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Abstract

We offer an overlapping generations equilibrium model of cryptocur-
rency pricing and confront it to new data on bitcoin transactional benefits
and costs. The model emphasizes that the fundamental value of the cryp-
tocurrency is the stream of net transactional benefits it will provide, which
depend on its future prices. The link between future and present prices
implies that returns can exhibit large volatility unrelated to fundamen-
tals. We construct an index measuring the ease with which bitcoins can be
used to purchase goods and services, and we also measure costs incurred
by bitcoin owners. Consistent with the model, estimated transactional
net benefits explain a statistically significant fraction of bitcoin returns.

1 Introduction

What is the fundamental value of cryptocurrencies, such as bitcoin? Could the
rise in the price of bitcoin reflect an increase in its fundamental value, or does
it only reflect speculation, unrelated to fundamentals? And does the volatility
of cryptocurrencies suggest investors are irrational? Several recent empirical
papers have offered econometric tests of bubbles in the cryptocurrency market
(see for instance Corbet et al., 2017, or Fantazzini et al., 2016, for a review).
While these analyses use methods developed for stock markets, cryptocurrencies
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differ from stocks. This raises the need for a new theoretical and econometric
framework, to analyse empirically the dynamics of cryptocurrency. The goal of
the present paper is to offer such a framework and confront it to the data.

We consider overlapping generations of agents with stochastic endowments
who can trade central-bank money and a cryptocurrency. While both currencies
can be used to purchase consumption goods in the future, the cryptocurrency
can provide transactional benefits that the money issued by the central bank
does not. For example, citizens of Venezuela or Zimbabwe can use bitcoins
to conduct transactions although their national currencies and banking sys-
tems are in disarray, while Chinese investors can use bitcoins to transfer funds
outside China.1 We also account for the costs of conducting transactions in
cryptocurrencies: limited convertibility into other currencies, transactions costs
on exchanges, lower rate of acceptance by merchants, or fees agents must pay to
have their transactions mined.2 Investors rationally choose their demand for the
cryptocurrency based on their expectation of future prices and net transactional
benefits.

What distinguishes cryptocurrencies from other assets (e.g., stocks, bonds)
is the relationship between transactional benefits and prices. On the one hand,
transactional benefits are akin to dividends for a stock, hence affect the price
agents are willing to pay to hold the cryptocurrency. But unlike dividends,
the magnitude of transactional benefits in turn depends on the price of the
currency: the transactional advantages of holding one bitcoin are much larger
if a bitcoin is worth $15,000 than if it is worth $100. This point, which applies
to all currencies, not only cryptocurrencies, was already noted in Tirole (1985,
p. 1515-1516):

“... the monetary market fundamental is not defined solely by
the sequence of real interest rates. Its dividend depends on its price.
[...] the market fundamental of money in general depends on the
whole path of prices (to this extent money is a very special asset).”

Thus, the notion of “fundamental” means something very different for stocks
(backed by dividends) and money (backed by transactional services). In par-
ticular, the feedback loop from prices to transactional benefits naturally leads
to equilibrium multiplicity: agents who expect future prices to be high (resp.
low) rationally anticipate high (resp. low) future transactional benefits, which
in turn justifies a high (resp. low) price today.

We depart from Tirole (1985) in ways we deem important for the dynam-
ics of cryptocurrencies. First, our model features two currencies, traditional
central-bank money and a cryptocurrency. We thus derive a pricing equation
expressing the expected return on the cryptocurrency (say, bitcoin) in central-
bank money (say, dollars), which we can confront to observed dollar returns of

1Although China banned Bitcoin exchanges in October 2017, it is still possible for Chinese
investors to trade bitcoins via bilateral, peer-to-peer interactions.

2Transactions fees for Bitcoin were particularly large during the last quarter of 2017. See
https://en.bitcoin.it/wiki/Transaction_fees.
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bitcoin. Second, in addition to transactional benefits we also consider transac-
tion costs, reflecting frauds and hacks and the difficulty to conduct transactions
in cryptocurrencies. Allowing for a rich structure of transactional benefits and
costs is key to our empirical approach in which we construct measures of these
fundamentals. Finally, while Tirole (1985) considers a deterministic environ-
ment, we allow for endowments, net transactional benefits and returns to be
stochastic. Our econometric analysis sheds light on the relationship between
these random variables.

The model delivers the following insights:

• The price of one unit of cryptocurrency at time t is equal to the expectation
of its future price at time t + 1, discounted using a standard asset pric-
ing kernel modified to take into account transactional benefits and costs.
These benefits and costs reflect the evolution of variables from the real
economy affecting the usefulness of cryptocurrencies, e.g., development of
e-commerce or illegal transactions.

• The structure of equilibrium gives rise to a large multiplicity of equilibria:
we show in particular that when agents are risk neutral, if a price sequence
forms an equilibrium, then that sequence multiplied by a noise term, with
expectation equal to one, is also an equilibrium. Such extrinsic noise on
the equilibrium path implies, in line with stylised facts, large volatility for
cryptocurrency prices, even at times at which the fundamentals are not
very volatile.3 This underscores that the Shiller (1981) critique does not
apply to cryptocurrencies.

• When transaction costs are large, investors require large expected returns
to hold bitcoins. In contrast, large transactional benefits reduce equilib-
rium required expected returns. Thus large observed returns on bitcoin
are consistent with the prediction of our model for currently large trans-
actions costs and low transaction benefits. In this equilibrium, current
bitcoin prices reflect the future stream of transactional benefits they will
generate in the future. At that point in time, when the transactional ser-
vices of bitcoin will have become large, bitcoin prices will have further
increased, but equilibrium expected returns will be low.

Next, we confront these predictions of the model to the data. Using the
Generalised Method of Moments (GMM), we estimate the parameters of the
model and test the restrictions imposed by theory on the relation between the
cryptocurrency returns, transaction costs and benefits. To do so, we construct
a time series of bitcoin prices from July 2010 to July 2018 by compiling data
from 17 major exchanges. We also construct three time series that proxy for
the transactional costs and benefits of using bitcoin. The first one captures the
evolution of the transaction fees that bitcoin users attach to their transaction to
induce miners to process them faster. For the other two, we collect information

3Zimmerman (2018) proposes a model in which the volatility of cryptocurrency prices arises
from the blockchain transaction validation process.
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on events that likely affect the costs and benefits of transacting in bitcoin, and
categorize them into two subsamples. The first subsample captures transaction
costs: it contains events indicative of the ease with which bitcoins can be ex-
changed against other currencies, such as a new currency becoming tradable
against bitcoin or the shutdown of a large platform like Mt. Gox. The second
subsample captures transactional benefits: it contains events affecting the ease
with which bitcoin can be used to purchase goods and services, such as mer-
chants starting or stopping to accept bitcoin as a means of payment. From these
subsamples we construct two indexes that proxy for the transactional benefits
and transaction costs associated with bitcoin at every point in time. Finally,
we collect data about thefts and hacks on bitcoin to obtain a measure of the
average monetary loss incurred when holding bitcoins.

Consistent with the model, GMM estimates show a negative and significant
relation between expected return and transactional benefits and a positive and
significant relation between expected returns and transactional costs. We also
analyse how these different components affect the required return (implied by
our model) over time. We estimate that the costs induced by the difficulty to
trade bitcoins were large in 2011 and contributed at that time to fifteen percent-
age points of weekly required return. This decreased to five percentage points
as investors could more easily trade bitcoins. On the other hand, transaction
fees have a negligible impact on the required returns, except at the end of 2017,
when they were particularly large. Furthermore, transactional benefits were ini-
tially low, reducing the required return by less than one percentage point. As
more firms started accepting bitcoins to buy goods and services, transactional
benefits became larger, inducing a reduction in the required return of around six
percentage points since 2015. The estimation also shows that while fundamen-
tals are significant factors, they only explain a relatively small share of return
variations on bitcoin. In the context of our model, this suggests that observed
bitcoin volatility in large part reflects extrinsic noise.

Related literature Our analysis is related to the classic literature in mon-
etary economics in which money enables agents to carry mutually beneficial
trades they could not realise without money (Samuelson, 1958, Tirole, 1985 and
Wallace, 1980). Recent papers in that literature study competition between
cryptocurrencies and central-bank currencies. In an OLG setting, Saleh (2018)
compares equilibrium prices and welfare in two protocols: proof-of-burn and
proof-of-work. Garratt and Wallace (2018) revisit the indeterminacy of exchange
rates between two currencies shown in Kareken and Wallace (1981) by introduc-
ing storage costs for the central bank currency and a risk of currency crash for
the cryptocurrency. In Pagnotta (2018), this crash risk is determined by miners’
investments into computing power. Relatedly, Prat and Walter (2018) analyze
miners’ incentives to enter and build capacity. In a model where agents have an
infinite horizon, Schilling and Uhlig (2018) derive a version of the exchange rate
indeterminacy result but also the existence of a speculative equilibrium where
agents hold the cryptocurrency in anticipation of its appreciation. In a search
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setting, Fernández-Villaverde and Sanches (2018) and Hendry and Zhu (2018)
extend the model by Lagos and Wright (2005) to multiple currencies and study
the stability and welfare implications of the private supply of money alongside
a government-backed currency. Chiu and Koeppl (2017) use a similar search
model to study the optimal design of a cryptocurrency protocol. Vis-à-vis this
literature, our contribution is to propose an OLG model which can capture
the transactional costs and benefits of cryptocurrencies, and generates a simple
pricing equation that can be taken to the data.

A second stream of literature proposes pricing models where the distinctive
feature of cryptocurrencies is to give access to a trading network (see Buraschi
and Pagnotta, 2018 and Cong, Li and Wang, 2018). Sockin and Xiong (2018)
highlight that the complementarities in users decisions to adopt a cryptocur-
rency generates multiple equilibria. Athey et al. (2016) analyze the dynamics
of cryptocurrency adoption when it serves both as a mean of payment and a
speculative instrument. Our model differs from that literature in that we don’t
cast exchanges of goods for cryptocurrencies in terms of networks.

On the empirical side, Makarov and Schoar (2018) and Borri and Shakhnov
(2018) document mispricings and arbitrage opportunities across exchanges for
bitcoin. Rather than differences in prices at different nodes in the network,
our work focuses on the fundamental value of bitcoin. This relates our paper
to Liu and Tsyvinski (2018) and Bianchi (2017) who document that bitcoin
or other cryptocurrencies do not show any exposure to common aggregate risk
factors (market portfolio, macro factors). Our indexes measuring the ease and
cost of using bitcoins is in the same line as the index constructed by Auer and
Claessens (2018) to measure the extent to which regulation is favourable to
cryptocurrencies. Both Auer and Claessens (2018) and the present paper study
how the evolution of such indexes relates to the evolution of cryptocurrency
prices. Differences between Auer and Claessens (2018) and our paper include
Auer and Claessens (2018)’s focus on regulatory events and our reliance on a
theoretical model.

In the next section we present our theoretical analysis. Section 3 presents
the econometric method we develop to confront the theory to the data. Section
4 describes our original sample and data collection procedure. The actual em-
pirical analysis is included in Section 5. Section 6 concludes. Some proofs and
discussions are relegated to the appendix.

2 Theoretical model

2.1 Assumptions

There is one consumption good and three assets: a cryptocurrency, in supply
Xt at time t, a central bank currency in fixed supply m, and a risk-free asset,
which is in zero net supply: an amount lent by one agent is borrowed by another
one.

There are investors, miners and hackers. All are competitive and take prices
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as given. We consider miners and hackers to introduce two important features
of the cryptocurrency, the creation of new coins and the risk of hacks, but
their actions are very simple, they simply sell their holdings and consume. In
contrast, we analyse the consumption and savings decisions of investors, which,
combined with market clearing, pin down equilibrium pricing.

At each time t a new generation of miners is born. Miners born at time
t mine until t + 1, at which point they get rewarded by newly created coins,
Xt+1 − Xt, and transaction fees. At time t + 1 they sell their coins against
consumption goods, which they consume (along with the fees they received)
before exiting the market.

Similarly, at each time t, a new generation of hackers is born. Hackers born
at time t try to steal some of the current supply of cryptocurrency, Xt. The
fraction they manage to steal is a random variable living in [0, 1], which we
denote by ht+1. The index t+ 1 reflects the fact that the fraction stolen is not
known by investors at t, and is only discovered at t + 1. At time t + 1, they
sell their stolen coins against consumption goods, which they consume before
exiting the market.

Finally, a mass one continuum of investors are born at each date. They can
invest and consume at two dates, have separable utility u() over each consump-
tion, with u

′
> 0 and u

′′ ≤ 0, and discount factor β. At each date, their utility is
defined over consumption, which reflects transactional costs and benefits of us-
ing cryptocurrencies. To initialize the model, at date 1 there is also a generation
of old investors, miners and hackers, who hold the supply of cryptocurrencies
X1 and central bank currency m.

When young at time t, each investor is endowed with eyt units of consumption
good, can buy qt units of cryptocurrency, or coins, at unit price pt, q̂t units
of central bank currency at unit price p̂t, and can save st. For notational
simplicity, the consumption good is the numeraire (as in Garratt and Wallace,
2018). That is, pt (resp. p̂t) is the number of units of consumption good that
can be purchased with one unit of cryptocurrency (resp. central bank currency)
at date t.

When buying cryptocurrency, each investor incurs a cost ϕt(qt)pt that re-
duces his consumption, with ϕ′ > 0. The investor’s budget constraint is:

cyt = eyt − st − qtpt − q̂tp̂t − ϕt(qt)pt. (1)

The cost term ϕt(qt)pt reflects the cost of having a wallet, going through crypto-
exchanges, transactions fees, etc. It is indexed by t to capture the notion that
this cost can change with time. We assume that this cost is paid when buying
the cryptocurrency, and thus depends on the cryptocurrency price at time t.4

When old at time t + 1, each investor gets endowment eot+1 and consumes
endowment plus savings, plus proceeds from sale of currencies. For the central
bank currency these proceeds are q̂tp̂t+1. For the cryptocurrency, proceeds are

4The analysis remains largely unchanged if we include a cost when selling the cryptocur-
rency at t+ 1 as well.
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(1− ht+1)qtpt+1, where, as mentioned above, ht+1 is the fraction of cryptocur-
rency holdings that is stolen by hackers, between t and t+1. Thus, old investors
consume

cot+1 = eot+1 + st(1 + rt) + (1− ht+1)(1 + θt+1)qtpt+1 + q̂tp̂t+1, (2)

where qt is the amount of cryptocurrency sold at t + 1 and θt+1qtpt+1 reflects
transactional services/benefits generated by cryptocurrencies. Those benefits
can stem from the ability to send money to another country, without using
the banking system, and without being controlled by the government. Also,
cryptocurrencies can enable agents to purchase enhanced goods. Since the agent
uses that cryptocurrency to buy consumption at time t + 1 the transactional
benefits reflects the time t + 1 price. Our assumption about θ is in line with
models in which money enters in the utility function of consumers (see Tirole,
1985).

Equation (2) covers two cases: If θt+1 ≥ −1, then old agents sell all their
holdings of cryptocurrency qt. If θt+1 < −1, then old agents would be better off
not selling their holdings if pt+1 was strictly positive. In that case, equilibrium
will imply pt+1 = 0 as discussed below.

2.2 Equilibrium and optimality conditions

A rational expectation equilibrium is defined by prices {pt, p̂t, rt}t>0 and port-
folio decisions {qt, q̂t, st}t>0 such that

(i) at each time t, {qt, q̂t, st} maximizes young consumers’ expected utility
over periods t and t+ 1 given prices and subject to the budget constraints
(1) and (2) and to consumptions cyt and cot+1 being positive,

(ii) at each time t, the markets for the cryptocurrency, central bank money
and the risk-free asset clear: qt = Xt, q̂t = m and st = 0.

From (i), a young investor at date t solves

max
qt,st,q̂t

u(cyt ) + βEtu(cot+1) + λcyt ,

where λ is the multiplier that the consumption is positive. Assume first that
this constraint does not bind. The first order optimality condition5 with respect
to qt, together with market clearing, yields

pt = βEt

[
u′(cot+1)

u′(cyt )
(1− ht+1)

(1 + θt+1)

(1 + ϕ′t(Xt))
pt+1

]
. (3)

The first order condition with respect to st is

β =
1

1 + rt

u′(cyt )

Et
[
u′(cot+1)

] . (4)

5Since consumers only live two periods, they sell all their assets and consume when old.
Therefore optimality does not require a transversality condition in addition to the first-order
condition.
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On the equilibrium path, at time t old investors cannot borrow or lend, since
they won’t be present in the market at time t+ 1. Hence, in equilibrium st = 0.
So the interest rate must adjust so that (4) holds when evaluated at st = 0.

Denote

1 + Tt+1 =
1 + θt+1

1 + ϕ′t(Xt)
. (5)

Tt+1 can be interpreted as the net transactional benefit per unit of the cryp-
tocurrency, reflecting its transactional benefits (θt+1) net of its transactions
costs (ϕ′t). Using (4) to replace β into (3), we obtain our first proposition.

Proposition 1 The equilibrium price of the cryptocurrency at time t is

pt =
1

1 + rt
Et

(
u′(cot+1)

Et
[
u′(cot+1)

] (1− ht+1) (pt+1 + Tt+1pt+1)

)
. (6)

In the appendix, we complete the proof of Proposition 1 by showing that
(6) also holds when the constraint that consumption is positive binds. When
consumption is zero, if pt was strictly lower than the RHS of (6), the agent would
like to borrow in order to buy more cryptocurrencies. That would contradict
equilibrium in the zero-supply risk-free asset market. In other words, rt adjusts
so that (6) holds.

Equilibrium multiplicity: The multiplicative structure of the pricing
equation (6), in which pt+1 multiplies all the other terms on the right-hand-side,
implies there are multiple equilibria. For instance, as is standard in models of
money, there exists an equilibrium in which the cryptocurrency price is equal
to zero at all dates (see for instance Kareken and Wallace, 1981 or Garratt and
Wallace, 2018). The intuition is the following: if a young investor at date t
anticipates that pt+1 = 0, then for any strictly positive price pt > 0, he does
not want to buy any strictly positive quantity qt. Indeed, choosing qt > 0 does
not increase his consumption at t + 1, and strictly reduces his consumption at
t. Market clearing can only occur if pt = 0.

Note that pt can be strictly positive in equilibrium even if the cryptocur-
rency price may fall to zero in future periods, as long as the probability of this
happening is strictly lower than one in any given period. Furthermore, if the
price reaches 0 at some date T then (6) implies pT+1 = 0 with probability one,
and by induction, every future cryptocurrency price is 0.

Bounded prices: There is a natural bound on equilibrium prices in our
model. In equilibrium at each date t the entire supply of bitcoin is purchased
by the young generation. Budget constraint therefore implies that

eyt ≥ (Xt + ϕt(Xt))pt. (7)

Indeed, if pt was higher than
eyt

Xt+ϕt(Xt)
, old investors and miners could not

sell all their bitcoin holdings and would be willing to reduce the price.
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Fundamental value, price and transactional benefit Equation (6)
states that the price of the cryptocurrency at time t is equal to the present
value of the expectation of the product of three terms: i) The first term is
the pricing kernel, capturing the correlation between the marginal utility of
consumption and the cryptocurrency price. ii) The second term reflects the risk
of hacks. iii) The third term is the sum of the price of the cryptocurrency at
time t+ 1 and its net transactional benefit. This pricing equation is similar to
that which would obtain for other assets, e.g., stocks, except that, for stocks,
the second term would not be there, and the third term would be different.

In (6) the net transactional benefit (in the third term) is equal to a scalar
multiplied by the price of the cryptocurrency. Other things equal, the larger the
cryptocurrency price, the larger its net transactional benefit. This differs from
what would arise for stocks in a perfect market, since the stock price at t reflects
the expectation of the price at t + 1 plus profits or dividends at t + 1, which
do not depend on the t+ 1 stock price. Thus, while for stocks dividends cause
fundamental value and therefore prices, in contrast, for the currency, prices
cause transactional benefits and therefore fundamental value.

This interpretation can be developed along similar lines as in Tirole (1985).
Tirole (1985) writes down the fundamental value of the currency as the present
value of its stream of dividends. To establish a similar result in our setting, first
note that (6) writes as

pt = Et

[
1− ht+1

1 + rt

u′(cot+1)

Et
[
u′(cot+1)

] (pt+1 + Tt+1pt+1)

]
. (8)

Similarly, the price at time t+ 1 verifies

pt+1 = Et+1

[
1− ht+2

1 + rt+1

u′(cot+2)

Et+1

[
u′(cot+2)

] (pt+2 + Tt+2pt+2)

]
. (9)

Substituting (9) into (8) yields

pt = Et

 1−ht+1

1+rt

u′(cot+1)

Et[u′(cot+1)]
Tt+1pt+1 + 1−ht+1

1+rt

u′(cot+1)

Et[u′(cot+1)]
1−ht+2

1+rt+1

u′(cot+2)

Et[u′(cot+2)]
Tt+2pt+2

+ 1−ht+1

1+rt

u′(cot+1)

Et[u′(cot+1)]
1−ht+2

1+rt+1

u′(cot+2)

Et[u′(cot+2)]
pt+2

 ,
or equivalently

pt = Et

[(
1− ht+1

1 + rt

u′(cot+1)

Et
[
u′(cot+1)

]) (1 + Tt+1)

(
1− ht+2

1 + rt+1

u′(cot+2)

Et
[
u′(cot+2)

]) (1 + Tt+2)pt+2

]
.

Iterating we obtain our next proposition.

Proposition 2 The equilibrium price of the cryptocurrency at time t is equal to
the expected present value of the stream of net transactional benefits until t+K
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plus the price at time t+K, taking into account the risk of hacking

pt = Et

 K∑
k=1

 k∏
j=1

1− ht+j
1 + rt+j−1

u′(cot+j)

Et
[
u′(cot+j)

]Tt+kpt+k
+

 K∏
j=1

1− ht+j
1 + rt+j−1

u′(cot+j)

Et
[
u′(cot+j)

]
 pt+K

 ,

(10)
or equivalently

pt = Et

[(
K∏
k=1

(1− ht+k)
u′(cot+k)

Et
[
u′(cot+k)

] (1 + Tt+k)

1 + rt+k−1

)
pt+K

]
. (11)

The first term on the right-hand-side of (10) is a stream of net transactional
benefits corresponding to the fundamental value of the currency. When the
price of the currency remains bounded, the second term on the right-hand-side
of (10) goes to 0. In that case, the current price is just the expectation of the
infinite stream of net transactional benefits.

In particular, (10) illustrates how the cryptocurrency price today, pt, de-
pends on the expectation of net transactional benefits that can be arbitrarily
far in the future. For instance, a high price today is not inconsistent with a low
expected net transactional benefit next period, if one expects the transactional
benefit to rise in the future, or the price will be high in the future.

Equation (11) also provides a lower bound for net transactional benefits
compatible with strictly positive prices. To see this, suppose that the net trans-
actional benefit Tt+k falls below −1 with probability 1 in some period t + k
arbitrarily far in the future. From the definition of T in (5), this is equivalent
to the transactional benefit θt+k being also strictly lower than −1. Then pt+k
must be 0 since there is no supply of cryptocurrency from old agents at any
strictly positive price, and the only price pt that can satisfy (11) is 0. Alterna-
tively, suppose that the probability the transactional benefit falls below −1 is
strictly lower than 1 in every period. In that case, pt may still be positive, but
if Tt+k < −1 realizes at some period t+ k, we must have pt+k = 0 for markets
to clear. It follows that the cryptocurrency price is also 0 in every period after
t+ k.

3 Econometric model and implications

The equilibrium price formulae presented above involve pricing kernels, which
are difficult to estimate. To abstract from this difficulty, in our econometric
framework we make the following assumption:

Assumption A1 Investors are risk neutral.

In practice, A1 should be innocuous because, during our sample period, the
capitalisation of bitcoin has only been a small fraction of aggregate wealth, so
the risk of changes in marginal consumption induced by bitcoin returns cannot
have been very large in the aggregate. Indeed, Liu and Tsyvinski (2018) find
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empirically that the correlation of bitcoin returns with durable or non durable
consumption growth, industrial production growth and personal income growth
is economically and statistically insignificant.

Under A1, the equilibrium pricing relation (6) simplifies to

pt =
1

1 + rt
Et ((1− ht+1) (1 + Tt+1) pt+1) . (12)

That is

pt = Et

[(
K∏
k=1

(1− ht+k)
(1 + Tt+k)

1 + rt+k−1

)
pt+K

]
. (13)

3.1 Exogenous volatility

Proposition 3 Consider a sequence of prices {pt}t=1,..,∞ satisfying (13). If
agents’ consumption is strictly positive on the equilibrium path, there exists a
constant λ > 0 and a sequence of independent, unit expectation, random vari-
ables ũτ , such that the new price sequence

{p̄t}t=1,..,∞ =

{
λ

(
t∏

τ=1

uτ

)
pt

}
t=1,..,∞

, (14)

also satisfies (13), and therefore is also an equilibrium.

The proposition states that the equilibrium pricing equation (13) is consis-
tent with arbitrary randomness in prices unrelated to any fundamental variable
(θt, ht, ϕt). This reflects the multiplicative structure of the equilibrium pricing
of the currency. This implies that, in contrast with the argument invoked by
Shiller (1981) for stock prices, larger volatility of bitcoin prices than of variables
affecting bitcoin fundamentals is not sufficient to reject rational expectations
equilibrium. The variance of ũτ cannot be infinite, however, because prices
must remain within bounds, as noted in the previous section (see Equation 7).

3.2 Moment conditions

Proceeding as for (12), one obtains the price of central bank currency,6

p̂t =
1

1 + rt
Et (p̂t+1) . (15)

In practice, since the first public quotation of bitcoin prices, in 2010, inflation in
the US has been low and not very volatile. In line with this observation, and in
order to simplify the econometric analysis, we hereafter maintain the following
assumption:

6As for bitcoin, there exists an equilibrium such that the price of the central bank currency
is zero at all dates. Obstfeld and Rogoff (1983) show that such equilibria can be ruled out if the
central bank commits to an arbitrarily small redemption value for money (for an alternative
reason based on government’s fiscal power, see Gaballo and Mengus, 2018). In line with this
idea, we focus on equilibria in which the equilibrium price of central bank currency is strictly
positive.
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Assumption A2 Inflation in the central bank currency between time t and
time t+ 1 is known at time t.

Under A2, in (15) p̂t+1 is in the information set used to take the expectation.
Hence (15) simplifies to

p̂t =
p̂t+1

1 + rt
, (16)

which reflects that, in our simple model, the short-term inflation rate is one to
one with the short-term interest rate.7

Dividing (12) by (16), the price of the cryptocurrency in terms of central
bank currency, pt

p̂t
, (e.g., the price of bitcoin in dollars) writes as:

pt
p̂t

=
1

1+rt
Et [(1− ht+1) (1 + Tt+1) pt+1]

p̂t+1

1+rt

,

which simplifies to

pt
p̂t

= Et

[
(1− ht+1) (1 + Tt+1)

pt+1

p̂t+1

]
. (17)

The rate of return on the cryptocurrency price expressed in central currency is

ρt+1 =

pt+1

p̂t+1

pt
p̂t

− 1.

Substituting in (17) we obtain our next proposition.

Proposition 4 Under A1 and A2, the rate of return on the cryptocurrency
price expressed in central bank currency (ρt+1) is such that

Et

[
(1− ht+1)

1 + θt+1

1 + ϕ′t(Xt)
(1 + ρt+1)

]
− 1 = 0. (18)

Equation (18) reflects that, in equilibrium, investors must be indifferent
between using one unit of consumption good to invest in bitcoin (generating
transactional benefits as well as costs and hacking risk), or using it to invest in
dollars. Equation (18) yields the moment conditions we use in our econometric
analysis.

To see the intuition more clearly, note that a first-order Taylor expansion of
(18), for ρt+1, ht+1, ϕ

′

t and θt+1 close to 0, yields

Et [ρt+1] ≈ ϕ′t(Xt) + Et(ht+1)− Et(θt+1). (19)

That is, the expected return on the cryptocurrency must be (approximately)
equal to the marginal transaction cost (ϕ′t(Xt)), plus the expected cost of hacks
(Et(ht+1)), minus the expected transactional benefits (Et(θt+1)).

7The inflation rate is it+1 such that: p̂t/p̂t+1 = 1 + it+1 which is equal to 1/(1 + rt.)
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4 Data

Our sample period starts on July 17, 2010, with the opening of the Mt. Gox
bitcoin marketplace, and ends on July 9, 2018. Computing a bitcoin price series
over a period of almost 8 years is subject to several caveats: new marketplaces,
sometimes short-lived, have been created and shut down at a rather high pace,
price volatility is high, and there is large price dispersion between exchanges even
when trading volumes are high (see Makarov and Schoar, 2018). To construct a
time series of bitcoin prices, we rely on the Kaiko dataset. We use all transaction
prices from 17 major exchanges: Bitfinex, bitFlyer, Bitstamp, Bittrex, BTC-
e, BTCChina, CEX.IO, Coinbase-GDAX, Gatecoin, Gemini, hitBTC, Huobi,
itBit, Kraken, Mt.Gox, OKCoin and Quoine. We focus on exchanges of bitcoins
for U.S. dollars. Pooling all these transaction prices, we split each UTC day in
5-minute intervals. In each interval, we compute the volume weighted median
price. To construct a daily price, we then compute an arithmetic (unweighted)
average of these median prices. Using medians reduces the effect of outliers.
Using weighted means prevents small trades from having too much influence.
Finally, non-weighted means give equal weight to the information flowing at
different times during a day. This time series is illustrated in Figure 1.

Figure 1: Bitcoin price, in USD

We retrieve bitcoin transaction fees from blockchain data using Blocksci, an
open-source software platform for blockchain analysis (Kalodner et al., 2017).Then,
to compute percentage transaction fees we divide fees by transaction volume.
Transaction volume, however, is difficult to measure (see for instance Meiklejohn
et al., 2013, or Kalodner et al., 2017). This is because part of the transfers occur
among addresses belonging to the same participant. Yet, in a pseudonymous
network like Bitcoin, the identity of the participant corresponding to an address
cannot be observed. To estimate bitcoin transaction volume we retrieve the on-
chain transaction volume, excluding coinbase transactions (that is, transactions

13



Figure 2: Estimated transaction volume, in millions of BTC

that reward miners by the creation of new bitcoins) and transfers from an ad-
dress to itself.8 From that value, we further exclude amounts that are likely to
result from “self churn” behaviour, that is, transfers among adresses belonging
to the same participant.9 The time series of transaction volume is illustrated in
Figure 2.

The time series of transaction fees (in percent of transaction volume) is
depicted in Figure 3. The figure illustrates that, during most of the sample
period, transaction fees charged by miners are low. Daily fees amount to .0109%
of transaction volume, on average. Q1, median, and Q3 are .0038%, .0056% and
.0104%, respectively. There are a few spikes, however. The largest one occurs
towards the end of 2017, a time at which transaction fees exceeded 0.23%, due to
the congestion triggered by the surge in trading volume (see Easley, O’Hara and
Basu, 2018 or Huberman, Leshno and Moalleni, 2017 for models of blockchain
transaction fees).

Browsing the web (in particular bitcointalk.org), we collected information
about all hacks and other losses on bitcoin. We identified and collected data
about 48 such events over our sampling period.10 We collected the amounts

8The Bitcoin protocol states that an output of a transaction (that is, an amount payed
to a particular bitcoin address), when spent, must be spent in full. Thus, if a bitcoin owner
wants to transfer, e.g, 1 BTC to a payee, but owns 20 BTC as a single output of an earlier
transaction, she has to create a transaction with one input (the 20 BTC) and two outputs: 1
BTC to an address belonging to the payee, and 19 BTC (abstracting from the fee payed to
the miner of the block in which that transaction will be included) to herself. These 19 BTC
are change money, and should not be counted as transaction volume.

9For that purpose, we eliminate outputs spent within less than 4 blocks, an heuristic
proposed by Kalodner et al. (2017).

10We have been unable to find information about the amount lost for the following three
events: the hack of the e-wallet service company Instawallet in April 2013; the hack of the
South Korean exchange Bithumb reported in June 2017; the hack of the South Korean ex-
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Figure 3: Transaction fees, in percent of estimated transaction volume

of the losses and the times at which they were reported. To obtain percentage
losses (to fit our definition of h), we divide lost amounts by Xt. This time series
is illustrated in Figure 4. The corresponding events are listed in Table 3. The
largest loss is due to the collapse of Mt. Gox in February 2014, when 744,408
bitcoins were lost. On average, during the whole sample period, the fraction of
bitcoins lost per week is approximately 0.04%.

We also collected information about events that are likely to affect the costs
and benefits of using bitcoins. We distinguished between two types of events,
relative to:

• The ease with which bitcoins can be bought or sold (MKT ).

• The ease to use bitcoins to buy goods or services (COM ).

For MKT, we identified 29 events over our sample period (see Table 4).
Positive events include each time it became possible to exchange bitcoins against
a new fiat currency (e.g., Euro or Yen) on a trading platform.11 Negative
events include the shutdown of large platforms (such as Mt. Gox) or the ban of
cryptocurrency trading platforms by China in September 2017.

For COM, we identified 30 events, which are listed in Table 5. Positive
events include each time a new good or service can be purchased with bitcoins.

change Youbit in December 2017.
11We consider 11 fiat currencies for which bitcoin trading is significant: AUD, BRL, CAD,

CNY, EUR, GBP, JPY, KRW, PLN, RUR, TRY. USD in not in this list because trading
against U.S. dollar began before the first day in our sample period. For each of these 11 fiat
currencies, we select as the event date the first day for which trading data is available in at least
one of the following two large-coverage, tick-by-tick datasets: Kaiko and bitcoincharts.com
(see https://bitcoincharts.com/markets/list/). One exception is the Turkish Lira (TRY)
for which no data is available. We find on the Web convincing information that trading on
BTCTurk started on July 1, 2013, the day the exchange was first opened for trading.
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Figure 4: Thefts and other losses of bitcoins, in percent of bitcoin supply

For example, on June 11, 2014, Expedia started accepting bitcoins for hotel
reservations, while Microsoft accepted bitcoins from U.S. customers on Decem-
ber 11, 2014. An example of negative news is when DELL no longer accepted
bitcoins, on October 19, 2017. We consider both events concerning legal goods
or services (e.g., hotel reservations, or desktop computers) and event concerning
illegal goods and services (e.g., illegal drugs or firearms).

We classified each of these events as positive or negative news. We coded
positive news as +1 and negative news as −1. We cumulated these positive or
negative values to obtain indexes for MKT and COM. At each point in time,
the MKT index quantifies how easy it is to buy or sell bitcoins, while the COM
index quantifies how easy it is to transform bitcoins into consumption goods
and services. The time series of these indexes is illustrated in Figure 5.

The MKT index increases sharply during the first two years, as new exchange
platforms allowing trades between bitcoins and new currencies open. The COM
index remains low in the first years of the sample period, reflecting that it was
hard to use bitcoins to purchase goods and services. It starts increasing towards
the end of 2013 and reaches a relatively high level by 2015. The decrease towards
the end of 2017 is due to a couple of large companies which stopped accepting
payments in bitcoins.

5 Estimation and results

This section describes how we use the General Method of Moments (GMM) to
estimate the equilibrium bitcoin pricing equation. It then presents estimation
results followed by a robustness analysis based on ordinary least squares (OLS)
estimation.
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Figure 5: MKT and COM indexes

5.1 GMM estimation

We use GMM to estimate the non-linear equilibrium pricing equation in (18).12

We directly observe the fraction of bitcoins hacked ht and the bitcoin price pt.
The transactional benefit of bitcoins (θt) is proxied by the COM index. For
simplicity we assume ϕt is linear in Xt. Moreover, we assume the unit cost of
trading bitcoin (ϕ′t) can be proxied by two variables:

• The transaction fees in percent of (on-chain) volume, denoted BTC fee prcnt.

• An index MKT invrs which is defined as 1/(1 + MKT ), to make higher
values correspond to higher costs and to make it asymptote to zero when
taking MKT to infinity.

Therefore the model that is taken to the data requires the following “resid-
ual” to be zero conditional on the time t information set:

et+1 = Dt+1 (1− ht+1) (1 + ρt+1)− 1. (20)

where the deflator Dt+1 is defined as

Dt+1 =
1 + α0 + α1 ∗ COMt+1

1 + β0 + β1 ∗BTC fee prcntt + β2 ∗MKT invrst
. (21)

We use standard GMM to estimate the parameters {α0, α1, β0, β1, β2} (for a
detailed description see Appendix 6). The instrumental variables that are used
in the estimation are all adapted to the information set at time t (i.e., their
value is non-stochastic at that time). To reduce the risk of a weak instruments

12We refer to Cochrane (2005) for a thorough discussion of using GMM to identify in asset
pricing models.
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problem, all variables correlate at least 5% with next period’s bitcoin return
(i.e., the absolute value of the correlation is at least 0.05). This led to the
following set of instrumental variables:

• An intercept term and year dummies for all years except for 2012 and
2017.

• All model variables evaluated at time t, including smoothed versions where
at time t we take an exponentially weighted value of historical observations
with a half life equal to one month.

• Two additional variables that appear to correlate highly with future bit-
coin return: the relative change in total bitcoin fees and the exponentially
weighted value of the number of bitcoins hacked with a half-life of one
year. The high correlation of these variables with next period’s bitcoin
return is not surprising because extreme values for these variables are in-
dicative of eventful times for the bitcoin investor. A full understanding of
the exact channel that generates these correlations is beyond the scope of
this paper. What is relevant is that there is correlation which, in equilib-
rium, needs to be undone by picking the right bitcoin-return deflator Dt

(i.e., by picking the true parameter values that generated the data).

Sample. To avoid day-of-the-week effects and keep a reasonable amount of
data, the daily price series is downsampled to a weekly frequency. The fi-
nal sample used in the estimation contains 388 observations and runs from the
week of September 26, 2010, until the week of February 25, 2018.13 The average
weekly bitcoin return expressed in USD in this period was 4.52%. The disper-
sion in these returns was relatively high with a standard deviation of 17.9%, a
minimum of -42.3%, and a maximum of 110%.

The top panel of Figure 6 plots the raw weekly bitcoin returns which we
use in the estimation. The bottom panel plots smoothed returns which, by
removing high frequency noise, helps visualise the low frequency trade. The
figure suggests that required returns were positive throughout the sample. The
larger trend seems to be a steady decline in the course of the sample, with a slight
increase towards the end. We will revisit this pattern after model estimation. A
decomposition of the (fitted) model-implied required return sheds light on what
was driving this pattern (see Figure 7 and its discussion).

5.2 Results

As can be seen in Equation (20), it is difficult to identify separately the two
constants α0 and β0. To grasp the intuition consider the simple case in which

13Note that this weekly sample starts somewhat later and ends somewhat earlier than the
daily sample described in Section 4. The reason is that for the estimation we need a full
sample and some data series used in the estimation either start late or finish early.
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Figure 6: Bitcoin price data
This figure plots weekly Bitcoin returns expressed in USD. The top graph plots raw returns.

The bottom graph smooths these returns with by plotting an exponentially weighted moving

average of these returns with a half life of one year.
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the benefits and costs of holding bitcoins are constant through time, i.e., α1 =
β1 = β2 = 0. In that case, (20) simplifies to (when using (21))

et+1 = (1− ht+1)
1 + α0

1 + β0
(1 + ρt+1)− 1.

Obviously, for each possible value of 1+α0

1+β0
, there is an infinite number of possible

values of (α0, β0). So it is impossible to identify α0 and β0. When α1, β1and β2
are not set to 0, it is not strictly the case that α0 and β0 are not identified.14

But, trying to estimate both of them generates numerical instability and large
standard errors. To avoid these problems we set α0 to 0 and, when interpreting
the estimate for β0, we will bear in mind that it reflects the intercepts of both
the costs and the benefits of holding bitcoins. Precisely, if β0 is estimated to be
β̂0 (hats refer to estimated values), then this implies that the intercept terms are

estimated to be at the line (α0, β0) = {(x, β̂0 +x)|x ∈ R}. In other words, if one

believes the cost is x higher than what β̂0 + β̂1BTC fee prcnt + β̂2MKT invrs
implies, the benefit should also be x higher than what is implied by α̂0+α̂1COM .
It turns out that the issue becomes mute in our application under a relatively
mild interpretation of the estimates.

Table 1 presents the parameter estimates. Model (1) presents the param-
eter estimates of the full model without any parameter constraint (other than
α0 = 0). All parameters carry the predicted sign, but the intercept (β0) is not
statistically significant and the coefficient for transactions fees is only marginally
significant. The bitcoin required return, however, significantly decreases when
there are more commercial opportunities (α̂1 > 0). And it significantly increases

when the relative bitcoin fee is higher (β̂1 > 0) or when bitcoin is easier to trade

(β̂2 > 0). To gauge the economic size of these effects we believe it is interesting
to compute the model-implied bitcoin required return throughout our sample,
and decompose into the components that drive it.

Before doing a required return decomposition we re-estimate the model with-
out the insignificant intercept term β0 to avoid reporting statistically insignifi-
cant components. This yields the parameter estimation in model (2) of Table 1.
All parameter retain their sign and become slightly more statistically significant.

Figure 7 illustrates the economic size of each of the factors in the estimated
bitcoin pricing equation of model (2) (see Table 1). The decomposition is based
on the first-order expansion of the pricing equation presented in (19). We
set Et [ht+1] to the sample average of ht and Et [θt+1] to θt+1. The latter
assumes perfect foresight on θt+1 but setting Et [θt+1] = θt does not alter the
decomposition as COM t is a highly persistent series.

The figure leads to the following observations. First, the model-implied
(weekly) required return on bitcoin hovers between 0% and 25%, with most
values in the range of 5% to 10%. Second, the contribution of hack risk is
small, as it amounts to 0.04%. Third, the transactional benefit starts out at

14Strictly speaking, the intercepts become mathematically identified, but only through
second-order terms. The first-order approximation of the model as derived in (19) shows
that they are not identified in a first-order approximation.
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Figure 7: Bitcoin required return
This figure plots the required Bitcoin return for the oncoming week along with its components

based on a first-order approximation of the equilibrium pricing model. The top plot graphs

the total required return and the four graphs below it decompose it into four components.

The decomposition is based on model (2) in Table 1.
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Table 1: GMM estimates of model parameters
This table presents the GMM estimates of the model parameters. t-values are in parentheses

and statistical significance is indicated by one, two, or three stars that correspond to a 10%,

5%, or 1% level, respectively.

Parameter Variable Model
(1) (2)

α1 COM t+1 0.00364∗∗∗
(2.65)

0.00441∗∗∗
(3.31)

β0 Intercept −0.0583
(−1.06)

β1 BTC fee prcntt 1.60∗
(1.94)

1.86∗∗
(2.45)

β2 MKT invrst 1.20∗∗
(2.06)

0.661∗∗∗
(3.79)

less than 1% but steadily rises to around 6%. This demonstrates that, with the
commercial opportunities growing through time, the required return on bitcoin
became substantially lower (i.e., 6% per week). Fourth, the relative fees for
acquiring bitcoins did not command substantially higher returns on the bitcoin
in equilibrium throughout the sample, with the exception of the final two years
where it grew to 5% to 30% per week. Finally, the difficulty to convert bitcoins
to cash added 15% to the required return on bitcoins initially, but within a year
dropped to five percent weekly and stayed at this level throughout. Overall, the
decomposition illustrates that the required return on bitcoin is economically
significant and exhibits a non-trivial decomposition through time.

Finally, how much of the time variation in bitcoin returns can one attribute to
a changing model-implied required return? Let us compute an R2. The standard
deviation of the model-implied bitcoin required returns is 3.43%. For realized
returns it is 17.9%. Time variation in required returns therefore only explains a
small amount of time variation in realized returns. The R2 is 0.03432/0.1792 =
3.67%. In other words, a large part of bitcoin returns seems driven by the
multiplicative noise with mean one (see discussion on p. 11).

Robustness. Table 2 presents OLS estimates of the model parameters based
on a linearized version of the model. Panel (a) presents these estimates and
Panel (b) redoes estimation with all explanatory variables lagged so that the
model becomes entirely predictive (and is therefore less exposed to endogeneity
concerns). Note that the results echo the GMM results in terms of the signs
of parameter coefficients and statistical significance, with the exception of the
relative bitcoin fee. The fee is insignificant (but does have the correct sign
in the multivariate models). The results therefore by and large testify to the
robustness of the GMM results.
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Table 2: OLS estimates of the linearized Bitcoin pricing model
This table presents the parameter estimates of the linearized model. The dependent variable

is net Bitcoin return (i.e., net of fraction of hacked coins). t-values in parentheses. Panel (a)

presents the results of OLS estimation of the linearized version of the equilibrium pricing

equation that is estimated by GMM in Table 1. Panel (b) replicates Panel (a) with the

exception that all explanatory variables are lagged. t-values are in parentheses and statistical

significance is indicated by one, two, or three stars that correspond to a 10%, 5%, or 1% level,

respectively.

Variable Model
(1) (2) (3) (4) (5) (6)

Panel (a): OLS estimate linearized model
Intercept 0.045∗∗∗

(4.93)
0.10∗∗∗
(5.21)

0.049∗∗∗
(4.42)

−0.057
(−1.56)

0.012
(0.26)

COM −0.0057∗∗∗
(−3.27)

−0.0052∗∗∗
(−2.68)

−0.0049∗∗∗
(−3.05)

BTC fee prcnt(-1) −0.33
(−0.59)

0.57
(0.95)

0.58
(0.98)

MKT invrs(-1) 1.1∗∗∗
(2.88)

0.81∗∗
(2.09)

0.90∗∗∗
(5.65)

Panel (b): OLS estimate linearized model, all variables lagged
Intercept 0.045∗∗∗

(4.93)
0.10∗∗∗
(5.20)

0.049∗∗∗
(4.42)

−0.057
(−1.56)

0.011
(0.24)

COM (-1) −0.0057∗∗∗
(−3.25)

−0.0052∗∗∗
(−2.66)

−0.0049∗∗∗
(−3.03)

BTC fee prcnt(-1) −0.33
(−0.59)

0.57
(0.95)

0.58
(0.98)

MKT invrs(-1) 1.1∗∗∗
(2.88)

0.81∗∗
(2.09)

0.90∗∗∗
(5.64)
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6 Conclusion

We build an overlapping generations rational expectation equilibrium model
relating the value of a cryptocurrency to the transactional costs and benefits
it provides. The model shows that these fundamentals should be priced, and
that their impact is magnified by expectations about future prices. The model
implies that large volatility in bitcoin prices can be driven by extrinsically noisy
changes in beliefs, and yet remains consistent with rational expectations about
fundamentals.

We then confront the equilibrium pricing equation to a hand-collected dataset
of fundamental events that affect the ease for agents to transact in bitcoins. We
show that these fundamentals are significant determinants of bitcoin returns,
and we provide quantitative measures of their relative importance over time.
We also find that a large part of the variation in prices is unrelated to funda-
mentals, and reflects extrinsic noise.
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Appendix

Proof of Proposition 1

In the main text, we solved for prices and quantities under the assumption that
consumption was strictly positive (i.e. the constraint cyt ≥ 0 did not bind).
We show here that equation (6) also holds when considering explicitly the non-
negativity constraint on young investors’ consumption.

Formally, let λ be the Lagrange multiplier associated with the constraint that
young investors’ consumption be non-negative, cyt ≥ 0. With that constraint,
the young investors’ optimization problem becomes

max
qt,st,q̂t

u(cyt ) + βEtu(cot+1) + λcyt

First-order conditions with respect to qt, st and q̂t write, respectively

−u′(cyt )pt + βEt
[
u′(cot+1)(1− ht+1)

(1 + θt+1)

1 + ϕ′(qt)
pt+1

]
= λpt (22)

−u′(cyt ) + β(1 + rt)Et
[
u′(cot+1)

]
= λ (23)

−u′(cyt )p̂t + βEt
[
u′(cot+1)p̂t+1

]
= λp̂t (24)

Suppose λ > 0, i.e., the consumption non-negativity constraint binds. Then
combining (22) and (23) yields the cryptocurrency pricing equation (6) in Propo-
sition 1, which simplifies to (12) when investors are risk-neutral.

Similarly, combining (23) and (24) yields the central bank currency pricing
equation:

p̂t =
1

1 + rt
Et
[

u′(cot+1)

Et[u′(cot+1)]
p̂t+1

]
which simplifies to (15) when agents are risk-neutral. All the other derivations
in the main text follow from these results.

QED
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Proof of Proposition 3:

p̄t = λ

(
t∏

τ=1

uτ

)
pt

= λ

(
t∏

τ=1

uτ

)
Et

[(
K∏
k=1

(1− ht+k)
(1 + Tt+k)

1 + rt+k−1

)
pt+K

]

= λ

(
t∏

τ=1

uτ

)
Et

[(
K∏
k=1

(1− ht+k)
(1 + Tt+k)

1 + rt+k−1

)(
t+K∏
τ=t+1

ũτ

)
pt+K

]

= Et

[(
K∏
k=1

(1− ht+k)
(1 + Tt+k)

1 + rt+k−1

)
λ

(
t∏

τ=1

uτ

)(
t+K∏
τ=t+1

ũτ

)
pt+K

]

= Et

[(
K∏
k=1

(1− ht+k)
(1 + Tt+k)

1 + rt+k−1

)
p̄t+K

]
,

which shows that each price p̄t verifies (13). {p̄t} is therefore an equilibrium

price sequence as long as p̄t ≤ eyt
Xt+ϕt(Xt)

.

QED

Details of the GMM estimation

We use standard two-step GMM to estimate the model. The GMM penalty
function that was minimized with respect to the model parameters is:

P = m′Wm ∈ R, (25)

where m is a vector that collects the inner products of the model’s residuals
(e ∈ RT−1) and the n instrumental variables that appear as columns in V ∈
R(T−1)×n, and W ∈ Rn×n is the standard weighting matrix. Formally, m can
be written as:15

m = V ′e ∈ Rn×1 (26)

where

{
e =

(
e2 · · · et+1 · · · eT

)′
,

v =
(
v1 · · · vt · · · vT−1

)′ ∈ R(T−1)×1.
(27)

In the first step of the estimation the weighting matrix W is taken to be the
identity matrix. The parameters estimated by minimizing P in this first step
are then used to compute the moment covariance matrix which serves as W in
the second step. The parameter estimates resulting from this second step are
the final estimates.

15Note that the length of the time series is T − 1 as opposed to T as next week’s residual
et+1 is multiplied by the instrumental variables realized/known at time t (vt).
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Statistical inference follows standard procedure. Let G ∈ Rn×n be the gra-
dient of the n moments (i.e., the n elements of m) used in the GMM penalty
function in (25), with respect to the deep parameters. The covariance matrix
of the estimators is: (

G′
(

1

T
M ′M

)−1
G

)−1
, (28)

where M ∈ R(T−1)×n stacks the columns associated with the empirical mo-
ments. The first column, for example, is:

e ◦ v1 ∈ R(T−1)×1, (29)

where ◦ is the Hadamard product (i.e., element-wise multiplication) and v1 is
the first column of V .

Numerical issues. To avoid landing in a local minimum, the numerical op-
timization follows the following steps.

1. The penalty function P in (25) is obtained by a brute-force minimization
over an equal distance grid of candidate parameter values. The location of
these grid points is informed by the OLS estimates of the model’s linearized
version (see Section 5.2) in the following way. If X is the OLS estimate
of a particular parameter, then the candidate values for this parameter
are the 11 equidistant values in the interval [−|X|, |X|]. We center around
zero to avoid stacking the deck in favor of finding the same parameter sign
as in the OLS. We further inspect the grid point that minimizes P across
the grid to ensure that we do not land at the edge of the grid (as this
indicates the global minimum might be outside of the grid).

2. We fine-tune the grid-point estimate by starting a steepest-descent algo-
rithm from this point. We further verify that the value algorithm lands
on a value, say Y , close to the grid point from where it departed. Close
in this case means that the distance is smaller than the distance from
the optimal grid point to any other point on the grid. If this is true, the
procedure delivers the Y as the final parameter estimate.
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Table 3: Hack and loss events

Date Amount (BTC) Description

2011-06-13 25000 User Allinvain hacked
2011-06-19 2000 MtGox theft
2011-06-25 4019 MyBitcoin theft
2011-07-26 17000 Bitomat loss
2011-07-29 78739 MyBitcoin theft
2011-10-06 5000 Bitcoin7 hack
2011-10-28 2609 MtGox loss
2012-03-01 46653 Linode hacks
2012-04-13 3171 Betcoin hack
2012-04-27 20000 Tony76 Silk Road scam
2012-05-11 18547 Bitcoinica hack
2012-07-04 1853 MtGox hack
2012-07-13 40000 Bitcoinica theft
2012-07-17 180819 BST Ponzi scheme
2012-07-31 4500 BTC-e hack
2012-09-04 24086 Bitfloor theft
2012-09-28 9222 User Cdecker hacked
2012-10-17 3500 Trojan horse
2012-12-21 18787 Bitmarket.eu hack
2013-05-10 1454 Vircurex hack
2013-06-10 1300 PicoStocks hack
2013-10-02 29655 FBI seizes Silk Road funds
2013-10-25 144336 FBI seizes Silk Road funds
2013-10-26 22000 GBL scam
2013-11-07 4100 Inputs.io hack
2013-11-12 484 Bitcash.cz hack
2013-11-29 5896 PicoStocks hack
2013-11-29 5400 Sheep Marketplace closes
2014-02-13 4400 Silk Road 2 hacked
2014-02-25 744408 MtGox collapse
2014-03-04 896 Flexcoin hack
2014-03-04 97 Poloniex hack
2014-03-25 950 CryptoRush hacked
2014-10-14 3894 Mintpal hack
2015-01-05 18886 Bitstamp hack
2015-01-28 1000 796 Exchange hack
2015-02-15 7170 BTER hack
2015-02-17 3000 KipCoin hack
2015-05-22 1581 Bitfiniex hack
2015-09-15 5000 Bitpay fishing scam
2016-01-15 11325 Cryptsy hack
2016-04-07 315 ShapeShift hack
2016-04-13 154 ShapeShift hack
2016-05-14 250 Gatecoin hack
2016-08-02 119756 Bitfinex hack
2016-10-13 2300 Bitcurex hack
2017-04-22 3816 Yapizon hack
2017-12-06 4736 NiceHash hacked
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Table 4: MKT events

Date Effect Description

2010-09-14 1 BTCex RUR/BTC exchange opens
2010-10-25 1 MtGox eases fund transfers
2010-12-01 1 BTCex JPY/BTC exchange opens
2010-12-07 1 MtGox partners with e-payment company Paxum
2011-01-04 1 Bitcoin-Central EUR/BTC exchange opens
2011-03-30 1 GBP/BTC exchange opens
2011-04-01 1 Bitomat PLN/BTC exchange opens
2011-06-04 -1 The Bitcoin Market discontinues PayPal trading
2011-06-08 1 CaVirTex CAD/BTC exchange opens
2011-06-13 1 BTCC China CNY/BTC exchange opens
2011-06-18 1 Bitmarket.eu AUD/BTC exchange opens
2011-07-28 1 Mercado Bitcoin BRL/BTC exchange opens
2012-02-10 -1 Paxum exits bitcoin business
2013-04-03 -1 MtGox experiences outages
2013-04-10 -1 MtGox and other exchanges experience outages
2013-05-14 -1 MtGox suspends fund transfers
2013-07-01 1 BTCTurk BTC/TRY exchange opens
2013-09-03 1 Korbit BTC/KRW market opens
2013-12-18 -1 BTC China suspends deposits in yuan
2014-01-30 1 BTC China reinstates deposits in yuan
2014-02-25 -1 MtGox shuts down
2015-10-08 1 Gemini offers FDIC-insured dollars deposits
2016-11-14 1 CME launches bitcoin reference rate
2017-09-30 -1 Chinas exchanges shutdown
2017-12-10 1 Future trading starts at CBOE
2017-12-17 1 Future trading starts at CME
2018-01-16 -1 China bans citizens from trading bitcoin
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Table 5: COM events

Date Effect Illegal Description

2011-01-23 1 1 Silk Road opens
2011-02-25 1 0 CoinCard service opens
2011-06-08 1 0 BTC Buy service opens
2011-06-30 1 1 Black Market Reloaded opens
2012-09-04 -1 0 CoinCard trading service permanently closed
2012-11-15 1 0 WordPress accepts bitcoin
2013-04-03 -1 0 BTC Buy stops selling prepaid cards
2013-05-09 1 0 Gyft accepts bitcoin
2013-08-27 1 0 eGifter accepts bitcoin
2013-10-02 -1 1 Silk Road closes
2013-11-06 1 1 Silk Road 2.0 opens
2013-11-22 1 0 CheapAir accepts bitcoin for flights
2013-12-02 -1 1 Black Market Reloaded closes
2014-01-09 1 0 Overstock.com accepts bitcoin
2014-01-24 1 0 TigerDirect accepts bitcoin
2014-02-03 1 0 CheapAir accepts bitcoin for hotel reservations
2014-06-11 1 0 Expedia accepts bitcoin for hotel reservation
2014-07-01 1 0 Newegg accepts bitcoin
2014-07-18 1 0 Dell accepts bitcoin
2014-08-14 1 0 DISH Network accepts bitcoin
2014-11-06 -1 1 Silk Road 2.0 closes
2014-12-11 1 0 Microsoft accepts bitcoin from US customers
2015-01-22 1 0 Paypal accepts bitcoin
2015-02-19 1 0 Dell Expands bitcoin payments to UK and Canada
2017-04-27 1 0 Valve accepts bitcoin
2017-10-19 -1 0 Dell no longer accepts bitcoin
2017-12-06 -1 0 Steam no longer accepts bitcoin
2017-12-26 -1 0 Microsoft no longer accepts bitcoin
2018-01-09 1 0 Microsoft resumes bitcoin payments
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