊖¶
�
⎷

�=1
�(��) ♣ < �1, ..,�� >∈

︂

�k∈�n

clash(��)♢.

In other words, for each selection < �1, ..,�� > of one clash per element �� of

��, the union � =
�
⎷

�=1
�(��) of the axioms of Φ involved in each of these clashes is

an inconsistent subset of Φ. Then if ℋ is the family of all these inconsistent subsets

of Φ, the procedure guarantees that � ⊖ ℋ, and because the elements of � are

minimal wrt set inclusion, � = min⊖ℋ must hold. A detailed execution of such a

tableau will be provided in Chapter 8 Section 8.3.2.

An alternative notation is used in [BP10], associating a boolean formula bool(�, Ò)

to each Ò ∈ � for each � ∈ �, provided a bijective mapping � from Φ to

a set of propositional variables. For instance, if �0 is initiated with ¶�0♢, then

bool(�0, ã) = �(ã) is used to label each ã ∈ Φ∩�0. The elements of some � ∈ �

in this case are just sets of DL formulas, and not pairs as previously, and clash(� )
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is just a family of sets of formulas. An expansion rule may be triggered even if the

derived formula Ò is already in � , but the boolean formula bool(�, Ò) in this case

is updated, in order to account for the fact that Ò may be derived from diferent sets

of axioms. Formally, Let � ′ be the immediate expansion of some � ∈ �� for some

� ∈ ¶0, .., �♢, triggered by ¶Ò1, .., Ò�♢ ⊖ � , and let bool(�, Ò) = ⊥ if Ò ̸∈ � . Then

for each Ò′ ∈ � ′, bool(� ′, Ò′) = bool(�, Ò′)∨ (
⃦

�∈¶1,..,�♢
bool(�, Ò�)). For instance, if

bool(� ′, Ò′) = (�(ã2)∧ �(ã6))∨ (�(ã3)∧ �(ã4)), this would indicate that Ò′ has been

derived independently from axioms ã2 and ã6 on the one hand, and axioms ã3 and

ã4 on the other hand.

After saturation of the tableau algorithm, a pinpointing boolean formula Ð(��)

for �� can be computed out of all boolean formulas for all � ∈ �� and all Ò ∈ � .

It is deĄned (up to equivalence) by Ð(��) =
⃦

�∈�n

⌃

�∈clash(� )

⃦

Ò∈�
bool(�, Ò). Then a

subset � of Φ is a justiĄcation for the inconsistency of Φ if ¶�(ã) ♣ ã ∈ �♢ is a prime

implicant of Ð(��), or equivalently, � ∈ � if ¶�(ã) ♣ ã ∈ �♢ is a minimal valuation

verifying Ð(��).

3.5.2 Black-box algorithms

Black-box algorithms rely on a reasoner for DLs as an external program to check

entailment, in order to Ąnd minimal subsets of an input KB � which have a given

consequence å.

3.5.2.1 Computing one justification

Diferent methods have been devised in order to reduce the number of black-box

consistency checks required to obtain a justiĄcation. Again, a recent detailed state

of the art can be found in [Hor11].
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Two phases are generally distinguished: expansion and reduction. The expansion

phase consists in extending an initial subset Δ of the input KB �, until Δ ⊢ å.

Optimizations for the expansion phase are prototypically based on the signatures

of Δ and å, and/or on the prior computation of a module for sig(å) in �. (n

introduction to modularization in DLs can be found in [SSZ09]. Intuitively, given a

signature � and a set of formulas Φ, a module for � in Φ is a subset Φ′ of Φ such

that for any å ∈ Cn(Φ) with sig(å) ⊖ �, Φ′ ⊢ å holds.

After the expansion phase, i.e. after a Δ ⊖ � has been found such that Δ ⊢ å,

the reduction phase searches for a minimal subset of Δ verifying this condition. For

any Δ′ ⊖ Δ, if Δ′ ⊢ ã holds, then any axiom ã ∈ Δ ∖Δ′ can be safely discarded. It

may be the case that ã appears in a justiĄcation for å, but at least one justiĄcation

is a subset of Δ′, and the algorithm only searches for one of them. Optimizations

for this phase include divide and conquer algorithms, used for instance in [FS05].

3.5.2.2 Computing all justifications.

As an alternative to a saturated tableau, [Hor11] uses a simpliĄed version of ReiterŠs

algorithm [Rei87] to compute all justiĄcations for a given consequence å of �.

The algorithm makes repeated calls to an external procedure which computes one

justiĄcation in diferent subsets of � implying å. The procedure which computes

one justiĄcation can actually be a glass-box or a black-box one. So technically, in

the former case, this approach may not be strictly considered as a black-box one, as

some hybrid black/glass-box strategy.

ReiterŠs algorithm was initially proposed to compute diagnoses, and not justiĄ-

cations (although in practice it allows for the computation of both). This is why

it is introduced in Section 3.6.2.2 of this chapter, dedicated to diagnosis. It is also
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reproduced and discussed in more details in Chapter 8 Section 8.3.1.

3.6 Belief change

An important number of KB debugging techniques pertain more or less directly to the

Ąeld of belief change (for an introduction, see [Gä03]). Belief change prototypically

deals with weakening an input theory � in order either to forget some consequence å

of �, or to accommodate for some additional knowledge � (which, in the non-trivial

case, contradicts �). The Ąrst operation is called a contraction, and the second is

called either a revision or an update, depending on the requirements put on it.

At a very high level of description, two non-trivial constraints must be veriĄed by

such operations: no arbitrary choice should be made (i.e. the weakening of � must

be deterministic), and no information should be unnecessarily lost in the process.

This last informal constraint can be understood in diferent ways though, shaping

the Ąeld.

Two very diferent views on the problem will be distinguished. According to the

Ąrst one, a KB is primarily considered as a (deductively closed) theory, sometimes

called a belief set. Constraints are then put on the deductive closures of the input

and output KBs, regardless of their syntactic formulations.

The second view has been called belief base revision/contraction in [RW09], or

syntactic contraction/revision in [GKZ12]. According to this view, the weakened

base is required to be a syntactic subset of the input KB, i.e. weakening consists in

discarding axioms of the input KB (although a few exceptions to this rule will also

be presented). Debugging strategies corresponding to the second view are not always

perceived as rightfully pertaining to belief change. Many of them have been presented

as pertaining to knowledge engineering or diagnosis instead, without any explicit
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reference to belief change. On the other hand, very similar works by [QHH+08] or

[RW09] for example have been explicitly related to the literature on belief change. No

claim is made here wrt to this terminological issue, and this classiĄcation is adopted

for the sake of clarity only. The former family of approaches will be designated as

belief set contraction/revision, and the latter as syntax-based contraction/revision.

3.6.1 Belief set contraction/revision

Two types of approaches to belief set contraction in DLs are distinguished in [CKNZ10,

GKZ12], although they are not necessarily exclusive. The Ąrst view is called Şformula-

basedŤ, and is largely inĆuenced by the AGM (for Atkinson, Gärdenfors and Makin-

son) paradigm for belief change. The second view is called Şmodel-basedŤ, and

primarily characterizes minimal information loss in terms of some ordering over in-

terpretations.

3.6.1.1 Formula-based contraction/revision

Contraction and revision are deĄned in the AGM framework [AGM85] as binary op-

erations, taking as input a (deductively closed) theory � and a formula, denoted here

by å for contraction, and � for revision. The original framework, primarily developed

for propositional logic, will be brieĆy introduced, followed by its generalization to a

wider class of logics, including many of the DLs of interest here.

Regardless of its syntactic formulation, the input knowledge � is viewed (from

an abstract perspective) as a theory, i.e. � = Cn(�). Note that this convention

is not in line with the one adopted in the other sections of this chapter, where �

designates a KB, i.e. a Ąnite set of axioms. The choice is made to follow (in the

current section only) the more concise notation conventionally adopted in the belief
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change literature.4

Given a theory � and a formula å, the contraction of � by å, noted � ⊗ å,

consists in weakening � so that � ⊗ å ̸⊢ å.

Given a theory � and a formula � the revision of � by �, noted � *�, consists in

modifying� such that�*� ⊢ �, but�*� ̸⊢ ⊥. Revision seems of a particular interest

as a follow-up to the strategy discussed in chapter 7, which consists in extending a

consistent but loosely constrained KB in order to yield an inconsistency, with some

external ontological knowledge � to be preserved.

Finally, the expansion of � by ã, noted � +ã, is the deductive closure of � ∪ã.

Both � ⊗ å and � * � are also considered as deductively closed.

Contraction and revision are characterized by so-called rationality postulates,

some of which are relatively obvious, dealing mostly with limit cases, and others

being more controversial.

3.6.1.1.1 Contraction. The Ąrst Ąve postulates for contraction are relatively

simple.5 The Ąrst one requires the output to be deductively closed, and the four

other ones correspond to basic intuitions:

(1) � ⊗ å = Cn(� ⊗ å) (closure)

(2) if å ̸∈ Cn(∅), then å ̸∈ � ⊗ å (success)

(3) � ⊗ å ⊖ � (inclusion)

(4) if å ̸∈ �, then � ⊗ å = � (vacuity)

(5) if Cn(¶å1♢) = Cn(¶å2♢), then � ⊗ å1 = � ⊗ å2 (extensionality)

4 Alternatively, it is also possible to consider� as a KB as previously, by replacing all occurrences
of “K” in the rest of the current section by “Cn(�)”.

5 The conventional indices of the extensionality and recovery postulates have been swapped for
the sake of the presentation: usually, the index of recovery is 5, whereas the index of extensionality
is 6. In this more traditional setting, the above sentence becomes “The first four postulates for
contraction together with the sixth one are relatively simple”.
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A contraction operator satisfying these Ąve postulates is very loosely constrained.

For instance, a contraction operator which returns � if å ̸∈ � and Cn(∅) otherwise

satisĄes all Ąve of them.

More controversial is the recovery postulate, which, together with the Ąve others,

guarantees a form of minimal information loss.

(6) � ⊖ (� ⊗ å) + å (recovery)

Intuitively, after a contraction of � by å, adding å again to the output and closing

it deductively should allow for the recovery of the whole initial knowledge �.

Alternatively, AGM contraction can be characterized in more constructive terms.

A remainder for� and å is a maximal subset of� not entailing å, and the remainder

set �⊥å is the family of all remainders for � and å. It was shown in [AGM85] that

an operator ⊗ satisĄes postulates 1 to 6 if for any � and å such that å is not a

tautology, it selects the intersection of more than one and less than all elements of

�⊥å (if å is a tautology, it simply returns �). This does not immediately provide

an algorithm to compute � ⊗ å, but this intuitive construction, called partial meet

contraction, legitimates in a way the postulates. [AGM85] show that in the (only)

non-trivial case where å ∈ � and å is not a tautology, selecting only one remainder

would result in a belief set � ′ with the improbable property that Cn(� ′ ∪ ¶¬å♢)

is a complete theory, i.e. that for any formula å′, either å′ ∈ Cn(� ′ ∪ ¶¬å♢)

or ¬å′ ∈ Cn(� ′ ∪ ¶¬å♢). Selecting all remainders and taking their intersection

on the other hand would yield a KB � ′ with the other improbable property that

Cn(� ′ ∪ ¶¬å♢) = Cn(¶¬å♢).

Two additional postulates, called the supplementary Gärdenfors postulates for

contraction, are also used in the AGM framework, and may be more diicult to

understand. They ensure that the behavior of an operator for a contraction by a
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conjunction of two formulas remains in line with its behavior for a contraction by

each conjunct.

(7) if å1 ̸∈ � ⊗ (å1 ∧ å2), then � ⊗ (å1 ∧ å2) ⊖ � ⊗ å1

(8) (� ⊗ å1) ∩ (� ⊗ å2) ⊖ � ⊗ (å1 ∧ å2)

The Ąrst one guarantees that if one needs to forget å1 in order to contract � by either

å1 or å2 (i.e. by å1 ∧ å2), then nothing should be preserved when contracting by

å1∧å2 which is not preserved when contracting by å1 alone. This is not guaranteed

by the 6 Ąrst postulates. For instance, in propositional logic, let � = Cn(¶�, �♢),

and let ⊗ be a contraction operator such that � ⊗ � = Cn(¶� ∨ ¬�♢) and � ⊗

(� ∧ �) = Cn(¶�♢). Then both operations satisfy all 6 Ąrst postulates. In this

case, a contraction by � or a contraction by � ∧ � both result in the loss of �. But

because � ⊗ � ⊆ � ⊗ (� ∧ �), the latter operation is more advantageous, in that

less information is lost. Therefore if one just wants to forget �, it is preferable to

contract � by � ∧ � rather than simply by �, which is arguably counterintuitive, or

at least very impractical.

The second additional postulate guarantees that what is preserved when contract-

ing both by å1 and by å2 is also preserved when contracting either by å1 or by å2.

For instance, in propositional logic, let � = Cn(¶�, �♢), and let ⊗ be a contraction

operator such that�⊗� = Cn(¶�♢), �⊗� = Cn(¶�♢), and �⊗(�∧�) = Cn(∅). Then

again, the operations �⊗�, �⊗� and �⊗(�∧�) satisfy all 6 Ąrst postulates for con-

traction. Let us assume that one wants to forget �∧ �, i.e. to forget either � or � (or

both). Then contracting both by � and by � (and taking their intersection) seems un-

necessary (contracting by one of them is enough), and therefore should not be strictly

preferable. But in this example, �⊗(�∧�) = Cn(∅) ⊆ Cn(¶�∨�♢) = (�⊗�)∩(�⊗�).
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An important remark can be made here, which is that if postulate 6 (recovery) is

dropped, satisfying postulates 7 and 8 together with the Ąve Ąrst ones is not suicient

to guarantee minimal information loss. As a trivial example, postulates 1-5 and 7-8

are veriĄed by the operator which for any � and å returns � if å ̸∈ �, and Cn(∅)

otherwise.

Contraction operators satisfying postulates 1 to 8 have been shown in [AGM85] to

be equivalent to constructions called transitively relational partial meet contractions,

which will not be detailed here, because they are not essential to this work.

The generalization of AGM contraction to a larger class of logics has been inves-

tigated (among others) by [Flo06] and [Rib13], and a shorter version of some of their

main contributions can be found in [RWFA13]. For DLs, a Ąrst generalization of this

postulates addresses the problem of contracting � by a set Ψ of formulas, and not a

single formula å. In this case, Ψ was interpreted conjunctively by [Flo06] and [Rib13].

The generalization of the Ąve Ąrst postulates is then relatively straightforward. For

instance, the success postulate becomes if Cn(Ψ) ̸= Cn(∅), then Ψ ̸⊖ � ⊗Ψ.

More importantly, the authors identiĄed a series of suicient and/or necessary

conditions for a Tarskian logic to be AGM compliant, i.e. to admit a contraction

operator which satisĄes postulates 1 to 6 for any � and Ψ. It turns out that some of

the most commonly used DLs are not AGM compliant. [Flo06] showed in particular

that in many DLs (including �ℋ�ℐ� , which underlies the OWL DL language),

there are some � and Ψ such that no candidate subset of � for � ⊗ Ψ can be

found which satisĄes these 6 postulates. The following counterexample is reproduced

from [Flo06]. Let � = Cn(¶� ⊑ �♢), with � and � two DL atomic roles. Then

� ̸⊖ Cn(� ∖ ¶� ⊑ �♢). This is shown in [Flo06] with the following Ąrst-order

interpretation ℐ =< Δℐ , .ℐ > over sig(�), which is not a model of ¶� ⊑ �♢, but

veriĄes the set � ′ of all strict consequences of � in �ℋ�ℐ� .
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Ex 3.6.1.

Δℐ = ¶�1, �2, �1, �2♢

�ℐ = ¶(�1, �1), (�2, �2), (�1, �1), (�2, �2)}

�ℐ = ¶(�1, �2), (�2, �1), (�2, �1), (�1, �2)}

The existence of such an interpretation implies that � ′ = Cn(� ′) ⊆ �. Let å

be any strict and non-tautological consequence of �, i.e. � ⊢ å and å ̸⊕ � ⊑ �,

or equivalently å ∈ � ′. Then let us assume that ⊗ is a contraction operator in

�ℋ�ℐ� satisfying postulates 1 to 5. By inclusion, � ⊗ å ⊖ �. Then because å is

not-tautological, by success, å ̸∈ � ⊗ å, and because å ∈ Cn(�), � ⊗ å ⊆ �, i.e.

� ⊗ å ⊖ � ′. Finally, because ¶å♢ ⊖ � ′ as well, their union ¶å♢ ∪ (� ⊗ å) ⊖ � ′,

and by monotonicity Cn(¶å♢ ∪ (� ⊗ å)) ⊖ Cn(� ′) ⊆ �, such that recovery is not

satisĄed by ⊗.

As an alternative to recovery, [Rib13] proposed the relevance postulate, which

was initially introduced by [Han91]:

If Ò ∈ � ∖ (� ⊗ å), then there is a � ′ such that � ⊗ å ⊖ � ′ ⊖ �,

� ′ ̸⊢ å, but � ′ ∪ ¶Ò♢ ⊢ å (relevance)

Intuitively, if some formula Ò is dropped from � (as a theory), then it must be

involved in the derivation of å.

[Rib13] gives two arguments in favor of the relevance postulate in non AGM

compliant logics. The Ąrst one is that in presence of the Ąve Ąrst postulates, relevance

can be shown to be equivalent to recovery in AGM compliant logics, such that

relevance is in a way a generalization of recovery to a larger class of logics. The other

argument is that for this larger class of logics, the Ąve Ąrst postulates and relevance

characterize partial meet revision just like the 5 Ąrst postulates and recovery for

AGM compliant logics.
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Similarly to the deĄnition of an AGM compliant logic, the authors deĄned a rel-

evance compliant logic as a logic for which a contraction operator ⊗ can be deĄned,

which for any � and å returns a belief set satisfying postulates 1 to 5 and relevance.

They also identiĄed diferent combinations of properties which may or may not be

satisĄed by a Tarskian logic (compactness, distributivity, or decomposability as de-

Ąned in [Flo06], . . . ), and are suicient and/or necessary conditions for a Tarskian

logic to be either AGM compliant or relevance compliant.

3.6.1.1.2 Revision. Revision traditionally deals with the extension of a KB �

with some formula �. The prototypical application case is the one where � is consid-

ered more reliable than �, and therefore if � ∪ � is inconsistent, only � should be

weakened in order to accommodate for �.

In propositional logic, revision and contraction have also been deĄned in terms

of each other, by the two following equalities:

Definition 3.6.1.1. Correspondence between AGM contraction and revision

� * � = (� ⊗ ¬�) + � (Levi identity)

� ⊗ å = (� * ¬å) ∩� (Harper identity)

Most AGM postulates for revision correspond to a postulate for contraction, with

the exception of consistency, which is relatively straightforward. Here are the 6 Ąrst

AGM postulates for revision, also called the basic postulates for revision:

(1) � * � = Cn(� * �) (closure)

(2) � ∈ � * � (success)

(3) � * � ⊖ � + � (inclusion)

(4) if ¬� ̸∈ �, then � + � ⊖ � * � (vacuity)
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(5) if ¶�♢ is consistent, then � * � is consistent (consistency)

(6) if Cn(¶�1♢) = Cn(¶�2♢), then � * �1 = � * �2 (extensionality)

An important diference with contraction though, discussed in depth in [Mak87],

is the absence of a postulate for revision guaranteeing minimal change. This is

important to understand the model-theoretic notions of minimal change described

in the next section. Initially, a recovery postulate was proposed for revision, directly

based on the above Harper identity:

� ⊖ ((� * �) ∩�) + ¬� (recovery for revision)

Intuitively, revising � by �, keeping only the part of the output which was in �

initially, and then extending it with ¬� should allow for the recovery of �.

But although this may seem counterintuitive, the recovery postulate for revision

is trivially satisĄed in propositional logic by any revision operator which satisĄes

only the 6 Ąrst basic postulates, which can be easily shown (as done for instance by

[Mak87]):

For the limit case where ¬� ̸∈ �, from inclusion and vacuity, � *� = �+� ⊇ �,

so ((� *�)∩�) = �, and ((� *�)∩�)+¬� = �+¬� ⊇ �. For the non-trivial case

where ¬� ∈ �, take any å ∈ �. Then å ∨ � ∈ �. By success, � ∈ � * � also holds,

so å∨� ∈ � *� as well, and therefore å∨� ∈ ((� *�)∩�). Then ((� *�)∩�)+¬�

contains both å ∨ � and ¬�, and because it is closed deductively, it contains å as

well.

Like for contraction, two additional (and possibly less obvious) postulates, called

the supplementary Gärdenfors postulates for revision, are commonly used:

(7) � * (�1 ∧ �2) ⊖ (� * �1) + �2

(8) if ¬�2 ̸∈ � * �1, then (� * �1) + �2 ⊖ � * (�1 ∧ �2)
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They prevent some odd behaviors of a revision operator wrt conjunctive formulas.

To see this, in propositional logic, let � = Cn(¶¬�, �♢), and let * be a revision

operator such that � * � = Cn(¶�♢) and � * (� ∧ �) = Cn(¶�, �, �♢). These two

operations satisfy all 6 basic postulates for revision. But learning � and then �

results in a more important information loss that learning � and � altogether, because

(� * �) + � = Cn(¶�, �♢) ⊆ � * (� ∧ �) = Cn(¶�, �, �♢), i.e. revising � by � ∧ � is

more interesting than revising � by � and then by �. Conversely, for postulate 8,

let � = Cn(¶¬�, �♢), and let * be a revision operator such that � * � = Cn(¶�, �♢),

and � * (� ∧ �) = Cn(¶�, �♢). Then learning � and � altogether results in a more

important information loss that learning � and then �, even though (� * �) ∪ ¶�♢ is

consistent, because � * (� ∧ �) = Cn(¶�, �♢) ⊆ (� * �) + � = Cn(¶�, �, �♢).

It is important to note though that adding postulates 7 and 8 still does not

guarantee minimal information loss for revision. In particular, postulates 1 to 8 are

satisĄed by the trivial revision operator * deĄned by � * � = Cn(¶�♢) if � ∪ ¶�♢ is

inconsistent, and � * � = Cn(� ∪ ¶�♢) = � + � otherwise.

For AGM compliant logics, this legitimates the usage of an additional seman-

tic notion of minimal change. [KM89] explicitly made the link between the AGM

postulates for revision and several model-theoretic operators for belief change in

propositional logics developed independently. They proved in particular the follow-

ing result. A faithful assignment is deĄned as a function which to each satisĄable

input belief set � associates a total preorder ○� (reĆexive, transitive, but not nec-

essarily antisymmetric) over the set � of all model which can be built over sig(�),

and such that the models of � are all maximal wrt ○� in � , and no other model in

� is. Let * be a revision operator for propositional logics which satisĄes all 6 basic

postulates for revision. Then * also satisĄes postulates 7 and 8 if there is a faithful

assignment such that for any consistent � and consistent �, � * � is the belief set
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whose models are maximal wrt ○� within the models of ¶�♢.

Similarly to contraction, [Rib13] proposed a generalization of the Ąrst 6 AGM

postulates to revision by a set Θ of formulas, and to a wider class of logics. Like for

contraction, the generalization of these 6 postulates to a set of formulas (understood

conjunctively) is relatively straightforward. The inclusion postulate for instance

becomes � *Θ ⊖ Cn(� ∪Θ). But borrowing from [Del08], the postulates were also

generalized in order to be applicable to logics where the negation of a formula cannot

always be expressed, which is the case of most DLs.6 In particular, the condition

Şif ¬� ̸∈ �Ť in the vacuity postulate is replaced by Şif � ∪ Θ is consistentŤ, and

extensionality is replaced by the following uniformity postulate: if for all � ′ ⊖ �,

� ′ *Θ1 is consistent if � ′ *Θ2 is consistent, then � ∩ (� *Θ1) = � ∩ (� *Θ2).

A minimal change postulate for revision for a larger class of logics was also intro-

duced by [Rib13], which is an adaptation of the relevance postulate for contraction

using HarperŠs identity, and from that regard is very similar to the abovementioned

(redundant) recovery postulate for revision in AGM compliant logics:

If Ò ∈ � ∖ (� *Θ), then there is a � ′ such that � ∩ (� *Θ) ⊖ � ′ ⊖ �,

� ′ ∪Θ is consistent, but � ′ ∪Θ ∪ ¶Ò♢ is inconsistent.

(relevance for revision)

Intuitively, the belief in Ò is lost when revising � by Θ only if Ò is involved in

the inconsistency of � ∪ Θ.7 Finally, a construction comparable to partial meet

was proposed, but allowing revision for logics which do not support full negation.

The output of a revision process is required to be the intersection of some maximal

subsets of � consistent with Θ, extended with Θ, and then closed deductively. The

6This is illustrated in Appendix A Section A.1.2.
7It is important to note that this is only a necessary condition to give up Ò, not a sufficient one.
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authors showed that relevance for revision, together with closure, success, inclusion,

consistency and uniformity characterized this construction both for AGM compliant

logics and for some non-compliant ones (namely compact and distributive Tarskian

logics).

But Appendix A a property which, if veriĄed by a Tarskian logic, guarantees

that a revision operator in this logic which satisĄes some of the basic postulates for

revision (namely closure, success and vacuity) also satisĄes relevance for revision. As

a consequence, for Tarskian logics verifying this property, a trivial revision operator

which returns �+Θ if �∪Θ is consistent, and Cn(Θ) otherwise, does satisfy all basic

postulates for revision and relevance. In other words, for these logics, the relevance

postulate for revision does not guarantee minimal information loss. Appendix A

shows in particular that the DL �ℒ�ℋ� veriĄes this property, and therefore the

following:

Proposition 3.6.1.1. If a revision operator in �ℒ�ℋ� satisĄes closure, success,

and vacuity, then it satisĄes relevance.

�ℒ�ℋ� is the the extension of the DL �ℒ� (introduced in Chapter 2 Section

2.3.2) with atomic role inclusions (i.e. formulas of the form � ⊑ �) and nominals (i.e.

concepts deĄned extensively, like ¶�1, �2♢). �ℒ�ℋ� is an interesting case because it

was identiĄed by [Flo06] as one of the DLs for which recovery could not always be

veriĄed. This also raises the question of minimal change for revision in DLs which

are more expressive than �ℒ�ℋ� and less expressive than �ℛ�ℐ�.

The implications for�ℒ�ℋ� (and possibly more expressive DLs) are very similar

to the implications of the redundancy of the recovery postulate for revision in AGM

compliant logics, namely that some other principle of minimal change must be intro-

duced for revision to be efective, which leads to the investigation of model-theoretic
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notions of minimal change for DLs, also called model-based in the terminology of

[CKNZ10, GKZ12].

3.6.1.2 Model-based contraction/revision

Model-based approaches of contraction or revision use some ordering over interpre-

tations to characterize minimal information loss.

The output KB must satisfy basic intuitions about either contraction or revision,

namely the above success and inclusion postulates for contraction, and success and

consistency for revision. But in addition, the models of the output should be as

close as possible to the models of the input KB �.8 There are diferent ways to

understand Şas close as possibleŤ though.

To our knowledge, most model-based contraction/revision approaches for DLs

assume that the unique name assumption is made, i.e. that if � is a DL signature

and if ℐ =< Δℐ , .ℐ > is an interpretation over �, then for each pair of individuals

�1, �2 ∈ � such that �1 ̸= �2, �
ℐ
1 ̸= �ℐ

2 holds as well. This is not the semantic

recommended by the W3C for OWL,9 but this assumption will be made in this

section in order to review these approaches accurately.

Additionally, it will be assumed that all Ąrst-order interpretations over the same

signature � share the same (countably inĄnite) domain Δ, and that if ℐ1 and ℐ2 are

two interpretations over �, then for each individual � ∈ �, �ℐ1 = �ℐ2 . Alternatively,

[QLB06] uses the notion of a preinterpretation Þ =< ΔÞ, .Þ >, which maps all

individuals of � to an element of ΔÞ. Then only interpretations over � which share

8As explained at the beginning of the previous section (Section 3.6.1.1), the notational convention
� = Cn(�) was only adopted through Section 3.6.1.1, and does not hold anymore. So “�” in the
current section (and the rest of this chapter) stands for a KB, i.e. a finite set of axioms, and its
deductive closure is explicitly designated with “Cn(�)”.

9or OWL 2
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the same preinterpretation can be compared. Adopting one or the other view has

no incidence on the following observations, and therefore the former is preferred in

order to simplify notation.

3.6.1.2.1 Typology. This section is partly based on the typology of model-based

contraction techniques for DLs provided in [CKNZ10, GKZ12]. Most of them are

inspired by existing techniques for propositional logics. The authors identify three

(binary) distinctions which allow for a classiĄcation of the Ąeld, yielding in theory

23 = 8 diferent approaches to the problem.

Set inclusion VS cardinality-based symmetric difference The Ąrst dis-

tinction will be introduced through propositional logic, in order to keep things simple.

In propositional logics, an interpretation can be represented as the set of variables

evaluated to true in it. Let ℐ0 be an interpretations over a set � of propositional

variables, and � a set of interpretations over � . A common way to obtain the inter-

pretations in � which are the closest to ℐ0 consists in using the symmetric diference

between ℐ0 and each ℐ ∈� , i.e. dif(ℐ0, ℐ) = (ℐ0 ∖ ℐ)∪ (ℐ ∖ ℐ0). Then if ℐ, ℐ ′ ∈� ,

ℐ can be considered strictly closer to ℐ0 than ℐ ′ if ♣ dif(ℐ0, ℐ)♣ < ♣ dif(ℐ0, ℐ
′)♣. This

is the ordering of interpretations used for instance in [Dal88]. Alternatively, ℐ can

be considered strictly closer to ℐ0 than ℐ ′ if dif(ℐ0, ℐ) ⊆ dif(ℐ0, ℐ
′). In this latter

case, Şcloser to ℐ0Ť is not a total, but a partial preorder over � . This opposition

between cardinality and set inclusion to order diferences between interpretations is

one of the three distinctions listed in [CKNZ10, GKZ12].

Atoms VS signature-based difference between interpretations The sec-

ond distinction pertains to the representation of a Ąrst-order interpretation, which

97



is less straightforward than for a propositional interpretation (even for Ąrst-order

interpretations without functions, which is the case for DLs). Let ℐ < Δℐ , .ℐ > be

an interpretation over a signature �. The atom-based view represents ℐ as a set

atoms(ℐ) of formulas of the form �(�) or �(�1, �2), were � and � are respectively

an atomic DL concept and an atomic DL role in �, and �, �1 and �2 are elements of

Δℐ , such that �(�) (resp. �(�1, �2)) ∈ atoms(ℐ) if � ∈ �ℐ (resp. (�1, �2) ∈ �
ℐ).

Then if ℐ ′ is another interpretations over �, the diference between ℐ and ℐ ′ can

be deĄned as above as the semantic diference between atoms(ℐ) and atoms(ℐ ′), i.e.

dif(ℐ, ℐ ′) = (atoms(ℐ) ∖ atoms(ℐ ′)) ∪ (atoms(ℐ ′) ∖ atoms(ℐ)). Alternatively, the

signature-based view represents the diference between ℐ and ℐ ′ as the set of atomic

concepts and atomic roles in � which are interpreted diferently by ℐ and ℐ ′, i.e.

dif(ℐ, ℐ ′) = ¶� ∈ � ♣ �ℐ ̸= �ℐ′
♢.

Local VS global ordering of interpretations. The third distinction opposes

local and global ordering of interpretations, and was notoriously made in [Men91] for

propositional logic. For revision (but not for contraction), the operation based on

local interpretations ordering has also been called belief update.

The local ordering of interpretations is deĄned as follows. For a contraction

of Cn(�) by å, if ℐ is a interpretation over sig(�) such that ℐ ̸♣= å, then ℐ ∈

mod(Cn(�)⊗ å) if there is an ℐ0 ∈ mod(�) such that for any ℐ ′ over sig(�) with

ℐ ′ ̸♣= å, dif(ℐ0, ℐ) ⊘ dif(ℐ0, ℐ
′) (or dif(ℐ0, ℐ) ⊖ dif(ℐ0, ℐ

′), depending on whether

cardinality or set inclusion is used to order diferences between interpretations). In-

tuitively, the interpretations which do not verify å and are the closest to each model

of � taken individually are retained. This is similar for revision. If � ∪¶�♢ is incon-

sistent, and if ℐ ∈ mod(¶�♢), then ℐ ∈ mod(Cn(�) * �) if there is an ℐ0 ∈ mod(�)

such that for all ℐ ′ ∈ mod(¶�♢), dif(ℐ0, ℐ) ⊘ dif(ℐ0, ℐ
′) (or dif(ℐ0, ℐ) ⊖ dif(ℐ0, ℐ

′),
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depending on whether cardinality or set inclusion is used to order diferences between

interpretations). In the case where � ∪ � is consistent, [Win88] proposed to use this

operation as well, whereas [Bor85] proposed to comply to the vacuity postulate and

return Cn(�) + �.

Revision based on such local ordering of interpretations, also called belief up-

date, typically deals with cases where some new information � contradicts � by

making it obsolete. For instance let us assume that � ⊢ Planet(Pluto), and

� = ¬Planet(Pluto). By default, the assumption is made here that � was accurate,

in the sense that the models of � were among the Şadmissible worldsŤ intended by

the knowledge engineer before the update. Or at least that some of them were, but

in the absence of further information, and in virtue of the abovementioned determin-

ism principle, all of them are assumed to be. Then the update operation minimally

modiĄes each model of � in order to accommodate for �, i.e. it produces as an

output the theory Cn(�)*� whose models verify � and are the closest to each model

of � taken individually.

As noted by [KM89], all 8 postulates for revision in AGM compliant logics cannot

be satisĄed by an update operation when the diference between two interpretations

is based on set inclusion. But it can actually be shown that this also holds when it

is based on cardinality. Consider for instance the following example:

Ex 3.6.2. �, ¶�1♢ and ¶�2♢ are consistent.

mod(�) = ¶ℐ1, ℐ2}.

� ∪ ¶�1♢ is inconsistent, � ∪ ¶�2♢ is inconsistent.

mod(¶�1♢) = ¶�1,�2,�3♢

mod(¶�2♢) = ¶�1,�3♢

♣ dif(�1, ℐ1)♣ = 1, ♣ dif(�1, ℐ2)♣ = 3
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♣ dif(�2, ℐ1)♣ = 1, ♣ dif(�2, ℐ2)♣ = 1

♣ dif(�3, ℐ1)♣ = 2, ♣ dif(�3, ℐ2)♣ = 2

As already mentioned in Section 3.6.1.1.2, [KM89] showed that a revision operator

satisĄes all 8 postulates if there is a faithful assignment which maps each consistent

theory Cn(�) to a total preorder ○Cn(�) over the interpretations of sig(�), such

that for any consistent � and consistent ¶�♢, Cn(�) * � is the belief set whose

models are maximal wrt ○Cn(�) among the models of ¶�♢. Let * be an update

operator which relies on the cardinality of the symmetric diference between two

interpretations (instead of set inclusion), and let us assume that * satisĄes all 8

postulates. In example 3.6.2, according to the above deĄnition of an update operator,

mod(Cn(�)*�1) = ¶�1,�2♢ must hold, because �2 is the model of ¶�1♢ closest to ℐ2,

and �1 and �2 are the two models of ¶�1♢ closest to ℐ1. Therefore �3 ∈ mod(¶�1)♢ ∖

mod(Cn(�)*�1), and so �1 ∼Cn(�) �3 should hold. But mod(Cn(�)*�2) = ¶�1,�3♢,

because �1 is the model of ¶�2♢ closest to ℐ1, and �3 is the model of ¶�2♢ closest to

ℐ2. Therefore �1 ○Cn(�) �3 and �3 ○Cn(�) �1 should hold, but the latter contradicts

�1 ∼Cn(�) �3.

The global ordering of interpretations on the other hand is deĄned as follows. For

contraction, if ℐ is an interpretation over sig(�) with ℐ ̸♣= å, then ℐ ∈ mod(Cn(�)⊗

å) if there is an ℐ0 ∈ mod(�) such that for all ℐ ′ over sig(�) with ℐ ′ ̸♣= å,

and for all ℐ ′
0 ∈ mod(�), dif(ℐ0, ℐ) ⊘ dif(ℐ ′

0, ℐ
′) (or dif(ℐ0, ℐ) ⊖ dif(ℐ ′

0, ℐ
′),

depending on whether cardinality or set inclusion is used to order diferences between

interpretations). In other words, an interpretation ℐ is retained if it does not verify

å and there is a model ℐ0 of � such that dif(ℐ, ℐ0) is minimal among all dif(ℐ ′, ℐ ′
0)

for all pairs < ℐ ′, ℐ ′
0 >∈ mod(¶å♢) ×mod(�). For revision, if ℐ ∈ mod(¶�♢), then

ℐ ∈ mod(Cn(�) * �) if there is an ℐ0 ∈ mod(�) such that for all ℐ ′ ∈ mod(¶�♢),
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and for all ℐ ′
0 ∈ mod(�), dif(ℐ0, ℐ) ⊘ dif(ℐ ′

0, ℐ
′) (or dif(ℐ0, ℐ) ⊖ dif(ℐ ′

0, ℐ
′),

depending on whether cardinality or set inclusion is used to order diferences between

interpretations).

The intuition behind this last operation is that � was already incorrect be-

fore learning �, as opposed to belief update. This could be the case for instance

if � ⊢ director(Citizen Kane,Woody Allen), and � = ¬director(Citizen Kane,

Woody Allen) is learned. But also for the kind of errors more speciĄcally targeted in

this thesis, for instance if � ⊢ Award(Woddy Allen) and � = ¬Award(Woody Allen),

or if � ⊢ Award ⊓ Person(Woody Allen) and � = Award ⊑ ¬Person. In all these

cases, none of the models of � was correct before learning �.

As opposed to update, all 8 postulates for revision can be satisĄed in propositional

logic by a revision operator based on a global ordering of interpretations, provided the

diference between two interpretations is based on cardinality, as shown in [KM89].

But the following example shows that this does not hold in the case where the

diference between two interpretations is based on set inclusion:

Ex 3.6.3. �, ¶�1♢ and ¶�2♢ are consistent.

mod(�) = ¶ℐ1, ℐ2♢.

� ∪ ¶�1♢ is inconsistent, � ∪ ¶�2♢ is inconsistent.

mod(¶�1♢) = ¶�1,�2,�3♢

mod(¶�2♢) = ¶�1,�3♢

dif(�1, ℐ1) = ¶�♢, dif(�1, ℐ2) = ¶�♢

dif(�2, ℐ1) = ¶�♢, dif(�2, ℐ2) = ¶�♢

dif(�3, ℐ1) = ¶�, �♢, dif(�3, ℐ2) = ¶�, �♢

The models of ¶�1♢ which are closest to any model of � are �1 and �2, so

mod(Cn(�) * �1) = ¶�1,�2♢, and therefore �3 ∈ mod(¶�1)♢ ∖mod(Cn(�) * �1), and
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�1 ∼Cn(�) �3 should hold, similarly to example 3.6.2 above. But the models of ¶�2♢

which are closest to any model of � are �1 and �3, so mod(Cn(�) * �2) = ¶�1,�3♢,

and therefore �1 ○Cn(�) �3 and �3 ○� �1 must hold, which contradicts �1 ∼Cn(�)

�3.

Some other proposals have been made for DLs which do not exactly Ąt into these

categories. In particular [MLB05] and [QLB06] use a hybrid semantico-syntactic

notion of minimal change for revision. If � is a DL KB (not necessarily closed

deductively), and if ℐ =< Δℐ , .ℐ > is an interpretation over sig(�), then �(�, ℐ)

designates the cumulated number of ŞexceptionsŤ to each axiom of � in ℐ. An

exception to an axiom ã is understood here as an element � of Δℐ such that � ∈

(�⊓¬�)ℐ if ã is of the form � ⊑ �, with � and � DL concepts, or such that � = �ℐ

and � ∈ (¬�)ℐ if ã = �(�), with � a DL concept and � an individual. Then for each

KB � (not necessarily closed deductively), a total preorder ○� over the models of

¶�♢ can be deĄned by ℐ ○Cn(�) ℐ
′ if �(�, ℐ) ⊘ �(�, ℐ ′).

3.6.1.2.2 Inadequacy. Expressiveness issues for model-based contraction an re-

vision were identiĄed in two of the most common tractable DLs, namely DL-Lite and

ℰℒ, in [CKNZ10] (for revision in DL-Lite) and [GKZ12] (for contraction in DL-Lite

and ℰℒ).

For each combination of the 3 abovementioned criteria (diference between inter-

pretations based on cardinality VS set inclusion, atom VS signature-based represen-

tation, and local VS global ordering of interpretations), there may be an optimal

set of interpretations selected by a model-based operator, but such that no Ąnite set

of statements in these logics is veriĄed exactly by these models. They also suspect

similar inexpressibility issues for more expressive logics.

Another criticism of model-based belief contraction/revision for DLs pertains
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to minimal information loss, in the case where the input KBŠs signature contains

individuals. For signature-based representations of interpretations, this is relatively

obvious. For instance, let � = ¶�(�1), �(�2), �(�1)♢, with � and � are atomic

concepts, and �1 and �2 two individuals. And let us assume that Cn(�) should be

contracted by �(�2) (or revised by ¬�(�2)). Then any model ℐ0 of � is such that

�ℐ0
2 ∈ �

ℐ0 , and any model ℐ of the output theory must be such that �ℐ
2 = �ℐ0

2 ̸∈ �
ℐ ,10

so necessarily �ℐ ̸= �ℐ0 . Now take the only interpretation ℐ over sig(�) such

that �ℐ = ∅, and �ℐ = �ℐ0 . If a signature-based representations of interpretations

is adopted, then the diference between ℐ and any model of � is ¶�♢, and it is

minimal, no matter whether minimality is deĄned wrt cardinality or set inclusion.

As a consequence, no matter whether a local or global ordering of interpretations is

used, ℐ is a model of the output KB, and therefore �(�1) is not a consequence of

this output KB, which can be viewed as an unnecessary information loss.

For atom-based representations of interpretations, a similar observation can be

made for � = ¶�(�1, �2)♢, with � an atomic DL role and �1 and �2 two individuals,

and a contraction by �(�1, �2) (or a revision by ¬∃�.¶�2♢(�1)). There must be a

model ℐ of the output KB such that ℐ ̸♣= ∃�.⊤(�1), which once again can be viewed

as an unnecessary information loss.

But more fundamentally, the model-based characterizations of minimal change

proposed for DLs are not adapted to the problem of concern here due to their simi-

larity with default reasoning, i.e. the fact that minimizing information loss according

to these views often amounts to hard-coding exceptions. This will be illustrated with

two examples, both of which are composed of real DBpedia [MJB12] statements. As

10As a reminder, it is assumed that all first-order interpretations over the same signature � share
the same (countably infinite) domain ∆, and that if ℐ1 and ℐ2 are two interpretations over �, then
for each individual � ∈ �, �ℐ1 = �ℐ2 .
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already mentioned at the beginning of Section 3.6.1.2, it is assumed that all inter-

pretations over a same signature � share the same inĄnite domain Δ, and that an

individual � ∈ � is mapped to a same element of Δ by all these interpretations. The

Ąrst example is the following KB �1:

Ex 3.6.4.

�1 = {(1) class(USS Radford DD-120, Wickes-class destroyer),

(2) class(Sphingomonas, Alphaproteobacteria)

(3) class(Nymphon, Sea spider)

(4) ∃class.⊤ ⊑ MeanOfTransportation }

The DL role class is understood in two intuitively incompatible ways here, ei-

ther as specifying the type of military unit (if this type was not reiĄed, the Ąrst

statement could arguably be replaced by Wickes-class destroyer(USS Radford

DD-120 )), or in the biological sense (in this case, Sphingomonas and Nymphon are

not understood as instances of Alphaproteobacteria and Sea spider respectively).

Individually though, each statement has a relatively clear meaning. But the KB

taken as a whole has at least two obvious non-intended consequences, namely å1 =

MeanOfTransportation(Sphingomonas), and å2 = MeanOfTransportation(Nymphon).

Let us assume that one wants to get rid of these two consequences, i.e. to contract

Cn(�1) by ¶å1, å2♢ understood disjunctively, or equivalently to contract Cn(�1) by

å = ⊤ ⊑ ¬¶Sphingomonas♢ ⊔ ¬¶Nymphon♢ ⊔ MeanOfTransportation.

Let � be the set of all interpretations over sig(�1 ∪ ¶å♢) = sig(�1), and let

us assume that an atom-based representation of the diference between interpreta-

tions is adopted. Then it can be shown that for any model ℐ0 of �1, each inter-

pretation ℐ ∈ � which does not verify å and whose diference with ℐ0 is min-

imal is such that dif(ℐ0, ℐ) = ¶å1, å2♢. Therefore, no matter which one of set
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inclusion or cardinality is used, all eligible models closest to ℐ0 verify the formula

Ò = ∃class.⊤ ⊑ MeanOfTransportation⊔¬¶Sphingomonas♢⊔¬¶Nymphon♢, which

can be paraphrased by Şeverything which has a class is a mean of transportation, with

the exception of Sphingomonas and NymphonŤ. Furthermore, these closest models

also verify statements 1 to 3 of �1, such that the output of the contraction process

must be equivalent to statements 1 to 3 with Ò, no matter whether a local or global

ordering of interpretations is used.

This output is clearly not satisfying. Not only do the two contradictory meanings

of the role class still coexist, but adding to �1 a third statement about biological

genera similar to the two previous one (e.g. class(Spirula, Coleoidea)) would yield

a new unintended consequence (MeanOfTransportation(Spirula)). It may also be

noted in this case that the recovery postulate for contraction is satisĄed by this

operation, i.e. extending Cn(�1)⊗å with ¶å1, å2♢ allows for the recovery of Cn(�1),

such that the problem may not be speciĄc to model-based contraction, but more

generally to belief set contraction.

The case of revision is similar. Let �1 = ¬MeanOfTransportation(Sphingomonas),

�2 = ¬MeanOfTransportation(Nymphon), and let us assume one wants to revise

Cn(�1) by ¶�1, �2♢ understood conjunctively, or equivalently revise Cn(�1) by � =

¶Sphingomonas,Nymphon♢ ⊓ MeanOfTransportation ⊑ ⊥. The operation yields

Cn(�1) * � equivalent to (Cn(�1)⊗ å) + �, with Cn(�1)⊗ å deĄned as above.

This leaves one possibility, which is to use of a signature-based representation

of the diference between interpretations. The output is slightly more satisfying,

yielding a base equivalent to statements 1 to 3. The two meanings of class still co-

exist though, and the consequence MeanOfTransportation(USS Radford (DD-120))

is lost.

But the following example is an illustration of the inadequacy of model-based con-
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traction/revision with a signature-based representation as well. Its syntactic struc-

ture is almost identical to the one of example 3.6.4.

Ex 3.6.5.

�2 = {(1) award(John Goodricke, Copley Medal),

(2) award(Subrahmanyan Chandrasekhar, Royal Medal),

(3) award(Walter Sydney Adams, Royal Society),

(4) ⊤ ⊑ ∀award.Award }

The problem here is that the Copley Medal and the Royal Medal are both awarded

by the Royal Society, but the Royal Society itself is not an award, such that the

consequence å = Award(Royal Society) is incorrect. Now consider any model ℐ0 of

�2, and take the model ℐ over sig(�2) deĄned by awardℐ0 = awardℐ , and Awardℐ = ∅.

If a signature-based representation is adopted, dif(ℐ0, ℐ) = ¶Award♢, such that for

any ℐ ′ over sig(�2) with ℐ ̸♣= å, dif(ℐ0, ℐ) ⊖ dif(ℐ0, ℐ
′), and as a consequence

♣ dif(ℐ0, ℐ)♣ ⊘ ♣ dif(ℐ0, ℐ
′)♣. So no matter whether a local or global ordering of

interpretations is adopted, one model ℐ among the selected ones will be such that

Awardℐ = ∅, and therefore neither Award(Copley Medal) nor Award(Royal Medal) is

a consequence of the output (axiom 4 will be lost as well). The case of a revision is

similar, with � = ¬Award(Royal Society).

If an atom-based representation is adopted instead, the output is only slightly

more satisfying, in that the contraction Cn(�2)⊗å is equivalent to statements 1 to

3 with Ò = ⊤ ⊑ ∀award.Award ⊔ ¶Royal Society♢.

The hybrid syntactico-semantic representation adopted for revision by [MLB05]

and [QLB06] does not solve the problem either: in both examples, it produces the

same output as a revision guided by an atom-based representation of the diference

between interpretations.
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3.6.2 Syntax-based contraction/revision

This section provides a basic introduction to some of the main notions behind syntax-

based revision/contraction in DLs. Algorithmic aspects in particular are omitted on

purpose. A more technical and critical state of the art will be provided in Chapter

8, immediately preceding some proposals relevant to this topic.

As opposed to belief set contraction/revision, the Ąeld is loosely structured, with

contributions apparently pertaining to diferent disciplines. Some of the most inĆuen-

tial proposals were made in the Ąeld of diagnosis (notably in [Rei87]), whereas other

authors, like [RW09] or [QHH+08], explicitly positioned their work wrt the AGM

framework, presented in Section 3.6.1. Finally, a large amount of work is issued

from the knowledge engineering and DL communities, not explicitly related to belief

change, for instance [BP10], and only sometimes to diagnosis, like [Sch05, FS05].

Syntax-based contraction/revision may be designated in these latter communities

as ŞKB debuggingŤ or Şsyntax-based debuggingŤ. The term "syntax-based contrac-

tion/revision" is preferred here, in order to avoid a possible confusion with the tech-

niques described in section 3.4.

A consequence of this diversity is that the terminology may largely vary from one

author to the other. But because the notions are essentially identical, the choice is

made here to propose a uniĄed view, relying for readability on a unique terminology,

which can partly be viewed as a simpliĄcation of the one adopted in [RW09].

Syntax-based contraction/revision will be put into perspective with two other sec-

tions of this chapter: Ąrst with the belief set contraction/revision scheme introduced

in Section 3.6.1, and then with justiĄcation-based debugging presented in Section

3.4.
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3.6.2.1 Belief bases VS belief sets

Syntax-based contraction/revision or belief base contraction/revision consists in dis-

carding some axioms from an (not necessarily deductively closed) input KB � in

order to get rid of some undesired consequence å in the case of contraction, or to

restore the consistency of � ∪ ¶�♢ while preserving � (if {�} is consistent) in the

case of revision. Another way to view it is that base contraction (resp. revision) is

a contraction of Cn(�) by å (resp. a revision of Cn(�) by �) with the additional

requirement that the output KB must be a syntactic subset of � (resp. a syntactic

subset of � extended with {�}), and not only a weaker version of it.

As opposed to operations on belief sets, the distinction between contraction and

revision is not as relevant here, because a revision of a (Ąnite) base � by a formula

� can be reduced to the contraction of � ∪¶�♢ by any contradiction (e.g. by ⊤ ⊑ ⊥

in DLs), with the additional constraint that � should be preserved. This was not the

case for belief sets, because the input base of a contraction operation was viewed as

a theory.

The generalization to sets of formulas is straightforward, which compensates for

the fact that most DLs are not closed under conjunction or disjunction. For the

contraction of an input KB � by a set of formulas Ψ, the only decision to make

is whether Ψ is understood conjunctively or disjunctively. In the former case, a

candidate output � is a syntactic subset of � such that Ψ ̸⊖ Cn(�). In the latter

case, a candidate output � is a syntactic subset of � such that Ψ ∩ Cn(�) = ∅.

For a revision of � by Θ, Θ is generally understood conjunctively (or at least it will

be here). So if � and Θ are both consistent (which is the only non-trivial case), a

candidate output � is a syntactic subset of � such that � ∪ Θ is consistent. The

following notation is adopted throughout this thesis. When contracting � by Ψ
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(resp. when revising � by Θ), ℛ will designate all admissible subsets of �, i.e.

ℛ = ¶� ⊖ � ♣ � ̸⊢ ⊥♢ (resp. ℛ = ¶� ⊖ � ♣ � ∪Θ ̸⊢ ⊥♢).11

This very broad deĄnition does not provide any guarantee of minimal information

loss. A common additional requirement is that for each candidate output base, the

number of discarded axioms should be minimal wrt set inclusion. In other words,

the typical set of candidate output subbases is ℛ⊖ = max⊖ℛ. This can be seen as

a coarse-grained form of minimal information loss (as opposed to belief set revision),

but with some non-negligible practical advantages.

In example 3.6.4 Section 3.6.1.2.2, the two candidate output subbases for con-

traction are {1,4} and {1,2,3}. In example 3.6.5, these are {1,2,3} and {1,2,4}. The

case of 3.6.4 is debatable, but for 3.6.5, there is one satisfying solution among the

candidate outputs, namely {1,2,4}. In general, belief base contraction/revision re-

sults in a more important information loss than belief set contraction/revision, but

as illustrated by these examples, there is also often a satisfying solution among the

candidate output bases. Example 3.6.5 also illustrates one of the main practical is-

sues of belief base contraction/revision, which is the multiplicity of candidate output

bases, some of which (namely {1,2,3} here) may be clearly inappropriate. This is

one of the problems addressed by the proposals which will be made in Chapter 8.

Another argument for base contraction/revision in a Semantic Web context is

traceability. The belief set setting completely abstracts from the syntax, and there-

fore ofers no guarantee about the syntactic formulation of the output KB. On the

other hand, base contraction guarantees that all axioms of the output KB are also

axioms of the input KB. More generally, it is important to understand that outside of

propositional logic, most belief change operators on belief sets are only characterized

in terms of intuitive and philosophically grounded constraints (the postulates), but

11Again, � ⊢ ⊥ is a shortcut for � ⊢ ⊤ ⊑ ⊥, as explained in Chapter 2 Section 2.3.6.
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rarely implemented.

[RW09] adapted the terminology used for belief set contraction/revision to be-

lief base contraction/revision, and fully characterized these operations in terms of

postulates for bases, inspired by the ones for beliefs sets. In particular, they deĄne

six diferent types of contraction/revision operators satisfying diferent sets of postu-

lates. For readability, this formal characterization is not fully adopted here, neither

the exact notation, but only the notions needed for the work presented in this thesis.

In particular, just as for belief sets, most postulates deal with limit cases, and are

needed for proofs only. Another reason why a simpliĄed notation is suicient is that

as opposed to the literature on belief sets, which is arguably richer in paradoxes and

potentially counterintuitive results, the literature on belief bases relies on relatively

straightforward intuitions.

By analogy to belief set contraction/revision, the family ℛ⊖ is called the remain-

der set in [RW09], and here as well, and each element of ℛ⊖ is called a remainder.12

In practice, the size of the (base) remainder set ℛ⊖ may be important. More exactly,

it is bounded by the size of the largest subset� of 2� such that for all �1,�2 ∈ �,

if �1 ̸= �2, then �1 ̸⊖ �2, i.e.
⎞

♣�♣

⌈
♣K♣

2
⌉

⎡

. Additionally, as illustrated by example

3.6.5, some elements of ℛ⊖ may be more relevant than others. As for belief sets, a

selection function à : 22ℒ
↦⊃ 22ℒ

may select some of these remainders only. Then by

default, and in virtue of the abovementioned determinism principle, the output of the

debugging process may be the intersection of these selected remainders, i.e.
⎸

à(ℛ⊖)

(note that
⎸

à(ℛ⊖) ∈ ℛ). As opposed to belief set contraction though, à may select

only one remainder, and ideally selects (deterministically) a small number of them,

12Formally, a remainder set is traditionally defined (for contraction) as a function of � and Ψ, but
this simplified notation will be without ambiguity here, and is also convenient in order to compare
different approaches to KB debugging, as will appear in Chapter 8
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in order to lose as few axioms as possible. This operation was fully characterized in

[RW09] in terms of postulates for bases.

But alternatively, the output of the debugging process may be a so-called dis-

junctive knowledge base, introduced for DLs by [MLB05], which can be intuitively

understood as the disjunction of all selected remainders. If � is a family of sets

of formulas, then
⌃

� will designate the disjunctive KB built out of � . Because

most DLs are not closed under disjunction, this construction can generally not be

natively represented. But it can be simulated with a set of KBs, requiring that

Cn(
⌃

� ) =
⎸

�∈�
Cn(�), or in other words that a formula å is a consequence of

Cn(
⌃

� ) if it is a consequence of each KB in � . Then
⌃

à(ℛ⊖) is arguably a better

output than
⎸

à(ℛ⊖), because it results in a less important information loss, without

compromising determinism. In practice though, this construction is not well adapted

to the Semantic Web framework, which relies on the possibility of importing axioms

from single KBs. More generally, even in a closed environment, maintaining a family

of KBs instead of a single one may be complex from an engineering point of view.

For the concrete belief base contraction/revision algorithms proposed in this the-

sis, if a family à(ℛ⊖) of several remainders is selected, the choice was made to

remain agnostic wrt to the form of the Ąnal output of the process. Depending on the

applicative requirements, the user may decide to keep the intersection
⎸

à(ℛ⊖) of

these subbases, their disjunction
⌃

(àℛ⊖), or even to review them manually (or more

realistically their respective complements in �), and select the most appropriate

ones.

111



3.6.2.2 Diagnoses and justifications

Section 3.5 introduced the most common techniques to compute justifications for a

consequence å of an input KB �. JustiĄcations are minimal subsets of � (wrt set

inclusion) entailing å. Computing all justiĄcations for å in � is actually closely

related to the problem of computing the (base) remainder set ℛ⊖ when contracting

� by å, i.e. the family of all maximal subbases of � not entailing å, as will be

explained in this section.

A diagnosis or minimal incision for � and å is a minimal subset � of � such

that (� ∖�) ̸⊢ å. Once again, minimality is understood wrt set inclusion, i.e. the

set of all diagnoses for � and å is � = min⊖¶Δ ⊖ � ♣ (� ∖Δ) ̸⊢ å♢. Equivalently,

the complement � of a diagnosis � in � is a maximal subset of � (wrt set inclusion)

such that � ̸⊢ å, or in other words, if ℛ⊖ is the (base) remainder set for � and å,

then � is a diagnosis if � ⊖ � and � ∖� ∈ ℛ⊖.

Computing diagnoses can be viewed as a more automated debugging strategy

than computing justiĄcations. A justiĄcation is a possible explanation for å to hold,

whereas a diagnosis is a suggestion of axioms to be discarded to get rid of å.

JustiĄcations and diagnoses are also closely related notions. If � is the set of all

justiĄcations for å in �, then the family � of all diagnoses for å in � is the set of

all minimal hitting sets (wrt set inclusion) for � . In other words, � ∈ � if � has

an nonempty intersection with all elements of � and is minimal wrt set inclusion,

i.e. � = min⊖¶Δ ⊖ � ♣ for all � ∈ � , � ∩ Δ ̸= ∅♢. Intuitively, discarding one

axiom from each � ∈ � is suicient and necessary to get rid of å, and discarding

any additional axiom would result in some unnecessary syntactic information loss.

Note that if � = ¶�1, .., ��♢, because justiĄcations may overlap, it may be the case

that ♣�♣ < ♣�1 × ..× ��♣. Conversely, even if this may be less intuitive at Ąrst sight,
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each justiĄcation � ∈ � is a minimal hitting set for �, i.e. � = min⊖¶Δ ⊖ � ♣ for

all � ∈ �, � ∩Δ ̸= ∅♢. So computing � out of � (resp. � out of �) amounts to

computing all minimal hitting sets for � (resp. �).

Another way of viewing this correspondence between � and � leads back to the

pinpointing formula Ð, introduced in Section 3.5.1.2, used to compute all justiĄca-

tions with a glass-box algorithm. Each prime implicant of Ð is a justiĄcation, and

each prime implicate of Ð is a diagnosis. So in the worst case, computing all justiĄ-

cation or all diagnoses from a pinpointing formula are both as hard. But in practice,

as will be explained in Chapter 8 Section 8.3.2, if a saturated tableau algorithm with

a tracing mechanism is used to compute � or �, depending on whether � or � is

the desired output, the computational cost of each operations for a same input KB

may difer.

An alternative strategy to compute diagnoses is ReiterŠs algorithm, proposed in

[Rei87], and corrected in [GSW89]. The correspondence between diagnosis and base

contraction/revision was established by [Was00], and diferent variations of ReiterŠs

algorithm have been implemented to compute diagnoses in DLs, for instance by

[Sch05], [FS05] or [Kal06]. A detailed presentation of ReiterŠs algorithm will be

provided in Chapter 8 Section 8.3.1. It proceeds by expanding a directed acyclic

graph in a breadth-Ąrst fashion, with a single root node. Each node is labeled with

a set of axioms, and each edge with one axiom. After termination, each path from

the root node to a leaf node is a diagnosis, and conversely. In addition, each node

label of the graph is a justiĄcation (or ∅, by convention), and conversely.

As will be proven in Chapter 8 Section 8.3.1, and as opposed to glass-box algo-

rithms, computing � or � with ReiterŠs algorithm are closely related tasks, in that

it cannot be guaranteed that any of the two has actually been computed if the other

one has not been computed as well during the execution. Therefore the cost of both
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operations is identical, not only in the worst-case, but for any input KB.

It turns out that most practical attempts to compute diagnoses for DLs with

ReiterŠs algorithms only produce some of them though. Both [Sch05] and [FS05] for

instance only compute diagnoses up to a certain size. Several other strategies to avoid

the computation of the whole � have been proposed or implemented, for instance

by [Kal06] or [QHH+08]. Some of these approaches do not compute diagnoses in

practice, but supersets of diagnosis. A more technical review of these techniques is

provided in Chapter 8.

The notion of diagnosis can be generalized in a straightforward way to a set of

consequences Ψ, as previously for justiĄcations and remainders, where Ψ may be

understood either conjunctively of disjunctively.

Finally, the notion of diagnosis also applies to the case of revision, which is

actually more faithful to its initial formulation by [Rei87]. The relation between

diagnosis and justiĄcations in this case is slightly diferent. If a consistent base � is

to be revised by a consistent set Θ of axioms, and if � is the family of all justiĄcations

for the inconsistency of � ∪ Θ, then � is a diagnosis if it is a minimal hitting set

for the family � = min⊖¶� ∩� ♣ � ∈ � ♢.

3.7 Conclusion

This Chapter introduced some of the main paradigms and algorithms of the KB

debugging literature, with a strong an emphasis on DLs.

Approaches based on the review of admissible models of the input KB aim at

identifying missing information, and eventually at strengthening the KB, which fun-

damentally difers from the objective being pursued here, namely weaken a KB in

order to get rid of nonsense.
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Approaches based on formal ontology are characterized by their relatively low

automation. In particular, the required manual ontological analysis of the input KB

may be costly. As an alternative, Chapter 7 will discuss the eiciency of a manual but

fast and shallow ontological extension instead, possibly coupled with an automated

debugging strategy, presented in Chapter 8.

Pattern-based approaches to KB debugging on the other hand rely on some ex-

tended forms of syntactic typos, which unfortunately are often too generic to spot

the type of errors targeted here, i.e. the coexistence of incompatible meanings of an

individual or predicate within a KB. This legitimates the introduction of external

sources of knowledge to the debugging process, for instance linguistic evidence, as

investigated in chapters 4 and 6.

Belief change ofers at Ąrst sight a more promising formal apparatus for the

objective being pursued here. But formula-based contraction/revision, introduced

in Section 3.6.1.1, mostly provides formal results, and not actual algorithms. In

addition, it is shown is Section 3.6.1.1.2 that in the case of revision, for some DLs

at least, this paradigm does not currently provide an efective principle of minimal

change. Model-based contraction/revision is introduced in Section 3.6.1.2, which

also shows why proposals made in this Ąeld may not be adapted to the problem at

hand, due in particular to their close relatedness to default reasoning.

The last paradigm investigated in this chapter is syntax-based contraction/revision

in Section 3.6.2, which aims at identifying sets of axioms to be preferably discarded

from an input KB, together with the closely related problem of computing justiĄca-

tions in Section 3.5. These two sections introduce some of the main notions used in

the Ąeld (justiĄcation, diagnosis, . . . ), which will be used intensively in Chapters 6

and 8. The main (black-box and glass-box) algorithms are also brieĆy presented (and

will be discussed in more details in Chapter 8). Syntax-based contraction/revision
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generally sufers from the number of candidate output subbases, which is why Chap-

ter 8 studies the automated computation of a selection of them only, possibly guided

by linguistic evidence.
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Chapter 4

Linguistic evidence for KB

debugging

This chapter investigates the integration of automatically gathered linguistic evidence

to a KB debugging process. Natural Language Processing (NLP) for knowledge

engineering has been extensively studied in the Ąelds of information extraction and

ontology learning from texts. But to our knowledge, relying on linguistic evidence to

detect and/or repair errors in an input KB is an original proposal, as most works in

these Ąelds focus either on extending an existing KB, or learning one from scratch.

This may also be viewed as a small paradigm shift: data extracted from texts is

generally viewed as less reliable than manually crafted knowledge. But as illustrated

in Chapter 1, when a KB grows in size, it also tends to contain sets of axioms which

may make sense individually, but violate elementary common sense when considered

together. This phenomenon is exacerbated in a Semantic Web context, where the

KB may integrate data from multiple sources (some of which may actually have been

automatically extracted from unstructured or semi-structured texts). The hypothesis
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is made here that linguistic evidence may be a relevant common ground in order to

decide among incompatible conceptualizations. More exactly, the output KB of

a debugging process, viewed as a logical theory, should reĆect some statistically

meaningful regularities observed in a linguistic corpus.1

Section 4.1 ofers a broad typology of NLP techniques used in information ex-

traction or ontology learning, and explains why some of them are not practically

applicable to debugging. This legitimates a focus on named entities, as well as the

usage of distributional evidence, both choices being discussed in Section 4.2. This

section also contains the main contribution of this chapter, which is an original frame-

work in order to evaluate to what extent a candidate output base � of the debugging

process is in line with distributional evidence, or equivalently, to what extent some

linguistic input may indicate that � contains violations of common sense of the type

presented in Chapter 1. Finally, Section 4.3 is a relatively high-level introduction

to distributional similarity, paired with the description of the speciĄc distributional

settings adopted in this work.

4.1 NLP for information extraction and ontology

learning

The exploitation of NLP techniques in knowledge engineering has been mostly inves-

tigated in the Ąelds of information extraction and ontology learning from texts. This

1 An arguably better high-level formulation of this idea is that the knowledge expressed by the
KB should be as “consistent” as possible with the linguistic input, where “consistent” is understood
in its vernacular sense, and not its logical one. This formulation is avoided here in order to prevent
possible confusions. The term “coherence” is not used either, for the same reason (see Chapter
2 Section 2.3.5). In particular, for lack of a better term, “compliance” will sometimes be used in
order to designate the degree to which a given KB is in line with the linguistic input.
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section ofers a selective overview of tasks and techniques pertaining to these Ąelds,

and explains in particular why several of these techniques may not be appropriate

for KB debugging, or hardly applicable.

4.1.1 Cooccurrence patterns for relation extraction

Relation extraction generally deals with the identiĄcation of semantic binary relations

holding between two linguistic terms. Each of these these linguistic terms may denote

either an individual (for instance the term ŞWoody AllenŤ) or an atomic concept (e.g.

ŞfestivalŤ).

One of the most widespread approach to binary relation extraction relies on

cooccurrence patterns, which may be manually crafted or automatically learned from

known instances. For instance, the pattern Ş< �1 >s and other < �2 >sŤ is likely

to indicate that the concept denoted by �1 is subsumed by the concept denoted by

�2, i.e if �� is the atomic concept denoted by the term ��, then �1 ⊑ �2 is likely to

hold.

The most inĆuential illustration of this strategy is probably the work of [Hea92],

who sketches a bootstraping approach to the extraction of subsumptions based on

such cooccurrence patterns. The algorithm starts with a small set of manually crafted

cooccurrence patterns like the one above, and these patterns are projected on large

corpora in order to retrieve pairs of terms (denoting concepts which are) likely to

instantiate the relation. Then new patterns can be identiĄed out of other cooccur-

rences of these pairs of terms, and in turn projected to learn new pairs instantiating

the relation, etc. Alternatively, the loop may be initiated with a set of pairs of terms,

instead of a set of patterns.

The two most studied relations are by far subsumption (�1 ⊑ �2 in DLs , where
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�1 and �2 are atomic concepts) and instantiation (�(�) in DLs, where � is an

atomic concept and � an individual). But these techniques have also been applied to

extract instances of other binary relations, like meronymy (part-of), or even arbitrary

relations between concepts/individuals. InĆuential works for these other relations

are the ones of [BC99] or [PP06]. Other works rely only partly or indirectly on

cooccurrence patterns, such as [SB05] for the extraction of domain speciĄc relations,

or [VVSH07] for disjointness axioms (i.e. axioms of the form � ⊑ ¬�, with � and

� atomic concepts).

Integrating the extracted pairs to a KB generally requires an additional and

more or less automated phase of Ąltering or reformulation, because of the noise (like

[NVF11] for the subsumption relation), but also because the semantic interpretation

of the extracted relations may be ambiguous. The distinction between concepts

and individuals in particular is not always clear. Another case of ambiguity is the

interpretation of some relations (other than subsumption or disjointness) holding

between concepts. Relation extraction systems prototypically produce triples, for

instance < �1, part-of, �2 >, with �1 and �2 atomic concepts. But as explained

in [VA07] for this speciĄc case (meronymy), quantiĄcation remains ambiguous, i.e.

this triple may correspond to diferent DL axioms. Either the whole implies the

existence of the part (like in Handle/Door, i.e. Door ⊑ ∃hasPart.Handle in DLs),

or the converse (like in Airbag/Vehicle, i.e. Airbag ⊑ ∃partOf.Vehicle in DLs),

or both (like in Letter/Alphabet, i.e. Alphabet ⊑ ∃hasPart.Letter and Letter ⊑

∃partOf.Alphabet in DLs).

But the main reason why cooccurrence patterns may not be appropriate for KB

debugging is a diferent one. In a debugging scenario, the signature sig(�) of the

input KB � is known in advance. So let us assume that one wants to conĄrm

or inĄrm the hypothesis that a given relation holds between two elements �1 and
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�2 of sig(�), and that a set of linguistic patterns corresponding to this relation is

available (possibly learned from other pairs instantiating that same relation according

to �). Then a suicient number of linguistic cooccurrences of terms denoting �1 and

�2 is required to verify whether or not they appear together with these patterns.

Alternatively, one may use a set of patterns indicating that this relation does not

hold, but the problem remains identical: even with the whole web available, it is

very unlikely to Ąnd a suicient number of cooccurrences of these two terms. The

problem does not hold for ontology learning/population, because the projection of

a cooccurrence pattern can return any pair of terms, regardless of the signature of

the KB under construction. For instance, the cooccurrence Ťtrumpets and other

brass instrumentsŤ may be relevant for ontology learning, even if neither Trumpet

nor Brass Instrument is a concept of the KB under construction yet. But for

debugging, if any of the two is not in sig(�), this cooccurrence is meaningless.

This is why the approach presented in Section 4.2 relies on simple occurrences

of target terms, and not on cooccurrences of pairs of target terms. For instance, in

order to determine whether the individual Thaddeus S.C. Lowe is likely to be an

instance of the atomic concept Person, the approach will use simple occurrences of

the term ŞThaddeus S.C. LoweŤ, and intuitively look for contexts likely to indicate

that Thaddeus S.C. Lowe is indeed a person (like ŞThaddeus S.C. Lowe was bornŤ)

or is not (like Şlocated in Thaddeus S.C. LoweŤ). On the other hand, a relation

extraction approach based on cooccurrence patterns would require cooccurrences of

the terms ŞThaddeus S.C. LoweŤ and ŞpersonŤ, which are very unlikely to be found

in suicient quantity. Querying the web with instantiated cooccurrence patterns

would not solve the problem either, which can be easily veriĄed empirically. For

instance, none of the pages indexed by Google contains any of the following strings:

ŞThaddeus S.C. Lowe and other personsŤ, ŞThaddeus S.C. Lowe, the Ąrst/last/only
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personŤ, ŞThaddeus S.C. Lowe is/was a personŤ, ŞThaddeus S.C. Lowe, a personŤ,

etc.2

4.1.2 Fine-grained axiom extraction from definitorial or en-

cyclopedic context

A diferent category of works aim at extracting OWL TBox axioms from natural

language texts almost literally, based on a tight correspondence established between

some OWL constructs and natural language syntax. A classical example is the

noun modiĄer syntactic function: for instance, if ŞepilepsyŤ denotes a concept, then

Şmyoclonus epilepsyŤ is likely to denote a subclass of it, and Şprogressive myoclonus

epilepsyŤ a subclass of the latter, etc.

But more sophisticated OWL TBox axioms may also be extracted, prototypically

out of syntactically parsed deĄnitions. A good illustration is the work presented in

[VHC07]. For instance, out of the deĄnition ŞData: facts that result from measure-

ments or observationsŤ, the axiom extraction approach developed by the authors

successfully produces Data ⊕ Fact ⊓ resultsFrom.(Measurement ⊔ Observation),

thanks to a tight mapping from syntactic functions (object, modiĄer, . . . ) and func-

tion words (ŞthatŤ,ŤorŤ,. . . ) to OWL constructs.

A Ąrst limitation is the reliability of such a transformation from a syntactically

analyzed deĄnition to an axiom. Among others, it sufers from prepositional at-

tachment ambiguities, as well as the interpretation of these prepositions, and more

generally from the polysemy of function words. Here are two other examples given

by the same authors:

ŤCurrency: a currency is a unit of exchange, facilitating the transfer of goods and

2If the content of this thesis gets indexed, it may actually provide the first occurrences.
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services.Ť⇒

Currency ⊕ Unit ⊓ ∃of.Exchange ⊓ ∃facilitate.(Transfer ⊓ ∃of.(Good ⊓

Service))

ŞBiosphere: the portion of Earth and its atmosphere that can support life.Ť⇒

Biosphere ⊕ Portion ⊓ ∃of.

((Earth ⊔ (Its ⊓ Atmosphere)) ⊔ ∃canSupport.Life)

Among the diiculties illustrated by these examples are the interpretation of ŞandŤ

(nothing is meant to be both a good and a service in the Ąrst deĄnition), the debatable

interpretation of ŞofŤ in both deĄnitions (independent from ŞunitŤ in the Ąrst axiom,

from ŞportionŤ in the second), and the underspeciĄcation of the possessive ŞitsŤ (the

possessor may be either the biosphere or the earth). So although the approach seems

useful as a pre-extraction step, an additional manual correction phase is required if

these axioms are to be integrated into a KB.

But more fundamentally, just as in the previous section, these Ąne-grained ex-

traction approaches seem hardly applicable to KB debugging because the signature

of the input KB is known in advance, whereas in an ontology learning context, it can

be freely extended with concepts and roles like Exchange, canSupport or even of.

Finally, another important practical limitation comes from the fact that the cor-

pus must be of an encyclopedic nature, because terms denoting predicates or named

entities are only marginally deĄned outside of manuals, dictionaries or encyclopedias.

For instance, it is relatively uncommon to read a text explicitly stating that Şa car

is a vehicleŤ, or that Şseats are parts of a carŤ. These informations are more likely to

be conveyed indirectly through non deĄnitorial uses of the term ŞcarŤ, for instance

by the expression Şdrive his/her carŤ or Şsitting in his/her carŤ, etc. This is one of

the motivations behind approaches based on linguistic term distribution.
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4.1.3 Taxonomy induction based on term distribution

Taxonomy induction from texts is generally deĄned as the extraction of a set of

axioms of the form � ⊑ �, where � and � are atomic concepts. Aside from the

exploitation of cooccurrence patterns, presented in Section 4.1.1, part of the literature

on the topic focuses on the distributions of terms denoting these concepts, based on

the assumption that terms which share similar linguistic contexts tend to have similar

meanings.

[Cim06] implemented a clustering approach inspired by formal concept analysis

(FCA) for this purpose. FCA is a taxonomy induction technique which can intu-

itively be viewed as a reverse application of the principle of property inheritance

used (among others) in object-oriented programming. Given two Ąnite sets � and

� of objects and properties respectively, an FCA concept is a pair < �′, � ′ > such

that �′ ⊖ �, � ′ ⊖ � , �′ is exactly the set of elements of � verifying all properties

in � ′, and � ′ is exactly the set of elements of � veriĄed by all elements of �′. Then

the subsumption relation between concepts is given by < �′
1, �

′
1 > ⊑ < �′

2, �
′
2 >

if �′
1 ⊖ �′

2 if � ′
2 ⊖ � ′

1. For instance, if < �′
2, �

′
2 > is the Animal concept, then

< �′
1, �

′
1 > may be Bird. All birds are animals (�′

1 ⊖ �′
2) but all animals are not

birds (�′
2 ̸⊖ �′

1), and birds verify all properties veriĄed by animals (� ′
2 ⊖ � ′

1), but

also properties that some animals do not verify, e.g. they can Ćy (� ′
1 ̸⊖ � ′

2). [Cim06]

adapted this framework to taxonomy induction from texts, using common nouns as

FCA objects, and linguistic contexts as FCA properties. He gives table 4.1.3 as an

example. All six linguistic terms in the left column may appear as direct objects of

the verb ŞbookŤ, which is why they all have the property of being bookable. But only

two of them (ŞexcursionŤ and ŞtripŤ) are likely to appear as direct object of the verb

ŞjoinŤ. This yields a small taxonomy, where for instance the concept of bookable,
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bookable rentable driveable ridable joinable
hotel X

apartment X X

car X X X

bike X X X X

excursion X X

trip X X

Table 4.1: Concept hierarchy induction with FCA, reproduced from [Cim06]

rentable and driveable things (cars and bikes) is subsumed by those which are only

bookable and rentable (cars, bikes and apartments), whereas the concept of bookable

and joinable things (trips and excursions) does not subsume neither is subsumed by

any of the two. At the bottom of the taxonomy lie the concepts denoted by each

term (ŞhotelŤ, ŞapartmentŤ, ŤbikeŤ, etc).

A Ąrst similarity between this taxonomy induction method and the approach

adopted in Section 4.2 is that it relies on a linguistic phenomenon known as selectional

preference. The linguistic context (ŞbookŤ + obj, ŞdriveŤ+obj) retained for the

taxonomy induction are not any contexts appearing with each of these six terms,

but only contexts whose occurrences with these terms is statistically meaningful. For

instance, the observation that two target terms may appear as objects of the verb

ŞhaveŤ is intuitively less meaningful than objects of the verbs ŞbookŤ or ŞdriveŤ,

because of the overall frequency of ŞhaveŤ. But the distributions of the objects of

a verb also comes into play. For instance, it may be expected that the distribution

of objects of a verb like ŞdriveŤ is more informative than the distribution of objects

of ŞdescribeŤ or ŞpresentŤ, because the two latter may take almost any common

noun as an object, not the former. Or in information-theoretic terms, the entropy

of a random variable modeling the distribution of the objects of ŞdriveŤ (i.e the

expected number of occurrences of ŞcarŤ, ŞbottleŤ, etc. as the object of ŞdriveŤ for
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n occurrences of ŞdriveŤ with an object in natural language texts) should probably

be lower than for ŞdescribeŤ or ŞpresentŤ. The corresponding linguistic phenomenon

is known as selectional preferences, and was notoriously studied in NLP by [Res97].

Informally, selectional preferences model the fact that a term �1 (a verb, but also a

preposition, an adjective, a verb+preposition, . . . ) may (or may not) constrain the

semantic type of a term �2 in a given syntactic position (e.g. object, modiĄer, . . . ).

For instance, Şlocated in < � >Ť tends to select the semantic category Place for

�. As suggested by the ŞdriveŤ example, the selected semantic categories are not

limited to a few very abstract types (like Physical entity, Event, etc), but may

actually be more speciĄc. In distributional semantics, the intuition behind selectional

preferences is traditionally captured by frequency weighting techniques, introduced

in Section 4.3.4.

Another interesting particularity of this taxonomy induction by [Cim06] is that

aside from the most speciĄc ones, the concepts of the inferred taxonomy do not

have a linguistic label, but simply correspond to a set of linguistic contexts (the

FCA properties). For instance, the concept of bookable and joinable thing is not

labeled by a linguistic term. This is another similarity with the approach adopted in

Section 4.2, which in a sense goes one step further into that direction, by completely

abstracting from concept labels, using individuals labels instead as target terms.

An important limitation of this approach though is the requirements put on

the corpus. For the FCA approach to be efective without manual completion, the

exhaustive set of admissible linguistic contexts for each target term must be know,

i.e. the corpus must contain a (statistically meaningful) trace of this possibility,

otherwise the whole taxonomy will be afected. For instance, in the above example,

although bikes are certainly bookable things, let us assume that no occurrence of the

verb ŞbookŤ with ŞbikeŤ as a direct object was found in practice in the corpus. This
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will immediately afect the structure of the taxonomy, with a new concept of things

(namely bikes) which are only rentable, driveable and rideable. In other words, in the

absence of explicit evidence for a context � to be applicable to a term �, it is assumed

by default that it is not (this can be viewed as a form of closed-world reasoning). As

a consequence, for the approach to be efective, a statistically meaningful number

of occurrences of � with � must appear in the corpus, which is a very optimistic

assumption.

4.1.4 Ontology population

Ontology population deals with the automated instantiation of predicates from an

input TBox. As such, it overlaps with some of the relation extraction techniques

presented in Section 4.1.1. The focus will be put here on the instantiation of unary

FOL predicates, i.e. atomic DL concepts. The task is prototypically a supervised

one.3 Given an annotated corpus where some named entities are tagged with concepts

(for instance ŞWoody AllenŤ may be tagged with Director, or Person, or both),

the objective is either to retrieve other instances of these concepts in non-annotated

corpora, or to classify a given set of individuals according to these concepts, based

on linguistic evidence.

The former problem is by far the more often addressed in the literature. It is

also closely related to an information extraction task known as named entity recog-

nition and classiĄcation (NERC), popularized in the 90Šs with the MUC evaluation

campaigns, and later integrated to several Semeval campaigns. The terminolog-

ical distinction between NERC and ontology population is not always clear, but

3The meaning of “supervised” here is the one traditionally used in machine learning. A su-
pervised task consists in learning a function from a training set of labeled data, as opposed to
unsupervised learning, whose goal is to identify a structure (for instance clusters) in some unla-
beled dataset.
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they tend to difer on the concepts being used, traditionally a small number of

relatively abstract semantic types for NERC (prototypically Event, Place, Date,

Person, Organization, etc), whereas ontology population may deal with arbitrarily

Ąne-grained concepts (like Cruise Ship, Volcano, NGO, Director, etc). They also

difer on the fact that NERC aims at classifying each occurrence of a term indepen-

dently.

The second problem (classifying a set of already identiĄed individuals, based on

linguistic evidence) is more immediately useful for the problem at hand here. The

diference with the previous one is that no entity recognition phase is required, or

in other words, that the whole signature of the KB is known in advance, which is

the case in a KB debugging setting. This is why the emphasis is put here on recent

works addressing this second problem, even though it remains a marginal one in the

ontology population literature.

[TM08] compare three diferent approaches to solve a problem coined as follows:

given a (Ąnite) set Con of mutually disjoint atomic DL concepts with labels, and a

(Ąnite) set Ind of individuals with labels, assign to each � ∈ Ind the correct � ∈ Con.

The assumption is also made that Con covers all elements of Ind, i.e. that each

� ∈ Ind is an instance of some � ∈ Con. Finally, a training set of reliable instances

of each � ∈ Con may be used, and these instances do not appear in Ind.

The Ąrst of the three approaches compared by [TM08] is inspired by [Hea92], and

is a simpliĄed version the relation extraction strategy based on cooccurrence already

described in Section 4.1.1. It relies on a set of cooccurrence patterns (like Ş< �1 >

is a < �2 >Ť or Şsuch < �2 > as < �1 >Ť), but they are all manually crafted, and

not dynamically learned like in [PP06], such that the training set in this case was

not used. Unsurprisingly, the approach sufers from low recall.

The second approach is also unsupervised, but relies on distributional similarity
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(for an introduction to distributional similarity, see Section 4.3 below). It was initially

proposed by [CV05]. A vector �(�) is build for each � ∈ Con, representing the

contexts in which the label of � is observed in the corpus (for instance, a vector for

the concept Director out of the occurrences of the word ŞdirectorŤ in the corpus),

and similarly a vector �(�) for each individual � ∈ Ind (for instance, a vector for the

individual Woody Allen out of the occurrences of the term ŞWoody AllenŤ in the

corpus). Then an individual � is assigned to a class � if the similarity between �(�)

and �(�) is maximal among all � ∈ Con. This approach sufered from a relatively

low precision. As noted by [TM08], the assumption that the label of a class and

the labels of its instances should have similar linguistic behavior is also relatively

implausible linguistically. Another limitation of this strategy, discussed in Section

4.2.1.1, is that concept labels in a KB rarely correspond to linguistic terms denoting

these concepts in natural language texts.

The third approach is supervised, and also relies on distributional semantics.

As opposed to the previous ones, labels of concepts are not used in this approach,

but only labels of individuals, which are prototypically proper names, and therefore

arguably less ambiguous (the problem of labelsŠ polysemy will be discussed in more

details in Section 4.2.1.1). A distributional vector �(�) is built for each � ∈ Con

out of the training set by aggregating the vectors of the known instances of �. Then

as previously, a vector �(�) is built for each � ∈ Ind as well, and � is assigned to

a class � if the similarity between �(�) and �(�) is maximal for �(�) among all

� ∈ Con. [TM08] showed that this approach largely outperformed the other two for

the benchmark used in their experiments.

[GG08] formulated the ontology population problem in almost identical terms.

They use a taxonomy of concepts instead of a set of concepts, but the concepts

of Con are only the most speciĄc ones in this taxonomy, and are also supposed
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mutually disjoint, such that Con for [GG08] is actually similar to Con for [TM08].

Their approach relies on the substitution of named entities within linguistic contexts,

and also requires a training set of known instances of each � ∈ Con. Let � ∈ Ind

be a named entity to be classiĄed. A set �� of linguistic contexts in which the

label of � appears is extracted from snippets, using a web search engine. These

contexts are n-grams (i.e. sequences of � words) which precede, follow or surround

an occurrence of the label of �, together with the position of the label. For instance,

if � is Woody Allen, i.e. if Woody Allen is an individual to classify (or in other

words Woody Allen ∈ Ind), and if its label is ŞWoody AllenŤ, the context Ş< � > is

currently ĄlmingŤ may be extracted from web snippets retrieved by a search engine

for the query ŞWoody AllenŤ. Then in order to determine whether � is likely to be

an instance of a concept �, for each � ∈ ��, and for each known instance �′ of

� according to the training set, the label of �′ is substituted for < � > in �, and

the Web IT 5-gram corpus is searched for occurrences of the resulting n-gram.4 For

instance, if Michael Haneke is known to be an instance of the concept Director,

and if the sequence ŞMichael Haneke is currently ĄlmingŤ can be found in the the

Web IT 5-gram corpus, this would support the hypothesis that Woody Allen is also

an instance of Director. Based on these observations, a score for each hypothesis

(Director(Woody Allen), Rugbyman(Woody Allen), etc.) is computed, which also

takes into account the frequencies of all �′ and � within the the Web IT 5-gram

corpus, such that observing �′ and � is more meaningful if �′ and � are less frequent.

Then only the hypothesis with the highest score for � (e.g. Director(Woody Allen))

is retained.

4 the Web IT 5-gram corpus is an index of n-grams observed in a very large collection of
web pages together with their frequencies, released by Google in 2006, and available from https:

//catalog.ldc.upenn.edu/LDC2006T13.
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The intuitions behind this approach and the one adopted in Section 4.2.3 are

very similar, although formally the latter is based on a vector space model, not on

substitution. The approach adopted in Section 4.2.3 is also arguably more complex,

because the problem it addresses difers from the problem addressed by [GG08] (and

[TM08]) on several aspects. As a reminder, the problem addressed by [GG08] and

[TM08] is the following one: given an individual � and a set of concepts Con, identify

the concept � ∈ Con that � is most likely to be an instance of. This is equivalent to

deciding for each pair �1, �2 ∈ Con whether �1(�) is more likely to hold than �2(�).

But the problem addressed by Section 4.2.3 cannot be reduced to that one. The

input is a set Ψ� = ¶�1(�1), .., ��(��)♢ of formulas, and a conĄdence score (called a

plausibility score) needs to be attributed to each of them independently, assuming

all other ones are valid, i.e. the training set for each å ∈ Ψ� is potentially Ψ� ∖¶å♢.

In addition, the respective scores of two formulas �1(�1), ��(�2) ∈ Ψ� should be

comparable, even when �1 ̸= �2, which was not needed for [GG08] and [TM08],

who focused on the case where �1 ̸= �2 but �1 = �2. In order to answer these

requirements, the plausibility score deĄned in Section 4.2.3 accounts for a potential

bias, caused by the fact that the linguistic representation of �1 or �2 may be more or

less central in the vector space among the representations of all other individuals of

�ind(Ψ�). For instance, if �1 is more central than �2, then a high similarity between

�1 and known instances of �1 is less meaningful than an equally high similarity

between �2 and known instances of �1. Another speciĄc property of the plausibility

score deĄned in Section 4.2.3 is that it takes into account the possibility that the

number of known instances of each concept � ∈ �Con(Ψ�) may vary, or in other

words, it is (in a certain sense) robust to disproportions in training sets sizes. From

some aspects, the task addressed by Section 4.2.3 can also be viewed as more generic

than the one addressed by [GG08] and [TM08], in that the concepts of �Con(Ψ�) are
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not assumed to be necessarily disjoint, and some of them may (to a certain extent)

be complex DL concepts, not only atomic ones, as discussed in Section 4.2.4.1.
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4.2 Proposal

This section presents an original framework in order to compute meaningful empirical

linguistic evidence to be integrated to a KB debugging process. The objective is to

identify potentially faulty (sets of) axioms within an input KB �, or equivalently

some optimal output subbase(s) of �. The approach is based on the assumption that

individuals with similar linguistic behaviors tend to instantiate the same concepts

in a KB, which is also the intuition underlying the works of [TM08] and [GG08], as

just seen in Section 4.1.4.

In order to simplify the presentation, it is assumed throughout the current section

that some semantic similarity measure is available, which estimates to what extent

the linguistic behaviors of two linguistic terms are similar. Concrete proposals to

compute such a similarity measure will be made in Section 4.3, based on distri-

butional semantics. But the framework introduced in the current section is more

generic, which is why it temporarily abstracts from these concrete distributional

parameters.

Section 4.2.1 justiĄes the approach, based on the review of ontology learning and

population techniques provided in Section 4.1. Section 4.2.3 deĄnes a score which,

for each candidate output base � of the debugging process, and for each consequence

å of � of the form �(�) or ¬�(�), with � an atomic DL concept and � an individual,

evaluates to what extent å is likely to hold if the rest of � does. Section 4.2.4

discusses possible extensions of this approach, in particular to more complex DL

concepts. Then Section 4.2.5 deĄnes diferent orderings of the candidate subbases

based on these scores.

The computation of the set of candidate subbases and the concrete algorithms
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used to select optimal subbases are not the subject of this chapter, and will be

addressed instead in chapters 6 and 8.

4.2.1 Justification of the approach

4.2.1.1 Linguistic grounding of the input KB

For a collection of texts to conĄrm or inĄrm some information expressed by a KB, a

trace of the signature of the KB must be found in it. The elements of the signature

of an OWL KB generally have one or several associated linguistic labels, which are

natural candidates for this. For instance, the linguistic terms ŞWoody AllenŤ and

ŞW. AllenŤ may be two labels associated to the individual Woody Allen, and the

term ŞpersonŤ may be a label associated to the atomic concept Person.

For an atomic concept � though, it is very frequent that the usage of its label

in natural language texts does not reĆect the meaning of � in the KB. There are

at least two reasons for this. The Ąrst one is that the signature of a KB often

contains ad-hoc atomic concepts, which are relevant in a given applicative scenario,

but were not conceived with linguistic usage in mind. A simple example is the

Government ontology published as part of the egov project.5 It contains atomic

concepts with labels such as Şreferred to committee eventŤ, Şconstraint violation

levelŤ or Şstructuring event typeŤ. These labels are perfectly meaningful within the

KB, but do not correspond to terms actually used in natural language texts (the

number of web pages indexed by Google and containing these terms is 6, 342 and 3

respectively). The second reason is that labels associated to concepts in OWL KB are

usually common nouns or common noun phrases, and as such tend to be relatively

5The precise ontology referenced here is named “oe1gov”, and can be downloaded from the url
http://oegov.org/.
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polysemous. In particular, it is very common for a KBŠs signature to contain atomic

concepts which have a clear and speciĄc meaning in that KB, but are labeled with an

extremely polysemous linguistic term, such as ŞfunctionŤ, ŞmodelŤ, ŞruleŤ, ŞareaŤ,

ŞlistŤ, ŞgroupŤ, ŞroleŤ, ŞbranchŤ, ŞelementŤ, etc.

This is even worse for the labels of DL roles (binary predicates). Consider for

instance the label ŞdirectorŤ for the DL role director in DBpedia. First, it is

meant as a relation between audiovisual works and Film directors, which is not the

only possible usage of the word ŞdirectorŤ. But the order of the arguments is also

ambiguous (here it should be understood as Şwas directed byŤ, with the director as

the second argument, and not the inverse). Finally, the sequence of words Ş< �1 >

director < �2 >Ť, with < �1 > denoting a movie and < �2 > its director (or

the inverse), is very unlikely to be found in a text, such that there is no immediate

correspondence between the label of this relation and the way it may be expressed

in natural language. All three remarks are also valid for the following DBpedia role

labels: ŞdistributorŤ, ŞeditingŤ, ŞĄeldŤ, ŞformatŤ, Şkey personŤ, . . .

This is why the choice was made in this thesis to focus on the labels of individuals.

These labels are prototypically proper names, such a ŞWoody AllenŤ or ŞEgyptŤ, (al-

though this is not necessarily the case, a counterexample being ŞC.E.OŤ, in Chapter

1, example 1.1.1), and as such, are generally less ambiguous than the common nouns

or common noun phrases labeling atomic concepts.

The problem of poylsemy is obviously not completely addressed by this choice

though. In particular, homonymy can be an issue, for instance the label ŞJFKŤ,

which may designate a politician or an airport. This is why additional precautions

where taken in order to rule out labels with potential homonyms for the experiments

described in chapters 6 and 8. These heuristics are described in Chapter 5 Section

5.3.1, together with the constitution of the datasets.
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4.2.1.2 Single occurrences

The second choice has already been discussed in Section 4.1.1, with the review of

relation extraction techniques based on cooccurrence patterns. In a debugging sce-

nario, the signature sig(�) of the input KB � is known in advance, as opposed to

relation extraction, where fresh instances of a relation are to be retrieved. But Ąnd-

ing a statistically meaningful number of cooccurrences of pairs of labels of elements

of sig(�) is very unlikely, even with the whole web available Therefore the choice

was made to focus on single occurrences of target labels, and not on cooccurrences.

4.2.1.3 Distributional evidence

The last choice was guided by the empirical results from [TM08] and [GG08], which

indicate that individuals whose labels have a strong distributional similarity tend to

instantiate the same atomic concepts, and conversely. This corroborates the intuition

that selectional preferences (introduced in Section 4.1.3) are not limited to very

abstract semantic types, but may also apply to Ąner-grained concepts.

Therefore a unique assumption dictates in what follows the use of linguistic ev-

idence for KB debugging, which can be intuitively formulated as follows: a KB is

more in line with a corpus if the individuals which instantiate the same concepts ac-

cording to this KB also tend to have similar linguistic behavior in natural language

texts.

In order to avoid possible misunderstandings, it must be emphasized that the

whole KB cn be evaluated based on this strategy, including it TBox, as illustrated

by the running example given below in Section 4.2.2.

Another important remark is that the framework introduced here is not limited

to the similarity between instances of the same atomic DL concepts, but may be

136



extended in some cases to more complex DL concepts (as a reminder of Chapter 2

Section 2.3.2, arbitrarily complex concepts can be built inductively in most DLs). In

practice though, some limit needs to be put on the complexity of these concepts, and

selectional preferences may not be relevant for the more complex ones. In order to

keep the presentation simple, Section 4.2.3 focuses on atomic concepts (e.g. Person)

and their negation (e.g. ¬Person), and the generalization to more complex DL

concepts is then discussed in Section 4.2.4.1.

4.2.2 Running example

The following set of DBpedia statements will be used as a running example through-

out the rest of this section:

Ex 4.2.1.Ω = {

(1) owningCompany(Smithsonian Networks, Smithsonian Institution),

(2) doctoralAdvisor(Thaddeus S.C. Lowe, Smithsonian Institution),

(3) doctoralAdvisor(Nick Katz, Bernard Dwork),

(4) ⊤ ⊑ ∀doctoralAdvisor.Person,

(5) ⊤ ⊑ ∀owningCompany.Company}

From (1), (2), (4) and (5), the individual Smithsonian Institution must be an

instance of both Company and Person, which may seem counterintuitive, and in-

deed does not correspond to the overall understanding of these two concepts within

DBpedia.

Let us assume that Ω is part of a larger and consistent KB �, for instance

a subset of DBpedia extracted for a speciĄc application, or a set of OWL state-

ments aggregated from multiple sources. Let us assume also that there are several
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other instances of Person and Company according to � and, to keep the exam-

ple simple, that Smithsonian Institution, Bernard Dwork, doctoralAdvisor, and

owningCompany do not appear in � ∖ Ω. If most instances of Person and Company

according to � are respectively human beings and companies, one can expect the

term Şthe Smithsonian InstitutionŤ to appear with linguistic contexts which tend

to characterize terms denoting other instances of Company according to � (e.g. the

context ŞX was establishedŤ), but less often with contexts which tend to character-

ize other instances of Person (like ŞX was born inŤ). Similarly, ŞBernard DworkŤ

should appear with contexts which are characteristic of terms denoting other in-

stances of Person according to �. In other words, by checking the overall com-

pliance of � with some linguistic input, it should be possible to identify some

undesirable (Person(Smithsonian Institution)) and desirable (Company(Smithsonian

Institution), Person(Bernard Dwork)) consequences of it. Another way of view-

ing this is that some subbases of � should be more plausible than others given

the linguistic input. For instance, let å1 = Company(Smithsonian Institution), and

å2 = Person(Smithsonian Institution). And let �1 = � ∖ ¶(1)♢, �2 = � ∖ ¶(2)♢,

etc. Then �1 ̸⊢ å1, and �1 ⊢ å2, whereas �2 ⊢ å1, and �2 ̸⊢ å2, such that ceteris

paribus, distributional evidence should favor �2 over �1.

This holds if TBox axioms are discarded as well. Or in other words, even if the

gathered evidence is based on individuals, it may still allow for the evaluation of the

removal of TBox axioms. For instance, just as for �2, it holds that �4 ̸⊢ å2, which

conĄrms the hypothesis that �4 is a good candidate output. But it also holds that

�4 ̸⊢ Person(Bernard Dwork), such that distributional evidence should still favor

�2 over �4, but �4 over �1.
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4.2.3 Plausibility

This section deĄnes a score called a plausibility score which, given a consistent set �

of axioms and a consequence å of � of the form �(�) or ¬�(�), with � an individual

and � an atomic DL concept, evaluates to what extent å is likely to hold if the rest

of � does, or equivalently to what extent å can be viewed as an ŞoutlierŤ among

consequences of �.

In what follows, inst�(�) will designate all instances of � according to � for

which a distributional representation could be computed. Similarly, inst�(⊤) will

designate all individuals in �Ind(�) for which a distributional representation could

be computed. Then Ψ� will designate all consequences of � of the form �(�) or

¬�(�) such that � ∈ inst�(⊤), with � a DL atomic concept and � an individual.

If å ∈ Ψ�, the set sup�(å) will be called the support set for å in �. If å = �(�),

with � an atomic DL concept and � an individual, then sup�(�(�)) is deĄned by:

Definition 4.2.3.1. Support set for �(�)

sup�(�(�)) = inst�(�) ∖ ¶�♢.

Intuitively, sup�(�(�)) designates the individuals to which � will be compared,

in order to determine whether of not �(�) is likely to hold. If sup�(�(�)) = ∅, or if

♣ sup�(�(�))♣ is below a given threshold, then no plausibility score is computed for

�(�).

Let sim(�1, �2) be a measure of similarity between the distributional representa-

tions of the linguistic labels of individuals �1 and �2. Then for each �′ ∈ sup�(�(�)),

if sim(�, �′) is lower than what could be expected if �′ was a random individual of

inst�(⊤) ∖ ¶�♢ (i.e. not necessarily an instance of �), the hypothesis that �(�) is an

outlier among consequences of � will be reinforced.

139



For instance, in example 4.2.1 Section 4.2.2, let å = Person(Smithsonian Institution)

and � = �. Then the support set sup�(å) for å in � is composed of all other in-

stances of Person according to �. For each individual �′ ∈ sup�(å), if the similarity

sim(Smithsonian Institution, �′) is lower than what can be expected for a random

individual of inst�(⊤) ∖ ¶Smithsonian Institution♢, then the conĄdence in å should

decline. Conversely, if sim(Smithsonian Institution, �′) is higher than expected for a

random individual of inst�(⊤) ∖ ¶Smithsonian Institution♢, the hypothesis that å is

in line with Cn(�) (i.e. with � as a theory) will be reinforced.

Here is a cost-eicient method to compute a plausibility score sc�(å) for a formula

å ∈ Ψ� of the form �(�). If sup�(�(�)) is the support set for �(�) in �, then

♣ sup�(�(�))♣ is the cardinality of sup�(�(�)), i.e. the number of other instances of

� according to �. Now let us assume a set � of ♣ sup�(�(�))♣ randomly chosen

individuals in inst�(⊤) ∖ ¶�♢, i.e. of ♣ sup�(�(�))♣ individuals which are diferent

from �, but not necessarily instances of �. And let the random variable ��
�,♣ supQ(�(�))♣

model the expected value of
︁

�′∈�

sim(�,�′)
♣� ♣

, i.e. the mean of the similarities between �

and each individual of � . In other words, if ♣ sup�(�(�))♣ = ♣� ♣ individuals were

randomly chosen in the signature of � instead of those of the support set speciĄcally,

��
�,♣ supQ(�(�))♣ models the expected average similarity between � and these individuals.

Then the plausibility score sc�(�(�)) of �(�) can be deĄned as follows:

Definition 4.2.3.2. Plausibility of �(�)

sc�(�(�)) = �(��
�,♣ supQ(�(�))♣ ⊘

︁

�′∈supQ(�(�))

sim(�,�′)
♣ supQ(�(�))♣

)

sc�(�(�)) estimates of how surprisingly high the similarity between � and the in-

dividuals of the support set sup�(�(�)) is, considering the overall similarity between

� and the individuals of �.

A Ąrst interesting property of this score is that it accounts for the fact that the
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distributional representation of � may be more or less central among inst�(⊤). For

instance, let �1 ∈ inst�(�1) and �2 ∈ inst�(�2), such that the average similarity

between �1 and other instances of �1 is identical to the average similarity between �2

and other instances of �2, i.e.
︁

�′∈supQ(�1(�1))

sim(�1,�′)
♣ supQ(�(�1))♣

=
︁

�′∈supQ(�2(�2))

sim(�2,�′)
♣ supQ(�2(�2))♣

.

It may still be the case that �1 is more similar on average to a random individual from

inst�(⊤)∖¶�1♢ than to another instance of �1, whereas the contrary holds for �2 and

�2. In this case, one would like to obtain sc�(�1(�1)) < 0.5 and sc�(�2(�2)) > 0.5,

which is guaranteed by the above deĄnition.

Another desirable property of such a score is that it accounts for the fact that

the sizes of the support sets for two consequences may vary. For instance, let

us assume that two consequences �1(�) and �2(�) are evaluated, and that there

are 20 other occurrences of �1 according to �, against 200 other occurrences of

�2. And let us assume also that the average similarity between � and other in-

stances of �1 is equal to the average similarity between � and other instances of

�2, i.e.
︁

�′∈supQ(�1(�))

sim(�,�′)
♣ supQ(�1(�))♣

=
︁

�′∈supQ(�2(�))

sim(�,�′)
♣ supQ(�2(�))♣

. Then this value should

be considered more informative for �2(�) than for �1(�), because there is more ev-

idence supporting it. This intuition can simply be captured by the modeling of

the random variable ��
�,♣ supQ(�i(�))♣

. For the experiments described in Chapters 6,

and 8, ��
�,♣ supQ(�i(�))♣

was assumed to follow a beta distribution Beta(Ð, Ñ), which

allows taking the size ♣ sup�(��(�))♣ of the support set into account, where a nor-

mal distribution for instance would not. The lower ♣ sup�(��(�))♣ is, the more uni-

form the distribution of ��
�,♣ supQ(�i(�))♣

should be. This can be obtained by set-

ting ��
�,♣ supQ(�i(�))♣

≍ Beta(� ≤ ♣ sup�(��(�))♣+ 1, (1⊗�) ≤ ♣ sup�(��(�))♣+ 1), where

� is the average similarity between � and all other individuals of inst�(⊤), i.e.

� =
︁

�′∈instQ(⊤)∖¶�♢

sim(�,�′)
♣ instQ(⊤)♣⊗1

.
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A possible interrogation here is the choice of inst�(�) ∖ ¶�♢ as the support set

for å = �(�). For instance, if å = Person(Bernard Dwork), a case could be

made for using inst�(¬�) as well, i.e. for exploiting the similarity (or dissimilar-

ity) between Bernard Dwork and individuals which, according to �, are instances

of ¬Person.6 This is a very unrealistic assumption though from a linguistic point

of view, which can simply be seen here by replacing Person with JazzComposer for

instance. Let us assume that Thelonious Monk and Beijing are reliable instances

of JazzComposer and ¬JazzComposer respectively, and that Bernard Dwork should

not be considered as an instance of JazzComposer. This is clearly not suicient to

expect that sim(Bernard Dwork,Beijing) > sim(Bernard Dwork,Thelonious Monk).

In other words, the fact that two individuals are both non-instances of a same atomic

concept is not suicient to assume that their respective labels should have similar

linguistic behaviors.

Interestingly enough, and for the same reason, the support set for a consequence

å ∈ Ψ� of the form ¬�(�) is not inst�(¬�) ∖ ¶�♢, but:

Definition 4.2.3.3. Support set for ¬�(�)

sup�(¬�(�)) = inst�(�)

And the plausibility for ¬�(�) should this time evaluate how surprisingly low the

similarity between � and the individuals of the support set sup�(¬�(�)) is, consid-

ering the overall similarity between � and the individuals of �, i.e.:

Definition 4.2.3.4. Plausibility for ¬�(�)

sc�(¬�(�)) = �(��
�,♣ supQ(¬�(�))♣ ⊙

︁

�′∈supQ(¬�(�))

sim(�,�′)
♣ supQ(¬�(�))♣

)

6i.e. such that � ⊢ ¬Person(�′) and not only such that � ̸⊢ Person(�′)
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4.2.4 Extensions

4.2.4.1 Complex concepts

A Ąrst possible possible extension of the above plausibility score concerns conse-

quences of the form �(�), where � is an arbitrary DL concept, and not necessary an

atomic concept or its negation.

For instance, in example 4.2.1 above, let � = �, �1 = ∃doctoralAdvisor.⊤ and

�2 = ∃doctoralAdvisor⊗.⊤. Then the set Ψ� of evaluated consequences of � may

be extended Şfor freeŤ with �1(Nick Katz), �1(Thaddeus S.C. Lowe), �2(Bernard

Dwork) and �2(Smithsonian Institution). But also further on with consequences

such as:

∃doctoralAdvisor.Company(Thaddeus S.C. Lowe),

∀owningCompany.Company(Smithsonian Networks),

∀doctoralAdvisor.Person(Smithsonian Networks),

∃doctoralAdvisor.Company ⊓ Person(Thaddeus S.C. Lowe),

∃owningCompany∃doctoralAdvisor⊗.Person(Smithsonian Networks), . . .

As explained in Chapter 2 Section 2.3.2, in most DLs, the set of concepts which

can be inductively built out of a given signature may be inĄnite, such that some

limit to this concept construction mechanism is required. Unfortunately, there is no

obvious semantic solution to this problem. In many DLs, if � is a set of axioms and

Ψ+
� the set of all consequences of � of the form �(�), with � an arbitrarily complex

DL concept, then there may be no Ąnite subset Δ of Ψ+
� such that Δ ⊢ å for all

å ∈ Ψ+
�. For instance, let � = ¶⊤ ⊑ ∀�.�,⊤(�1)♢, Then for any Ąnite Δ ⊆ Ψ+

�,

there is a formula å = ∀�.∀�. . . . ∀�.�(�1) ∈ Cn(�) ∖ Cn(Δ).

Some complex concepts also seem intuitively more relevant than others from a
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linguistic point of view. For instance, it is arguably doubtful that instances of the

concept of Şpeople whose father lives in an apartmentŤ present similar linguistic be-

havior for that reason. On the other hand, concepts like Şthings owned by someoneŤ

or Şthings created by someoneŤ seem like plausible candidates.

The upcoming experiments focus on atomic concepts and their negation. But

an interesting continuation of this work would be to extend this set of concepts

with concepts of the form ∃�.⊤ and ∃�⊗.⊤ (where � is an atomic DL role), as

well as their respective negations ∀�.⊥ and ∀�⊗.⊥. So for instance, if own is a

DL role in the signature of �, then for each � ∈ inst�(∃own.⊤), the plausibility of

∃own.⊤(�) can be evaluated, i.e. intuitively to what extent Ş� owns somethingŤ is

likely to hold, and similarly for the DL concepts ∃own⊗.⊤ (i.e. individuals Şowned by

something/someoneŤ according to �), ∀own.⊥ (i.e. individuals Şwho/which cannot

ownŤ) and ∀own⊗.⊥ (i.e. individuals Şwho/which cannot be ownedŤ).

4.2.4.2 Distinct individuals

Another possible variation of this framework, not experimented in this work though,

consists in considering consequences of � of the form �1 ̸= �2 (i.e. the fact that �1

and �2 are not the same individual) instead of �(�). The unique name assumption

is not made in OWL, which means that two distinct individuals may be interpreted

identically, and therefore these consequences do not hold by default. They may be

explicitly stated in �, but are more often only entailed by �, provided it contains

some form of negation.

So if � is a candidate output bases, and if �1, �2 ∈ inst�(⊤) such that the similar-

ity between �1 and �2 is higher than what one may expect for two random individuals

of sig(�), then the conĄdence in � will decrease if � ⊢ �1 ̸= �2 (and/or possibly
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increase if � ̸⊢ �1 ̸= �2). Conversely, if the similarity between �1 and �2 is lower than

what one may expect for two random individuals of sig(�), then the conĄdence in

� will increase if � ⊢ �1 ̸= �2 (and/or possibly decrease if � ̸⊢ �1 ̸= �2).

4.2.5 Ranking candidate subbases

As already illustrated by example 4.2.1, it is assumed throughout this chapter that

the objective of the debugging process is to select some optimal subbase(s) of a

consistent input KB �, from a predeĄned family � ⊖ 2� of candidate subbases.

If � ∈ �, Then Ψ� will designate the set of all consequences of � for which a

linguistic plausibility score could be computed. As a reminder, these consequences

are of the form �(�), with � a DL concept and � an individual (for more details on

the form of �, see section 4.2.4.1). Intuitively, for each å ∈ Ψ�, and ceteris paribus,

the higher the plausibility score sc�(å), the more likely it is for � to be a good

candidate within �, as illustrated by example 4.2.1.

This section investigates how these plausibility scores can be aggregated in order

to compute a preference relation over �.

A Ąrst straightforward option consists in computing a score comp(�) (for Şcom-

plianceŤ) for each � ∈ �, deĄned as the mean of the plausibility scores obtained for

each å ∈ Ψ�, i.e.:

Definition 4.2.5.1. comp(�) =
︁

å∈ΨQ

scQ(å)

♣ΨQ♣

A total preorder ○comp can then simply be deĄned over � based on these scores

as follows: 7

7The assumption is made that a minimum of syntactic information should be lost whenever
possible. Redundancies in this view should be preserved whenever possible, e.g. if Cn(�1) = Cn(�2)
and �1 ⊆ �2, then �1 ∼comp �2 still holds.
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Definition 4.2.5.2. ○comp

∙ �1 ○comp �2 if �2 ̸∼comp �1

∙ �1 ∼comp �2 if either comp(�1) < comp(�2), or (comp(�1) = comp(�2) and

�1 ⊆ �2))

Then a subbase � of � can be viewed as optimal if it is maximal wrt ○comp.8

As will be discussed in Chapter 6 Section 6.3.1 though, identifying optimal subbases

is a non trivial task, even for a moderately large �, one of the reasons being that a

same consequence å may have diferent plausibility scores wrt two candidate bases

in �.

As an alternative to the function comp(), and in order to avoid the fact that a

same consequence may have diferent plausibility scores wrt two subbases of �, one

may choose to discard unlikely consequences based on their respective scores wrt �,

i.e. to use the score comp�(�), deĄned by:

Definition 4.2.5.3. comp�(�) =
︁

å∈ΨQ

scK(å)
♣ΨQ♣

The corresponding preference relation ○compK
over � is deĄned as previously:

Definition 4.2.5.4. ○compK

∙ �1 ○compK
�2 if �2 ̸∼compK

�1

∙ �1 ∼compK
�2 if either comp�(�1) < comp�(�2), or (comp�(�1) = comp�(�2)

and �1 ⊆ �2))

This solution is arguably less satisfying, because it relies on the plausibility score

sc�(å) (in the deĄnition of comp�(�)), and not on sc�(å). For instance, if å = �(�),

8There may be several several optimal subbases.
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the support set (see section 4.2.3) used to compute sc�(å) is the set of other instances

of � according to �, but there may be less of them according to �, such that sc�(å)

may not accurately reĆect whether å is likely to hold if the rest of Ψ� does, but only

if the rest of Ψ� does. This solution is more amenable to optimizations though, as

will be discussed in Chapter 6 Section 6.3.1.

Alternatively, instead of taking the mean of the scores of evaluated consequences

of �, one may want to penalize the candidate subbases with the most unlikely con-

sequences, which gives a standard (total) lexicographic ordering ○l over �, deĄned

as follows. For a given candidate base �, let (å1, .., å♣ΨQ♣) designate the formu-

las of Ψ� ordered by increasing plausibility score, and let w� = (�1
�, .., �

♣ΨQ♣
� )

be the vector deĄned by ��� = sc�(å�) for all 1 ⊘ � ⊘ ♣Ψ�♣. For instance, if

Ψ� = ¶å1, å2, å3♢, and if sc�(å1) = 0.2, sc�(å2) = 0.5 and sc�(å3) = 0.2, then

w� = (0.2, 0.2, 0.5). Let ○l be a standard ascending lexicographic ordering of all

w�, i.e. w�1 ○l w�2 if w�2 ̸∼l w�1 , and w�1 ∼l w�2 if there is a 1 ⊘ � ⊘ ♣Ψ�2♣

such that ���1
= ���2

for all 1 ⊘ � < �, and either ���1
< ���2

or ♣Ψ�1♣ = � ⊗ 1.

For instance, if w�1 = (0.2, 0.2, 0.5, 0.1) and w�2 = (0.2, 0.3, 0.5), then w�1 ∼l w�2 ,

because �1
�1

= �1
�2

= 0.2, and �2
�1

= 0.2 < 0.3 = �2
�2

.

Then a preference relation ○lex over � can be deĄned almost as previously:

Definition 4.2.5.5. ○lex

∙ �1 ○lex �2 if �2 ̸∼lex �1

∙ �1 ∼lex �2 if either w�1 ∼l w�2 , or (w�1 =l w�2 and �1 ⊆ �2)

Again, sc�(å) may be used instead of sc�(å), yielding the lexical ordering ○lK ,

and the preference relation ○lexK
over �, deĄned by:

Definition 4.2.5.6. ○lexK
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∙ �1 ○lexK
�2 if �2 ∼lexK

�1

∙ �1 ∼lexK
�2 if either w�1 ∼lK w�2 , or (w�1 =lK w�2 and �1 ⊆ �2)

This last possibility corresponds to a relatively intuitive operation, which consists

in giving up in priority the consequences of � which are the most implausible wrt

�.

All four possibilities will be used in the following chapters.

4.3 Distributional similarity

This section is an introduction to the computation of distributional similarity be-

tween words, together with a presentation of the speciĄc distributional settings used

for the experiments presented in chapters 6 and 8.

The introduction is partly based on [TPo10], with a focus on the Şword-contextŤ

class of distributional approaches according to the terminology of the authors. It

remains very simple on purpose, because the distributional techniques used for the

work presented here are relatively standard. In particular, many advances in dis-

tributional semantics deal in some way with dimensionality reduction, which was

simply not needed here, as explained in Section 4.3.1.

Throughout this section, ŞwordŤ will generally be used as a shortcut for Şword or

multi-word unitŤ, and Ştarget wordsŤ will designate the words (or multi-word units)

for which a distributional representation is needed. In particular, a target word may

be a term labeling an individual, like ŞŠWoody AllenŤ or Şthe Smithsonian Institu-

tionŤ. So a Şwords by contextsŤ matrix of is a shortcut for a Şwords or multi-word

units by contextsŤ matrix, and each row vector in such a matrix is the distributional

representation of a target word.
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4.3.1 Vector space model

Distributional semantics manipulate the meaning of words through algebraic struc-

tures which represent the linguistic contexts in which these words are observed,

sometimes called their distribution. In its simplest form, the distributional represen-

tation of the meaning of some target words in a given corpus is a matrix X of �

target words by � linguistic contexts, where each row vector x�: corresponds to the

distribution of a target word, each column vector x:� corresponds to the distribution

of a context, and each value ��� is based on the frequency of target word � with

context � in the corpus. Alternatively, the target word by context matrix is often

viewed as an �-dimensional vector space, and each target word as a vector in this

space.

Corpora used in distributional semantics for general linguistic purposes tend to be

large (up to billions of words), and the number of target words is generally important.

For instance, the target words may be all common nouns appearing in the corpus (or

all common nouns above a certain frequency threshold), all adjectives, etc. Therefore

the number � of diferent contexts observed with these target words (or equivalently

the number of dimensions of the vector space) may be very important (depending on

the adopted representation of contexts, discussed in Section 4.3.3), and the matrix

extremely sparse.

A variety of dimensionality reduction strategies address this sparsity issue, one

of the most popular being singular value decomposition (SVD), which amounts to

computing two matrices M and N of dimensions �× � and �× � respectively, with

� ⪯ �, such that their product MN is an optimal approximation of X given �.

Similarity between target words can then be computed based on their respective

vectors in M, instead of their respective vectors in X. More recent advances in the

149



Ąeld are based on the popular deep learning paradigm, which also produces low-

dimensional distributional representations of words, but intuitively as a side-efect

of the optimization of a neural network for some independent classiĄcation task.

The respective (non-strictly computational) beneĄts of the diferent dimensionality

reduction techniques used in NLP are still debated upon, and seem to vary with the

application.

By contrast, the debugging strategy developed here focuses on the distributions

of a relatively small number of target words, which are the labels of the individuals

of the input KB. For the experiments described in chapters 6 and 8, this represents

a few thousand target words at most, and a few hundred occurrences of each of

them are needed only. Therefore, after elimination of contexts which appear only

with one target word, the word by context matrix X is of a very manageable size,

which is why its structure has been left untouched by default. But if the debugging

approaches presented in this thesis are to be applied to (much) larger input KBs,

then a dimensionality reduction will probably be needed. The choice of the most

appropriate dimensionality reduction technique remains an open question though,

and may need to be made on an empirical basis.

Vectors are not the only type of algebraic structures used to represent the meaning

of words in contexts, and neither is deriving a similarity measure the only possible

usage of such representations. Recent advances in the Ąeld focus in particular on

the problem of compositionality (see [Cla13] for an introduction), relying on higher

order tensors, but are clearly out of the scope of this work.
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4.3.2 Corpus

As already emphasized in Section 4.1, a particularity of KB debugging, as opposed

to ontology learning for instance, is that the signature of the input KB � is known

in advance.

Distributional similarity is used here to evaluate whether or not two given target

words from a predeĄned target words list (the labels denoting individuals of sig(�))

behave similarly. Therefore, for the similarity scores to be meaningful, the corpus

must contain a suicient number of occurrences of these target words, such that some

target words actually share linguistic contexts.

It is extremely unlikely though to Ąnd a suicient number of occurrences of these

terms in one of the linguistically processed corpora traditionally used in corpus lin-

guistics, even the larger ones, like the ukWaC corpus [BBFZ09]. For instance, fo-

cusing only on the Ąve individuals of example 4.2.1 Section 4.2.2, it can be safely

assumed that no existing linguistically processed corpus contains 200 occurrences

of each of Şthe Smithsonian InstitutionŤ, ŞSmithsonian NetworksŤ, ŞThaddeus S.C.

LoweŤ, ŞNick KatzŤ and ŞBernard DworkŤ.

On the other hand, it is relatively easy to retrieve a suicient number of web pages

containing these terms, which is why the choice has been made to build a corpus

dynamically for each input KB �, relying a web search engine, with the individual

labels as queries. This yields relatively small corpora (up to 25 million words for 1500

individuals), but tailored for the input KB. The precise corpus extraction procedure

applied in the following experiments is detailed in Chapter 5, together with the

description of the various datasets.
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4.3.3 Contexts

The representation of linguistic contexts has a direct incidence on the type of simi-

larity between target words which may be extracted from a corpus. In distributional

semantics, what is understood as the context(s) in which a target word appears may

vary. Let � be a target word,9 and occ1
�, .., ���

�
� be the diferent occurrences of �

in the corpus. One of the simplest representation of contexts is the bag of word

approach, where the contexts of an occurrence occ�� are all other words appearing in

the whole document which contains occ��, or just the paragraph containing it, or a

smaller span, like a sentence or a window of � words surrounding �.

The matrix X is these cases is a word by word matrix. If the context span is very

small, and if the row vectors for two target words �1 and �2 are very similar, this

tends to indicate that �1 and �2 may be replaced by each other in the corpus. But

if the context span is large, this high similarity may be due to another phenomenon,

namely the fact that �1 and �2 tend to occur together in the same documents or

paragraphs.

For that reason, in the bag of word approach, small context spans tend to pro-

duce similarity measures which reĆect lexical relations between target words such

as synonymy, antonymy or co-hyponymy (like the similarity between ŞnurseŤ and

ŞdoctorŤ), whereas large context spans tend to produce similarity measures which

reĆect topical similarity between target words (like ŞnurseŤ and ŞhospitalŤ). The

Ąrst type of similarity is clearly more relevant for the problem at hand here.

But even for small context spans, the bag of word model may seem too coarse-

grained to capture the similarity of usage of target words, and more elaborated

linguistic representations may be needed. In particular, the bag or words model

9Again, “target word” stands here for “target word or multi-word unit”.
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abstracts from the sequencing of surrounding words, as well as the position of the

target word in that sequence. For instance, Ş< �1 > grew up inŤ and Şgrew up in

< �2 >Ť intuitively do not select the same semantic types (probably a human being

in the Ąrst case, probably a location in the second), but are identical in a bag of

words representation (precisely, 3 contexts are observed with �� in each occurrence,

namely Şgrew, ŞupŤ and ŞinŤ). Another example would be Şthe Ąrst take of < �1 >Ť

and Ştake the Ąrst of < �2 >Ť, where this time the position of the target word

is identical, but the order of the cooccurring words difers. This is why for lexical

purposes, a context is often represented as a sequence of words surrounding a target

word, together with the position of the target word in the sequence.

But the converse may hold as well, i.e. one would like in some cases to consider

as identical some contexts which difer on surface, prototypically because they are

inĆections of the same words. For instance, ŞlivesŤ and ŞlivedŤ should probably

be understood as the same word in the occurrences Şlives in < �1 >Ť and Şlived

in < �2 >Ť. A lemmatization of the corpus may therefore be useful, representing

each surrounding word by a lemma+part-of-speech pair (lemmaPOS), for instance

Şlive_� Ť which designates the verb Şto liveŤ (where � stands for ŞverbŤ), regardless

of its morphological inĆection. But more advanced linguistic preprocessings of the

corpus are also frequently applied. For instance, if the corpus has been syntactically

parsed, the contexts of a target word may be its (lemmatized) syntactic governors or

dependents, together with the corresponding syntactic function (subject, modiĄer,

. . . ). Some categories of less meaningful context words, like determiners, may also

be ignored.

Two alternative representations of contexts were adopted for the experiments pre-

sented in this thesis, each of them being a diferent compromise, dictated by practical

considerations. The Ąrst representation relies on some linguistic preprocessing of the
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corpus, namely a lemmaPOS tagging performed with the Stanford Tagger [TKMS03],

using a pre-trained model for English. A context is deĄned as a sequence of 2 to

5 lemmaPOS together with the position of the target term in it, and such that the

context does not span over a punctuation mark in the text.10 Some of the parts-of-

speech (POS) produced by the Stanford Tagger were generalized though, because of

distinctions which are probably irrelevant here, especially distinctions pertaining to

morphological inĆections. For instance, no distinction was made between singular

and plural common nouns, such that the two corresponding POS were merged. Some

less meaningful words were also ignored on purpose when extracting these contexts,

based on their lemma and/or POS, in particular most determiners, as well as modal

and auxiliary verbs (ŞbeŤ, ŞhaveŤ, ŞcanŤ, etc.). Syntactic parsing was not used,

partly because of its cost (each input KB requires a new corpus, which would need

to be analyzed syntactically), but mostly for reliability reasons. Syntactic parsing

models are prototypically trained on collections of edited texts such as newspaper

articles, and do not perform well on random web pages, unless the edited content of

these pages has been previously isolated. The Bootcat library [BB04] was used to

clean HTML documents, as well as some additional heuristics. But this is unfortu-

nately not always suicient to guarantee that the remaining content is syntactically

valid English.

The second representation of contexts experimented in this thesis is a more coarse-

grained one. A context in this latter case is just deĄned as a sequence of 2 to 5 words

(also called a (2 to 5)-gram) immediately preceding or following an occurrence of a

target term, together with the position of the target term (before or after), and such

10If � is the target word, taking into consideration these 4 sizes (2 to 5) and the shifting window
(for instance, a context of size 2 may start 2 words before �, 1 word before �, or immediately after
�), this yields a maximum of 6 + 5 + 4 + 3 = 18 observed contexts for a unique occurrence of �.
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that the context does not span over a punctuation mark in the text. This solution

is arguably less satisfying from a linguistic point of view. But it also presents a

practical advantage over the previous one. Given a context � and a target term �,

it is possible to weight the observed frequency of � with � based on the estimated

probability to encounter the sequence of words � in a natural language text, obtained

from a so-called Şn-gram language modelŤ. This weighting strategy is inspired by

[GG08], and is presented in the next section.

4.3.4 Selectional preferences and frequency weighting

The values in a word by context matrix are based on the number of occurrences

of each target term with each context in the corpus. But as already mentioned in

Section 4.1.3, the fact that two target words occur with a very frequent context, for

instance immediately followed by the verb ŞhaveŤ, is not very informative.

This also holds for contexts which are less frequent, but may appear with a variety

of target words. For instance, if target words are proper names, almost any of them

is likely to be immediately preceded by the contexts Ştalk aboutŤ, ŞdescribeŤ or

ŞpresentŤ. On the other hand, a context like ŞhiredŤ or ŞinterruptedŤ (or ŞdriveŤ in

the example of Section 4.1.3) seems more selective.

This intuition is generally captured in distributional semantics by some weighting

function applied to the values (i.e. the frequencies) in a word by context matrix. Ac-

cording to [TPo10], one of the most successful weighting functions for word similarity

in word by context matrices is the Positive Pointwise Mutual Information (PPMI),

which is equivalent to the well-known Pointwise Mutual Information (PMI), but

where all negative values are set to 0. The PMI intuitively evaluates to what extent

the probability �(�, �) of an occurrence of target word � with context � is higher

155



than what may be expected from their respective probabilities of occurrence, i.e.

PMI(�, �) = log �(�,�)
�(�)�(�)

.

These probabilities are generally maximum likelihood estimates computed out of

the (non-weighted) frequencies in the word by context matrix X. A possible weakness

of this strategy for the problem at hand is that these estimates are not sensitive to

the sample size. For a given KB �, X may be relatively small, thus hindering the

reliability of such estimates. In particular the number of rows of X (i.e. the number

of target terms) may be very limited, such that the cumulated number of occurrences

of a given context � with any target terms may not be representative of its overall

usage in natural language texts.

A Ąrst simple solution consists in estimating �(�) based on all occurrences of all

contexts of interest in the corpus, and not only on their occurrences with target

words. But even in this case, because the size of the corpus for a given KB is

relatively limited (usually a few million words), this probability estimate may be

biased, especially for relatively unusual contexts.

In order to compensate for this small sample size, and following the proposal made

by [GG08], another weighting strategy was also applied. It relies on an external n-

gram language model, which evaluates the probability of arbitrary sequences of 1 to �

words, usually based on large collections of natural language texts, without linguistic

preprocessing (such models are for instance heavily used in speech recognition). Then

if �(�) is the resulting estimated probability of context �, [GG08] propose to weight

the observed frequency of � with � in the smaller corpus by the self-information

self(�), simply deĄned by self(�) = ⊗ log �(�).

Both weighting functions will be evaluated in the following experiments, either in-

dependently, or combined with each other. In the latter case, the weighted frequency

for � and � is just self(�) × PPMI(�, �). Self-information could only be applied in
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the case where contexts are represented as n-grams though (and not sequences of

lemmaPOS), as explained in Section 4.3.3.

4.3.5 Similarity

The most standard measure used to evaluate the semantic similarity of two target

words in a word by context matrix is the cosine similarity between their respective row

vectors, i.e. the cosine of the (acute) angle formed by their respective representations

in the vector space. This is also the measure used in the following experiments.

The cosine similarity intuitively compensates for the fact that the number of

occurrences of each target word in the corpus may vary. If x�: and x�: are two row

vectors in X, then their cosine similarity is given by sim(x�:,x�:) = xi: ≤ xj:

♣♣xi:♣♣×♣♣xj:♣♣
, where

Ş≤Ť stands for the dot product, and ♣♣x♣♣ for the euclidean norm of x.

Although the term Şcosine distanceŤ is often used as a synonym for it, the cosine

similarity is not a distance in the mathematical sense, as it does not necessarily verify

the triangle inequality.

4.4 Conclusion

This chapter identiĄed a form of linguistic evidence which may be integrated to a KB

debugging process, with the only requirements that the input KBŠs signature contains

individuals, and that these individuals in turn have linguistic labels (prototypically

proper names).

Given a Ąnite and consistent set � of formulas (e.g. one of the candidate outputs

of a debugging process), the proposal consists in evaluating a speciĄc set Ψ� of

consequences of �, in order to estimate to what extent Ψ� is compliant with some
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automatically gathered collection of web pages. This proposal is partly inspired

by recent works in ontology population, and based on distributional semantics, the

underlying assumption being that individuals of a KB which instantiate the same

concepts also tend to share the same linguistic contexts. In its simplest form, Ψ�

is deĄned syntactically (up to equivalence) as the set consequences of � of the form

�(�) or ¬�(�), with � an atomic concept and � an individual. But as discussed in

Section 4.2.4.1, the approach may be extended to consequences of the form �(�),

where � is a more complex DL concept.

The integration of Natural Language Processing and knowledge engineering has

mostly been investigated in the Ąelds of information extraction and ontology learn-

ing/population. The problem under investigation here (KB debugging) is of a very

diferent nature though, characterized in particular by the fact that the whole signa-

ture of interest is known in advance. Section 4.2 reviews some of the main techniques

developed in information extraction and ontology learning/population, explaining

why they may or may not be appropriate for KB debugging.

The main contribution of this chapter was made in Section 4.2.3. If å ∈ Ψ�,

a plausibility score was deĄned for å wrt Ψ�, which intuitively estimates to what

extent å is likely to hold if the rest of Ψ� does. Equivalently, this score estimates to

what extent å is an outlier within Ψ�, such that a low plausibility for å is likely to

be caused by some violation of common sense within �, like the ones presented in

Chapter 1. Then if � is the family of candidate output subbases of the debugging

process, Section 4.2.5 proposed diferent ways to aggregate the plausibility scores of

all å ∈ Ψ� for each � ∈ �, and deĄned four alternative preference relations over �,

which will guide some of the experiments described in Chapter 6.

Finally, Section 4.3 introduced the distributional settings used in the experiments

described in this thesis, which remain relatively basic, because there was no practical
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need for a dimensionality reduction, given the relatively small number of target

words, namely the labels of the individuals of �.

No indication has been given though as to how these proposals may be integrated

to an actual debugging process, and this will be the main topic of Chapter 6, which

also provides an independent evaluation of the plausibility score deĄned in Section

4.2.3.
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Chapter 5

Datasets

This chapter presents the datasets used in the evaluations described in the following

chapters. Some datasets are used in several evaluations, which is why they are all

introduced in the current chapter. The input KBs are of two very diferent types.

KBs of the Ąrst type are sets of logical statements automatically extracted from

DBpedia [MJB12]. Such KBs are very likely to contain intuitively nonsensical sets

of statements, as illustrated in Chapter 1, and therefore are interesting candidate

inputs to evaluate a given debugging strategy. As a reminder, the objective being

pursued is the automated identiĄcation of axioms to be preferably discarded from the

KB (or amended) in order to get rid of the nonsense. But evaluating the performance

of a given approach on such inputs is non-trivial. Some human judgment is required

as to whether the axioms selected for removal are indeed erroneous, which may not

be obvious. As a very simple example, consider the two following axioms, taken from

example 1.1.1, in Chapter 1:

keyPerson(Caixa Bank, CEO)

keyPerson(Brookfield Office properties, Peter Munk)
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There seem to be two intuitively incompatible meanings of keyPerson here, ranging

either over persons (like Peter Munk), or person functions (like CEO). But without

further information about which of these two meanings prevails within the input KB,

deciding that one of them is the incorrect one may be seen as arbitrary. In other

words, the whole base needs to be taken into account in order to determine which

axioms are outliers, which may in some cases be complex, even for an expert.

This is why an additional and fully automated evaluation protocol was designed,

as a complement of an evaluation based on human judgment. It takes as input a KB of

an arguably higher quality, but automatically degraded by generating random axioms

out of its signature, the underlying assumption being that such random axioms are

very likely to be absurd wrt to the rest of the KB. A debugging strategy is then

evaluated based on its ability to automatically identify these randomly generated

axioms.

Table 5 contains statistics about the seven KBs presented in this chapter. The

Ąve Ąrst KBs are DBpedia subsets, and the two other ones served as inputs to the

degrading procedure.

Section 5.1 brieĆy introduces DBpedia, and describes the procedure applied to

extract the Ąve DBpedia subsets. Section 5.2 introduces the two other KBs, as well as

the degrading algorithm. Finally, Section 5.3 focuses on the automatic construction

of linguistic corpora out of web queries for each of these seven KBs.
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KB Axioms DL Classes
Object

Properties
Datatype
Properties

Individuals

�DBP
1 8329 �ℒ(�) 106 100 205 1437

�DBP
2 6148 �ℒ(�) 77 69 116 866

�DBP
1.1 225 �ℒ(�) 27 17 38 29

�DBP
1.2 159 �ℒ(�) 16 11 18 28

�DBP
1.3 634 �ℒ(�) 42 38 68 100

�STLab 260 �ℒ�ℋℐ� 36 27 0 86
�fisheries 963 �ℐ 9 5 0 70

Table 5.1: Input KBs: statistics

5.1 DBpedia subsets

5.1.1 DBpedia

DBpedia is a large and cross-domain knowledge base, which results from an efort

to extract structured data out of Wikipedia. It is also often viewed as the core of

the Linked Open Data Cloud, providing de facto reference IRIs, which are reused in

numerous other datasets.

The 2014 release of the English version of DBpedia counts more than 4.5 million

individuals, most of which correspond to a Wikipedia entry. For instance, the DB-

pedia individual denoted by the IRI http://DBpedia.org/resource/Woody_Allen

is the one described by the Wikipedia page en.wikipedia.org/wiki/Woody_Allen.

A large part of the ABox of DBpedia is automatically extracted from Wikipedia

infoboxes, resulting in approximately 88 million ABox statements, which involve

these individuals as well as approximately 800 atomic concepts and 3000 object or

datatypeProperties. A (partial) mapping from the types used in Wikipedia infoboxes

to the atomic concepts of DBpedia allows for the generation of formulas of the form

�(�), with � a DL atomic concept and � an individual. This mapping can be freely
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updated by users. Similarly, an editable mapping from the properties used in in-

foboxes to DBpedia objectProperties allows for the generation of formulas of the form

�(�1, �2), with � a DL role, and �1 and �2 two individuals. A third editable mapping

from infobox properties to DBpedia datatypeProperties allows for the generation of

datatypeProperty assertions. Among the 88 million ABox statements, approximately

28 million are issued from the mapping to atomic concepts, and approximately 60

million from the mappings to objectProperties and datatypeProperties.

In addition to the ABox, a lightweight TBox has been manually crafted and

updated, whose signature consists of atomic concepts, datatypeProperties and ob-

jectProperties appearing in the ABox. It can also be partly edited by users, adding

subsumption axioms between two atomic concepts � and � (i.e. DL statements of

the form � ⊑ �), selecting an atomic concept � as the domain of an objectProperty

� (∃�.⊤ ⊑ �), or as its range (⊤ ⊑ ∀�.�), and selecting an atomic concept as the

domain of a datatypeProperty, or a datatype (e.g. integers) as its range.

The 2014 version of this TBox counts 6730 logical axioms, 5647 of which are of

the types just described, the least expressive corresponding DL being �ℒ�ℋℱ (�).

An important number of atomic concepts are only subsumed by owl:Thing (i.e. ⊤ in

DLs), including relatively speciĄc ones, like ŞFestivalŤ, ŞPolyhedronŤ or ŞFuel TypeŤ,

which is probably inherent to the participative nature of this TBox.

Among the remaining axioms, 932 and 32 respectively form the objectProperties

and datatypeProperties hierarchies, which cannot be freely edited. Domain and

range axioms are generally expressed for the most speciĄc properties in these two

hierarchies, the more abstract properties being left without a domain or range.

67 OWL equivalentClass axioms (� ⊕ �), and 3 OWL equivalentObjectProp-

erty axioms (� ⊕ �) respectively map DBpedia atomic concept and DBpedia ob-

jectProperties to atomic concepts and objectProperties of the lightweight ontology
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Schema.org.1

The 49 remaining axioms are composed of 29 functional restriction for datatype-

Properties (expressing the fact that a datatypeProperty cannot have more that one

value for a given individual), and 20 disjointness axioms between atomic concepts

(� ⊑ ¬�). From a logical point of view, only these 49 axioms express some form of

negation. The 29 cardinality restrictions on datatypeProperties fall outside the scope

of this work, as explained in Section 5.1.2. The use of disjointness axioms on the other

hand is very incomplete, ofering a good illustration of their overall sparseness within

the Linked Open Data Cloud. Some of these 20 disjointness axioms hold between

some of the more abstract concepts of the TBox, which seems like a rational design

choice (e.g. TimePeriod ⊑ ¬Person, Event ⊑ ¬Person, Place ⊑ ¬Agent). But

others hold between seemingly randomly chosen concepts (e.g. Tower ⊑ ¬Person,

UnitOfWork ⊑ ¬Person, GeologicalPeriod ⊑ ¬Person, Dog ⊑ ¬Fish). Further-

more, 14 of these 20 axioms imply the concept Person.

Unsurprisingly, although important and successful eforts have been devoted to

improve the quality of DBpedia over the years, it is still very easy to Ąnd DBpedia

statements (within the ABox alone, or within the ABox and the TBox) which may

make sense individually but, considered together, violate elementary common sense,

as illustrated by example 1.1.1 in Chapter 1. The size of the whole dataset can

be given as a Ąrst explanation, making it diicult to ensure a unique interpretation

of each individual, atomic concept, datatypeProperty or objectProperty. The fact

that almost all the content of DBpedia can be freely edited, either directly (TBox)

or indirectly (Wikipedia infoboxes) probably plays an important role too. Finally,

because negation is not used in the ABox, and remains very sparse in the TBox,

it is also very frequent that these seemingly absurd sets of statements are logically

1http://schema.org/

164

http://schema.org/


consistent and coherent.

5.1.2 DatatypeProperties

Modeling errors within DBpedia can be due to incorrect values of datatypeProperty

assertions. For instance, the value of a datatypeProperty assertion may be an in-

teger whereas a Ćoating point number is expected instead, or this value may be a

very implausible one (like a 20 digits integer for the population of a country). But

as explained in Chapter 2 Section 2.3.1, the detection and repair of such cases fall

out of the scope of this work. This is why the values of datatypeProperty assertions

are not taken into consideration in the following chapters. Instead, datatypeProper-

ties are treated as atomic DL concepts, such that for instance the OWL statement

populationTotal(Bahia, 14175341(xsd:integer)) is treated from a logical point of

view as the DL ABox formula HaspopulationTotal(Bahia), where HaspopulationTotal is an

atomic concept standing intuitively for Şhas a total populationŤ, regardless of the

value.

5.1.3 Extraction procedure

Taking the whole DBpedia as input to the debugging strategies presented in the

following sections is clearly prohibitive. In particular, they rely on (standard or

less standard) reasoning algorithms whose execution is often intractable in the worst

case, as explained in Chapter 1 Section 2.3.8.

Instead, the prototypical application scenario is a relatively small KB (up to a few

thousand axioms), built for a speciĄc application by aggregating data available on

the SW, for instance out of a given signature. This is why subsets of DBpedia were

automatically extracted and used as inputs of the upcoming experiments. Another
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application scenario is the one where a TBox only needs to be retrieved for a given

application, (and will prototypically be ŞpopulatedŤ with local data, e.g. with a

serialized database). In this scenario too, some ABox statements need to be retrieved,

but only for debugging purposes. They will not be integrated to the KB eventually,

but provide evidence in order to identify common sense violations in the TBox.

An additional precaution was taken in order to extract plausible DBpedia subsets

for a given application, which pertains to topical cohesion. It is indeed quite unlikely

for a same application to require information about very diferent domains, like

embryology and religion for instance. For this reason, the DBpedia subset extraction

procedure was preceded by the automatic selection of a set � of ŞseedŤ individuals

for a given topic. The algorithm used to compute � relies on so-called Wikipedia

categories, and is detailed in Section 5.1.3.2.2. Then this set � of seed individuals

is used as an input DL signature in order to extract DBpedia axioms in a more

expected and syntactic fashion, described in Section 5.1.3.3.

5.1.3.1 Thematic cohesion

5.1.3.1.1 Wikipedia categories Wikipedia categories are labels assigned to

Wikipedia pages (and therefore also to DBpedia individuals), and organized in a

hierarchy, comparable to a thesaurus. These categories are not concepts in the DL

sense, but should rather be viewed as keywords. In particular, the supercategory

relation is not meant to be a subsumption relation. For instance, the Wikipedia

category ŞBiologistsŤ has ŞHistory of BiologyŤ as a supercategory, but this is not

supposed to mean that biologists are histories of biology. Such categories are natural

candidate inputs when trying to identify topically related Wikipedia pages, and thus

2Wikipedia categories are not integrated to the extracted DBpedia subset, but only used tem-
porarily to compute �, as explained in Section 5.1.3.1.1.
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DBpedia individuals, as opposed to the atomic concepts of the DBpedia TBox, which

tend to cross multiple domains. This is why Wikipedia categories were used in order

to select a topically coherent set � or seed DBpedia individuals, which was in turn

used as an input signature for a more traditional axiom extraction procedure. But

because Wikipedia categories are not DL concepts, they were not integrated to the

extracted DL KBs.

5.1.3.2 Seed individuals selection

This section details the algorithm used to select a topically coherent set � of seed DB-

pedia individuals. It takes as input a Wikipedia category �0, for instance ŞTourismŤ

or ŞHistory of BiologyŤ.

Two practical issues are addressed by this algorithm. The Ąrst issue is that

thematic cohesion may sometimes be lost when navigating through the Wikipedia

supercategory relation. For instance, both ŞModelingŤ and ŞPublic Service An-

nouncementsŤ are immediate subcategories of ŞAdvertisingŤ, such that their respec-

tive immediate subcategories ŞMurdered ModelsŤ and ŞCopyright AnnouncementsŤ

are closely related in the hierarchy, although they have arguably nothing in common.

The second issue is in a sense the converse of the Ąrst one: two Wikipedia categories

may be closely related topically, but not in the hierarchy.

To address these two issues, a speciĄc algorithm was designed, which consists of

a series of successive expansion and Ąltering phases of two (disjoint) sets � and �

of Wikipedia categories and individuals respectively. � is initiated with all subcat-

egories of �0 in the Wikipedia category hierarchy up to depth �1, with �1 a Ąxed

parameter, and � with all DBpedia individuals tagged with some � ∈ � .

In order to address the Ąrst issue, i.e. the lack of topical cohesion, � and �
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are both Ąltered as follows. Within �, only individuals tagged with at least �2

categories of � are retained (with �2 another parameter). Then only the categories

tagging one of the remaining individual are retained in � (or in other words, a

Wikipedia category is retained if it shares a tagged individual with at least �2 ⊗ 1

other categories in � ), based on the intuition that core categories for the topic under

consideration should share tagged individuals.

In order to address the second issue, i.e. missing categories/individuals for the

topic under consideration, � is then expanded with all other Wikipedia categories

tagging some � ∈ �. And � with all individual tagged by some � ∈ � .

A second Ąltering phase, identical to the Ąrst one, is then applied to � and �.

This yields two sets � and � which have been successively Ąltered, expanded,

and Ąltered again.

5.1.3.3 Axiom extraction procedure

Given a set � of seed DBpedia individuals for the topic under consideration, the

axiom extraction procedure starts with all DBpedia ABox statements involving some

� ∈ �. Then for each individual �′ appearing in one of these axioms, all type

declarations for �′ (i.e. formulas of the for �(�′), with � an atomic concept) are

retrieved. Finally, for all datatypeProperties, objectProperties and atomic concepts

appearing in these statements, the corresponding domains/ranges and all transitively

subsuming atomic concepts in the DBpedia TBox are retrieved as well.

An additional precaution is taken for the ABox. The dataset available from the

DBpedia endpoint (http://DBpedia.org/sparql) has been procedurally closed un-

der the rule {�(�), � ⊑ �♢ ⊢� �(�), with � and � atomic concepts, � an individual,

and �(�) and � ⊑ � two axioms. In other words, all consequences of DBpedia
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which could be derived by application of this rule have been added to it as axioms.

But the focus here is on the identiĄcation of erroneous axioms understood as explic-

itly asserted statements, and not automatically derived ones. Therefore, if � is the

extracted KB, each axiom ã such that � ∖ ¶ã♢ ⊢� ã holds is removed from �.

5.1.4 List of DBpedia subsets

This section describes the Ąve DBPedia subsets. The main statistics about these

KBs are also reproduced in table 5 above, and the KBs are available online.3

∙ �DBP
1 is the output of the above seed individuals selection and axiom extraction

procedures, with parameters �1 = �2 = 2, and starting with the Wikipedia

category ŞTourismŤ as �0.

�DBP
1 is composed of 8329 logical axioms, the least expressive underlying DL

being �ℒ(�). Its signature counts 106 atomic OWL classes (i.e. DL atomic

concepts), 100 objectProperties (i.e. DL roles), 205 datatypeProperties (con-

sidered as DL atomic concepts here, as explained above in Section 5.1.2) and

1437 individuals.

∙ �DBP
2 is the output of the same extraction procedure, with parameters �1 =

�2 = 2 as well, but starting with the Wikipedia category ŞAdvertisingŤ as �0.

�DBP
2 is composed of 6148 logical axioms, the least expressive underlying DL

being �ℒ(�). Its signature counts 77 atomic OWL classes, 69 objectProperties,

116 datatypeProperties and 866 individuals.

∙ �DBP
1.1 is a small subset of �DBP

1 . It was created as a benchmark, in order

3http://juliencorman.github.io/
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to obtain an evaluation of recall with DBpedia axioms as input.4 The small

size of �DBP
1.1 allowed for an extensive manual review of its axiom, such that

a debugging procedure could be evaluated based on its ability to spot exactly

the axioms evaluated as erroneous. This is hardly feasible �DBP
1 and �DBP

2 ,

which count several thousands of axioms each.

�DBP
1.1 was automatically extracted from �DBP

1 (and not from DBpedia di-

rectly), by applying the axiom extraction procedure described in Section 5.1.3.3,

but with a single input seed individual, namely Smithsonian Institution. This

individual was selected due to its frequency within �DBP
1 .5

�DBP
1.1 is composed of 225 logical axioms, the least expressive underlying DL

being �ℒ(�). Its signature counts 27 atomic OWL classes, 17 objectProperties,

38 datatypeProperties and 29 individuals.

∙ �DBP
1.2 was extracted from �DBP

1 by applying the same procedure as for �DBP
1.1 ,

but with a diferent seed individual, namely Mohammed-El-Fayed, which was

selected for the same reason as previously.

�DBP
1.2 is composed of 159 logical axioms, the least expressive underlying DL

being �ℒ(�). Its signature counts 16 atomic OWL classes, 11 objectProperties,

18 datatypeProperties and 28 individuals.

∙ �DBP
1.3 was obtained by applying the same procedure as for �DBP

1.1 and �DBP
1.2 ,

but with 7 seed individuals, which were the 7 most frequent ones in �DBP
1 (this

includes the two seed individuals for �DBP
1.1 and �DBP

1.2 respectively).

4The automatically degraded datasets presented in Section 5.2 also allow for an evaluation of
recall, but are more artificial.

5More exactly, it was selected due to the fact that it appears in a large number of axioms, and

with different roles if these axioms are of the form �(�1, �2). The exact ordering of individuals of
�DBP

1 based on this adjusted frequency is described in Chapter 7 Section 7.3.2.
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�DBP
1.3 is composed of 634 logical axioms, the least expressive underlying DL

being �ℒ(�). Its signature counts 42 atomic OWL classes, 38 objectProperties,

68 datatypeProperties and 100 individuals.

5.2 Automatically degraded KBs

This section presents the KBs which were automatically degraded for some of the fol-

lowing experiments, as well as the degrading procedure. In order to prevent possible

misunderstandings, it should be emphasized that automatically degraded KBs are

not realistic input bases. They were simply created in order to obtain an arguably

artiĄcial but objective evaluation protocol.

The input KBs (before being degraded) were selected for their high quality, and

extended with random axioms built out of their respective signatures. The two

underlying assumptions are on the one hand that the input KB � before being de-

graded does not contain obvious violations of common sense, and that the randomly

generated axioms Φ on the other hand are very likely to be intuitively absurd wrt

to �. A debugging strategy is then evaluated based on its ability to automatically

spot the axioms of Φ within � ∪ Φ.

A third related assumption is made wrt the consequences of the extended KB

� ∪Φ. If � and � ∪Φ are both consistent, it is assumed that most newly generated

consequences, i.e. Cn(� ∪ Φ) ∖ Cn(�), are very likely to be absurd wrt � as well.

Section 5.2.1 introduces the KBs before they were degraded, and Section 5.2.4

presents the degrading procedure.
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5.2.1 Input KBs

This section describes the two input KBs before they were automatically degraded.

They were both selected for their high quality, and because their signatures contain

individuals with linguistic labels.

As just explained, for the evaluation procedure to be efective, the input KBs be-

fore being degraded should not contain common sense violation of the type described

in Chapter 1, which rules out here the use of (fragments of) large and/or partially

crowdsourced KBs such as DBpedia or Freebase.

5.2.2 STLab gold standard

The Ąrst input KB will be called �STLab. It is built out of a gold standard de-

scribed in [GNP+12], which was itself created in order to evaluate the automatic

entity typing tool presented in the same article. This gold standard is composed

of 100 manually typed Wikipedia entities (i.e. Wikipedia pages). It has been built

collaboratively with a web-based application allowing annotators to discuss their de-

cisions. It is based on the top-level ontology DOLCE+DnS Ultralite (abbreviated as

DUL), available at http://www.ontologydesignpatterns.org/ont/dul/DUL.owl.

DUL is itself a simpliĄcation and an extension of the top-level ontology DOLCE

(described in [MBG+03]).

For each Wikipedia entity � of the gold standard, the annotators had to determine

whether � was a concept or an individual, and also had to map � to an atomic concept

� of DUL.6 If � was categorized as an individual, then the mapping corresponds to

a statement of the form �(�), where � is the most speciĄc concept of DUL with

6A mapping to Wordnet synsets was also performed, but not used for the experiments described
in this thesis.
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� as an instance. If � was categorized as a concept, then the mapping corresponds

to a statement of the form � ⊑ � where � is the most speciĄc concept of DUL

subsuming �. All typing decisions were taken with an inter-annotator agreement

superior to 70 %. The gold standard is available at http://stlab.istc.cnr.it/

stlab/WikipediaOntology/.

Only the entities considered as individuals are retained for the experiments de-

scribed in the following chapters, i.e. 86 out of the 100 entities of the gold standard,

such that the ABox of the dataset �STLab is composed of 86 statements of the form

�(�), where � is an individual and � an atomic concepts from DUL. The TBox

of �STLab is a locality-based module [CGHKS08] extracted from DUL out of these

atomic concepts. The linguistic labels of the 86 individuals were retrieved from

DBpedia, using the mapping from Wikipedia pages to DBpedia entities.

In total (ABox + TBox), �STLab counts 260 logical axioms, the least expressive

underlying DL being�ℒ�ℋℐ� . Its signature is composed of 36 atomic OWL classes,

27 objectProperties, no datatypeProperty and 86 individuals.

5.2.3 Fragment of the NeOn fisheries ontology

The second input KB will be called �fisheries, and is a fragment of the Ąsheries

ontology network used in the NeOn project.

NeOn7 was a 2006-2010 European research project focused on the use of ontologies

for large-scale semantic applications, with an emphasis on Semantic Web standards

and technologies. The Ąsheries case study, available online,8 is one of the two Şon-

tology networksŤ used as Şthe backbones of the applicationsŤ developed within the

NeOn project. The network consists of 9 OWL DL KBs with overlapping signatures.

7http://www.neon-project.org
8http://www.neon-project.org/nw/Ontologies
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�fisheries is a small subset of it, automatically extracted with the procedure described

in Section 5.1.3.3. starting with 10 randomly selected seed individuals, and ignoring

datatypeProperties.

�fisheries is composed of 963 logical axioms, and the least expressive underlying

DL is �ℐ. Its signature is composed of 9 atomic OWL classes, 5 objectProper-

ties, no datatypeProperty and 70 individuals (mostly geographical or administrative

entities).

5.2.4 Degrading procedure

Let �0 designate the (consistent) input KB before being degraded. The degrading

procedure proceeds by extending �0 � times incrementally with a new randomly gen-

erated axiom. �1, .., �� will designate the successive extensions of �0, and ã1, .., ã�

the successively generated axioms.

A random axiom ã� is simply generated by randomly selecting a source axiom

ã ∈ ��, and replacing each element of the signature of ã by a random element

of sig(��) = sig(�0), preserving the syntactic structure of ã. So each elements

of �Ind(ã), �Con(ã) or �Role(ã) is respectively replaced by a random element of

�Ind(�), �Con(�) or �Role(�). For instance, if ã = � ⊑ ∀�.�, with �,� ∈

�Con(�) and � ∈ �Role(�), then ã� = �′ ⊑ ∀�′.�′, with �′, �′ ∈ �Con(�) and

�′ ∈ �Role(�) as well.

Two additional requirements are put on the axiom generation procedure. First,

the extended KB must be consistent, i.e. ��⊗1 ∪ ¶ã�♢ ̸⊢ ⊥.

The second requirement pertains to the consequences of the extended KB ��. As

explained in Chapter 4 Section 4.2.3, the debugging procedures which incorporate lin-

guistic evidence rely on so-called plausibility scores computed for some consequences
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of each candidate output base. The eligible consequences, i.e. the ones for which a

score may be computed, are deĄned syntactically (up to equivalence): it may be all

consequences of the form �(�) or ¬�(�), with � an atomic concept and � an individ-

ual, or the former plus all consequences of the form ∃�.⊤(�), ∃�⊗.⊤(�), ∀�⊗.⊥(�)

and ∀�.⊥(�), wih � an atomic role, as explained in Chapter 4 Section 4.2.3. There-

fore it is required for each �� that at least one new consequence of this syntactic

form is generated, i.e. if Ψ is the set of formulas of this form which can be built out

of the signature of �, then it is required that (Cn(��⊗1∪¶ã�♢) ∖Cn(��⊗1))∩Ψ ̸= ∅.

Note that if the initial input base �0 is successively extended with strictly more

than one axiom (i.e if � > 1), this second requirement still does not guarantee that

all subbases of �� can be distinguished wrt to linguistic evidence, because there may

be two subbases �1 and �2 of �� such that Cn(�1) ∩Ψ = Cn(�2) ∩Ψ.

This second requirement does not guarantee either that a plausibility score will

actually be computed for each new consequence of this form. In particular, it may

be the case for a new consequence �(�) ∈ (Cn(��) ∖Cn(�0)) ∩Ψ that no linguistic

occurrence of the label of � could be retrieved, or that the support set (see Chapter

4 Section 4.2.3) for �(�) is empty.

The number of automatically degraded KBs varies from one experiment to an-

other, as well as the number of randomly generated axioms for each degraded KB,

therefore they will be given with the descriptions of each experiment.

5.3 Linguistic corpora

This section explains how linguistic corpora were automatically retrieved for each of

the seven input KBs described above.
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5.3.1 Homonymy

As explained in Chapter 4, the linguistic evidence gathered to debug an input KB

� consists of distributional representations of the labels of the individuals of sig(�).

Among other reasons (listed in Chapter 4 Section 4.2.1), this choice is motivated by

the fact that individual linguistic labels are prototypically proper names, like ŞWoody

AllenŤ or ŞEgyptŤ, and as such are generally less ambiguous than the linguistic labels

of atomic concepts, which may be as vague as ŞfunctionŤ, ŞgroupŤ or ŞmodelŤ. But

this obviously does not completely solve the polysemy issue. In particular, proper

names may have homonyms. For instance, ŞJFKŤ may designate a politician or an

airport.

Therefore, in order to avoid possible noise during the debugging process, if an

individual � ∈ �Ind(�) is labeled with at least one (English) label � considered as

potentially polysemous, then none of the labels of � is used as a source of linguistic

evidence during the debugging process. The axioms involving � are not removed

from � though, which would bias the evaluation. In other words, individuals with

at least one potentially polysemous label are treated like individuals without label.

In order to determine which labels are potentially polysemous, three simple but

relatively eicient heuristics are applied, which are also applicable to a large number

of other potential input SW KBs, and therefore can be considered as an integral part

of the debugging process. First, a linguistic label � is considered potentially polyse-

mous if more than 10 million pages9 can be retrieved by a web search engine using

� (quoted) as a query. The second heuristic consists in ruling out � if two DBpedia

individuals �1 and �2 are labeled with it, and if they are not considered as identical

(�1 = �2 in DLs ) within DBpedia. The third heuristic is based on the IRI of the

9This threshold of 10 million was chosen on a empirical basis.
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DBpedia individual(s) whose label(s) contain � as a substring: if such an IRI contains

parentheses, then � is considered as potentially polysemous. For instance, let � be

the label ŞMekong DeltaŤ. There is at least one DBpedia individual whose linguistic

label contains � as a substring, and whose IRI contains parentheses, namely the in-

dividual http://DBpedia.org/resource/Mekong_Delta_(band), which is likely to

indicate that the label ŞMekong DeltaŤ is polysemous.

Although the two last heuristics rely on DBpedia as an external resource, they

can be applied to any input KB with linguistic labels for individuals, i.e. the input

KB doesnŠt need to be a subset of DBpedia, neither to share part of DBpediaŠs

signature.

5.3.2 Corpus retrieval

For each input KB �, for each individual � ∈ �Ind(�), if � had an English label, and

if no label of � was considered potentially polysemous, then 200 or 400 web pages

were retrieved for � with a search engine, using the (quoted) labels of � as queries

(200 pages per individual for the larger KBs �DBP
1 and �DBP

2 , and 400 pages per

individual for the other KBs). If � had several labels, the 200 (or 400) pages were

distributed over these labels.

A few additional Ąlters were added in order to rule out some urls (for instance

http://www.ebay.com), as well as non-English texts. The set of retrieved pages

were then cleaned thanks to the Bootcat library [BB04], allowing for the removal of

most non-textual content, but also of many duplicated texts.

Two versions of each corpus were produced, as described in Chapter 4 Section

4.3.3: one of them is just tokenized, whereas the other one is analyzed linguistically

with the Stanford Tagger [TKMS03]. As already explained, the motivation behind
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the non linguistically processed version is the possibility to use a language model as

an external resource, in order to estimate the prior probability of a linguistic context

� observed in the corpus, represented as an n-gram. The higher this probability,

the less meaningful is the observation that this context is shared by two individuals.

The Microsoft Web N-gram Services10 were used for this purpose. In particular,

they provide smoothed n-gram probabilities computed out of very large collections of

indexed web pages. This was particularly relevant for the problem at hand due of the

nature of the corpora, because many of the retrieved web pages contain procedurally

generated web content. Many of the linguistic contexts shared by several individuals

of the diferent input KBs turn out to be procedurally generated, for instance Şlearn

more about < � >Ť or Ş< � > on TwitterŤ. Most of these contexts are not

meaningful as far as selectional preferences are concerned, and n-gram probabilities

ofer a relatively eicient way to make such contexts less informative when computing

distributional representations of the individuals of the input KB.

5.4 Conclusion

This chapter introduced the datasets (KBs and linguistic corpora) used for the difer-

ent evaluations presented in the following chapters. The choice was made to present

all datasets in a single chapter, because some of them are used in multiple evalua-

tions.

Five of the KBs used for these evaluations are automatically extracted subsets of

DBpedia (ABox and TBox), of diferent sizes (159 to 8329 axioms), which, because

of the size and collaborative nature of DBpedia as a whole, are likely to contain

violation of common sense. An introduction to DBpedia was provided in Section

10http://research.microsoft.com/en-us/collaboration/focus/cs/web-ngram.aspx
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5.1, followed by a description of the procedure applied to extract these Ąve KBs,

which was conceived as an attempt to favor topical cohesion.

A more artiĄcial but more objective evaluation protocol was also designed as an

alternative, based on the automated degradation of a KB with axioms randomly

generated out of its signature. The axiom generation procedure was described in

Section 5.2, as well as the two KBs used for this purpose, of an arguably higher

quality (before being degraded) than subsets of DBpedia.

Finally, Section 5.3 described the procedure applied to extract linguistic corpora

for each of these KBs from automatically retrieved web pages, and in particular the

way individuals with potential homonyms were handled.
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Chapter 6

Trimming a consistent KB

This chapter investigates the use of linguistic evidence in order to identify implausible

consequences of a consistent input KB �, and to suggest axioms to be discarded (or

at least amended) accordingly, or equivalently to select the complement in � of these

discarded axioms as an output base.

Section 6.1 evaluates the linguistic plausibility score deĄned in Chapter 4 Section

4.2.3, and Section 6.2 evaluates the identiĄcation of one faulty axiom within �, based

on the four preference relations over the family � of candidate output bases deĄned

in Chapter 4 Section 4.2.5.

Then Section 6.3 discusses the identiĄcation of multiple faulty axioms within

�. It shows that computing all optimal elements of � according to any of these

four preference relations may be costly if � = 2� . Section 6.3.2.1 proposes instead

a simple greedy approach, evaluated with real and automatically degraded data.

Section 6.3.2.2 addresses the exact computation of all optimal elements of � wrt

one of the four abovementioned preference relations, namely ○lexK
. An algorithm is

provided, whose correctness is proven, together with worst-case complexity bounds
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for the problem, showing that, if Ψ� is the set of consequences of� with a plausibility

score, then for a Ąxed ♣Ψ� ♣, the problem is as hard as computing all maximal subsets

of � not entailing å for each å ∈ Ψ� .

For readability, all proofs of propositions made in the current chapter are grouped

in Section 6.5.

6.1 Plausibility: experiments

This section presents an evaluation of the plausibility score deĄned in Chapter 4

Section 4.2.3. As a reminder, given a set � of axioms, as well as a set Ψ� ⊖ Cn(�)

of consequences of � to be evaluated, for each å ∈ Ψ�, the plausibility score sc�(å)

estimates to what extent å is likely to hold if the rest of Ψ� does, or equivalently

whether å can be viewed as an outlier within Ψ�.

In order to avoid possible confusions, plausibility scores do not ofer by them-

selves an efective way to debug a KB. In particular, they estimate the plausibility of

consequences, not axioms. But all debugging strategies guided by linguistic evidence

proposed in this thesis rely on these scores, at a lower level. Therefore it is interest-

ing to evaluate plausibility independently, in order to see if it provides an accurate

basis for actual debugging techniques, such as the identiĄcation of a faulty axiom,

evaluated in Section 6.2, or more elaborated algorithms, like the ones presented in

Section 6.3 and Chapter 8. In other words, the current section should be viewed

as an isolated evaluation of a lower-level component, and not as an evaluation of a

complete debugging strategy.

In order to evaluate whether these linguistic plausibility scores are accurate or

not, automatically degraded KB were generated out of the datasets �fisheries and

�NeOn, according to the procedure described in Chapter 5, Section 5.2.4. For each
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� ∈ ¶�STLab, �fisheries♢, 100 random axioms ã1, . . . , ã100 were generated out of the

signature of �, and each of them added independently to �, yielding 100 degraded

KBs �1, . . . , �100, such that for each 1 ⊘ � ⊘ 100, ♣��♣ = ♣�♣+ 1.

Each input KB � before being degraded was selected for its quality, and the

assumption was made that it did not not contain obvious violations of common sense.

On the other hand, randomly generated axioms are very likely to be absurd wrt �.

Therefore one may also expect proper consequences of a degraded KB �� to convey

absurd information (for instance Architect(Belgium)), or at least to be outliers

within Cn(��) (like Person(CEO) in example 1.1.1 Chapter 1). More speciĄcally,

linguistic plausibility was evaluated based on its ability to identify the formulas of

Ψ�i
∖Ψ� as the least plausible ones within Ψ�i

.

The choice was made to generate only one axiom for each �� in order to limit

the cardinality of Ψ�i
∖Ψ� .1 Otherwise, it may be the case that consequences of Ψ�

become the outliers within Ψ�i
. Actually, as will be discussed in more details, the

few degraded KBs for which the plausibility score performed poorly in the following

experiments fall into this category.

6.1.1 Distributional settings

Distributional representations were built for all named individuals in sig(�), out of

the automatically retrieved corpora described in Chapter 5 Section 5.3. As explained

in Chapter 4 Section 4.3.3, two diferent forms of linguistic contexts were alterna-

tively tested, either �-grams preceding or following an occurrence of an individualŠs

label, or sequences of lemmatized words surrounding an occurrence. All frequency

weighting functions listed in Chapter 4 Section 4.3.4 were also evaluated. The pos-

1Obviously, this does not guarantee that the cardinality of Ψ�i
∖Ψ� will be low, but it increases

the probability that it will.
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sible combinations of contexts and weighting functions will be designated with the

following acronyms: LP for lemmatized contexts weighted with PPMI, and NP, NS

and NPS for n-grams weighted with PPMI, self-information and both respectively.2

6.1.2 Results

For each �� and each å ∈ Ψ�i
, the plausibility sc�i

(å) was obtained as deĄned

in Chapter 4 Section 4.2.3, and then Ψ�i
was ordered by increasing plausibility,3

such that the formula ranked as number 1 has the lowest plausibility score. As a

notational shortcut, consequences issued from random axiom generation within Ψ�i

will be denoted with Ψrandi
, i.e. Ψrandi

= Ψ�i
∖ Ψ� . The evaluation is successfull

if these formulas have low plausibility scores among all formulas of Ψ�i
. For read-

ability, Ψrandi
will occasionally be paraphrased as the set of Şrandom consequencesŤ

in Ψ�i
, although this is arguably an improper denomination (axioms were randomly

generated, whereas formulas of Ψrandi
are just consequences of the extended KB ��

which are not consequences of �).

If � is a set of axioms, then Ψ� in the rest of this section will designates all con-

sequences of the form �(�) or ¬�(�) for which a plausibility score can be computed,

with � an atomic DL concept and � an individual.

Table 6.1 provides statistics about Ψ�fisheries
and Ψ�STLab

. Row Û(♣Ψ�i
♣) gives the

cardinality of Ψ�i
on average for all 100 degraded KBs. For instance, the value 216.1

for the KB �fisheries means that there were on average 216.1 formulas in each Ψ�i
,

i.e. 216.1 consequences of the form �(�) or ¬�(�) were evaluated on average in each

of the 100 degraded versions �1, .., �100 of �fisheries. Then row Û(♣Ψrandi
♣) gives the

2 As a reminder (see Chapter 4 Section 4.3.3), self-information could not be used as a weighting
function for lemmatized contexts, because language models are based on n-grams.

3 The ranking was a strict ordering: if two consequences had the same score, one of them was
randomly designated as strictly lower ranked.
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�fisheries �STLab

Û(♣Ψ�i
♣) 216.1 620.27

Û(♣Ψrandi
♣) 2.93 20.71

⊗/+ à(♣Ψrandi
♣) 11 6

Table 6.1: Evaluated consequences for all 100 degraded versions of �STLab and
�fisheries

average number of consequences within each Ψ�i
which were issued from random

axiom generation, i.e. the average value of ♣Ψ�i
∖ Ψ� ♣. For instance, the value 2.93

for the KB �fisheries, means that there were on average 2.93 Şrandom consequencesŤ

among the 216.1 evaluated ones for each of the 100 degraded versions �1, .., �100 of

�fisheries. The goal of the evaluation was to identify these Şrandom consequencesŤ as

the least plausible ones.

These values are slightly misleading though, because they do not account for the

variation of ♣Ψrandi
♣ over the 100 random degraded KBs. Let à(♣Ψrandi

♣) designate the

standard deviation of the observed values of ♣Ψrandi
♣ for each � ∈ ¶1, 2, .., 100♢. Then

row ⊗/ + à(♣Ψrandi
♣) gives the number of values of � (i.e. the number of degraded

KBs) for which ♣Ψrandi
♣ was either inferior to Û(♣Ψrandi

♣)⊗ à(♣Ψrandi
♣), or superior to

Û(♣Ψrandi
♣) + à(♣Ψrandi

♣). This gives an indication of the distribution of ♣Ψrandi
♣ for

� ∈ ¶1, 2, .., 100♢. The values are small (in comparison, for a normal distribution, this

value would be 31.8), illustrating the fact that for most degraded KBs, ♣Ψrandi
♣ was

very low. For instance, for �fisheries, the average value of 2.93 does not account for the

fact that for most degraded KBs (75/100), there was only one Şrandom consequenceŤ.

Table 6.2 provides the results of the evaluation of plausibility based on Ψ�i
.

Column ŞbRankŤ gives the average ranking within Ψ�i
of the formula of Ψrandi

with

lowest plausibility, and column ŞwRankŤ the average ranking of the formula of Ψrandi

with highest plausibility. The lower these rankings, the more eicient the plausibility
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�fisheries �STLab

brank wrank p-val brank wrank p-val

LP 4.15/216.1 14.02/216.1 <0.001 63.75/620.27 360.4/620.27 <0.001
NP 9.73/216.1 16.11/216.1 <0.001 63.09/620.27 380.08/620.27 <0.001
NS 7.33/216.1 15.21/216.1 <0.001 68.42/620.27 360.55/620.27 <0.001
NPS 5.59/216.1 13.24/216.1 <0.001 61.58/620.27 380.37/620.27 <0.001

Table 6.2: Average ranking among Ψ�i
of the lowest-ranked and highest-ranked

formulas of Ψrandi
, and p-value for the rankings of all formulas of all Ψrandi

score is at detecting consequences caused by random axioms. For instance, on average

over the 100 degraded versions of �fisheries, the ranking of the consequence of Ψrandi

with lowest plausibility was 4.15 over 216.1, and 14.2 over 216.1 for the consequence

of Ψrandi
with highest plausibility. Column ŞpValŤ gives the probability (t-test) for

the cumulated rankings of all formulas in all Ψrandi
to be as low as the observed ones,

if all consequences in all Ψ�i
had been randomly ordered.

For �fisheries, average results are very convincing with a signiĄcant p-value for

all four distributional settings. But a closer look at the data reveals that results

are actually much better in most cases. As an illustration, for most degraded KBs

(75/100), there is only one formula in Ψrandi
, i.e. only one Şrandom consequenceŤ.

For the best distributional setting (LP), in most of theses cases (57/75), this formula

is also the one with lowest plausibility in Ψ�i
, among all consequences of Ψ�i

, i.e.

the only randomly generated consequence is also the least plausible one according

to linguistic evidence. This is very encouraging, especially considering the relatively

small number of individuals (71) in sig(�fisheries), i.e. the fact that the support set

to evaluate the plausibility of a consequence å ∈ Ψ�i
is limited. On the other hand,

performances are generally much worse (sometimes close to a random baseline) when

the cardinality of Ψrandi
is important (> 0.15* ♣Ψ�i

♣), which can be explained by the

fact that support sets for some concepts were signiĄcantly altered after the extension
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of � with ã�.

For �STLab, the results are clearly less satisfying, although still signiĄcantly pos-

itive. Several possible explanation may be suggested for these comparatively worse

results. First, although the number of individuals in both cases (86 and 70) is com-

parable, individuals of �fisheries are mostly geographic or administrative entities, and

therefore they tend to form relatively homogeneous groups (countries, international

organizations, etc. . . ). Comparatively, the individuals of �STLab are extremely di-

verse (human beings, theater plays, biological species, times intervals, or even copy-

left) such that on such a small sample (86), support sets of a signiĄcant size for a

given concept can rarely be found.

Another possible explanation is the fact that the proportion of TBox axioms in

�STLab is very high (184/260, i.e 0.71, which is arguably unrealistic), and much lower

for �fisheries (30/963, i.e. 0.03). This led to the generation of a much higher number

♣Ψrandi
♣ of Şrandom consequencesŤ for �STLab, on average 20.71 against 2.93, and

up to 206 for a same single degraded KB. This last observation provides a possible

insight about the efectiveness of the approach. Plausibility in theory may detect

consequences caused by erroneous TBox axioms, and actually did in some cases. But

based for these 200 KBs, it seemed more eicient at detecting consequences caused

by randomly generated ABox axioms than by randomly generated TBox axioms.

As for the distributional settings, �fisheries, the two most beneĄcial (but unfortu-

nately incompatible) factors were the use of lemmatized contexts on the one hand

(LP), and the queries over the Web n-gram corpus on the other hand (NS and NPS),

whereas for �STLab, none of the four conĄgurations clearly stands out, neither posi-

tively nor negatively.
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6.2 Trimming a single axiom: experiments

This section presents an evaluation of the four preference relations over candidate

output bases deĄned in Chapter 4 Section 4.2.5, which are based on linguistic plausi-

bility. As a reminder, these are total preorders over the family � of candidate output

KBs. Intuitively, if ○ designates one of these four relations, then �1 ○ �2 if �2 is

more likely to hold than �1 given the linguistic input.

The evaluation presented in this section is restricted to the case where at most

one axiom is to be discarded within the input KB, the case of a set of (strictly

more than one) axioms being addressed in Section 6.3. Equivalently, each immediate

subbase of the input KB is a candidate output, as well as the input KB itself. For

instance, in example 4.2.2 in Chapter 4, one may expect the subbase �2 = � ∖ (2) to

be optimal among � and its immediate subbases, such that (2) is the best candidate

axiom for removal.

The dataset for this experiment is the same as in Section 6.1 for the KB �fisheries.

Let � = �fisheries. 100 random axioms ã1, . . . , ã100 were generated out of the signa-

ture of �, and each of them added independently to �, yielding 100 degraded KBs

�1, . . . , �100, which served as input for the evaluation.

If �� is a (degraded) input KB, then each axiom of �� is a candidate for removal,

and the randomly generated axiom ã� is one of them. Equivalently, each immediate

subbase of �� (i.e. of cardinality ♣��♣ ⊗ 1) as well as �� itself is a candidate output

base, and because �� = �∪¶ã�♢, one of the immediate subbases of �� is �. For each

��, the family of candidate subbases will be designated with�� = ¶��,1, . . . , ��,♣�i♣♢∪

¶��♢. Then there must be a 1 ⊘ � ⊘ ♣��♣ such that ��,� = �.

Because it has been randomly generated, the assumption is made that the axiom
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ã� is very likely to be absurd within ��. So in order to evaluate whether the ranking

of �� deĄned by a given preference relation is accurate, one can simply verify whether

� is among the best ranked elements of ��.

For each ��, the family �� of candidate subbases was generated, and the elements

of �� were ranked according to the four preference relations over candidate subbases

deĄned in Chapter 4 Section 4.2.5, namely○comp, ○compKi
, ○lex and○lexKi

.4 Table 6.3

gives the ranking of � within �� on average for all 100 ��, for the LP distributional

setting only (lemmatized contexts weighted with PPMI), because it gave the best

results in the previous experiment. The lower this value, the more accurate the

corresponding preference relation is. For instance, on average for all 100 ��, the

ranking of � among candidate subbases according to ○comp was 7.86.

An additional precaution was taken though in order to avoid artiĄcially good

results. For many � ∈ �� ∖ ¶��♢, it was the case that Ψ� = Ψ�i
, i.e. consequences

with a plausibility score were identical for � and ��. In other words, no consequence

of �� with linguistic support was lost when weakening �� to produce �, such that

from the deĄnition of plausibility (Chapter 4, Section 4.2.3), for all å ∈ Ψ� = Ψ�i
,

sc�(å) = sc�i
(å). Therefore � and �� could simply not be distinguished based on

plausibility scores. So if ○ is any of the four preference relations deĄned in Chapter

4 Section 4.2.5, according to these deĄnitions, ○ deĄnes a large equivalence class

�� ⊆ ��, such that for all � ∈ ��, � ∼ ��. But on the other hand, the random axiom

generation procedure (presented in Chapter 5 Section 5.2.4) guarantees that Ψ� ⊆

Ψ�i
, and therefore that � ̸∈ ��. So if �� ∼ �, which is most often the case, then for

all � ∈ ��, � ∼ � also holds, such that � has an artiĄcially good ranking within

��. In order to avoid this bias, the ranking of � is given within �′
� = �� ∖�� instead,

or in other words there is only one candidate KB � ∈ �′
� such that Ψ� = Ψ�i

,

4Again, the ranking was randomly turned into a strict ordering (see footnote 3).
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rank p-val
○comp 7.86 / 80.03 < 0.001
○compKi

8.05 / 80.03 < 0.001

○lex 6.51 / 80.03 < 0.001
○lexKi

2.47 / 80.03 < 0.001

Table 6.3: Average ranking of �fisheries within each ��, and p-value for such a low
average ranking

namely �� itself. For instance, as just mentioned, the average ranking of � among

all candidate subbases according to ○comp is 7.86. So because ♣�♣ = ♣�fisheries♣ = 963,

and because each �� = � ∪¶ã�♢, ♣��♣ = 964, such that ♣��♣ = 965, i.e. there are 965

candidate output bases for each ��, namely all immediate subbases of �� plus ��

itself. Therefore if the whole �� was taken into account, the ranking given in table

6.3 should be 7.86 / 965. But on average, there were only 80.03 bases in �′
� , such

that the value in table 6.3 is 7.86 / 80.03 instead.

Results are again positive, with signiĄcant p-values (to see this, it is important to

keep in in mind that the values in column ŞrankŤ are the average of observed rankings

for all 100 KBs). The preference relations based on a lexicographic ordering generally

outperformed the ones based on compliance scores (i.e. on the mean of plausibility

scores), and best results were obtained with the relation ○lexKi
.

6.3 Trimming multiple axioms

Section 6.2 showed that the proposals made in Chapter 4, namely the plausibility

score and the four (alternative) preference relations over candidate output bases,

may indeed allow for the identiĄcation of a single erroneous axiom within an input

KB �. Therefore it may be interesting to extend this approach to the identiĄcation

of (a) set(s) of erroneous axioms in �. The task consists in selecting (an) optimal
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subbase(s) of � wrt linguistic evidence. In other words, if ○ is one of the four

abovementioned preference relations, the problem in theory consists in computing

max○ 2� .

This section shows that there is no obvious algorithmic solution to this problem.

Section 6.3.1 explains why for at least two of these four preference relations, comput-

ing all preferred subbases of � may be unfeasible in practice. Section 6.3.2 proposes

two algorithms to address this task. The Ąrst one is a simple greedy alternative, and

is evaluated with real and automatically degraded datasets. The second algorithm

exactly computes the optimal subbases of � wrt one of the four preference relations,

namely ○lexK
, but its execution may be prohibitive in practice. It is shown in partic-

ular that as far as worst-case complexity is concerned, the problem of computing all

optimal subbases of � wrt ○lexK
can be reduced to computing all base remainders

(deĄned in Chapter 3 Section 3.6.2.1) for each å ∈ Ψ� .

6.3.1 Lack of an obvious algorithmic solution

The four preference relations over � deĄned in Chapter 4 Section 4.2.5 are diferent

ways of ranking candidate subbases according to the plausibility of their respective

consequences. A candidate output base � ∈ � is evaluated based on the plausibility

scores computed for each å ∈ Ψ�. But if ♣�♣ is large (for instance here ♣�♣ = 2�),

Ąnding the optimal elements of � according to one of these preference relations may

be non-trivial.

A Ąrst reason is that what is evaluated here is the plausibility of consequences,

and not of axioms. So even if one could identify a subset Ψ′ of Ψ� which is optimal,

there may not even exist a subbase � of � such that Ψ� = Ψ′. For instance,

let us assume that Ψ� = ¶Bank(Caixa Bank), Bank(Sina Bank), Bank(Barclays),
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Bank(Margaret Atwood)}. It may be possible to identify that the best possible subset

of Ψ� wrt to the linguistic input is Ψ′
� = Ψ� ∖¶Bank(Margaret Atwood)♢. But there

may be no subbase � of � such that Ψ� = Ψ′. And clearly, if � = 2� (or even if

♣�♣ is simply large), computing � as well as Ψ� for each � ∈ � is not a realistic

option.

Monotonicity seems like a relatively obvious candidate property in order to op-

timize the exploration of �, i.e the fact that if �1 ⊖ �2, then Cn(�1) ⊖ Cn(�2),

and therefore also Ψ�1 ⊖ Ψ�2 . Intuitively, if some properties are veriĄed by the

plausibility scores of (some of) the formulas of Ψ�, this should spare the need for an

exploration of either subsets or supersets of �.

But for the preference relations ○comp and ○lex, the plausibility score sc�(å) for

each å ∈ Ψ� is computed wrt to �. So it doesnŠt hold in general that sc�1(å) =

sc�2(å), because the support set for å in �1 may difer from its support set in �2.

In particular, it may be the case that �1 ⊖ �2 but sc�1(å) > sc�2(å), such that

for a given � ∈ �, monotonicity does not guarantee that no subset or superset of �

needs to be investigated.

This is why the preference relations ○compK
and ○lexK

were introduced. For these,

the plausibility scores are computed only once wrt �, and not for each � ∈ �. This

is arguably less satisfying, in that a candidate subbase � is not evaluated based on

its own compliance to linguistic evidence (except for the case where Ψ� = Ψ�). But

this is also more amenable to optimizations. In particular, the algorithm described

in Section 6.3.2.2 computes ○lexK
by iteratively reĄning a family � ⊖ 2� such that

at any step of the execution, if � ∈ max○lexK
2� , then there is a �′ ∈ � such that

� ⊖ �′.

But monotonicity may also in some cases be exploited for ○compK
. A simple
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example is the case of a base �1 such that max
å∈ΨQ1

sc�(å) < comp�(�2), for some

already evaluated base �2 ⊖ �. Then for all �′
1 ⊖ �1, �

′
1 ∼compK

�2 must hold,

and therefore no subbase of �1 can be optimal wrt ○compK
.

6.3.2 Algorithms

This section shows how the four preference relations deĄned in Chapter 4 Section

4.2.3 can be concretely used to select some set(s) of axioms of an input KB � to be

preferably discarded when the family of candidate output bases is (in theory) 2� .

Section 6.3.2.1 presents a greedy approach which consists in selecting optimal

immediate subbases only, but iteratively, and as such can be viewed as a repeated

application of the procedure evaluated in Section 6.2. Section 6.3.2.2 on the other

hand provides an algorithm which compute exactly the subbases of � which are

maximal wrt the preference relation ○lexK
deĄned in Chapter 4 deĄnition 4.2.5. The

complexity of this problem is also shown to be identical in the worst case to the

complexity of computing all base remainders for each consequence with a plausi-

bility score, i.e. for each å ∈ Ψ� . The Ąrst algorithm is evaluated with real and

automatically degraded (but consistent) KBs, whereas the applicability of the second

algorithms is discussed after its description.

6.3.2.1 Iterated trimming

6.3.2.1.1 Procedure This section describes a very simple approach to select a a

subset of 2� based any of the four preference relations deĄned in Chapter 4 Section

4.2.3. A family � of subsets of � is initialized with ¶�♢, and iteratively updated.

Let �0, ..,�� designate the successive states of � after each iterative update, with

�0 = ¶�♢, and let ○ designate any of the four preference relations over 2� . For
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each 0 ⊘ � ⊘ �, let � � designate the family of all immediate subbases of any � ∈ ��,

i.e. � � =
⎷

�∈�¶� ∖ ¶ã♢ ♣ ã ∈ �♢. If there is at least one � ∈ � � such that � ∼ �

for some � ∈ ��, then � is replaced by all preferred elements of � � wrt ○, i.e.

��+1 = max○ �
�. If there is no � ∈ � � satisfying this condition, the algorithm

terminates. An obvious property of this strategy is the following one:

Proposition 6.3.2.1. For each 0 ⊘ � ⊘ �, for all � ∈ ��, ♣�♣ = ♣�♣ ⊗ �.

So in practice, another alternative termination condition may be set by bounding

the number of axioms to be discarded, i.e. by setting a maximal number � of

inductive steps, given as a parameter. If � is important, this is arguably a more

realistic debugging scenario. For instance, if � > ♣�♣
2

, discarding more than a half of

� is probably not a desirable output.

The procedure is described by algorithm 1. The output of the process is the

variable �, which corresponds to �� if � ⊘ �, and �� otherwise. The function

SelectRandom(�), lines 7 and 8, returns a random element of �.

An straightforward but interesting property of algorithm 1 is the following one:

Proposition 6.3.2.2. If � > 0, for each 0 ⊘ � < �, if �1 ∈ �
� and �2 ∈ �

�+1, then

�1 ∼ �2

This property holds because all four preference relations are total preorders, i.e.

intuitively rankings. A consequence of property 6.3.2.2 and the deĄnitions of these

preference relations is that if � ∈ � �, � ∈ �� such that � ⊆ � and � and �

are equally reliable wrt to the linguistic input, then � will not be retained as a

candidate subbase in��+1, which can be viewed as a (weak) form of minimal syntactic

information loss.
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Algorithm 1 Iterative trimming

1: � ⊂ ¶�♢
2: � ⊂ ¶�♢
3: �⊂ 0
4: while � ≠ ∅ and � ⊘ � do
5: � ⊂ ∅
6: � ⊂

⎷

�∈�¶� ∖ ¶ã♢ ♣ ã ∈ �♢
7: � ⊂ selectRandom(max○ �)
8: �⊂ selectRandom(�)
9: if � ∼ � then

10: � ⊂ max○ �
11: end if
12: if � ≠ ∅ then
13: � ⊂ �
14: end if
15: �⊂ �+ 1
16: end while

6.3.2.1.2 Evaluation A simpliĄed version of algorithm 1 was implemented in

order to reduce the manual cost of the evaluation. It updates a single subbase �

throughout the execution, instead of a family of subbases, initiated with �0 = �.

At each iterative step, a unique � ∈ max○ �
� is selected (non-deterministically if

♣max○ �
�♣ > 1), and if �� ∼ �, then ��+1 = �, otherwise the algorithm terminates.

As an alternative termination condition, a maximal number of � = 20 axioms to

discard was used as a parameter. In practice, for all experiments, the efective

termination condition was � = 20, i.e. 20 axioms could actually be discarded without

earlier termination, or in other words, the situation where � ○ �� for some � ∈ � �

was never encountered.

For each � ∈ � �, the set of consequences of � for which plausibility scores were

computed was Ψ�, as deĄned in Section 6.1.2. The datasets used for this evaluation

are �DBP
1 and �fisheries, both described in Chapter 5. As a reminder, if � ⊖ � is the
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output of the process, this means that each ã ∈ � ∖� is (automatically) designated

as potentially erroneous.

For �DBP
1 , the evaluation consisted in manually verifying whether a discarded

axiom ã was actually erroneous, i.e. whether the understanding of some element

of the signature of ã (individual, atomic concept or role) was incompatible with its

overall understanding within �. For instance, the axiom director(Museum Of The

Rockies, Smithsonian Institution) was considered erroneous because, most of the

time within �DBP
1 , the individual Smithsonian Institution is understood as an orga-

nization, whereas the DL role director is understood as ranging over human beings.

Only precision was evaluated, i.e. the proportion of actually erroneous axioms within

the automatically discarded ones. For recall, one would need to evaluate the pro-

portion of erroneous axioms of �DBP
1 which were automatically discarded. But this

requires the prior manual identiĄcation of all erroneous axioms within �DBP
1 before-

hand, which is unrealistic for such a large dataset (> 8000 axioms). This motivated

the second evaluation procedure, based on an automatically degraded dataset, which

will be presented after this one.

The results are presented in table 6.4. Columns Şval.Ť and Şprec.Ť respectively

give the number and proportion of axioms manually identiĄed as actually erroneous

among the 20 discarded ones. Up to 55 % of these automatically discarded axioms

were considered as actually erroneous, which is encouraging, because one can rea-

sonably expect the proportion of erroneous within �DBP
1 to be considerably lower.

The second experiment is based on an automatically degraded version of �fisheries,

in order to obtain a more objective (although arguably artiĄcial) evaluation. 20 ax-

ioms were randomly generated following the procedure described in Chapter 5 Section

5.2.4, and algorithm 1 was evaluated based on its ability to discard exactly these 20

axioms among the 963 + 20 axioms of the degraded KB. Results are given in table

195



val. prec.

NPS
○comp 7 0.35
○lex 3 0.15

LP
○comp 11 0.55
○lex 3 0.15

Table 6.4: Actually erroneous axioms among the 20 Ąrst discarded ones in �DBP
1

val. prec. & rec. p-val (prop. test)

NPS

○comp 9 0.45 < 0.001
○compK

9 0.45 < 0.001
○lex 3 0.15 < 0.002
○lexK

9 0.45 < 0.001

LP

○comp 10 0.5 < 0.001
○compK

10 0.5 < 0.001
○lex 5 0.25 < 0.001
○lexK

10 0.5 < 0.001

Table 6.5: Randomly generated statements among the 20 automatically discarded
ones for the degraded version of �fisheries

6.5, and the values are the number and proportion of randomly generated axioms

among the 20 discarded ones. Because the numbers of generated and discarded ax-

ioms are identical (20), precision and recall here are the same value, therefore column

Şprec./rec.Ť estimates both precision and recall. Results are very satisfying, with up

to 10 out of the 20 random axioms automatically spotted out of the 983 candidates.

6.3.2.2 Exact lexicographic trimming

This section presents an algorithm which, given an input KB � and a linguistic cor-

pus, yields all subbases of � which are maximal wrt the preference relation ○lexK
,

deĄned in Chapter 4 deĄnition 4.2.5. The procedure is relatively complex, therefore

a non-optimized version will be Ąrst presented for readability in Section 6.3.2.2.1.

The cost, optimizations and applicability will be discussed in sections 6.3.2.2.2 and
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6.3.2.2.3. In particular, it will be shown that for a Ąxed ♣Ψ� ♣, this procedure is opti-

mal (even in its non-optimized version) as far as worst-case complexity is concerned,

but may still be prohibitive in practice. Similarly to algorithm 1, running the pro-

cedure until termination may not be desirable though, and therefore the possibility

to end the execution before termination will also be discussed.

6.3.2.2.1 Procedure As a reminder, Ψ� designates the set of consequences of

� for which a plausibility score could be computed, and for each å ∈ Ψ� , sc�(å)

designates the plausibility score of å wrt �. Let ○scK
be the total preorder over Ψ�

deĄned by:

Definition 6.3.2.1. å1 ○scK
å2 if sc�(å2) ⊘ sc�(å2).

According to the notation introduced in Chapter 2 Section 2.2, the ordered par-

tition of Ψ� deĄned by ○scK
should be designated with (Ψ�)

○scK
1 , .., (Ψ�)

○scK
� , i.e.

sc�(å1) ⊘ sc�(å2) if there are 1 ⊘ � ⊘ � ⊘ � such that å1 ∈ (Ψ�)
○scK

� and å2 ∈

(Ψ�)
○scK

� . A simpliĄed notation will be adopted in this section: (Ψ�)
○scK
1 , .., (Ψ�)

○scK
�

will be designated with Ψ1
� , ..,Ψ

�
� instead, and � will always refer to the number of

equivalence classes deĄned by ○scK
over Ψ� . In addition, by convention, Ψ0

� = ∅.

Similarly, for any � ⊖ �, (Ψ�)
○scK

� will be denoted with Ψ�
�. As a reminder,

Ψ�
� = ¶å ∈ Ψ�

� ♣ � ⊢ å♢. Finally, the following notation will be used:

Definition 6.3.2.2. Ψ⊘�
� =

⎷

1⊘�⊘�
Ψ�
�

Definition 6.3.2.3. Ψ<�
� =

⎷

1⊘�<�
Ψ�
�

Definition 6.3.2.4. Ψ⊙�
� =

⎷

�⊘�⊘�
Ψ�
�

Definition 6.3.2.5. Ψ>�
� =

⎷

�<�⊘�
Ψ�
�
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As a reminder of deĄnition 4.2.5.6, if for all � ∈ �, w� is the vector composed

of all sc�(å) for each å ∈ Ψ� sorted by increasing value, then ○lexK
is based on a

standard ascending lexicographic ordering○l of all w�, more speciĄcally �1 ○lexK
�2

if �2 ̸∼lexK
�1, and �1 ∼lexK

�2 if either w�1 ∼l w�2 , or w�1 =l w�2 and �1 ⊆ �2.

In the limit case where � = 1, i.e. where there is just one equivalence class deĄned

by ○scK
over Ψ� (or in other words, if all evaluated consequences of � have the

same plausibility score), then trivially, max○lexK
2� = �. So the current section will

focus instead on the non-trivial case where � > 1. The following is an immediate

consequence of deĄnition 4.2.5.6:

Proposition 6.3.2.3. � ∼lexK
�2 if either:

(1) for all 1 ⊘ � ⊘ �, ♣Ψ�
�1
♣ = ♣Ψ�

�2
♣, and �1 ⊆ �2, or

(2) there is a 1 ⊘ � ⊘ � such that for all 1 ⊘ � < � ♣Ψ�
�1
♣ = ♣Ψ�

�2
♣, and one of the

three following conditions holds:

(2.1) Ψ>�
�1

= ∅ and Ψ>�
�2
̸= ∅

(2.2) Ψ>�
�2
̸= ∅, and ♣Ψ�

�2
♣ < ♣Ψ�

�1
♣

(2.3) Ψ>�
�1

= ∅, Ψ>�
�2

= ∅, and ♣Ψ�
�2
♣ > ♣Ψ�

�1
♣

To illustrate this, let v� = (♣Ψ1
�♣, . . . , ♣Ψ

�
� ♣), i.e. v� is the vector representing the

number of consequences of � in each equivalence class deĄned by ○scK
within Ψ�

for any � ⊖ �, and consider the following example:

Ex 6.3.1. v� = (2, 4, 2, 3, 2)

v�1 = (0, 2, 0, 1, 0)

v�2 = (0, 2, 2, 2, 0)
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v�3 = (0, 2, 2, 1, 0)

v�4 = (0, 1, 0, 0, 0)

In this example, there are respectively 2, 4, 2, 3 and 2 consequences in Ψ1
� ,Ψ

2
� ,Ψ

3
� ,

Ψ4
� and Ψ5

� . The least plausible consequences are the 2 formulas of Ψ1
� , and the

most plausible ones are the 2 formulas of Ψ5
� . None of �1, �2, �3 and �4 has a

formula of Ψ1
� as a consequence, but all of them have higher ranked consequences.

Therefore according to property 6.3.2.3 proposition (2.2), they are all strictly pre-

ferred to �. Then �4 is the base with the smallest number of consequences from

Ψ2
� . So one may be tempted to select �4. But applying this strategy systematically

would have the undesired property that for any consistent input �, and any � ⊖ �

such that Ψ� ̸= ∅, �
′ = ∅ is preferred to �. Instead, the lexicographic ordering also

takes into account the fact that �4 has no better ranked consequence, as opposed to

�1, �2 and �3, which are therefore all strictly preferred to �4, according to property

6.3.2.3 proposition (2.1). To see this more concretely, consider the vector w�, which

contains the ordered plausibility scores of formulas of Ψ�, and let us assume that for

all å ∈ Ψ1, sc�(å) = 0.1, for all å ∈ Ψ2, sc�(å) = 0.2 etc. Then:

w�1 = (0.2, 0.2, 0.4),

w�2 = (0.2, 0.2, 0.3, 0.3, 0.4, 0.4),

w�3 = (0.2, 0.2, 0.3, 0.3, 0.4),

and w�4 = (0.2).

So �4 ∼lK �1, �4 ∼lK �2 and �4 ∼lK �3 all hold, such that �1, �2 and �3 are all

strictly preferred to �4. Then according to proposition 6.3.2.3 property (2.2), �1 is

strictly preferred to �2 and �3, because ♣Ψ3
�1
♣ = 0 < ♣Ψ3

�2
♣ = ♣Ψ3

�3
♣ = 2, and there is

a 3 < � ⊘ 5 such that ♣Ψ�
�1
♣ > 0 (namely 4). The last interesting case is the ordering

of �2 and �3. ♣Ψ
4
�3
♣ < ♣Ψ4

�2
♣ holds, but there is no 4 < � ⊘ 5 such that ♣Ψ�

�3
♣ > 0, and
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therefore �2 is preferred to �3, according to proposition 6.3.2.3 property (2.3). So

the preference relation over these 5 bases is � ∼lexK
�4 ∼lexK

�3 ∼lexK
�2 ∼lexK

�1.

Here are now a few useful deĄnitions, in order to understand the algorithm. For

1 ⊘ � ⊘ �, let ℬ� be deĄned as follows:

Definition 6.3.2.6. � ∈ ℬ� if Ψ⊘�
� = ∅ and Ψ>�

� ̸= ∅

Then � will designate the largest integer such that ℬ� ̸= ∅, i.e:

Definition 6.3.2.7. � = max⊘¶� ∈ ¶0, 1, ..,�⊗ 1♢ ♣ ℬ� ̸= ∅♢

In the non-trivial case where Ψ� ̸= ∅, � ∈ ℬ
0. So there is at least one 0 ⊘ � < �

such that ℬ� ̸= ∅, and therefore � is deĄned for non-trivial inputs.

The presentation of the algorithm will be split into two successive phases, for

readability, based on the following observation (proven in Section 6.5.1.2):

Proposition 6.3.2.4. If � ∈ max○lexK
2� , then there is a � ∈ max⊖ ℬ

� such that

� ⊖ �.

Phase 1 yields max⊖ ℬ
� (as well as �). Then if � =

⎷

�∈max⊖ ℬt

2�, phase 2 yields

max○lexK
� = max○lexK

2� .

The notion of base remainder (introduced in Chapter 3 Section 3.6.2.1) will also

be needed. If å is a consequences of a Ąnite set Γ of axioms, ℛ⊖(å,Γ) will designate

the family of base remainders for å in Γ, i.e.:5

Definition 6.3.2.8. � ∈ ℛ⊖(å,Γ) if � ⊖ Γ, � ̸⊢ å, and for all � ⊆ �′ ⊖ Γ,

�′ ⊢ å.

5Equivalently, one could consider the family of diagnoses for å in Γ, because each diagnosis is
the complement in Γ of a base remainder (see Chapter 3 Section 3.6.2.2). The choice is made here
to focus on base remainders instead for readability only. But in practice, an implementation would
rather manipulate diagnoses, which tend to be of a smaller size.
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Then if Ψ is a set of formulas, ℛ∨
⊖(Ψ,Γ) will designate the family of base remain-

ders in Γ for Ψ understood disjunctively, i.e:

Definition 6.3.2.9. Let Ψ = ¶å1, .., å�♢. Then � ∈ ℛ∨
⊖(Ψ,Γ) if Cn(�) ∩ Ψ = ∅,

and for all � ⊆ �′ ⊖ Γ, Cn(�′) ∩Ψ ̸= ∅.

Equivalently, ℛ⊖(å,Γ) can be viewed as a shortcut for ℛ∨
⊖(¶å♢,Γ).

Phase 1 is described by algorithm 2. It proceeds by updating two families � and

� of subsets of �. Both are initiated with ¶�♢. Let �� (resp. ��) designate the

state of � immediately after incrementing variable � line 17, i.e. after � iterations

over the main loop. � is used to keep in memory the state of � during the previous

iteration. After termination, i.e. when �� = ∅, �� = ��⊗1 is the output of phase 1.

The boolean function containsSuperset(�, �2) line 10 returns true if there is a

� ∈ � such that �2 ⊆ �. The function discardSubsets(�, �2) line 11 returns

� ∖ ¶� ♣ � ⊆ �2♢.

After each execution step �, the following property holds (proven in Section

6.5.1.2):

Proposition 6.3.2.5. For 0 ⊘ � ⊘ �, �� = max⊖ ℬ
�

This guarantees termination in the worst case when � reaches � ⊗ 1. because

from the deĄnition of ℬ, ℬ� = ∅, such that after � execution steps, � = ∅, and the

loop is not entered again.

For correctness, the following is shown to hold in Section 6.5.1.3:

Proposition 6.3.2.6. If � > 1, after termination of algorithm 2, � = �+ 1

So from properties 6.3.2.5 and 6.3.2.6, after termination, �� = ��⊗1 = max⊖ ℬ
�,

such that � is the desired output.
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Algorithm 2 Computing max⊖ ℬ
�

1: � ⊂ ¶�♢
2: � ⊂ ∅
3: �⊂ 0
4: while � ≠ ∅ do
5: � ⊂ �
6: � ⊂ ∅
7: for all �1 ∈ � do
8: for all � ∈ ℛ∨

⊖(Ψ�+1
� , �) do

9: �2 ⊂ �1 ∩�
10: if containsSuperset(�, �2) = false then
11: � ⊂ discardSubsets(�, �2)
12: � ⊂ �∪ ¶�2♢
13: end if
14: end for
15: end for
16: � ⊂ ¶�2 ∈ � ♣ Ψ>�+1

�2
̸= ∅♢

17: �⊂ �+ 1
18: end while

Algorithm 3 Computing max○lexK
2�

1: � ⊂ max⊖ ℬ
�

2: �⊂ �
3: while � < � do
4: � ⊂ Refine(�, �)
5: �⊂ �+ 1
6: end while
7: � ⊂ max○lexK

�
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Algorithm 4 function Refine

1: function Refine(�, �)
2: � = ¶< �,å > ♣ å ∈ Ψ�+1

� and � ∈ ℛ⊖(å,�)♢
3: ℋdef ⊂ ∅
4: ℋ(�)⊂ ∅
5: �2 ⊂ �
6: while �2 ̸= ∅ do
7: �2 ⊂ �2

8: �2 ⊂ ∅
9: for all � ∈ � do

10: for all � ∈ ℋdef do
11: �2 ⊂ � ∩�
12: if containsSuperset(�2, �2) = false then
13: �2 ⊂ discardSubsets(�2, �2)
14: �2 ⊂ �2 ∪ ¶�2♢
15: end if
16: end for
17: end for
18: �2 ⊂ ¶�2 ∈ �2 ♣ Ψ>�+1

�2
̸= ∅♢

19: if �2 ̸= ∅ then
20: ℋ = Update(ℋ,�)
21: end if
22: end while
23: Return �2

24: end function
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Algorithm 5 function Update

1: function Update(ℋ,�)
2: ℋ′ ⊂ ℋ
3: ℋdef ⊂ ∅
4: for all �1 ∈ ℋ

′
def do

5: for all < �2, å >∈ � do
6: if å ̸∈ ℋ′(�1) then
7: �3 ⊂ �1 ∩�2

8: if containsSuperset(ℋdef, �3) = false then
9: ℋ ⊂ discardSubsets(ℋdef, �3)

10: ℋ(�3)⊂ ℋ
′(�1) ∪ ¶å♢

11: end if
12: end if
13: end for
14: end for
15: Return ℋ
16: end function

Phase 2 is described by algorithm 3.

A few shortcuts are used in order to keep the notation concise:

∙ The variable ℋ designates a lookup table, which associates a Ψ ⊖ Ψ� to a

� ⊖ �. At any step � of the execution, it can be viewed as a partial function

from 2� to 2Ψi+1
K . The afectation ℋ(�) ⊂ Ψ indicates that the value for

ℋ(�) becomes Ψ, whether ℋ was deĄned for � before this operation or not.

ℋdef ⊖ 2� designates the set of values for which ℋ is deĄned. Finally, the

afectation ℋdef ⊂ ∅ erases the lookup table, i.e. ℋ(�) is undeĄned for any

� ∈ 2� after this operation.

∙ line 13, discardSubsets(ℋdef, �) returns an updated version ℋ′ of ℋ, such

that ℋ′
def ⊖ ℋdef, and for any �2 ∈ ℋdef, ℋ

′(�2) is undeĄned if �2 ⊆ �, and

ℋ′(�2) = ℋ(�2) otherwise.
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Let ℎ(�) be deĄned inductively as follows:

Definition 6.3.2.10.

∙ ℎ(0) = 0

∙ Let � ∈ℳ� if � ⊖ � and ♣Ψ�
� ♣ = ℎ(�) for all 0 ⊘ � ⊘ �.

If
⎷

�∈ℳi

Ψ>�+1
� ̸= ∅, then ℎ(�+ 1) = min⊘¶♣Ψ

�+1
� ♣ ♣ � ∈ℳ

� and ♣Ψ>�+1
� ♣ ≠ ∅♢.

In other words, ℎ(� + 1) is the smallest integer such that there is some � ⊖ �

verifying Ψ>�+1
� ̸= ∅, ♣Ψ�

� ♣ = ℎ(�) for all 0 ⊘ � ⊘ �, and ♣Ψ�+1
� ♣ = ℎ(� + 1). Note

that there may be a 0 ⊘ � < � such that ℎ(�) is deĄned for all 0 ⊘ � ⊘ �, but

ℎ(�+1) is not. This corresponds to the case where no � ⊖ � veriĄes Ψ>�+1
� ̸= ∅ and

♣Ψ�
�♣ = ℎ(�) for all 0 ⊘ � ⊘ �. Then because ℎ is deĄned inductively, it is undeĄned

for all � > � + 1 as well. � will designate the maximal value for which ℎ is deĄned.

Equivalently, � is the smallest value such that for any � ⊖ �, if ♣Ψ�
� ♣ = ℎ(�) for all

0 ⊘ � ⊘ �, then Ψ>�+1
� = ∅.

Then ��.� will designate the family of subsets of � deĄned by:

Definition 6.3.2.11. For 0 ⊘ � ⊘ � and 1 ⊘ � ⊘ ♣Ψ�
� ♣, � ∈ �

�,� if the three

following conditions hold:

∙ (1) For each 0 ⊘ � < �, ♣Ψ�
�♣ = ℎ(�).

∙ (2) ♣Ψ�
�♣ ⊘ �.

∙ (3) Ψ>�
� ̸= ∅

The value of variable � will be used to index the successive states of variable �

immediately after each incrementation of variable � in algorithm 3, such that �� is
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the state of � after initialization, ��+1 is the state of � after 1 iteration of the main

loop, etc. Similarly ��.�2 (resp. ℋ�.�
def) will designate the state of variable �2 (resp.

ℋdef) when � = �, and immediately after � iterations of the main loop of the function

Refine.

For the main loop of algorithm 3, termination is guaranteed by the fact that � ⊘

�, and that � is incremented at each iteration. For the main loop of function Refine,

the number of iterations is bounded by ♣Ψ�+1
� ♣ + 2, from the following observation,

(proven in Section 6.5.1.5):

Proposition 6.3.2.7. For � ⊘ � < �, ℋ
�.♣Ψi+1

K
♣+1

def = ∅

In the worst case, during iteration ♣Ψ�+1
� ♣+2, after the execution of line 8, �2 = ∅.

Then because ℋdef = ℋ
�.♣Ψi+1

K
♣+1

def = ∅, the loop line 10 is never entered. So line 18,

¶�2 ∈ �2 ♣ Ψ>�+1
�2

̸= ∅♢ = ¶�2 ∈ ∅ ♣ Ψ>�+1
�2

̸= ∅♢ = ∅, such that �2 ⊂ ∅, which

corresponds to the termination condition line 6.

For correctness, the following propositions are shown to hold in Section 6.5.1:

Proposition 6.3.2.8. � ⊘ �

Proposition 6.3.2.9. For � ⊘ � ⊘ �, �� = max⊖ �
�,ℎ(�)

Proposition 6.3.2.10. For � < � ⊘ �, �� = ��⊗1

Proposition 6.3.2.11. max○lexK
2� = max○lexK

max⊖ �
�,ℎ(�)

From the deĄnition of �, � < � must hold. In addition, � is initialized with �, the

only exit condition for the main loop is � = �, and it has just been shown that the

algorithm terminates. So there must be one step in the execution when � reaches

�. Then from property 6.3.2.8, and because � is initiated with � and � < � (from

the deĄnition of �), there must be one step in the execution when � reaches �. From
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property 6.3.2.10, for all the following steps, i.e. for all � < � ⊘ �, �� = �� must

hold, such that after exiting the main loop of algorithm 3 when � reaches �, from

proposition 6.3.2.9, �� = �� = max⊖ �
�,ℎ(�). So line 7 of algorithm 3, � takes

max○lexK
�� = max○lexK

max⊖ �
�,ℎ(�). And from proposition � = max○lexK

2� , i.e.

� is the desired output.

6.3.2.2.2 Optimizations As already explained, the above presentation of the

procedure remains relatively abstract on purpose, in order to keep the notation con-

cise, and to simplify the proofs of correctness and complexity. In particular, these

pseudo-algorithms are poorly optimized, although this does not afect worst-case

complexity, which will be discussed in Section 6.3.2.2.3.

A Ąrst straightforward optimization of phase 2 consists in stopping iterating over

the main loop of algorithm 3 when � reaches � + 1. At this stage, from proposition

6.3.2.9, �� = ��,ℎ(�), and this will be the case for all posterior values of �. In order to

ensure that � has been reached, it is suicient to add an additional exit condition,

namely the fact that the main loop of function Refine has been executed only once

during the last call to the function. This can only happen in the case where for all

� ∈ ��, Ψ>�+1
� = ∅, i.e. � < �.

Another optimization concerns the implementation of the veriĄcation of Ψ>�+1
� ̸=

∅, in algorithm 2 line 16, and in function Refine line 18. The number of such

veriĄcations during the execution can be potentially high, such that reducing its

practical cost may be beneĄcial. Let �1 be the Ąrst subset of � for which such

a veriĄcation is required, with � = 0 in this case, i.e. one wants to know whether

Ψ>1
�1
̸= ∅ holds. Then the following strategy may be applied. Formulas of Ψ� can be

ordered by decreasing plausibility, and it can be veriĄed for each å ∈ Ψ>1
� , starting

with most plausible formulas (i.e. å ∈ Ψ�
�), whether �1 ⊢ å holds, until some
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å1 is found which satisĄes this condition, or none. If such a å1 is found, one can

compute a subset �′
1 of �1 such that �′

1 ⊢ å1 and ♣�′
1♣ is preferably small. �′

1 need

not be a justiĄcation for å1 in �1, but the reduction strategies used for black-box

justiĄcation Ąnding algorithms (see Chapter 3 Section 3.5.2) can be applied here.

Then for another subbase ��, if �′
� ⊖ �� for some 1 ⊘ � < � (for instance if

�′
1 ⊖ ��), this is suicient to conclude that Ψ>1

�j
̸= ∅. If there is no �′

� verifying

this condition, the same procedure may be applied in order to Ąnd a å� ∈ Ψ>1
� and

a small �′
� ⊖ �� such that �′

� ⊢ å�. This holds for � > 0 as well, but only provided

å� ∈ Ψ>�+1
� , which is the reason why the formulas of Ψ� were ordered by decreasing

plausibility in the Ąrst place, in order to maximize the potential reuse of some �′
�.

6.3.2.2.3 Computational cost and potential use This section will start with

a series of observations about the complexity of algorithms 2 and 3, expressed here

in the size ♣�♣ of the input KB, but regardless of the number ♣Ψ� ♣ of consequences

of � with a plausibility score. The question of the incidence of ♣Ψ� ♣ will only be

discussed afterwards. The reason for this choice is that ♣Ψ� ♣ does not depend on

♣�♣ only, as explained in Chapter 4 Section 4.2.4.1, but also on the syntactic form

of consequences of � adopted for the evaluation, otherwise Ψ� may be inĄnite.

The input may be any consistent KB � together with a nonempty and Ąnite set

Ψ� of non-tautological consequences of �, and a total preorder ○scK
over Ψ� .

Let us assume a procedure which for any input of this type and any å ∈ Ψ�

returns ℛ⊖(å,�), and let � be the computational cost of this procedure expressed

as a function of ♣�♣. Then let us assume any procedure (not necessarily algorithms

2 and 3) which solves the problem adressed by algorithms 2 and 3, i.e. computing

max ○lexK
2� , and let � be the computational cost of this procedure expressed as a

function of ♣�♣. A Ąrst useful remark is the following, which holds regardless of the
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underlying DL:

Proposition 6.3.2.12. �(�) = Ω(�(�))

This can be shown with the following example, where max ○lexK
2� = ℛ⊖(å1, �):

Ex 6.3.2. Ψ� = ¶å1, å2♢

å1 ∼scK
å2

For all � ∈ ℛ⊖(å1, �), � ⊢ å2

Additionally, Section 6.5.2.1 shows that regardless of the underlying DL, the

following holds:

Proposition 6.3.2.13. �(�) = Ω(��), with � > 1

So � is at least exponential in the worst case, and from proposition 6.3.2.12, this

must be the case for � as well.

For more expressive DLs, this may have no incidence on the overall worst-case

complexity of the problem, dominated by entailment/satisĄability checks. But for

tractable DLs such as ℰℒ or DL-Lite, these observations show that computing

max○lexK
� (with any algorithm) may still have a cost exponential in ♣�♣.

In practice, as explained in Chapter 3 Section 3.5.2, computing ℛ⊖(å,�) for

a consistent � may be prohibitive, but remains more realistic than computing

ℛ⊖(⊥, �) when � is inconsistent. In particular, computing a module of � based

on the signature of å beforehand may signiĄcantly reduce the cost of the operation,

as shown empirically by [Hor11] (among others), although worst-case complexity

remains identical.

Now let � be the computational cost of the execution of algorithm 2 followed by

algorithm 3, expressed as a function of ♣�♣. Section 6.5.2.2 shows that regardless of

the underlying DL, the following holds:
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Proposition 6.3.2.14. �(�) = �(♣Ψ� ♣ ≤ �(�))

So if ♣Ψ� ♣ is Ąxed, from propositions 6.3.2.13 and 6.3.2.14, �(�) = �(�(�)) holds,

which together with proposition 6.3.2.12 implies that worst-case complexity of algo-

rithms 2 and 3 is optimal for the problem they address.

Finally, let �(�) be the maximal value of ♣Ψ� ♣ for any input consistent � such

that ♣�♣ = �. If �(�) = �(��), i.e. if the number of consequences to be evaluated

does not grow more than exponentially with ♣�♣, then algorithms 2 and 3 remain

optimal in the worst case for the problem they address.

Intuitively, the presence of the value ♣Ψ� ♣ in �(♣Ψ� ♣≤�(�)) is due to the successive

execution steps of algorithms 2 and 3, i.e. the diferent equivalence classes deĄned by

○scK
. This raises another problem, which is the question of termination, similarly to

the discussion of algorithm 1. One may arguably wonder whether running algorithm

2 until termination (i.e. for all equivalence classes deĄned by ○scK
) is desirable.

As an (extreme) illustration, let us extend example 6.3.1 in Section 6.3.2.2.1 with

an additional candidate subbase �5, such that v�5 = (0, 0, 0, 0, 1). Then �5 will be

strictly preferred to all other candidate subbases of � in example 6.3.1. But aside

from the single formula in Ψ5
�5

, all consequences of Ψ� will be lost.

An alternative but still intuitive termination condition may be used instead, based

on the following observation:

Proposition 6.3.2.15. For 0 ⊘ � ⊘ �, for each � ∈ ��,ℎ(�) and any � ⊆ � ⊖ �,

� ∼lexK
�.

In other words, if � ∈ ��.ℎ(�), then it is strictly preferred wrt ∼lexK
to any of its

supersets in �. In addition, from the deĄnitions of ℎ and � and proposition 6.3.2.15,

any � ⊖ � with ♣Ψ�
�♣ < ℎ(�) for some 0 ⊘ � ⊘ � is such that � ∼lexK

� as well. So
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intuitively, ��.ℎ(�) is an optimal output wrt ○lexK
if one focuses on the loss of conse-

quences of the � worst equivalence classes deĄned by ○scK
over Ψ� , or equivalently

if all strictly better ranked consequences, i.e. all formulas of Ψ>�
� , are merged into a

single equivalence class wrt ○scK
. Therefore a relatively straightforward alternative

termination condition consists in bounding � beforehand with a parameter � ⊘ �, fo-

cusing on the removal of axioms from the � most implausible classes of consequences

of �, i.e. from Ψ1
� , ..,Ψ

�
� .

6.4 Conclusion

The proposals made in Chapter 4 provided a way to evaluate the compliance of a

set of formulas with a linguistic corpus, and, if � is the set of candidate output

KBs of a debugging process, to rank the elements of � based on linguistic evidence.

But no concrete indication was given as to how these scores and rankings could be

incorporated to an actual debugging process, and therefore these proposals were not

evaluated either. The present chapter partially answered both questions, focusing

on the case where the input KB � of the debugging process is logically consistent.

Section 6.1 evaluated the accuracy of the linguistic plausibility score deĄned in

Chapter 4. Plausibility scores by themselves do not provide a way to debug a KB,

but an isolated evaluation of their accuracy is nonetheless interesting, because they

are the core of all other linguistic based debugging strategies presented in this thesis.

The evaluation relies on 200 automatically degraded (but consistent) versions of 2

KBs described in Chapter 5. Each of the 2 KBs was extended 100 times with a

single random axiom. The evaluation procedure is based on the assumption that

new consequences obtained after degrading an input KB with a random axiom are

very likely to be nonsensical, when compared to the rest of the KB. The goal of the
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evaluation was then to automatically identify such consequences as the least plausible

ones among consequences of each degraded KB. The results are signiĄcant, i.e. these

consequences were generally identiĄed as unlikely to hold if the rest of the degraded

KB does, and this result was obtained from linguistic evidence only.

Section 6.2 presented a Ąrst evaluation of the incorporation of linguistic evidence

to an actual debugging process. It focused on the limited case where one wants to

identify a single erroneous axiom to discard from �. The datasets used for this

evaluation were the same as the ones used Section 6.1, but the evaluation procedure

was more straightforward. This time, the objective was to automatically identify on

a linguistic basis that the randomly generated axiom å is the least reliable within

� ∪¶å♢, or equivalently, to identify � as best immediate subbase of � ∪¶å♢. Once

again, results are statistically signiĄcant.

Section 6.3 focused on the generalization of the approach to the identiĄcation of

(a) set(s) of erroneous axioms within �. In particular, it showed that the problem is

algorithmically complex if the search space is actually 2� . Section 6.3.2.1 proposed

instead a simple greedy approach, evaluated with real and automatically degraded

data. The results of these experiments were also signiĄcant, but additional evalua-

tions based on diferent datasets are probably required before drawing conclusions

about its applicability. Then Section 6.3.2.2, which is the main contribution of this

chapter, addressed the problem of the exact computation of the optimal subbase(s)

wrt one of the four preference relations of candidate outputs deĄned in Chapter 4.

A (relatively complex) procedure is provided, as well as complexity bounds, show-

ing that the problem is as hard computationally as computing all base remainders

(see Chapter 3 Section 3.6.2.1) for each consequence of � with a plausibility score

(assuming the number of such consequences is Ąxed, or at most exponential in ♣�♣).

This may turn out to be costly, although running the algorithm only partially is a
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potential application scenario.
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6.5 Proofs

6.5.1 Section 6.3.2.2

6.5.1.1 Proposition 6.3.2.5

Proposition. If � ∈ max○lexK
2� , then there is a � ∈ max⊖ ℬ

� such that � ⊖ �.

Proof. From the deĄnition of �, ℬ� ̸= ∅. So there is a � ∈ ℬ�, and � veriĄes Ψ⊘�
� = ∅,

as well as Ψ>�
� ̸= ∅.

Let � ∈ max○lexK
2� . If Ψ⊘�

� ̸= ∅, then there is a 1 ⊘ � ⊘ � such that ♣Ψ�
�♣ =

♣Ψ�
�♣ = ∅ for all 1 ⊘ � < �, and ♣Ψ�

�♣ < ♣Ψ
�
�♣. And because Ψ>�

� ̸= ∅ and � ⊘ �, Ψ>�
� ̸=

∅, such that from proposition 6.3.2.3 property (2.2), � ∼lexK
�, a contradiction. So

Ψ⊘�
� = ∅ must hold.

Then if Ψ>�
� = ∅, from proposition 6.3.2.3 property (2.1), � ∼lexK

� too, such

that Ψ>�
� ̸= ∅ must hold as well. So from the deĄnition of ℬ, � ∈ ℬ�. Therefore there

must be a maximal element �′ of ℬ� wrt ⊖ such that � ⊖ �′.

6.5.1.2 Proposition 6.3.2.5

Proposition. For 0 ⊘ � ⊘ �, �� = max⊖ ℬ
�

6.5.1.2.1 Lemmas

Lemma 6.5.1.1. For 0 ⊘ � < �, for anyℳ⊖ 2� , � ∈ max⊖¶Γ ⊖ � ♣ Γ ∈ℳ and

Ψ>�
Γ ̸= ∅♢ if � ∈ max⊖ℳ and Ψ>�

� ̸= ∅.

Proof. Let � = ¶Γ ⊖ � ♣ Γ ∈ ℳ and Ψ>�
Γ ̸= ∅♢, and let us start with the left

inclusion, i.e. if � ∈ max⊖� , then � ∈ max⊖ℳ and Ψ>�
� ̸= ∅. Let � ∈ max⊖� .
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Then Ψ>�
� ̸= ∅. Now let us assume by contradiction that � ̸∈ max⊖ℳ. Then there

is a �2 ∈ℳ such that � ⊆ �2. But by monotonicity, Ψ>�
�2
̸= ∅ must hold, such that

�2 ∈ �, and therefore � ̸∈ max⊖� , contradicting the hypothesis.

For the right inclusion, if � ∈ max⊖ℳ and Ψ>�
� ̸= ∅, then � ∈ �. Let us assume

by contradiction that � ̸∈ max⊖� . Then there is a �2 ∈ � such that � ⊆ �2, but

because �2 ∈ �, �2 ∈ℳ, so � ̸∈ max⊖ℳ, contradicting the hypothesis.

Lemma 6.5.1.2. � ∈ max⊖ ℬ
� if � ∈ max⊖¶Γ ⊖ � ♣ Ψ⊘�

Γ = ∅♢ and Ψ>�
� ̸= ∅

Proof. From the deĄnition of ℬ, � ∈ ℬ� if � ∈ ¶Γ ⊖ � ♣ Ψ⊘�
Γ = ∅ and Ψ>�

Γ ̸= ∅♢.

Then the proof is immediate from lemma 6.5.1.1, replacingℳ by ¶Γ ⊖ � ♣ Ψ⊘�
Γ = ∅♢.

6.5.1.2.2 Main proposition

Proposition. For 0 ⊘ � ⊘ �, �� = max⊖ ℬ
�

Proof. By induction on �. For the base case � = 0, from the deĄnition of ℬ, ℬ0 =

max⊖ ℬ
0 = ¶�♢, and � is initialized with �0 = ¶�♢.

For the inductive case, let us assume that � < �, and �� = max⊖ ℬ
� holds by

IH. This choice is made (instead of � and � ⊗ 1) in order to follow the notation

used in algorithm 2. Variable names (�1, �2, �) also correspond to the ones used in

algorithm 2 whenever possible. From lemma 6.5.1.2, we need to show that � ∈ ��+1,

if � ∈ max⊖¶Γ ⊖ � ♣ Ψ⊘�+1
Γ = ∅♢ and Ψ>�+1

� ̸= ∅.

Let us start with the left inclusion, i.e. if � ∈ ��+1, then � ∈ max⊖¶Γ ⊖

� ♣ Ψ⊘�+1
Γ = ∅♢ and Ψ>�+1

� ̸= ∅. By contradiction, let us assume that there is a

�2 ∈ �
�+1 such that either � ̸∈ max⊖¶Γ ⊖ � ♣ Ψ⊘�+1

Γ = ∅♢, or Ψ>�+1
�2

= ∅. Line 16

of algorithm 2, �2 is retained in� only if Ψ>�+1
�2

̸= ∅, so the only remaining possibility
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is �2 ̸∈ max⊖¶Γ ⊖ � ♣ Ψ⊘�+1
Γ = ∅♢. Line 9, �2 = �1∩�, and by IH, Ψ⊘�

�1
= ∅, so by

monotonicity, Ψ⊘�
�2

= ∅. And because � ∈ ℛ∨
⊖(Ψ�+1

� , �), Ψ�+1
� = ∅ must hold as well,

so by monotonicity, Ψ�+1
�2

= ∅, such that Ψ⊘�+1
�2

= Ψ⊘�
�2
∪ Ψ�+1

�2
= ∅ ∪ ∅ = ∅. So the

last possibility is the case where Ψ⊘�+1
�2

holds, but �2 is not maximal wrt ⊖ within

¶Γ ⊖ � ♣ Ψ⊘�+1
Γ = ∅♢, or in other words there is a �2 ⊆ �3 such that Ψ⊘�+1

�3
= ∅. If

Ψ⊘�+1
�3

= ∅, then Ψ⊘�
�3

= ∅ must hold too. Then by monotonicity, because Ψ>�+1
�2

̸= ∅,

Ψ>�+1
�3

̸= ∅, and therefore Ψ>�
�3
̸= ∅ must hold as well. So from the deĄnition of ℬ, we

have �3 ∈ ℬ
�, such that there must be a �4 ∈ max⊖ ℬ

� with �3 ⊖ �4, and by IH,

�4 ∈ �
�. Then because Ψ⊘�+1

�3
= ∅, there is an � ∈ ℛ∨

⊖(Ψ�+1
� , �) such that �3 ⊖ �.

Now let �5 = �4∩�, and letℳ designate ¶�∩� ♣ < �,� >∈ ��×ℛ∨
⊖(Ψ�+1

� , �)♢.

Then �5 ∈ ℳ, and immediately from algorithm 2, ��+1 ⊖ max⊖ℳ. But �2 ⊆ �3

and �3 ⊖ �5, such that �2 ⊆ �5 must hold. So �2 ̸∈ max⊖ℳ, and therefore

�2 ̸∈ �
�+1, which contradicts the hypothesis.

Let us continue with the right inclusion, i.e. if � ∈ max⊖¶Γ ⊖ � ♣ Ψ⊘�+1
Γ = ∅♢

and Ψ>�+1
� ̸= ∅, then � ∈ ��+1. Let us assume by contradiction that there is a �2

such that �2 ∈ max⊖¶Γ ⊖ � ♣ Ψ⊘�+1
Γ = ∅♢ and Ψ>�+1

�2
̸= ∅, but �2 ̸∈ �

�+1. Because

Ψ⊘�+1
�2

= ∅, Ψ⊘�
�2

= ∅ must hold, so there is a maximal subset �1 of � such that

Ψ⊘�
�1

= ∅ and �2 ⊖ �1, i.e �1 ∈ max⊖¶Γ ⊖ � ♣ Ψ⊘�
Γ = ∅♢. And because Ψ>�+1

�2
̸= ∅,

Ψ>�
�2
̸= ∅, so by monotonicity Ψ>�

�1
̸= ∅, such that from lemma 6.5.1.2, �1 ∈ ℬ

�,

and by IH, �1 ∈ �
�. Then because Ψ�+1

�2
= ∅, there is an � ∈ ℛ∨

⊖(Ψ�+1
� , �) such

that �2 ⊖ �. So there must be a pair < �1, � >∈ �� × ℛ∨
⊖(Ψ�+1

� , �) such that

�2 ⊖ �1 ∩ �. And line 7 to 9 of algorithm 2, all possible intersections for a pair in

�� ×ℛ∨
⊖(Ψ�+1

� , �) are generated, so �2 must be one these. If �2 ∈ � immediately

before the execution of line 16, then �2 is retained in �, because Ψ>�+1
�2

̸= ∅. So

the only remaining possibility for �2 ̸∈ �
�+1 is lines 10 to 13: �2 may be discarded

only if there is a �3 such that �2 ⊆ �3 and �3 = �4 ∩ �2 for some < �4, �2 >∈
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�� × ℛ∨
⊖(Ψ�+1

� , �). By IH, �� = ℬ�, such that �4 ∈ ℬ
�, and therefore Ψ⊘�

�4
= ∅, so

by monotonicity Ψ⊘�
�3

= ∅. And from the deĄnition of a base remainder, Ψ�+1
�2

= ∅, so

by monotonicity Ψ�+1
�3

= ∅. Therefore Ψ⊘�+1
�3

= Ψ⊘�
�3
∪Ψ�

�3
= ∅. So because �2 ⊆ �3,

�2 ̸∈ max⊖¶Γ ⊖ � ♣ Ψ⊘�+1
Γ = ∅♢, which contradicts the hypothesis.

6.5.1.3 Proposition 6.3.2.6

Proposition. If � ̸= ∅ and � > 1, after termination of algorithm 2, � = �+ 1

6.5.1.3.1 Lemmas

Lemma 6.5.1.3. For 0 ⊘ � ⊘ �⊗ 1, if ℬ� = ∅, then ℬ�+1 = ∅

Proof. Take any � ⊖ �. If ℬ� = ∅, then � ̸∈ ℬ�, so from the deĄnition of ℬ, either

Ψ⊘�
� ̸= ∅ or Ψ>�

� = ∅ must hold. In the former case, Ψ⊘�
� ̸= ∅ if there is a � ⊘ � such

that Ψ�
� ̸= ∅, and because � ⊘ �+ 1, Ψ⊘�+1

� ̸= ∅ must hold too, such that � ̸∈ ℬ�+ 1.

In the latter case, Ψ>�
� = ∅ if there is no � > � such that Ψ�

� ̸= ∅. Because � ⊘ �+ 1,

there is no � > �+ 1 such that Ψ�
� ̸= ∅ either, and therefore � ̸∈ ℬ�+1.

6.5.1.3.2 Main proposition

Proposition. If � > 1, after termination of algorithm 2, � = �+ 1.

Proof. As a reminder, if � > 1, then � is deĄned, and � ⊙ 0 must hold.

From the deĄnition of �, �� ̸= ∅ must hold, and from the contraposition of lemma

6.5.1.3.1, for all 1 ⊘ � ⊘ �, �� ̸= ∅. But from proposition 6.3.2.5, �� = max⊖ ℬ
�,

so �� ̸= ∅, such that the main loop is iterated over at least � times. Then from the

deĄnition of �, ℬ�+1 = ∅, and so from proposition 6.3.2.5 ��+1 = ℬ�+1 = ∅, and the

main loop is exited.
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6.5.1.4 Proposition 6.3.2.8

Proposition. � ⊘ �

Proof. From the deĄnition of �, there is a � ⊖ � such that Ψ>�
� ̸= ∅, and for

0 ⊘ � ⊘ �, Ψ�
� = ∅. So immediately from the deĄnition of ℎ, for 0 ⊘ � ⊘ �, ℎ(�) = ∅,

therefore ℎ is deĄned for �, and because � is the largest integer for which ℎ is deĄned,

� ⊘ �.

6.5.1.5 Proposition 6.3.2.7

Proposition. For � ⊘ � < �, ℋ
�.♣Ψi+1

K
♣+1

def = ∅

6.5.1.5.1 Lemmas

Lemma 6.5.1.4. For � ⊘ � < � and 0 ⊘ � ⊘ ♣Ψ�+1
� ♣, for each � ∈ ℋ�.�

def, ℋ
�.�(�) ⊖

Ψ�+1
�

Proof. Take any � ⊘ � < �. By induction on �. If � = 0, i.e. before the Ąrst execution

of the main loop of function Refine, thenℋ�.0 is deĄned for � only, i.e. ℋ�.0
def = ¶�♢,

and ℋ�.0(�) = ∅ ⊖ Ψ�+1
� .

For the inductive case, line 10 of function Update, if �3 ∈ ℋ
�.�
def, then ℋ�.�(�3) =

ℋ�.�⊗1(�1) ∪ ¶å♢ for some �1 ∈ ℋ
�.�⊗1
def and some å such that there is an �2 with

< �2, å >∈ �. By IH, ℋ�.�⊗1(�1) ⊖ Ψ�+1
� , and from the initialization of � line 2 of

function Refine, å ∈ Ψ�+1
� , so ℋ�.�⊗1(�1) ∪ ¶å♢ = ℋ�.�(�3) ⊖ Ψ�+1

�

Lemma 6.5.1.5. For � ⊘ � < � and 0 ⊘ � ⊘ ♣Ψ�+1
� ♣, for each � ∈ ℋ�.�

def , ♣ℋ�.�(�)♣ = �

Proof. Immediate from the description of function Refine, by induction on �.

218



6.5.1.5.2 Main proposition

Proposition. For � ⊘ � < �, ℋ
�.♣Ψi+1

K
♣+1

def = ∅

Proof. Take any � ⊘ � < �, and let us assume that � = ♣Ψ�+1
� ♣+ 1, i.e. the main loop

of function Refine has been iterated over ♣Ψ�+1
� ♣+ 1 times (note that this may not

be the case for all �, i.e the function may return after less than ♣Ψ�+1
� ♣+ 1 iterations).

Then during the previous iteration, i.e. during iteration ♣Ψ�+1
� ♣, the Ąrst argument

of the call to function Update line 20 is ℋ
�.♣Ψi+1

K
♣

def . Take any �1 ∈ ℋ
�.♣Ψi+1

K
♣

def . From

lemma 6.5.1.4, ℋ�.♣Ψi+1
K

♣(�1) ⊖ Ψ�+1
� , and from lemma 6.5.1.5, ♣ℋ�.♣Ψi+1

K
♣(�1)♣ = ♣Ψ

�+1
� ♣,

such that ℋ�.♣Ψi+1
K

♣(�1) = Ψ�+1
� must hold. In addition, if < �2, å >∈ �, then from

the initialization of � line 2 of function Refine, å ∈ Ψ�+1
� . So line 6 of function

Update, because ℋ′ = ℋ�.♣Ψi+1
K

♣, the condition å ̸∈ ℋ′(�1) is never veriĄed, such

that line 10 is never executed, i.e. no �3 is added to ℋdef, and therefore at the end

of the execution of iteration ♣Ψ�+1
� ♣+ 1, ℋ

♣Ψi+1
K

♣+1

def = ∅.

6.5.1.6 Proposition 6.3.2.9

Proposition. For � ⊘ � ⊘ �, �� = max⊖ �
�,ℎ(�)

6.5.1.6.1 Lemmas

Lemma 6.5.1.6. For � ⊘ � < � and 0 ⊘ � ⊘ ♣Ψ�+1
� ♣, if � ∈ ℋ�.�

def , then Cn(�) ∩

ℋ�.�(�) = ∅

Proof. By induction on �. For the base case � = 0, i.e. before the Ąrst execution of

the main loop of function Refine, ℋ�.0
def = ¶�♢, and ℋ�.0(�) = ∅, so trivially, for all

� ∈ ℋ�.0
def , Cn(�) ∩ℋ�.0(�) = ∅.

For the induction step, after the �th call to the function Update, from lines 4, 5

and 7 of function Update, if �3 ∈ ℋ
�.�
def, then �3 = �1 ∩�2, such that:

219



∙ �1 ∈ ℋ
�.�⊗1
def

∙ there is a å ∈ Ψ�+1
� such that < �2, å >∈ �

�.

∙ ℋ�.�(�3) = ℋ�.�⊗1(�1) ∪ ¶å♢

By IH, Cn(�1) ∩ ℋ
�.�⊗1(�1) = ∅. And because < �2, å >∈ �, �2 ∈ ℛ⊖(å,�),

so �2 ̸⊢ å. Therefore by monotonicity, Cn(�3) ∩ (ℋ�.�⊗1(�1) ∪ ¶å♢) = Cn(�3) ∩

ℋ�.�(�3) = ∅.

Lemma 6.5.1.7. For � ⊘ � ⊘ � and 0 ⊘ � ⊘ ♣Ψ�+1
� ♣, ℋ

�.�
def = max⊖¶� ⊖ � ♣ ♣Ψ�+1

� ♣ ⊘

♣Ψ�+1
� ♣ ⊗ �♢

Proof. By induction on �. For the base case � = 0, trivially, ♣Ψ�+1
� ♣ ⊘ ♣Ψ

�+1
� ♣ ⊗ 0, and

¶�♢ = max⊖ 2� , so max⊖¶� ⊖ � ♣ ♣Ψ�+1
� ♣ ⊘ ♣Ψ

�+1
� ♣♢ = ¶�♢ = ℋ�.0

def .

For the inductive case, during the �th execution of the main loop of function

Refine, let � = ¶�1 ∩ �2 ♣ �1 ∈ ℋ
�.�⊗1
def , and there is an < �2, å >∈ � such that

å ̸∈ ℋ�.�⊗1(�1)♢. Then immediately from the description of the algorithm, the call

to the function Update line 20 returns ℋ�.� such that ℋ�.�
def = max⊖� .

Let ℳ = ¶� ⊖ � ♣ ♣Ψ�+1
� ♣ ⊘ ♣Ψ

�+1
� ♣ ⊗ �♢, and let us start with the left inclusion,

i.e. ℋ�.�
def ⊖ max⊖ℳ. Let � ∈ ℋ�.�

def = max⊖� . From lemma 6.5.1.4, ℋ�.�(�) ⊖ Ψ�+1
� .

From lemma 6.5.1.5, ♣ℋ�.�(�)♣ = �. And from lemma 6.5.1.6, Cn(�)∩ℋ�.�(�) = ∅. So

there are at least � formulas in Ψ�+1
� ∖Cn(�), i.e. ♣Ψ�+1

� ♣ ⊘ ♣Ψ
�+1
� ♣ ⊗ �, or equivalently,

� ∈ ℳ. Now let us assume by contradiction that � ̸∈ max⊖ℳ. Then there

must be an �2 ∈ ℳ such that � ⊆ �2. Because �2 ∈ ℳ, ♣Ψ�+1
�2
♣ ⊘ ♣Ψ�+1

� ♣ ⊗ �.

So ♣Ψ�+1
�2
♣ ⊘ (♣Ψ�+1

� ♣ ⊗ �) + 1 = ♣Ψ�+1
� ♣ ⊗ (� ⊗ 1) also holds, such that �2 ∈ ¶� ⊖

� ♣ ♣Ψ�+1
� ♣ ⊘ ♣Ψ

�+1
� ♣ ⊗ (� ⊗ 1)♢. Therefore by IH, there must be an �3 ∈ ℋ

�.�⊗1
def such

that �2 ⊖ �3. From lemma 6.5.1.6, Cn(�3) ∩ ℋ
�.�⊗1(�3) = ∅. So by monotonicity

Cn(�2)∩ℋ
�.�⊗1(�3) = ∅. But from lemma 6.5.1.5, ♣ℋ�.�⊗1(�3)♣ = �⊗ 1, and because
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♣Ψ�+1
�2
♣ ⊘ ♣Ψ�+1

� ♣⊗�, there must be a å ∈ Ψ�+1
� ∖ℋ

�.�⊗1(�3) such that �2 ̸⊢ å. Therefore

there must be an < �4, å >∈ � such that �2 ⊖ �4, and å ̸∈ ℋ�.�⊗1(�3). So we

have �2 ⊖ �3 ∩ �4, with �3 ∈ ℋ
�.�⊗1
def , �4 ∈< �4, å >∈ � and å ̸∈ ℋ�.�⊗1(�3). So

if �5 = �3 ∩ �4, then �5 ∈ � . But because �2 ⊖ �3 and �2 ⊖ �4, �2 ⊖ �5 must

hold, and because � ⊆ �2, � ⊆ �5 must hold as well, and therefore � ̸∈ max⊖� ,

which contradicts the hypothesis.

For the right inclusion, i.e. ℋ�.�
def = max⊖� ⊇ max⊖ℳ, let � ∈ max⊖ ∈ ℳ.

Then ♣Ψ�+1
� ♣ ⊘ ♣Ψ

�+1
� ♣ ⊗ �, and so ♣Ψ�+1

� ♣ ⊘ (♣Ψ�+1
� ♣ ⊗ �) + 1 = ♣Ψ�+1

� ♣ ⊗ (� ⊗ 1) as

well, such that � ∈ ¶� ⊖ � ♣ ♣Ψ�+1
� ♣ ⊘ ♣Ψ

�+1
� ♣ ⊗ (� ⊗ 1)♢. So there must be an

�2 ∈ max⊖¶� ⊖ � ♣ ♣Ψ�+1
� ♣ ⊘ ♣Ψ

�+1
� ♣ ⊗ (� ⊗ 1)♢ such that � ⊖ �2, and by IH,

�2 ∈ ℋ
�.�⊗1
def . From lemma 6.5.1.6, Cn(�2)∩ℋ

�.�⊗1(�2) = ∅, and from lemma 6.5.1.5,

♣ℋ�.�⊗1(�2)♣ = �⊗1. But ♣Ψ�+1
� ♣ ⊘ ♣Ψ

�+1
� ♣⊗ �, so there must be a å ∈ Ψ�+1

� ∖ℋ
�.�⊗1(�2)

such that � ̸⊢ å. Therefore there must be an �3 such that � ⊖ �3 and < �3, å >∈

� . So if �4 = �2 ∩ �3, we have �4 ∈ � and � ⊖ �4. Then if �4 ∈ � , there is

an �5 ∈ max⊖� = ℋ�.�
def such that �4 ⊖ �5, and � ⊖ �5 holds as well. Because

�5 ∈ ℋ
�.�
def, ℋ

�.�(�5) ⊖ Ψ�+1
� from lemma 6.5.1.4, ♣ℋ�.�(�5)♣ = � from lemma 6.5.1.5,

and Cn(�5)∩ℋ
�.�(�5) = ∅ from lemma 6.5.1.6. Therefore there are at least � formulas

in Ψ�+1
� ∖ Cn(�5), or in other words ♣Ψ�+1

�5
♣ ⊘ ♣Ψ�+1

� ♣ ⊗ �, such that �5 ∈ ℳ. Now

let us assume by contradiction that � ̸∈ max⊖� . Then because �5 ∈ max⊖� ,

� ̸= �5, and because � ⊖ �5, � ⊆ �5 must hold. But �5 ∈ ℳ as well, such that

� ̸∈ max⊖ℳ, contradicting the hypothesis.

Lemma 6.5.1.8. For 0 ⊘ � ⊘ �, if � ∈ ��,ℎ(�), � ⊖ � and Ψ>�
� ̸= ∅, then for all

0 ⊘ � ⊘ �, ♣Ψ�
�♣ = ℎ(�)

Proof. By induction on �. For the base case � = 0, ℎ(0) = 0, so if � ∈ �0,0, then

♣Ψ0
�♣ = 0, from the deĄnition of �, and by monotonicity, if � ⊖ �, ♣Ψ0

�♣ = 0 as well,

221



so for all 0 ⊘ � ⊘ 0, ♣Ψ0
�♣ = ℎ(0).

For the inductive case, by IH, ♣Ψ�
�♣ = ℎ(�) for all 0 ⊘ � < �. So we only

need to show that ♣Ψ�
�♣ = ℎ(�). From the deĄnition of ℎ, because ♣Ψ�

�♣ = ℎ(�) for all

0 ⊘ � < � and Ψ>�
� ̸= ∅, ♣Ψ

�
�♣ ⊙ ℎ(�) must hold. And from the deĄnition of �, because

� ∈ ��,ℎ(�), ♣Ψ�
�♣ = ℎ(�). Then by monotonicity, because � ⊖ �, ♣Ψ�

�♣ ⊘ ℎ(�), must

hold, such that ♣Ψ�
�♣ = ℎ(�).

Lemma 6.5.1.9. For � ⊘ � < � and 0 ⊘ � ⊘ ♣Ψ�+1
� ♣, if �� = max⊖(��,ℎ(�)), then

��.�2 = max⊖(��+1.♣Ψi+1
K

♣⊗�+1)

Proof. The following observation is immediate from the description of function Re-

fine: �2 ∈ �
�.�
2 if �2 ∈ max⊖¶�1 ∩ � ♣ < �1, � >∈ �� ×ℋ�.�⊗1

def ♢ and Ψ>�+1
�2

̸= ∅.

So from lemma 6.5.1.1, ��.�2 = max ⊖ ¶�1 ∩ � ♣ < �1, � >∈ �� × ℋ�.�⊗1
def and

Ψ>�+1
�1∩� ̸= ∅♢. As a notational shortcut, let � = ¶�∩� ♣ < �,� >∈ ��×ℋ�.�⊗1

def and

Ψ>�+1
�∩� ̸= ∅♢, such that ��.�2 = max⊖� .

Let us start with the left inclusion, i.e. if �� = max⊖(��,ℎ(�)), then ��.�2 ⊖

max⊖(��+1.♣Ψi+1
K

♣⊗�+1). Let �2 ∈ �
�.�
2 . Then because ��.�2 ⊖ �, �2 ∈ �, an there-

fore Ψ>�+1
�2

̸= ∅, so Ψ>�
�2
̸= ∅. Because �2 ∈ �, we also have �2 = � ∩ � for some

< �,� >∈ ��×ℋ�.�⊗1
def . From the hypothesis, �� = max⊖(��,ℎ(�)), so � ∈ ��,ℎ(�). And

because �2 ⊖ � and Ψ>�
�2
̸= ∅, from lemma 6.5.1.8, for all 0 ⊘ � ⊘ �, Ψ�

�2
= ℎ(�).

In addition, from lemma 6.5.1.7, � ∈ max⊖¶�
′ ⊖ � ♣ ♣Ψ�+1

�′ ♣ ⊘ ♣Ψ�+1
� ♣ ⊗ (� ⊗ 1)♢, so

♣Ψ�+1
� ♣ ⊘ ♣Ψ

�+1
� ♣ ⊗ (� ⊗ 1), and by monotonicity, ♣Ψ�+1

�2
♣ ⊘ ♣Ψ�+1

� ♣ ⊗ (� ⊗ 1) as well. So

we have Ψ�
�2

= ℎ(�) for all 0 ⊘ � ⊘ �, ♣Ψ�+1
�2
♣ ⊘ ♣Ψ�+1

� ♣⊗ (�⊗1), and Ψ>�+1
�2

̸= ∅, which

from the deĄnition of � imply that �2 ∈ �
�+1,♣Ψi+1

K
♣⊗�+1.

Now let us assume by contradiction that �2 ̸∈ max⊖(��+1,♣Ψi+1
K

♣⊗�+1). Then there

must be a � ∈ ��+1,♣Ψi+1
K

♣⊗�+1 such that �2 ⊆ �. Because � ∈ ��+1,♣Ψi+1
K

♣⊗�+1, for

all 0 ⊘ � ⊘ �, Ψ�
� = ℎ(�). So there must be a maximal subset �3 of � such that
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� ⊖ �3 and for all 0 ⊘ � ⊘ �, Ψ�
�3

= ℎ(�). Then because � ∈ ��+1,♣Ψi+1
K

♣⊗�+1,

from the deĄnition of �, Ψ>�+1
� ̸= ∅, so by monotonicity, Ψ>�+1

�3
̸= ∅ as well, and

therefore Ψ>�
�3
̸= ∅. So from the deĄnition of �, �3 ∈ �

�,ℎ(�), such that there must be

a �4 ∈ max⊖ �
�,ℎ(�) with �3 ⊖ �4, and from the hypothesis, �4 ∈ �

�. In addition,

because � ∈ ��+1,♣Ψi+1
K

♣⊗(�⊗1), ♣Ψ�+1
� ♣ ⊘ ♣Ψ

�+1
� ♣ ⊗ (� ⊗ 1) must hold, and so there is a

maximal �2 ⊖ � such that ♣Ψ�+1
�2
♣ ⊘ ♣Ψ�+1

� ♣ ⊗ (� ⊗ 1) and � ⊖ �2, and from lemma

6.5.1.7, �2 ∈ ℋ
�.�⊗1
def . So � ⊖ �4 ∩ �2. Now take �5 = �4 ∩ �2. Then � ⊖ �5, and

by monotonicity, because Ψ>�+1
� ̸= ∅, Ψ>�+1

�5
̸= ∅ as well. Therefore �5 ∈ �. But

because �2 ⊆ � and � ⊖ �5, �2 ⊆ �5 must hold, such that �2 ̸∈ max⊖� = ��.�⊗1
2 ,

contradicting the hypothesis.

Now let us continue with the right inclusion, i.e. if �� = max⊖(��,ℎ(�)), then

��.�2 = max⊖� ⊇ max⊖(��+1,♣Ψi+1
K

♣⊗�+1). Let � ∈ max⊖ �
�+1,♣Ψi+1

K
♣⊗�+1. Then from the

deĄnition of �, ♣Ψ�+1
� ♣ ⊘ ♣Ψ

�+1
� ♣⊗ �+1 = ♣Ψ�+1

� ♣⊗ (�⊗1), so from lemma 6.5.1.7, there

must be an � ∈ ℋ�.�⊗1
def such that � ⊖ �. From the deĄnition of � still, Ψ�

� = ℎ(�)

for all 0 ⊘ � ⊘ �, so there must be a maximal subset � of � such that � ⊖ � and

Ψ�
� = ℎ(�) for all 0 ⊘ � ⊘ �. Finally, Ψ>�+1

� ̸= ∅, so by monotonicity Ψ>�+1
� ̸= ∅,

and therefore Ψ>�
� ̸= ∅. So � ∈ ��,ℎ(�). Therefore there must be a �2 ∈ max⊖ �

�,ℎ(�)

such that � ⊖ �2, and from the hypothesis, �2 ∈ �
�. Now let �3 = �2 ∩ �. Then

� ⊖ �3, and because Ψ>�+1
� ̸= ∅, by monotonicity, Ψ>�+1

�3
̸= ∅ as well, such that

�3 ∈ �. Therefore there must be a �4 ∈ max⊖� such that �3 ⊖ �4, and by the

transitivity of ⊖, � ⊖ �4. Because �4 ∈ �, Ψ>�+1
�4

̸= ∅, and so Ψ>�
�4

must hold as

well. In addition, because �4 ∈ �, there is a < �5, �2 >∈ �
� × ℋ�.�⊗1

def such that

�4 = �5 ∩ �2, and from the hypothesis, �5 ∈ �
�,ℎ(�). So we have �5 ∈ �

�,ℎ(�), Ψ>�
�4

and �4 ⊖ �5, such that from lemma 6.5.1.8, Ψ�
�4

= ℎ(�) for all 0 ⊘ � ⊘ �. And from

lemma 6.5.1.7, because �2 ∈ ℋ
�.�⊗1
def , we have ♣Ψ�+1

�2
♣ ⊘ ♣Ψ�+1

� ♣⊗ (�⊗1) = ♣Ψ�+1
� ♣⊗ �+1,

so by monotonicity ♣Ψ�+1
�4
♣ ⊘ ♣Ψ�+1

� ♣ ⊗ � + 1 as well. So from the deĄnition of �,
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�4 ∈ �
�+1,♣Ψi+1

K
♣⊗�+1.

Now let us assume by contradiction that � ̸∈ max⊖� . Because �4 ∈ max⊖� ,

� ̸= �4, and because � ⊖ �4, � ⊆ �4 must hold. But �4 ∈ �
�+1,♣Ψi+1

K
♣⊗�+1, such

that � ̸∈ max⊖ �
�+1,♣Ψi+1

K
♣⊗�+1, contradicting the hypothesis.

6.5.1.6.2 Main proposition

Proposition. For � ⊘ � ⊘ �, �� = max⊖ �
�,ℎ(�)

Proof. By induction on �. For the base case � = �, from line 1 of algorithm 3,

�� = max⊖ ℬ
�. So we need to show that max⊖ ℬ

� = max⊖ �
�,ℎ(�). From the deĄnition

of �, � ∈ ��,ℎ(�) if � ⊖ � and the two following hold:

∙ for all 0 ⊘ � ⊘ �, ♣Ψ�
�♣ = ℎ(�)

∙ Ψ>�
� ̸= ∅

From the deĄnition of �, ℬ� ̸= ∅, and so there is a � ∈ ℬ� such that Ψ>�
� ̸= ∅

and Ψ⊘�
� = ∅, and therefore for each 0 ⊘ � ⊘ �, ℎ(�) = 0. Additionally, for any

� ∈ ℬ�, Ψ>�
� ̸= ∅ and Ψ⊘�

� = ∅, so � ∈ ��,ℎ(�). Similarly, from the deĄnition of �, for

any � ∈ ��,ℎ(�), Ψ>�
� ̸= ∅, and for all 1 ⊘ � ⊘ �, ♣Ψ�

�♣ = ℎ(�) = 0, so Ψ⊘�
� = ∅, and

therefore � ∈ ℬ�. So ℬ� = ��,ℎ(�), and as a consequence, max⊖ ℬ
� = max⊖ �

�,ℎ(�).

For the inductive case, let �� = max⊖ �
�,ℎ(�) hold by IH. Then we need to show

that��+1 = max⊖ �
�+1,ℎ(�+1) if �+1 ⊘ �. This choice is made (instead of � and �⊗1) in

order to follow the notation used in the description of function Refine. From lemma

6.5.1.9, because �� = max⊖ �
�,ℎ(�), ��.�2 = max⊖(��+1,♣Ψi+1

K
♣⊗�+1). As a consequence,

��.�2 = ∅ if ��+1,♣Ψi+1
K

♣⊗�+1 = ∅, and from the description of function Refine line 6, the

function must return when �2 = ∅. Then because �+1 ⊘ �, ℎ is deĄned for �+1, and

from the deĄnition of ℎ, ��+1,♣Ψi+1
K

♣⊗�+1 = ∅ if ♣Ψ�+1
� ♣⊗�+1 < ℎ(�+1), i.e if � > ♣Ψ�+1

� ♣⊗
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ℎ(�+ 1) + 1. So the function Refine must return exactly after ♣Ψ�+1
� ♣ ⊗ ℎ(�+ 1) + 2

iterations over its main loop, i.e. when � reaches ♣Ψ�+1
� ♣ ⊗ ℎ(�+ 1) + 2. At this stage,

��.�2 = ∅, and so from line 7 of the description of function Refine, the value returned

by the function is ��.�2 = ��.�⊗1
2 = �

�.♣Ψi+1
K

♣⊗ℎ(�+1)+1
2 . Let � = ♣Ψ�+1

� ♣ ⊗ ℎ(� + 1) + 1,

such that the value returned by function Refine is ��.�2 . Then from lemma 6.5.1.9,

and the fact that �� = max⊖ �
�,ℎ(�), ��.�2 = max⊖ �

�+1.♣Ψi+1
K

♣⊗�+1. Replacing � by

♣Ψ�+1
� ♣⊗ℎ(�+1)+1, this yields max⊖ �

�+1.♣Ψi+1
K

♣⊗(♣Ψi+1
K

♣⊗ℎ(�+1)+1)+1 = max⊖ �
�+1.ℎ(�+1).

So in algorithm 3 line 4, the function Refine returns max⊖ �
�+1.ℎ(�+1), such that

immediately after incrementing � line 5, �� = max⊖ �
�,ℎ(�).

6.5.1.7 Proposition 6.3.2.10

Proposition. For � ⊘ � < �, ��+1 = ��

Proof. By induction on �. For the base case � = �, when variable � reaches �, because

� < �, the main loop of algorithm 3 is executed at least once again, such that from

proposition 6.3.2.9, immediately before the call to the function Refine, line 4, the

value of variable � is �� = ��,ℎ(�). Then in function Refine, variable �2 line 11

must be a subset of some � ∈ �� = ��,ℎ(�). Because � ∈ ��,ℎ(�), for all 0 ⊘ � ⊘ �,

♣Ψ�
�♣ = ℎ(�), and because �2 ⊖ �, by monotonicity, ♣Ψ�

�2
♣ ⊘ ℎ(�). Now let us assume

that Ψ�
�2

< ℎ(�) for some 0 ⊘ � ⊘ �. Take the smallest � verifying this property.

From the deĄnition of ℎ, there is no � ⊖ � such that Ψ�
� = ℎ(�) for all 0 ⊘ � < �,

and Ψ�
� < ℎ(�) and Ψ>�

� ̸= ∅. So Ψ>�
�2

= ∅ must hold, and because � ⊘ �, Ψ>�+1
�2

= ∅

must hold as well. And if Ψ�
�2

= ℎ(�) for all 0 ⊘ � ⊘ �. from the deĄnition of �,

Ψ>�+1
�2

= ∅ as well. Then because, Ψ>�+1
�2

= ∅, the condition line 18 is never met, �2

is not retained in �2, and as a consequence, line 6 �∈ = ¶∅♢, such that the variable

�2 is not updated, and the function Refine returns its input, i.e. ��. So back to
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the function call in algorithm 3 line 4, � remains unchanged, such that ��+1 = ��.

For the inductive case, the proof is almost identical. By IH, �� = ��⊗1 = ��, so

variable �2 must be a subset of some � ∈ ��,ℎ(�) as well. Then for the same reason

as previously, Ψ>�+1
�2

= ∅ must hold, and because � < �, Ψ>�+1
�2

= ∅ holds as well, such

that line 18, �2 is not retained in �2, and the function Refine returns its input,

i.e. ��, and therefore ��+1 = ��.

6.5.1.8 Proposition 6.3.2.11

Proposition. max○lexK
2� = max○lexK

max⊖ �
�,ℎ(�)

6.5.1.8.1 Lemmas

Lemma 6.5.1.10. for 0 ⊘ � ⊘ �, ��,ℎ(�) ̸= ∅

Proof. Because � ⊘ �, ℎ(�) is deĄned, and from the deĄnition of ℎ, there is a � ⊖ �

verifying ♣Ψ>�
� ♣ ≠ ∅, ♣Ψ�

�♣ = ℎ(�) for all 1 ⊘ � < �, and ♣Ψ�
�♣ = ℎ(�), and therefore

immediately from the deĄnition of �, ��,ℎ(�) ̸= ∅.

For readability, Proposition 6.3.2.3 is reproduced here.

Proposition. � ∼lexK
�2 if either:

(1) for all 1 ⊘ � ⊘ �, ♣Ψ�
�1
♣ = ♣Ψ�

�2
♣, and �1 ⊆ �2, or

(2) there is a 1 ⊘ � ⊘ � such that for all 1 ⊘ � < � ♣Ψ�
�1
♣ = ♣Ψ�

�2
♣, and one of the

three following conditions holds:

(2.1) Ψ>�
�1

= ∅ and Ψ>�
�2
̸= ∅

(2.2) Ψ>�
�2
̸= ∅, and ♣Ψ�

�2
♣ < ♣Ψ�

�1
♣

226



(2.3) Ψ>�
�1

= ∅, Ψ>�
�2

= ∅, and ♣Ψ�
�2
♣ > ♣Ψ�

�1
♣

Lemma 6.5.1.11. If � ∈ max○lexK
2� , then � ∈ max⊖ �

�,ℎ(�)

Proof. By contraposition. Let �1 ̸∈ max⊖ �
�,ℎ(�). Then we need to show that �1 ̸∈

max○lexK
2� , i.e. that there is a �2 such that �1 ∼lexK

�2. If �1 ̸∈ max⊖ �
�,ℎ(�),

then either �1 ̸∈ �
�,ℎ(�), or �1 ∈ �

�,ℎ(�) but �1 ̸∈ max⊖ �
�,ℎ(�).

Let us start with the Ąrst possibility, i.e. �1 ̸∈ �
�,ℎ(�). From the deĄnition of �,

one of the two following must hold:

∙ (a) there is a 0 ⊘ � ⊘ �, such that ♣Ψ�
�1
♣ ≠ ℎ(�)

∙ (b) Ψ>�
�1

= ∅

From lemma 6.5.1.10, ��,ℎ(�) ̸= ∅. Take any �2 ∈ �
�,ℎ(�). Let us consider possibility

(a) Ąrst, i.e. the case where there is a 0 ⊘ � ⊘ �, such that ♣Ψ�
�1
♣ ≠ ℎ(�), and take

the smallest � verifying this property. From the deĄnition of �, Ψ>�
�2
̸= ∅, so because

� ⊘ �, Ψ>�
�2
̸= ∅ as well. Additionally, for all 0 ⊘ � < �, Ψ�

�1
= Ψ�

�2
= ℎ(�). So if

Ψ>�
�1

= ∅, from proposition 6.3.2.3 property (2.1), �1 ∼lexK
�2 must hold. If Ψ>�

�1
̸= ∅,

from the deĄnition of ℎ, ♣Ψ�
�1
♣ ⊙ ℎ(�), and because Ψ�

�1
̸= ℎ(�), ♣Ψ�

�1
♣ > ℎ(�) = ♣Ψ�

�2
♣

must hold, so from proposition 6.3.2.3 property (2.2), �1 ∼lexK
�2 holds as well.

Now for possibility (b), let us assume that Ψ>�
�1

= ∅, but for all 0 ⊘ � ⊘ �,

♣Ψ�
�1
♣ = ♣Ψ�

�2
♣ = ℎ(�). In this case too, because Ψ>�

�2
̸= ∅, from proposition 6.3.2.3

property (2.1), �1 ∼lexK
�2 must hold.

So if �1 ̸∈ �
�,ℎ(�), then �1 ̸∈ max∼lexK

2� . Now let us assume that �1 ∈ �
�,ℎ(�),

but �1 ̸∈ max⊖ �
�,ℎ(�). Then there is a �2 ∈ �

�,ℎ(�) such that �1 ⊆ �2. From the

deĄnition of �, for all 0 ⊘ � ⊘ �, ♣Ψ�
�1
♣ = ♣Ψ�

�2
♣ = ℎ(�). And from the deĄnition of

�, Ψ>�+1
�1

= Ψ>�+1
�2

= ∅. So for all 0 ⊘ � ⊘ �, ♣Ψ�
�1
♣ = ♣Ψ�

�2
♣, and because �1 ⊆ �2,

from proposition 6.3.2.3 property (1), �1 ∼lexK
�2.
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6.5.1.8.2 Main proposition

Proposition. max○lexK
2� = max○lexK

max⊖ �
�,ℎ(�)

Proof. For the left inclusion, we need to show that max○lexK
2� ⊖ max○lexK

max⊖ �
�,ℎ(�).

Let � ∈ max○lexK
2� . Then from lemma 6.5.1.11, � ∈ max⊖ �

�,ℎ(�). Now let us as-

sume by contradiction that � ̸∈ max○lexK
max⊖ �

�,ℎ(�). Because � ∈ max⊖ �
�,ℎ(�),

there must be a �′ ∈ max⊖ �
�,ℎ(�) such that � ∼lexK

�′. Now from the deĄnition

of �, ��,ℎ(�) ⊖ 2� . So max⊖ �
�,ℎ(�) ⊖ 2� as well, such that �′ ∈ 2� . Then because

� ∈ max○lexK
2� , �′ ○lexK

� must hold, which contradicts � ∼lexK
�′.

For the right inclusion, we need to show that max○lexK
2� ⊇ max○lexK

max⊖ �
�,ℎ(�).

Let � ∈ max○lexK
max⊖ �

�,ℎ(�). From the deĄnition of �, ��,ℎ(�) ⊖ 2� . So max○lexK

max⊖ �
�,ℎ(�) ⊖ 2� as well, such that � ∈ 2� . Now let us assume by contradic-

tion that � ̸∈ max○lexK
2� . Because � ∈ 2� , there must be a �′ ∈ 2� such that

� ∼lexK
�′, and a �′′ ∈ max○lexK

2� such that � ∼lexK
�′ ○lexK

�′′. But from lemma

6.5.1.11, �′′ ∈ max⊖ �
�,ℎ(�). So because � ∈ max○lexK

max⊖ �
�,ℎ(�), �′′ ○lexK

� must

hold, which contradicts � ∼lexK
�′′.

6.5.2 Complexity of algorithm 3

6.5.2.1 Proposition 6.3.2.13

Proposition. �(�) = Ω(��), with � > 1

First, one may observe that in the worst case, the number of base remainders for

a given consequence å can be the cardinality of some maximal subsetℳ of 2� such

that for all �1,�2 ∈ℳ, �1 ̸⊖�2. If ♣�♣ is odd,ℳ is the family of all subsets of �

either of size ⌈ ♣�♣
2
⌉ or of size ⌊ ♣�♣

2
⌋. For instance, if � = ¶ã1, ã2, ã3♢, then it may be

the case for some å ∈ Cn(�) that ℛ⊖(å,�) = ¶¶å1, å2♢, ¶å2, å3♢, ¶å1, å3♢♢. If ♣�♣
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is even,ℳ is the family of all subsets of � of size ♣�♣
2

. But in both cases (whether �

is odd or even), ♣� ♣ =
⎞

♣�♣

⌈
♣K♣

2
⌉

⎡

. Therefore whichever the DL under consideration is,

�(�) = Ω(
⎞

�
⌈ n

2
⌉

⎡

). Or to simplify notation, if � : N+ ↦⊃ N is deĄned by �(�) =
⎞

�
⌈ n

2
⌉

⎡

,

then �(�) = Ω(�(�)).

To simplify notation still, let �(�) = �(� ⊗ 1) . . . (� ⊗ (� ⊗ 1)). For instance,

6(3) = 6× 5× 4.

Let us assume that � ⊙ 2, and let us start with the case where � is even. Then

immediately from the deĄnition of the binomial coeicient, if �(�) =
⎞

�
⌈ n

2
⌉

⎡

, the

following must hold:

�(�) = �
( n

2 )

( n
2

)!

And because �
2

= ⌈�⊗1
2
⌉ when � is even, we have:

�(�) = �
(⌈ n⊗1

2 ⌉)

(⌈ n⊗1
2

⌉)!

�(�) = �
⌈ n

2
⌉
≤ (�⊗1)

(⌈ n⊗1
2 ⌉)

(⌈ n⊗1
2

⌉)!

�(�) = �
⌈ n

2
⌉
≤ �(�⊗ 1)

For instance, if � = 6, then �(�⊗ 1) =
⎞

5
3

⎡

= 53

3!
= 5×4×3

3!
,

and �(�) =
⎞

6
3

⎡

= 63

3!
= 6×5×4

3!
= 6×5×4×3

3!×3
= 6

3
≤

⎞

5
3

⎡

If � is odd instead, then:

�(�) = �
⌈ n

2 ⌉

⌈ n
2

⌉!

And because ⌈�
2
⌉ = �⊗1

2
+ 1 when � is odd, we have:

�(�) = �
( n⊗1

2 +1)

( n⊗1
2

+1)!

�(�) = �
⌈ n

2
⌉
≤ (�⊗1)

( n⊗1
2 )

( n⊗1
2

)!
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�(�) = �
⌈ n

2
⌉
≤ �(�⊗ 1)

For instance, if � = 5, then �(�⊗ 1) =
⎞

4
2

⎡

= 42

2!
= 4×3

2!
,

and �(�) =
⎞

5
3

⎡

= 53

3!
= 5×4×3

3×2!
= 5

3
≤

⎞

4
2

⎡

So in both cases (� odd and even), the following recursion holds:

�(�) = �
⌈ n

2
⌉
≤ �(�⊗ 1)

Let �� = �
⌈ n

2
⌉
. Then for � > 1, we have �(�) = �(1)× �2, ..,×�� = 1× �2, ..,×��. If �

is even, then �� = 2, whereas the minimal value for �� when � is odd is �3 = 3
2
< 2.

Therefore for � > 1, we have �(�) > (3
2
)�. So if � = �3 = 3

2
, we have �(�) > ��, and

because �(�) = Ω(�(�)), �(�) = Ω(��) must hold as well. Finally, because � = 3
2
> 1,

�(�) is at least exponential in � the worst case.

6.5.2.2 Proposition 6.3.2.14

Proposition. �(�) = �(♣Ψ� ♣ ≤ �(�))

6.5.2.2.1 Lemmas

Lemma 6.5.2.1. Let � ̸⊢ ⊥, and Ψ ⊖ Cn(�) such that for all å ∈ Ψ, Cn(å) ̸=

Cn(∅). If Ψ = Ψ1∪Ψ2, thenℛ∨
⊖(Ψ, �) = max⊖¶�1∩�2 ♣ < �1, �2 >∈ ℛ

∨
⊖(Ψ1, �)×

ℛ∨
⊖(Ψ2, �)♢

Proof. Let � = ¶�1 ∩�2 ♣ < �1, �2 >∈ ℛ
∨
⊖(Ψ1, �)×ℛ∨

⊖(Ψ2, �)♢,

Let us start with the left inclusion, i.e. ℛ∨
⊖(Ψ, �) ⊖ max⊖� , and let � ∈

ℛ∨
⊖(Ψ, �). Then from the deĄnition of ℛ⊖, Cn(�) ∩ Ψ = ∅, and because Ψ1 ⊖ Ψ

Cn(�) ∩ Ψ1 = ∅ as well. So there must be an �1 ∈ ℛ
∨
⊖(Ψ1, �) such that � ⊖ �1.

Similarly, because Ψ2 ⊖ Ψ, there must be an �2 ∈ ℛ
∨
⊖(Ψ1, �) such that � ⊖ �2.

Take �3 = �1 ∩ �2. Then �3 ∈ �. So there must be an �4 ∈ max⊖� such that
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�3 ⊖ �4. And because �4 ∈ �, it must verify Cn(�4)∩Ψ1 = ∅ and Cn(�4)∩Ψ2 = ∅,

therefore Cn(�4) ∩ Ψ = ∅. By the transitivity of ⊖, � ⊖ �4, so if � ̸= �4, � ⊆ �4

must hold. But because Cn(�4)∩Ψ, this would contradict � ∈ ℛ∨
⊖(Ψ, �), so � = �4

must hold, an therefore � ∈ max⊖� .

For the right inclusion, i.e. ℛ∨
⊖(Ψ, �) ⊇ max⊖� , let � ∈ max⊖� . Then Cn(�)∩

Ψ1 = ∅ and Cn(�)∩Ψ2 = ∅, so Cn(�)∩Ψ = ∅. Now let us assume by contradiction

that � ̸∈ ℛ∨
⊖(Ψ, �). Because Cn(�) ∩ Ψ = ∅, the only remaining possibility is

that there is an � ⊆ �2 such that Cn(�2) ∩ Ψ = ∅. Then there must be an �3 ∈

ℛ∨
⊖(Ψ, �) such that �2 ⊖ �3 and because Cn(�3) ∩ Ψ = ∅, �3 ∈ �. But because

� ⊆ �2 and �2 ⊖ �3, � ⊆ �3 must hold, such that � ̸∈ max⊖� , contradicting the

hypothesis.

6.5.2.2.2 Main proposition

Proposition. �(�) = �(♣Ψ� ♣ ≤ �(�))

As a reminder, � is the cumulated cost of the execution of algorithms 2 and 3.

and � is the cost of computing ℛ⊖(å,�) for some å ∈ Ψ� , both being expressed as

functions of ♣�♣.

From proposition 6.3.2.13, �(�) = Ω(��), with � > 1.

In addition, the two following properties, which were shown to hold in Section

6.5.2.1, will be useful. Let � : N+ ↦⊃ N be deĄned by �(�) =
⎞

�
⌈ n

2
⌉

⎡

.

∙ If Γ is a Ąnite set, and if ℳ ⊖ 2Γ ∖ ¶∅♢ is such that for all �1,�2 ∈ ℳ,

�1 ̸⊖�2, then ♣ℳ♣ ⊘ �(♣Γ♣).

∙ �(�) = Ω(�(�))

Let us start with phase 1, i.e. algorithm 2, and let us assume temporarily that

ℛ∨
⊖(Ψ�

� , �) is known for each 1 ⊘ � ⊘ �, a well as ℛ∨
⊖(Ψ>�

� , �) for each 1 ⊘ � < �.
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A Ąrst remark is that at any state of the execution, due to lines 10 to 12 of algorithm 2

and the initialization of �, for all �1, �2 ∈ �, if �1 ̸= �2, then �1 ̸⊖ �2. So because

� ⊖ 2� , from the observation made in Section 6.5.2.1, ♣�♣ ⊘ �(♣�♣) must hold. This

property also holds for �, which at any state is either ∅ or a copy of a previous

state of �, from line 5, so ♣�♣ ⊘ �(♣�♣). Finally, from the deĄnition of ℛ⊖, all � ∈

ℛ∨
⊖(Ψ�+1

� , �) are maximal wrt set inclusion, such that for all �1, �2 ∈ ℛ
∨
⊖(Ψ�+1

� , �),

if �1 ̸= �2, then �1 ̸⊖ �2, and therefore ♣ℛ∨
⊖(Ψ�+1

� , �)♣ ⊘ �(♣�♣) holds as well. So

line 9, because each �2 is the intersection of some < �1, � >∈ �×ℛ∨
⊖(Ψ�+1

� , �), the

number of generated intersections is ♣�♣×♣ℛ∨
⊖(Ψ�+1

� , �)♣, which is (loosely) bounded

by �(♣�♣)2. Then lines 10 an 11, �2 is compared wrt set inclusion to each � ∈ �

(comparing once �2 to each � ∈ � is enough for the execution of both lines 10

and 11), so the number of comparisons performed at each execution of lines 10 and

11 is bounded by �(♣�♣)2 × ♣�♣ < �(♣�♣)3. Then line 16 veriĄes for each �2 ∈ �

whether Ψ>�+1
�2

= ∅. For a given �2 and a given �, although it is arguably very

ineicient, this is equivalent to verifying whether there is an � ∈ ℛ∨
⊖(Ψ>�+1

� , �) such

that �2 ⊖ �. So if ℛ∨
⊖(Ψ>�+1

� , �) is known (which, again, is temporarily assumed),

the number of pairwise comparisons line 16 between an element of � and an element

of ℛ∨
⊖(Ψ>�+1

� , �) is once again bounded by �(♣�♣)2. To sum up, during each iteration

of the main loop of algorithm 2, less than �(♣�♣)2 pairwise intersections of subsets of

� are computed line 9, less than �(♣�♣)3 pairwise comparisons of subsets of � wrt set

inclusion are preformed lines 10 and 11, and less than �(♣�♣)2 pairwise comparisons

of subsets of � wrt set inclusion are preformed line 16. Finally, the number of

iterations over the main loop of algorithm 2 is bounded by �.

Let �1(�) express the cost of algorithm 2 as a function of ♣�♣, assuming still

temporarily that ℛ∨
⊖(Ψ�

� , �) is known for each 1 ⊘ � ⊘ �, a well as ℛ∨
⊖(Ψ>�

� , �)

for each 1 ⊘ � < �. Comparing two sets of cardinality ⊘ � wrt to set inclusion or

232



computing their intersection is in �(� log �). Therefore from the above observations,

�1(�) = �(�(�(�)2� log � + �(�)3� log � + �(�)2� log �)) = �(�� log �(2�(�)2 +

�(�)3)) = �(��(�)3).

Now let us focus on the computation of all ℛ∨
⊖(Ψ�

� , �) for 1 ⊘ � ⊘ � (which

were temporarily assumed to be known). From lemma 6.5.2.2.1, the following (poorly

optimized) strategy can in theory be applied:

∙ Compute ℛ⊖(å,�) for each å ∈ Ψ�
� . The cumulated cost is bounded by

♣Ψ�
� ♣ ≤ �(♣�♣).

∙ If Ψ�
� = ¶å1, .., å�♢, iteratively compute ℛ∨

⊖(¶å1, .., å�♢, �) =

max⊖¶�1 ∩ �2 ♣ < �1, �2 >∈ ℛ
∨
⊖(¶å1, .., å�♢, �) × ℛ⊖(å�+1, �)♢, for each

0 ⊘ � < �. At each step, from the deĄnition of ℛ⊖, both ♣ℛ∨
⊖(¶å1, .., å�♢, �)♣

and ♣ℛ⊖(å�+1, �)♣ are bounded by �(♣�♣), so the number of candidate in-

tersections �1 ∩ �2 to compute is bounded by �(♣�♣)2, and the number of

pairwise comparisons wrt set inclusion (for the max⊖ operation) is bounded

by �(♣�♣)2 ≤ ♣ℛ∨
⊖(¶å1, .., å�+1♢, �)♣ < �(♣�♣)3. In addition, there are � ⊗ 1 =

♣Ψ�
� ⊗ 1♣ < ♣Ψ�

� ♣ iterative steps.

So if �2(�) expresses as a function of ♣�♣ the cost of computing all ℛ∨
⊖(Ψ�

� , �) for

all 1 ⊘ � ⊘ �, then �2(�) = �(
�︁

�=1
(♣Ψ�

� ♣ ≤ �(�) + ♣Ψ�
� ♣ ≤ (�(�)2� log �+ �(�)3� log �)).

And because
�︁

�=1
♣Ψ�

� ♣ = ♣Ψ� ♣, this may be factorized into �2(�) = �(♣Ψ� ♣ ≤ (�(�) +

�(�)2� log �+ �(�)3� log �)) = �(♣Ψ� ♣ ≤ (�(�) + �(�)3)).

Finally, let us consider the computation of all ℛ∨
⊖(Ψ>�

� , �) for 1 ⊘ � < � (which

was also temporarily assumed to be known). If ℛ∨
⊖(Ψ�

� , �) is known for each 1 ⊘

� ⊘ �, for instance by applying the above procedure (i.e. the procedure whose

cost is �2), then each ℛ∨
⊖(Ψ>�

� , �) can be computed by induction on �, starting with
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� = �⊗ 1. For the base case, we have ℛ∨
⊖(Ψ>�⊗1

� , �) = ℛ∨
⊖(Ψ�

� , �). Then for each

0 ⊘ � < �⊗2, Ψ>�
� = Ψ>�+1

� ∪Ψ�+1
� , such that from lemma 6.5.2.2.1, ℛ∨

⊖(Ψ>�
� , �) can

be computed as max⊖¶�1 ∩�2 ♣ < �1, �2 >∈ ℛ
∨
⊖(Ψ>�+1

� , �)×ℛ⊖(Ψ�+1
� , �)♢. The

number of candidate intersections at each iterative step is once again bounded by

�(♣�♣)2, the number of pairwise comparisons wrt set-inclusion by �(♣�♣)3, and there

are � inductive steps. Let �3(�) express the cost as a function of ♣�♣ of computing

all ℛ∨
⊖(Ψ>�

� , �) for all 0 ⊘ � < �, provided ℛ∨
⊖(Ψ�

� , �) has already been computed

for all 1 ⊘ � ⊘ �. Then �3(�) = �(�(�(�)2� log �+ �(�)3� log �)) = �(��(�)3).

Therefore if �4(�) expresses the cost the execution of algorithm 2 as a function

of ♣�♣, then �4(�) = �1(�) + �2(�) + �3(�) = �(��(�)3) +�(♣Ψ� ♣ ≤ (�(�) + �(�)3)) +

�(��(�)3). And because � ⊘ ♣Ψ� ♣, this can be reduced to �4(�) = �(♣Ψ� ♣ ≤

�(�)3) + �(♣Ψ� ♣ ≤ (�(�) + �(�)3)) + �(♣Ψ� ♣ ≤ �(�)3) = �(♣Ψ� ♣ ≤ (3�(�)3 + �(�)) =

�(♣Ψ� ♣ ≤ (�(�)3 + �(�)).

For phase 2 of the procedure, i.e. for algorithm 3, the explanation is almost

identical, and therefore it will not be presented in full details here. The function

Refine in particular is very similar to algorithm 2. The families �, �2, �2, ℋdef,

and ℋ′
def also have the property that their elements are maximal wrt set inclusion,

therefore their cardinality is also bounded by �(�).

So line 11 of function Refine, the number of generated intersections is bounded

by �(�)2, and the number of pairwise comparisons lines 12 and 13 by �(�)3. For

the veriĄcation line 18 that Ψ>�+1
�2

̸= ∅, if ℛ∨
⊖(Ψ>�+1

� , �) is known (and the cost of

its computaion has already been taken into account in �4(�)), then the number of

pairwise comparisons is bounded by �(�)2. The cost of computing � has already been

taken into account in �4(�) as well, so if �5(�) expresses as a function of ♣�♣ the cost of

the execution of one iteration of the main loop of function Refine, assuming that �

andℛ∨
⊖(Ψ>�+1

� , �) are known, then �5(�) = �(�(�)2� log �+�(�)3� log � = �(�(�)3).
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The cardinality of � is not bounded by �(�) though. Intuitively, � contains

all base remainders sets for all å ∈ Ψ�+1
� . For instance, it may be the case that

� = ¶< �2, å1 >,< �2, å2 >}. Therefore ♣�♣ is bounded by ♣Ψ�+1
� ♣ ≤ �(�). Note that

this does not afect the cardinality of ℋdef. Line 7 of function Update, it may be the

case that a same intersection �3 is generated multiple times during the execution.

But because ℋdef is a set, �3 can appear only once in it, and line 10, a single value

ℋ′(�1) ∪ ¶å♢ for ℋ(�3) is computed. So in a sense, the choice of this value is

non-deterministic: if � = ¶< �2, å1 >,< �2, å2 >♢ for instance, then ℋ(�3) may

take either ℋ′(�1) ∪ ¶å1♢ or ℋ′(�1) ∪ ¶å2♢. But as shown in section 6.5.1, and in

particular by lemma 6.5.1.9, this does not afect the correctness of the procedure. So

lines 4 and 5 of function Update, ♣ℋ′
def(�1)×�♣ < �(�)≤(♣Ψ�+1

� ♣≤�(�)) = ♣Ψ�+1
� ♣≤�(�)2.

Line 6, because ℋ′(�1) ⊖ Ψ�+1
� from lemma 6.5.1.4, ♣ℋ′(�1)♣ ⊘ ♣Ψ

�+1
� ♣ must hold,

such that the cost of verifying whether å ∈ ℋ′(�1) is in �(♣Ψ�+1
� ♣). Line 7, the

number of generated intersections is bounded by ♣ℋ′
def(�1) × �♣ < ♣Ψ

�+1
� ♣ ≤ �(�)2.

And line 8, ♣ℋ′
def♣ < �(�). So the number of pairwise comparisons is bounded by

♣Ψ�+1
� ♣�(�)2 ≤ �(�) = ♣Ψ�+1

� ♣ ≤ �(�)3. So if �6(�) expresses as a function of ♣�♣ the

cost of one execution of function Update, then �6(�) = �(♣Ψ�+1
� ♣ ≤ �(�)2� + ♣Ψ�+1

� ♣ ≤

�(�)2� log �+ �(�)3� log �)) = �(♣Ψ�+1
� ♣ ≤ �(�)3).

Finally, let �7(�) express as a function of ♣�♣ the cost of the execution of algorithm

3, provided ℛ⊖(å,�) is known for all å ∈ Ψ� , and ℛ∨
⊖(Ψ>�

� , �) for all 0 ⊘ � < �

(the cost of the computation of these is already taken into account in �4(�)). Then

�7(�) = �(
�︁

�=1
(�5(�) + �6(�))) = �(

�︁

�=1
(�(�(�)3) + �(♣Ψ�

� ♣ ≤ �(�)3))), and because

�︁

�=1
♣Ψ�

� ♣ = ♣Ψ� ♣, we have �7(�) = �(�(�(�)3) +�(♣Ψ� ♣ ≤ �(�)3)) = �(♣Ψ� ♣ ≤ �(�)3).

So �(�) = �4(�) + �7(�) = �(♣Ψ� ♣ ≤ (�(�)3 + �(�)) + �(♣Ψ� ♣ ≤ �(�)3) = �(♣Ψ� ♣ ≤

(2�(�)3 + �(�)) = �(♣Ψ� ♣ ≤ (�(�)3 + �(�)).
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Then because �(�) = Ω(�(�)), �(�) = �(�(�)) must hold. So �(�)3 = �(�(�)3),

such that �(�) = �(♣Ψ� ♣ ≤ (�(�)3 +�(�)) = �(♣Ψ� ♣ ≤ (�(�)3 +�(�)) = �(♣Ψ� ♣ ≤�(�)3).

Now if � > 1, (��)3 = �3� = �(��) holds. So for any function ℎ such that

ℎ(�) = Ω(��), (ℎ(�))3 = �(ℎ(�)) must hold as well. In particular, from proposition

6.3.2.13, there is a � > 1 such that �(�) = Ω(��), so (�(�))3 = �(�(�)) must hold,

and because �(�) = �(♣Ψ� ♣ ≤ (�(�)3), we have �(�) = �(♣Ψ� ♣ ≤ �(�)).
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Chapter 7

Introducing explicit ontological

distinctions

After the detection of nonsense on a linguistic basis in a consistent/coherent KB �,

addressed in Chapters 4 and 6, this chapter investigates the detection of nonsense in

� on a formal basis, extending � with explicit ontological distinctions, in order to

yield an inconsistent/incoherent KB. After this extension step, more traditional (and

more or less automated) KB debugging methods may be applied to solve the incon-

sistency/incoherence, for instance computing justiĄcations (see Chapter 3 Section

3.5), or performing syntax-based revision like described in Chapter 8.

A Ąrst requirement on this extension phase is that it should be meaningful, i.e.

the inconsistency/incoherence of the extended KB should be caused by violations of

common sense of the type described in Chapter 1, which are the primary target of

debugging strategies developed throughout this thesis. To this end, the strategy pro-

posed in this chapter relies on formal ontology (as a discipline), and more speciĄcally

on a foundational ontology (as an artifact), both introduced in Section 7.1. This is
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an arguably unconventional use of foundational ontologies, which are traditionally

used to structure a new KB rather than correcting it. Instead, the most inĆuential

debugging framework based on formal ontology is probably the OntoClean method-

ology [GW00], presented in Section 7.2. But applying OntoClean to a whole KB has

been empirically shown to be complex and time-consuming, as explained in Section

7.2.3.

Section 7.3 proposes a shallow and partial, but robust and cost-eicient alterna-

tive. It is robust in that any (fragment of a) foundational ontology expressed in OWL

may be used for that purpose. And it is cost-eicient because it relies on the man-

ual attachment1 to the foundational ontology of a very limited number of elements

of sig(�), based on the simple intuition that an element of sig(�) is more likely

to be used with incompatible meanings within � if it appears in a higher number

of axioms.2 The objective is to maximize the number of common sense violations

potentially spotted while limiting the amount of manual work.

Finally, Section 7.4 proposes an evaluation of this extension strategy based on

the foundational ontology TMEO [JVZ+14], which can be viewed as a simpliĄed and

slightly extended version of the taxonomy of DOLCE [MBG+03]. If � is the input

KB, Θ the foundational ontology, and Δ the manually crafted attachment axioms,

then this extension strategy is evaluated based on its ability to identify erroneous

axioms of � as involved in the inconsistency/incoherence of � ∪ Θ ∪Δ. An axiom

ã ∈ � is involved in the inconsistency/incoherence of �∪Θ∪Δ if it appears in some

justiĄcation (see Chapter 3 Section 3.5) for the inconsistency/incoherence. These

Ąrst empirical results seem to indicate that a shallow and fast ontological analysis

1The meaning of attachment will be made more precise in Section 7.3.1.
2 This formulation is a slight simplification for the sake of readability. In practice, not only is

the number of axioms of � in which an element of sig(�) appears taken into account, but also to
a certain extend the diversity of these axioms, as explained in Section 7.3.2.
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may be suicient to identify a reasonable number of actually erroneous axioms as

involved in the inconsistency/incoherence.

As an alternative to TMEO, one of the datasets used in Chapter 8 relies on the

attachments of DBpedia concepts to the foundational ontology Proton [TKM05].

These attachments to Proton are not evaluated in Section 7.4, because they were

performed by [DKSP10] independently from the work presented in this thesis.3

7.1 Formal ontology and foundational ontologies

Formal ontology, as a discipline, provides philosophically grounded axiomatizations

of domain independent notions, for instance theories of parthood, of time and space,

of identity, of qualities, etc., as well as high-level categorizations of Şwhat there isŤ.

From a more applied perspective, foundational ontologies, also called top-level

ontologies, like BFO or DOLCE (both described in [MBG+03]), have been success-

fully used as the backbone of multiple KBs (e.g. CIDOC CRM [Doe03] for DOLCE),

or even families of KBs (e.g. Bioportal4 for BFO). They are prototypically based on

a small set of primitive and relatively abstract unary predicates/DL atomic concepts

such as Physical Entities, Events, Time intervals, etc. . . .

Each foundational ontology reĆects a speciĄc conceptualization, and these con-

ceptualizations tend to be mutually exclusive, corresponding to alternative modeling

choices. As an illustration, the choice is made in DOLCE to reify qualities, inspired

by trope theory [Cam81]. The example used by [MBG+03] to illustrate this choice is

the color of a given Ćower, which, according to DOLCE, is considered as an individ-

ual, distinct from the Ćower itself, and from the value of this color. This individual

3Proton was nonetheless manually extended with a small number of disjointness axioms for these
experiments, i.e. axioms of the form � ⊑ ¬�, as explained in Chapter 8 Section 8.6.1.

4http://bioportal.bioontology.org/
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can be predicated over (as it can be predicated over in natural language), and its

value (hue × saturation × luminosity) may change with time. No assumption is

made though as to whether such a conceptualization more accurately describes the

nature of things (whatever this may mean) than another one which does not reify

qualities. Therefore a given KB � may or may not adopt this view, depending on

applicative requirements. The important point is that if � does (or does not) follow

this view, it should do (or not do) it systematically.

Another interesting illustration was given by example 1.1.1, in Chapter 1. Some

of these axioms are reproduced here, together with a few other ones, once again from

DBpedia:

Ex 7.1.1.

� = ¶

(1) occupation(Peter Munk, CEO)

(2) ⊤ ⊑ ∀occupation.PersonFunction

(3) ∃hasPersonName.⊤ ⊑ PersonFunction

(4) occupation(Peter Munk, Peter Munk 1 )

(5) occupation(Ernest Noel, Ernest Noel 1 )

(6) occupation(Ernest Noel, Ernest Noel 2 )}

The intended meaning of Peter Munk 1, Ernest Noel 1 and Ernest Noel 2 in

axioms 4 to 6 may not be obvious at Ąrst sight. It becomes clear though from the

following DBpedia datatypeProperty assertions:5

(a) title(Peter Munk 1, ŞCEO of Barrick GoldŤ)

5The second argument of these assertions is a string, not a DL individual. In particular, it cannot
be predicated over. For the treatment of datatypeProperty assertions adopted in this thesis, see
Chapter 2 Section 2.3.1.
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(b) title(Ernest Noel 1, ŞMember of ParliamentŤ)

(c) title(Ernest Noel 2, ŞBusinessmanŤ )

Ernest Noel 1 stands for ŞErnest Noel as a member of ParliamentŤ, and Ernest

Noel 2 for ŞErnest Noel as a businessmanŤ, such that occupation in axioms 4 to

6 is understood as ranging over individual roles (similar to the qua-individuals of

[MGV+05]) which are speciĄc to a given human being. This meaning of occupation

is reinforced by axiom 3, which suggests a mapping from such roles to person names.

Representing individual roles in a given KB may or may not be relevant, depending

on applicative requirements. But once again, if the choice is made to adhere to such

a conceptualization, it should probably be done in a systematic fashion. In particular

here, if the instances of PersonFunction are meant to be individual roles, and/or if

occupation is understood as ranging over individual roles,6 then the Ąrst statement

is clearly an outlier.

Now a foundational ontology which commits to the representation of individ-

ual roles, will also commit to the fact that nothing can be both an individual role

and a profession, title or activity like CEO (i.e., in formal ontology terms, a role

[MVB+04]).7 For instance, ŞPeter Munk as CEO of Barrick GoldŤ, i.e. Peter Munk

1 above, is certainly not the same individual as CEO understood as the profes-

sional activity of Peter Munk. In particular, other human beings could have CEO

as an activity, whereas Peter Munk 1 can be the occupation of Peter Munk only (in

ontological terms, it is speciĄcally dependent on Peter Munk 1 ).

So if Θ is a (fragment of a) foundational ontology where individual roles and ac-

6 The disproportion in example 7.1.1 between the two meanings of occupation (ranging over
either individual roles or activities) may not (and is not meant to) reflect its usage in DBpedia as
a whole. In particular there are other occurrences of occupation similar to axiom (1).

7 In order to avoid possible confusions, this meaning of the word role for formal ontology has
nothing to do with its meaning in DL role.
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tivities are modeled, and if IndividualRole and Activity are the two elements

of sig(Θ) respectively representing these notions, then Θ ⊢ IndividualRole ⊑

¬Activity will hold. Let us also assume that none of the predicates or constants

of Θ appears in �, i.e. sig(�) ∩ sig(Θ) = ∅, which is generally the case. CEO in

� apparently designates an activity, which can be expressed by Activity(CEO),

whereas according to its dominant use within �, occupation ranges over individu-

als roles, which may be expressed by ⊤ ⊑ ∀occupation.IndividualRole. Provided

a good understanding of Θ, and assuming the focus is already put on CEO and

occupation, this type of manual analysis can be performed rapidly, by reviewing

the respective occurrences of CEO and occupation in �. And extending � ∪ Θ

with Δ = ¶Activity(CEO),⊤ ⊑ ∀occupation.IndividualRole♢ yields an incon-

sistent � ∪Θ ∪Δ.

In practice, a manual ontological analysis of the input KB with the help of a core

ontological knowledge Θ may be more or less diicult to perform, depending on Θ.

For instance, the OntoClean methodology, presented in the next section, relies on

some arguably complex or subtle ontological distinctions. The notions of quality and

individual role described above may also (to a lesser extent) be perceived as complex,

or not commonly used outside of the formal ontology community (and DBpedia for

the latter). But in practice, an eicient analysis can also be performed with more

standard ontological distinctions. In particular, the formal ontology TMEO used

in Section 7.4 (as well as Proton) relies on widely accepted categories in knowledge

engineering, such as physical entities, events, time intervals, etc.
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7.2 OntoClean

The OntoClean methodology [GW00] is probably the best-known KB debugging

approach based on formal ontology, and difers by several aspects from the shallow

ontological analysis just illustrated. Section 7.2.1 is an introduction to OntoClean as

a theory, whereas Section 7.2.2 reviews its diferent OWL implementations. Finally,

Section 7.2.3 explains the (practical) motivations behind the use of a shallow analysis

with a top-level ontology instead of OntoClean for the experiments described in

Section 7.4.

7.2.1 Overview

OntoClean provides a set of second-order constraints which should be satisĄed by a

taxonomy (i.e. by the set of consequences of a KB of the form � ⊑ �, with � and

� DL atomic concepts).

The approach is initially based on four metaproperties, namely rigidity, identity,

unity and dependence, which may or may not be veriĄed by each atomic concept of

a KB.

The example of rigidity will be brieĆy developed in order to give a better under-

standing of the approach. An atomic concept � is said to designate a rigid property

(in the OntoClean terminology) if all instances of � are necessarily instances of �

in some alethic modal sense. In other words, if � is an instance of a rigid property

� in some admissible world � (actual, alternative, past, future, . . . ), then in any

other admissible world � ′, either � is an instance of � in � ′, or � does not exist in

� ′. The converse holds as well: if for any instance � of � in some admissible world,

�(�) must hold in all other admissible worlds where � exists, then � is rigid.
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For instance, according to most conceptualizations, a person cannot cease to be a

person, neither can a wedding cease to be a wedding, such that the atomic concepts

Person and Wedding in a given KB may be considered as rigid. A non-rigid property

is a property which is not rigid, i.e. a property such that some of its instances can

cease to instantiate it in some admissible world, and still exist. A specialization of

non-rigidity is anti-rigidity: a property � is anti-rigid if all its instances can cease

to be instances of � in some admissible world and still exist. For instance, being

a student or being unemployed are generally viewed as anti-rigid properties. For

non-rigid but not anti-rigid properties, [GW02] provides the example of being hard,

which is necessary for some instances (e.g. a hammer), but not for other ones (e.g.

a sponge).

The three other meta properties are identity, unity and dependence, and will only

be brieĆy introduced (most examples are taken from [GW02] or [GW09]).

For identity, a distinction is made between concepts which supply an identity

criterion, carry it, or do not supply or carry any. For instance, one may consider

that Human being supplies an identity criterion, because two human beings can be

distinguished based on their Ąngerprints, and because having Ąngerprints is necessary

for a human being, whereas Red does not carry or supply an identity criterion. Note

that these identity criteria do not need to be expressed in the KB.

Unity characterizes concepts whose instances must be wholes, and such that all

its instances are wholes in virtue of the same relation (not necessarily expressed

in �) which uniĄes its parts. As an illustration, all instances of Ocean may be

considered as wholes in virtue of a so-called topological unifying relation, and all

instances of Hammer may be considered as wholes in virtue of a so-called functional

unifying relation. On the other hand, Legal Agent, if it encompasses human beings

and organizations, carries no unity, because its instances, even if they are wholes,

244



may have diferent unifying relations. Finally, Amount of water carries anti-unity

because none of its instances must be a whole.

Dependence is the last of the four metaproperties in the original formulation

of OntoClean. A concept � carries dependence if each instance of � implies the

existence of another individual.

Together with these metaproperties, OntoClean provides a set of second-order

axioms which constrain subsumption between atomic concepts. For instance, an anti-

rigid atomic concept should only (transitively) subsume anti-rigid atomic concepts.

Another example is the fact that an atomic concept with anti-unity should only

(transitively) subsume atomic concepts with anti-unity.

Applying the OntoClean methodology consists in manually assigning metaprop-

erties to the atomic concepts of an input KB �, and then check whether the tax-

onomy of � veriĄes the OntoClean constraints. For instance, let us assume that

¶Person, Student♢ ⊖ �Con(�), and that Person was assigned the metaproperty

ŞrigidŤ, and Student the metaproperty Şanti-rigidŤ. If � ⊢ Person ⊑ Student, the

Ąrst constraint above is violated, which is likely to indicate a modeling error.

7.2.2 Implementations

At least three implementations of OntoClean have been developed for OWL. One of

them is a plug-in for the Protege ontology editor,8 referenced by [Wel06], but not

documented online anymore. The two others are [Wel06] and [GRV10]. Both propose

a form of meta-modeling, which, from a relatively abstract point of view, amounts

to maintaining a theory � = Cn(�), where atomic concepts of � are reiĄed, i.e.

represented as individuals.

8 http://protege.stanford.edu/
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� is such that sig(�) ∩ sig(�) = ∅, with a bijective mapping reif() from

�Con(�) to �Ind(�). For instance, Person ∈ �Con(�) if reif(Person) ∈ �Ind(�).

A DL atomic role subClass ∈ �Con(�) represents the subsumption relation over

the elements of �Con according to �, i.e. subClass(reif(�1), reif(�2)) ∈ � if

� ⊢ �1 ⊑ �2. sig(�) also contains atomic concepts for OntoClean metaproper-

ties, for instance Rigid ∈ �Con(�), and the fact that Person was assigned the

metaproperty ŞrigidŤ is expressed with Rigid(reif(Person)) ∈ � . Finally, Onto-

Clean second order axioms are represented as Ąrst-order formulas ranging over reiĄed

concepts, for instance NonRigid ⊕ ¬Rigid ∈ � , AntiRigid ⊑ NonRigid ∈ � , and

AntiRigid ⊑ ∀subsumes.AntiRigid ∈� .

The implementation of [GRV10] is an improvement over the one of [Wel06], in that

� and � can be integrated as a unique KB � ′, such that � ⊖ � ′ and � ⊖ Cn(� ′),

without compromising decidability, relying on some advanced features of OWL 2

/�ℛ�ℐ�. In particular, even after a modiĄcation of the axioms of � within � ′,

� ′ ⊢ �1 ⊑ �2 if � ′ ⊢ subClassOf(reif(�1), reif(�2)) still holds.

[GRV10] also implemented a largely ad hoc (for OntoClean) but interesting trac-

ing mechanism, in order to identify the source of the violations of an OntoClean

constraint, as an alternative to the potentially costly computation of all justiĄca-

tions (see Chapter 3 Section 3.5) for the inconsistency of � ′.

It should be noted that these implementations do not express the whole Onto-

Clean axiomatics. For instance, OntoClean requires that if � ⊢ �1 ⊑ �2 and �2

carries an identity criterion, then �1 must carry the same identity criterion. But

identity criteria may not be represented in �, and the ontological analysis in these

cases for [Wel06] and [GRV10] only consists in determining whether a given atomic

concept supplies/carries an identity criterion, without the need to specify it.
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7.2.3 Limitations

The most common criticisms of the OntoClean methodology are the cost and dif-

Ąculty of performing a manual tagging of the atomic concepts of the input KB. In

particular, as mentioned by [GW02], the identity and unity metaproperties are sub-

tle notions, and for that reason may be diicult to understand or apply. Both are

deĄned wrt to an additional condition (respectively an identity criterion and a uni-

fying relation) which is in not expressed in general by �. For instance, what could

be identity criterion of PersonFunction in example 7.1.1 is hard to pinpoint, but it

is equally hard to decide that there is one. Therefore, as experienced by [VVSH08],

inter-annotator agreement tends to be relatively low for real input datasets.

In addition, whether a given atomic concept in �Con sig(�) veriĄes a given

metaproperty is often not obvious from �, even for the arguably simpler case of

rigidity. For instance, in the illustration of the OntoClean methodology given by

[GW09], the choice is made to assign anti-rigidity to the atomic concept Food, con-

sidering that nothing is essentially food, because it may never be eaten. But this

is presented as a choice by [GW09], and arguably, other characterizations of Food

may have been adopted. In the same vein, whether Tool should be considered as

rigid, non-rigid or anti-rigid may not be explicit from a given �. Actually, one of

the merits of formal ontology is to constrain a knowledge engineer to make such

decisions, and formalize them explicitly. But in a debugging scenario, if the person

who performs the ontological analysis is not the author of the KB, then assigning a

metaproperty to a concept may be an overinterpretation.

Finally, the OntoClean method is limited to the identiĄcation of incorrect sub-

sumptions between atomic concepts, i.e consequences of � of the form �1 ⊑ �2,

with �1 and �2 atomic concepts. This does not reduce debugging to the removal
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or update of subsumption axioms between atomic concepts though. For instance, if

� ⊢ �1 ⊑ �2, Γ = ¶�1 ⊑ ∃�.⊤,∃�.⊤ ⊑ �2, � ⊑ �♢ and Γ ⊖ �, then Γ is a possible

explanation for �1 ⊑ �2. But in practice, incorrect ABox axioms (see Chapter 2

Section 2.3.7) tend to go unnoticed when the OntoClean methodology is applied,

because cases where an ABox axiom is involved in the derivation of a formula of the

form � ⊑ � are infrequent, even though still possible for the more expressive DLs.

7.3 Shallow ontological analysis with a top-level

As explained in Chapter 1 Section 1.1.2, OWL expressible datasets published on the

LOD cloud may contain sets of statements which are intuitively absurd, although

logically consistent/coherent. In this case, a manual ontological analysis may be

performed in order to yield an inconsistency/incoherence, and identify violations of

common sense in such datasets on a logical basis.

The OntoClean methodology, described in the previous section, is an illustration

of this strategy, but was shown to be costly and error-prone. This section describes

an arguably basic but less costly alternative, which consists in attaching a selection

of elements of the signature of the input KB � to a (DL expressible subset of a)

foundational ontology Θ, which provides the core ontological knowledge required

for the analysis, in the form of an axiomatization of domain independent Ąrst-order

categories like Event, PhysicalEntity, etc.

The notion of attachment is made explicit in Section 7.3.1, whereas Section 7.3.2

proposes a way to select a subset of sig(�). Section 7.3.3 discusses the advantages

and drawbacks of such a fast and shallow analysis, and Section 7.3.4 lists some

possible variations of this strategy, which are not evaluated in this thesis.
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7.3.1 Attachments

If � is the consistent/coherent input KB and Θ a (consistent/coherent) additional

theory, then sig(�) ∩ sig(Θ) = ∅ generally holds, such that for an inconsistency/

incoherence to be derived, some additional set Δ of ŞanchoringŤ formulas is needed,

which relates sig(�) and sig(Θ). For instance, when applying the OntoClean method-

ology as described above in Section 7.2.2, if Θ is the OntoClean axiomatization, Δ

is composed of formulas of the form �(reif(�)), where � is a metaproperty like

AntiRigid, and reif(�) the reiĄcation of a predicate � ∈ �Ind(�).

If Θ is a Ąrst-order theory instead, Δ may be composed of formulas which will

be called attachments, and simply deĄned as follows. If � ∈ �Ind(�), then an

attachment for � is a formula Ó of the form �(�), with � ∈ �Con(Θ). If � ∈ �Con(�),

then an attachment for � is a formula Ó of the form � ⊑ �, with � ∈ �Con(Θ).

If � ∈ �Role(�), then an attachment for � is a formula Ó of the form ⊤ ⊑ ∀�.�,

∃�.⊤ ⊑ � or � ⊑ �, with � ∈ �Con(Θ) or � ∈ �Role(Θ). In addition, in all

cases, � (resp. �) is the most or one of the most speciĄc concepts (resp. roles) in

�Con(Θ) (resp. �Role(Θ)) which intuitively veriĄes Ó. As an illustration, in example

7.1.1 above, Activity(CEO) and ⊤ ⊑ ∀occupation.IndividualRole are possible

attachments for CEO and occupation respectively.

For a given � ∈ sig(�), if no obvious candidate � (or �) can be found in sig(Θ),

then no attachment is performed for �. Another particular case is the one where

several candidates can be found in sig(Θ), but are incompatible according to Θ. For

instance, in example 7.1.1, according to axiom (1), ⊤ ⊑ ∀occupation.Activity may

be an alternative candidate attachment for occupation. In such cases, the prevailing

meaning of � in � is chosen, or if no meaning obviously prevails, none is selected,

i.e. none of the two incompatible attachments is made.
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7.3.2 Selective attachments

In order to limit the amount of manual work, a selection of elements of sig(�) may be

attached only. A simple heuristic consists in prioritizing the attachment of elements

of sig(�) with a larger number of syntactic occurrences within �, based on the

intuition that an individual or predicate is more likely to be used with incompatible

meanings within � if it appears in a larger number of axioms. A selection �(sig(�))

of elements of sig(�) to be attached can thus be performed on a simple syntactic

basis.

Then for each � ∈ �(sig(�)), a brief manual review of the axioms in which �

appears (with the possible help of annotations about � in �) is generally suicient

to identify the prevailing meaning of � within �, if there is one. For instance, in

example 7.1.1, the prevailing meaning of occupation is apparently that of a relation

holding between human beings and individual roles.

This heuristic may be reĄned though, in order to take into account the variety of

the axioms in which each element � of sig(�) appears. For instance, the individual

Boston appears 539 times in DBpedia in an axiom of the form location(�,Boston),

with � a named individual, but (very probably) every time with the same mean-

ing. In order to take this (frequent) pattern into account, for the experiments

described in Section 7.4, an additional heuristic is applied to compute �(sig(�)).

For each �1 ∈ �Ind(�), before computing the frequency of �1 in �, � is quo-

tiented by the equivalence relation ≍ deĄned by ã1 ≍ ã2 if ((ã1 = �(�1, �2) and

ã2 = �(�1, �3)) or ((ã1 = �(�2, �1) and ã2 = �(�3, �1))), such that for instance

the axioms location(Wang Theater, Boston) and location(Ether Dome, Boston)

count as one occurrence only for the individual Boston.

Then a maximum threshold of � elements to attach in each of �Ind(�), �Con(�)
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and �Role(�) can be applied, as an attempt to reduce the amount of manual work

while maximizing the number of common sense violations to be spotted.

7.3.3 Advantages and drawbacks

It should Ąrst be noted that this shallow ontological analysis does not aim at re-

producing or replacing an ontological analysis with OntoClean. In particular, the

axioms of the input � involved in the inconsistency/incoherence may be diferent in

both cases. They may also difer depending on the foundational ontology Θ being

used. More generally, identifying all common sense violations within � with a single

ontological analysis is very unlikely, and this should instead be viewed as an attempt

to make some of them explicit.

A Ąrst practical advantage of a Ąrst-order foundational ontology, when compared

to a second-order axiomatic like OntoClean, is that Δ does not need to predicate over

reiĄed DL concepts or DL roles, but instead can be constituted of simple DL formulas

predicating over the domain modeled by �, for instance Boat ⊑ PhysicalEntity,

Event(2016 US Presidential Elections), ⊤ ⊑ ∀causes.Event or causes.⊤ ⊑ Event.

Predicating (and quantifying) over the individuals of the modeled domain is arguably

easier than assigning second order properties to concepts (or relations). For instance,

deciding whether a given boat is a physical entity, or whether instances of the concept

Boat as it is understood in � are physical entities, is probably less controversial than

deciding whether the concept Boat carries or supplies an identity criterion, or is a

rigid concept.

Another advantage of choosing such a Δ is that ABox axioms within � are more

likely to be involved in the inconsistency/incoherence of � ∪ Θ ∪Δ, which in turn

has two interesting consequences: ABox axioms can be used to identify errors within
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the TBox/RBox, and erroneous ABox axioms may be spotted as well.

A potential risk of the approach though, which is also a risk of the OntoClean

methodology (see section 7.2.3), is overinterpreting the input KB �. In particular,

some distinctions may not be made in �, resulting in predicates or individuals in

sig(�) which are ambiguous wrt Θ. For instance, a city, region, state, country, etc.

in DBpedia may generally designate either an administrative entity or a physical

location, whereas the foundational ontology TMEO for instance, used in the following

experiments, considers that nothing can be both. The diiculty in such cases is

to determine for some � ∈ �(sig(�)) whether the prevailing meaning of � in �

corresponds to one of two incompatible meanings according to Θ (and which one),

or whether � is used ambiguously for both in �. The notion of prevailing meaning

in � of some � ∈ �(sig(�)), although intuitive, is arguably diicult to formalize,

especially when the size of � is limited, and even a shallow ontological analysis like

this one may be performed diferently by two annotators. For instance, in example

7.1.1, one may choose to consider that the size of � is not suicient to decide that one

of the two meanings of occupation (ranging over either individual roles or activities)

is signiĄcantly predominant, in which case occupation may be viewed as inherently

ambiguous wrt Θ.

As another illustration, the dataset �DBP
1.1 , introduced in Chapter 5 and used in

Section 7.4, is a small subset of DBpedia, where the atomic concept Place is used 12

times, with the meaning of Şphysical placeŤ in at least 10 of them. For this reason,

the choice was made to attach it to the DL atomic concept Location of TMEO,9

even though this may not be the prevailing meaning of Place within DBpedia.

Because overinterpretations, misinterpretations, or simply subjective interpreta-

tions remain a possibility, if some additional procedure is applied to solve the in-

9 The attachments of elements of sig(�DBP
1.1 ) to TMEO are reproduced in Appendix B.
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consistency/incoherence resulting from the ontological analysis, like the procedure

that will be presented in Chapter 8, a simple precaution consists in considering as

potentially erroneous not only the axioms of �, but also the axioms of Δ.

Another practical limitation is obviously the size of the KB. Determining the

prevailing meaning of each � ∈ �(sig(�)) (or determining that � it is ambiguous wrt

Θ) requires reviewing all axioms in which � appears in �, which may still be costly

for large KBs.

7.3.4 Alternatives

Diferent variations of this shallow ontological analysis may be performed as alter-

natives, and no claim is made here as to which strategy is the most eicient. In

particular, if � ∈ �(sig(�)) is ambiguous in � wrt Θ, then attachment axioms may

include disjunctions. For instance, in example 7.1.1, a possible attachment for the

range of occupation would be ⊤ ⊑ ∀occupation.(IndividualRole ⊔ Activity).

The probability of raising an inconsistency/incoherence by applying this strategy is

lower, but the risk of overinterpreting is limited.

Alternatively, on may choose to make both attachments, regardless of the prevail-

ing meaning or �. For instance, in example 7.1.1, both ⊤ ⊑ ∀occupation.Activity

and ⊤ ⊑ ∀occupation.IndividualRole may be added to Δ, in which case one

of the two will probably need to be discarded when solving the resulting inconsis-

tency/incoherence.10

10From a logical point of view, a third solution consists in weakening � such that � ∪∆ ∪Θ ⊢
⊤ ⊑ ∀occupation.⊥), but this is clearly not satisfying.
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7.4 Evaluation

This section presents an evaluation of the strategy just introduced. It illustrates

the fact that a shallow and fast ontological analysis based on a (fragment of a)

foundational ontology may nonetheless be eiciently used to identify violations of

common sense within an input KB �.

7.4.1 Objective of the evaluation

The evaluation estimates to what extent actually erroneous axioms within � can

be identiĄed as involved in the inconsistency/incoherence of � ∪ Θ ∪ Δ, after an

ontological analysis, with Θ the core ontological knowledge, and Δ the attachments

(see Section 7.3.1 above) of elements of sig(�) to Θ.

To this end, the family � of all justiĄcations (see Chapter 3 Section 3.5) for the

inconsistency/incoherence of � ∪ Θ ∪Δ is computed, i.e. � ∈ � if it is a minimal

inconsistent or incoherent subset of � ∪Θ ∪Δ wrt ⊖. Intuitively, an axiom ã of �

is involved in the inconsistency/incoherence if ã ∈
⎷

� . In other words, if � ⊖ �

is the set of actually erroneous axioms within �, this evaluation is based on the

proportion of elements of � which are present in
⎷

� , i.e. on
♣�∩

⎷

� ♣

♣�♣
.

It is important to understand that such an evaluation can be based on recall

only. Indeed, if � ∈ � , then ♣�∩� ♣
♣� ♣

does not provide meaningful information about

the eiciency of the approach, because the number of axioms of (� ∖�)∪Θ∪Δ in �

may vary independently. So precision deĄned as ♣�∩� ♣

♣
⎷

� ♣
would not provide any useful

indication. For instance, if ♣�♣ = 10, ♣� ∩
⎷

� ♣ = 8 and ♣
⎷

� ♣ = 2000, this is still

a better result than if ♣�♣ = 10, ♣� ∩
⎷

� ♣ = 7 and ♣
⎷

� ♣ = 10, independently from

♣
⎷

� ♣.
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7.4.2 Datasets

Because the evaluation is based on recall, i.e. on
♣�∩

⎷

� ♣

♣�♣
, ♣�♣ must be known, and

therefore the set of all actually erroneous axioms within � must have been previously

identiĄed. This is why two small subsets of DBpedia were used for this evaluation,

which could be manually reviewed. These are �DBP
1.1 and �DBP

1.2 , both described in

Chapter 5 Section 5.1, of 225 and 159 axioms respectively.

They were both independently reviewed by a formal ontology expert, who iden-

tiĄed 11 and 7 erroneous axioms within �DBP
1.1 and �DBP

1.2 respectively. This includes

both ABox and TBox axioms, precisely 9 ABox an 2 TBox axioms for �DBP
1.1 , and 6

ABox and 1 TBox axiom for �DBP
1.2 .

A third and larger dataset is also used, namely �DBP
1 (8329 axioms), but only

in order to evaluate how many attachment axioms are needed to obtain an inconsis-

tency/incoherence.

7.4.3 Foundational ontology

The core ontological knowledge Θ for this evaluation is the ontology backing the

categorization tool TMEO used in the Senso Comune project, in order to develop a

lexical-ontological resource [JVZ+14]. It is a simpliĄed and slightly extended variant

of the top-level DOLCE [MBG+03], formalized as DL expressible Ąrst-order con-

straints.

TMEO can be viewed as a minimal foundational ontology for this task. It is

composed of 69 axioms only, all of which are of the form �1 ⊑ �2 (40 axioms) or �1 ⊑

¬�2 (29 axioms), with �1 and �2 atomic concepts. It signature is composed of 38

atomic concepts, which represent relatively abstract domain-independent categories,

such as Event, TangibleEntity, MentalEntity, Artifact, etc. An OWL version
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(with comments) is available online.11 The taxonomy of TMEO is also reproduced

in Appendix B Section B.1 for completeness.

Discussing the structure of TMEO is out the scope of this work though, and other

foundational ontologies may have been used instead. In particular, some experiments

run in Chapter 8 rely on a subset of DBpedia extended with the foundational on-

tology Proton, which is of a larger size, and also more expressive than TMEO. The

attachments to Proton were performed independently from this work by [DKSP10],

and not speciĄcally in a debugging perspective, therefore they will not be evaluated

in the current section. For more information about this fragment of Proton, the

reader is referred to Chapter 8 Section 8.6.

7.4.4 Attachments

The set Δ of attachments of elements of sig(�) to Θ for this evaluation is composed

of manually crafted statements of the form described in Section 7.3.1 above, with

the exception of � ⊑ � (with � and and � DL roles), because �Role(TMEO) = ∅.

In order to select the set �(sig(�)) of candidate elements of sig(�) for attach-

ment, each of �Ind(�), �Con(�) and �Role(�) was ordered by decreasing number

of syntactic occurrences within �. This heuristic was reĄned by quotienting �

before computing these occurrences, as explained in Section 7.3.2. An integer pa-

rameter � was used to test diferent sizes for Δ, such that, roughly speaking, if

ℳ = ¶�Ind(�), �Con(�), �Role(�)♢,12 then the � most frequent elements in � of

each � ∈ ℳ (modulo the above quotienting of �) were selected as candidate for

attachment. This description of �() is an approximation, and is suicient for a global

11http://juliencorman.github.io
12For this specific experiment dataypeProperties were counted a DL roles, and not a DL atomic

concepts, such that �Role here actually designates the objectProperties and datatypeProperties
appearing in �.
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understanding of the evaluation protocol. The exact selection procedure is slightly

more complex, in order to account for the fact that several elements of � may have

identical frequencies. It is reproduced here for the sake of completeness only. Let

�(�) denote the frequency of �, let ○� be the total preorder over each � ∈ ℳ

deĄned by �1 ○� �2 if �(�1) ⊘ �(�2), let ≍� be the equivalence relation deĄned

over � by ○� , and let �○M = (�○M
1 , ..,�○M

♣�/≍M ♣). The set of possible values for

� is � , deĄned by � ∈ � if there is a � ∈ ℳ and a 1 ⊘ � ⊘ ♣�/≍� ♣ such that

♣�○M
1 ∪ .. ∪�○M

� ♣ = �. Now within each � ∈ ℳ, let � be the largest integer such

that ♣�○M
1 ∪ .. ∪�○M

� ♣ ⊘ �. Then � ∩ �(sig(�)) = �○M
1 ∪ .. ∪�○M

� .

For each element � of �(sig(�)) (individual, DL concept or DL role), attachments

of the form described in Section 7.3.1 were added to Δ only if some obvious most

speciĄc concept(s) for � to be attached to could be found within �Con(TMEO).

7.4.5 Results

For �DBP
1 , setting � to 2, with only 5 attachment axioms in Δ, was suicient to

obtain an inconsistent KB. This shows that with a very limited amount of work, it

is possible to identify a probable violation of common sense within �, by focusing

on the elements of sig(�) which are the most frequent in �.13

The results and statistics for �DBP
1.1 and �DBP

1.2 are given in Table 7.1. Column

Ş♣�♣Ť gives the number of axioms in the input KB, and column Ş♣�♣Ť the number of

these axioms which were manually identiĄed as erroneous. Column Ş♣ sig(�)♣Ť gives

the size of the signature of �, and column Ş♣�(sig(�))♣Ť the number of elements

of sig(�) which were candidate for an attachment to Θ, based on the parameter �

described above. Column ŞAtt.Ť gives the number of elements of �(sig(�)) which

13modulo the above heuristic for ABox axioms of the form �(�1, �2)
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♣�♣ ♣�♣ ♣ sig(�)♣ ♣�(sig(�))♣ Att. ♣Δ♣ ♣� ∩
⎷

� ♣ Rec.
�DBP � = 6 225 11 111 12 11 12 7 0.64

�DBP � = 6
159 7 73

15 11 15 2 0.29
� = 11 30 23 29 7 1

Table 7.1: Shallow ontological analysis: results

were actually attached to Θ, i.e. for which a concept could be found in Θ to perform

an attachment, and column Ş♣Δ♣Ť gives the number of attachment axioms. Note that

multiple attachments are possible for a given � ∈ �(sig(�)), in particular for DL roles

(domain and range), which explains that the values in columns ŞAtt.Ť and Ş♣Δ♣Ť may

difer. Finally, column Ş♣� ∩
⎷

� ♣Ť gives the number of erroneous axioms in
⎷

� ,

i.e. the number of erroneous axioms involved in the inconsistency/incoherence, and

column ŞRec.Ť is the recall, i.e the value of
♣�∩

⎷

� ♣

♣�♣
.

For �DBP
1.1 , setting � = 6 yielded 12 candidates for attachment, 11 of which could

be attached to Θ, for a total of ♣Δ♣ = 12 attachment axioms. This was suicient to

obtain ♣� ∩
⎷

� ♣ = 7, i.e. to identify 7 of the 11 erroneous axioms as potentially

responsible for the inconsistency/incoherence. Increasing � did not provide better

results though, i.e ♣� ∩
⎷

� ♣ = 7 still holds for � > 6, which is why no other value

for � is reported in table 7.1.

For the second KB �DBP
1.2 , setting � = 6 was disappointing, with 15 candidates

for attachment, 11 being attached and 15 attachment axioms, but only 2 erroneous

axioms in
⎷

� , over 7 �DBP
1.2 . But increasing � to 11 produced more satisfying results.

The amount of manual work is slightly superior, with 30 elements of �DBP
1.2 candidate

for attachment, and 23 attached, for a total of ♣Δ♣ = 29 attachment axioms. But

this was suicient to to cover all 7 erroneous axioms.14

14 Only � = 6 and � = 11 were actually tested for �DBP
1.2 , and there were possible intermediate

values for �, so 11 is an upper bound, i.e. there may be an � such that 6 < � < 11 and � is sufficient
to cover all erroneous axioms.
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For each of �DBP
1 , �DBP

1.1 and �DBP
1.2 , the manual constitution of Δ with the above

values for � took less than an hour. This seems to indicate that a relatively eicient

shallow ontological analysis may indeed be performed with a very limited amount

of manual work, by focusing on most frequent elements of the signature of �. All

datasets and attachments are available online at http://juliencorman.github.io,

as well as the manually identiĄed erroneous axioms for �DBP
1.1 and �DBP

1.2 .

7.5 Conclusion

This chapter focused on the detection of nonsense in a consistent/coherent input KB

on a logical basis, as an alternative to the linguistic input used in the preceding chap-

ters. The solution under investigation consists in using already formalized explicit

ontological distinctions, provided by formal ontology (as a research Ąeld). In other

words, it amounts to committing temporarily to some external ontological view, and

checking the compliance of an input KB � with this view.

If Θ is the external ontological knowledge, such an approach requires an addi-

tional set Δ of manually crafted axioms, which relate elements of the signature of

� to elements of the signature of Θ, such that, intuitively, a violation in � of the

constraints expressed by Θ should result in the inconsistency (or incoherence) of

� ∪Θ ∪Δ.

The most inĆuential illustration of this approach is probably the OntoClean

methodology, which relies on a set of second-order constraints, and requires a manual

assignment of second-order properties to the DL atomic concepts of �. OntoClean

has been empirically shown to be costly and error-prone though, with a potentially

low inter-annotator agreement, and is probably limited in practice to the identiĄca-

tion of erroneous TBox axioms. OntoClean was introduced in Section 7.2, as well as
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its OWL implementations, and their limitations.

As an alternative, a shallow and fast ontological analysis has been proposed in

Section 7.3, which relies on an external (Ąrst-order) foundational ontology, with a

focus on the elements of the signature of � with higher syntactic frequency. This

proposal is primarily guided by practical feasibility, and arguably basic. But Section

7.4 empirically showed that this may actually be suicient to identify absurd (TBox

or ABox) axioms of � as involved in the inconsistency or incoherence of � ∪Θ∪Δ,

with a very limited amount of manual work.
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Chapter 8

Syntax-based contraction/revision

This chapter focuses on the automatic detection of (a) set(s) of axioms to be prefer-

ably discarded or amended within and inconsistent or incoherent input KB. The

initial motivation was the incorporation of linguistic evidence to the process, but

most proposals made in this chapter go beyond this speciĄc case, and can be viewed

as more general contributions to the Ąeld of syntax-based contraction/revision, as

introduced in Chapter 3 Section 3.6.2, which is itself closely related to diagnosis.

Section 8.1 characterizes the problem, and is partly a reminder of notions intro-

duced in Chapter 3. It also identiĄes two of the main issues faced by syntax-based

contraction/revision. The Ąrst one is the number of candidate output bases (or

equivalently the number of diagnoses), and the second issue is computational cost.

Section 8.2 reviews solutions proposed in the literature to address these two issues,

showing their respective limitations. The approach investigated here in order to deal

with the Ąrst issue is a speciĄc form of prioritized base debugging, deĄned in section

8.2. Intuitively, provided a preference relation (total preorder) ○� over the axioms of

the input KB, it consists in prioritizing the removal of least preferred axioms wrt ○�
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until consistency (or coherence) is reached, together with discarding minimal sets of

axioms wrt to set inclusion.

Section 8.3 discusses algorithmic aspects of syntax-based contraction/revision in

more details, and in particular it clariĄes the relation between the computation of

minimal conĆicts for an input KB on the one hand, and all base remainders/diagnoses

on the other hand, based on the empirical observation that eforts to compute the

former in the DL literature seem to have been more succesfull this far than eforts

to compute the latter.

For black-box techniques, it is shown that both problems are strongly dependent,

and more exactly that it cannot be guaranteed that all remainders/diagnoses have

been computed with ReiterŠs algorithm if all minimal conĆicts have not been com-

puted as well during the execution, and that the converse holds, i.e. it cannot be

guaranteed that all minimal conĆicts have been computed if all remainders/diagnoses

have not been computed as well.

For glass-box algorithms, although both problems are as hard computationally

in the worst case, Section 8.3.2 investigates the conditions in which computing one

of them may be more costly in practice than computing the other for the same input

KB, which may be a reason why eforts to compute all justiĄcations seem to have

been more successful thus far than eforts to compute all base remainders/diagnoses.

Section 8.4 proposes an algorithm which performs prioritized base debugging as

deĄned in section 8.2.2, provided the family of justiĄcations for the inconsistency (or

incoherence) is known, without the need to compute all base remainders.

Section 8.5 then addresses the obtention of the preference relation ○� over the

axioms of the input KB, and more speciĄcally over the axioms involved in the in-

consistency. Assuming once again that the family � of justiĄcations for the incon-
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sistency/incoherence is known,1 it deĄnes a generic framework for evaluating the

impact of discarding or retaining each potentially faulty axiom ã ∈
⎷

� , in the form

of two bases �ã and �∖ã, which can be computed in time polynomial in
︁

�∈�
♣� ♣,2 and

represent the part of the input KB which would necessarily be preserved if ã was

respectively retained or discarded. These two bases, considered as theories, can then

be evaluated in order to rank all potentially faulty axioms, i.e. in order to obtain ○�.

In particular, �ã and �∖ã may be evaluated based on their compliance to a linguistic

corpus, as deĄned in Chapter 4 section 4.2.5. This possibility is evaluated in section

8.6.

Proofs are grouped in Section 8.8 for readability.

8.1 Characterization

This section is an introduction to the problems of syntax-based contraction and

revision, also called belief base contraction and revision, or sometimes simply KB

debugging. Most notions presented here have already been brieĆy introduced in

Chapter 3 Section 3.6.2.

Section 8.1.1 characterizes the input and the task, and section 8.1.2 introduces

a running example. Section 8.1.3 deĄnes a series of central notions in order to

understand the problem and its treatment here, most of which have already been

introduced in Chapter 3. Finally, Section 8.1.4 brieĆy identiĄes two potential is-

sues which are inherent to the task, namely the number of candidate outputs, and

computational cost.

1or a reduction � of � , introduced in Section 8.4, which verifies ♣�♣ ⊘ ♣� ♣, and for each � ∈ �,
there is a � ∈ � such that � ⊖ � .

2 or
︁

� ∈�

♣� ♣ ⊘
︁

�∈�

♣� ♣
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8.1.1 Input and task

The input KB is assumed to be a (Ąnite) set of DL formulas, and part of this KB may

need to be preserved. The (possibly empty) part of the input KB to be preserved

will be designated with Θ, and the part of the input KB to be weakened will be

designated with �, such that the input KB is � ∪Θ, with � ∩Θ = ∅. For instance,

if the input is a manually extended KB as described in Chapter 7, then Θ would

correspond to the foundational ontology, and � to the rest of the KB (i.e. � ∪Δ,

according to the notation used in Chapter 7).

It is assumed that �∪Θ is inconsistent, incoherent, or more generally that a set of

undesired consequences of �∪Θ has been previously identiĄed. The problem consists

in discarding axioms of � in order to restore the consistency/coherence of � ∪ Θ,

or to get rid of the undesired consequences. For the sake of readability though, an

important reduction of scope is made throughout this chapter: the focus will be put

by default on the case of inconsistency, unless explicitly mentioned. Some authors

[QLB06, QHH+08] actually distinguish revision wrt inconsistency from revision wrt

to incoherence, proposing speciĄc algorithms for each task. But all proposals made

in this chapter can be adapted to the case of incoherence, or more generally undesired

consequences of �∪Θ, provided minor modiĄcations, so this distinction is not useful

here.

The problem of discarding axioms from � in order to restore consistency3 has

been studied both in the Ąelds of belief base revision/contraction and KB debugging

(usually with Θ = ∅ in the latter case). Again, in order to avoid possible confu-

sions, belief base revision/contraction should be distinguished from belief set revi-

sion/contraction, whose most inĆuential framework (the AGM framework [AGM85])

3or coherence, or more generally in order to get rid of undesired consequences

264



focuses on (deductively closed) theories, abstracting from syntax (see Chapter 3

Section 3.6 for a brief introduction to belief change). On the contrary, belief base

revision/contraction requires the output to be a syntactic subset of � ∪ Θ, adapt-

ing several notions from the belief set revision/contraction literature, but with very

diferent implications.

A comprehensive series of base revision and contraction operators applicable to

DLs have been deĄned in [RW09], and part of the terminology used in this chapter

is borrowed from that work. Precisely, the operations of interest here are named

partial meet and kernel base revision without negation (with weak or full success)

in [RW09]. A simpliĄed notation will be used though, and most limit and/or trivial

cases will not be explicitly addressed, in order to focus on the practical problem

at hand. In particular, the set of statements Θ to be preserved is supposed to be

consistent.

As explained in Chapter 3 Section 3.6.2.1, when the focus is on belief bases (i.e.

sets of axioms) and not on belief sets (i.e. theories), the distinction between revision

and contraction tends to blur: revising � by Θ is equivalent to contracting � ∪ Θ

by ⊤ ⊑ ⊥, together with preserving Θ, which, as already discussed, does not hold

for belief sets.

8.1.2 Example

The following running example will be used throughout this chapter.

Ex 8.1.1. � = {

(1) owningCompany(Smithsonian Networks, Smithsonian Institution),

(2) publisher(Birds of South Asia, Smithsonian Institution),

(3) occupation(Montgomery C. Meigs, Smithsonian Institution),

265



(4) award(James Dewar, Smithsonian Institution),

(5) ⊤ ⊑ ∀owningCompany.Company,

(6) Company ⊑ Agent,

(7) ⊤ ⊑ ∀occupation.PersonFunction,

(8) ⊤ ⊑ ∀award.Award,

(9) Agent ⊑ AgentiveEntity,

(10) PersonFunction ⊑ NonAgentiveEntity,

(11) Award ⊑ NonAgentiveEntity }

Θ ⊢ AgentiveEntity ⊑ ¬ NonAgentiveEntity

Axioms 1 to 8 are DBpedia statements. Θ is a (Ąctional here) foundational

ontology, and in this case the part of the input knowledge to be preserved. Axioms

9 to 11 are possible attachments of DBpedia classes to this top-level ontology. They

correspond to the ŞanchoringŤ set Δ of axioms described in Chapter 7. So the DL

atomic concepts AgentiveEntity and NonAgentiveEntity belong to sig(Θ), and all

other individuals and predicates belong to the signature of DBpedia. The task here

consists in discarding (a) subset(s) of axioms 1 to 11, in order to restore consistency.

As opposed to the notation adopted in Chapter 7, � designates here all axioms

which may be discarded, i.e. � in this chapter corresponds to � ∪ Δ in Chapter

7. This is for more generality: the input of the debugging process presented in this

chapter may be any inconsistent KB � ∪Θ, whether it has been manually extended

or not.4 And again, it may also be the case that Θ = ∅.

For instance, discarding axiom 1 is suicient to get rid of the inconsistency, such

that (� ∖(1))∪Θ is a candidate output. Discarding axiom 9 is another possibility, as

4In order to be consistent with the notation adopted in Chapter 7, another option would be to
systematically mention a possibly empty ∆ throughout this chapter. But as will soon appear, this
would seriously affected readability.
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well as discarding axioms 3 and 8 for instance (but discarding 3 only or 8 only does

not solve the inconsistency). On the other hand, discarding 1, 3, 8 and 9 altogether

may be viewed as an unnecessary information loss.

8.1.3 Useful notions

This section is for a large part a reminder of some of the notions introduced in

Chapter 3, presented here in more details and/or in a more formal way.

8.1.3.1 Hitting set

If ℒ is the logic at hand, let hs : 22ℒ
↦⊃ 22ℒ

be the function which returns all hitting

sets for an input family of sets of formulas, i.e.:

Definition 8.1.3.1. hitting sets

hs(� ) = ¶Γ ⊖
⎷

� ♣ ∀� ∈ � : Γ ∩� ̸= ∅♢

According to the notation introduced in Chapter 2 Section 2.2, if all elements of

� are Ąnite, then min⊖(hs(� )) returns the elements of hs(� ) which are minimal wrt

⊖, i.e. Γ ∈ min⊖(hs(� )) if Γ ∈ hs(� ) and for all Γ′ ∈ hs(� ), Γ′ ̸⊆ Γ.

This notion will be used to establish the correspondence between justiĄcations

and remainders, for the case where � is a Ąnite family of Ąnite subsets of ℒ.

In order to avoid possible confusions, it should be noted that computing min⊖(hs(� ))

is not identical to the canonical (intractable) minimal hitting set problem (which is

itself equivalent to the covering set problem) studied in the optimization literature.

Given a Ąnite family of Ąnite sets � , the canonical minimal hitting set problem

consists in computing one minimal hitting set wrt to cardinality, i.e. one element of

¶� ♣ ♣� ♣ ∈ min�∈hs(� ) ♣�♣)♢, whereas min⊖(hs(� )) is the family of all minimal hitting
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sets wrt set inclusion. Computing min⊖(hs(� )) is not tractable either though, which

can simply be seen from the fact that the size of a solution to this problem may be

exponential in � = ♣
⎷

�♣. For instance, if � is a partition of
⎷

� with ♣�♣ = 2 for

all � ∈ � , then ♣min⊖(hs(� ))♣ = 2♣� ♣ = 2
n
2 .

8.1.3.2 Base remainders

ℛ will designate the family of all subsets of � consistent with Θ, i.e.:

Definition 8.1.3.2. ℛ = ¶� ⊖ � ♣ � ∪Θ ̸⊢ ⊥♢

If Γ is a Ąnite set of DL formulas and Ψ is a set of DL formulas, [RW09] deĄne

a generalized base remainder for Ψ (understood disjunctively) in Γ as a maximal

subset � of Γ wrt ⊖ such that Cn(�) ∩ Ψ = ∅, and the generalized base remainder

set as the family of all generalized base remainders. The generalized base remainder

set corresponds to the construction designated with ℛ∨
⊖(Ψ,Γ) in Chapter 4 Section

6.3.2.2.1, i.e. � ∈ ℛ∨
⊖(Ψ,Γ) if Cn(�)∩Ψ = ∅ and for all� ⊆ �′ ⊖ Γ, Cn(�′)∩Ψ ̸= ∅.

Intuitively, a base remainder is a candidate output base for a contraction of Γ by Ψ

(understood disjunctively).

For the (base) revision of � by Θ in DLs, this notion needs to be slightly adapted:

ℛ∨
⊖(¶⊤ ⊑ ⊥♢, � ∪Θ) is not adequate, or in other words Γ above cannot be replaced

by � ∪ Θ, because this does not account for the fact that Θ should be preserved.

If the negation Θ of Θ is deĄned, then a solution consists in contracting � by Θ,

and then extending it with Θ, or in other words, each candidate output is � ∪ Θ

such that � ∈ ℛ∨
⊖(Θ, �). But most DLs do not allow for full negation (let alone full

negation of a set of formulas). So in the rest of this chapter, the term remainder set

will designate the family of maximal subsets of � consistent with Θ, and in order to

simplify notation, without ambiguity here, it will be simply designated with ℛ⊖:
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Definition 8.1.3.3.

ℛ⊖ = ¶� ⊖ � ♣ � ∪Θ ̸⊢ ⊥ and for all ã ∈ (� ∖�), � ∪ ¶ã♢ ∪Θ ⊢ ⊥♢

Or equivalently:

Definition 8.1.3.4. ℛ⊖ = ¶� ∈ ℛ ♣ for all ã ∈ (� ∖�), � ∪ ¶ã♢ ̸∈ ℛ♢

A strong intuition here is that if � ∈ ℛ⊖, then �∪Θ is a candidate output, and

discarding any additional axiom can be viewed as an unnecessary information loss.

But there may be several elements in ℛ⊖. For instance, in example 8.1.1, there

are 12 elements in ℛ⊖ (the exhaustive list of elements of ℛ⊖ will be given in Section

8.1.3.4, as diagnoses, i.e. as their respective complements in �).

If this happens, in order to avoid non-determinism, a Ąrst solution consists in

setting the output of the process to be the intersection
⎸

ℛ⊖ of all remainders, then

extended with Θ.5 The resulting KB may still be disappointingly weak though. For

instance, in example 8.1.1,
⎸

ℛ⊖ ∪Θ = ¶2♢ ∪Θ.

Another option was proposed in [MLB05], and consists in setting the output to be

the disjunction of all remainders extended with Θ, designated here with
⌃

ℛ⊖ ∪ Θ.

This last construction is not natively representable in DLs, but can be simulated

as a multibase, requiring that a formula be a consequence of
⌃

ℛ⊖ ∪ Θ if it is a

consequence of each remainder extended with Θ, i.e. Cn(
⌃

ℛ⊖ ∪Θ) =
⎸

�∈ℛ⊖

Cn(� ∪

Θ).

The following observation is immediate (a proof is nonetheless provided in Section

8.8.1.1, for the sake of completeness):

Proposition 8.1.3.1. Cn(
⎸

ℛ⊖ ∪Θ) ⊖
⎸

�∈ℛ⊖

Cn(� ∪Θ)

5 It is important to note that this construction is not equivalent to the so-called full meet revision

defined for belief sets in the AGM framework (see Chapter 3 Section 3.6.1).
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Therefore Cn(
⎸

ℛ⊖∪Θ) ⊖ Cn(
⌃

ℛ⊖∪Θ). To see that the converse is not true, i.e.

that Cn(
⌃

ℛ⊖∪Θ) ⊖ Cn(
⎸

ℛ⊖∪Θ) does not hold in general, consider the following

counterexample, where ℛ⊖ = ¶�1, �2♢ and Θ = ∅, with �1 = ¶�1 ⊑ �2, �3 ⊑ �4♢

and �2 = ¶�1 ⊑ �2, �3 ⊑ �5♢. If å = �3 ⊑ �4 ⊔�5, then �1 ⊢ å and �2 ⊢ å, such

that å ∈
⎸

�∈ℛ⊖

Cn(� ∪ Θ) = Cn(
⌃

ℛ⊖ ∪ Θ). But
⎸

ℛ⊖ ∪ Θ = ¶�1 ⊑ �2♢ ̸⊢ å, and

so å ̸∈ Cn(
⎸

ℛ⊖ ∪Θ).

Therefore the disjunction
⌃

ℛ⊖ ∪ Θ seems intuitively a better option than the

intersection
⎸

ℛ⊖∪Θ, in that it respects determinism as well, but with a smaller in-

formation loss. From a practical point of view though, depending on the engineering

constraints, it may be quite unrealistic. There are at least two reasons for this:

∙
⌃

ℛ⊖ ∪Θ may not be natively representable as a single base in some common

DLs (like �ℒ�ℋ), and therefore it must be manipulated as a Şfamily of bases

whose corresponding theory is the intersection of the theories corresponding to

each baseŤ, which is clearly not compatible with interoperability requirements

for SW data, based on the publication and import of sets of axioms, not of

family of sets of axioms.

∙ As an artifact,
⌃

ℛ⊖ ∪ Θ is stored and manipulated as the family ℛ⊖, which

requires the prior computation of ℛ⊖. But as will be explained in section 8.3,

in practice, computing ℛ⊖ may be problematic.

It should Ąnally be noted that
⌃

ℛ⊖ ∪ Θ, even if stronger than
⎸

ℛ⊖ ∪ Θ, still

tends to be disappointingly weak. For instance, in example 8.1.1, aside from axiom

2, none of the axioms of � is a consequence of
⌃

ℛ⊖ ∪Θ.
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8.1.3.3 Selection function

In order to give up less information, it may be desirable to select some remainders,

and yield as an output the intersection (or disjunction) of these selected remainders

extended with Θ, or even submit them to the user if their number is small enough.

The notion of a selection function à, once again adapted from the belief set

revision literature, formalizes this idea. A selection function must select a nonempty

subset of the remainder set. The requirement that à selects strictly more than one

remainder does not hold for belief bases, but only for belief sets, as explained in

Chapter 3 Section 3.6.2.1. Therefore for the problem addressed here, à could (and

should ideally) select only one remainder, provided this choice is motivated.

Aside from their intuitive appeal, a good argument for the notions of (base)

remainder and selection function is the representation theorem given in [RW09]. It

states that for any selection à(ℛ⊖) of a nonempty subset of ℛ⊖, the operators which

take � and Θ and yields
⎸

à(ℛ⊖) ∪ Θ satisĄes a set of very intuitive rationality

postulates for base revision (namely inclusion, weak consistency, strong success, pre-

expansion and relevance), and conversely.

8.1.3.4 Diagnoses and incisions

A diagnosis is the complement in � of a base remainder. If � ∪Θ is the input KB,

with Θ the subset to be preserved, in the general case where Ψ is a set of undesired

consequences, a diagnosis � for �, Θ and Ψ (understood disjunctively) is a minimal

set of axioms wrt ⊖ such that Cn((� ∖�) ∪Θ) ∩Ψ = ∅.

For the problem at hand here, � and Θ are unique, and Ψ = ¶⊤ ⊑ ⊥♢, so for

readability, the family of diagnoses for �,Θ and ¶⊤ ⊑ ⊥♢ will simply be designated

in this chapter by �, deĄned as follows:
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Definition 8.1.3.5. � ∈ � if � ⊖ �, (� ∖�) ∪Θ ̸⊢ ⊥, and for all � ⊆ �′ ⊖ �,

(� ∖�′) ∪Θ ⊢ ⊥

Equivalently, � can be deĄned wrt ℛ⊖ by:

Lemma 8.1.3.1. � = ¶� ∖� ♣ � ∈ ℛ⊖♢

As an illustration, in example 8.1.1, there are 12 alternative diagnoses (and there-

fore also 12 base remainders), namely:

� = ¶¶1♢, ¶3, 4♢, ¶3, 8♢, ¶3, 11♢, ¶4, 7♢, ¶4, 10♢, ¶5♢, ¶6♢, ¶7, 8♢, ¶7, 11♢, ¶8, 10♢, ¶9♢♢

The term incision will designate any superset of a diagnosis in �, i.e. an incision

Γ is a subset of � such that (� ∖ Γ) ∪ Θ ̸⊢ ⊥, but it may not be minimal wrt ⊖.

Equivalently, each incision is the complement in � of some � ∈ ℛ.

8.1.3.5 Justifications

If Γ is a Ąnite set of DL formulas and Ψ a set of DL formulas, a justiĄcation �

for Ψ (understood disjunctively) in Γ is a minimal subset of Γ wrt ⊖ such that

Cn(�) ∩Ψ ̸= ∅.

Again, in order to simplify notation, in the rest of this chapter, � will designate

the family of all justiĄcations for ¶⊤ ⊑ ⊥♢ in � ∪Θ, i.e.:

Definition 8.1.3.6. � ∈ � if � ⊖ � ∪Θ, � ⊢ ⊥, and for all � ′ ⊆ � , � ′ ̸⊢ ⊥

In addition, the family � will be deĄned as follows:

Definition 8.1.3.7. � = min⊖¶� ∩� ♣ � ∈ � ♢

In other words, � is composed of all justiĄcations for ¶⊤ ⊑ ⊥♢ in � ∪ Θ, but

reduced to their respective intersection with �, and minimal wrt ⊖. Equivalently,

� can be deĄned as the family of minimal subsets of � inconsistent with Θ, i.e.:
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Definition 8.1.3.8. � ∈ � if � ⊖ �, � ∪Θ ⊢ ⊥, and for all � ′ ⊆ � , � ′ ∪Θ ̸⊢ ⊥

Note that ♣�♣ < ♣� ♣ may hold, because it may be the case that �1 ∩� ⊖ �2 ∩�

for �1, �2 ∈ � and �1 ̸= �2. Note also that in the case where Θ = ∅, � = � .

As an illustration, in example 8.1.1, there are 2 elements in � , namely:

� = ¶¶1, 3, 5, 6, 7, 9, 10♢, ¶1, 4, 5, 6, 8, 9, 11♢♢

Then the following theorem, adapted (among others) from [QHH+08], establishes

the correspondence between � and �:

Theorem 8.1.3.1. � = min⊖(hs(�))

Intuitively, in order to restore consistency in � ∪ Θ while preserving Θ, it is

suicient (and necessary) to discard one axiom from each � ∈ �, and discarding any

additional axiom can be viewed as an unnecessary information loss.

An equivalent way of viewing this relation between � and � consists in represent-

ing � and � as boolean formulas. Let � be an injective mapping from
⎷

� to a set

of propositional variables, let á(�) =
⃦

� ∈�
(

⌃

ã∈�
�(ã)), and let Ö(�) =

⌃

�∈�
(

⃦

ã∈�
�(ã)).

Then Ö(�) is á(�) in prime implicant form, and á(�) is Ö(�) in prime implicate

form. So in theory, any of ♣�♣ and ♣�♣ = ♣ℛ⊖♣ could be at most exponential in the

size of each other.

In addition, because the elements of � are maximal wrt ⊖, for all �1, �2 ∈ �, if

�1 ̸= �2, then �1 ̸⊖ �2. So from the observation made in Chapter 6 Section 6.5.2.1,

if � = ♣
⎷

�♣, then ♣�♣ ⊘
⎞

�
⌈ n

2
⌉

⎡

. Similarly, the elements of � are minimal wrt to

set inclusion, such that for all �1, �2 ∈ �, if �1 ̸= �2, then �1 ̸⊖ �2 must hold.

Therefore if � = ♣
⎷

�♣, then ♣�♣ ⊘
⎞

�
⌈ m

2
⌉

⎡

. And from theorem 8.1.3.1,
⎷

� ⊖
⎷

� , so

� ⊘ �, such that ♣�♣ ⊘
⎞

�
⌈ n

2
⌉

⎡

also holds. Finally, from lemma 8.1.3.1, each � ∈ �

is the complement in � of some � ∈ ℛ⊖, so ♣ℛ⊖♣ = ♣�♣, and ♣ℛ⊖♣ ⊘
⎞

�
⌈ n

2
⌉

⎡

holds as

well.
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8.1.4 Practical limitations

8.1.4.1 Number of candidate output bases

A Ąrst practical limitation of KB debugging based on diagnosis is the number ♣�♣ =

♣ℛ⊖♣ of alternative diagnoses/remainders, or equivalently the number of candidate

output subbases (each candidate output being � ∪Θ for some � ∈ ℛ⊖).

In the absence of a selection function (or equivalently if the selection function

returns all remainders), the number of alternative solutions may be too high for

them to be reviewed manually. And as illustrated by example 8.1.1 above, taking
⎸

ℛ⊖ ∪Θ as an output instead, or even
⌃

ℛ⊖ ∪Θ, may yield a disappointingly weak

KB (or a disappointingly weak disjunctive KB in the latter case).

As a further illustration, a modiĄed version of ReiterŠs algorithm (described in

Section 8.3.1) was implemented in order to compute a lower bound on the cardinality

of ℛ⊖, for the extended versions of datasets �DBP
1 , �DBP

1.2 and �DBP
1.3 presented in

Chapter 7. This yielded ♣ℛ⊖♣ ⊙ 174, ♣ℛ⊖♣ ⊙ 340 and ♣ℛ⊖♣ ⊙ 270 respectively, which

is already too high for a manual review.

The solution to this problem adopted in this chapter is called prioritized base

revision, and is formally characterized in section 8.2.2. Given a preference relation

○� over the axioms of �, a selection function à is deĄned which intuitively prioritizes

the removal of least preferred axioms, until consistency is reached.

8.1.4.2 Computational cost

Another important practical limitation of KB debugging based on diagnosis is its

computational cost. Proposition 6.3.2.13 in Chapter 4 showed that in the worst case,

computing ℛ⊖ (or equivalently �) has a cost at least exponential in ♣�♣, regardless
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of the underlying DL.

An interesting comparison can also be made between the respective costs of com-

puting � and ℛ⊖ (or equivalently �). In the case where Θ = ∅ (or more generally,

when � = �), and if a glass-box algorithm is used, then as explained in Chapter

3 Section 3.5.1.2, computing � = � or computing ℛ⊖ are both equally hard wrt

worst-case complexity. If Ð is the boolean pinpointing formula for the inconsistency

of �, then computing ℛ⊖ amounts to compute all prime implicates of Ð, and � its

prime implicants. The relation between both tasks (computing � and computing

ℛ⊖) is even tighter for black-box algorithms. To our knowledge, black-box algo-

rithms to compute the whole family � = � of justiĄcations [KPSH05, Hor11] rely

on (a simpliĄed version of) ReiterŠs algorithm, which, as shown in section 8.3.1, has

the particularity that � can be obtained almost immediately during its execution

as well. So if Θ = ∅, computing ℛ⊖ should not be harder (in the worst case for

glass-box algorithms, in any case for black-box algorithms) than computing � = � .

If Θ ̸= ∅ instead, let ℛ′
⊖ be the family of base remainders for ¶⊤ ⊑ ⊥♢ in � ∪Θ,

i.e. all maximal consistent subsets of � ∪Θ wrt ⊖, or following the notation used in

Chapter 6, ℛ′
⊖ = ℛ∨

⊖(¶⊤ ⊑ ⊥♢, � ∪ Θ). Then according to the above observation,

computing ℛ′
⊖ should not be harder (in the worst case for glass-box algorithms, in

any case for black-box algorithms) than computing � . In addition, the following is

immediate from the deĄnitions of ℛ⊖ and ℛ′
⊖ (a proof is nonetheless provided in

section 8.8.1.2):

Proposition 8.1.4.1. ℛ⊖ = ¶�′ ∩� ♣ �′ ∈ ℛ′
⊖ and Θ ⊖ �′♢

Checking whether Θ ⊖ �′ holds and computing �′ ∩ � are both in �(♣� ∪

Θ♣ log ♣� ∪ Θ♣), and as shown in Chapter 6 Section 6.5.2.1, ♣ℛ′
⊖♣ is exponential in

the worst case in ♣� ∪Θ♣, so computing ℛ⊖ can be reduced to computing ℛ′
⊖ (as far
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as worst-case complexity is concerned), and therefore it should not be harder than

computing � either.

But in practice, attempts to compute remainders (or equivalently diagnoses) for

DLs have been less successful than attempts to compute justiĄcations. To our knowl-

edge, most strategies proposed for DLs to compute diagnoses/remainders yield a sub-

set only of ℛ⊖ [Sch05, FS05, Kal06, QHH+08, CRW13], and/or rely on the compu-

tation of � beforehand [QHH+08, RW08, CRW13], with the exception of [MLBP06],

but their experiments were limited to atomic concept unsatisĄability in TBoxes, and

in relatively small KBs, or with low expressiveness.6

This observation may legitimately come as a surprise, given the above consid-

erations. Computing � (or � in the case Θ ̸= ∅) beforehand in particular may at

Ąrst sight seem ineicient. Because each � ∈ � is the complement in � of some

� ∈ ℛ⊖ and conversely, computing ℛ⊖ and computing � are basically the same

task. But from theorem 8.1.3.1, computing � out of � (resp. out of � in the case

Θ ̸= ∅) amounts to computing all minimal hitting sets for � (resp. for �), which

is intractable from the observation made in section 8.1.3.1. And as just explained,

computing � directly from � ∪ Θ is not harder in theory than computing � . So

a case could be made for computing � (or equivalently ℛ⊖) directly, without the

need for � . Another way to view this (in the case Θ = ∅) is the following. If Ð is

the pinpointing formula for ¶⊤ ⊑ ⊥♢ in �, then computing � and then � out of

� amounts to converting Ð into prime implicant form Ð′, before converting Ð′ into

prime implicate form Ð′′, instead of turning Ð directly into Ð′′.

A (hypothetical) explanation may be suggested for this, which pertains to glass-

box approaches only: from an empirical perspective, section 8.3.2 shows why com-

puting the whole � with a glass-box approach may be more realistic in practice than

6in particular, ignoring disjointness axioms for larger input KBs
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computing the whole remainder set ℛ⊖ (or equivalently the whole family � of diag-

noses), although worst-case complexity is identical for both tasks. Another possible

reason is that most works which produce remainders (or equivalently diagnoses) out

of justiĄcations do not aim at computing the whole remainder set ℛ⊖, but instead a

selection à(ℛ⊖) of remainders,7 as will be illustrated in Section 8.2, and � (or �) in

these cases may be a relevant intermediate representation to compute à(ℛ⊖). The

algorithm described in section 8.4, which to our knowledge is a original proposal,

actually falls into this category. It computes a selection à(ℛ⊖) of remainders out of

� (or out of � if Θ = ∅), but without the need to compute the whole remainder set

ℛ⊖.

8.2 State of the art

This section reviews diferent solutions proposed in the literature in order to address

the two issues which have just been identiĄed. Most of the works reviewed in this

section focused on the case where Θ = ∅, which implies that � = � .

8.2.1 Structural heuristics

A Ąrst straightforward strategy to select a subset of ℛ⊖ consists in selecting only

the set ℛ⊘ of elements of ℛ with maximal cardinality. Obviously, ℛ⊘ ⊖ ℛ⊖, so

each � ∈ ℛ⊘ is indeed a remainder. For DLs, the computation of (some elements

of) ℛ⊘ has been investigated by [FS05] in the case neither � nor ℛ⊖ is known, using

ReiterŠs algorithm (presented in section 8.3.1), and by [QHH+08] in the case � only

is known.

7 or sometimes a selection of elements of ℛ, some of which may not be remainders
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But the rationale behind this selection function remains questionable, especially

for relatively large datasets: for instance, if ♣�♣ > 1000, one may arguably wonder

why discarding 12 axioms instead of 13 (or even 20) is necessarily preferable. This

heuristic is actually used as a baseline in section 8.6, which shows that it may fail to

discard the expected axioms. This is illustrated by example 8.1.1 above, where the

best element of ℛ⊖ is intuitively � ∖ ¶3, 4♢, but it is not retained in ℛ⊘, because

there are 3 elements in ℛ⊖ with higher cardinality. This heuristic also seems to be

empirically biased towards the removal of TBox axioms rather than ABox axioms.

As an alternative, the notion of core was proposed in [SC03]. The authors deĄne

a core of arity � as a set of axioms which appear in � elements of � , the intuition be-

ing that an axiom appearing in a core of large arity is more likely to be faulty. Both

[QHH+08] and [CRW13] implemented a base contraction/revision strategy based on

this notion, in the case where � is already known. It consists in iteratively discarding

axioms which appear in the largest number of elements of � not hit thus far, until

consistency is reached. For instance, if � = ¶¶ã1, ã2♢, ¶ã1, ã3♢, ¶ã4, ã5♢♢, then ã1 is

discarded Ąrst, because it appears in 2 elements of � , against only 1 for each other ax-

iom of
⎷

� . Following this strategy, the family of computed incisions in this example

is ¶¶ã1, ã4♢, ¶ã1, ã5♢♢. This strategy is actually the well-studied (optimal) approxi-

mation to the canonical minimal hitting set problem (wrt cardinality) mentioned in

section 8.1.3.1. Ifℛcore designates the complements of these incisions, this means that

ℛcore and ℛ⊘ are most of the time identical, yielding the same criticism as for ℛ⊘.

For instance, in example 8.1.1, ℛcore = ℛ⊘. But because it is only an approxima-

tion, an incision Γ obtained this way is not guaranteed to be minimal wrt cardinality

among all incisions, i.e. � ∖ Γ ̸∈ ℛ⊘ may hold, or in other words, it is possible

that ℛcore ̸⊖ ℛ⊘, as noted by [FS05]. A stronger observation can actually be made
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here, namely that ℛcore ̸⊖ ℛ⊖ may hold as well.8 To see this, consider the follow-

ing example: � = ¶¶ã1, ã2, ã3♢, ¶ã1, ã4, ã5♢, ¶ã1, ã6, ã7♢, ¶ã2, ã4♢, ¶ã3, ã6♢, ¶ã5, ã7♢♢.

No element of � is a subset of another, so this is a possible conĄguration. As ã1

appears in 3 elements of � , its removal will be prioritized, and Γ = ¶ã1, ã3, ã4, ã7♢ is

one of the resulting incisions. But Γ ∖ ¶ã1♢ is itself an incision, so Γ is not a minimal

incision, or in other words Γ ̸∈ min⊖(hs(�)), and therefore (� ∖ Γ) ̸∈ ℛ⊖, such that

(� ∖ Γ) ∪ Θ could be extended with ã1 without compromising consistency, i.e. ã1

was unnecessarily discarded.

8.2.2 Prioritized base contraction/revision

Prioritized base contraction/revision formalizes the simple idea that all axioms within

� ∪ Θ are not equal, or in other words, that some preference relation ○� (total

preorder, i.e. intuitively a ranking) over the axioms of � ∪Θ is available, such that

if ã1 ∼� ã2, the removal of ã1 should be prioritized whenever possible when trying to

restore the consistency of � ∪Θ. The concrete way ○� may be obtained is discussed

in section 8.5.

According to the notation adopted in Chapter 2 Section 2.2, for any Γ ⊖ � ∪Θ,

(Γ○a

1 , ..,Γ○a
� ) will designate the ordered partition of Γ deĄned by ○�.

[QHH+08] investigated the use of � in order to perform prioritized base revision,

by computing all minimal incisions over the elements of � previously reduced to

their lower-ranked axioms wrt ○�. In other words, if � ○a

1 designates the equivalence

class of least preferred axioms of � ∈ �, and if ℬ = min⊖ hs(¶� ○a

1 ♣ � ∈ �♢),

then the procedure selects ℛ� ⊖ ℛ, deĄned by ℛ� = ¶� ∖ � ♣ � ∈ ℬ♢. Each

� ∈ ℬ is such that � ∩ � ̸= ∅ for all � ∈ �, therefore � is an incision, and so

8 ℛcore ̸⊖ ℛ⊖ is stronger than ℛcore ̸⊖ ℛ⊘ because ℛ⊘ ⊖ ℛ⊖, such that if Γ ∈ ℛcore ∖ ℛ⊖,
then Γ ∈ ℛcore ∖ ℛ⊘.
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each � ∈ ℛ� is consistent with Θ, i.e. ℛ� ⊖ ℛ holds. In addition, within each

� ∈ �, the removal of axioms with lowest preference is indeed prioritized. But a

limit of this approach is (once again) that ℛ� ⊖ ℛ⊖ may not hold, as illustrated

by the following example: � = ¶�, � ′♢, with � = ¶ã1, ã2♢, �
′ = ¶ã2, ã3♢, and

ã1 ∼� ã2 ∼� ã3. Then � ○a

1 = ¶ã1♢ and � ′○a

1 = ¶ã2♢, so the only possible incision is

� = min⊖ hs(¶� ○a

1 , � ′○a

1 ♢) = ¶ã1, ã2♢, and therefore ℛ� = ¶¶ã3♢♢. But ¶ã1, ã3♢ ∪

Θ ̸⊢ ⊥, so ã1 has been unnecessarily discarded, i.e. ¶ã3♢ ̸∈ ℛ⊖.

Another proposal is the so-called lexicographic approach [BCD+93], whose cor-

responding disjunctive KB can be computed (in propositional logic) with the dis-

junctive maxi adjustment procedure [BKLBW04]. This yields the family ℛ○q
=

max○q
ℛ,9 with ○� a total preorder over ℛ deĄned by:

Definition 8.2.2.1. ○�

∙ � ○� �
′ if �′ ̸∼� �

∙ � ∼� �
′ if there is a 1 ⊘ � ⊘ � such that ♣�○a

� ♣ < ♣�
′○a

� ♣, and for all 1 ⊘ � < �,

♣�○a

� ♣ = ♣�
′○a

� ♣

In this case too, the output is (the disjunction of) a selection of remainders, or

in other words (a proof is provided in Section 8.8.2.2):

Proposition 8.2.2.1. ℛ○q
⊖ ℛ⊖

But this option is not completely satisfying either, because it is based on cardi-

nality just like ℛ⊘ above,10 therefore yielding the same criticism.

9 or a single base equivalent to the disjunction of these subbases in the case of disjunctive maxi

adjustment.
10 Actually, ℛ⊘ is a specific case of ℛ○q

, where ○� defines only two equivalence classes, namely
⎷

� and (� ∪Θ) ∖
⎷

�
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Alternatively, assuming � is known, [Kal06] proposed to compute all minimal

incisions which maximize the sum of the rankings of their respective axioms according

to ○�.
11 Because these incisions are minimal wrt ⊖, the output is a set of remainders.

But ceteris paribus, this heuristic again favors smaller sets of axioms wrt cardinality.

For instance, let
⎷

� = ¶ã1, ã2, ã3, ã4}, with (¶ã1, ã2, ã3♢, ¶ã4♢) the ordered partition

of
⎷

� deĄned by ○�. If �(ã�) is the ranking of axiom ã�, with rank 1 for the preferred

axioms wrt ○�, then �(ã4) = 1, and �(ã1) = �(ã2) = �(ã3) = 2. Let �1 = ¶ã1♢ and

�2 = ¶ã2, ã3♢ be two diagnoses. Then according to this heuristic, � ∖ �1 will be

preferred to � ∖�2 based on cardinality only, because �(ã1) = 2 < �(ã2)+�(ã3) = 4.

Finally, prioritized base revision has been characterized by [Neb92] with a (par-

tial) order ○� over ℛ, deĄned by:

Definition 8.2.2.2. ○�

∙ if � =� �
′, then � = �′,

∙ � ∼� �
′ if there is 1 ⊘ � ⊘ � such that �○a

� ⊆ �′○a

� , and for all 1 ⊘ � < �,

�○a

� = �′○a

�

According to this view, the set of optimal subbases of � is the family ℛ○r
deĄned

by:

Definition 8.2.2.3. ℛ○r
= max○r

ℛ

This solution is intuitively very similar to the solution ℛ○q
presented above, but

arguably more satisfying in that it is based on set inclusion instead of cardinality.

Another practical diference is that ○� is a total order overℛ, whereas ○� is a partial

one.

The following observation is proven in section 8.8.2.1:

11or the sum of their scores if a ○� was defined by scores attributed to each axiom
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Proposition 8.2.2.2. ℛ○r
⊖ ℛ⊖

In other words, each � ∈ ℛ○r
is a base remainder, or equivalently, there is a

selection function à such that ℛ○r
= à(ℛ⊖).

This last solution is the one adopted in what follows. In particular, Section

8.4 provides an algorithm which computes ℛ○r
out of � , but without the need to

compute the whole remainder setℛ⊖, which to our knowledge is an original proposal.

8.3 Minimal conflicts VS diagnoses: algorithms

This section compares the respective costs of computing � and computing � (or

equivalently ℛ⊖) with algorithms proposed in the literature for both tasks. Section

8.3.1 reproduces ReiterŠs algorithm as presented by [Was00], which to our knowledge

is the most standard black-box technique used in the DL literature to compute either

� or �. It will also be shown that at each execution step of this algorithm, it cannot

be guaranteed that � has actually been computed, unless � has been computed as

well, and that the converse holds, i.e. it cannot be guaranteed that � has actually

been computed, unless � has been computed as well.

Section 8.3.2 then focuses on so-called glass-box approaches, which are based on

a saturated tableau for DLs, introduced in Chapter 3 Section 3.5.1.2. A detailed

description of the algorithm is provided, together with an example of execution of a

tableau for consistency in the DL�ℒ�. Although computing � or � with a saturated

tableau are both as hard in the worst case, identifying the respective sources of a

potential blowup for each task may suggest that the former (computing �) could be

a more realistic scenario in practice,
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8.3.1 Black-box: Reiter’s algorithm

ReiterŠs algorithm was originally proposed in [Rei87] (and corrected in [GSW89]) in

order to identify faulty components within a system with abnormal behavior. The

link between diagnoses and belief base contraction/revision was formally established

in [Was00], and algorithm 6 is an almost literal transcription of the description of

ReiterŠs algorithm given in [Was00].

In the rest of this section, any Φ ⊖ � such that Φ∪Θ ⊢ ⊥ will be called a conflict

for � and Θ, such that � is the family of all minimal conĆicts for � and Θ.

The algorithm proceeds by expanding in a breadth-Ąrst fashion a directed acyclic

graph (DAG) � = < � , ℰ , lab >, with � the set of nodes and ℰ ⊖ � 2 the set of

edges of �, and lab : � ∪ ℰ ↦⊃ 2� . � has a unique root node �root. Each node

� is labeled with a subset lab(�) of �, such that lab(�) is either a conĆict, or ∅

by convention.12 Each edge � is labeled with an axiom lab(�) of �, and ℎ(�) will

designate the set of axioms labeling the edges of a path from �root to � . As shown in

Section 8.8.3.1 (lemma 8.8.3.1), the procedure guarantees that all paths from �root to

� have the same set of labels, therefore ℎ(�) is determined for each � . At any step

of the process, lab(�) = ∅ if ℎ(�) is an incision for � , i.e. if ℎ(�) has a nonempty

intersection with all elements of � (note that in this case, because � is the family of

all minimal conĆicts for � and Θ, ℎ(�) has also a nonempty intersection with all

conĆicts for � and Θ).

Algorithm 6 is a high-level description of the procedure.13 � is a FIFO stack

12 Alternative descriptions of the algorithm can be found in the literature, in particular expanding
a tree, and not only a DAG. A conventional symbol is also often used instead of ∅ to indicate that
a node is not labeled with a conflict.

13This is on purpose: a more detailed pseudo-algorithm would require records to represent nodes
succession, and two hash tables for ℎ and lab. But these are not needed for the points to be
discussed in this section, and would simply hinder readability.

283



for the breadth-Ąrst expansion of the graph, initialized with ¶�root♢. The func-

tion ComputeConflict(�) returns a (not necessarily minimal) conĆict Φ ⊖ � if

there is one (i.e. if � ∪ Θ ⊢ ⊥), otherwise it returns ∅ by convention. The func-

tion CreateNode returns a new node. The procedure SetSuccessor (�1, �2, ã)

creates an edge labeled with ã from node �1 to node �2, i.e. �2 becomes the

(unique) ã-successor of �1, or more formally, ℰ is replaced by ℰ ∪ ¶(�1, �2)♢, and

lab(�1, �2) = ¶ã♢. The procedure DeleteEdge(�, ã) deletes from ℰ the edge

from � to its ã-successor. This last operation may trim the graph, i.e. some nodes

(including � itself) may not be (transitively) successors of �root after the appli-

cation of this procedure, in which case they are discarded from the graph. More

formally, discarding � from the graph consists in replacing � by � ∖ ¶�♢, and ℰ

by ℰ ∖ ¶(�1, �2) ♣ �1 = � or �2 = �♢. The procedure DeleteOrphanNodes(� )

updates the stack � accordingly, deleting from � any node discarded from the graph,

i.e. any node which is not (transitively) a successor of �root anymore. Finally, con-

ditional statements like ŞIf there is a �2 s.t.Ť or ŞIf there is a �3 s.t.Ť, should be

understood as ŞIf there is a node �� in the graph such thatŤ, and �� is considered

Şin the graphŤ if �� ∈ � if �� is (transitively) a successor of �root, i.e. if there is a

path from �root to ��.

Let �0, ..,�� be the successive states of � after � executions of the main loop of

Algorithm 6, such that �0 =< ¶�root♢, ∅, lab >. � � will also designate the state of

� after � iterations over the main loop of Algorithm 6, such that � 0 = ¶�root♢, and

� � is the set of nodes of the graph when the algorithm terminates, composed of

�root and all its successors (transitively). A similar notation will be used for ℰ � and

lab�, such that �� =< � �, ℰ �, lab� >. Then [Rei87] showed that:

Theorem 8.3.1.1. � = ¶ℎ(�) ♣ � ∈ � � and lab(�) = ∅♢.
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Algorithm 6 ReiterŠs algorithm
1: �root ⊂ CreateNode

2: lab(�root)⊂ ComputeConflict(�)
3: if lab(�root) ̸= ∅ then
4: EnQueue(�,�root)
5: end if
6: while IsEmpty(� ) = false do
7: �1 ⊂ DeQueue(� )
8: for all ã1 ∈ lab(�1) do
9: if there is a �2 ∈ � s.t. ℎ(�2) = ℎ(�1) ∪ ¶ã♢ then

10: SetSuccessor(�1, �2, ã1)
11: else
12: if there is no �3 ∈ � s.t. lab(�3) = ∅ and ℎ(�3) ⊆ ℎ(�1)∪¶ã♢ then
13: �2 ⊂ CreateNode

14: SetSuccessor(�1, �2, ã)
15: if there is a �4 ∈ � s.t. lab(�4) ∩ (ℎ(�1) ∪ ¶ã♢) = ∅ and

lab(�4) ̸= ∅ then
16: lab(�2)⊂ lab(�4)
17: EnQueue(�,�2)
18: else
19: lab(�2)⊂ ComputeConflict(� ∖ (ℎ(�1) ∪ ¶ã♢))
20: if lab(�2) ̸= ∅ then
21: EnQueue(�,�2)
22: for all �5 ∈ � s.t. lab(�2) ⊆ lab(�5) do
23: for all ã′ ∈ lab(�5) do
24: DeleteEdge(�5, ã

′)
25: DeleteOrphanNodes(� )
26: lab(�5)⊂ lab(�2)
27: end for
28: end for
29: end if
30: end if
31: end if
32: end if
33: end for
34: end while
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In other words, after termination, each path from �root to a node labeled with ∅

is a diagnosis, and conversely.

Another formulation of this algorithm can be found in [Sch05] (but due to place

limitation, it was only a partial description). In particular, the authors investigated

for DLs the impact on performance of the size of the sets returned by function Com-

puteConflict(�) (provided �∪Θ ⊢ ⊥). Three alternative settings were tested by

[Sch05]: either ComputeConflict returns the whole �, or ComputeConflict

returns a minimal subset of � inconsistent with Θ (or in other words it returns some

� ∈ � such that � ⊖ �), or ComputeConflict returns some � ′ ⊖ � inconsis-

tent with Θ, of an intermediate size, obtained with a greedy strategy.14 The smaller

the sets returned by procedure ComputeConflict, the more eicient ReiterŠs al-

gorithm is. But computing minimal conĆicts can be costly, such that a compromise

may need to be found. In practice, for the experiments run by [Sch05], using the

whole � led to a blowup in the width of the graph, and only the two latter solutions

(either minimal or small conĆicts) yielded some results. ReiterŠs algorithm could not

be run until termination though, and its depth was bounded by an integer �, which

guarantees that all diagnoses of cardinality � or inferior have been computed.

In the case where minimal conĆicts are returned by ComputeConflict, the

algorithm is actually slightly simpliĄed, because lines 22 to 28 do not need to be

executed, or in other words, the graph is never trimmed. This simpliĄed version of

ReiterŠs algorithm was the one used by [FS05, Kal06, QHH+08, Hor11], relying on dif-

ferent black-box or glass-box algorithms which compute one justiĄcation (presented

14Note that in the two latter cases, a glass-box algorithm can be used to compute either � or
� ′, such that technically, the whole procedure may be considered as a hybrid black-box/glass-box
one. Such a glass-box algorithm returns only one (possibly minimal) conflict though, and therefore
differs from the one presented in the next section, which aims at computing all minimal conflicts,
not a single one.
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in Chapter 3 Section 3.5) for ComputeConflict. Interestingly, this simpliĄed ver-

sion of ReiterŠs algorithm was used to obtain (a subset of) � by [FS05, QHH+08],

whereas [Hor11] used it to compute � instead. This last use of ReiterŠs algorithm is

legitimated by the following observation (proven in section 8.8.3.2):

Proposition 8.3.1.1. � = ¶lab�(�) ♣ � ∈ � �♢ ∖ ¶∅♢♢

In other words, after termination, each node label in the graph which is not ∅ is

a minimal conĆict, and conversely, each minimal conĆict is the label of some node

in the graph.

But an even tighter correspondence between the computation of � and the com-

putation of � with ReiterŠs algorithm can actually be established. Some additional

notation will be useful here. Let < �,Θ > designate an admissible input of algo-

rithm 6 (for inconsistency), i.e. � ∪ Θ ⊢ ⊥, Θ ̸⊢ ⊥, Θ is the set of axioms to be

preserved and � the set of axioms which may be discarded.

It will be shown that given an input < �1,Θ1 >, if all diagnoses for < �1,Θ1 >

have been computed after � execution steps of algorithm 6, but all minimal conĆicts

have not, then there is another input < �2,Θ2 > such that applying ReiterŠs algo-

rithm to < �2,Θ2 > may yield after � execution steps a graph isomorphic to the

one produced for < �1,Θ1 >, but such that at least one diagnosis for < �2,Θ2 >

has not been computed yet. Or intuitively, it cannot be guaranteed that � has been

computed if all elements of � have not been computed as well.

If < �,Θ > is an admissible input of algorithm 6, �<�,Θ> will designate all

minimal conĆicts for < �,Θ >, and �<�,Θ> all diagnoses for < �,Θ >. In addition,

if � =< � , ℰ , lab >, then for each � ∈ � , ℎ�(�) will designate ℎ(�) above, but

for the graph �.

Finally, if Γ is a Ąnite set of axioms, mapInt(Γ) will designate the set of bijective
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mappings from Γ to ¶1, 2, .., ♣Γ♣♢. In addition, if � ∈ mapInt(Γ), then �� will be

deĄned by ��(�) = ¶�(ã) ♣ ã ∈ �♢, i.e. �� maps a set of axioms to the corresponding

set of integers according to �.

Then the following is shown to hold in Section 8.8.3.3:

Proposition 8.3.1.2. Let ��1 =< � , ℰ , lab1 > be a possible state of a graph

built during an execution of algorithm 6 for < �1,Θ1 >, such that �<�1,Θ1> =

¶ℎ�1(�) ♣ � ∈ � and lab1(�) = ∅♢, but there is a � ∈ �<�1,Θ1> ∖ ¶lab1(�) ♣ � ∈

�♢. Then for any �1 ∈ mapInt(�1), there is a < �2,Θ2 >, a �2 ∈ mapInt(�2)

and a possible state ��2 =< � , ℰ , lab2 > of a graph for < �2,Θ2 > such that

< � , ℰ , ��1 ◇ lab1 >=< � , ℰ , ��2 ◇ lab2 >, but �<�2,Θ2> ∖ ¶ℎ�2(�) ♣ � ∈ � and

lab2(�) = ∅♢ ≠ ∅.

In other words, at any step of the execution for some input < �1,Θ1 >, if all

elements of �<�1,Θ1> have not been computed yet, then it cannot be guaranteed that

all elements of �<�1,Θ1> have (even of this is the case in practice), because there is

another input < �2,Θ2 > and a graph �2 for < �2,Θ2 > such that �2 is isomorphic

to the graph �1 for < �1,Θ1 >, but at least one � ∈ �<�2,Θ2> is still missing in �2.

The converse holds as well. Given an input < �1,Θ1 >, if all minimal conĆicts

for < �1,Θ1 > have been computed after � execution steps of algorithm 6, but all di-

agnoses have not, then there is another input < �2,Θ2 > such that applying ReiterŠs

algorithm to < �2,Θ2 > may yield after � execution steps a graph isomorphic to the

one produced for < �1,Θ1 >, but such that some minimal conĆicts for < �2,Θ2 >

have not been computed yet. Or intuitively, it cannot be guaranteed that � has been

computed if all elements of � have not been computed as well.

More formally the following is shown to hold in Section 8.8.3.4:
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Proposition 8.3.1.3. Let ��1 =< � , ℰ , lab1 > be a possible state of a graph

built during an execution of algorithm 6 for < �1,Θ1 >, such that �<�1,Θ1> =

¶lab1(�) ♣ � ∈ �♢ ∖ ¶∅♢, but there is a � ∈ �<�1,Θ1> ∖ ¶ℎ�1(�) ♣ � ∈ � and

lab1(�) = ∅♢. Then for any �1 ∈ mapInt(�1), there is a < �2,Θ2 >, a �2 ∈

mapInt(�2) and a possible state ��2 =< � , ℰ , lab2 > of a graph for < �2,Θ2 > such

that < � , ℰ , ��1 ◇ lab1 >=< � , ℰ , ��2 ◇ lab2 >, but �<�2,Θ2>∖¶lab2(�) ♣ � ∈ �♢ ≠ ∅.

In other words, at any step of the execution for some input < �1,Θ1 >, if all

elements of �<�1,Θ1> have not been computed yet, then it cannot be guaranteed that

all elements of �<�1,Θ1> have (even of this is the case in practice), because there is

another input < �2,Θ2 > and a graph �2 for < �2,Θ2 > such that �2 is isomorphic

to the graph �1 for < �1,Θ1 >, but at least one � ∈ �<�2,Θ2> is still missing in �2.

This second observation is interesting for the problem of concern in this Chapter,

which is computing � (or equivalently ℛ⊖) or a selection of elements of � for some

< �,Θ >. It shows that the strategy which consists in computing � with ReiterŠs

algorithm before computing � = min⊖(hs(�)) from � is indeed ineicient, because

� has already been computed during the execution of ReiterŠs algorithm to obtain

� .

8.3.2 Glass-box: saturated tableau and axiom pinpointing

This section discusses glass-box techniques used in the DL literature in order to

compute � or �, and in particular the fact that even if both problems are equally

hard as far as worst-case complexity is concerned, for a same input, computing one

of � or � may be more costly in practice than computing the other. This contrasts

with ReiterŠs algorithm, described in the previous section, for which the cost of both

operations is identical.
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Again, the focus is put on the case of inconsistency for the sake of readability.

In the rest of this section, � or �� will designate an atomic DL concept, � or �� an

atomic DL role, � or �� an individual, and � or �� a (possibly concept) DL concept.

Glass-box techniques for KB debugging in DLs are prototypically based on a

tableau algorithm, introduced in Chapter 2 Section 2.3.8.2, and more exactly on a

saturated tableau with a tracing mechanism, introduced in Chapter 3 Section 3.5.1.2,

which allows here for keeping track of the axioms involved in the inconsistency. A

relatively traditional (and slightly simpliĄed15) execution of a saturated tableau with

tracing is presented here, in that it is assumed that the saturated tableau is executed

until termination (i.e. until no expansion rule can be applied anymore), before

either � or � is computed out of the ŞtracesŤ produced by the tracing mechanism.

Alternatively, [MLBP06] propose to compute � during the execution of the tableau,

but their procedure nonetheless runs the saturated tableau until termination, such

that this has no incidence on the cost of the operation.16 In other words, for the

speciĄc point discussed here, describing the computation of � with the algorithm

described in [MLBP06] or with a more conventional saturated tableau is only a

matter of presentation.

So it is assumed here that the saturated tableau is executed until termination,

and the discussion will focus on the subsequent operation, which is the computation

of either � or � after termination of the tableau.

But before this, a more detailed description of the execution of a saturated tableau

may be useful. As a reminder, a tableau algorithm for the consistency of � ∪ Θ

15see the omission of blocking conditions below
16 An detailed proof of this claim may be tedious. The equivalence between the two procedures

can be seen from the fact that the incisions produced during the execution of the algorithm described
in [MLBP06] are not necessarily minimal, and more specifically that the whole family ℱ of incisions
described below may need to be computed during the execution of both algorithms.
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extends a family � of sets of DL formulas, and the successive states of � will once

again be designated with�0, ..,��. Before the execution, each TBox axiom in �∪Θ

of the form �1 ⊑ �2 is normalized syntactically into an axiom of the form � ⊑ �,

where � is an atomic DL concept and � is in NNF. Then � is initialized with

�0 = ¶�0♢, such that �0 = � ∪Θ∪ ¶⊤(�) ♣ � ∈ �Ind(� ∪Θ)♢ if �Ind(� ∪Θ) ̸= ∅,

or �0 = � ∪ Θ ∪ ¶⊤(�′)♢ if �Ind(� ∪ Θ) = ∅, with �′ a fresh individual. � is

extended by iterative applications of a set of expansion rules to each � ∈ �. If

� ∈ �� for some � ∈ ¶0, .., �♢, and if an expansion rule is applied to � , then ��

becomes ��+1 = (�� ∖ ¶�♢) ∪ expans(� ), where expans(� ) is a family of (one or

two) sets of DL formulas (an example of execution will be given below). According

to the notation introduced in Chapter 2 Section 2.3.8.2, expans*(� ) will designate

� and its (immediate and transitive) expansions.

For debugging, a tableau algorithm is extended with a tracing mechanism (see

Chapter 3 Section 3.5.1.2), which keeps track for each � ∈ � of the axioms involved

in the derivation of each formula Ò ∈ � . In addition, if all elements of either � or

� are to be computed, expansion rules are applied until saturation. For readability,

the choice is made here to represent the tracing mechanism by sets of labels,17 such

that the elements of each � ∈ � are not DL formulas as in a standard tableau, but

pairs < Ò,Λ >, with Ò a DL formula, and Λ ⊖ � ∪Θ a set of axioms involved in the

derivation of Ò.

A basic example of execution in the DL �ℒ� with individuals (i.e. with an

ABox) will be fully developed. In order to keep the example simple, it is assumed

that Θ = ∅, such that the (inconsistent) input KB is � ∪Θ = �, which also implies

that � = � , as explained in Section 8.1.3.5 above. The input set of axioms � is

17 rather than by boolean formulas attributed to derived DL formulas, like in [BP10], but this is
only a matter of taste, both notations being equivalent.
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given by example 8.3.1:

Ex 8.3.1. � = {

(1) �1 ⊑ �2,

(2) �1 ⊑ ¬�2 ⊔ ∀�2.�3,

(3) �2 ⊑ ∃�1.�3,

(4) �1 ⊑ ∀�1.�4,

(5) �3 ⊑ ¬�4,

(6) �2 ⊑ ∀�2.�4,

(7) �1(�1),

(8) �3(�2),

(9) �2(�1, �2)

For the sake of brevity, the axioms of � will be designated with their index, for

instance �1 ⊑ �2 with 1, �1 ⊑ ¬�2 ⊔ ∀�2.�3 with 2, etc. Each of these axioms is

already normalized syntactically.

The set of expansion rules for �ℒ� with individuals is reproduced in Ągure 8-1

for the sake of the example. The formulation of the ∃ rule is on purpose incomplete,

in order to keep the presentation simple. In practice, additional blocking conditions

must be implemented (see [BCM+03]) to deal with the case where the TBox of the

input KB contains cycles and existential quantiĄers, for instance if ¶� ⊑ ∃�.�,

� ⊑ �, �(�)♢ ⊖ �. But � in example 8.3.1 is a so-called acyclic TBox, which

guarantees that the saturated tableau terminates here without the need for a blocking

mechanism. The order in which these rules are applied may also have an impact on

the performance of the tableau algorithm. But this is not relevant for this discussion

either, which focuses on the cost of the computation of � and � after termination

of the saturated tableau.
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⊑ If ¶< � ⊑ �,Λ1 >,< �(�),Λ2 >♢ ⊖ � and < �(�),Λ1 ∪ Λ2 ≯∈ � ,
then expans(� ) = ¶� ∪ ¶< �(�),Λ1 ∪ Λ2 >♢♢

⊓ If < �1 ⊓ �2(�),Λ >∈ � and (< �1(�),Λ ≯∈ � or < �2(�),Λ ≯∈ � ),
then expans(� ) = ¶� ∪ ¶< �1(�),Λ >,< �2(�),Λ >♢♢

⊔ If < �1 ⊔ �2(�),Λ >∈ � and < �1(�),Λ ≯∈ � and < �2(�),Λ ≯∈ � ,
then expans(� ) = ¶� ∪ ¶< �1(�),Λ >♢,� ∪ ¶< �2(�),Λ >♢♢

∃ If < ∃�.�(�1),Λ >∈ � and there is no �′ such that < �(�1, �
′),Λ >∈ � ,

then expans(� ) = ¶� ∪ ¶< �(�1, �2),Λ >,< �(�2),Λ >,< ⊤(�2), ∅ >♢♢,
with �2 ̸∈ �Ind(� )

∀ If ¶< ∀�.�(�1),Λ1 >,< �(�1, �2),Λ2 >♢ ⊖ � and < �(�2),Λ1 ∪ Λ2 ≯∈ � ,
then expans(� ) = ¶� ∪ ¶< �(�2),Λ1 ∪ Λ2 >♢♢

Figure 8-1: expansion rules for a tableau algorithm with tracing in �ℒ� with
individuals (blocking conditions omitted)

Here is a possible execution of a saturated tableau for the consistency of � in

example 8.3.1:

(a) � ⊂ ¶�0♢

(b:⊑) �1 = �0 ∪ ¶< �2(�1), ¶1, 7♢ >♢ � ⊂ ¶�1♢

(c:⊑) �2 = �1 ∪ ¶< ∃�1.�3(�1), ¶1, 3, 7♢ >♢ � ⊂ ¶�2♢

(d:∃) �3 = �2 ∪ ¶< �1(�1, �3), ¶1, 3, 7♢ >,< �3(�3), ¶1, 3, 7♢ >,< ⊤(�3), ∅♢ >♢

� ⊂ ¶�3♢

(e:⊑) �4 = �3 ∪ ¶< ∀�1.�4(�1), ¶4, 7♢ >♢ � ⊂ ¶�4♢

(f:∀) �5 = �4 ∪ ¶< �4(�3), ¶1, 3, 4, 7♢ >♢ � ⊂ ¶�5♢

(g:⊑) �6 = �5 ∪ ¶< ¬�4(�3), ¶1, 3, 5, 7♢ >♢ � ⊂ ¶�6♢

(h:⊑) �7 = �6 ∪ ¶< ∀�2.�4(�1), ¶1, 6, 7♢ >♢ � ⊂ ¶�7♢

(i:∀) �8 = �7 ∪ ¶< �4(�2), ¶1, 6, 7, 9♢ >♢ � ⊂ ¶�8♢

(j:⊑) �9 = �8 ∪ ¶< ¬�4(�2), ¶5, 8♢ >♢♢ � ⊂ ¶�9♢

(k:⊑) �10 = �9 ∪ ¶< ¬�2 ⊔ ∀�2.�3(�1), ¶2, 7♢ >♢ � ⊂ ¶�10♢
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(l:⊔) �11 = �10 ∪ ¶< ¬�2(�1), ¶2, 7♢ >♢,

�12 = �10 ∪ ¶< ∀�2.�3(�1), ¶2, 7♢ >♢ � ⊂ ¶�11,�12♢

(m:∀) �13 = �12 ∪ ¶< �3(�2), ¶2, 7, 9♢ >♢ � ⊂ ¶�11,�13♢

(n:⊑) �14 = �13 ∪ ¶< ¬�4(�2), ¶2, 5, 7, 9♢ >♢ � ⊂ ¶�11,�14♢

After termination, �� = ¶�11,�13♢. This example illustrates several properties

of the algorithm. First, the size of � may increase only after application of the ⊔

rule (for instance after step �).

A second observation is that derived formulas are not all consequences of �.

This is obvious for an application of the ∃ rule, because some fresh individuals

are introduced. For instance, after execution step �, the formula �3(�3) has been

derived, but because �3 ̸∈ sig(�) and � ̸⊢ ⊤ ⊑ �3, � ̸⊢ �3(�3). But this may

also hold of formulas whose signature is a subset of sig(�), after an application

of the ⊔ rule. Let �(� ) designate the formulas of � , omitting their labels, i.e.

Ò ∈ �(� ) if < Ò,Λ >∈ � for some Λ ⊖ �. And for any set of formulas Ω, let

Ω♣ sig(�) = ¶æ ∈ Ω ♣ sig(¶æ♢) ⊖ sig(�)♢. Then it does not hold in general that for

all � ∈ �, �(� )♣ sig(�) ⊖ Cn(�). For instance, after step �, neither ¬�2(�1) nor

∀�2.�3(�1) is a consequence of �, but ¬�2 ⊔ ∀�2.�3(�1) is. Instead, the tableau

procedure guarantees at each execution step that
⎸

�∈�
Cn(�(� ))♣ sig(�) = Cn(�).

Another way to view this is that the two � ′,� ′′ generated by an application of the

⊔ rule are two alternative (attempted) models under construction for �.

A third observation is that if Ò ∈ �(� ) for some � ∈ � after termination, then

Ò may have been derived multiple times from diferent sets of axioms, i.e. there may

be < Ò,Λ1 >,< Ò,Λ2 >∈ � such that Λ1 ̸= Λ2. Furthermore, it may be the case

that neither Λ1 ̸⊖ Λ2 nor Λ2 ̸⊖ Λ1 holds, such that two alternative explanations can
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intuitively be found for Ò ∈ �(� ). For instance, �3(�2) ∈ �(�13), but it appears

twice in �13, namely in < �3(�2), ¶8♢ > and in < �3(�2), ¶2, 7, 9♢ >, such that

¶8♢ and ¶2, 7, 9♢ are two alternative explanations for �3(�2) in �13. Similarly, both

< ¬�4(�2), ¶5, 8♢ > and < ¬�4(�2), ¶2, 5, 7, 9♢ > are elements of �14.

As a reminder of Chapter 2 Section 2.3.8.2, the clashes under consideration here

are of the form ¶< ⊥(�),Λ >♢, with � an individual, or ¶< �(�),Λ1 >,< ¬�(�),Λ2 >

♢, with � an atomic concept and � an individual. Now let clash(� ) designate all

clashes in some � ∈ �, and for any clash � ∈ clash(� ), let �(�) =
⎷

<Ò,Λ>∈�(�)
Λ.

In example 8.3.1, after termination, there are three clashes in �11, i.e. clash(�11) =

¶��11
1 ,��11

2 ,��11
3 ♢, with:

��11
1 = ¶< �4(�2), ¶1, 6, 7, 9♢ >,< ¬�4(�2), ¶5, 8♢ >♢

��11
2 = ¶< �4(�3), ¶1, 3, 4, 7♢, < ¬�4(�3), ¶1, 3, 5, 7♢ >♢

��11
3 = ¶< �2(�1), ¶1, 7♢ >,< ¬�2(�1), ¶2, 7♢ >♢

So �(��11
1 ) = ¶1, 6, 7, 9♢∪¶5, 8♢ = ¶1, 5, 6, 7, 8, 9♢, �(��11

2 ) = ¶1, 3, 4, 7♢∪¶1, 3, 5, 7♢ =

¶1, 3, 4, 5, 7♢, and �(��11
3 ) = ¶1, 7♢ ∪ ¶2, 7♢ = ¶1, 2, 7♢. In �14, there are three

clashes too, namely:

��14
1 = ¶< �4(�2), ¶1, 6, 7, 9♢ >,< ¬�4(�2), ¶5, 8♢ >♢

��14
2 = ¶< �4(�3), ¶1, 3, 4, 7♢, < ¬�4(�3), ¶1, 3, 5, 7♢ >♢

��14
3 = ¶< �4(�2), ¶1, 6, 7, 9♢, < ¬�4(�2), ¶2, 5, 7, 9♢ >♢

Similarly, �(��14
1 ) = ¶1, 5, 6, 7, 8, 9♢, �(��14

2 )¶1, 3, 4, 5, 7♢, and �(��14
3 ) = ¶1, 2, 5, 6, 7, 9♢.

As mentioned in Chapter 3 Section 3.5.1.2, after termination of the saturated

tableau, if �� = ¶�1, ..,��♢, then the following holds:18

18 A complete proof will not be provided here, and the reader is referred to [SC03, MLBP06, BP10]
instead.
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Theorem 8.3.2.1. � = min⊖¶
�
⎷

�=1
¶�(�) ♣ < �1, ..,�� >∈

︂

�k∈�n

clash(��)♢

In order to simplify notation, letℋ = ¶
�
⎷

�=1
¶�(�) ♣ < �1, ..,�� >∈

︂

�k∈�n

clash(��)♢,

such that from the above theorem, � = min⊖ℋ. Intuitively, if one clash �� is se-

lected in each �� ∈ ��, then the union of all axioms of � involved in each of these

clashes is a conĆict � ∈ ℋ, and the procedure guarantees that � ⊖ ℋ. Then because

the elements of � are minimal conĆicts, � = min⊖ℋ must hold.

Another way to represent this is the boolean pinpointing formula Ð(��) used in

[BP10], provided a bijective mapping � from � to a set of propositional variables.

It is deĄned (up to equivalence) as:

Definition 8.3.2.1. Ð(��) =
⃦

�∈�n

⌃

�∈clash(� )

⃦

ã∈�(�)
�(ã)

In example 8.3.1, Let �(�1 ⊑ �2) = �1, �(�1 ⊑ ¬�2 ⊔ ∀�2.�3) = �2, etc.

Then the pinpointing formula is:

Ð(�) =
⎤

(�1 ∧ �5 ∧ �6 ∧ �7 ∧ �8 ∧ �9) ∨ (�1 ∧ �3 ∧ �4 ∧ �5 ∧ �7) ∨ (�1 ∧ �2 ∧ �7)
⎣

∧
⎤

(�1 ∧ �5 ∧ �6 ∧ �7 ∧ �8 ∧ �9) ∨ (�1 ∧ �3 ∧ �4 ∧ �5 ∧ �7) ∨ (�1 ∧ �2 ∧ �5 ∧ �6 ∧ �7 ∧ �9)
⎣

Another way to formulate the relation between � and � is that � ∈ � if

¶�(ã) ♣ ã ∈ � ♢ is a prime implicant of Ð(��), i.e. a minimal valuation satisfy-

ing Ð(��). In this example, the prime implicants of Ð(�) are ¶�1, �5, �6, �7, �8, �9♢,

¶�1, �3, �4, �5, �7♢ and ¶�1, �2, �5, �6, �7, �9♢, such that � = ¶¶1, 5, 6, 7, 8, 9♢, ¶1, 3, 4, 5, 7♢,

¶1, 2, 5, 6, 7, 9♢♢.

Now for each� ∈ ��, let �(� ) be the family of sets of axioms deĄned by �(� ) =

¶�(�) ♣� ∈ clash(� )♢. For instance, �(�10) = ¶¶1, 5, 6, 7, 8, 9♢, ¶1, 3, 4, 5, 7♢, ¶1, 2, 7♢♢.

Then the following holds:19

19 Again, a complete proof will not be provided here, and the reader is referred to [MLBP06, BP10]
instead.
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Theorem 8.3.2.2. � = min⊖¶hs(�(� )) ♣ � ∈ ��♢

Intuitively, each hs(�(� )) for some � ∈ �� is also an incision for �. For

instance, ¶1♢ and ¶2, 4, 6♢ are two (minimal) hitting sets for �(�10), and therefore

both are incisions for �. ¶1♢ is not only an incision, but also a diagnosis for �, i.e.

it is minimal wrt ⊖ among all incisions for �. But ¶2, 4, 6♢, even if it is a minimal

hitting set for �(�10), is not a diagnosis for �, because there is a hitting set for

�(�13) which is a strict subset of ¶2, 4, 6♢, namely ¶4, 6♢.

The procedure also guarantees that � ⊖ ¶hs(�(� )) ♣ � ∈ ��♢, so because the

elements of � are minimal incisions, � = min⊖¶hs(�(� )) ♣ � ∈ ��♢ holds.

Equivalently, each� ∈ � corresponds to a prime implicate of Ð(�), i.e. � ∈ � if

¶�(ã) ♣ ã ∈ �♢∖¶�(ã) ♣ ã ∈ �♢ is a maximal valuation (over ¶�(ã) ♣ ã ∈ �♢) verifying

Ð(��). In example 8.3.1, the prime implicates of Ð(�) are ¶�1♢, ¶�5♢, ¶�7♢, ¶�3, �6♢,

¶�4, �6♢, ¶�3, �9♢, ¶�4, �9♢, ¶�2, �3, �8♢, ¶�2, �4, �8♢, such that� = ¶¶1♢, ¶5♢, ¶7♢, ¶3, 6♢,

¶4, 6♢, ¶3, 9♢, ¶4, 9♢, ¶2, 3, 8♢, ¶2, 4, 8♢♢.

If Ñ is an arbitrary boolean formula, computing its primes implicants or its prime

implicates are both as hard in the worst case. But the reasons for a potential blowup

in the cost of each operation difer, such that for a same input, computing � or

� may in practice have diferent costs, and understanding the respective sources of

intractability in each case may provide a useful insight, in order to determine in

which cases computing � or computing � is a more realistic scenario for a speciĄc

input.

For the computation of �, in the worst case, the following may hold:

∙ for each � ∈ ��, min⊖ �(� ) = �(� )

∙ for each �1,�2 ∈ �� such that �1 ̸= �2, for all �1 ∈ min⊖ hs(�(�1)), for all

�2 ∈ min⊖ hs(�(�2)), �1 ̸⊖ �2.
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In this speciĄc case, from theorem 8.3.2.2, if ℱ = ¶min⊖ hs(�(� )) ♣ � ∈ ��♢,

then � = ℱ must hold. In other words, in the worst case, all minimal hitting sets

for each �(� ) such that � ∈ �� may need to be computed.

For the computation of � , let � = ¶�(� ) ♣ � ∈ ��♢. Then an alternative

deĄnition of ℋ above is ℋ = ¶
⎷

� ♣ � ∈ min hs(�)♢.20 In the worst case, the

following may hold:

∙ for each � ∈ ��, min⊖ �(� ) = �(� )21

∙ for all �1,�2 ∈ min⊖ hs(�) such that �1 ̸= �2,
⎷

�1 ̸⊖
⎷

�2

In this speciĄc case, from theorem 8.3.2.1, � = ℋ, so ℋ needs to be com-

puted. Then because ♣ℋ♣ = ♣min⊖ hs(�)♣ also holds in this case, and because

ℋ = ¶
⎷

� ♣ � ∈ min⊖ hs(�)♢, min⊖ hs(�) needs to be computed as well.

Now let � be the size of the largest set of axioms associated to any clash in any

� ∈ ��, i.e. � = max
�∈�n,�∈clash(� )

♣�(�)♣. Then let � be the largest number of

clashes in some � ∈ ��, i.e. � = max
�∈�n

♣ clash(� )♣, and let � = ♣��♣.

In the abovementioned worst case for �, � = ℱ , i.e. � is the collection of all

minimal hitting sets for all �(� ) such that � ∈ ��. But there can be at most

� ≤ �� of them, such that computing � after termination of a saturated tableau (for

instance with a brute-force enumeration of all hs(�(� )), followed by a selection of

the minimal elements wrt ⊖) is at most linear in �, at most polynomial in � and

at most exponential in �. On the other hand, in this worst case for � still, and if

20 � is a family of families of sets of axioms, so each � ∈ min⊖ hs(�) is a family of sets of axioms,
and not simply a set of axioms.

21The reason for this first precaution may not be obvious at first sight. If � ′ = ¶min⊖ �(� ) ♣� ∈
��♢, then for each � ∈ min⊖ hs(�), there is a � ′ ∈ min⊖ hs(� ′) such that

⎷

� ′ ⊖
⎷

�, and
therefore min⊖¶

⎷

� ′ ♣ � ′ ∈ min⊖ hs(� ′)♢ = min⊖¶
⎷

� ♣ � ∈ min⊖ hs(�)♢. So if for some � ∈ ��,
min⊖ �(� ) ⊆ �(� ) holds, the cost of computing ℰ may be lowered by reducing each �(� ) to
min⊖ �(� ) beforehand, which can be done in time polynomial in

︁

� ∈�n

︁

�∈clash(� )

♣�(�)♣.
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� > 1, there may be a � ∈ �� such that ♣�(� )♣ = � and for all � ∈ clash(� ),

♣�(�)♣ > 1. Therefore the cost of the computation of � may be exponential in �.

In the abovementioned worst case for � , � = ℋ, where each � ∈ ℋ is the union

of all elements of a minimal hitting set for �. From the deĄnition of �, ♣�♣ ⊘ ♣��♣,

so ♣�♣ ⊘ �, and therefore each � ∈ min⊖ hs(�) is such that ♣�♣ ⊘ � as well. Then

each � ∈ � is such that � = �(�) for some � ∈ �� and some � ∈ clash(� ). And

because ♣�(�)♣ ⊘ �, ♣�♣ ⊘ � must hold. So ♣
⎷

�♣ ⊘ � ≤ �, such that computing
⎷

�

out of � is in �(�� log ��). Then there are at most �� elements in min⊖ hs(�), such

that computing � = ℋ = ¶
⎷

� ♣ � ∈ min⊖ hs(�)♢ after termination of a saturated

tableau is at most linear in �, at most polynomial in �, and at most exponential in �.

On the other hand, in this worst case for � still, and if � > 1, it may be the case that

♣��♣ = �, and that for all � ∈ ��, ♣ clash(� )♣ > 1. Therefore the computation of

� may be exponential in �.

Finally, in most DLs, � and � are not bounded by each other. As an illustration,

for an arbitrarily large integer �, it is possible to Ąnd an input KB � such that

� = 1 and � = �. For instance, if � = 3, set � = ¶⊤ ⊑ �1 ⊔ �2 ⊔ �3,⊤ ⊑

¬�1,⊤ ⊑ ¬�2,⊤ ⊑ ¬�3♢, with �1, �1 and �3 atomic DL concepts. And conversely,

it possible to Ąnd an input KB � such that � = � and � = 1. For instance, if � = 3,

set � = ¶⊤ ⊑ �1,⊤ ⊑ ¬�1,⊤ ⊑ �2,⊤ ⊑ ¬�2,⊤ ⊑ �3,⊤ ⊑ ¬�3♢, with �1, �1 and

�3 atomic DL concepts.

So after termination of a saturated tableau, a potential explosion in the cost of

the computation of � may only come from the number of clashes in some � ∈ ��,

whereas for � , it may only come from the cardinality of ��, both values being non

correlated. Therefore, as opposed to ReiterŠs algorithm, computing � or � for a

same input with a saturated tableau may actually have very diferent empirical com-

putational costs. An interesting continuation would be a more practical investigation
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of the type of inputs for which � or � may be easier to compute.

Some incorrect simpliĄcations should be avoided here though. In particular, in

many DLs, the cardinality of ♣��♣ (i.e. � above) is bounded by the number of

applications of the ⊔ expansion rule in Ągure 8-1, triggered by the presence in some

� ∈ � of the DL concept disjunction operator ⊔. But assuming that ♣��♣ is

bounded by (or for instance linear in) the number of syntactic occurrences of ⊔ in �

is incorrect, because of the syntactic normalization of � before the execution of the

tableau, which may introduce additional occurrences of ⊔, but also because a same

(normalized) axiom with an occurrence of ⊔ may cause the ⊔ rule to be triggered

multiple times during the execution.

8.4 Computing ℛ○�: algorithm

Given a preference relation○� over
⎷

� , and assuming � is known, but not necessarily

ℛ⊖, this section provides an algorithm which performs prioritized revision in the

sense of deĄnition 8.2.2.3, i.e. which yields the set ℛ○r
⊖ ℛ⊖, without the need to

compute the whole remainder set ℛ⊖ (unless ℛ○r
= ℛ⊖).

A Ąrst simple observation is that in practice ○� only needs to be deĄned over
⎷

� . From proposition 8.2.2.2 and lemma 8.1.3.1, each � ∈ ℛ○r
is the complement

in � of a diagnosis, such that each discarded axiom must be an element of
⎷

�. And

from theorem 8.1.3.1,
⎷

� ⊖
⎷

� , so each discarded axiom must be an element of
⎷

� . Therefore, even if ○� is deĄned over
⎷

� only, it can be extended Şfor freeŤ to

� ∪ Θ by setting all axioms of � ∪ Θ ∖ (
⎷

�) to be maximal wrt ○�, and strictly

preferred to any axiom of
⎷

� , or in other words, if (
⎷

�)○a = (Δ1, ..,Δ�), then

(� ∪Θ)○a = (Δ1, ..,Δ�, � ∪Θ ∖ (
⎷

�)).

The procedure itself is just an improvement over the computation of ℛ⊖ out
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of � , taking advantage of ○�. As explained in section 8.1.3.5, obtaining ℛ⊖ (or

equivalently �) out of � amounts to computing min⊖ hs(�), i.e. all minimal hitting

sets for � , which is a well studied problem.22 It is therefore assumed that some

procedure to solve this problem is available (prototypically a breadth-Ąrst search

tree), which for any Ąnite family of Ąnite sets � returns min⊖ hs(� ).

Some deĄnitions will be useful. Let hit : 22ℒ
× ℒ2 ↦⊃ 22ℒ

be deĄned by:

Definition 8.4.0.2. hit(� , � ) = ¶� ∈ � ♣ � ∩ � ̸= ∅♢

If � ⊖ 2ℒ and ○� is a total preorder over
⎷

� , let � = ♣(
⎷

� )/≍�♣. Then the

function pHit : 22ℒ
× ℒ2 × ¶1, 2, .., �♢ ↦⊃ 22ℒ

is deĄned by:

Definition 8.4.0.3. pHit(� ,○�, �) = ¶� ∈ � ♣ � ∈ hit(� , (
⎷

� )○x

� ) and for 1 ⊘

� < �, � ̸∈ hit(� , (
⎷

� )○
� )♢

In particular, if (
⎷

�)○a = ((
⎷

�)○a

1 , .., (
⎷

�)○a
� ), then pHit(� ,○�, �) returns the

elements of � which are hit by (
⎷

�)○a

� , but not by any lower-ranked equivalence

class of (
⎷

�)○a .

If � = ♣(
⎷

�)/≍�♣, the following observation (proven in Section 8.8.4.1) gives the

rationale behind algorithm 7:

Proposition 8.4.0.1.

ℛ○r
= ¶�∖� ♣ for all � ∈ ¶1, .., �♢, �○a

� ∈ min⊖ hs(pHit(� ,○�, �)∖(hit(� ,
⎷

�<�⊘�
�○a

� )))♢

In other words, starting with the equivalence class (
⎷

�)○
� of highest ranked ax-

ioms of
⎷

� , the axioms discarded from each equivalence class (
⎷

�)○
� must form a

minimal hitting set for all elements of � not hit thus far, and which cannot be hit

by any strictly lower ranked axiom.

22although possibly less than the canonical minimal hitting set problem mentioned in section
8.1.3.1)
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Let hitInt : 2ℒ × 22ℒ
↦⊃ 22ℒ

be the function which reduces the sets of an input

family � to their respective intersections with an input set Δ, i.e.:

Definition 8.4.0.4. hitInt(Δ,� ) = ¶� ∩Δ ♣ � ∈ �♢

Then algorithm 7 yieldsℛ○r
. The family �○r

is the set of minimal incisions under

Algorithm 7 Prioritized base contraction/revision if � is known

1: �○r
⊂ ¶∅♢

2: for �⊂ � to 1 do
3: �′ ⊂ ¶∅♢
4: PH⊂ pHit(� ,○�, �)
5: for all � ∈ �○r

do
6: � ′ ⊂ hitInt((

⎷

�)○a

� ,PH ∖ hit(� , �))
7: for all Γ ∈ min⊖ hs(� ′) do
8: �′ ⊂ �′ ∪ ¶� ∪ Γ♢
9: end for

10: end for
11: �○r

⊂ �′

12: end for
13: ℛ○r

⊂ ∅
14: for all � ∈ �○r

do
15: ℛ○r

⊂ ℛ○r
∪ ¶� ∖�♢

16: end for

construction,23 and the family �′ is just a temporary variable to avoid concurrent

modiĄcation of �○r
. The main loop (line 2) iterates over all equivalence classes

deĄned by ○�, starting with the best ranked equivalence class, i.e. (
⎷

�)○a
� . Line 4,

PH is the set of all elements of � hit by the current equivalence class (
⎷

�)○a

� , and not

by any lower ranked equivalence class. Line 5 starts an iteration over all diagnoses

under construction. For each diagnosis under construction �, line 6, PH ∖ hit(� , �)

is the set of elements of � hit by the current equivalence class, by no lower ranked

23In particular, �○r
in this section will refer to the state of variable �○r

at some given moments
of the execution.
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equivalence class, and not hit by � yet. Then � ′ (temporarily) contains these, but

reduced to their respective intersections with the current equivalence class. The

minimal hitting set procedure min⊖ hs is called line 7, and for each returned minimal

hitting set Γ for � ′, � ∪ Γ is a possibly new diagnosis under construction. Finally,

line 13 to 16, each � ∈ ℛ○r
is obtained as the complement in � of some diagnosis

� ∈ �○r
.

In the limit case where all equivalence classes hit distinct elements of
⎷

� , i.e.

where all hit(� , (
⎷

�)○a

� ) are mutually disjoint for 1 ⊘ � ⊘ � (note that � = 1 is

a particular subcase), computing ℛ○r
amounts to computing ℛ⊖. But in all other

cases, computing ℛ○r
with algorithm 7 is strictly less expensive than computing

ℛ⊖. To see this, consider the worst possible scenario, where all elements of � are

mutually disjoint, with � = ♣�♣, and for simplicity, let us assume that they all have

the same cardinality �. Then ♣ℛ⊖♣ = ��. But if �� = max
� ∈pHit(�,○a,�)

♣� ∩ (
⎷

�)○a

� ♣

and �� = ♣ pHit(� ,○�, �)♣, then inside each equivalence class (
⎷

�)○a

� , the number

of incisions to compute is at most (��)
�i . Then by hypothesis, for some 1 ⊘ � <

� ⊘ �, hit(� , (
⎷

�)○a

� ) and hit(� , (
⎷

�)○a

� ) overlap, therefore not only �� < �, but

more importantly,
�︁

�=1
�� < �. Therefore the total number of minimal incisions

computed during the execution is inferior to
�︂

�=1
(��)

�i <
�︂

�=1
(�)�i = (�)

︁n

i=1
�i < ��.

An additional (exponential) gain may come line 6 from the fact that reducing the

elements of pHit(� ,○�, �) ∖ hit(� , �) to their respective intersections with (
⎷

�)○a

�

can also reduce their overall number. Finally, for each � from � to 1, the hitting set

procedure line 7 is called once per hitting set computed thus far, which may turn

out to be costly. Observing that the set PH ∖hit(� , �) may be identical for multiple

� ∈ �○r
, a simple optimization consists in keeping track of the hitting sets computed

for each�, which guarantees that the number of calls to the hitting set tree procedure
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line 7 is bounded by the smallest value between ♣�○r
♣ and 2♣ hitInt((

⎷

�)○a
i
,PH)♣.

8.5 Computing ○�

In the previous section, it was assumed that a preference relation ○� over the axioms

of
⎷

� (i.e. a ranking of these axioms) was available, and eforts were centered on

the computation of ℛ○r
, guided by this relation. This assumption is often made in

works dealing with prioritized base revision, where ○� is supposed to be obtained

from external conĄdence scores for axioms, or from a manual review of these axioms.

Syntactic criteria have also been proposed to deĄne ○�, for instance favoring TBox

over ABox axioms (or the opposite), favoring axioms whose signatures contain ele-

ments with more syntactic occurrences within � ∪ Θ, penalizing axioms based on

some syntactic patterns (frequent modeling errors), . . . For consistent but incoherent

KBs, [Kal06] also used as a ranking criterion the number of consequences of a given

syntactic form which would be necessarily lost if an axiom ã was discarded. In a

sense, this section follows this last intuition, although it does not provide a speciĄc

○� (a possible concrete preference relation is evaluated in section 8.6). Instead, it

shows that if � is known, but not ℛ⊖, then for each uncertain axiom ã ∈
⎷

� , two

subbases of �∪Θ can be computed in time polynomial in
︁

� ∈�
♣� ♣, which respectively

reĆect what retaining or discarding ã necessarily implies.

The intuition is simple, and can be summarized with only two questions. Let

ã ∈
⎷

� , i.e. ã is involved in the inconsistency of � ∪ Θ but is not part of Θ, and

is therefore a candidate for removal. The Ąrst question one may ask is, if ã was

retained, which part of the initial base � ∪Θ would necessarily be retained with it.

Let �ã be the set of all remainders which contain ã, i.e.:
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Definition 8.5.0.5. �ã = ¶� ∈ ℛ⊖ ♣ ã ∈ �♢ ∪Θ

Then the knowledge necessarily retained together with ã is
⎸

�ã. Whichever

the selected remainders are, if they all contain ã, then the output of the process

is guaranteed to be at least as strong as
⎸

�ã. Or in other words, if one adheres

to the assumption made throughout this chapter that all selected subbases should

be maximal wrt to set-inclusion, and if additionally one would like to retain ã, then
⎸

�ã must be retained as well. In particular, if ã1, ã2 ∈
⎷

� , some properties of
⎸

�ã1

and
⎸

�ã2 considered as a theory (i.e. Cn(
⎸

�ã1) and Cn(
⎸

�ã2)) may be exploited

to compare the impact of retaining ã1 to the impact of retaining ã2, setting a basis

for a semantically grounded computation of ○� (note that because all elements of

�ãi
are remainders, they are also consistent, so

⎸

�ãi
is consistent as well).

A Ąrst legitimate objection to this proposal may be made. Arguably, in order

to evaluate the impact of retaining ã, considering all elements of �ã individually is

more accurate than considering
⎸

�ã only. But if all elements of �ã were known for

all ã, then from the deĄnition of �ã, the whole remainder set ℛ⊖ would be known as

well, which is precisely the bottleneck addressed by the proposals made in Section 8.4

and this one. So
⎸

�ã should primarily be viewed as a computational compromise,

altogether semantically motivated and easy to obtain if � is already known, as will

be shown below.

A case could also be made for considering the disjunctive KB
⌃

�ã (deĄned in

section 8.1.3.2) instead of
⎸

�ã for this purpose. Arguably,
⌃

�ã is a more accurate

representation of the knowledge being retained together with ã. But because dis-

junctive KBs cannot be natively represented in most DLs,
⌃

�ã must be manipulated

as a family of KBs, namely �ã (and the corresponding theory is set to be
⎸

∆∈�φ

Cn(Δ),

as explained in section 8.1.3.2), which leads back to the previous objection, i.e. the
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fact that if �ã was known for each ã ∈
⎷

� , then ℛ⊖ would be known as well.

A second base can also be computed to answer a second dual question, which is

what part of the input KB would necessarily remain if ã was discarded. This base

is
⎸

�∖ã, with �∖ã deĄned by :

Definition 8.5.0.6. �∖ã = ¶� ∈ ℛ⊖ ♣ ã ̸∈ �♢ ∪Θ

This gives two KBs
⎸

�ã and
⎸

�∖ã for each uncertain axiom ã ∈
⎷

� , i.e. 2≤♣
⎷

�♣

KBs in total, which can serve as a basis to evaluate the axioms of
⎷

� , and eventually

compute the preference relation ○�.

If ℛ⊖ is known, obtaining
⎸

�ã and
⎸

�∖ã is trivial from their deĄnitions. But

a more interesting observation is that even if � only is known, and not ℛ⊖, then

the intersections
⎸

�ã and
⎸

�∖ã can still be obtained in time polynomial in
︁

� ∈�
♣� ♣,

without the need to compute �ã and �∖ã.

To show this, a few additional deĄnitions will be useful. �� will designate the

ŞsafeŤ part of �, i.e. the axioms of � which are not involved in the inconsistency of

� ∪Θ, or equivalently, which do not appear in any element of � .

Definition 8.5.0.7. �� = � ∖
⎷

�

Finally, given a family of sets � , and two elements �1 and �2, the function

hitDif : 22ℒ
× ℒ× ℒ ↦⊃ 22ℒ

returns the elements of � to which �1 belongs, but not

�2, i.e.:

Definition 8.5.0.8. hitDif(� , �1, �2) = hit(� , ¶�1♢) ∖ hit(� , ¶�2♢)

Then the two equalities given by propositions 8.5.0.2 and 8.5.0.4 (proven in sec-

tions 8.8.5.1 and 8.8.5.3) give two straightforward procedures to compute
⎸

�ã and
⎸

�∖ã respectively, for each ã ∈
⎷

� , provided � is known:
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Proposition 8.5.0.2. Let ã ∈
⎷

� .

If ¶ã♢ ∈ �, then
⎸

�ã = ∅.

Otherwise
⎸

�ã = �� ∪ ¶ã♢ ∪Θ ∪

¶ã′ ∈
⎷

� ∖
⎷

hit(� , ¶ã♢) ♣ ∀�1 ∈ hit(� , ¶ã′♢),∃�2 ∈ hit(� , ¶ã♢) : �2 ∖ ¶ã♢ ⊖ �1♢

The Ąrst precaution is just a limit case, where no remainder contains ã. Other-

wise, trivially, �� ∪ ¶ã♢ ∪ Θ ⊖
⎸

�ã. The last line indicates that aside from ã, no

other axiom in
⎷

hit(� , ¶ã♢), i.e. none of the axioms which appears together with ã

in some � ∈ � is retained in ∈
⎸

�ã. For the remaining axioms of
⎷

� , i.e. for each

ã′ ∈
⎷

� ∖
⎷

hit(� , ¶ã♢), in order to decide whether ã′ ∈
⎸

�ã, it is suicient to check

for each element �1 of � which contains ã′ if there is another element �2 of � which

contains ã, and such that �2 ∖ ¶ã♢ ⊖ �1.

Let �1 express the cost of computing
⎸

�ã out of � , as a function of � =
︁

� ∈�
♣� ♣.

Then from the following proposition, this operation remains polynomial in � (this is

proven in Section 8.8.5.2):

Proposition 8.5.0.3. �1(�) = �(�3)

The second equality provides an immediate procedure to compute
⎸

�∖ã if � is

known:

Proposition 8.5.0.4. Let ã ∈
⎷

� .

Then
⎸

�∖ã = �� ∪Θ ∪ ¶ã′ ∈ ((
⎷

�) ∖ ¶ã♢) ♣

if hitDif(� , ã′, ã) ̸= ∅ and hitDif(� , ã, ã′) ̸= ∅,

then ∀�1 ∈ hitDif(� , ã′, ã), ∀�2 ∈ hitDif(� , ã, ã′) : ((�1 ∪ �2) ∖ ¶ã, ã
′♢) ∪Θ ⊢ ⊥ }

Again, trivially, �� ∪ Θ ⊖
⎸

�∖ã. Then because of the Şif/thenŤ condition

lines 3 and 4, by default, any ã′ ̸= ã such that ã′ ∈
⎷

� and either hit(� , ¶ã♢) ⊖

hit(� , ¶ã′♢) or hit(� , ¶ã′♢) ⊖ hit(� , ¶ã♢) will be retained as well. Otherwise (i.e. if
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hitDif(� , ã′, ã) ̸= ∅ and hitDif(� , ã, ã′) ̸= ∅), for ã′ to be retained, for each element

�1 hit by ¶ã′♢ but not by ¶ã♢, for each element �2 hit by ¶ã♢ but not by ¶ã′♢,

((�1 ∪ �2) ∖ ¶ã, ã
′♢) ∪ Θ ⊢ ⊥ must hold. This very last condition may suggest a

consistency check, but it is actually not required. Because � is known, it is suicient

instead to check whether there is a �3 ∈ � such that �3 ⊖ ((�1 ∪ �2) ∖ ¶ã, ã
′♢)).

Let �2 express the cost of computing
⎸

�∖ã out of � , as a function of � =
︁

� ∈�
♣� ♣.

Again, this operation remains polynomial in � (this is proven in Section 8.8.5.4):

Proposition 8.5.0.5. �2(�) = �(�4)

8.6 Evaluation: prioritized base revision guided

by linguistic evidence

8.6.1 Datasets

The datasets used for this evaluation are �DBP
1 (8329 axioms) and �DBP

3 (776 ax-

ioms), both described in Chapter 5 section 5.1.4.

Among the 1437 individuals appearing in �DBP
1 , 641 either had no DBpedia label,

or were considered as potentially homonymous (based on the heuristics described

in Chapter 5 Section 5.3.1). They were not discarded from the KB (which would

introduce a bias), but were simply not used as a source of linguistic evidence. For

each of the 796 other individuals, 200 web pages were retrieved. Similarly, 25 of the

100 individuals appearing in �DBP
3 either had no DBpedia label or were considered

as potentially homonymous, and 200 web pages were retrieved for each of the 75

other individuals.

�DBP
1 and �DBP

3 are initially consistent (and coherent). Two diferent founda-
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tional ontologies were tested to extend them, in order to yield an inconsistent KB, ac-

cording to the proposal made in Chapter 7. The Ąrst foundational ontology was used

for �DBP
1 , and is described in Chapter 7 Section 7.4.3. It is the categorization tool

TMEO used in the Senso Comune project, in order to develop a lexical-ontological

resource [JVZ+14]. It will be designated in what follows by TMEO. The second

foundational ontology is Proton [TKM05], and was used for �DBP
3 . It was selected

as an alternative to TMEO, because it is more widespread in the SW community.

For �DBP
1 and TMEO, the extension strategy was exactly the one described in

Chapter 7. The most frequent (modulo the heuristic described in Chapter 7 Section

7.3.2) entities within �DBP
1 (individuals, DL atomic concepts and DL atomic roles)

were attached to TMEO only if these attachments were obvious. As a reminder, an

attachment is an axiom of the form �(�) for an individual � ∈ �Ind(�DBP
1 ), � ⊑ �

for an atomic concept � ∈ �Con(�DBP
3 ), and either ⊤ ⊑ ∀�.� or ∃�.⊤ ⊑ � for

an atomic role � ∈ �Role(�
DBP
1 ), where � ∈ �Con(Θ) is the most speciĄc concept

intuitively verifying the axiom. This yielded a set Δ of 62 attachments, i.e. 62

additional axioms, for a total of 8329 + 62 = 8391 removable axioms. These 8391

axioms will be designated with �DBP
1+ in what follows. Θ was composed of the 69

axioms of TMEO. For �DBP
1+ and Θ, there were 98 axioms in

⎷

� , which were not all

manually reviewed.

For Proton, the strategy was slightly diferent, because atomic concepts of DB-

pedia have already been attached to atomic concepts of Proton by [DKSP10], inde-

pendently from this work. These attachments were simply reused, without adding

any further axiom to �. In particular, individuals and DL atomic roles were not

attached by [DKSP10], such that all attachments are of the form � ⊑ �, with

� ∈ �Con(�DBP
3 ), and � ∈ �Con(Θ). In addition, in order to follow the procedure

described in Chapter 7, only the most speciĄc attachments were retained, i.e. if
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there were two attachments � ⊑ �1 and � ⊑ �2 among the axioms provided by

[DKSP10], and such that Θ ⊢ �1 ⊑ �2, only � ⊑ �1 was incorporated to �. This

yielded a set Δ of 41 additional axioms, for a total of 634 + 41 = 675 removable

axioms. These 675 axioms will be designated with �DBP
3+ in what follows. The OWL

version of Proton used by [DKSP10] does not contain negations though (and neither

does �DBP
3 ). Therefore it was extended for the sake of this evaluation with a small

number of disjointness axioms (of the form �1 ⊑ ¬�2) between most generic concepts

(for instance between Event and Location). A locality-based module ([CGHKS08])

was then extracted from Proton+disjointnesses based on sig(Δ), such that Θ was

composed of 24 axioms only. For �DBP
3+ and Θ, there were 76 axioms in

⎷

� . among

which 18 were manually identiĄed as erroneous by an ontology expert. An axiom

ã was considered erroneous if the meaning of some element of its signature was

incompatible with its dominant meaning within � ∪Θ.

For both KBs, for each axiom ã ∈ �,
⎸

�ã and
⎸

�∖ã were computed as ex-

plained in section 8.5, as well as the linguistic compliance scores comp(
⎸

�ã) and

comp(
⎸

�∖ã), deĄned in Chapter 4 Section 4.2.5, and a unique score ℎ(ã) for ã was

obtained, deĄned by ℎ(ã) = comp(
⎸

�ã)⊗comp(
⎸

�∖ã). These scores in turn deĄned

the preference relation ○� over
⎷

� , i.e. ã1 ∼� ã2 if ℎ(ã1) < ℎ(ã2), and algorithm 7

was applied to compute ℛ○r
, i.e. to perform prioritized base revision.

8.6.2 Results

Results are given in Table 8.1. The baseline is ℛ⊘, described in section 8.2, i.e. the

family of all base remainders which are maximal wrt cardinality.

For readability, statistics are not given for the selected subbases, but for their

respective complements in �, i.e. for incisions. So �○r
designates the family of
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respective complements in � of each � ∈ ℛ○r
, and �⊘ designates the family of

respective complements in � of each � ∈ ℛ⊘.

Column Ş♣.♣Ť gives the number of computed incisions for each conĄguration, where

Ş.Ť stands for �○r
or �⊘.

For �DBP
3+ with Proton, there are only 21 optimal remainders wrt ○�, so 21

incisions were computed, i.e. ♣�○r
♣ = ♣ℛ○r

♣ = 21. A lower bound of 200 for ♣ℛ⊖♣ =

♣�⊖♣ was also computed independently. So this number is satisfying from a purely

quantitative point of view. And from a purely quantitative point of view still, the

baseline yields 64 incisions, i.e. ♣�⊘♣ = ♣ℛ⊘♣ = 64.

Similarly, for �DBP
1+ , a lower bound of 200 for ♣ℛ⊖♣ = ♣�⊖♣ was computed indepen-

dently. So again, the number ♣�○r
♣ = ♣ℛ○r

♣ = 15 of computed incisions is satisfying.

But in this case, the baseline �⊘ yields only 2 incisions, i.e. ♣�⊘♣ = ♣ℛ⊘♣ = 2. So in

order to make the qualitative comparison between ℛ○r
and the baseline more mean-

ingful, two additional baselines were computed for �DBP
1+ , namely �⊘+1 and �⊘+2,

which are the families of all incisions of minimal size or minimal size +1 for the for-

mer, and of minimal size to minimal size +2 for the latter. This yields ♣�⊘+1♣ = 14

and ♣�⊘+2♣ = 34, with �⊘ ⊆ �⊘+1 ⊆ �⊘+2.

For �DBP
3+ , computing these additional baselines is useless, because ♣�⊘♣ > ♣�○r

♣

already holds, so there is no � > 0 such that ♣�⊘+�♣ is closer to ♣�○r
♣ in terms of

number of incisions.

Ş
⎷

.Ť in Table 8.1 stands for the union of all incisions, i.e. the set of all discarded

axioms if the output is set to be
⎸

ℛ○r
(resp.

⎸

ℛ⊘), whereas Ş
⎸

.Ť designates the

axioms which appear in all incisions, i.e. the axioms which would be necessarily

lost if at least one element of ℛ○r
(resp. ℛ⊘) was selected. Column ŞTotŤ gives

the number of axioms in Ş
⎷

.Ť (resp. Ş
⎸

.Ť). Then the two ŞErrŤ columns give the

number or axioms of Ş
⎷

.Ť (resp. Ş
⎸

.Ť) which were actually erroneous. Precision is
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♣.♣ ♣
⎷

.♣ ♣
⎸

.♣
Tot Err P R Tot Err P R

�DBP
1 with TMEO

�○r
15 18 9 0.5 NA 0 0 NA NA

�⊘ 2 5 0 0.0 NA 3 0 0.0 NA
�⊘+1 14 13 3 0.23 NA 1 0 0.0 NA
�⊘+2 35 23 6 0.26 NA 0 0 NA NA

�DBP
3 with Proton

�○r
21 19 12 0.63 0.66 3 3 1.0 0.17

�⊘ 64 17 6 0.35 0.33 5 0 0.0 0.0

Table 8.1: Prioritized base revision: results

given by the two ŞPŤ columns, and is the proportion of actually erroneous axioms in
⎸

. or
⎷

. respectively. Recall is given by te two ŞRŤ columns, and is the proportion

of all axioms identiĄed by the ontology expert in
⎷

� which are also present in
⎸

. or
⎷

. respectively. Because the whole
⎷

� was reviewed by the expert for �DBP
3+ only,

recall is given for �DBP
3+ only.

For �DBP
3+ , as a reminder, there are 18 actually erroneous axioms among the 76

axioms of
⎷

� . The baseline �⊘ produced 64 candidate incisions, 17 diferent axioms

appear in these 64 incisions, and 6 out of these 17 are actually erroneous. This is

not signiĄcantly better than a random selection of 17 axioms within
⎷

� (a Fisher

exact test yields a p-value of 1). For
⎸

�⊘, none of the 5 axioms appearing in all 64

incisions are actually erroneous. In this case, the result is worse than what could be

expected from a random selection, but again not signiĄcantly.

For �DBP
3+ still, �○r

contains 21 incisions, but of various sizes (from 11 to 14

axioms). 12 of the 19 axioms of
⎷

�○r
are erroneous, which is signiĄcant better than

a random selection of 19 axioms within
⎷

� (p-value < 0.02). For the intersection,

the 3 axioms appearing in all 21 incisions are all actually erroneous (but this is not

signiĄcant).

So for �DBP
3.2 , the linguistic input combined with prioritized revision had a mean-
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ingful (positive) impact, whereas the removal of the smallest possible sets of axioms

wrt cardinality (which yielded �⊘) did not.

For �DBP
1+ , the total number or erroneous axioms in

⎷

� is unknown, so neither

recall nor a comparison to a random selection of axioms in
⎷

� can be provided. But

it can nonetheless be observed that the proportion of actually erroneous axioms in
⎷

�○r
is higher than in

⎷

. for any of the three baselines, and signiĄcantly higher

(p-value < 0.01) for �⊘ and �⊘+2. On the other hand, no conclusion (either positive

or negative) can be drawn from the results for
⎸

., because
⎸

�○r
= ∅.

8.7 Conclusion

This chapter focused on the identiĄcation of (sets of) axioms to be discarded from

an input KB � ∪Θ, such that � ∪Θ is inconsistent, incoherent, or has some already

identiĄed undesired consequences, and such that Θ needs to be preserved, i.e. only

axioms of � may be discarded in practice. These tasks have been designated with

diferent names in the literature, among which syntax-based of belief base contraction

(if Θ = ∅) or revision (if Θ ̸= ∅), but also diagnosis, or simply KB debugging.

The focus throughout this chapter was put on inconsistency for readability, but

most observations can be generalized to incoherence and undesired consequences

provided minor modiĄcations. Section 8.1 characterized the problem, deĄning useful

notions such as the familyℛ⊖ of maximal subbases of� (wrt set inclusion) consistent

with Θ, and the family � of minimal conĆicts, i.e. minimal subsets of � inconsistent

with Θ. Section 8.1.4 identiĄed two potential issues which are inherent to syntax-

based contraction/revision for DLs, namely computational cost, and the number of

candidate output subbases of �, ie. the cardinality of the family ℛ⊖.

Section 8.2 reviewed some of the proposals made in the literature to address
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these two issues. It was argued in particular that discarding sets of axioms which

are minimal wrt cardinality rather than (only) wrt set inclusion is a questionable

heuristic. The adopted solution for the second issue above, i.e. the number of

candidate output subbases of �, is prioritized base debugging. Intuitively, given a

preference relation ○� over the axioms of �, it consists in prioritizing the removal of

least preferred axioms of � wrt ○�, until consistency is reached. Diferent deĄnitions

and understandings of prioritized base debugging were reviewed in Section 8.2.2, and

the one given by [Neb92] was adopted as the intuitively most satisfying one. The

output in this case is a selection à(ℛ⊖) of elements of ℛ⊖.

Section 8.3 then discussed the relation between the computation of the family

ℛ⊖ (or equivalently the family � of all diagnosis for the inconsistency) on the one

hand, and the family � of minimal conĆicts on the other hand, reviewing in details

the execution of the two main algorithms used in the literature for these purposes,

namely ReiterŠs algorithm for black-box techniques, and a saturated tableau for

glass-box techniques.

Section 8.4 proposed an algorithm which performs prioritized base debugging out

of � , i.e. which yields the desired selection à(ℛ⊖) of elements of ℛ⊖, but without

the need to compute the whole ℛ⊖.

Section 8.5 proposed a generic solution in order to obtain the preference relation

○�, in the form of two bases �ã and �∖ã which, for each candidate axiom ã for

removal, represent what part of the input KB would necessarily be retained if ã was

respectively retained or discarded. In particular, it is was shown that these two bases

can be computed in polynomial time, provided � is known.

Section 8.6 Ąnally evaluated the whole strategy, for the speciĄc case where the

compliance (as deĄned in Chapter 4) of �ã and �∖ã to some automatically gathered

linguistic input is used in order to rank candidate axioms for removal, i.e. in order to
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produce ○�. The strategy was compared to a heuristic based on cardinality (reviewed

in Section 8.2) as a baseline, with encouraging results. The input inconsistent KBs

for this evaluation were produced by application of the manual extension strategy

presented in Chapter 7.
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8.8 Proofs

8.8.1 Section 8.1

8.8.1.1 Proposition 8.1.3.1

Proposition. Cn(
⎸

ℛ⊖ ∪Θ) ⊖
⎸

�∈ℛ⊖

Cn(� ∪Θ)

Proof. Take any � ∈ ℛ⊖. Then
⎸

ℛ⊖ ⊖ �. So
⎸

ℛ⊖ ∪ Θ ⊖ � ∪ Θ, and by

monotonicity, Cn(
⎸

ℛ⊖ ∪Θ) ⊖ Cn(� ∪Θ). So for all � ∈ ℛ⊖, we have Cn(
⎸

ℛ⊖ ∪

Θ) ⊖ Cn(� ∪Θ), such that Cn(
⎸

ℛ⊖ ∪Θ) ⊖
⎸

�∈ℛ⊖

Cn(� ∪Θ).

8.8.1.2 Proposition 8.1.4.1

Proposition. ℛ⊖ = ¶�′ ∩� ♣ �′ ∈ ℛ′
⊖ and Θ ⊖ �′♢

Proof. For the left inclusion, Let � ∈ ℛ⊖. We need to show that there is an �′ ∈ ℛ′
⊖

such that Θ ⊖ �′ and � = �′ ∩�. Take �′ = � ∪ Θ. Then Θ ⊖ �′, and because

from the deĄnition of ℛ⊖, we have �′ ⊖ � ∪Θ. From the deĄnition of ℛ⊖ still, for

any ã ∈ � ∖�, �∪Θ∪¶ã♢ ⊢ ⊥, and therefore �′ ∪¶ã♢ ⊢ ⊥. So from the deĄnition

of ℛ′
⊖, �′ ∈ ℛ′

⊖.

For the right inclusion, let �′ ∈ ℛ′
⊖ such that Θ ⊖ �′, and let � = �′ ∩ �.

Because �′ ∈ ℛ′
⊖, �′ ⊖ �∪Θ, and so �′ = (�′∩�)∪ (�′∩Θ) = �∪Θ. In addition,

for all ã ∈ (� ∪Θ) ∖�′, �′ ∪ ¶ã♢ ⊢ ⊥, and therefore � ∪Θ ∪ ¶ã♢ ⊢ ⊥. So from the

deĄnition of ℛ⊖, � ∈ ℛ⊖.
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8.8.2 Section 8.2

8.8.2.1 Proposition 8.2.2.2

Proposition. ℛ○r
⊖ ℛ⊖

Proof. By contraposition. We will show that if � ̸∈ ℛ⊖, then � ̸∈ ℛ○r
. Let

� ̸∈ ℛ⊖. If � ∪ Θ ⊢ ⊥, then � ̸∈ ℛ, and because ℛ○r
= max○r

ℛ, � ̸∈ ℛ○r
. If

� ∪ Θ ̸⊢ ⊥ instead, because � ̸∈ ℛ⊖, from the deĄnition of ℛ⊖, there must be an

�′ ∈ ℛ such that � ⊆ �′, and therefore for 1 ⊘ � ⊘ �, �○a

� ⊖ �′○a

� must hold.

In addition, because �′/≍� is a partition of �′, there must be some � such that

�○a

� ⊆ �′○a

� . Take the smallest � verifying this. Then it holds that �○a

� ⊆ �′○a

� , and

that ∀�1⊘�<� : �○a

� = �′○a

� , therefore from the deĄnition of ○�, � ∼� �
′ holds, and

so � ̸∈ max○r
ℛ = ℛ○r

.

8.8.2.2 Proposition 8.2.2.1

Proposition. ℛ○q
⊖ ℛ⊖

Proof. If proposition 8.2.2.2 holds, in order to prove proposition 8.2.2.1, it is suicient

by the transitivity of ⊖ to prove that ℛ○q
⊖ ℛ○r

. We will show that if � ̸∈ ℛ○r
,

then � ̸∈ ℛ○q
. Let � ̸∈ ℛ○r

. If � ̸∈ ℛ, because ℛ○q
= max○q

ℛ, � ̸∈ ℛ○q
. If

� ∈ ℛ but � ̸∈ ℛ○r
, there exist � and �′ ∈ ℛ such that ∀�1⊘�<� : �○a

� = �′○a

� ,

and �○a

� ⊆ �′○a

� . Then ∀�1⊘�<� : ♣�○a

� ♣ = ♣�′○a

� ♣, and ♣�○a

� ♣ < ♣�
′○a

� ♣, so � ∼� �
′,

therefore � ̸∈ ℛ�.
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8.8.3 Section 8.3

8.8.3.1 Notation

This section introduces additional notation which will be useful for the proofs of the

following sections. It also shows why ℎ(�) is uniquely deĄned for each node � ∈ � �,

as an immediate consequence of lemma 8.8.3.1 below.

If �� =< � �, ℰ �, lab� > is the state of a graph � after � iterations over the main

loop of algorithm 6 for a given input < �,Θ >, then ��.� will designate the state of

� after after � iteration over the main loop and � iterations over the inner loop line

8, such that �� and ��.0 are two alternative denominations from the same state of �.

A similar notation will be used for � �.�, ℰ �.�, etc.

In addition, for each node � ∈ � , a path � from the root node �root to � will

be represented as an indexed list of nodes � = (�root, .., �), with ♣� ♣ the number

of nodes in � , and � (�) will designate the (� ⊗ 1)th node in this path starting

from the root, i.e. � (0) = �root, and � (♣� ♣ ⊗ 1) = � . If 0 ⊘ � ⊘ � ⊘ ♣� ♣ ⊗ 1,

then � (�, �) will designate the subpath (� (�), .., � (�)). The extension of a path

� with a node � will be designated with ext(�,�), i.e. if � = (�root, .., �1),

then ext(�,�2) = (�root, .., �1, �2). Finally, lab(� ) will designate the set of axioms

labeling the edges of � , i.e. lab(� ) =
⎷♣� ♣⊗1
�=1 lab(� (� ⊗ 1), � (�)).

At any step of the execution, � is a DAG, therefore no node can appear twice in

a path � . And because �root is the unique root node of �, for each � ∈ � , there is

a path � from �root to � . But there may be several of them. The set of all paths

from �root to a given � ∈ � will be designated with �� , with ��root
= ¶(�root)♢ by

convention, and � will designate all paths to any � ∈ � , i.e. � = ¶�� ♣ � ∈ �♢.

A Ąrst immediate observation from algorithm 6 is that the label of an edge is

318



never modiĄed during the execution (but an edge can be deleted from the graph). In

other words, if � ∈ � �.�⊗1 ∩ � �.�, then lab�.�⊗1(� ) = lab�.�(� ) must hold. Therefore

the index �.� in lab�.�(� ) can be omitted.

The following lemma states that after each iteration over the main loop of algo-

rithm 6, if � is a node of the graph, then all paths from the root node to � have

the same set of labels:

Lemma 8.8.3.1. For each � ∈ � �, if �1, �2 ∈ �
�
� , then lab(�1) = lab(�2)

Proof. By induction on �. For the base case � = 0, � 0 = ¶�root♢, and �0
�root

=

¶��root
♢ = ¶(�root)♢. So if �1, �2 ∈ �

0
�root

, then �1 = �2 = ��root
, and lab(�1) =

lab(�2) is trivially veriĄed.

For the inductive case, by IH, for each � ∈ � �⊗1, for all �1, �2 ∈ �
�⊗1
� , lab(�1) =

lab(�2) = ℎ�⊗1(�), such that ℎ�⊗1(�) is determined (and unique) for � when enter-

ing the �th iteration of the main loop.

Then by induction on � (i.e. on the number of iterations over the inner loop line

8), we will show that for each � ∈ � �⊗1.�, if �1, �2 ∈ �
�⊗1.�
� , then lab(�1) = lab(�2).

For the (inner) base case � = 0, the property holds by IH for ��⊗1 = ��⊗1.0.

For the (inner) inductive case, let ã be the axiom of lab�⊗1.�⊗1(�1) selected line

8 of algorithm 6 during the �th iteration over the inner loop. The Ąrst possible case

is the one where the condition line 9 is veriĄed, i.e. there is a node �2 ∈ �
�⊗1.�⊗1

such that ℎ�⊗1.�⊗1(�2) = ℎ�⊗1.�⊗1(�1) ∪ ¶ã♢. In this case, a new edge (�1, �2) is

added to ℰ and labeled with ã, while the rest of the graph remains unchanged. So

no path is deleted, i.e. � �⊗1.�⊗1 ⊆ � �⊗1.�. Let � be any newly created path, i.e.

� ∈ � �⊗1.� ∖ � �⊗1.�⊗1, and let � = � (♣� ♣ ⊗ 1) be the last node in � .

Because the only new edge in ℰ �⊗1.� is (�1, �2), this new edge must appear in

� , otherwise � would not be a new path. So there must be a 0 ⊘ � < ♣� ♣ ⊗ 1
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such that � (�) = �1 and � (� + 1) = �2. If ♣� ♣ ⊗ 1 = � + 1, i.e. if � = �2, then

lab(� ) = lab(� (0, �))∪ lab(� (�, �+1)) = ℎ�⊗1.�⊗1(�1)∪lab(�1, �2) = ℎ�⊗1.�⊗1(�1)∪

¶ã♢. And from the condition line 9, ℎ�⊗1.�⊗1(�1) ∪ ¶ã♢ = ℎ�⊗1.�⊗1(�2), so lab(� ) =

ℎ�⊗1.�⊗1(�2). Then because no new node has been created, i.e. � �⊗1.� = � �⊗1.�⊗1,

�2 = � ∈ � �⊗1.�⊗1 must hold. And because ��⊗1.�⊗1 is a DAG with a unique root

node, there must be a path � ′ to �2 = � in ��⊗1.�⊗1, and because � ′ ∈ � �⊗1.�⊗1
�2

,

by IH, lab(� ′) = ℎ�⊗1.�⊗1(�2) must hold. So there is a path � ′ ∈ � �⊗1.�⊗1
� such that

lab(� ′) = lab(� ).

If ♣� ♣ ⊗ 1 > � + 1 instead, i.e. if the last node � of � is not �2, because the

only new edge in ℰ �⊗1.� is (�1, �2) = (� (�), � (� + 1)), all other edges in � must

be in ℰ �⊗1.�⊗1. In particular, for all � + 1 ⊘ � < ♣� ♣ ⊗ 1, (� (�), � (� + 1)) ∈ ℰ �⊗1.�⊗1

must hold. Then because no new node has been created, i.e. � �⊗1.� = � �⊗1.�⊗1,

�2 ∈ �
�⊗1.�⊗1 must hold. So there must be a path � ′ ∈ � �⊗1.�⊗1

� and a 0 ⊘

� < ♣� ′♣ ⊗ 1 such that � ′(�) = �2, and � ′(�, ♣� ′♣ ⊗ 1) = � (� + 1, ♣� ♣ ⊗ 1). So

lab(� ′(�, ♣� ′♣ ⊗ 1)) = lab(� (� + 1, ♣� ♣ ⊗ 1)), and because � ′(�) = � (� + 1) = �2,

� ′(0,�) ∈ � �⊗1.�⊗1
�2

, and therefore lab(� ′(0,�)) = ℎ�⊗1.�⊗1(�2). Then from the

condition line 9, ℎ�⊗1.�⊗1(�2) = ℎ�⊗1.�⊗1(�1) ∪ ¶ã♢ = lab(� (0, � + 1)). So lab(� ′) =

lab(� ′(0,�))∪ lab(� ′(�, ♣� ′♣⊗1)) = lab(� (0, �+1))∪ lab(� (�+1, ♣� ♣⊗1)) = lab(� ).

Therefore in both cases (� = �2 or � ̸= �2), there is already a � ′ ∈ � �⊗1.�⊗1
� such

that lab(� ′) = lab(� ).

By IH, for all �1, �2 ∈ �
�⊗1.�⊗1
� , lab(�1) = lab(�2), and because � ′ ∈ � �⊗1.�⊗1

�

and lab(� ′) = lab(� ), for all �3 ∈ �
�⊗1.�⊗1
� , lab(� ) = lab(�3) must hold, so for all

�1, �2 ∈ �
�⊗1.�⊗1
� ∪ ¶�♢, lab(�1) = lab(�2) must hold as well. Then by induction

on the number of new paths, i.e. on the cardinality of � �⊗1.� ∖ � �⊗1.�⊗1, for each

� ∈ � �⊗1.� = � �⊗1.�⊗1, if �1, �2 ∈ �
�⊗1.�
� , then lab(�1) = lab(�2) must hold.

The second possible case is the one where the condition line 9 is not veriĄed, and
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neither is the condition line 12. Then �1 has no ã-successor, and the graph remains

unchanged, i.e. ��⊗1.� = ��⊗1.�⊗1, and because the property holds by IH for ��⊗1.�⊗1,

it also holds for ��⊗1.�.

The last possible case is the where the condition line 9 is not veriĄed, but the

condition line 12 is, and a a new node �2 is created as a ã-successor for �1. In

this case, the only new edge in ℰ �⊗1.� ∖ ℰ �⊗1.�⊗1 (provided it is not deleted line 24)

is (�1, �2). And because �2 is a fresh node, it has no sucessor in the graph. So if

a new path � is created, it is a path to �2. Therefore for all � ∈ � �⊗1.� ∖ ¶�2♢,

� �⊗1.�
� ⊖ � �⊗1.�⊗1

� . Take any �1, �2 ∈ �
�.�⊗1
� . Because � �⊗1.�

� ⊖ � �⊗1.�⊗1
� , �1 ∈ �

�⊗1.�⊗1
�

and �2 ∈ �
�⊗1.�⊗1
� must hold, and by IH, lab(�1) = lab(�2). Finally, because �2 is

a fresh node and ℰ �⊗1.� ∖ ℰ �⊗1.�⊗1 ⊖ ¶(�1, �2)♢, there is at most one path to �2 in

� �⊗1.�, i.e. ♣� �⊗1.�
�2
♣ ⊘ 1, so if �1, �2 ∈ �

�⊗1.�
�2

, then �1 = �2, and lab(�1) = lab(�2)

trivially holds.

As noted above, an immediate consequence of lemma 8.8.3.1 is that ℎ(�) is

uniquely deĄned for each � ∈ � �.

8.8.3.2 Proposition 8.3.1.1

Proposition. � = ¶lab�(�) ♣ � ∈ � �♢ ∖ ¶∅♢♢

8.8.3.2.1 Lemmas

Lemma 8.8.3.2. At any execution step �.�, for all �, � ′ ∈ ¶lab(�) ♣ � ∈ � �.�♢∖¶∅♢,

� ̸⊆ � ′.

Proof. By induction on the cumulated number � of iterations over the inner loop

line 8. For the base case � = 0, � 0.0 = ¶�root♢, so ♣¶lab(�) ♣ � ∈ � 0.0♢♣ ∖ ¶∅♢ ⊘ 1,

and the lemma trivially holds.

321



For the inductive case, as a notational shorcut, let � �.�⊗1 = ¶lab(�) ♣ � ∈

� �.�⊗1♢ ∖ ¶∅♢, and � �.� = ¶lab(�) ♣ � ∈ � �.�♢ ∖ ¶∅♢. Then we need to show that

for all ��, �
′
� ∈ �

�.�, �� ̸⊆ � ′
� holds, knowing by IH that for all ��⊗1, �

′
�⊗1 ∈ �

�.�⊗1,

��⊗1 ̸⊆ � ′
�⊗1 holds.

Let �1 ∈ �
�.�⊗1 be the selected node line 7 during the (�)th iteration over the

main loop, and let ã be the axiom selected during iteration �.� over the inner loop

line 8. If the condition line 9 is veriĄed, or if the condition line 12 is not veriĄed,

then no new node is created, and labels of nodes remain unchanged, so � �.� = � �.�⊗1,

so by IH the property holds for � �.�.

Now let us consider the case where a new node �2 is created (line 13). If the

condition line 15 is veriĄed, i.e. if there is a �4 ∈ �
�.�⊗1 which veriĄes lab�.�⊗1(�4) ̸=

∅ and lab�.�⊗1(�4) ∩ (ℎ(�1) ∪ ¶ã♢) = ∅, then lab�.�⊗1(�4) is used to label �2, such

that � �.� = � �.�⊗1, and again, by IH, the property holds for � �.�.

The last possible case is the one where for all �4 ∈ �
�.�⊗1 such that lab�.�⊗1(�4) ̸=

∅, lab�.�⊗1(�4)∩ (ℎ(�1)∪¶ã♢) = ∅ holds. Or in other words, because ℎ(�1)∪¶ã♢ =

ℎ(�2), for all � ∈ � �.�⊗1, � ∩ (ℎ(�2)) ̸= ∅ holds. Then a label �2 = lab�.�(�2) is

returned by the call to the function ComputeConflict line 19. In addition, there

is only one call to the function ComputeConflict during the execution of the

inner loop �.�, i.e. �2 is the only label possibly created during iteration �.�. If �2 = ∅,

then from the deĄnition of � �.�⊗1, �2 ̸∈ �
�.�⊗1, so once again � �.� = � �.�⊗1, and the

property holds by IH.

If �2 ̸= ∅, from the deĄnition of the function ComputeConflict, �2 must be

such that ℎ(�2) ∩ �2 = ∅. Let us assume by contradiction that �1 ⊆ �2 for some

�1 ∈ �
�.�. If �1 ̸∈ �

�.�⊗1, then �1 must have been created during execution �.�, and

because �2 is the only label possibly created during iteration �.�, �1 = �2 must hold,

which contradicts �1 ⊆ �2. If �1 ∈ �
�.�⊗1, because �1 ⊆ �2 and ℎ(�2) ∩ �2 = ∅,
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�1 ∩ ℎ(�2) = ∅ must hold, but this contradicts the above observation that for all

� ∈ � �.�⊗1, � ∩ (ℎ(�2)) ̸= ∅. So if �2 is the (only) new element in � �.� ∖ � �.�⊗1, then

there is no �1 ∈ �
�.� such that �1 ⊆ �2.

We can now show that the other direction holds as well, i.e that if �2 is the (only)

new element in � �.� ∖ � �.�⊗1, there is no �1 ∈ �
�.� such that �2 ⊆ �1. Let us assume

by contradiction that �2 ⊆ �1 for some �1 ∈ �
�.�. If �1 ̸∈ �

�.�⊗1, then �1 must have

been created during execution �.�, and because �2 is the only label possibly created

during iteration �.�, �1 = �2 must hold, which contradicts �2 ⊆ �1. If �1 ∈ �
�.�⊗1,

then from the deĄnition of � �.�⊗1, �1 = lab(� ′) for some � ′ ∈ � �.�⊗1. And because

lab(�2) = �2 and �2 ⊆ �1, the condition line 22 is veriĄed for �5 = � ′, and so line

26, lab(� ′) = lab(�5) is replaced by �2. So by induction on the number of nodes in

� �.�⊗1 which are labeled with �1, after termination of the loop �.�, we have �1 ̸∈ �
�.�,

which contradicts the hypothesis. So if �2 is the (only) new element in � �.� ∖ � �.�⊗1,

there is no �1 ∈ �
�.� such that �2 ⊆ �1.

Now let �, � ′ ∈ � �.�. If � = �2 or � ′ = �2, from the above observations, we have

� ̸⊆ � ′. If � ̸= �2 and � ′ ̸= �2, because � �.� ∖ � �.�⊗1 = ¶�2♢, ¶�, �
′♢ ⊖ � �.�⊗1 must

hold, and by IH � ̸⊆ � ′ must hold too.

8.8.3.2.2 Main proposition

Left inclusion (⊖). We need to show that � ⊖ ¶lab�(�) ♣ � ∈ � � ∖ ¶∅♢♢.

As a notational shortcut, let � � = ¶lab(�)� ♣ � ∈ � � ∖ ¶∅♢♢, such that we need to

show that � ⊖ � �.

If � ∪Θ ̸⊢ ⊥, then � = ∅, so trivially, � ⊖ � �.

If � ∪Θ ⊢ ⊥, let � ∈ �, and let us assume by contradiction that � ̸∈ � �.

The function ComputeConflict in algorithm 6 returns either a conĆict or ∅,
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such that for each � ∈ � �, either lab�(�) is a conĆict, or lab(�) = ∅. In addition,

because � ∈ �, � is minimal wrt ⊖ among all conĆicts, so for each � ∈ � �, either

lab(�) = ∅ or lab(�) ̸⊆ � must hold. In other words, for each � ∈ � �, either

lab(�) = ∅ or there is a ã ∈ lab(�) such that ã ̸∈ � .

Now select a path in �� by applying the following procedure. Let � and � be two

variables, initialized with � ⊂ �root and � ⊂ (�root). At any step, if lab�(�) = ∅,

then � is the selected path. Otherwise, select one ã ∈ lab�(�) ∖ � . If � has no

ã-successor, then � is the selected path. If � has a ã-successor �1, then � ⊂ �1,

� ⊂ ext(�,�1), and the operation is repeated for � = �1. Because each node of

the graph can appear only once in � , and because � � is Ąnite, the procedure must

terminate. After termination, each ã ∈ lab�(� ) is such that ã ̸∈ � , or in other words

ℎ(�) ∩ � = ∅. So from the deĄnition of �, ℎ(�) ̸∈ � must hold. If lab�(�) = ∅,

this contradicts theorem 8.3.1.1. If lab�(�) ̸= ∅ but � has no successor, the only

possible reason is given by line 12 of algorithm 6: there is an execution step � and a

node �3 ∈ �� such that lab�(�3) = ∅ and ℎ(�3) ⊆ ℎ(�) ∪ ¶ã♢. But lab�(�3) = ∅

if ℎ(�3) is an incision, i.e. if (� ∖ ℎ(�3)) ∪ Θ ̸⊢ ⊥. And because ℎ(�3) ⊆ ℎ(�),

(� ∖ ℎ(�)) ⊆ (� ∖ ℎ(�3)), so by monotonicity (� ∖ ℎ(�)) ∪ Θ ̸⊢ ⊥ must hold as

well. Therefore ℎ(�) must be an incision too, which implies ℎ(�) ∩ � ̸= ∅, and

contradicts ℎ(�) ∩ � = ∅ above.

Right inclusion (⊇). We need to show that � ⊇ ¶lab�(�) ♣ � ∈ � � ∖ ¶∅♢♢.

Again, as a notational shortcut, let � � = ¶lab�(�) ♣ � ∈ � � ∖ ¶∅♢♢, such that we

need to show that � ⊇ � �.

If � ∪ Θ ̸⊢ ⊥, then � = ∅, and � � = ¶�root♢, with lab�(�root) = ¶∅♢, so

� � = ¶∅♢ ∖ ¶∅♢ = ∅, and � ⊇ � � trivially holds.

If � ∪Θ ⊢ ⊥, let � ∈ � �, and let us assume by contradiction that � ̸∈ �.
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From algorithm 6, a label can only be introduced line 19, from a call to the

function ComputeConflict. So if � ∈ � �, from the deĄnition of function Com-

puteConflict, either lab�(�) ̸= ∅ or lab�(�) is a conĆict, and because � ∈ � �,

� ̸= ∅, � must be a conĆict for � and Θ. Then because � is the family of all minimal

conĆicts for � and Θ, there must be a � ∈ � such that � ⊖ � , and from lemma

8.8.3.2, � ̸⊆ � , such that � = � must hold, and therefore � ∈ �, contradicting the

hypothesis.

8.8.3.3 Proposition 8.3.1.2

Proposition. Let ��1 =< � , ℰ , lab1 > be a possible state of a graph built during an

execution of algorithm 6 for < �1,Θ1 >, such that �<�1,Θ1> = ¶ℎ�1(�) ♣ � ∈ �

and lab1(�) = ∅♢, but there is a � ∈ �<�1,Θ1> ∖ ¶lab1(�) ♣ � ∈ �♢. Then for

any �1 ∈ mapInt(�1), there is a < �2,Θ2 >, a �2 ∈ mapInt(�2) and a possible

state ��2 =< � , ℰ , lab2 > of a graph for < �2,Θ2 > such that < � , ℰ , ��1 ◇ lab1 >=

< � , ℰ , ��2 ◇ lab2 >, but �<�2,Θ2> ∖ ¶ℎ�2(�) ♣ � ∈ � and lab2(�) = ∅♢ ≠ ∅.

Proof. As a notational shortcut, �<�i,Θi> (resp. �<�i,Θi> and ℎ�i
) will be designated

with �� (resp. �� and ℎ�).

As a reminder of Section 8.3.1, if � ∈ mapInt(Γ) for some Ąnite set Γ of axioms,

and if � ⊖ Γ, then ��(�) = ¶�(ã) ♣ ã ∈ �♢. As a notational shortcut still, if � ⊖ 2Γ,

i.e. if � is a family of sets of axioms, then ��(� ) will designate the family of sets of

integers deĄned by ��(� ) = ¶��(�) ♣ � ∈ �♢.

Let �1 ∈ mapInt(�1), and let � be the family of sets of integers deĄned by

� = ¶��1(lab1(�)) ♣ � ∈ �♢ ∖ ¶∅♢. From lemma 8.8.3.2, for all �,� ′ ∈ � such

that lab1(�) ̸= ∅, lab1(�) ̸⊆ lab1(�
′) must hold, so because ��1 is injective, for all

�,� ′ ∈ �, � ̸⊆ � ′ must hold as well, and therefore there is an input < �2,Θ2 >
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and a bijective mapping �2 ∈ mapInt(�2) such that ��2(�2) =� .

Take any input < �2,Θ2 > and a bijective mapping �2 ∈ mapInt(�2) such

that ��2(�2) = � . Let �⊗
2 and �⊗�2

be the inverse of �2 and ��2 respectively, and let

�2 =< � , ℰ , �⊗�2
◇ ��1 ◇ lab1 >. In other words, �2 is identical to �1, but for each

� ∈ � (resp. for each � ∈ ℰ), the label of � (resp. of �) in �2 is �⊗�2
(��1(lab1(�)))

(resp. �⊗�2
(��1(lab1(�)))).

�2 is an admissible state of a graph built during an execution of algorithm 6

because it is isomorphic to �1, i.e. because ��1 and �⊗�2
are both injective. In particular,

for all �,� ′ ∈ � such that lab2(�) ̸= ∅, lab2(�) ̸⊆ lab2(�
′) must hold, because

lab1(�) ̸⊆ lab1(�
′) holds from 8.8.3.2, and because lab2(�) = �⊗�2

(��1(lab1(�))) and

lab2(�
′) = �⊗�2

(��1(lab1(�
′))). Similarly, for each � ∈ � , ℎ2(�) ∩ lab2(�) = ∅ must

hold.

So in order to show that �2 is an admissible state of a graph for < �2,Θ2 >

in particular, it is suicient to show that �2 is admissible for �2 (or equivalently,

for �2), and more precisely that for each � ∈ � , either lab2(�) is a conĆict for

< �2,Θ2 > or lab2(�) = ∅, and lab2(�) = ∅ if ℎ2(�) is an incision for �2.

Take any � ∈ � . If lab2(�) ̸= ∅, then from the deĄnition of � , there is a

� ∈ � such that lab2(�) = �⊗�2
(� ), and because � = ��2(�2) and ��2 is injective,

�⊗�2
(�) = �2 holds as well, and therefore �⊗�2

(� ) = lab2(�) ∈ �2, so lab2(�) is a

(minimal) conĆict for < �2,Θ2 >.

So we only have show that lab2(�) = ∅ if ℎ2(�) is an incision for �2. For the

left direction, we need to show that if lab2(�) = ∅, then ℎ2(�) is an incision for

�2. Take any � ∈ � such that lab2(�) = ∅. Because lab2(�) = �⊗�2
(��1(lab1(�)))),

and because both ��1 and �⊗�2
are bijections, lab1(�) = ∅ must hold. Then because

��1 is a graph for < �1,Θ1 >, ℎ1(�) must be an incision for �1. So for all � ∈ �1,

ℎ1(�) ∩ � ̸= ∅. In addition, because ��1 is a graph for < �1,Θ1 >, for all � ′ ∈ � ,
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if lab1(�
′) ̸= ∅, then lab1(�

′) is a conĆict for < �1,Θ1 >. And because �1 is the

family of all minimal conĆicts for < �1,Θ1 >, there must be a � ∈ �1 such that

� ⊖ lab1(�
′). So for all all � ′ ∈ � , if lab1(�

′) ̸= ∅, ℎ1(�) ∩ lab1(�
′) ̸= ∅. Or in

other words, ℎ1(�) is an incision for ¶lab1(�) ♣ � ∈ �♢∖¶∅♢. Then as both ��1 and

�⊗�2
are bijections, �⊗�2

(��1(ℎ1(�))) = ℎ2(�) is an incision for ¶�⊗�2
(��1(lab1(�))) ♣ � ∈

�♢ ∖ ¶∅♢ = �2.

For the right direction now, we need to show that for each � ∈ � , if ℎ2(�)

is an incision for �2, then lab2(�) = ∅. Or by contraposition, we need to show

that for each � ∈ � , if lab2(�) ̸= ∅, then ℎ2(�) is not an incision for �2. �
⊗
�1

will

designate the inverse of the (bijective) mapping ��1 . Take any � ∈ � such that

lab2(�) ̸= ∅. Then because �⊗�1
and ��2 are injective, �⊗�1

(��2(lab2(�))) = lab1(�) ̸= ∅.

And because ��1 is a graph for < �1,Θ1 >, from the construction of ��1, lab1(�) ⊖

�1 ∖ ℎ1(�), and therefore ℎ1(�) ∩ lab1(�) = ∅ holds. So because �⊗�2
and ��1 are

injective, �⊗�2
(��1(ℎ1(�)))∩ �⊗�2

(��1(lab1(�))) must hold as well, i.e. ℎ2(�)∩ lab2(�) =

∅. Now because �2 = �⊗�2
(�) = �⊗�2

(¶��1(lab1(�)) ♣ � ∈ �♢ ∖ ¶∅♢), lab2(�) =

�⊗�2
(��1(lab1(�))) ∈ �2 must hold, and as ℎ2(�) ∩ lab2(�) = ∅, ℎ2(�) is not an

incision for �2.

So we have shown that �2 is a possible state of a graph built during an execution

of algorithm 6 for < �2,Θ2 >. Now we need to show that there is a � ∈ �2

such that � ̸∈ ¶ℎ2(�) ♣ � ∈ � and lab2(�) = ∅♢. By hypothesis, there is a

� ∈ �1 ∖ ¶lab1(�) ♣ � ∈ �♢ ∖ ¶∅♢. So for each � ∈ � , lab1(�) ̸= � . In

addition, if lab1(�) ̸= ∅, lab1(�) must be a conĆict for < �1,Θ1 >, and because

� ∈ �1, � is a minimal conĆict for < �1,Θ1 >, so lab1(�) ⊆ � cannot hold.

Therefore for each � ∈ � , either lab1(�) ̸= ∅, or there is a ã ∈ lab1(�) ∖ � .

So there must be at least one incision Δ for ¶lab1(�) ♣ � ∈ �♢ ∖ ¶∅♢ such that

Δ ∩ � = ∅, and because �⊗�2
and ��1 are injective, �⊗�2

(¶��1(Δ)) is also an incision for
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�⊗�2
(¶��1(¶lab1(�) ♣ � ∈ �♢ ∖ ¶∅♢) = �2. Therefore there must be a � ∈ �2 such

that � ⊖ �⊗�2
(��1(Δ)). We will show that � ̸∈ ¶ℎ2(�) ♣ � ∈ � and lab2(�) = ∅♢.

By contradiction, let us assume that � ∈ ¶ℎ2(�) ♣ � ∈ � and lab2(�) = ∅♢. There

there is a � ∈ � such that ℎ2(�) = �. And because �2 is a possible state of a

graph for < �2,Θ2 > and ℎ2(�) = � is a (minimal) incision for �2, lab2(�) = ∅

must hold, and therefore �⊗�1
(¶��2(lab2(�))) = lab1(�) = ∅ holds as well. And by

hypothesis, because lab1(�) = ∅, ℎ1(�) ∈ �1, such that ℎ1(�) ∩ � ̸= ∅ must

hold. But ℎ2(�) = � ⊖ �⊗�2
(��1(Δ)), so �⊗�1

(��2(ℎ2(�))) = ℎ1(�) ⊖ Δ. And because

Δ ∩ � = ∅, ℎ1(�) ∩ � = ∅ must hold, which contradicts ℎ1(�) ∩ � ̸= ∅.

8.8.3.4 Proposition 8.3.1.3

Proposition 8.8.3.1. Let ��1 =< � , ℰ , lab1 > be a possible state of a graph

built during an execution of algorithm 6 for < �1,Θ1 >, such that �<�1,Θ1> =

¶lab1(�) ♣ � ∈ �♢ ∖ ¶∅♢, but there is a � ∈ �<�1,Θ1> ∖ ¶ℎ�1(�) ♣ � ∈ � and

lab1(�) = ∅♢. Then for any �1 ∈ mapInt(�1), there is a < �2,Θ2 >, a �2 ∈

mapInt(�2) and a possible state ��2 =< � , ℰ , lab2 > of a graph for < �2,Θ2 > such

that < � , ℰ , ��1 ◇ lab1 >=< � , ℰ , ��2 ◇ lab2 >, but �<�2,Θ2>∖¶lab2(�) ♣ � ∈ �♢ ≠ ∅.

Proof. This proof is relatively similar to the proof of proposition 8.3.1.2, but relies

a diferent family � of sets of integers. For readability though, it will be fully

developed.

As a notational shortcut, �<�i,Θi> (resp. �<�i,Θi> and ℎ�i
) will be designated

with �� (resp. �� and ℎ�).

As a reminder of Section 8.3.1, if � ∈ mapInt(Γ) for some Ąnite set Γ of axioms,

and if � ⊖ Γ, then ��(�) = ¶�(ã) ♣ ã ∈ �♢. As a notational shortcut still, if � ⊖ 2Γ,
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i.e. if � is a family of sets of axioms, then ��(� ) will designate the family of sets of

integers deĄned by ��(� ) = ¶��(�) ♣ � ∈ �♢.

By hypothesis, there is a � ∈ �1 ∖ ¶ℎ1(�) ♣ � ∈ � and lab1(�) = ∅♢. Let

�1 ∈ mapInt(�1), let � = ♣�1♣+ 1, and let � be the set of integers deĄned by � =

��1((
⎷

�1) ∖ �) ∪ ¶�♢. For instance, if ♣�1♣ = 10, ��1(�1) = ¶¶1, 6♢, ¶6, 3♢, ¶1, 4, 5♢♢

and � = ¶4, 6♢, then � = ¶1, 3, 5♢ ∪ ¶11♢ = ¶1, 3, 5, 11♢. Because � ∈ �1, for

all � ∈ �1, � ∩ � ̸= ∅, such that ��1(�) ∩ ��1(� ) ̸= ∅ also holds. And because

��1(�) ∩ � = ∅, for each � ∈ �1, (��1(�) ∩ ��1(� )) ∩ � = ∅, so there must be

an � ∈ ��1(�) ∩ ��1(� ) ⊖ ��1(� ) such that � ̸∈ � , and therefore ��1(� ) ̸⊖ � . Now

because � > ♣�1♣, for all ã ∈ �1 , �1(ã) ̸= �, and because
⎷

�1 ⊖ �1, for each

� ∈ �1, � ̸∈ ��1(� ), and therefore � ̸⊖ ��1(� ).

Now let us consider the family of sets of integers � = ¶��1(�1) ∪ ¶�♢♢. We just

showed that for each � ∈ �1, ��1(� ) ̸⊖ � and � ̸⊖ ��1(� ) hold, so ��1(� ) ̸= � must

hold, and therefore ♣�♣ = ♣�1♣ + 1. In addition, from the deĄnition of �1, for each

�, � ′ ∈ �1, � ̸⊆ � ′, so because ��1 is injective, ��1(� ) ̸⊆ ��1(� ′). And because for

each � ∈ �1, ��1(� ) ̸⊖ � and � ̸⊖ ��1(� ) hold, ��1(� ) ̸⊆ � and � ̸⊆ ��1(� ) must

hold as well. So for each �1,�2 ∈ �, �1 ̸⊆ �2 holds, therefore there is an input

< �2,Θ2 > and a bijective mapping �2 ∈ mapInt(�2) such that ��2(�2) =� .

Take any input < �2,Θ2 > and a bijective mapping �2 ∈ mapInt(�2) such

that ��2(�2) = � . Let �⊗
2 and �⊗�2

be the inverse of �2 and ��2 respectively, and let

�2 =< � , ℰ , �⊗�2
◇ ��1 ◇ lab1 >. In other words, �2 is identical to �1, but for each

� ∈ � (resp. for each � ∈ ℰ), the label of � (resp. of �) in �2 is �⊗�2
(��1(lab1(�)))

(resp. �⊗�2
(��1(lab1(�)))).

�2 is an admissible state of a graph built during an execution of algorithm 6

because it is isomorphic to �1, i.e. because ��1 and �⊗�2
are both injective. In particular,

for all �,� ′ ∈ � such that lab2(�) ̸= ∅, lab2(�) ̸⊆ lab2(�
′) must hold, because
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lab1(�) ̸⊆ lab1(�
′) holds from 8.8.3.2, and because lab2(�) = �⊗�2

(��1(lab1(�))) and

lab2(�
′) = �⊗�2

(��1(lab1(�
′))). Similarly, for each � ∈ � , ℎ2(�) ∩ lab2(�) = ∅ must

hold.

So in order to show that �2 is an admissible state of a graph for < �2,Θ2 > in

particular, it is suicient to show that �2 is admissible for �2 (or equivalently, for �2),

and more precisely that for each � ∈ � , either lab2(�) is a conĆict for < �2,Θ2 >

or lab2(�) = ∅, and lab2(�) = ∅ if ℎ2(�) is an incision for �2. To this end, we can

Ąrst observe that �2 = �⊗�2
(�) = �⊗�2

(��1(�1) ∪ ¶�♢), and therefore �⊗�2
(��1(�1)) ⊆ �2.

Now take any node � ∈ � such that lab2(�) ̸= ∅. Then lab2(�) = �⊗�2
(��1(lab1(�))),

and because �⊗�2
and ��1 are injective, lab1(�) ̸= ∅ must hold. And by hypothesis,

if lab1(�) ̸= ∅, then lab1(�) ∈ �1, so lab2(�) = �⊗�2
(��1(lab1(�))) ∈ �⊗�2

(��1(�1)),

and because �⊗�2
(��1(�1)) ⊆ �2, lab2(�) ∈ �2, such that lab2(�) must be a (minimal)

conĆict for < �2,Θ2 >.

So we only have show that lab2(�) = ∅ if ℎ2(�) is an incision for �2. For the

left direction, we need to show that if lab2(�) = ∅, then ℎ2(�) is an incision for

�2. Let � ∈ � such that lab2(�) = ∅. Then because lab2(�) = �⊗�2
(��1(lab1(�))),

and because �⊗�2
and ��1 are injective, lab1(�) = ∅ must hold. Now because ��1 is a

graph for < �1,Θ1 >, if lab1(�) = ∅, then ℎ1(�) must be an incision for �1. So

for all �1 ∈ �1, ℎ1(�) ∩ �1 ̸= ∅. Then again because �⊗�2
and ��1 are injective, for all

�2 ∈ �
⊗
�2

(��1(�1)), �
⊗
�2

(��1(ℎ1(�)))∩�2 ̸= ∅ must hold, i.e. ℎ2(�)∩�2 must hold. Then

as �2 = �⊗�2
(�) = �⊗�2

(��1(�1) ∪ ¶�♢), for each �2 ∈ �2 ∖ �
⊗
�2

(� ), �2 ∩ ℎ2(�) ̸= ∅, and

we only need to show that ℎ2(�) ∩ �⊗�2
(� ) ̸= ∅ holds as well.

To do this, let us consider � again. By hypothesis, � ̸∈ ¶ℎ1(�) ♣ � ∈ � and

lab1(�) = ∅♢. So because lab1(�) = ∅, ℎ1(�) ̸= � must hold. By hypothesis

still, � is a minimal incision for �1, so because ℎ1(�) is an incision, ℎ1(�) ̸⊆ �

must hold, which together with ℎ1(�) ̸= � yields ℎ1(�) ̸⊖ �. Or in other words,
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there is a ã ∈ ℎ1(�) ∖ �, and because �⊗�2
and ��1 are injective, there is a ã′ ∈

�⊗�2
(��1(ℎ1(�))) ∖ �⊗�2

(��1(�)), i.e. ã′ ∈ ℎ2(�) ∖ �⊗�2
(��1(�)). In addition, immediately

from the construction of ��1, if ã ∈ ℎ1(�), then there is a node �2 such that ã ∈

lab1(�2). So lab1(�2) ̸= ∅, and therefore by hypothesis lab1(�2) ∈ �1, which implies

ã ∈
⎷

�1. Then because ã ∈ ℎ1(�) ∖ �, ã ̸∈ �, such that ã ∈ (
⎷

�1) ∖ �. So

��1(ã) ∈ ��1((
⎷

�1) ∖ �), and therefore ��1(ã) ∈ ��1((
⎷

�1) ∖ �) ∪ ¶�♢ = � , such

that �⊗�2
(��1(ã)) ∈ �⊗�2

��1((
⎷

�1) ∖ �) ∪ ¶�♢ = �⊗�2
(� ). Then because ã ∈ ℎ1(�),

�⊗�2
(��1(ã)) ∈ �⊗�2

(��1(ℎ1(�))) = ℎ2(�), such that ℎ2(�) ∩ �⊗�2
(� ) ̸= ∅.

For the right direction now, we need to show that for each � ∈ � , if ℎ2(�) is

an incision for �2, then lab2(�) = ∅. �⊗�1
will designate the inverse of the (bijective)

mapping ��1 . Let � ∈ � such that ℎ2(�) is an incision for �2. Then for each �2 ∈ �2,

ℎ2(�)∩�2 ̸= ∅. So for each �⊗�1
(��2(�2)) ∈ �

⊗
�1

(��2(�2)), �
⊗
�1

(��2(ℎ2(�)))∩�⊗�1
(��2(�2)) ̸= ∅,

i.e. ℎ1(�) ∩ �⊗�1
(��2(�2)) ̸= ∅. And because �1 ⊖ �⊗�1

(��2(�2)), for each �1 ∈ �1,

ℎ1(�) ∩ �1 ̸= ∅ must hold, i.e. ℎ1(�) is an incision for �1. Now because ��1 is a

(state of a) graph for < �1,Θ1 >, if ℎ1(�) is an incision, then lab1(�) = ∅ must

hold, and so lab2(�) = �⊗�2
(��1(lab1(�))) = ∅ must hold as well.

So we have shown that �2 is a possible state of a graph built during an execution

of algorithm 6 for < �2,Θ2 >. Now we need to show that there is a �2 ∈ �2 such

that � ̸∈ ¶��2(lab(�)) ♣ � ∈ �2♢ ∖ ¶∅♢, or equivalently that �⊗�2
(�2) ̸∈ ¶lab(�) ♣ � ∈

�2♢ ∖ ¶∅♢. We will show that this holds for �2 = �⊗�2
(� ). Because �2 = �⊗�2

(�) =

�⊗�2
(��1(�1)) ∪ ¶�♢) = �⊗�2

(��1(�1) ∪ ¶�
⊗
�2

(� )♢, �⊗�2
(� ) ∈ �2 holds. So we only need to

show that for all � ∈ � such that lab2(�) ̸= ∅, lab2(�) ̸= �⊗�2
(� ).

Take any � ∈ � such that lab2(�) ̸= ∅. Then lab2(�) = �⊗�2
(��1(lab1(�))),

and by hypothesis, if lab1(�) ̸= ∅, there is a �1 ∈ �1 such that lab1(�) = �1,

and so lab2(�) = �⊗�2
(��1(�1)). In addition, we have shown above (immediately after

the deĄnition of �) that for all �1 ∈ �1, � ̸= ��1(�1). So because �⊗�2
and ��1 are

331



bijections, for all �1 ∈ �1, �
⊗
�2

(� ) ̸= �⊗�2
(��1(�1)) must hold, and because lab2(�) =

�⊗�2
(��1(�1)) for some �1 ∈ �1, lab2(�) ̸= �⊗�2

(� ) must hold.

8.8.4 Section 8.4

8.8.4.1 Proposition 8.4.0.1

ℛ○r
= ¶�∖� ♣ for all � ∈ ¶1, .., �♢, �○a

� ∈ min⊖ hs(pHit(� ,○�, �)∖(hit(� ,
⎷

�<�⊘�
�○a

� )))♢

8.8.4.2 Left inclusion (⊖).

By contraposition. We will show that if � is not an element of the set on the right

hand side of proposition 8.4.0.1, then � ̸∈ ℛ○r
.

If � ̸⊖ �, then � ̸∈ ℛ, and from deĄnition 8.2.2.3, � ̸∈ ℛ○r
.

If � ⊖ �, let � = � ∖ �. If � ̸⊖
⎷

� , then from theorem 8.1.3.1, � ̸∈ �, and

from lemma 8.1.3.1, � ̸∈ ℛ⊖, such that from proposition 8.2.2.2, � ̸∈ ℛ○r
.

If � ⊖ � and � ⊖
⎷

� , for any � ∈ ¶1, .., �♢, let ℋ� = hs(pHit(� ,○�, �) ∖

(hit(� ,
⎷

�<�⊘�
�○a

� )). If � is not an element of the set on the right hand side of

proposition 8.4.0.1 but � ⊖ �, then there must be an � ∈ ¶1, .., �♢ such that �○a

� ̸∈

min⊖ℋ�. Take the smallest � verifying this. If �○a

� ̸∈ min⊖ℋ�, then either �○a

� ̸∈ ℋ�,

or �○a

� ∈ ℋ� but �○a

� ̸∈ min⊖ℋ�.

Let us consider the Ąrst case, i.e. �○a

� ̸∈ ℋ�. Then there is a � ∈ pHit(� ,○�

, �) ∖ (hit(� ,
⎷

�<�⊘�
�○a

� )) such that �○a

� ∩ � = ∅, therefore the three following hold:

∙ � ∈ pHit(� ,○�, �), so from deĄnition 8.4.0.3

� ̸∈ hit(� ,
⎷

1⊘�<�
(
⎷

�)○a

� ), and because � ⊖
⎷

� ,
⎷

1⊘�<�
�○a

� ⊖
⎷

1⊘�<�
(
⎷

�)○a

� , so

� ̸∈ hit(� ,
⎷

1⊘�<�
�○a

� )

332



∙ � ̸∈ hit(� , �○a

� )

∙ � ̸∈ hit(� ,
⎷

�<�⊘�
�○a

� )

Then because ○� is a total preorder over �, ♣�/≍�♣ = � and � ⊖ �, we have

(
⎷

1⊘�<�
�○a

� )) ∪ �○a

� ∪ (
⎷

�<�⊘�
�○a

� )) = �. So from the three previous observations,

� ̸∈ hit(� , �), and because � ∈ �, � ∩� = ∅ must hold. But from the deĄnition

of � , � ⊖ � also holds, such that if � ∩� = ∅, � ⊖ � ∖� must hold, i.e. � ⊖ �.

Finally, because � ∈ � still, � ∪ Θ ⊢ ⊥ so by monotonicity, � ∪ Θ ⊢ ⊥, so from

deĄnition 8.1.3.2, � ̸∈ ℛ , and from deĄnition 8.2.2.3, � ̸∈ ℛ○r
.

Now let us consider the second case, i.e. �○a

� ∈ ℋ� but �○a

� ̸∈ min⊖ℋ�. Then

there must be a Φ ⊆ �○a

� such that Φ ∈ ℋ�. Take the set Γ ⊖ � deĄned by Γ○a

�

= �○a

� for 1 ⊘ � < �, Γ○a

� = Φ, and Γ○a

� = (
⎷

�)○a

� for � < � ⊘ �. Then take any

� ∈ �. Because � ⊖ � and ○� is a total preorder over � with ♣�/≍�♣ = �, there

must be a � ∈ ¶1, .., �♢ such that � ○a

� ̸= ∅. Let � ∈ ¶1, .., �♢ be the smallest integer

such that � ○a
� ̸= ∅.

As � ∈ �, � ⊖ (
⎷

�), and therefore � ○a
� ⊖ (

⎷

�)○a
� holds, so if � > �, because

Γ○a
� = (

⎷

�)○a
� and � ○a

� ̸= ∅, � ∩ Γ○a
� ̸= ∅ must hold, and so � ∩ Γ ̸= ∅. If

� ⊘ �, then either � ∩ Γ○a

� ̸= ∅ for some � > �, and � ∩ Γ ̸= ∅ trivially holds,

or � ∩ Γ○a

� = ∅ for all � > �, i.e. � ̸∈ hit(� ,
⎷

�<�⊘�
Γ○a

� ). In this latter case,

because � is the smallest integer such that � ○a
� ̸= ∅, � ∈ pHit(� ,○�,�). So

� ∈ (pHit(� ,○�,�) ∖ hit(� ,
⎷

�<�⊘�
Γ○a

� ). We also know that Γ○a

� = Φ ∈ ℋ�, and

because � is the smallest integer such that �○a

� ̸∈ min⊖ℋ�, for all � ∈ ¶1, .., � ⊗ 1♢,

�○a

� = Γ○a

� ∈ ℋ�. So for any possible value of � in ¶1, .., �♢, Γ○a
� ∈ ℋ� holds,

i.e. Γ○a
� ∈ hs(pHit(� ,○�,�) ∖ (hit(� ,

⎷

�<�⊘�
Γ○a

� ))). Then because � ∈ (pHit(� ,○�

,�) ∖ hit(� ,
⎷

�<�⊘�
Γ○a

� )), from the deĄnition of hs, � ∩Γ○a
� must hold, and therefore

� ∩ Γ ̸= ∅. Therefore whichever the value of � is, � ∩ Γ ̸= ∅ holds.
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So for any � ∈ �, Γ∩ � ̸= ∅, such that Γ is an incision, i.e. (� ∖Γ)∪Θ ̸⊢ ⊥. So

if �′ = � ∖ Γ, �′ ∈ ℛ. But because Γ○a

� = �○a

� for 1 ⊘ � < �, we have �′○a

� = �○a

� ,

and because Γ○a

� = Φ ⊆ �○a

� , we have �′○a

� ⊆ �○a

� . Therefore from the deĄnition

of ○�, � ∼� �
′ must hold, which implies that � ̸∈ max○r

ℛ, and from deĄnition

8.2.2.3, � ̸∈ ℛ○r
.

8.8.4.3 Right inclusion (⊇).

Let � be an element of the set on the right hand side of proposition 8.4.0.1, and let

� = � ∖�. We will Ąrst show that � ∈ ℛ.

Take any � ∈ �. Because � ⊖ � and ○� is a total preorder over � with

♣�/≍�♣ = �, there must be an � ∈ ¶1, .., �♢ such that � ○a

� ̸= ∅. Let � ∈ ¶1, .., �♢

be the smallest integer such that � ○a
� ̸= ∅. Then � ∈ pHit(� ,○�,�). If � ∈

hit(� ,
⎷

�<�⊘�
�○a

� ), then � ∩�○a

� ̸= ∅ for some � > �, and therefore � ∩� ̸= ∅. If

� ̸∈ hit(� ,
⎷

�<�⊘�
�○a

� ) instead, then � ∈ pHit(� ,○�,�) ∖ (hit(� ,
⎷

�<�⊘�
�○a

� )), and

because �○a
� ∈ hs(� ∈ pHit(� ,○�,�) ∖ (hit(� ,

⎷

�<�⊘�
�○a

� ))), from the deĄnition of

hs, � ∩ �○a
� ̸= ∅ must hold, and therefore � ∩ � ̸= ∅ holds as well. So for any

� ∈ �, � ∩� ̸= ∅ holds, and therefore � is an incision for � and Θ. Then because

� = � ∖�, we have � ∈ ℛ.

Now in order to show that � ∈ ℛ○r
, from deĄnition 8.2.2.3, we need to show

that � ∈ max○r
ℛ. Let us assume by contradiction that � ̸∈ max○r

ℛ. Because

� ∈ ℛ, there must be an �′ ∈ ℛ such that � ∼� �
′. So from the deĄnition of ○�,

there must be some � ∈ ¶1, .., �♢ such that �○a

� ⊆ �′○a

� , and for all � ∈ ¶�+ 1, .., �♢,

�○a

� = �′○a

� . Let �′ = � ∖ �′. Then we must have (�′)○a

� ⊆ �○a

� , and for all

� ∈ ¶�+ 1, .., �♢, (�′)○a

� = �○a

� . So pHit(� ,○�, �) ∖ (hit(� ,
⎷

�<�⊘�
�○a

� )) = pHit(� ,○�

, �) ∖ (hit(� ,
⎷

�<�⊘�
(�′)○a

� )). Now let � = pHit(� ,○�, �) ∖ (hit(� ,
⎷

�<�⊘�
�○a

� )). Then
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� ⊖ � , and because � is an element of the right hand side of proposition 8.4.0.1,

�○a

� ∈ min⊖ hs(� ). Therefore for any Γ ⊆ �○a

� , Γ ̸∈ hs(� ). And in particular,

(�′)○a

� ̸∈ hs(� ). So there must be a � ∈ � such that � ∩ (�′)○a

� = ∅. And because

� ∈ � , � ̸∈ hit(� ,
⎷

�<�⊘�
(�′)○a

� )), i.e. for all � ∈ ¶�+1, .., �♢, � ∩(�′)○a

� = ∅. Finally,

because � ∈ � still, � ∈ pHit(� ,○�, �), so for all � ∈ ¶1, .., �⊗ 1♢, � ∩ (
⎷

�)○a

� = ∅,

and because � ⊖
⎷

� , � ○a

� = ∅. Therefore for all � ∈ ¶1, .., �⊗1♢, � ∩(�′)○a

� = ∅ also

holds. Then because ○� is a total preorder over �, ♣�/≍�♣ = � and �′ ⊖ �, we have

(
⎷

1⊘�<�
(�′)○a

� ))∪(�′)○a

� ∪(
⎷

�<�⊘�
(�′)○a

� )) = �′. So from the three considerations above,

� ∩ �′ = ∅ must hold. Therefore �′ is not an incision, and because �′ = � ∖ �′,

�′ ̸∈ ℛ, which contradicts �′ ∈ ℛ.

8.8.5 Section 8.5

8.8.5.1 Proposition 8.5.0.2

Proposition. Let ã ∈
⎷

� .

If ¶ã♢ ∈ �, then
⎸

�ã = ∅.

Otherwise,
⎸

�ã = �� ∪ ¶ã♢ ∪Θ ∪

¶ã′ ∈
⎷

� ∖
⎷

hit(� , ¶ã♢) ♣ ∀�1 ∈ hit(� , ¶ã′♢),∃�2 ∈ hit(� , ¶ã♢) : �2 ∖ ¶ã♢ ⊖ �1♢

8.8.5.1.1 Lemmas

Lemma 8.8.5.1. If there are �,� ∈ 2� such that � ∪ Θ ̸⊢ ⊥ and ∀Ò ∈ � :

� ∪ ¶Ò♢ ∪Θ ⊢ ⊥, then there is an � ∈ ℛ⊖ such that � ⊖ � and � ∩� = ∅

Proof. � can be built out of � by applying the following simple procedure: initialize

� with �, and then for each Ò ∈ � ∖ �, if � ∪ ¶Ò♢ ∪Θ ̸⊢ ⊥, extend � with Ò. The

procedure ends because � is Ąnite, and when it ends, for each Ò ∈ � ∖ �, there is
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an �′ ⊖ � such that �′ ∪¶Ò♢∪Θ ⊢ ⊥. So by monotonicity �∪¶Ò♢∪Θ ⊢ ⊥ as well.

Therefore there is no �′′ ∈ 2� such that � ⊆ �′′ and �′′ ∪Θ ̸⊢ ⊥, and so � ∈ ℛ⊖.

To show that � ∩ � = ∅, note that � ⊖ �, and by hypothesis, and for each

Ò ∈ �, � ∪ ¶Ò♢ ∪ Θ ⊢ ⊥. So by monotonicity still, � ∪ ¶Ò♢ ∪ Θ ⊢ ⊥. But because

� ∈ ℛ⊖, from the deĄnition ofℛ⊖, �∪Θ ̸⊢ ⊥ must hold, so Ò ̸∈ �∪Θ, and therefore

Ò ̸∈ �.

Lemma 8.8.5.2. For all � ⊖ �, for all Ò ∈ �, if � ∪Θ ̸⊢ ⊥ and � ∪ ¶Ò♢ ∪Θ ⊢ ⊥,

then there is a � ∈ hit(� , ¶Ò♢) such that � ∖ ¶Ò♢ ⊖ �.

Proof. If � ∪ ¶Ò♢ ∪Θ ⊢ ⊥, then there must be some subset � of � ∪ ¶Ò♢ such that

� ∪Θ ⊢ ⊥, and such that ∀� ′ ⊆ � : � ′ ∪Θ ̸⊢ ⊥, so � ∈ �. Now let us assume that

¶Ò♢ ̸∈ � . Then � ∪Θ ⊖ �∪Θ, and because �∪Θ ̸⊢ ⊥, by monotonicity, � ∪Θ ̸⊢ ⊥,

a contradiction. Therefore ¶Ò♢ ∈ � , and because � ∈ �, � ∈ hit(� , Ò).

8.8.5.1.2 Main proposition

Proposition. Let ã ∈
⎷

� .

If ¶ã♢ ∈ �, then
⎸

�ã = ∅.

Otherwise,
⎸

�ã = �� ∪ ¶ã♢ ∪Θ ∪

¶ã′ ∈
⎷

� ∖
⎷

hit(� , ¶ã♢) ♣ ∀�1 ∈ hit(� , ¶ã′♢),∃�2 ∈ hit(� , ¶ã♢) : �2 ∖ ¶ã♢ ⊖ �1♢

Limit case

If ¶ã♢ ∈ �, then ¶ã♢ ∪ Θ ⊢ ⊥, and by monotonicity, for any Δ such that ã ∈ Δ,

Δ ∪ Θ ⊢ ⊥. Therefore from the deĄnition of ℛ⊖, for all � ∈ ℛ⊖, ã ̸∈ �, and from

the deĄnition of �ã, �ã = ∅, such that
⎸

�ã = ∅.

Main equality, left inclusion (⊖)

By contraposition. Assume that ã′ is not an element of the set on the right-hand
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side of the equality. Then we need to show that if �ã ̸= ∅, there is a Δ ∈ �ã such

that ã′ ̸∈ Δ, or equivalently that there is an � ∈ ℛ⊖ such that ã ∈ � and ã′ ̸∈ �.

By hypothesis, ã ∈
⎷

� , ã′ ̸∈ ��, ã
′ ̸∈ Θ and ã′ ̸= ã.

The Ąrst possible case is the one one where ã′ ̸∈
⎷

� ∖
⎷

hit(� , ¶ã♢). The Ąrst

possible subcase is ã′ ̸∈
⎷

� . But by hypothesis, ã′ ̸∈ �� ∪ Θ. So if ã′ ̸∈
⎷

�

either, we have ã′ ̸∈ �� ∪
⎷

� ∪ Θ = � ∪ Θ, i.e. ã′ is not in the input base.

But for any � ∈ ℛ⊖, � ⊖ � ∪ Θ, so ã′ ̸∈ � trivially holds. The second possible

subcase is ã′ ∈
⎷

� ∩
⎷

hit(� , ¶ã♢), which is equivalent to ã′ ∈
⎷

hit(� , ¶ã♢), as
⎷

hit(� , ¶ã♢) ⊖
⎷

� . Because ã′ ∈
⎷

hit(� , ¶ã♢), there is a � ∈ hit(� , ¶ã♢) such

that ã′ ∈ � . Now set � = � ∖¶ã′♢, and � = ¶ã′♢ Then because � ∈ �, it holds that

�∪Θ ̸⊢ ⊥ and �∪¶ã′♢∪Θ ⊢ ⊥. So from lemma 8.8.5.1, there is an � ∈ ℛ⊖ such that

� ⊖ � and ã′ ̸∈ �. Then because � ∈ hit(� , ¶ã♢) and ã′ ̸= ã, ã ∈ � ∖¶ã′♢ = � ⊖ �.

The second possible case is the one where ã′ ∈
⎷

� ∖ ¶ã♢, and there is a �1 ∈

hitDif(� , ã′, ã) and a �2 ∈ hitDif(� , ã, ã′) such that if �
.
= �1 ∪ �2 ∖ ¶ã, ã

′♢, then

� ∪ Θ ̸⊢ ⊥. In this case, �1 ⊖ � ∪ ¶ã′♢, and because �1 ∈ �, �1 ∪ Θ ⊢ ⊥, so by

monotonicity, � ∪¶ã′♢∪Θ ⊢ ⊥. Similarly, because �2 ⊖ � ∪¶ã♢, � ∪¶ã♢∪Θ ⊢ ⊥ as

well. So from lemma 8.8.5.1, replacing � by � and � by {ã, ã′}, there is an � ∈ ℛ⊖

such that ã ̸∈ � and ã′ ̸∈ �.

Main equality, right inclusion (⊇)

Let us assume that ã′ is an element of the set on the right-hand side of the equality,

We need to show that ã′ ∈
⎸

�ã, or equivalently, if there is an � ∈ ℛ⊖ such that

ã ∈ �, we need to show that ã′ ∈ �.

If ã′ ∈ ��∪Θ, then ã′ ̸∈
⎷

� from the deĄnitions of �� and � , so hit(� , ¶ã′♢) = ∅,

and from the contraposition of lemma 8.8.5.2, there is no � ⊖ � such that both

� ∪Θ ̸⊢ ⊥ and � ∪¶ã′♢∪Θ ⊢ ⊥ hold. In particular, because � ⊖ � and �∪Θ ̸⊢ ⊥,
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� ∪ ¶ã′♢ ∪ Θ ̸⊢ ⊥ cannot hold. But from the deĄnition of ℛ⊖, if ã′ ̸∈ �, then

� ∪ ¶ã′♢ ∪Θ ⊢ ⊥ must hold. So ã′ ∈ �.

If ã′ = ã, because ã ∈ �, ã′ ∈ � holds trivially.

So one can focus on the case where ã′ ̸∈ ��∪Θ∪¶ã♢, but ã′ ∈
⎷

�∖
⎷

hit(� , ¶ã♢),

and ∀�1 ∈ hit(� , ¶ã′♢),∃�2 ∈ hit(� , ¶ã♢) : �2 ∖ ¶ã♢ ⊖ �1.

Take any �1 ∈ hit(� , ¶ã′♢). By hypothesis, there is a �2 ∈ hit(� , ¶ã♢) such that

�2 ∖ ¶ã♢ ⊖ �1. Because �2 ∈ �, �2 ∪ Θ ⊢ ⊥. And because � ∈ ℛ⊖, from the

deĄnition of ℛ⊖, � ∪ Θ ̸⊢ ⊥. So �2 ̸⊖ �. Therefore there is a Ò ∈ �2 such that

Ò ̸∈ �. By hypothesis, ã ∈ �, so Ò ̸= ã. And because �2 ∖ ¶ã♢ ⊖ �1, Ò ∈ �1.

Then because ã′ ̸∈
⎷

hit(� , ¶ã♢), ã′ ̸∈ �2, and therefore Ò ̸= ã′ as well. So for any

�1 ∈ hit(� , ¶ã′♢), there is a Ò ∈ �1 such that Ò ̸= ã′ and Ò ̸∈ �. As a consequence,

there is no �1 ∈ hit(� , ¶ã′♢) such that �1 ∖ ¶ã
′♢ ⊖ �, and from the contraposition

of lemma 8.8.5.2, and the fact that � ∪ Θ ̸⊢ ⊥, � ∪ ¶ã′♢ ∪ Θ ̸⊢ ⊥ must hold. Then

from the deĄnition of ℛ⊖, if � ∪ ¶ã′♢ ∪Θ ̸⊢ ⊥, then ã′ ∈ � must hold.

8.8.5.2 Proposition 8.5.0.3

Proposition. �1(�) = �(�3)

Proof. Proposition 8.5.0.2 is reproduced here for readability:

Let ã ∈
⎷

� .

If ¶ã♢ ∈ �, then
⎸

�ã = ∅.

Otherwise
⎸

�ã = �� ∪ ¶ã♢ ∪Θ ∪

¶ã′ ∈
⎷

� ∖
⎷

hit(� , ¶ã♢) ♣ ∀�1 ∈ hit(� , ¶ã′♢),∃�2 ∈ hit(� , ¶ã♢) : �2 ∖ ¶ã♢ ⊖ �1♢

As a reminder, �1 expresses the cost of computing
⎸

�ã out of � and as a function

of � =
︁

� ∈�
♣� ♣.

For the Ąrst condition, ¶ã♢ ∈ � can be veriĄed in �(�).
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For the second condition, let Γ = ¶ã′ ∈
⎷

� ∖
⎷

hit(� , ¶ã♢) ♣ ∀�1 ∈ hit(� , ¶ã′♢),

∃�2 ∈ hit(� , ¶ã♢) : �2 ∖ ¶ã♢ ⊖ �1♢. Then Γ ⊖
⎷

� . And because �� ∪ Θ is the

complement of
⎷

� in � ∪Θ, (�� ∪Θ) ∩ Γ = ∅, such that if Γ is known, the cost of

computing �� ∪ ¶ã♢ ∪Θ ∪ Γ expressed as a function of � is constant.

So we can focus on the computation of Γ. First, two lookup tables can be built

in �(�), from each � ∈ � to itself, and from each ã1 ∈
⎷

� to hit(� , ¶ã1♢). Then

the number of axioms in
⎷

� ∖
⎷

hit(� , ¶ã♢) is bounded by ♣
⎷

�♣ ⊘ �, and each of

♣ hit(� , ¶ã′♢)♣ and ♣ hit(� , ¶ã♢♣ is bounded by ♣�♣ ⊘ �, such that the number of set

inclusion veriĄcations of the form �2 ∖ ¶ã♢ ⊖ �1 to perform is bounded by � ≤ �2.

Finally, ♣�1♣+ ♣�2♣ ⊘ �, so the cost of such a set inclusion veriĄcation is in �(� log �).

So �1(�) = �(�(�) + 2�(�) + �(�2� log �)) = �(�3).

8.8.5.3 Proposition 8.5.0.4

Proposition. Let ã ∈
⎷

� .

Then
⎸

�∖ã = �� ∪Θ ∪ ¶ã′ ∈ ((
⎷

�) ∖ ¶ã♢) ♣

if hitDif(� , ã′, ã) ̸= ∅ and hitDif(� , ã, ã′) ̸= ∅,

then ∀�1 ∈ hitDif(� , ã′, ã), ∀�2 ∈ hitDif(� , ã, ã′) : ((�1 ∪ �2) ∖ ¶ã, ã
′♢) ∪Θ ⊢ ⊥ }

8.8.5.3.1 Left inclusion (⊖).

By contraposition.

Let us assume that ã′ is not an element of the set on the right hand side of the

equality. Then we need to show that if �∖ã ̸= ∅, if there is a Δ ∈ �∖ã such that

ã′ ̸∈ Δ, or equivalently that there is an � ∈ ℛ⊖ such that ã ̸∈ � and ã′ ̸∈ �.

By hypothesis, ã′ ̸∈ �� ∪Θ.

The Ąrst possible case is the one one where ã′ ̸∈
⎷

� ∖ ¶ã♢. The Ąrst possible

subcase is ã′ ̸∈
⎷

� . But by hypothesis, ã′ ̸∈ �� ∪Θ. So if ã′ ̸∈
⎷

� either, we have
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ã′ ̸∈ �� ∪
⎷

� ∪ Θ = � ∪ Θ, i.e. ã′ is not in the input base. But for any � ∈ �∖ã,

� ⊖ � ∪Θ, so ã′ ̸∈ � trivially holds. The second possible subcase is ã′ = ã. If there

is an � ∈ �∖ã, then from the deĄnition of �∖ã, ã ̸∈ �, so ã′ ̸∈ � trivially holds.

The second possible case is the one where ã′ ∈
⎷

� ∖ ¶ã♢, and there is a �1 ∈

hitDif(� , ã′, ã) and a �2 ∈ hitDif(� , ã, ã′) such that if �
.
= �1 ∪ �2 ∖ ¶ã, ã

′♢, then

� ∪ Θ ̸⊢ ⊥. In this case, �1 ⊖ � ∪ ¶ã′♢, and because �1 ∈ �, �1 ∪ Θ ⊢ ⊥, so by

monotonicity, � ∪¶ã′♢∪Θ ⊢ ⊥. Similarly, because �2 ⊖ � ∪¶ã♢, � ∪¶ã♢∪Θ ⊢ ⊥ as

well. So from lemma 8.8.5.1, replacing � by � and � by {ã, ã′}, there is an � ∈ ℛ⊖

such that ã ̸∈ � and ã′ ̸∈ �.

8.8.5.3.2 Right inclusion (⊇)

Let us assume that ã′ is an element of the set on the right-hand side of the equality,

We need to show that ã′ ∈
⎸

�∖ã, i.e. assuming an � ∈ ℛ⊖ such that ã ̸∈ �, we

need to show that ã′ ∈ �.

If ã′ ∈ ��∪Θ, then ã′ ̸∈
⎷

� from the deĄnitions of �� and � , so hit(� , ¶ã′♢) = ∅,

and from the contraposition of lemma 8.8.5.2, there is no � ⊖ � such that both

� ∪Θ ̸⊢ ⊥ and � ∪¶ã′♢∪Θ ⊢ ⊥ hold. In particular, because � ⊖ � and �∪Θ ̸⊢ ⊥,

� ∪ ¶ã′♢ ∪ Θ ̸⊢ ⊥ cannot hold. But from the deĄnition of ℛ⊖, if ã′ ̸∈ �, then

� ∪ ¶ã′♢ ∪Θ ⊢ ⊥ must hold. So ã′ ∈ �.

The next case is the one where ã′ ∈ ((
⎷

�) ∖ ¶ã♢), but hitDif(� , ã′, ã) = ∅, i.e.

ã ∈
⎸

(hit(� , ã′)). Let � ∈ ℛ⊖ such that ã ̸∈ �, and assume by contradiction that

ã′ ̸∈ �. Then because � ∈ ℛ⊖, � ∪ Θ ̸⊢ ⊥ and � ∪ ¶ã′♢ ∪ Θ ⊢ ⊥ both hold, so

from lemma 8.8.5.2, there must be a � ∈ hit(� , ã′) such that � ∖¶ã′♢ ⊖ �, but then

because ã ∈
⎸

(hit(� , ã′)) and ã ̸= ã′, it must be the case that ã ∈ (� ∖ ¶ã′♢)), so

we would have ã ∈ �, which contradicts the hypothesis.

The following case is very similar : it is the one where ã′ ∈ ((
⎷

�) ∖ ¶ã♢), but
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hitDif(� , ã, ã′) = ∅, i.e. ã′ ∈
⎸

(hit(� , ã)). Let � ∈ ℛ⊖ such that ã ̸∈ �, and

assume by contradiction that ã′ ̸∈ �. Then because � ∈ ℛ⊖, � ∪ Θ ̸⊢ ⊥ and

� ∪ ¶ã♢ ∪ Θ ⊢ ⊥ both hold, so from lemma 8.8.5.2, there must be a � ∈ hit(� , ã)

such that � ∖ ¶ã♢ ⊖ �, but then because ã′ ∈
⎸

(hit(� , ã′)) and ã ̸= ã′, it must

be the case that ã′ ∈ (� ∖ ¶ã♢)), so we would have ã′ ∈ �, which contradicts the

hypothesis.

So one can focus on the last and more interesting case, where ã′ ∈ ((
⎷

�) ∖ ¶ã♢),

hitDif(� , ã′, ã) ̸= ∅, and ã′ is nonetheless an element of the set on the right hand

side of the equality. Then hitDif(� , ã, ã′) ̸= ∅, and ∀�1 ∈ hitDif(� , ã′, ã), ∀�2 ∈

hitDif(� , ã, ã′) : ((�1 ∪ �2) ∖ ¶ã, ã
′♢) ∪ Θ ⊢ ⊥. We have to show that ã′ is also an

element of the set on the left hand side of the equality, i.e. ã′ ∈
⎸

�∖¶ã♢.

By contradiction, assume that there is an � ∈ ℛ⊖ such that ã ̸∈ �, and that ã′ ̸∈ �.

Because ã ̸∈ �, and � ∈ ℛ⊖, from the deĄnition of ℛ⊖, both � ∪ Θ ⊢ ⊥ and

�∪ ¶ã♢ ∪Θ ⊢ ⊥ must hold. So from lemma 8.8.5.2, there is a �1 ∈ hit(� , ¶ã♢) such

that �1 ∖ ¶ã♢ ⊖ �. But as ã′ ̸∈ � and ã′ ̸= ã, it must also be the case that ã′ ̸∈ �1,

and so �1 ∈ hitDif(� , ã, ã′).

Identically, because ã′ ̸∈ �, there is a �2 ∈ hit(� , ¶ã′♢) such that �2 ∖¶ã
′♢ ⊖ �. And

as ã ̸∈ � and ã′ ̸= ã, �2 ∈ hitDif(� , ã′, ã).

So ((�1 ∪ �2) ∖ ¶ã, ã
′♢) ⊖ �. But ((�1 ∪ �2) ∖ ¶ã, ã

′♢) ∪ Θ ⊢ ⊥, so by monotonicity

� ∪ Θ ⊢ ⊥, and thus, from the deĄnition of ℛ⊖, � ̸∈ ℛ⊖, which contradicts the

hypothesis.

8.8.5.4 Proposition 8.5.0.5

Proposition. �2(�) = �(�4)

Proof. Proposition 8.5.0.4 is reproduced here for readability:
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Let ã ∈
⎷

� .

Then
⎸

�∖ã = �� ∪Θ ∪ ¶ã′ ∈ ((
⎷

�) ∖ ¶ã♢) ♣

if hitDif(� , ã′, ã) ̸= ∅ and hitDif(� , ã, ã′) ̸= ∅,

then ∀�1 ∈ hitDif(� , ã′, ã), ∀�2 ∈ hitDif(� , ã, ã′) :

((�1 ∪ �2) ∖ ¶ã, ã
′♢) ∪Θ ⊢ ⊥ }

As a reminder, �2 expresses the cost of computing
⎸

�∖ã given � and � ∪ Θ, as

a function of � =
︁

� ∈�
♣� ♣.

Let Γ = ¶ã′ ∈ ((
⎷

�) ∖ ¶ã♢) ♣ if hitDif(� , ã′, ã) ̸= ∅ and hitDif(� , ã, ã′) ̸= ∅,

then ∀�1 ∈ hitDif(� , ã′, ã), ∀�2 ∈ hitDif(� , ã, ã′) : Cn(((�1∪�2)∖¶ã, ã
′♢)∪Θ)∩Ψ ̸=

∅ }.

Then Γ ⊖
⎷

� . And because �� ∪ Θ is the complement of
⎷

� in � ∪ Θ,

(��∪Θ)∩Γ = ∅, such that if Γ is known, the cost of computing ��∪Θ∪Γ expressed

as a function of � is constant.

So we can focus on the computation of Γ. First, two lookup tables can be build

in �(�), from (a key for) each � ∈ � to itself, and from each ã1 ∈
⎷

� to (a set of

keys for each � ∈) hit(� , ¶ã1♢).

Then the number of axioms in (
⎷

�) ∖ ¶ã♢ is ♣
⎷

�♣ ⊗ 1 ⊘ �. For each ã′ ∈

(
⎷

�) ∖ ¶ã♢, let �1 = ♣ hit(� , ¶ã♢)♣ + ♣ hit(� , ¶ã′♢)♣. Then �1 ⊘ 2�, and computing

hitDif(� , ã′, ã) is in �(�1 log�1), and similarly for hitDif(� , ã, ã′).

Finally, ♣ hitDif(� , ã′, ã)♣ ≤ ♣ hitDif(� , ã′, ã)♣ is (loosely) bounded by ♣�♣2, and so

is the number of pairs < �1, �2 >. Then for each of these pairs, verifying whether

Cn(((�1 ∪ �2) ∖ ¶ã, ã
′♢) ∪ Θ) ∩ Ψ ̸= ∅♢ can be reduced to verifying for each �3 ∈

(� ∖ ¶�1, �2♢) whether �3 ⊖ (�1 ∪ �2) ∖ ¶ã, ã
′♢). The number of candidates for �3 is

♣�♣⊗2, so the number of such veriĄcations is bounded by ♣�♣2 ≤ (♣�♣⊗2) ⊘ ♣�♣3 ⊘ �3.

Now let �2 = ♣�1♣ ∪ ♣�2♣ ⊗ 2 + ♣�3♣. Then �2 ⊘ 2�, And each of these veriĄcations

is in �(�2 log�2).
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So �2(�) = �(�(1) + 2�(�) + �(2�(� log �) + �3�(� log �)) = �(�4)
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Chapter 9

Conclusion

This thesis investigates diferent strategies in order to detect and repair violations

of common sense in OWL knowledge bases (KBs). When it grows in size, an OWL

KB is likely to contain logical statements which may make sense individually, but

convey intuitively absurd information when considered together, even if the KB is

logically consistent/coherent. Such violations of common sense greatly afect the

reliability of the KB, in particular the knowledge which may be inferred from it.

This phenomenon is exacerbated when the KB aggregates knowledge from multiple

sources, which is one of the core mechanisms of the Semantic Web project.

The problem in itself is not particularly new: nonsense due to multiple mean-

ings of a same predicate has been identiĄed as a practical limitation of logic-based

knowledge representation systems since at least the expert systems era. But to our

knowledge, no efective strategy has been developed yet which allows for detecting

and solving such cases in an automated fashion. In particular, these errors often re-

main unnoticed by state-of-the KB debugging tools like the ones presented in Chapter

3 Section 3.4.
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The main topic under investigation in this dissertation is the incorporation of

automatically gathered linguistic evidence to a debugging process, in order to detect

and repair such errors, which is in itself an original proposal. Indeed, the possible

use of Natural Language Processing (NLP) techniques for KB engineering has mostly

been studied in the Ąelds of information extraction or ontology learning/population,

where the task consists in extending an existing KB, or creating one from scratch.

But these tasks fundamentally difer from debugging. In particular, ontology learn-

ing/population extends the signature of the KB under construction with additional

individuals and/or predicates identiĄed in natural language texts, whereas in a de-

bugging setting, the signature of the KB is known in advance. Therefore adapting

such techniques to the case of debugging is not straightforward, and for several of

them, probably not relevant.

9.1 Main contributions

9.1.1 Linguistic evidence

Chapter 4 proposes to exploit an assumption made by some works on ontology popu-

lation, namely the fact that individuals which instantiate the same concepts accord-

ing to a KB also tend to have similar linguistic behaviors. The choice is made to

rely on distributional representations of the labels associated with these individuals

in the KB, obtained from a collection of automatically retrieved web pages.

If � is a candidate output KB of the debugging process, a so-called plausibility

score is proposed which, for some syntactically deĄned Ąnite subset Ψ� of the conse-

quences of �, and for each å ∈ Ψ�, estimates to what extent å is likely to hold if the

rest of Ψ� does, based on distributional representations. Intuitively, the higher these
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plausibility scores, the more � is in line with the above assumption, i.e. individuals

which instantiate the same concepts according to � tend to have similar linguistic

behavior.

Then if � is the family of candidate output bases of a debugging process, Section

4.2.5 deĄnes four alternative preference relations over � based on these plausibility

scores.

9.1.2 Integration to a KB debugging process

9.1.2.1 Consistent input KB

Chapter 6 investigates the integration of the four preference relations just mentioned

to an actual debugging process, in the case where the input KB � is consistent, and

where debugging consists in selecting a subset of � for removal.

If a single erroneous axiom needs to be identiĄed within �, the integration is

straightforward.

But if an arbitrary set of erroneous axioms needs to be identiĄed within� instead,

i.e. if the family � of candidate output bases is 2� , it is shown that no obvious

algorithmic solution allows for computing the optimal elements of �.

Section 6.3.2 provides an (arguably complex) procedure which yields these pre-

ferred subbases for one of the four preference relations, but may be costly in practice.

In particular, it is shown that the problem is as hard as computing for each å ∈ Ψ�

the family of all maximal subbases of � which do not entail å.

9.1.2.2 Inconsistent/incoherent input KB

Linguistic evidence as formalized in in Chapter 4 presents an interesting complemen-

tarity with so-called syntax-based KB contraction/revision algorithms developed for
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Description Logics, usually for inconsistent/incoherent KBs. These algorithm select

(a) minimal set(s) of axioms to discard from the input KB � in order to restore con-

sistency/coherence, or equivalently, they select the complement(s) of these discarded

axioms as (an) output base(s). In practice, these approaches sufer from the number

of candidate output bases, when no other criterion than maximality is available to

operate the selection. In this case, the compliance of a candidate subbase � to the

abovementioned assumption (namely that individuals which instantiate the same

concepts tend to have similar linguistic behavior) ofers an interesting additional

criterion to rank candidate output bases.

This proposal remains theoretical though, because for most inputs, syntax-based

KB contraction/revision algorithms also sufer from computational cost issues, if all

candidate output bases are to be computed. For this reason, Chapter 8 provides a

prioritized syntax-based contraction/revision algorithm. Provided the family � of

so-called justifications for the inconsistency/incoherence is known, and given a pref-

erence relation over the axioms of the input KB, the algorithm consists in prioritizing

the removal of least preferred axioms until consistency/coherence is reached, without

the need to compute all candidate output bases.

An original proposal is also made in order to obtain this preference relation over

the axioms of the input KB, in the form of two bases which, for each candidate axiom

ã for removal, represent what part of the input KB would be necessarily retained if

ã was respectively retained or discarded, and can be computed in time polynomial

in
︁

�∈� ♣� ♣.

These two proposals can be considered as independent contributions to the Ąeld

of syntax-based contraction/revision, in that their application is not restricted to the

case where linguistic evidence is incorporated to the process.
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9.1.3 Experiments

Diferent evaluations are presented throughout this dissertation, some of which focus

on local contributions, other ones evaluating more general debugging strategies. In

addition, two alternative types of evaluation protocols were implemented. The Ąrst

one relies on real datasets, and the evaluation consists in manually reviewing the

axioms automatically identiĄed as erroneous (or potentially erroneous in some cases)

by a system. But because this manual evaluation may be held as subjective (and

is costly), an alternative protocol was designed, which is based on automatically

degraded datasets, obtained by extending an input KB with axioms randomly gen-

erated out of its signature (the procedure is described in Chapter 5), the underlying

assumption being that random axioms are very likely to be absurd wrt to the rest

of the KB. Then the evaluation consists in verifying whether a system was able to

retrieve these random axioms (or sometime new consequences due to the addition of

these axioms) on a linguistic basis.

Almost all evaluations presented in this thesis produced signiĄcant (positive)

results.

9.1.3.1 Plausibility

Section 6.1 describes an independent evaluation of the plausibility score deĄned in

Chapter 4, although plausibility scores by themselves do not provide an efective

debugging strategy. 200 automatically degraded KBs were used for this evaluation,

which consisted in verifying whether the additional consequences obtained after ex-

tending the KB with random axioms were also the ones with lowest plausibility.
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9.1.3.2 Trimming a single axiom

Section 6.2 presents an evaluation whose objective was to automatically spot a single

randomly generated axiom in a KB. In other words, if � is the input KB before

degradation and ã the randomly generated axiom, the goal of this evaluation was to

identify � as the preferred immediate subbase of � ∪ ¶ã♢, on a linguistic basis.

9.1.3.3 Trimming multiple axioms

Section 6.3.2.1 evaluates the iterated removal of the most unlikely axiom of a KB on

a linguistic basis, with up to 20 iterations, i.e. 20 discarded axioms. This strategy

was evaluated manually with a real dataset, and automatically with a degraded one,

with 20 randomly generated axioms to retrieve.

9.1.3.4 Ontological analysis

Section 7.4 evaluates the manual extension of a consistent input KB with a foun-

dational ontology, based on the strategy introduced in Section 7.3, which does not

depend on linguistic evidence. This strategy consists in performing a (fast and shal-

low) ontological analysis of some elements of the signature of a consistent input KB,

and was experimented as a complementary debugging step, in order to yield an in-

consistent KB, which then may serve as the input of a syntax-based KB revision

algorithm.

The evaluation shows that this type of shallow ontological analysis may indeed

identify erroneous axioms as involved in the inconsistency, such that these axioms

are among candidates for removal during the syntax-based revision phase.
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9.1.3.5 Syntax-based revision guided by linguistic evidence

Section 8.6 evaluates some of the proposals made in Chapter 8, in the speciĄc case

where the preference relation over axioms of the inconsistent KB is obtained from

linguistic evidence, and taking as input two datasets manually extended with a foun-

dational ontology, following the strategy described in Chapter 7.

9.2 Cohesion

The cohesion of this work is primarily thematic, dictated by a global objective, which

is the detection and repair of nonsense within an OWL KB.

But at a lower level, the speciĄc problems addressed throughout this thesis are

largely independent. For instance, the manual KB extension strategy described in

Chapter 7 is largely disconnected from the proposals made in Chapters 6 and 8,

and Chapter 8 in itself can be read as an independent contribution to syntax-based

contraction/revision, without any relation to NLP. In addition, as already mentioned,

the sequencing of Chapters 6 to 8 is not meant to reĆect a unique debugging process.

So this thesis should primarily be viewed as a pluridisciplinary series of more or

less correlated contributions, only guided by the same initial motivation. In partic-

ular, as explained below, some of these contributions may Ąnd applications in very

diferent contexts.
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9.3 Scope and interpretation

9.3.1 Non-exhaustiveness

As is often the case for pluridisciplinary works, the topics and problematics are largely

new, and this thesis is by no means an exhaustive investigation of the applicability

of NLP to KB debugging. In particular, the focus on distributional similarity and

individuals was guided by robustness, and discussed in depth in Chapter 4 Sections

4.1 and 4.2.1:

But a wide array of other NLP techniques may be investigated, some of which

are mentioned in Chapter 4, and no claim is made here as to whether these solutions

are more eicient than the ones investigated in this work.

9.3.2 Interpretations of the empirical results

Because of the relative novelty of the problem, no existing benchmark was available to

evaluate the diferent proposals made throughout this thesis, neither was a standard

evaluation protocol.

Therefore one may rightfully wonder to what extent the relatively good results

obtained in these experiments are biased by ad hoc evaluation conditions or datasets,

and more generally, whether the evaluated debugging strategies may successfully be

applied to arbitrary input KBs.

9.3.2.1 Dataset selection

None of the datasets described in Chapter 5 was constituted to yield artiĄcially good

results. The target application scenario is a set of up to a few thousand axioms,
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prototypically extracted from the LOD Cloud. Subsets of DBpedia seem like good

candidates, because DBpedia is the de facto core of the LOD Cloud. The (arguably

complex) DBpedia subset extraction procedure described in Chapter 5 Section 5.1.3

was only designed to work with more realistic sets of statements as input, based on

the assumption that if a subset � of a large and domain independent KB is extracted

for a given application, then � will probably present a relative topical cohesion, as

discussed in Section 5.1.3.

The two datasets �STLab and �fisheries used for automatic degradation on the

other hand were chosen by default, for practical reasons. It is indeed diicult to

Ąnd small KBs which both are of a high quality and include named individuals with

linguistic labels, most reference KBs produced by academic research being TBoxes.

9.3.2.2 Parameters

As may have appeared to the attentive reader, the number of tunable parameters for

each experiment was generally high. A good illustration is the evaluation focused

on linguistic evidence in Chapter 6, where the number of provided results is already

important, due to the diferent combinations of tested conĄgurations (types of lin-

guistic contexts and weighting methods). But several other parameters could also

have been tested with diferent values, for instance the size of these linguistic con-

texts, the number of web pages retrieved for each named individual, . . . Thresholds

may also have been added (as is sometimes made in distributional semantics) for the

minimal number of target words a linguistic context appears with. The number of

tunable parameters grows with the complexity of the overall debugging procedures

in the later chapters, in particular for the evaluation described in Chapter 8, and

exploring all possible combinations was not practically feasible in the context of this
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thesis.

So some parameters were indeed tuned to obtain good results, and the values

retained for these parameters are provided with the description of each experiment.

But the possibility remains that other values for these parameters may be more

eicient for other inputs, i.e. nothing guarantees that these parameters do not depend

on the speciĄc datasets used for the experiments.

Therefore these results should be interpreted cautiously. When they are statis-

tically signiĄcant (and they often are), this should be viewed as an illustration that

the underlying intuitions are relevant, but some adjustments may still be needed to

obtain comparable results on other datasets.

9.4 Continuation

Although KB debugging guided by linguistic evidence was the main motivation be-

hind the contributions made in this thesis, several of them may actually Ąnd appli-

cations in other contexts. In particular:

∙ Plausibility scores, when aggregated, evaluate to what extent a set of formulas

veriĄes the above linguistic assumption, namely that individuals which instan-

tiate the same concepts tend to have similar linguistic behavior. Therefore

they may Ąnd an application in some engineering contexts where two sets of

formulas need to be compared, or even in an ontology learning scenario, when

some candidate set of extracted formulas needs to be Ąltered, as an alternative

for instance to the heuristic developed by [NVF11].

∙ The problem addressed by the algorithm proposed in Section ?? can be formu-

lated in more generic terms, and Ąnd applications in other knowledge engineer-
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ing scenarios: given a consistent KB �, and a Ąnite set Ψ� of consequences

of � with a preference relation ○ over Ψ� , Ąnd the optimal subbase(s) of �

according to the standard lexicographic ordering deĄned by ○ over all � ′∩Ψ�

such that � ′ ⊖ � .

∙ As mentioned above, the proposals made in Chapter 8 can be viewed as inde-

pendent contributions to the Ąeld of syntax-based revision/contraction.

9.4.1 Scalability

For very expressive DLs, most of the debugging procedures proposed in this thesis are

intractable, because they rely on the derivation of some consequences of candidate

output bases. But even in DLs for which entailment is tractable, the cost of the

execution of several of the algorithms proposed in this thesis is exponential in the

worst case in the size of the KB.

At most, the datasets used for the evaluations count a few thousand axioms,

and the execution of some algorithms turned out to be empirically costly. Therefore

it can be safely assumed that applying these algorithms to very large KBs is not

a realistic scenario, and approximations should be developed instead. But even

if the implementation difers, results presented in this thesis tend to indicate that

the intuitions underlying the proposals made in Chapter 4 (for the integration of

linguistic evidence to a KB debugging process) are promising.
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Appendix A

Relevance postulate for revision in

�ℒ�ℋ�

This appendix focuses on belief set revision, as opposed to the proposals made in

Chapter 8, which focused on belief bases. The observation made in this appendix

partly rely on results provided in Chapter 6 of [Rib13] (and the work presented in

[Rib13] is itself partly based on [Flo06]). Therefore the notation adopted in this

appendix is closer to the one used in [Rib13]. In particular, a logic will designate

a pair < ℒ,Cn >, with ℒ the (syntactically deĄned) language of the logic, and

Cn : 2ℒ ↦⊃ 2ℒ a consequence operator. A logic < ℒ,Cn > is said to be Tarskian if

for any Γ,Γ1,Γ2 ⊖ ℒ, the three following hold:

Γ ⊖ Cn(Γ) ((Tarskian) inclusion)

Cn(Γ) = Cn(Cn((Γ)) (indempotence)

if Γ1 ⊖ Γ2, then Cn(Γ1) ⊖ Cn(Γ2) (monotonicity)
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The term Ş(Tarskian) inclusionŤ is used here in order to avoid possible confusions

with the ŞinclusionŤ postulate for revision described below (Section A.1.4)

The focus will be put on the DL �ℒ�ℋ�, which is �ℒ� (introduced in Chapter 2

Section 2.3.2) extended with nominals and role subsumption. The syntax of�ℒ�ℋ�

is deĄned by the grammar of Ągure A-1 below (Section A.1.6), and its (standard

model-theoretic) semantic is the one given in Chapter 2 Section 2.3.4 for the DL

�ℛ�ℐ�, but restricted to the syntactic subset of �ℛ�ℐ� deĄned by the grammar

of Ągure A-1.

The main topic of this appendix is the minimal change postulate for revision (not

for contraction) proposed by [Rib13] for some Tarskian logics which are not AGM

compliant according to the authors, i.e. for which no contraction and/or revision

operator exists which satisĄes all AGM postulates for contraction and/or revision,

because these logics do not verify some properties, such as (Ąnite) complementation

or decomposability (see below), which are veriĄed by classical propositional logic

(among other logics).

�ℒ�ℋ� is interesting because it does not verify decomposability, as illustrated by

example 3.6.1 in Chapter 3 Section 3.6.1.1. The formal deĄnition of decomposability

is not needed here (the reader is referred to [Flo06]). Instead, only the following suf-

Ącient condition for a logic to be non-decomposable will be reproduced from [Flo06]:

if < ℒ,Cn > is a logic, for any Γ ⊖ ℒ, let Cnstrict(Γ) designate the set of strict conse-

quences of Γ in < ℒ,Cn >, i.e. Cnstrict(Γ) = ¶å ∈ ℒ ♣ Cn(¶å♢) ⊆ Cn(Γ)♢. If there is

an Ω ⊖ ℒ such that Cn(Cnstrict(Ω)) ̸= Cn(Ω), then < ℒ,Cn > is not decomposable.

It was shown in [Flo06] that a logic which does not verify decomposability is not

AGM compliant, i.e. there is no contraction operator in this logic which satisĄes

all 6 Ąrst (generalized) AGM postulates for contraction (introduced in Chapter 3

Section 3.6.1.1). If < ℒ,Cn >= �ℒ�ℋ�, and if � and � are two DL atomic roles,
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then Cn(Cnstrict(¶� ⊑ �♢)) ̸= Cn(¶� ⊑ �♢) holds, such that �ℒ�ℋ� is not decom-

posable, and therefore it is not AGM compliant. �ℒ�ℋ� veriĄes a weaker property

though, which will be useful in the proofs below (speciĄcally, in the proof of lemma

A.4.1.1): for all Γ1,Γ2 ⊖ ℒ, if Cn(Γ1 ∪ Γ2) = ℒ, then Cn(Cnstrict(Γ1) ∪ Γ2) = ℒ.

As an alternative to recovery, for contraction still, [Rib13] proposed to use the

relevance postulate for contraction, also deĄned in Chapter 3 Section 3.6.1.1, which,

as shown by [Han91], is equivalent to recovery in AGM compliant logics, but is

applicable to a larger class of logics, called relevance compliant by [Rib13], which

includes non-decomposable logics, such as Horn Logic, intuitionistic logic, and most

DLs (among which �ℒ�ℋ�).

Dealing with the recovery postulate is not the only generalization of the AGM

framework proposed by [Flo06] and [Rib13]. In particular, some of the logics already

mentioned are not closed under disjunction and/or conjunction, or are not (Ąnitely)

complemented (see Section A.1.2). Therefore the postulates which will be used here

are not exactly the ones deĄned in [AGM85], but these postulates generalized to

sets of formulas, and to logics where the complement of a (Ąnitely representable set

of) formula(s) does not always exist. As explained in Chapter 3 Section 3.6.1.1,

these generalizations are more straightforward than the generalization of recovery

(to relevance), and will not be explained in details here (the reader is referred to

[Rib13] instead).

The notion of AGM compliance, as deĄned by [Flo06], focuses on contraction,

not on revision. This may be legitimated by the fact that there is no minimal

change postulate for revision in the AGM framework, or more exactly, as explained

in Chapter 3 Section 3.6.1.1, that the recovery postulate for revision is redundant in

the presence of the other basic postulates for revision. As a consequence, the AGM

framework alone does not provide a minimal information loss principle in the case
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of revision. In particular, as explained in Chapter 3 Section 3.6.1.1, the revision

operator which returns � + Θ if � + Θ is consistent, and Cn(Θ) otherwise, satisĄes

all basic postulates for revision,1 and therefore it also satisĄes recovery for revision.

For relevance compliant but not AGM compliant logics though, [Rib13] deĄnes

a (generalized) relevance postulate for revision. The question investigated in this

appendix is the conditions in which this postulate is redundant with the (general-

ized) basic postulates for revision deĄned by [Rib13], just like recovery for revision

is redundant with the basic postulates for revision in the AGM framework. In par-

ticular, a property (Property A.2.1.1) is provided in Section A.2.1 which, if veriĄed

by a Tarskian logic, is suicient for the relevance postulate for revision to be redun-

dant with the (generalized) closure, success and vacuity postulates for revision. No

claim is made though as to whether this property is also necessary, i.e. it may be

too strong to characterize exactly this phenomenon. The implications for Tarskian

logics verifying this property may be similar to the ones for AGM compliant logics,

namely that an additional notion of minimal change (for instance model-based, like

the ones introduced in Chapter 3 Section 3.6.1.2) is needed to guarantee a form of

minimal information loss.

It is then shown in Section A.2.2 that �ℒ�ℋ� satisĄes this property, such that

the relevance postulate for revision is redundant in�ℒ�ℋ� with the basic postulates

for revision. An interesting continuation of this work would be to determine whether

or not this observation also holds for some more expressive DLs.

1 as well as the two additional Gärdenfors postulates for revision
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A.1 Preliminaries

A.1.1 Typographical conventions

A diference between the notation adopted in this appendix and the conventions used

in the belief change literature is that no set of formulas will be assumed to be closed

deductively, unless explicitly stated. In particular, � will denote a subset of ℒ, not

necessarily closed deductively, and the closure of � will be explicitly designated as

Cn(�). This choice is made in order to be consistent with the usage of other capital

Greek letters in this appendix (Θ,Γ,Ω,. . . ) which all designate (not necessarily

closed) sets of formulas. � *Θ on the other hand is assumed to be closed deductively,

but only because this is explicitly required by the closure postulate below (Section

A.1.4).

Another speciĄc typographical convention is also used in what follows. For read-

ability, if Γ ⊖ ℒ, then Γ will generally be used as a variable name in order to designate

another subset of ℒ such that Cn(Γ∪Γ) = ℒ.2 It is important to understand that the

ŞoverlineŤ symbol in Γ is not an operator here, but only a typographical convention.

So in what follows, from a formal point of view, ŞΓŤ may as well be designated with

ŞΩ, ŞΓ′Ť or ŞΓ2Ť, i.e. the ŞoverlineŤ symbol in Γ has no formal meaning, and is only a

notational facility, because some of the propositions or proofs below may be diicult

to read otherwise.

2If Ò ∈ ℒ, then Ò will also be used, as a variable name still, in order to designate another formula
in ℒ such that Cn(¶Ò, Ò♢) = ℒ.

359



A.1.2 Complementation

As noted in [FHP+06] or [Rib13], most DLs are not (Ąnitely) complemented, i.e. the

complement of a (Ąnitely representable set of) formula(s) in a DL does not always

exist. More formally, if < ℒ,Cn > is the (Tarskian) logic at hand, let �(< ℒ,Cn >)

be the family of Ąnitely representable subsets of ℒ according to < ℒ,Cn >, deĄned

by:

Definition A.1.2.1. �(< ℒ,Cn >) = ¶Γ ⊖ ℒ ♣ there is a Ąnite Γ′ ⊖ ℒ such that

Cn(Γ) = Cn(Γ′)♢

If Γ ∈ �(< ℒ,Cn >), then Γ ⊖ ℒ is a complement of Γ if Cn(Γ ∪ Γ) = ℒ and

Cn(Γ) ∩ Cn(Γ) = Cn(∅).3 Because there is no constraint here on the syntactic form

of Γ, there may be several complements for a same Γ ∈ �(< ℒ,Cn >). But as

noted by [Rib13], there may also be several complements of Γ in < ℒ,Cn > modulo

equivalence.

An arguably more common technical diiculty though is the case where there is no

Ąnitely representable complement of Γ. For instance, in FOL, let Γ1 = ¶∀� : �(�)♢,

with � a unary FOL predicate. Then any complements of Γ1 in FOL is equivalent

to Γ1 = ¶∃� : ¬�(�)♢. And under the standard model-theoretic semantic for FOL

and DLs deĄned in Chapter 3 Section 2.3.4, a model-preserving translation of Γ1

into the DL �ℒ� is Γ2 = ¶⊤ ⊑ �♢, with � a DL atomic concept. But there is no

Ąnite set of formulas in �ℒ� which is a model-preserving translation of Γ1. And

there is no Ąnite set Γ2 of formulas in �ℒ� which satisĄes both of the properties

above either, i.e. which satisĄes Cn(Γ2 ∪ Γ2) = ℒ and Cn(Γ2) ∩ Cn(Γ2) = Cn(∅). In

3 For the second condition, Cn(Cn(Γ) ∩ Cn(Γ)) = Cn(∅) is arguably a more intuitive notation,
but because the intersection of two belief sets in a Tarskian logic is a belief set, Cn(Cn(Γ)∩Cn(Γ))
and Cn(Γ) ∩ Cn(Γ) both designate the same set of formulas, and the shorter notation is preferred
here.
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particular, Γ3 = ¶⊤ ⊑ ¬�♢ is not a complement of Γ2. It satisĄes Cn(Γ2 ∪ Γ3) = ℒ,

but not Cn(Γ2) ∩ Cn(Γ3) = ∅. For instance, the formula å = ⊤ ⊑ � ⊔ ∀�.¬�, is a

consequence of both Γ2 and Γ3, i.e. å ∈ (Cn(Γ2)∩Cn(Γ3)), but å is not a tautology,

i.e. å ̸∈ Cn(∅). To see this, consider the interpretation ℐ =< Δℐ , .ℐ > such that the

domain of the interpretation function .ℐ is ¶�,�♢, with � a DL atomic concept and

� a DL atomic role, Δℐ = ¶Ó1, Ó2♢, �
ℐ = ¶Ó2♢ and � = ¶(Ó1, Ó2)♢. Then ℐ ̸♣= å, and

therefore å ̸∈ Cn(∅).

This possible lack of a Ąnitely representable complement for some Γ ∈ �(<

ℒ,Cn >) is in particular the reason why the condition in the generalization of the

vacuity postulate below is Şif � + Θ = ℒŤ, and not Şif ¬� ∈ Cn(�) for all � ∈ ΘŤ,

which would be more in line with its original formulation in the AGM framework

(given in Chapter 3 Section 3.6.1.1), namely Şif � ∈ Cn(�)Ť. Similarly, the deĄnition

of Property A.2.1.1 below relies on inconsistency instead of explicit negation.

In addition, as a notational shortcut, if < ℒ,Cn > is the logic at hand, the

operator ! : 2ℒ ↦⊃ 22ℒ
will be deĄned as follows:

Definition A.1.2.2. !Γ = ¶Γ ⊖ ℒ ♣ Cn(Γ ∪ Γ) = ℒ♢

A.1.3 Postulates

A.1.4 Generalized Postulates for Revision

The generalization of the basic AGM postulates for revision provided by [Rib13]

characterize the revision of a set � of formulas by a set Θ of formulas (understood

conjunctively), instead of the revision of � by a single formula � in the AGM frame-

work. This generalization also addresses the case of logics which may not be Ąnitely

complemented, which has just been discussed. The generalized postulates proposed
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by [Rib13] are reproduced here:

(1) � *Θ = Cn(� *Θ) (closure)

(2) Θ ⊖ � *Θ (success)

(3) � *Θ ⊖ � + Θ (inclusion)

(4) if � + Θ ̸= ℒ, then � + Θ ⊖ � *Θ (vacuity)

(5) if Cn(Θ) ̸= ℒ, then � *Θ ̸= ℒ (consistency)

(6) if for all � ′ ⊖ Cn(�), � + Θ1 = ℒ if � + Θ2 = ℒ,

then Cn(�) ∩ (� *Θ1) = Cn(�) ∩ (� *Θ2) (extensionality)

A.1.5 Relevance postulate for revision

In addition to these postulates, [Rib13] introduces the following relevance postulate

for revision, which can be viewed as an an adaptation to revision of the relevance

postulate for contraction, via HarperŠs identity (see Chapter 3 Section 3.6.1.1):

If Ò ∈ Cn(�) ∖ (� *Θ), then there is a � ′ such that:

∙ Cn(�) ∩ (� *Θ) ⊖ � ′ ⊖ Cn(�)

∙ Cn(� ′ ∪Θ) ̸= ℒ

∙ Cn(� ′ ∪Θ ∪ ¶Ò♢) = ℒ (relevance)

A.1.6 �ℒ�ℋ�: Syntax

Figure A-1 gives the syntax of the DL �ℒ�ℋ�, which is the DL �ℒ� extended with

role subsumption and nominals. As explained in Chapter 2 Section 2.3.7, although

this grammar does not allow for the generation of ABox statements syntactically,

it allows for the generation of TBox statements which are semantically equivalent,
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ã ::= ãTBox ♣ ãRBox

ãTBox ::= � ⊑ �
ãRBox ::= R ⊑ R
� ::= A ♣ ⊤ ♣ ⊥ ♣ ¶�♢ ♣ ¬� ♣ � ⊔ � ♣ � ⊓ � ♣

∃�.� ♣ ∀�.�
� ::= e ♣ e, �

Figure A-1: Syntax of �ℒ�ℋ�

relying on nominals. For instance, ¶�♢ ⊑ � is equivalent to the ABox statement

�(�), with � a DL concept and � an individual, and ¶�1♢ ⊑ ∃�.¶�2♢ is equivalent

to �(�1, �2), with �1, �2 two individuals and � a DL atomic role.

The standard model-theoretic semantic for �ℒ� is the one for �ℛ�ℐ� given in

Chapter 3 Section 2.3.4, but restricted to the language generated by the grammar of

Ągure A-1.

A.2 Main propositions

A.2.1 Sufficient condition for the redundancy of relevance

for revision

The following property may or may not be veriĄed by a Tarskian logic < ℒ,Cn >.

But if it is veriĄed, a revision operator in this logic which satisĄes closure, vacuity

and success also satisĄes relevance for revision.

Property A.2.1.1. Let Γ1,Γ2,Γ3,Γ3 ⊖ ℒ, with Γ2 ̸⊖ Cn(Γ1) and Cn(Γ3 ∪ Γ3) = ℒ.

Then there are Γ2,Γ4 ⊖ ℒ such that:

a: Cn(Γ2 ∪ Γ2) = ℒ
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b: Cn(Γ1 ∪ Γ2) ̸= ℒ

c: Cn(Γ4 ∪ Γ3) = ℒ

d: Γ4 ⊖ Cn(Γ3)

e: Γ2 ⊖ Cn((Cn(Γ2) ∩ Cn(Γ4)) ∪ Γ3)

Then the following shown to hold in Section A.3:

Proposition A.2.1.1. If a logic is Tarskian and satisĄes property A.2.1.1, then a

revision operator in this logic which veriĄes closure, success and vacuity also veriĄes

relevance.

A.2.2 Application: the case of �ℒ�ℋ�

The following is shown to hold in Section A.4:

Proposition A.2.2.1. �ℒ�ℋ� under standard model-theoretic semantic for DLs

and without unique name assumption veriĄes property A.2.1.1.

Then because �ℒ�ℋ� is a Tarskian logic, the following proposition, already in-

troduced in Chapter 3 Section 3.6.1.1, follows immediately from proposition A.2.1.1:

Proposition. If a revision operator in�ℒ�ℋ� satisĄes closure, success, and vacuity,

then it satisĄes relevance.

A.3 Proof of proposition A.2.1.1

The relevance postulate for revision proposed in Chapter 6 of [Rib13] is reproduced

here for readability:

If Ò ∈ Cn(�) ∖ (� *Θ), then there is a � ′ such that:
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∙ Cn(�) ∩ (� *Θ) ⊖ � ′ ⊖ Cn(�)

∙ Cn(� ′ ∪Θ) ̸= ℒ

∙ Cn(� ′ ∪Θ ∪ ¶Ò♢) = ℒ (relevance)

The following theorem will also be useful:

Theorem A.3.0.1. If < ℒ,Cn > is Tarskian and �1, �2 ⊖ ℒ, then

Cn(Cn(�1) ∪�2) = Cn(�1 ∪�2)

And this is the proposition to be proven:

Proposition. If a logic is Tarskian and satisĄes property A.2.1.1, then a revision

operator in this logic which veriĄes closure, success and vacuity also veriĄes relevance.

Proof. Let < ℒ,Cn > be a Tarskian logic, and let * be a revision operator for

< ℒ,Cn > satisfying closure, success and vacuity, with �,Θ ⊖ ℒ the two arguments

of *.

Let us evacuate some limit cases Ąrst. If � + Θ ̸= ℒ then by vacuity, � + Θ ⊖

� *Θ, and because Cn(�) ⊖ � + Θ, Cn(�) ⊖ � *Θ must hold.

If Cn(Θ) = ℒ, by success, � *Θ = ℒ, and so Cn(�) ⊖ � *Θ holds as well.

So in both cases Cn(�) ∖ (� *Θ) = ∅, and relevance trivially holds.

Therefore we can focus on the case where � + Θ = ℒ (i.e Cn(� ∪ Θ) = ℒ) and

Cn(Θ) ̸= ℒ.

We will show that if property A.2.1.1 is veriĄed by < ℒ,Cn >, then for any Ò ∈

Cn(�)∖(�*Θ), there is a set Ω of formulas such that � ′ = Cn((Cn(�)∩(�*Θ))∪Ω)

veriĄes:

∙ � ′ ⊖ Cn(�)
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∙ Cn(�) ∩ (� *Θ) ⊖ � ′

∙ Cn(� ′ ∪Θ) ̸= ℒ

∙ Cn(� ′ ∪Θ ∪ ¶Ò♢) = ℒ

By hypothesis, Ò ̸∈ � *Θ. And from the closure postulate, Cn(� * Ð) = � *Θ,

so Ò ̸∈ Cn(� *Θ), and therefore ¶Ò♢ ̸⊖ Cn(� *Θ).

By hypothesis still, Cn(� ∪Θ) = ℒ.

So from Property A.2.1.1, replacing Γ1 by � *Θ, Γ2 by ¶Ò♢, Γ3 by � and Γ3 by

Θ, there are ¶Ò♢ and Θ such that:

∙ Cn(¶Ò♢ ∪ ¶Ò♢) = ℒ

∙ Cn((� *Θ) ∪ ¶Ò♢) ̸= ℒ

∙ Cn(Θ ∪Θ) = ℒ

∙ Θ ⊖ Cn(�)

∙ ¶Ò♢ ⊖ Cn((Cn(¶Ò♢) ∩ Cn(Θ)) ∪Θ)

The four conditions above are then veriĄed for Ω = Cn(Θ) ∩ Cn(¶Ò♢), i.e. for

� ′ = Cn((Cn(�) ∩ (� *Θ)) ∪ (Cn(Θ) ∩ Cn(¶Ò♢))).

First, we can show that � ′ ⊖ Cn(�):

(1) Θ ⊖ Cn(�) from the deĄnition of Θ

(2) Cn(Θ) ⊖ Cn(Cn(�)) from (1), by monotonicity

(3) Cn(Θ) ⊖ Cn(�) from (2), by indempotence

(4) Cn(Θ) ∩ Cn(¶Ò♢) ⊖ Cn(Θ)

(5) Cn(Θ) ∩ Cn(¶Ò♢) ⊖ Cn(�) from (3,4) and the transitivity of ⊖
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(6) Cn(�) ∩ (� *Θ) ⊖ Cn(�)

(7) ((Cn(�) ∩ (� *Θ)) ∪ (Cn(Θ) ∩ Cn(¶Ò♢)) ⊖ Cn(�)

from (5,6)

(8) Cn((Cn(�) ∩ (� *Θ)) ∪ (Cn(Θ) ∩ Cn(¶Ò♢))) ⊖ Cn(�)

from (7), by monotonicity and indempotence

(9) � ′ ⊖ Cn((Cn(�) ∩ (� *Θ)) ∪ (Cn(Θ) ∩ Cn(¶Ò♢)))

from the deĄnition of � ′

(10) � ′ ⊖ Cn(�)

from (8,9) and the transitivity of ⊖

Then that Cn(�) ∩ (� *Θ) ⊖ � ′:

(1) Cn(�) ∩ (� *Θ) ⊖ (Cn(�) ∩ (� *Θ)) ∪ (Cn(Θ) ∩ Cn(¶Ò♢))

(2) (Cn(�) ∩ (� *Θ)) ∪ (Cn(Θ) ∩ Cn(¶Ò♢)) ⊖ Cn((Cn(�) ∩ (� *Θ)) ∪ (Cn(Θ) ∩ Cn(¶Ò♢)))

by (Tarskian) inclusion

(3) Cn((Cn(�) ∩ (� *Θ)) ∪ (Cn(Θ) ∩ Cn(¶Ò♢))) ⊖ � ′

from the deĄnition of � ′

(4) Cn(�) ∩ (� *Θ) ⊖ � ′ from (1,2,3) and the transitivity of ⊖

Then that Cn(� ′ ∪Θ) ̸= ℒ :

(1) Θ ⊖ � *Θ by success

(2) (� *Θ) ∪Θ = � *Θ from (1)

(3) Cn((� *Θ) ∪Θ) = Cn(� *Θ) from (2)

(4) Cn(� *Θ) = � *Θ by closure

(5) Cn((� *Θ) ∪Θ) = � *Θ from (3,4)
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(6) Cn(�) ∩ (� *Θ) ⊖ � *Θ

(7) (Cn(�) ∩ (� *Θ)) ∪Θ ⊖ (� *Θ) ∪Θ from (6)

(8) Cn((Cn(�) ∩ (� *Θ)) ∪Θ) ⊖ Cn((� *Θ) ∪Θ)

from (7), by monotonicity

(9) Cn((Cn(�) ∩ (� *Θ)) ∪Θ) ⊖ � *Θ from (5,8)

(10) Cn((Cn(�) ∩ (� *Θ)) ∪Θ) ∪ ¶Ò♢ ⊖ (� *Θ) ∪ ¶Ò♢

from (9)

(11) Cn(Cn((Cn(�) ∩ (� *Θ)) ∪Θ) ∪ ¶Ò♢) ⊖ Cn((� *Θ) ∪ ¶Ò♢)

from (10), by monotonicity

(12) Cn(Cn((Cn(�) ∩ (� *Θ)) ∪Θ) ∪ ¶Ò♢) = Cn((Cn(�) ∩ (� *Θ)) ∪Θ ∪ ¶Ò♢)

from theorem A.3.0.1

(13) Cn((Cn(�) ∩ (� *Θ)) ∪Θ ∪ ¶Ò♢) ⊖ Cn((� *Θ) ∪ ¶Ò♢)

from (11,12)

(14) Cn((� *Θ) ∪ ¶Ò♢) ⊆ ℒ from the deĄnition of ¶Ò♢

(15) Cn((Cn(�) ∩ (� *Θ)) ∪Θ ∪ ¶Ò♢) ⊆ ℒ

from (13,14) and the transitivity of ⊖

(16) Cn(Θ) ∩ Cn(¶Ò♢) ⊖ Cn(¶Ò♢)

(17) (Cn(Θ) ∩ Cn(¶Ò♢)) ∪Θ ⊖ Cn(¶Ò♢) ∪Θ from (16)

(18) Cn((Cn(Θ) ∩ Cn(¶Ò♢)) ∪Θ) ⊖ Cn(Cn(¶Ò♢) ∪Θ)

from (17), by monotonicity

(19) Cn(Cn(¶Ò♢) ∪Θ) = Cn(¶Ò♢ ∪Θ) from theorem A.3.0.1

(20) Cn((Cn(Θ) ∩ Cn(¶Ò♢)) ∪Θ) ⊖ Cn(¶Ò♢ ∪Θ)

from (18,19)

(21) � ′ ⊖ Cn((Cn(�) ∩ (� *Θ)) ∪ (Cn(Θ) ∩ Cn(¶Ò♢)))

from the deĄnition of � ′
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(22) � ′ ∪Θ ⊖ Cn((Cn(�) ∩ (� *Θ)) ∪ (Cn(Θ) ∩ Cn(¶Ò♢))) ∪Θ

from (21)

(23) Cn(� ′ ∪Θ) ⊖ Cn(Cn((Cn(�) ∩ (� *Θ)) ∪ (Cn(Θ) ∩ Cn(¶Ò♢))) ∪Θ)

from (22), by monotonicity

(24) Cn(Cn((Cn(�) ∩ (� *Θ)) ∪ (Cn(Θ) ∩ Cn(¶Ò♢))) ∪Θ) =

Cn((Cn(�) ∩ (� *Θ)) ∪ (Cn(Θ) ∩ Cn(¶Ò♢)) ∪Θ)

from theorem A.3.0.1

(25) Cn(� ′ ∪Θ) ⊖ Cn((Cn(�) ∩ (� *Θ)) ∪ (Cn(Θ) ∩ Cn(¶Ò♢)) ∪Θ)

from (23,24)

(26) Cn(� ′ ∪Θ) ⊖ Cn((Cn(�) ∩ (� *Θ)) ∪ ((Cn(Θ) ∩ Cn(¶Ò♢)) ∪Θ))

from (25)

(27) Cn((Cn(�) ∩ (� *Θ)) ∪ ((Cn(Θ) ∩ Cn(¶Ò♢)) ∪Θ)) =

Cn((Cn(�) ∩ (� *Θ)) ∪ Cn((Cn(Θ) ∩ Cn(¶Ò♢)) ∪Θ))

from theorem A.3.0.1

(28) Cn(� ′ ∪Θ) ⊖ Cn((Cn(�) ∩ (� *Θ)) ∪ Cn((Cn(Θ) ∩ Cn(¶Ò♢)) ∪Θ))

from (26,27)

(29) (Cn(�) ∩ (� *Θ)) ∪ Cn((Cn(Θ) ∩ Cn(¶Ò♢)) ∪Θ) ⊖

(Cn(�) ∩ (� *Θ)) ∪ Cn(¶Ò♢ ∪Θ)

from (20)

(30) Cn((Cn(�) ∩ (� *Θ)) ∪ Cn((Cn(Θ) ∩ Cn(¶Ò♢)) ∪Θ)) ⊖

Cn((Cn(�) ∩ (� *Θ)) ∪ Cn(¶Ò♢ ∪Θ))

from (29), by monotonicity

(31) Cn(� ′ ∪Θ) ⊖ Cn((Cn(�) ∩ (� *Θ)) ∪ Cn(¶Ò♢ ∪Θ))

from (28,30) and the transitivity of ⊖

(32) Cn((Cn(�) ∩ (� *Θ)) ∪ Cn(¶Ò♢ ∪Θ)) = Cn((Cn(�) ∩ (� *Θ)) ∪ ¶Ò♢ ∪Θ)
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from theorem A.3.0.1

(33) Cn(� ′ ∪Θ) ⊖ Cn((Cn(�) ∩ (� *Θ)) ∪ ¶Ò♢ ∪Θ)

from (31,32)

(34) Cn(� ′ ∪Θ) ⊆ ℒ from (15,33) and the transitivity of ⊖

(35) Cn(� ′ ∪Θ) ̸= ℒ from (34)

And Ąnally that Cn(� ′ ∪Θ ∪ ¶Ò♢) = ℒ :

(1) Cn(¶Ò♢) ∩ Cn(Θ) ⊖ (Cn(�) ∩ (� *Θ)) ∪ (Cn(¶Ò♢) ∩ Cn(Θ))

(2) (Cn(�) ∩ (� *Θ)) ∪ (Cn(¶Ò♢) ∩ Cn(Θ)) ⊖ Cn((Cn(�) ∩ (� *Θ)) ∪ (Cn(¶Ò♢) ∩ Cn(Θ)))

by (Tarskian) inclusion

(3) Cn((Cn(�) ∩ (� *Θ)) ∪ (Cn(¶Ò♢) ∩ Cn(Θ))) ⊖ � ′

from the deĄnition of KŠ

(4) Cn(¶Ò♢) ∩ Cn(Θ) ⊖ � ′ from (1,2,3) and the transitivity of ⊖

(5) (Cn(¶Ò♢) ∩ Cn(Θ)) ∪Θ ⊖ � ′ ∪Θ from (4)

(6) Cn(Cn(¶Ò♢) ∩ Cn(Θ)) ∪Θ) ⊖ Cn(� ′ ∪Θ) from (5), by monotonicity

(7) � ′ ∪Θ ⊖ � ′ ∪Θ ∪ ¶Ò♢

(8) Cn(� ′ ∪Θ) ⊖ Cn(� ′ ∪Θ ∪ ¶Ò♢) from (7), by monotonicity

(9) Cn(Cn(¶Ò♢) ∩ Cn(Θ)) ∪Θ) ⊖ Cn(� ′ ∪Θ ∪ ¶Ò♢)

from (6,8) and the transitivity of ⊖

(10) ¶Ò♢ ⊖ Cn((Cn(¶Ò♢) ∩ Cn(Θ)) ∪Θ) from the deĄnition of ¶Ò♢

(11) ¶Ò♢ ⊖ Cn(� ′ ∪Θ ∪ ¶Ò♢) from (9,10) and the transitivity of ⊖

(12) ¶Ò♢ ⊖ � ′ ∪Θ ∪ ¶Ò♢

(13) � ′ ∪Θ ∪ ¶Ò♢ ⊖ Cn(� ′ ∪Θ ∪ ¶Ò♢) by (Tarskian) inclusion

(14) ¶Ò♢ ⊖ Cn(� ′ ∪Θ ∪ ¶Ò♢) from (12,13) and the transitivity of ⊖

(15) Cn(¶Ò♢ ∪ ¶Ò♢) = ℒ from the deĄnition of ¶Ò♢
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(16) ¶Ò♢ ∪ ¶Ò♢ ⊖ Cn(� ′ ∪Θ ∪ ¶Ò♢) from (11,14)

(17) Cn(¶Ò♢ ∪ ¶Ò♢) ⊖ Cn(� ′ ∪Θ ∪ ¶Ò♢) from (16), by monotonicity and indempotence

(18) ℒ ⊖ Cn(� ′ ∪Θ ∪ ¶Ò♢) from (15,17)

(19) Cn(� ′ ∪Θ ∪ ¶Ò♢) = ℒ from (18)

To sum up, if < ℒ,Cn > is Tarskian and if * veriĄes closure, success and vacuity,

then relevance is trivially veriĄed if the cases where �+Θ ̸= ℒ or Cn(Θ) = ℒ. In the

only non trivial case where � + Θ = ℒ and Cn(Θ) ̸= ℒ, if < ℒ,Cn > also satisĄes

Property A.2.1.1, then for each Ò ∈ Cn(�) ∖ (� *Θ), there is a � ′ such that:

∙ � ′ ⊖ Cn(�)

∙ Cn(�) ∩ (� *Θ) ⊖ � ′

∙ Cn(� ′ ∪Θ) ̸= ℒ

∙ Cn(� ′ ∪Θ ∪ ¶Ò♢) = ℒ

Therefore in this case too, relevance is veriĄed by *.

A.4 Proof of proposition A.2.2.1

Proposition. �ℒ�ℋ� under standard model-theoretic semantic for DLs and with-

out unique name assumption veriĄes property A.2.1.1.

A.4.1 Lemmas

Lemma A.4.1.1. Let < ℒ,Cn >= �ℒ�ℋ� and Γ,Γ ⊖ ℒ, such that Cn(Γ∪Γ) = ℒ.

Then there is a Ąnite Γ
′
⊖ Cn(Γ) such that Cn(Γ ∪ Γ

′
) = ℒ, and each Ò ∈ Γ

′
is of
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the form � ⊑ �, with � and � DL concepts.

Proof. As a notational shortcut, if Ω ⊖ ℒ, then tb(Ω) and rb(Ω) (for ŞTBoxŤ and

ŞRBoxŤ respectively) will designate the formulas of Ω of the form � ⊑ � and � ⊑ �

respectively, with � and � �ℒ�ℋ� concepts, and � and � DL atomic roles. As

shown by the grammar of A-1, for any Ω ⊖ ℒ, ¶tb(Ω), rb(Ω)♢ is a partition of Ω.

Let Γ,Γ ⊖ ℒ and Cn(Γ ∪ Γ) = ℒ. We will Ąrst evacuate some limit cases.

If Cn(Γ) = ℒ, set for instance Γ
′

= ¶⊤ ⊑ ⊤♢. Then Γ
′
⊖ Cn ∅ ⊖ Cn(Γ), and

Cn(Γ ∪ Γ
′
) = Cn(ℒ ∪ Γ

′
) = ℒ.

If Cn(Γ) = ℒ, set for instance Γ
′

= ¶⊤ ⊑ ⊥♢. Then Γ
′
⊖ ℒ ⊖ Cn(Γ), and

Cn(Γ ∪ Γ
′
) = Cn(Γ ∪ ℒ) = ℒ.

Now for the non trivial case where Cn(Γ) ̸= ℒ and Cn(Γ) ̸= ℒ, we will Ąrst

show that Cn(Γ ∪ tb(Cn(Γ))) = ℒ. Then only we will show that there is a Ąnite

Γ
′
⊖ tb(Cn(Γ)) such that Cn(Γ∪Γ

′
) = ℒ. If this is the case, because Γ

′
⊖ tb(Cn(Γ))

and tb(Cn(Γ)) ⊖ Cn(Γ), Γ
′
⊖ Cn(Γ) must hold, and so lemma A.4.1.1 holds as well.

In order to show that Cn(Γ ∪ tb(Cn(Γ))) = ℒ, let us Ąrst evacuate the limit

case where rb(Cn(Γ)) ⊖ Cn(∅), i.e. where each Ò ∈ Cn(Γ) is either a tautology or

of the form � ⊑ �, with � and � �ℒ�ℋ� concepts. Then showing that Cn(Γ ∪

tb(Cn(Γ)) = ℒ is almost immediate:

(1) Cn(Γ) ⊖ tb(Cn(Γ)) ∪ rb(Cn(Γ)) because ¶tb(Cn(Γ)), rb(Cn(Γ))♢ is a

partition of Cn(Γ)

(2) rb(Cn(Γ)) ⊖ Cn(∅) by hypothesis

(3) tb(Cn(Γ)) ∪ rb(Cn(Γ)) ⊖ tb(Cn(Γ)) ∪ Cn(∅)

from (2)

(4) Cn(Γ) ⊖ tb(Cn(Γ)) ∪ Cn(∅) from (1,3) and the transitivity of ⊖

(5) Cn(Γ) ∪ Γ ⊖ tb(Cn(Γ)) ∪ Cn(∅) ∪ Γ from (4)
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(6) Cn(Cn(Γ) ∪ Γ) ⊖ Cn(tb(Cn(Γ)) ∪ Cn(∅) ∪ Γ)

from (5), by monotonicity

(7) Cn(tb(Cn(Γ)) ∪ Cn(∅) ∪ Γ) = Cn(tb(Cn(Γ)) ∪ ∅ ∪ Γ) = Cn(tb(Cn(Γ)) ∪ Γ)

from theorem A.3.0.1

(8) Cn(Cn(Γ) ∪ Γ) ⊖ Cn(tb(Cn(Γ)) ∪ Γ) from (6,7)

(9) Cn(Γ ∪ Γ) = Cn(Cn(Γ) ∪ Γ) from theorem A.3.0.1

(10) Cn(Γ ∪ Γ) ⊖ Cn(tb(Cn(Γ)) ∪ Γ) from (8,9)

(11) Cn(Γ ∪ Γ) = ℒ by hypothesis

(12) ℒ ⊖ Cn(tb(Cn(Γ)) ∪ Γ) from (10,11)

(13) Cn(tb(Cn(Γ)) ∪ Γ) = ℒ from (12)

So the last remaining case is the one where rb(Cn(Γ)) ̸⊖ Cn(∅). Let us assume

by contradiction that Cn(Γ ∪ tb(Cn(Γ))) ̸= ℒ. We will show that if this holds,

then Cn(Γ ∪ Γ) ̸= ℒ, contradicting the above hypothesis, and therefore Cn(Γ ∪

tb(Cn(Γ))) = ℒ must hold.

�ℒ�ℋ� has the Ąnite model property. So if Cn(Γ ∪ tb(Cn(Γ))) ̸= ℒ, then

there must be a Ąnite model ℐ0 =< Δℐ0 , .ℐ0 > of Γ such that ℐ0 is also a model of

tb(Cn(Γ)). Let dom(.ℐ0) designate the domain of the interpretation function .ℐ0 . ℐ0

is Ąnite means here that both Δℐ0 and dom(.ℐ0) are Ąnite.

By hypothesis, Cn(Γ ∪ Γ) = ℒ, so Γ and Γ do not share a model, and because

ℐ0 is a model of Γ, it cannot be a model of Γ. So there must be a Ò ∈ Cn(Γ) such

that ℐ0 ̸♣= Ò. But because ℐ0 is a model of tb(Cn(Γ)), for all Ò′ ∈ tb(Cn(Γ)), ℐ0 ♣= Ò′

must hold. Therefore Ò ∈ Cn(Γ)∖ tb(Cn(Γ)) = rb(Cn(Γ)), i.e. Ò must be of the form

�1 ⊑ �1, with �1 and �1 atomic DL roles.

So we have Ò = �1 ⊑ �1 and ℐ0 ̸♣= Ò, such that there must be Ó1, Ó2 ∈ Δℐ0
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verifying (Ó1, Ó2) ∈ �
ℐ0
1 ∖ �

ℐ0
1 . Now take the model ℐ1 identical to ℐ0, but with �ℐ1 =

�ℐ0 ∪ ¶(Ó1, Ó2)♢. Then Δℐ1 = Δℐ0 , and if dom(.ℐ0) and dom(.ℐ1) are the respective

domains of the interpretation functions .ℐ0 and .ℐ1 , dom(.ℐ1) = dom(.ℐ0) also holds.

Let �Ind(dom(.ℐ0)), �Con(dom(.ℐ0)) and �Role(dom(.ℐ0)) respectively designate the

individuals, atomic DL concepts and atomic DL roles in dom(.ℐ0) = dom(.ℐ1). Then

for each � ∈ �Ind(dom(.ℐ0)), �ℐ1 = ¶�♢ℐ1 = �ℐ0 = ¶�♢ℐ0 , for each � ∈ �Con(dom(.ℐ0)),

�ℐ1 = �ℐ0 , and for each � ∈ �Role(dom(.ℐ0)) ∖ ¶�♢, �ℐ1 = �ℐ0 .

Let � be any (possibly complex) �ℒ�ℋ� concept. We will show by induction on

the maximal number maxNestQ(�) of nested quantiĄers in � that for each Ó ∈ Δℐ0 ,

Ó ∈ �ℐ0 if Ó ∈ �ℐ1 . Let Ó ∈ Δℐ0 = Δℐ1 . For the base case maxNestQ(�) = 0,

from the above observations, if � = ¶�1, .., ��♢, with ¶�1, .., ��♢ ⊖ �Ind(dom(.ℐ0)),

then Ó ∈ �ℐ0 if Ó ∈ �ℐ1 . Similarly, if � ∈ �Con(dom(.ℐ0)), then Ó ∈ �ℐ0 if

Ó ∈ �ℐ1 as well. Now let �1, �2 be two (possibly complex) DL concepts such that

Ó ∈ �ℐ0
� if Ó ∈ �ℐ1

� . Then immediately from the semantic of the operators ¬,⊓

and ⊔, Ó ∈ (¬�1)
ℐ0 if Ó ∈ (¬�1)

ℐ1 , Ó ∈ (�1 ⊓ �2)
ℐ0 if Ó ∈ (�1 ⊓ �2)

ℐ1 , and

Ó ∈ (�1 ⊔ �2)
ℐ0 if Ó ∈ (�1 ⊔ �2)

ℐ1 . Because it is assumed that maxNestQ(�) = 0,

there is no quantiĄer in �. Therefore ¬,⊓ and ⊔ are the only available operators

to build a complex concept out of atomic concepts and sets of nominals, i.e. out of

�Con(dom(.ℐ0)) ∪ 2�Ind(dom(.ℐ0 )). So by induction on the number of such operator in

�, Ó ∈ �ℐ0 if Ó ∈ �ℐ1 must hold.

For the inductive case now, let us start with the (sub)case where � = ∃�.�′ for

some atomic DL role � and some �ℒ�ℋ� concept �′. If maxNestQ(�) = �, then

maxNestQ(�′) = �⊗1 must hold. Let us start with the left direction, i.e. we need to

show that if Ó ∈ �ℐ0 , then Ó ∈ �ℐ1 . If Ó ∈ �ℐ0 , then there must be a Ó′ ∈ Δℐ0 = Δℐ1

such that (Ó, Ó′) ∈ �ℐ0 and Ó′ ∈ (�′)ℐ0 . From the construction of ℐ1, if � = �1, then

�ℐ0 ⊆ �ℐ1 , and if � ̸= �1, then �ℐ0 = �ℐ1 . So in both cases, �ℐ0 ⊖ �ℐ1 holds, and
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therefore (Ó, Ó′) ∈ �ℐ1 . Then because Ó′ ∈ (�′)ℐ0 , and because maxNestQ(�′) = �⊗1,

by IH, Ó′ ∈ (�′)ℐ1 must hold, and therefore Ó ∈ (∃�.�′)ℐ1 = �ℐ1 .

For the left direction now, let Ó ∈ �ℐ1 . Then we need to show that Ó ∈ �ℐ0 .

Because Ó ∈ �ℐ1 = (∃�.�′)ℐ1 , there must be a Ó′ ∈ Δℐ1 = Δℐ0 such that (Ó1, Ó
′) ∈

�ℐ1 and Ó′ ∈ (�′)ℐ1 . From the construction of ℐ1, if � ̸= �1, then �ℐ0 = �ℐ1 , so

�ℐ0 ⊇ �ℐ1 holds, and therefore (Ó, Ó′) ∈ �ℐ0 . Then similarly to the previous case,

because by IH Ó′ ∈ (�′)ℐ0 also holds, Ó ∈ (∃�.�′)ℐ0 = �ℐ0 is veriĄed. If � = �1

and either Ó ̸= Ó1 or there is a Ó′ ∈ (�′)ℐ1 such that (Ó, Ó′) ∈ �ℐ1
1 , and Ó′ ̸= Ó2,

then from the construction of ℐ1, (Ó, Ó′) ∈ �ℐ0
1 , and again, because Ó′ ∈ (�′)ℐ0 by

IH, Ó ∈ (∃�1.�
′)ℐ0 = �ℐ0 is veriĄed. So the last possible subcase is the one where

� = �1, Ó = Ó1, Ó2 ∈ (�′)ℐ1 , and there is not Ó′′ such that (Ó, Ó′′) ∈ �ℐ1
1 and

Ó′′ ∈ (�′)ℐ1 . By IH, because Ó2 ∈ (�′)ℐ1 , Ó2 ∈ (�′)ℐ0 must hold. And by hypothesis,

(Ó1, Ó2) ∈ �ℐ0
1 . So Ó1 ∈ (∃�1.�

′)ℐ0 . Now take the formula å = ∃�1.�
′ ⊑ ∃�1.�

′.

Then å ∈ Cn(¶�1 ⊑ �1♢). And because by hypothesis �1 ⊑ �1 ∈ Cn(Γ) holds, by

monotonicity and indempotence, Cn(¶�1 ⊑ �1♢) ⊖ Cn(Γ) holds as well, such that

å ∈ tb(Cn(Γ)). Now by hypothesis still, ℐ0 is a model of tb(Cn(Γ)), and therefore

ℐ0 ♣= å must hold. Then because Ó1 ∈ (∃�1.�
′)ℐ0 and ℐ0 ♣= ∃�1.�

′ ⊑ ∃�1.�
′,

Ó1 ∈ (∃�1.�
′)ℐ

0 = �ℐ0 is veriĄed.

So by IH, if maxNestQ(�) = � ⊗ 1, for all Ó ∈ Δℐ0 = Δℐ1 , Ó ∈ �ℐ0 if Ó ∈ �ℐ1

holds. And we have just shown if � = ∃�.�′, where maxNestQ(�′) = � ⊗ 1,

then Ó ∈ �ℐ0 if Ó ∈ �ℐ1 holds as well. Now let �,�1, �2 be DL concepts such

that Ó ∈ �ℐ0
� if Ó ∈ �ℐ1

� . Then immediately from the semantic of the operators

¬,⊓ and ⊔, Ó ∈ (¬�1)
ℐ0 if Ó ∈ (¬�1)

ℐ1 , Ó ∈ (�1 ⊓ �2)
ℐ0 if Ó ∈ (�1 ⊓ �2)

ℐ1 , and

Ó ∈ (�1⊔�2)
ℐ0 if Ó ∈ (�1⊔�2)

ℐ1 . If � = ∀�.�′, then � is equivalent to ¬(∃�.¬�′).

So if maxNestQ(�) = �, from the grammar of Ągure A-1, � must be either of the

form ∃�.�′, where maxNestQ(�′) = � ⊗ 1, or equivalent to a concept of the form
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¬�, �1 ⊓ �2 or �1 ⊔ �2, such that maxNestQ(�) = � holds, or at least one of

maxNestQ(�1) = � and maxNestQ(�2) = � holds. So by induction on the number

of operators of the form ¬,⊓,⊔ in � which are not part of a quantiĄed subconcept

of �, for any � such that maxNestQ(�) = �, for each Ó ∈ Δℐ0 = Δℐ1 , Ó ∈ �ℐ0 if

Ó ∈ �ℐ1 must hold.

We have just shown that for any (possibly complex) �ℒ�ℋ� concept �, for all

Ó ∈ Δℐ0 , Ó ∈ �ℐ0 if Ó ∈ �ℐ1 . Therefore for any formula of the form �1 ⊑ �2, with

�1 and �2 two �ℒ�ℋ� concepts, ℐ0 ♣= �1 ⊑ �2 if ℐ1 ♣= �1 ⊑ �2. Now because ℐ0

is a model of Γ, ℐ0 is also model of Cn(Γ), and because tb(Cn(Γ)) ⊖ tb(Cn(Γ)), ℐ0

is a model of tb(Cn(Γ)). So for each Ò′ ∈ tb(Cn(Γ)), ℐ0 ♣= Ò′, and therefore ℐ1 ♣= Ò′

as well, such that ℐ1 is a model of tb(Cn(Γ)) too. Similarly, because by hypothesis

ℐ0 is a model of tb(Cn(Γ)), ℐ1 must be a model of tb(Cn(Γ)) too.

As a reminder, ℐ1 is the model identical to ℐ0, but with �ℐ1
1 = �ℐ0

1 ∪ ¶(Ó1, Ó2)♢

for some pair (Ó1, Ó2) ∈ �ℐ0
1 ∖ �

ℐ0
1 . Now let us repeat the operation for each other

pair in �ℐ0
1 ∖ �

ℐ0
1 . Because ℐ0 is Ąnite, the set ¶(Ó1

1, Ó
1
2), .., (Ó�1 , Ó

�
2 )♢ of all such pairs

is Ąnite, so this yields a Ąnite list of � interpretations ℐ0, .., ℐ�, such that for each

0 < � ⊘ �, ℐ� is identical to ℐ�⊗1, but with �ℐi
1 = �

ℐi⊗1

1 ∪¶(Ó�1, Ó
�
2)♢. After termination,

the interpretation ℐ� must be such that �ℐm
1 = �ℐm

1 , and therefore ℐ� ♣= �1 ⊑ �1

must hold.

Then this operation can be repeated for each other �� ⊑ �� ∈ rb(Cn(Γ)) such

that ℐ0 ̸♣= �� ⊑ ��. Because ℐ0 is Ąnite, dom(.ℐ0 ) is Ąnite, and so there is a Ąnite set

of such formulas. Eventually, this yields ℐ� such that ℐ� is a model of rb(Cn(Γ)).

Although ℐ0 is a model of rb(Cn(Γ)), it may be the case that ℐ� is not a model of

rb(Cn(Γ)), because there is some Ò ∈ rb(Cn(Γ)) such that ℐ� ̸♣= Ò. In this case,

the whole operation can be repeated for each Ò ∈ rb(Cn(Γ)) such that ℐ� ̸♣= Ò,

yielding a model ℐ� of rb(Cn(Γ)), but not necessarily of rb(Cn(Γ)). And once again
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for each Ò ∈ rb(Cn(Γ)) such that ℐ� ̸♣= Ò, etc, until the resulting interpretation is

a model of both rb(Cn(Γ)) and rb(Cn(Γ)). The process must terminate, because

each model ℐ� =< Δℐi , .ℐi > produced during the operation is such that Δℐi = Δℐ0 ,

dom(.ℐi) = dom(.ℐ0), and �ℐi = �ℐi⊗1 ∪ ¶(Ó1, Ó2)♢ for some role � ∈ dom(.ℐ0) and

Ó1, Ó2 ∈ Δℐ0 , while �ℐi = �ℐi⊗1 for all � ∈ dom(.ℐ0) ∖ ¶�♢. So in the worst case, the

process terminates with an interpretation ℐ� such that �ℐl = Δℐ0 ×Δℐ0 for each role

� ∈ dom(.ℐ0), and trivially, ℐ� veriĄes � ⊑ � for each possible pair (�, �) of roles in

dom(.ℐ0), So ℐ� must be a model of both rb(Cn(Γ)) and rb(Cn(Γ)). If the process

terminates earlier, the resulting interpretation ℐ� must be a model of both rb(Cn(Γ))

and rb(Cn(Γ)) as well, precisely because this is the termination condition. Now by

induction on �, for each Ó ∈ Δℐ0 = Δℐl , for any DL concept �, Ó ∈ �ℐ0 if Ó ∈ �ℐl ,

and because ℐ0 is a model of both tb(Cn(Γ)) and tb(Cn(Γ)), ℐ� must be a model of

both tb(Cn(Γ)) and tb(Cn(Γ)) as well. So ℐ� is a model of tb(Cn(Γ)), tb(Cn(Γ)),

rb(Cn(Γ)) and rb(Cn(Γ)), or in other words, ℐ� is a model of both Γ and Γ, which

contradict the hypothesis Cn(Γ ∪ Γ) = ℒ.

So we have shown by contradiction that in the last remaining case where rb(Cn(Γ))

̸⊖ Cn(∅), if Cn(Γ ∪ Cn(Γ)) = ℒ, then Cn(Γ ∪ tb(Cn(Γ))) = ℒ must hold as well.

Now we still need to show that there is a Ąnite subset of tb(Cn(Γ)) such that

Cn(Γ ∪ tb(Cn(Γ))) = ℒ. �ℒ�ℋ� veriĄes compactness, or in other words, for each

Γ1,Γ2 ⊖ ℒ, if Γ2 ⊖ Cn(Γ1), then there is a Ąnite �(Γ1) ⊖ Γ1 such that Γ2 ⊖

Cn(�(Γ1)). So because ℒ ⊖ Cn(Γ ∪ tb(Cn(Γ))), there is a Ąnite �(Γ ∪ tb(Cn(Γ))) ⊖

Γ∪ tb(Cn(Γ)) such that ℒ ⊖ Cn(�(Γ∪ tb(Cn(Γ)))). Let �(Γ) = Γ∩�(Γ∪ tb(Cn(Γ))),

and let �(tb(Cn(Γ))) = tb(Cn(Γ)∩�(Γ∪ tb(Cn(Γ))). Then because �(Γ∪ tb(Cn(Γ)))

is Ąnite, �(tb(Cn(Γ))) is Ąnite, and Cn(�(tb(Cn(Γ))) ∪ Γ) = ℒ can be proven as

follows:

377



(1) �(Γ) ⊖ Γ from the deĄnition of �(Γ)

(2) Γ ⊖ Cn(Γ) by (Tarskian) inclusion

(3) (Γ) ⊖ Cn(Γ) from (1,2) and the transitivity of ⊖

(4) �(tb(Cn(Γ))) ∪ �(Γ) ⊖ �(tb(Cn(Γ))) ∪ Cn(Γ)

from (3)

(5) Cn(�(tb(Cn(Γ))) ∪ �(Γ)) ⊖ Cn(�(tb(Cn(Γ))) ∪ Cn(Γ))

from (4), by monotonicity

(6) �(Γ ∪ tb(Cn(Γ))) = �(tb(Cn(Γ))) ∪ �(Γ) from the deĄnitions of �(Γ) and �(tb(Cn(Γ)))

(7) Cn(�(Γ ∪ tb(Cn(Γ)))) = Cn(�(tb(Cn(Γ))) ∪ �(Γ))

from (6)

(8) ℒ ⊖ Cn(�(Γ ∪ tb(Cn(Γ)))) from the deĄnition of �(Γ ∪ tb(Cn(Γ)))

(9) ℒ ⊖ Cn(�(tb(Cn(Γ))) ∪ �(Γ)) from (7,8)

(10) ℒ ⊖ Cn(�(tb(Cn(Γ))) ∪ Cn(Γ)) from (5,9) and the transitivity of ⊖

(11) Cn(�(tb(Cn(Γ))) ∪ Cn(Γ)) = ℒ from (10)

A.4.2 Main proposition

Property A.2.1.1 is reproduced here for readability:

Property. Let Γ1,Γ2,Γ3,Γ3 ⊖ ℒ, with Γ2 ̸⊖ Cn(Γ1) and Cn(Γ3 ∪ Γ3) = ℒ. Then

there are Γ2,Γ4 ⊖ ℒ such that:

a: Cn(Γ2 ∪ Γ2) = ℒ

b: Cn(Γ1 ∪ Γ2) ̸= ℒ

c: Cn(Γ4 ∪ Γ3) = ℒ
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d: Γ4 ⊖ Cn(Γ3)

e: Γ2 ⊖ Cn((Cn(Γ2) ∩ Cn(Γ4)) ∪ Γ3)

And this is the proposition to be proven:

Proposition. �ℒ�ℋ� under standard model-theoretic semantic for DLs and with-

out unique name assumption veriĄes property A.2.1.1.

Proof. Let < ℒ,Cn > = �ℒ�ℋ�. From the grammar of Ągure A-1, if Ò ∈ ℒ, then

either Ò = � ⊑ �, with � and � two (possibly complex) DL concepts, or Ò = � ⊑ �,

with � and � two DL roles.

Take any Γ1,Γ2,Γ3,Γ3 ⊖ ℒ such that Γ2 ̸⊖ Cn(Γ1) and Cn(Γ3 ∪ Γ3) = ℒ. Will

Ąrst focus on Γ1,Γ2,Γ2 and condition a and b of Property A.2.1.1.

Because Γ2 ̸⊖ Cn(Γ1), there is a Ò2 ∈ Γ2 ∖ Cn(Γ1), so Cn(Γ1) ̸= ℒ, and so Γ1 is

consistent. Take a model ℐ =< Δℐ , .ℐ > of Γ1. Then ℐ ̸♣= Ò2 must hold.

Let us assume that Ò2 = � ⊑ �, with � and � DL concepts, then there is

a Ó ∈ �ℐ ∖ �ℐ . If dom(.ℐ) is the domain of the interpretation function .ℐ , take

any DL individual � ̸∈ dom(.ℐ), i.e. such that .ℐ is not deĄned for �, and let Ò2 =

¶�♢ ⊑ � ⊓ ¬�. Then build the interpretation ℐ ′ =< Δℐ , .ℐ
′
>, with .ℐ

′
deĄned by

dom(.ℐ
′
) = dom(.ℐ) ∪ ¶�♢, �ℐ′

= �ℐ for all � ∈ dom(.ℐ), and �ℐ′
= Ó. Then ℐ ′ is a

model of Γ1, and ℐ ′ ♣= Ò2 also holds.

Now let Γ2 = ¶Ò2♢. Because ℐ ′ is a model of Γ1 and ℐ ′ ♣= Ò2, Γ1∪Γ2 is satisĄable,

i.e. Cn(Γ1 ∪ Γ2) ̸= ℒ. But ¶Ò2, Ò2♢ = ¶� ⊑ �, ¶�♢ ⊑ � ⊓ ¬�♢ is inconsistent, i.e.

Cn(¶Ò2, Ò2♢) = Cn(¶Ò2♢ ∪ Γ2) = ℒ.

Now let us assume instead that Ò2 = � ⊑ �, with � and � DL atomic roles.

Then similarly, there are Ó1, Ó2 ∈ Δℐ such that (Ó1, Ó2) ∈ �
ℐ ∖ �ℐ . Take any two DL

individual �1, �2 ̸∈ dom(.ℐ), and let Ò2 = ¶�1♢ ⊑ (∃�.¶�2♢)⊓ (∀�.¬¶�2♢). Then build
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the interpretation ℐ ′ =< Δℐ , .ℐ
′
>, with .ℐ

′
deĄned by dom(.ℐ

′
) = dom(.ℐ)∪¶�1, �2♢,

�ℐ′
= �ℐ for all � ∈ dom(.ℐ), �ℐ′

1 = Ó1 and �ℐ′

2 = Ó2. Then ℐ ′ is a model of Γ1, and

ℐ ′ ♣= Ò2 also holds.

Now let Γ2 = ¶Ò2♢, Because ℐ ′ is a model of Γ1 and ℐ ′ ♣= Ò2, Γ1∪Γ2 is satisĄable,

i.e. Cn(Γ1 ∪ Γ2) ̸= ℒ. But ¶Ò2, Ò2♢ = ¶� ⊑ �, ¶�1♢ ⊑ (∃�.¶�2♢) ⊓ (∀�.¬¶�2♢)♢ is

inconsistent, i.e. Cn(¶Ò2, Ò2♢) = Cn(¶Ò2♢ ∪ Γ2) = ℒ.

So in both cases (Ò2 = � ⊑ � or Ò2 = � ⊑ �), we have Cn(Γ1 ∪ Γ2) ̸= ℒ,

such that condition b of Property A.2.1.1 is veriĄed by Γ2. And in both cases too,

Cn(¶Ò2♢ ∪ Γ2) = ℒ holds, such that condition a can be shown to hold as well, as

follows:

(1) Ò2 ∈ Γ2 from the deĄnition of Ò2

(2) ¶Ò2♢ ⊖ Γ2 from (1)

(3) ¶Ò2♢ ∪ Γ2 ⊖ Γ2 ∪ Γ2 from (2)

(4) Cn(¶Ò2♢ ∪ Γ2) ⊖ Cn(Γ2 ∪ Γ2) from (3), by monotonicity

(5) Cn(¶Ò2♢ ∪ Γ2) = ℒ from the above observation

(6) ℒ ⊖ Cn(Γ2 ∪ Γ2) from (4,5)

(7) Cn(Γ2 ∪ Γ2) = ℒ from (6)

So we have shown that there is a Γ2 which veriĄes conditions a and b of Property

A.2.1.1, and such that Γ2 is composed of only one formula Ò2, of the form ¶�♢ ⊑

� ⊓ ¬�, or ¶�1♢ ⊑ (∃�.¶�2♢) ⊓ (∀�.¬¶�2♢).

Now let us focus on conditions c and d.

Let us Ąrst evacuate the limit case where Cn(Γ3) = ℒ. Take Γ4 = ¶⊤ ⊑ ⊥♢.

Then Γ4 ⊖ ℒ = Cn(Γ3), so condition d is trivially veriĄed. Similarly, Cn(Γ4 ∪ Γ3) =

Cn(¶⊤ ⊑ ⊥♢ ∪ ℒ) = ℒ, such that condition c is veriĄed as well. So we only need to
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show that condition e holds, i.e. that Γ2 ⊖ Cn((Cn(Γ2) ∩ Cn(Γ4)) ∪ Γ3), which can

be done as follows:

(1) Γ4 = ¶⊤ ⊑ ⊥♢ by hypothesis

(2) Cn(Γ4) = ℒ from (1)

(3) Cn(Γ2) ⊖ ℒ

(4) Cn(Γ2) ∩ Cn(Γ4) = Cn(Γ2) from (2,3)

(5) Γ2 ⊖ Cn(Γ2) by (Tarskian) inclusion

(6) Γ2 ⊖ Cn(Γ2) ∩ Cn(Γ4) from (4,5)

(7) Cn(Γ2) ∩ Cn(Γ4) ⊖ (Cn(Γ2) ∩ Cn(Γ4)) ∪ Γ3)

(8) (Cn(Γ2) ∩ Cn(Γ4)) ∪ Γ3) ⊖ Cn((Cn(Γ2) ∩ Cn(Γ4)) ∪ Γ3))

by (Tarskian) inclusion

(9) Γ2 ⊖ (Cn(Γ2) ∩ Cn(Γ4)) ∪ Γ3) from (6,7,8) and the transitivity of ⊖

The last possible case is the one where Cn(Γ3) ̸= ℒ. By hypothesis, Cn(Γ3∪Γ3) =

ℒ, and so from lemma A.4.1.1, there is a Ąnite Ω ⊖ Cn(Γ3) such that Cn(Ω∪Γ3) = ℒ,

and each æ ∈ Ω is of the form � ⊑ �, with � and � �ℒ�ℋ� concepts. Let Γ4 = Ω.

Then Γ4 veriĄes conditions c and d, namely Cn(Γ4∪Γ3) = ℒ and Γ4 ⊖ Cn(Γ3). So we

only need to show that condition e holds, i.e. that Γ2 ⊖ Cn((Cn(Γ2)∩Cn(Γ4))∪Γ3).

From the the above propositions, either Γ2 = ¶¶�1♢ ⊑ �1⊓¬�2♢, or Γ2 = ¶¶�1♢ ⊑

(∃�.¶�2♢) ⊓ (∀�.¬¶�2♢)♢, so in both cases, Γ2 is composed of a single formula Ò2 of

the form ¶�Ò2♢ ⊑ �Ò2 , with �Ò2 an individual an �Ò2 a (complex) DL concept. From

the above propositions still, Γ4 = ¶�1 ⊑ �1, .., �� ⊑ ��♢, with ��, �� DL concepts.

Let Ò4 = ⊤ ⊑ (¬�1⊔�1)⊓..⊓(¬��⊔��). Then Cn(¶Ò4♢) = Cn(Γ4). As a notational

shortcut, let �Ò4 = (¬�1 ⊔ �1) ⊓ .. ⊓ (¬�� ⊔ ��), such that Ò4 = ⊤ ⊑ �Ò4 . Now

consider the formula Ò′ = ⊤ ⊑ ¬¶�Γ2
♢ ⊔�Γ2

⊔ �Ò4 . Then Ò′ ∈ Cn(¶Ò2♢) = Cn(Γ2),

381



and Ò′ ∈ Cn(¶Ò4♢) = Cn(Γ4)), such that Ò′ ∈ Cn(Γ2) ∩ Cn(Γ4).

Then because Cn(Γ4∪Γ3) = ℒ, from lemma A.4.1.1, there is a Ąnite Γ4 ⊖ Cn(Γ3)

such that Cn(Γ4 ∪ Γ4) = ℒ, and each Ò ∈ Γ4 is of the form � ′ ⊑ �′, with � ′ and

�′ DL concepts. If Γ4 = ¶� ′
1 ⊑ �′

1, .., �
′
� ⊑ �′

�♢, with � ′
�, �

′
� DL concepts, let

Ò4 = ⊤ ⊑ (¬� ′
1 ⊔�

′
1)⊓ ..⊓ (¬� ′

� ⊔�
′
�). Then Cn(¶Ò4♢) = Cn(Γ4). As a notational

shortcut, let �Ò4 = (¬� ′
1 ⊔�

′
1)⊓ ..⊓ (¬� ′

� ⊔�
′
�), such that Ò4 = ⊤ ⊑ �Ò4 . Now we

can show that Γ2 ⊖ Cn((Cn(Γ2) ∩ Cn(Γ4)) ∪ Γ3), as follows:

(1) Cn(¶Ò4♢) = Cn(Γ4)

(2) Cn(¶Ò4♢) = Cn(Γ4)

(3) Cn(¶Ò4♢) ∪ Cn(¶Ò4♢) = Cn(Γ4) ∪ Cn(Γ4) from (1,2)

(4) Cn(Cn(¶Ò4♢) ∪ Cn(¶Ò4♢)) = Cn(Cn(Γ4) ∪ Cn(Γ4))

from (3), by monotonicity

(5) Cn(Cn(¶Ò4♢) ∪ Cn(¶Ò4♢)) = Cn(¶Ò4♢ ∪ ¶Ò4♢)

from theorem A.3.0.1 (twice)

(6) Cn(Cn(Γ4) ∪ Cn(Γ4)) = Cn(Γ4 ∪ Γ4) from theorem A.3.0.1 (twice)

(7) Cn(¶Ò4♢ ∪ ¶Ò4♢) = Cn(Γ4 ∪ Γ4) from (4,5,6)

(8) Cn(Γ4 ∪ Γ4) = ℒ from the deĄnition of Γ4

(9) Cn(¶Ò4, Ò4♢) = ℒ from (7,8)

(10) Ò4 = ⊤ ⊑ �Ò4 from the deĄnition of Ò4

(11) Ò4 = ⊤ ⊑ �Ò4 from the deĄnition of Ò4

(12) Cn(¶⊤ ⊑ �Ò4 ,⊤ ⊑ �Ò4♢) = ℒ from (9,10,11)

(13) Cn(¶⊤ ⊑ �Ò4 ⊓ �Ò4♢) = ℒ from (12)

(14) �Ò4 ⊓ �Ò4 ⊑ ⊥ ∈ Cn(∅) from (13)

(15) Ò′ = ⊤ ⊑ ¬¶�Ò2♢ ⊔�Ò2 ⊔ �Ò4 from the deĄnition of Ò′

(16) Ò′ ∈ Cn(Γ2) ∩ Cn(Γ4) from the above observations
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(17) Ò4 ∈ Cn(¶Ò4♢) by (Tarskian) inclusion

(18) Γ4 ⊖ Cn(Γ3) from the deĄnition of Γ4

(19) Cn(Γ4) ⊖ Cn(Γ3) from (18), by monotonicity and indempotence

(20) Ò4 ∈ Cn(Γ3) from (2,17,19)

(21) ¶Ò′, Ò4♢ ⊖ (Cn(Γ2) ∩ Cn(Γ4)) ∪ Cn(Γ3) from (16,20)

(22) Cn(¶Ò′, Ò4♢) ⊖ Cn((Cn(Γ2) ∩ Cn(Γ4)) ∪ Cn(Γ3))

from (21), by monotonicity

(23) Cn((Cn(Γ2) ∩ Cn(Γ4)) ∪ Cn(Γ3)) = Cn((Cn(Γ2) ∩ Cn(Γ4)) ∪ Γ3)

from theorem A.3.0.1

(24) Cn(¶Ò′, Ò4♢) ⊖ Cn((Cn(Γ2) ∩ Cn(Γ4)) ∪ Γ3) from (22,23)

(25) Cn(¶Ò′, Ò4♢) = Cn(¶⊤ ⊑ ¬¶�Ò2♢ ⊔�Ò2 ⊔ �Ò4 ,⊤ ⊑ �Ò4♢

from (11,15)

(26) Cn(¶Ò′, Ò4♢) = Cn(¶⊤ ⊑ (¬¶�Ò2♢ ⊔�Ò2 ⊔ �Ò4) ⊓ �Ò4♢)

from (25)

(27) Cn(¶Ò′, Ò4♢) = Cn(¶⊤ ⊑ (¬¶�Ò2♢ ⊓ �Ò4) ⊔ (�Ò2 ⊓ �Ò4) ⊔ (�Ò4 ⊓ �Ò4)♢)

from (26) and the distributivity of ⊓ and ⊔

(28) Cn(¶Ò′, Ò4♢) = Cn(¶⊤ ⊑ (¬¶�Ò2♢ ⊓ �Ò4) ⊔ (�Ò2 ⊓ �Ò4) ⊔ ⊥)♢)

from (14,24)

(29) Cn(¶Ò′, Ò4♢) = Cn(¶⊤ ⊑ (¬¶�Ò2♢ ⊔�Ò2) ⊓ �Ò4♢)

from (28) and the distributivity of ⊓ and ⊔

(30) ⊤ ⊑ ¬¶�Ò2♢ ⊔�Ò2 ∈ Cn(¶⊤ ⊑ (¬¶�♢ ⊔�Ò2) ⊓ �Ò4♢)

(31) Cn(¶⊤ ⊑ ¬¶�Ò2♢ ⊔�Ò2♢) ⊖ Cn(¶⊤ ⊑ (¬¶�Ò2♢ ⊔�Ò2) ⊓ �Ò4♢)

from (30), by monotonicity and indempotence

(32) Cn(¶⊤ ⊑ ¬¶�Ò2♢ ⊔�Ò2) ⊖ Cn(¶Ò′, Ò4♢) from (29,31)

(33) Γ2 = ¶⊤ ⊑ ¬¶�Ò2♢ ⊔�Ò2♢ from the deĄnition of Γ2
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(34) Cn(Γ2) ⊖ Cn(¶Ò′, Ò4♢) from (32,33)

(35) Cn(Γ2) ⊖ Cn(Cn(Γ2) ∩ Cn(Γ4)) ∪ Cn(Γ3)) from (22,34) and the transitivity of ⊖
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Appendix B

Foundational ontology,

attachments and erroneous axioms

This appendix provides a more concrete illustration of the manual extension strategy

described in Chapter 7, as well as examples of axioms which were considered as

actually erroneous for the evaluations which are based on real datasets, and not

automatically degraded ones.

Section B.1 reproduces the exhaustive taxonomy of the foundational ontology

TMEO, introduced in Chapter 7 Section 7.4.3, which can be viewed as an illustra-

tion of a minimal foundational ontology for the manual extension strategy described

in Chapter 7, whereas Section B.1.3 provides examples of manual attachments of el-

ements of the signature of DBpedia to TMEO. Finally, Section B.2 provides a list of

DBpedia axioms which were considered as actually erroneous by an ontology expert.
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B.1 TMEO

TMEO is the ontology backing the categorization tool TMEO used in the Senso

Comune project, in order to develop a lexical-ontological resource [JVZ+14]. An

OWL version of TMEO (with comments) is available online.1 All subsumption and

disjointness axioms are reproduced in Section ?? and Section ?? respectively.

B.1.1 Subsumption axioms

Figures B-1, B-3 and B-2 reproduce all subsumption axioms in TMEO. Figure B-1

represents the more abstract categories, whereas Figure B-3 and Figure B-2 repro-

duce the categories transitively subsumed by NonTangibleEntity and TangibleEntity

respectively.

Figure B-1: Subsumption in TMEO: most abstract categories

1 http://juliencorman.github.io
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Figure B-2: Subsumption in TMEO: TangibleEntity and subsumed categories
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Figure B-3: Subsumption in TMEO: NonTangibleEntity and subsumed categories

B.1.2 Disjointess axioms

Here is the exhaustive list of disjointness axioms in TMEO:

Action ⊑ ¬UnintentionalChange

Agent ⊑ ¬Feature

Agent ⊑ ¬Substance

Artifact ⊑ ¬NaturalObject

Change ⊑ ¬State

Collection ⊑ ¬IndividualEntity

Event ⊑ ¬Location

Event ⊑ ¬Object

Event ⊑ ¬Period
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Feature ⊑ ¬Substance

FunctionOrRole ⊑ ¬Quality

FunctionOrRole ⊑ ¬Relation

IndividualEntity ⊑ ¬Mode

InformationObject ⊑ ¬Institution

InformationObject ⊑ ¬OtherMentalEntity

Institution ⊑ ¬OtherSocialEntity

Location ⊑ ¬Object

Location ⊑ ¬Period

Mode ⊑ ¬SpatialQuality

NonTangibleEntity ⊑ ¬TangibleEntity

Object ⊑ ¬Period

OtherNonTangible ⊑ ¬PropertyOrRelation

OtherNonTangible ⊑ ¬SocialOrMentalEntity

OtherState ⊑ ¬PhysicalState

OtherState ⊑ ¬PsychologicalState

PhysicalState ⊑ ¬PsychologicalState

PropertyOrRelation ⊑ ¬SocialOrMentalEntity

Quality ⊑ ¬Relation

SpatialQuality ⊑ ¬TemporalQuality

B.1.3 Attachment: examples

The following are some examples of manual attachments to TMEO of DBpedia in-

dividuals, atomic concepts, datatypeProperties (treated as atomic concepts) or ob-

jectProperties, as described in Chapter 7 Section 7.3.1. Elements of the signature
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of DBpedia are preĄxed with ŞDBP:Ť, and elements of the signature of TMEO are

preĄxed with ŞTMEO:Ť, and colored in green.

Each line or pair of lines if place is missing) represents an attachment axiom,

where the element to be attached is on the left, and the attachment axiom on the

right.

B.1.3.1 Individuals

DBP:Mohamed Al-Fayed TMEO:Person(DBP:Mohamed Al-Fayed)

DBP:Birds of South Asia.The Ripley Guide

TMEO:InformationObject(DBP:Birds of South Asia.The Ripley Guide)

DBP:Smithsonian Folkways TMEO:Institution(DBP:Smithsonian Folkways)

DBP:Andrew Carnegie Mansion

TMEO:TMEO:TangibleEntity(DBP:Andrew Carnegie Mansion)

B.1.3.2 Atomic concepts

DBP:Building DBP:Building ⊑ TMEO:TangibleEntity

DBP:PeriodicalLiterature

DBP:PeriodicalLiterature ⊑ TMEO:InformationObject

DBP:Person DBP:Person ⊑ TMEO:Person

DBP:Organisation DBP:Organisation ⊑ TMEO:Institution

DBP:SoccerClubSeason DBP:SoccerClubSeason ⊑ TMEO:Change

B.1.3.3 DatatypeProperties

DBP:deathDate HASdeathDate ⊑ TMEO:Person

DBP:yearOfConstruction HASyearOfConstruction ⊑ TMEO:TangibleEntity
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DBP:added HASadded ⊑ TMEO:TangibleEntity

DBP:managerTitle HASmanagerTitle ⊑ TMEO:Institution

B.1.3.4 ObjectProperties

DBP:occupation ⊤ ⊑ ∀DBP:occupation.TMEO:RoleOrFunction

DBP:occupation ∃DBP:occupation.⊤ ⊑ TMEO:Person

DBP:spouse ⊤ ⊑ ∀DBP:spouse.TMEO:Person

DBP:spouse ∃DBP:spouse.⊤ ⊑ TMEO:Person

DBP:nationality ⊤ ⊑ ∀DBP:nationality.TMEO:SocialOrMentalEntity

DBP:nationality ∃DBP:nationality.⊤ ⊑ TMEO:Person

DBP:governingBody ⊤ ⊑ ∀DBP:governingBody.TMEO:Institution

DBP:governingBody ∃DBP:governingBody.⊤ ⊑ TMEO:Location

B.2 Erroneous axioms: examples

The following is the list of axioms manually identiĄed as erroneous in the KBs �DBP
1.1

and �DBP
1.2 by the formal ontology expert. �DBP

1.1 and �DBP
1.2 are two small subsets of

DBpedia, and are both introduced in Chapter 5 Section 5.1.4.

Museum ⊑ Building

⊤ ⊑ ∀.employer.Organisation

author(Encyclopedia of Life,Smithsonian Institution)

award(James Dewar,Smithsonian Institution)

doctoralAdvisor(Thaddeus S. C. Lowe,Smithsonian Institution)

MilitaryPerson(Cher Ami)

Building(Saturn V Dynamic Test Vehicle)
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occupation(Montgomery C. Meigs,Smithsonian Institution)

award(Joan Hill,Smithsonian Institution)

director(Museum of the Rockies,Smithsonian Institution)

occupation(Mohamed Al-Fayed,Hôtel Ritz Paris)

nationality(Mohamed Al-Fayed,Egyptians)

stateOfOrigin(Mohamed Al-Fayed,Egyptians)

birthPlace(Mohamed Al-Fayed,Egypt)
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Appendix C

Abbreviations

∙ DAG: Directed Acyclic Graph

∙ DL: Description Logics

∙ DUL: DOLCE+DnS Ultralite

∙ FOL: First Order Logic

∙ KB: Knowledge Base

∙ lemmaPOS: a lemma+part-of-speech pair, for instance Ştake� Ť to designate an

occurrence of the verb Şto takeŤ, and Ştake�Ť to designate an occurrence of

the noun ŞtakeŤ, regardless of their morphological inĆections.

∙ NERC: Named Entity Recognition and ClassiĄcation

∙ NLP: Natural Language Processing

∙ NNF: Negation Normal Form

∙ PMI: Pointwise Mutual Information
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∙ PPMI: Positive Pointwise Mutual Information

∙ POS: Part-Of-Speech

∙ SW: Semantiwc Web
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