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Abstract— Current advancement in technology inexorably leads 
to data flood. More data is generated from banking, telecom, 
scientific experiments, etc. Data mining is the process of extracting 
useful information from this flooded data, which helps in making 
profitable future decisions in these fields. Frequent itemset mining is 
one of the focus research areas and an important step to fin 
association rules. Time and space requirements for generating 
frequent itemsets are of utter importance. Algorithms to mine 
frequent itemsets effectively help in finding association rules and also 
help in many other data mining tasks. In this paper, an efficient 
hybrid algorithm was designed using a unifying process of the 
algorithms Improved Apriori and FP-Growth. Results indicate that 
the proposed hybrid algorithm, albeit more complex, consumes fewer 
memory resources and faster execution time. 

Keywords—data mining; frequent itemset; association rule; 
big data. 

I.  INTRODUCTION  
Today, information has become the ultimate power that 

could lead to success. The current advancement in technology 
has led to the overwhelming process of storing and retrieving a 
huge amount of data. From this large amount data, it is 
important to look for ways to analyze and retrieve useful 
information. Knowledge discovery in databases (KDD) help to 
extract useful information from this flooded data, which can 
lead towards making profitable future decisions in many fields 
[6]. It assists in uncovering important patterns which are useful 
in information extraction.  

Data mining is one of the well-known steps in the KDD 
process and is a focused research area because of its 
importance. The sum of tasks such as classification, clustering, 
regression, and association rule in data mining is used to 
extract knowledge from large databases.    

Association rule mining is one of the most highlighted 
areas of research in data mining. A huge amount of data is 
generated from day to day activities and mining association 
rule helps to analyze the enormous amount of data and make 
correct future decisions in many industries [12]. It helps to 
identify the relationship between items, e.g. in the transactional 
database to determine the buying pattern. This is important in 
order to enhance businesses. The concept of association rule 
mining is explained in [2]. 

Frequent itemset mining is an important step for many data 
mining tasks. The discovery of frequent itemsets assists in the 
investigation of interesting patterns from the database using 
methods such as correlations, sequences, classifiers and 
clusters. The most frequent itemsets can easily be extracted. At 
lower support constraint, many of the itemsets that exist at this 
lower end of the support spectrum are overlooked. This is due 
to the limitation of memory storage, as the size of the dataset 
increase, the production of frequent itemsets also increase. 

The main objective is to optimize the process of finding 
itemsets efficiently, making improvements in term of memory 
and execution time, based on desired thresholds. Hence, 
discovering frequent itemsets during the search process should 
reduce the computation. The outcome will then assists in 
detecting important patterns for various decision making 
purposes [2].  

Methodologies used for frequent itemsets mining are 
categorized as:  horizontal layout designed algorithms ([2]; 
[5]; [10]; [16]; [20]), vertical layout designed algorithms 
([3]; [12]), and projected layout designed algorithms ([11]). 
Several papers have proposed hybrid algorithms in order 
to improve the performance of its former methods ([8]; [9]). 

All   these   algorithms   have   its   own   strengths   and 
weaknesses   with   different   datasets   as   some   algorithms 
perform well on sparse data and vice versa. For example, most 
of the algorithms reported in the literature suffer from either 
large memory resources consumption, or long execution time 
or both.  

This paper proposes the discovery of frequent itemsets 
from large transactional datasets by designing a new hybrid 
algorithm, which unifies the strengths of two existing 
algorithms ([8], [9]). The hybrid algorithm shows that it is 
better in performance through execution time and memory 
resource consumption.  

The paper is organized as follows. Section-II addresses the 
related work; the outline of the proposed hybrid algorithm is 
presented in Section-III; in Section-IV deals with result 
analysis and Section-V concludes. 



II. RELATED WORK 
Frequent itemset mining is an important step in finding 

association rules. There are many algorithms for mining 
frequent  itemsets,  some  are  the  state  of  the  art  algorithms 
which started a new era in data mining and make the concept of 
frequent itemset and association rule possible [12]. Others are 
the variations of the same algorithms used on a different set of 
data and make improvements in terms of memory and 
execution time. In this paper, some of the important and widely 
used algorithms are briefly explained and their strengths and 
weaknesses are outlined. Below a brief introduction of the 
algorithms used for mining frequent itemsets and association 
rules. 

 Every algorithm has its strength and weakness when it 
comes to data, minimum support value, time constraint and 
memory consumptions. Apriori algorithm performs well when 
it comes to market basket analysis where there are huge 
numbers of transactions which generate quite a few frequent 
itemsets [12]. DHP is a variation of the Apriori algorithm 
which tries to reduce candidate itemsets for better results [10]. 
It performs well in early stages but leads to I/O overhead in 
later stages. DIC [5], Partitioning [12], Sampling [16] etc. are 
also an improvement to reduce database scan and execution 
time but when it comes to candidates generation its 
performance worsen. Vertical layout designed algorithm is 
more time saving then horizontal layout designed algorithm but 
memory consumption is rather high because of the  candidates, 
database  and  transaction identifier  in  main memory. 
Projected layout designed algorithm like FP-Growth and H-
mine perform better then both horizontal and vertical layout 
designed algorithm because there is no candidate generation 
but memory consumption is a little high because of the pointer 
stored in memory.  FP-Tree variation such as COFI-Tree [11] 
and CT-PRO [14] produce the best results in all the stated 
algorithms. COFI-Tree performs well on dense datasets and its 
performance degrades for sparse data if the support is low. CT-
PRO algorithm performs well on both sparse and dense 
datasets, yet its pack structure causes challenges. 

Improved Apriori algorithm removes the step to generate 
candidate itemsets which tend to improve the execution time of 
generating frequent itemsets [1]. Improved Apriori depends on 
both forward and reverses scan of the given database [15].  If 
certain conditions are met, the improved Apriori algorithm can 
reduce the iterations and scan time for the discovery of 
candidate itemsets [17]. This algorithm mines maximum 
frequent itemsets and their subset directly and makes a 
comparison with the items in the database. It prunes all the 
candidate itemsets according to the support count making sure 
that all the maximal frequent itemsets are mined. 

Compared to the original Apriori, the improved Apriori 
does not need the operation of joining and pruning and it does 
not have to process the candidates generated which 
significantly reduce the database scanning time and require less 
space to generate frequent itemsets [17]. However, it is not 
useful if the maximum frequent itemsets cannot be found fast. 

One of the latest and widely used algorithms is FP-growth 
algorithm [7].  Frequent pattern tree or FP-tree is introduced to 
deal with the problems of Apriori algorithm where all 

transactions are stored in a tree data structure. Execution time 
is higher as compared to other algorithms because of the tree 
data structure. 

FP-Growth algorithm uses divide-and-conquer to mine 
frequent itemsets without candidate generation [7]. It uses a 
frequent-pattern tree (FP-tree) data structure which helps in 
retaining the itemset association information. FP-growth 
compresses the input database and creates FP-tree instances 
then divide the compressed database according to frequent 
patterns and then mine each conditional database separately. 

It has come to an understanding that Improved Apriori and 
FP-growth performs better in comparison. Therefore, the 
proposed algorithm will be a hybrid approach which uses the 
strength of Improved Apriori and FP-growth to produce better 
results than both of them. 

TABLE I.  COMPARISON BETWEEN DIFFERENT FREQUENT ITEMSET 
MINING ALGORITHMS 

Algorithm Methodology Strength Limitations 

Apriori Join and prune State of the art 
algorithm 

More memory and 
time consumption 

DHP Hashing 
technique 

Small execution 
time 

Consume more 
space 

Partitioning Partitioning 
technique 

Utilize less 
memory due to 
partitioning 

Require more time 
to find local than 
global frequent 
itemset 

Sampling Picking 
random 
sample for 
checking the 
frequency of 
the whole 
database at 
lower 
threshold 
support 

Less memory 
utilization and 
execution time 

Sample selection 
is difficult 

DIC Dynamic 
insertion of 
candidate 
items 

Small execution 
time 

Require different 
amount of 
memory at 
different point 

Improved 
Apriori 

Forward and 
reverse scan 

Less memory 
utilization and 
small execution 
time 

Useful if the 
maximum 
frequent itemsets 
cannot be found 
fast 

Eclat Intersection of 
ids list is used 
for generating 
candidate 
itemsets 

Less memory 
allocation if 
itemsets are 
small in number 
with small 
execution time 

Performance is 
not feasible 

FP-growth Conditional 
frequent 
pattern tree  

Consume less 
memory  

Execution time is 
high  



III. DESIGN AND IMPLEMENTATION: HYBRID 
ALGORITHM 

In this section, the hybrid algorithm using a unifying 
process to combine Improved Apriori and FP-growth is 
presented. 

The design of the HYBRID algorithm included the 
property of the Apriori that non-empty subsets of the frequent 
itemsets are also frequent [2]. The detailed step of the 
HYBRID algorithm is shown in Algorithm 1. 

 In the first part of the algorithm, the Improved Apriori 
property [2] was used to discover all the maximal frequent 
itemsets which are repeating in the transactional database 
with a support value equal to or greater than the minimum 
support specified [20]. There are still many itemsets which 
are frequent-1 but not included in the maximal frequent 
itemsets. So the database which contains frequent-1 elements 
are pruned but there are no maximal frequent itemsets which 
make the database smaller and easy to traverse. 

The   pruned   database   becomes   the input   in   the   
second part of the algorithm which discovers  all  the  
frequent-1  itemsets  and removes  all  the  infrequent-1  
itemsets  from  the  transaction. Then, the FP-Tree algorithm 
was implemented by constructing an FP-Tree from the 
pruned transactions [7]. This part of the algorithm assists in 

discovering all the frequent itemsets remained from the first 
procedure.   

A. Illustration with example 
Table II shows the items in the 2-dimensional array with 

the count of repetition after scanning the dataset. Suppose the 
min_sup is 20% or 2 for algorithm illustration. 

Now, the frequent itemset {I1, I2, I4, I5} is obtained with 
a support count of 2 which is equal to the min_sup specified. 
Apriori property states that all non-empty subset of frequent 
itemset must be considered as frequent hence {I1, I2, I4, I5} 
is a maximal frequent itemset having subsets {I1, I2, I4}, {I1, 
I2, I5}, {I1, I4, I5}, {I1, I2}, {I1, I4}, {I1, I5}, {I2, I4}, {I2, 
I5}, {I4, I5}, {{I1}, {I2}, {I4} and {I5}. 

It has been discovered that I3 is frequent but not included 
in the maximal frequent itemset list hence all the itemsets that 
contain I3 are pruned from the dataset. Those are: {I1, I3}, 
{I2, I3} and {I2, I3, I4}.  

The infrequent 1-item from this group of itemsets will be 
pruned and items that are left will be used to build the FP-
tree. In this example, {I3:3} and {I2:2} are used to build the 
FP-tree as shown in Fig.1. 

The FP-tree procedure assists in mining frequent itemsets 
that are not included in the maximal itemset. In this case {I2, 
I3} was left unmined in the Improved Apriori procedure. 
Hence, the output of frequent itemsets discovered are {I1, I2, 
I4}, {I1, I2, I5}, {I1, I4, I5}, {I1, I2}, {I1, I4}, {I1, I5}, {I2, 
I4}, {I2, I5}, {I4, I5}, {{I1}, {I2}, {I4}, {I5} and {I2, I3}. 

TABLE II.  DATASET 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. FP-tree construction 

 

Algorithm 1. HYBRID algorithm 

 
Input: Transaction database D, minimum support, min_sup 
Output: All frequent itemsets 
Method: 

1. Scan database D. 
2. Create a 2-dimensional array, put the transactions at 

the count of repetition. 
3. Arrange in ascending order according to transaction 

length. 
4. Traverse the array to find maximal transactions (k-

itemsets) with support count greater than or equal 
to the min_sup. Combine k-itemsets and (k-1) 
itemsets to gether in the next (k-1) maximal itemset 
and so on to mine all the frequent items. If there are 
no frequent itemset left go to step 6. 

5. Take all the non-empty subset of a frequent itemset. 
6. If there are frequent itemsets not included in the 

maximal itemset then find all the frequent-1 
itemsets and prune the database by removing the 
maximal frequent itemset. 

7. Find frequent-2 by the right neighbour method. 
8. Construct an FP-tree with binary strings. 
9. k = 3 
10. WHILE height of tree increase 
11. Generate k-layer tree 
12. k = k + 1 
13. END WHILE 
14. Remaining frequent itemsets 

 

TID Items 

1 I1, I2, I4, I5 

2 I2, I3, I4 

3 I2, I3 

4 I1, I2, I4, 15 

5 I1, I3 

Null 

I3:3 

I2:2 



IV. RESULT ANALYSIS 
The resulting analysis shows the comparison of HYBRID 

with Improved Apriori and FP-growth on selected datasets. 

A. Execution Time 
The execution time of an algorithm is the time required to 

find all the frequent itemsets in a given dataset. Many 
experiments were performed on HYBRID using both sparse 
and dense datasets to evaluate its performance against 
Improved Apriori and FP-growth.  

In the Retail dataset, there are 9000 number of transactions 
with a high number of repetition as some items are purchased 
more than once. There are also many maximal frequent 
itemsets with the support count higher than the minimum 
support count. 

Fig. 2 shows that when it comes to execution time on the 
Retail dataset, HYBRID algorithm is approximately 55% faster 
than Improved Apriori and 20% faster than FP-growth.  It can 
also be observed that at lower support count the performance of 
HYBRID is much better than the Improved Apriori and FP-
growth. When the support count increases the performance will 
then come to a match with FP-growth. 

T10I4D100K dataset is a sparse dataset that contains 
approximately 70000 transactions with too many repetitions. 
Fig. 3 shows the result of executing the three algorithms. Here 
a lot of frequent itemsets are left unmined after the Improved 
Apriori procedure which is taken care by FP-growth procedure 
to mine all the frequent itemsets in HYBRID. As a comparison, 
HYBRID is 40% faster than FP-growth and 80% faster than 
Improved Apriori on this dataset. The gap of the performance 
becomes less between the algorithms when the support 
threshold increases. 

B. Memory Comparison  
Memory consumption is an important aspect of the 

algorithms use to mine frequent itemsets and plays an 
important role in the performance. Fig. 4 shows the memory 
consumption of HYBRID algorithm against Improved Apriori 
and FP-growth on the Retail dataset. The dataset generates 
candidate sets which make high memory consumption for 
Improved Apriori. At low support count, the memory 
consumption is less for the HYBRID algorithm as compared to 
FP-growth but as the support increases the memory 
consumption becomes the same. 

Fig. 5 shows the memory performance of all the algorithms 
on the sparse dataset. In the sparse dataset, there are a large 
number of unmarked items. Improved Apriori processes the 
unmarked items and pruned most of the infrequent items in the 
first pass. Therefore, the memory consumption at a high degree 
of support matches the HYBRID algorithm. However, for 
lower support count, HYBRID algorithm performs better as 
compared to both Improved Apriori and FP-growth. 

 

 

  

Fig. 2. Execution time for RETAIL dataset 

Fig. 3. Execution time for T10I4D100K dataset 

Fig. 4. Memory consumption for RETAIL dataset 

Fig. 5. Memory consumption for T10I4D100K dataset 
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V. CONCLUSIONS AND FUTURE WORK 
The experimental results clearly indicate that when it comes 

to execution time the HYBRID algorithm performs much better 
than both Improved Apriori and FP-Growth on both sparse and 
dense datasets. 

Memory consumption is also less in HYBRID algorithm 
then both Improved Apriori and FP-Growth on both sparse and 
dense datasets. It is also determined from the experiments that 
at a lower support value HYBRID algorithm performs much 
better than the higher support count where the performance 
almost matches the FP-Growth. 

Standard datasets - RETAIL and T10I4D100K were used 
for this evaluation. The focus was on the execution time and 
memory consumption and HYBRID algorithm use a unifying 
process to combine Improved Apriori and FP-Growth 
algorithm and produce better results than both improved 
Apriori and FP-Growth.  

From the observation of this research, it is crystal clear that 
performance of all the algorithms depends on support count 
and type of dataset. This was employed in HYBRID algorithm 
to generate better results than all the stated algorithms. It was 
also investigated in this research that if transactions are 
repeated too much then Improved Apriori is best suited for this 
type of database to mine frequent itemsets efficiently. The 
remaining itemsets were treated using FP-tree to find the 
remaining frequent itemsets. Hence, the algorithm produces all 
frequent itemsets in the dataset. This way no candidates are 
generated and FP-tree are produced for pruned database and so 
it fits into the main memory with ease. HYBRID algorithm 
save a considerable amount of time and memory and perform 
better as compared to the other algorithms as showed in the 
results. 

For the RETAIL and T10I4D100K datasets, the execution 
time of the HYBRID algorithm is less than maximal Apriori. 
The execution time of the algorithm is also less than the FP-
growth at lower support count. The probability of finding 
frequent itemsets is large at high support count and execution 
time is almost the same as FP-growth.  

The memory consumption of the HYBRID algorithm is 
also way less then both improved Apriori and FP-Growth. 

There are a number of areas to investigate for future 
research direction on the basis of the work done in this 
research. 

• High dimensional data can be used to compare results 
and keep an eye on another aspect like memory, result 
accuracy etc.  

• The performance of these algorithms can be evaluated 
on different datasets e.g. use both sparse and dense for 
result analysis.  
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