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Abstract

The literature on the evolution of preferences of individuals in strategic interactions

is vast and diverse. We organize the discussion around the following question: Suppos-

ing that material outcomes drive evolutionary success, under what circumstances does

evolution promote Homo oeconomicus, defined as material self-interest, and when does

it instead lead to other preferences? The literature suggests that Homo oeconomicus is

favored by evolution only when individuals’preferences are their private information

and the population is large and well-mixed so that individuals with rare mutant pref-

erences almost never get to interact with each other. If rare mutants instead interact

more often (say, due to local dispersion), evolution instead favors a certain generaliza-

tion of Homo oeconomicus including a Kantian concern. If individuals interact under

complete information about preferences, evolution destabilizes Homo oeconomicus in

virtually all games.
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1 Introduction

Economics traditionally takes individuals’motivations– their preferences– as fixed and given.

Hence, the predictive power of economics depends to a large extent on the assumptions made

regarding these motivations. Since the development of general equilibrium models in the

1950s, consumers are assumed to have fixed and given preferences over the consumption

alternatives they face, preferences that do not depend on other consumers’or producers’

choices or preferences. Likewise, producers have their expected profits as their sole motiva-

tion, and, when economists look inside firms, managers are assumed to only care about their

own monetary outcome. Such assumptions separate individual economic agents from each

other in a way that allows for clear-cut and powerful analyses of a wide range of economic

issues, both under perfect and imperfect competition, and with or without externalities. The

same is true in non-cooperative game theory when each player’s payoff function traditionally

is taken to depend only on the player’s own material outcome. However, even slight devi-

ations from standard assumptions may have significant consequences for predictions. For

example, individuals who care about fairness may refuse unfair pay increases, competitive

individuals may engage in ineffi cient rat races, morally motivated consumers may prefer ex-

pensive “green”products to “brown”products that give them the same consumption utility.

And any standard economics model, say an exchange economy under perfect competition,

implicitly relies on trust– in other individuals, in institutions, in the issuer of fiat money–

which is not part of the model.

By contrast to these models, work by economists in earlier times sometimes included

reflections on motivations other than material self interest (e.g., Smith, 1759, Edgeworth,

1881, Veblen, 1899). Moreover, there is now ample empirical evidence in the economics

literature– based both on experiments in laboratories and in the field– that people do not

behave in line with pure material self-interest. For instance, individuals sometimes refuse

unfair offers, or honor trust, even at a cost to themselves, and they sometimes make fair offers

at a monetary cost to themselves, and trust strangers, even at a risk of losing money. Such

fair offers and trust may be motivated by non-materialistic dispositions such as a concern

for fairness, altruism, or morality, for instance, but it may also be driven by pure material

self-interest if the decision-maker believes that the other party has such a disposition. In any

event, some deviation from the assumption of material self-interest is called for in order to

explain observed behaviors. Of course, one may question the external validity of the empirical

results. Maybe all or most individuals would “learn”to maximize material self-interest over
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time. But this presumes that material self-interest has a long-run survival value over and

beyond all forms of other-regarding preferences. Is this presumption generally valid? If not,

what other motivational factors may increase the survival value? These are the basic question

addressed in the literature on the evolutionary foundations of preferences, a literature we

here discuss.

Foundational questions concerning pure self-interest and profit maximization were raised

already by Alchian (1950) and Friedman (1953). A few decades later, the literature on

the evolutionary foundations of other-regarding preferences took off. Important pioneering

contributions were Becker (1976), Hirshleifer (1977, 1978), Frank (1987), Güth and Yaari

(1992), to mention a few. Particularly influential for the subsequent formal modelling of

preference evolution was the paper by Güth and Yaari. They proposed what was to become

called the indirect evolutionary approach: “Instead of assuming that individual preferences

are exogenously given, we think of an evolutionary process where preferences are determined

as evolutionarily stable.”(op.cit.) They illustrated this approach by means of a simple two-

player game in which players knew each others’preferences, and where reciprocity became

evolutionarily stable (see also Frank, 1987). It was in Güth and Kliemt (1998) that the name

of the approach was coined, and in this paper the authors showed that trustworthiness, if

observable, may be evolutionarily stable. In a sense, these findings confirmed Schelling’s

(1960) observation about the potential strategic advantage of commitment.

The current literature on preference evolution is vast and methodologically diverse. In-

stead of trying to cover the whole literature, we extract a few main lessons learned so far.

The survey is organized around one question: Does or does not evolution favor pure self-

interest as the sole motivation? More precisely, in what context does evolution lead to Homo

oeconomicus, defined as rational and purely-self interested behavior, and in what contexts

does it not? Research results providing affi rmative answers to the first question are pre-

sented in Sections 3, while research providing affi rmative answers to the second question are

discussed in Section 4, where we also discuss what other motivations are then favored by

evolution. We summarize the answers in these two sections in the form of eleven informally

stated observations, major “lessons”that we draw from existing work. However, in order to

present and discuss the relevant background research, we first, in Section 2, set up a general

model framework encompassing most of the existing models. We conclude in Section 5 by

way of discussing shortcomings and lacunas in the existing literature, and by suggesting a

few potentially promising directions for future work.

3



2 Model framework and preliminaries

Much of the literature can be discussed within the following theoretical framework. Consider

a population in which individuals are now and then matched into groups of fixed size n to play

a symmetric material game Γ = 〈n,X, π〉, where X is the set of (pure or mixed) strategies,

the same for all players, and π (xi,x−i) ∈ R is the material payoff from using strategy

xi ∈ X against x−i, the strategy profile of all other individuals in the group. The following

assumptions will be maintained throughout, unless stated otherwise: (a) the strategy set X

is a non-empty and compact set in a normed vector space, (b) the material payoff function

π : Xn → R is continuous and aggregative in the sense that the material payoff π (xi,x−i)

is invariant under permutation of the components of x−i, the strategies used by the other

players in i’s group. In the special case of finite games, we will follow the practice in game

theory and let the strategy set X be the unit simplex ∆ (S) of mixed strategies, where S is

the finite set of pure strategies available to each player role. The material payoff function π

is then linear in the player’s own mixed strategy (given the other players’strategies).

Examples of strategic interactions covered by this model include (a) public goods games

between identical individuals where the amount of the public good is a symmetric function

of their contributions (for example the sum), (b) contests between identical contestants, (c)

symmetric coordination games, etc. These games may be one-shot, multi-stage, or repeated.

Importantly, while the material game has to be symmetric, it encompasses ex post asymmet-

ric interactions as long as all participants are ex ante equally likely to be in any given player

role. For instance, an ultimatum bargaining game in which the flip of a fair coin determines

who is the proposer is ex post asymmetric but ex ante symmetric. The same is true for an

n-player "team-leadership" game in which each player is equally likely to be the team leader,

with the others as ordinary team members. Likewise if information, or some other relevant

characteristic such as skill, is ex post asymmetric but ex ante symmetric. In such ex ante

symmetric, but ex post asymmetric interactions, a participant’s strategy is conditioned on

the player role, information or characteristic given.

There is also a type space Θ upon which we will let evolution operate. Each individual in

the population is of some such type θ ∈ Θ, which may be known or unknown by others. We

will restrict attention to population states in which the type distribution µ has finite support,

that is, where there are only finitely many types θ ∈ Θ present (with µ (θ) > 0). More

importantly, we will focus on only two extreme cases concerning individuals’ information

about each others’types: complete information, when all individuals in each group know–
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and hence can condition their behavior on– the types of all members, that is, their group’s

type profile θ = (θ1, ..., θn) ∈ Θn. In the other extreme case, which we refer to as incomplete

information, each individual’s type is her private information. Types are inherited from one

generation to the next, and the question is which types will prevail in the long run, when

evolutionary forces are at work. If types are genetically determined, evolution by natural

selection is driven by fitness, which essentially is the ability to survive and/or produce viable

offspring. If types are culturally determined, it is the ability to produce cultural offspring

which determines evolutionary success. In general, fitness is not modeled explicitly in the

economics literature, however. Instead, the material payoff function π is taken to represent

“fitness”or “evolutionary success”.

The indirect evolutionary approach builds on classic evolutionary game theory, in which

the type space is the set of (pure or mixed) strategies in the material game, Θ = X, i.e.,

individuals are “programmed” to play a specific strategy (for a textbook treatment, see

Weibull, 1995). We will refer to this case as strategy evolution. In the literature on preference

evolution, the types are instead utility functions f : Xn → R over strategy profiles (xi,x−i) ∈
Xn. Each individual is assumed to strive to maximize the expected value of his or her

utility function. In game-theoretic terminology, an individual’s utility function is thus his

or her (subjective) payoff function when matched to play the material-payoff game with

other individuals. Focus will here be on the set F of continuous and aggregative utility

functions f : Xn → R. This set contains the material-payoff function π. Obviously, any
strictly increasing transformation of any utility function f represents the same preferences

over strategy profiles. Hence, by a “type f ”we mean the whole (equivalence) class [f ] of

utility functions in F that represent the same preferences. Individuals with preferences in

[π] will be called Homo oeconomicus.

While individuals of the same type, so defined, have the same set of best replies to every

strategy profile, we will also need to keep track of types whose best-reply sets happen to

overlap for some strategy profiles. LetXf ⊆ X denote the set of symmetric Nash equilibrium

strategies when all players are of the same type f ∈ F :

x̂ ∈ arg max
x∈X

f
(
x, x̂(n−1)

)
, (1)

where x̂(n−1) is the (n− 1)-dimensional vector whose components all equal x̂. We define the

set behaviorally distinct types from f as

Df =

{
g ∈ F : arg max

x∈X
g
(
x, x̂(n−1)

)
∩ arg max

x∈X
f
(
x, x̂(n−1)

)
= ∅ for all x̂ ∈ Xf

}
. (2)
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In words: in a group where everybody else plays some x̂ ∈ Xf , an individual of type g never

chooses a strategy that could have been rationally chosen by an individual of type f .

In real-life populations, there is typically a variety of traits present in a population at

any point in time. Moreover, the distribution of traits tends to change over time. While

some models in the literature are dynamic and allow for multiple types that are simultane-

ously present in the population, most of the analyses are static and presume that at most

two types are simultaneously present. Such analyses often rest on a simple but powerful

thought experiment that builds on and extends the notion of evolutionary stability, initially

introduced by Maynard Smith and Price (1973).

2.1 Strategy evolution

Classic evolutionary stability analysis considers symmetric and finite two-player games under

the hypotheses that (A) the population is infinitely large (modelled as a continuum), (B)

matching is uniformly random, and (C) each individual is programmed to play some pure or

mixed strategy. The thought experiment behind the definition of evolutionary stability is the

following, here generalized to an arbitrary group size n. Suppose that initially there is some

strategy, say x, that is used by everyone in the population. This is the resident strategy.

Suddenly, another strategy, say y, appears in the population. This is the mutant strategy.

The question is then whether the mutants, who sometimes meet each other and sometimes

the residents, earn a higher or lower average material payoff than the residents. Let ε ∈ (0, 1)

be the population share of mutants. The type distribution µ is then binary, with µ (x) = 1−ε
and µ (y) = ε. Assumptions (A) and (B) together imply that the probability that a given

resident is matched with precisely m mutants (for m = 0, 1, ..., n− 1) is binomial,

pm (ε) =

(
n− 1

m

)
· (1− ε)n−m−1 · εm, (3)

and that this is also the probability, qm (ε), that a given mutant is matched with m other

mutants. Hence, the average material payoffs to a resident and to a mutant are, respectively,{
π̄R (x, y, ε) =

∑n−1
m=0 pm (ε) · π

(
x,
(
x(n−m−1),y(m)

))
π̄M (x, y, ε) =

∑n−1
m=0 qm (ε) · π

(
y,
(
x(n−m−1),y(m)

)) , (4)

where x(k) is the k-dimensional strategy vector whose components all equal x, y(k) is the

k-dimensional vector whose components all equal y, and m stands for the total number

of mutants in the group, and qm (ε) = pm (ε). Note that π̄R (x, y, ε) and π̄M (x, y, ε) are

continuous in ε.
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The resident strategy is evolutionarily stable (Maynard Smith and Price, 1973) if there

for every mutant strategy y 6= x exists ε̄y > 0 such that

π̄R (x, y, ε) > π̄M (x, y, ε) ∀ε ∈ (0, ε̄y) . (5)

Evolutionary stability may be conveniently characterized as follows. Let ∆π (x, y, ε) =

π̄R (x, y, ε) − π̄M (x, y, ε). This payoff difference (sometimes called “the score function”)

is differentiable in ε, and the inequality in (5) holds if and only if either (i) ∆π (x, y, 0) > 0,

or (ii) ∆π (x, y, 0) = 0 and ∂∆π (x, y, ε) /∂ε|ε=0 > 0. We also note that a necessary condition

for x to be evolutionarily stable is that

π
(
x,x(n−1)

)
≥ π

(
y,x(n−1)

)
∀y ∈ X. (6)

In other words, if a strategy x is evolutionarily stable, then x has to be a symmetric Nash-

equilibrium strategy of the game in which all players have payoff function π. A population in

which an evolutionarily stable strategy is played is thus behaviorally indistinguishable from

a population consisting of Homo oeconomicus individuals who freely choose their strategy

in order to maximize their own material payoff.

2.2 Preference evolution

The thought experiment underlying the definition of evolutionary stability of preferences

is similar. Suppose, thus, that there is some utility function, say f ∈ F , that at some

point in history is used by everyone in the population. This is the resident utility function.

Suddenly, another utility function, say g ∈ F , appears in the population. This is the mutant
utility function. The question is, again, whether the mutants, when rare, earn a higher or

lower average material payoff than the residents. However, types are now defined in terms

of preferences, and individuals are assumed to optimally adapt their choice of strategy to

the situation at hand. The literature on preference evolution has stayed close to standard

economic theory by requiring that the two types’average material payoffs should be evaluated

when population play is in equilibrium (in terms of individuals’preferences). More precisely,

focus is typically on type homogenous (Bayesian) Nash equilibria, in which all individuals

of the same type use the same strategy. This does not presume that populations always

play such equilibria. The requirement is that if the population happens to be in some such

equilibrium, at least then it should not be possible for mutants to “invade”the population.1

1A usual interpretation (see e.g. Sandholm, 2001) in the literature is that behavioral adaptation occurs on

a faster time-scale than preference adaptation. The stability condition then is that if behavioral adaptation
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Let (f, g, ε) be the population state in which the two types f and g are represented in

population shares 1− ε and ε, respectively. Of particular interest will be population states
in which ε is positive but small, i.e., when the “mutant” type g is rare. Such population

states amount to binary type distributions in which µ (f) = 1 − ε and µ (g) = ε for ε > 0

small. For any given population state (f, g, ε), random matching process, and information

setting (complete or incomplete information), let Π (f, g, ε) ⊂ R2 be the associated set of
average equilibrium material-payoffpairs (π̄R, π̄M) ∈ R2. In other words, for each (π̄M , π̄R) ∈
Π (f, g, ε), π̄R is the average material payoff accruing to residents and π̄M is the average

material payoff accruing to mutants, in some type homogenous (Bayesian) Nash equilibrium.

We are now in a position to formalize generalized notions of evolutionary stability and

instability in the spirit of Maynard Smith and Price (1973). Let Θ ⊆ F . A type f ∈ Θ

is evolutionarily stable against a type g ∈ Θ if there is an ε̄ > 0 such that π̄R > π̄M for

all (π̄R, π̄M) ∈ Π (f, g, ε) and all ε ∈ (0, ε̄). A type f ∈ Θ is evolutionarily stable in Θ

if it is evolutionarily stable against all g ∈ Θ ∩ (∼ [f ]). A type f ∈ Θ is evolutionarily

unstable if there is a type g ∈ Θ and an ε̄ > 0 such that for every ε ∈ (0, ε̄) there is some

(π̄R, π̄M) ∈ Π (f, g, ε) with π̄M > π̄R.

The requirement for stability is stringent, since it requires the residents to strictly ma-

terially outperform mutants in all Nash equilibria. By contrast, for a preference type to

be unstable it is suffi cient that there exists one mutant type that earns a higher material

payoff in one Nash equilibrium, whenever the mutant is suffi ciently rare. We finally note

that, because we require strict outperformance, there are in general utility functions that

are neither stable nor unstable.2

With this model in hand, we can proceed to identifying conditions under which Homo

oeconomicus prevails and thereafter conditions under which Homo oeconomicus does not

prevail.

leads towards a Nash equilibrium (in terms of preferences), then it should not be the case that mutants fare

materially better in that equilibrium.

2We note that this definition of evolutionary stability encompasses also strategy evolution by way of

letting Θ ⊂ F be the subset of utility functions f for which some strategy x̂ ∈ X is strictly dominant (for

example f (xi,x−i) ≡ −‖xi − x̂‖).
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3 Settings in which Homo oeconomicus prevails

3.1 Decision problems

The above setting includes decision problems, that is, material-payoff games in which each

player’s material payoffdepends only on his or her own strategy. Formally, Γ = 〈n,X, π〉 is a
decision problem if there exists a continuous function v : X → R such that π (x,y) = v (x) for

all x ∈ X and y ∈ Xn−1. In decision problems, Homo oeconomicus is evidently evolutionarily

stable against all behaviorally distinct types. Moreover, any type f ∈ F that is behaviorally
distinct from Homo oeconomicus is unstable. In sum:

Observation 1: In decision problems, Homo oeconomicus is evolutionarily stable

against all behaviorally distinct types, and the latter types are evolutionarily

unstable.

It should be noted, however, that we here assume that individuals perceive the situation

(strategy set and material payoffs) without errors. When such perception errors exist, pref-

erences other than Homo oeconomicus may be stable (see, e.g., Rayo and Becker, 2007, and

Robson and Samuelson, 2011). The literature on preference evolution that we are concerned

with here is not about decision problems, so we now turn to strategic interactions.

3.2 Continuum population, uniform random matching and incom-

plete information

Assume that (A) the population is a continuum, (B) player matching is uniformly random,

(C) the type set is a subset of the set of all continuous utility functions, Θ ⊆ F , and (D)

each individual’s type is his private information. The set of type-homogenous Bayesian Nash

Equilibria (BNE) in a population state (f, g, ε), is then the set of strategy pairs (x̂, ŷ) ∈ X2

that satisfy {
x̂ ∈ arg maxx∈X

∑n−1
m=0 pm (ε) · f

(
x,
(
x̂(n−m−1)

)
, ŷ(m))

)
ŷ ∈ arg maxy∈X

∑n−1
m=0 qm (ε) · g

(
y,
(
x̂(n−m−1), ŷ(m)

)) . (7)

In order to investigate whether f ∈ Θ is evolutionarily stable against g ∈ Θ, one has

to evaluate the material payoffs in all solutions (x̂, ŷ) ∈ X2 to this system of fixed-point

conditions for all small ε > 0. This may seem a daunting task, since residents may well
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vary their equilibrium behavior radically when the population share of mutants changes

even slightly. For example, the resident type may play a mixed-strategy equilibrium when

no other type is around, that is, when ε = 0, but switch to a pure strategy when ε turns

positive. Two approaches have been adopted in the literature to deal with this issue.

Dekel, Ely, and Yilankaya (2007) analyze finite and symmetric two-player material games.

They focus on utility functions f : X2 → R of the bilinear form f(x, y) =
∑

k,h∈S xkukhyh

for some numbers uhk. This defines their type space Θ as a finite-dimensional subspace G

of F , those utility functions that meet the expected-utility hypothesis for mixed strategies.

Evidently, one may identify each utility function f ∈ G with its associated subjective payoff
matrix u = (uhk), and refer to this matrix as its type.3 Let σ : Θ → X denote a rule

that to every type θ assigns some mixed strategy. Their stability concept differs slightly

from the one given above, and applies to any type distribution µ with finite support on

Θ = G. They call such a type distribution µ stable if there exists a rule σ which is a best

response to itself given the type distribution µ, and such that the pair (µ, σ) constitutes

what they call a stable configuration. The definition of a stable configuration is somewhat

technical but essentially requires (i) that all resident types– those in the support of µ–

earn the same average material payoff under σ, and (ii) that a small population share ε

of mutants cannot destabilize the configuration. Destabilization occurs either if a mutant

type materially outperforms the resident types, or if a mutant type induces the residents to

switch behavior far from that prescribed by σ. The authors show that when interactions

take place under incomplete information, then for a distribution µ to be stable all residents

must play some strategy x̂ ∈ Xπ, that is, behave as Homo oeconomicus does in symmetric

equilibrium in the absence of mutants. They also show that if (x̂, x̂) is a strict equilibrium

in the material-payoff game for some strategy x̂ ∈ Xπ, then play of x̂ is compatible with a

stable configuration. In sum, for two-player finite (linear) games:

Observation 2: Under uniform random matching in a continuum population,

and unobservable preference types, configuration stability implies symmetric

Nash-equilibrium play in the material-payoff game, and symmetric strict equilib-

rium play in the material-payoff game is configuration stable.

In Alger andWeibull (2013, 2016) we establish suffi cient conditions forHomo oeconomicus

3For any number m ∈ N of pure strategies, let U = Rm2

. Then each u ∈ U defines an m×m payoffmatrix

where the entries are the row-player’s payoffs, and this defines a utility function fu in the m2-dimensional

subspace G of F , where fu(x, y) =
∑

k,h∈S xkukhyh ∀x, y ∈ ∆ (S).
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to be the evolutionary viable in a different model. We consider all continuous and aggregative

material games, for which the material payoff function π need not be multi-linear. In those

studies, we took the type space to be the whole set of continuous and aggregative utility

functions, Θ = F . Utility functions being continuous, the equilibrium correspondence, which

maps the mutant share ε to the set of solutions to (7), is then upper hemi-continuous.

This means that for small but positive mutant shares ε > 0 each equilibrium is within a

neighborhood of some resident equilibrium x̂ ∈ Xf . Since also the material payoff function

is continuous, this in turn implies that to check whether f is evolutionarily stable against

g, it is suffi cient to evaluate the average material payoffs π̄R and π̄M in the limit as ε → 0.

In other words, it is suffi cient to evaluate π
(
x̂, x̂(n−1)

)
and π

(
ŷ, x̂(n−1)

)
for each pair (x̂, ŷ)

which satisfies (7) in the limit as ε→ 0, i.e.,{
x̂ ∈ arg maxx∈X f

(
x, x̂(n−1)

)
ŷ ∈ arg maxy∈X g

(
y, x̂(n−1)

)
.

(8)

Suppose that the resident type is Homo oeconomicus, f = π. Then, since

x̂ ∈ arg max
x∈X

π
(
x, x̂(n−1)

)
(9)

for all x̂ ∈ Xf , there evidently exists no behaviorally distinct mutant type g whose best

response ŷ would satisfy π
(
ŷ, x̂(n−1)

)
> π

(
x̂, x̂(n−1)

)
. In other words, Homo oeconomicus

is evolutionarily stable against all types g ∈ Dπ. Conversely, if f is behaviorally distinct

from Homo oeconomicus, i.e., if f ∈ Dπ, then there does exist some mutant type whose best

response ŷ is such that π
(
ŷ, x̂(n−1)

)
> π

(
x̂, x̂(n−1)

)
. In other words, every type f ∈ Dπ is

evolutionarily unstable. In sum:

Observation 3: Under uniform random matching in a continuum population,

and unobservable preference types, Homo oeconomicus is evolutionarily stable

against all behaviorally distinct types, and such types are evolutionarily unstable.

3.3 A coordination game

To illustrate the above stability concepts, consider a resident population of Homo oeconomi-

cus playing the symmetric 2× 2 coordination game with material payoff bimatrix (the first

number in each entry being the material payoff of the row player):

a b

a 2, 2 0, 0

b 0, 0 1, 1

(10)
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For f = π, the set of residential equilibrium strategies is Xf = {0, 1/3, 1}. Consider a
mutant type who is “committed”to pure strategy a with, say, utility function g (x, y) = 4xy+

(1− x) (1− y), where x, y ∈ [0, 1] is own (respectively, the opponent’s) probability of playing

pure strategy a.4 In a sense, this is the most threatening mutant to Homo oeconomicus, since

g is not behaviorally distinct from f , and, moreover, it always plays according to the best

strict equilibrium in terms of material payoffs. The equilibrium condition (7) for the resident

Homo oeconomicus under incomplete information, when the mutants are in population share

ε, is

x̂ ∈ arg max
x∈[0,1]

2 [(1− ε) x̂+ ε]x+ (1− ε) (1− x̂) (1− x) . (11)

There are three equilibria in population states (f, g, ε) where ε is positive and small. Mutants

play a in all of them, while the residents play a in one of them, b in another one, and the

mixed strategy x̂ (ε) = (1− 3ε) / (3− 3ε) in the third one. Is Homo oeconomicus, f = π,

evolutionarily stable against g? The answer is negative. The reason is that the mutant g

earns exactly the same material payoff as f in one of the Nash equilibria in population states

(f, g, ε) with ε small, since π̄f = π̄g = 2 when x̂ = ŷ = 1. A fortiori, Homo oeconomicus is

not evolutionary stable in this example. However, Homo oeconomicus is not evolutionarily

unstable either, since for any mutant type g 6= π, there exists an ε̄ > 0 such that x = 1 is

an equilibrium strategy for Homo oeconomicus in all population states (f, g, ε) with ε < ε̄.

Nonetheless, in force of the general observation above, Homo oeconomicus is evolutionarily

stable against all mutants g ∈ Dπ (and this can be easily verified directly in this example).

We conclude this example by noting that the above-mentioned result by Dekel, Ely and

Yilankaya (2007) tells us that in every stable configuration the residents use a strategy in

the set Xf = {0, 1/3, 1}, that there are stable configurations in which they play x = 0, and

stable configurations in which they play x = 1 (since these are strict equilibria).

4 Settings where Homo oeconomicus is outperformed

The results summarized above identified the following set of assumptions as being suffi cient

for Homo oeconomicus to be evolutionarily stable: individuals interact under incomplete

information, individuals are uniformly randomly matched together to interact, and the pop-

ulation is a continuum. Are these conditions also necessary for Homo oeconomicus to be

4We note that g ∈ G, with payoff matrix (uhk) with uaa = 4 and otherwise uhk = πhk.
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evolutionarily stable? To investigate this question we lift each assumption in turn.

4.1 Complete information

We here study settings where interactions take place under complete information, but keep

the assumptions of continuum population and uniform randommatching. Homo oeconomicus

is then evolutionarily unstable. A simple example illustrates why. Suppose that Homo oeco-

nomicus is the resident type and that the material game is a two-player prisoner’s dilemma,

c d

c 2, 2 0, 4

d 4, 0 1, 1

(12)

Consider a mutant type g (x, y) = 7xy + 4 (1− x) y + (1− x) (1− y), where x, y ∈ [0, 1]

is own (respectively, the opponent’s) probability of cooperating (playing pure strategy c).5

Under complete information, the unique Nash equilibrium in a game between two residents,

and in a game between a mutant and a resident, is for both players to defect (play d). By

contrast, in a game between two mutants there are three Nash equilibria: x = 1, x = 1/4,

and x = 0. In other words, these preferences allow mutants to cooperate with each other

and defect against residents. In any post-entry population in which the mutants play the

equilibrium x = 1 (or x = 1/4) this mutant type strictly outperforms Homo oeconomicus,

since its average material payoff is then 2−ε (respectively, (23− 7ε) /16) while that of Homo

oeconomicus is 1. Hence, Homo oeconomicus is evolutionarily unstable.6

Which preferences are stable then, when individuals in a continuum population are uni-

formly randomly matched to interact under complete information? The literature shows

that the answer depends on the set Θ of feasible preferences, and on the material game at

hand.

5Again, note that g ∈ G, this time with payoff matrix (uhk) with uaa = 7 and otherwise uhk = πhk.

6Under strategy evolution in this material game, mutants whose strategy consists, by way of a “secret

handshake”, in playing c against each other, and d against residents, strictly outperform residents who always

play d (Robson, 1990).
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4.1.1 Finite two-player games

Dekel, Ely, and Yilankaya (2007) (see Section 3.2 for a description of their setup) call a

strategy x ∈ X effi cient if π (x, x) ≥ π (y, y) for all y ∈ X. They show that under complete
information effi cient strategies are the only candidates for configuration stability, and that if

an effi cient strategy is also its own unique best reply (in terms of material payoffs), then it is

configuration stable. In particular, while the effi cient strategy profile (a, a) in coordination

game (10) is configuration stable, the strategy profile (b, b) is not, and while the effi cient

profile (c, c) in the prisoners’dilemma (12) is configuration stable, (d, d) is not. The intuition

is clear. As shown in the above prisoners’dilemma, the instability of an ineffi cient strategy

is due to the existence of mutants who may behave like residents when they meet residents

and do better when meeting each other. However, if a strategy is effi cient, and, moreover,

is its own unique best reply, then the mutants cannot achieve higher payoff when meeting

neither residents nor each other.7 In sum:

Observation 4: Under uniform random matching in a continuum population,

and complete information in finite and symmetric two-player material-payoff

games, (material) effi ciency is necessary for configuration stability, and effi ciency

and strict equilibrium (both in material payoffs) are together suffi cient for con-

figuration stability.

So far, we have seen how mutants can successfully invade a resident population by be-

having differently towards each other than towards residents, while, at the same time, the

residents’behavior was unchanged. However, mutants may sometimes successfully enter a

population by instead making residents alter their behavior. To see this, suppose that the

material game is a hawk-dove game, with material payoffs

h d

h −1,−1 4, 0

d 0, 4 2, 2

(13)

Let x ∈ [0, 1] denote the probability that an individual plays h, and y ∈ [0, 1] the probability

that his opponent does so. Suppose that Homo oeconomicus is the resident type. In a

homogenous population, the unique Nash equilibrium in any matched pair is x = 2/3. This

7See Ockenfels (1993) for an early analysis of preference evolution in the prisoner’s dilemma game.
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mixed strategy is effi cient. Consider now a mutant type, appearing in population share

ε, with a utility function gh ∈ G for which pure strategy h is strictly dominant.8 Whether

matched with another mutant or with a resident, such a mutant always plays pure strategy h.

Under complete information, residents play x∗ = 2/3 when matched with another resident,

but switch to playing d with certainty when matched with a mutant. For small ε > 0, mutants

then garner a higher material payoff, 4 (1− ε) − ε, than residents, who obtain 2 (1− ε) /3.
Hence, although necessary, effi ciency is not suffi cient for stability, an observation in line with

Proposition 3 in Dekel, Ely, and Yilankaya (2007).

The residential adaptation we saw in this example suggests that maybe there are stable

type distributions (in the sense of Dekel, Ely, and Yilankaya, 2007) with more than one type

present? Can the two types mentioned above coexist in such population shares that their

average material payoffs are equalized, and will this be stable? Indeed, this possibility was

pointed out in Banerjee and Weibull (1995). By way of studying populations in which every

individual is either a Homo oeconomicus or else committed to one particular pure strategy,

they showed that a pure Homo oeconomicus population is evolutionarily unstable if the

material-payoff game has at least one “bully”strategy, a pure strategy that earns a higher

payoffagainst each of its best replies than they earn against it. An example is pure strategy h

in the above hawk-dove game. The best reply to h is d, and in such a meeting h earns 4 while

d earns zero. Banerjee and Weibull (1995) showed that a certain binary type distribution,

with both Homo oeconomicus and “hawks”present, is evolutionarily stable when the type

space Θ consists of “hawks”, represented by a utility function gh ∈ G as above, “doves”

gd ∈ G likewise defined, and Homo oeconomicus, π. In the present example, let the type

distribution assign probability µ to type h and probability 1−µ to Homo oeconomicus. The
latter will then play d when matched with a “hawk” and x∗ = 2/3 when matched with

another Homo oeconomicus. Hence, the average material payoff to a “hawk”is 4 (1− µ)−µ,
and the average material payoff to a Homo oeconomicus is 2 (1− µ) /3. The two types earn

exactly as much if and only if µ = 10/13. The resulting population behavior, however, is

the same as in the unique Nash equilibrium of the material payoff game. These observations

hold qualitatively in all Hawk-Dove games. Combining the results of Banerjee and Weibull

(1995) with those of Dekel, Ely and Yilankaya (2007), we obtain:

Observation 5: Under complete information in finite and symmetric material-

payoffgames with a bully strategy, configuration stability may require that Homo

8For example, let the payoff matrix (uhk) have uhh = 1 and otherwise uhk = πhk.
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oeconomicus coexists with a bully type in fixed positive population shares.

In other words: natural selection under complete information may select for a population

mix of rational and aggressive individuals. This is due to the, since ancient times, well-

known power of commitment (see Schelling, 1960). The commitment power obtained by

having preferences that are known by others has also been central to the bulk of the early

contributions to the literature on indirect evolution, to which we now turn.

4.1.2 Two-player games with continuum of pure strategies

In Bester and Güth (1998) the pure-strategy set X is taken to be R+, the non-negative reals,
and the material payoff function to be of the non-linear form

π (x, y) = (b− x)x+ cxy, (14)

for some b > 0 and c ∈ (−1, 1). For c positive (negative), the game exhibits positive

(negative) externalities; a higher action by a player increases (decreases) the material payoff

to the other player. The authors restrict preferences to a one-dimensional subset of F , by

assuming that each individual has a utility function fλ of the form

fλ (x, y) = λ · π (x, y) + (1− λ) · π (y, x) , (15)

for some λ ≥ 1/2. The type set Θ is thus the subset of utility functions fλ ∈ F for some

λ ≥ 1/2. For λ < 1, such an individual attaches a positive weight to the other player’s

material payoff, and is thus altruistic (Becker, 1976). By contrast, for λ > 1, the individual

attaches a negative weight to the other player’s material payoff and is thus spiteful. Homo

oeconomicus is the intermediate knife-edge case when λ = 1. We will call λ ≥ 1/2 the type’s

degree of altruism/spite.

In a match between individuals of arbitrary degrees of altruism/spite λ, τ ∈ Θ there is

a unique Nash equilibrium (x̂ (λ, τ) , x̂ (τ , λ)) ∈ X2, and thus a unique pair of equilibrium

material payoffs. Bester and Güth (1998) ask which type λ ∈ Θ, if any is evolutionarily

stable. This amounts to searching for some value λ ≥ 1/2 such that if uλ is the resident

utility function and uτ the mutant utility function, for some τ 6= λ, the uniquely defined

average equilibrium material payoff to a resident, π̄R, exceeds that to a mutant, π̄M , for all

suffi ciently small mutant shares ε > 0:

(1− ε) · π [x̂ (λ, λ) , x̂ (λ, λ)] + ε · π [x̂ (λ, τ) , x̂ (τ , λ)] (16)

> (1− ε) · π [x̂ (τ , λ) , x̂ (λ, τ)] + ε · [x̂ (τ , τ) , x̂ (τ , τ)] .
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Both sides being continuous in ε, a suffi cient condition for type λ to be evolutionarily stable

against type τ is π [x̂ (λ, λ) , x̂ (λ, λ)] > π [x̂ (τ , λ) , x̂ (λ, τ)], while a necessary condition is

π [x̂ (λ, λ) , x̂ (λ, λ)] ≥ π [x̂ (τ , λ) , x̂ (λ, τ)]. Noting that, for a given λ, the right-hand side of

these inequalities may be viewed as a function of τ , we see that a necessary condition for

type λ to be evolutionarily stable is that λ be a solution to the fixed-point equation

λ ∈ arg max
τ≥1/2

π [x̂ (τ , λ) , x̂ (λ, τ)] . (17)

In the present model, where for a given λ, π is differentiable in τ , this allows the analyst

to conveniently identify candidates for evolutionarily stable utility functions by solving the

necessary first-order condition for (17) to hold (with subscripts for partial derivatives):

π1 (x̂ (τ , λ) , x̂ (λ, τ)) · x̂1 (τ , λ)|τ=λ = − π2 (x̂ (τ , λ) , x̂ (λ, τ)) · x̂2 (λ, τ)|τ=λ . (18)

The two sides of this equation measure, for any given resident parameter value λ, the two

effects of mutating towards a marginally different parameter value, τ , when the mutation is

vanishingly rare. The left-hand side measures the effect on the mutant’s own equilibrium

strategy and the associated effect on the material payoff. The right-hand side measures

the strategic-commitment effect: the mutation causes the opponent (which almost for sure

is a resident) to change his equilibrium strategy and this in turn also affects the mutant’s

material payoff.

With the material payoff function used by Bester and Güth (1998) and given in (14), one

obtains λ∗ = 1− c/2 as the unique solution to (18). By way of considering the second-order
condition it is easily verified that this λ∗-value is indeed evolutionarily stable.

Three qualitatively distinct cases arise. First, when c = 0, individuals, even if matched

into pairs, effectively face a decision problem. Not surprisingly, Homo oeconomicus then

prevails: λ∗ = 1. Second, if c > 0, the strategies are strategic complements in the material

payoff function π. Then, λ∗ < 1, which means altruism. The reason is that although such

altruism makes an individual contribute more than Homo oeconomicus would, which is costly

in material terms, this makes also the opponent contribute more, and the net material effect is

beneficial. It is important to notice that the reason for whyHomo oeconomicus is displaced by

altruists is not that altruists obtain a benefit from interacting with each other. Instead, under

complete information altruists may enter a population of Homo oeconomicus, by making the

latter behave differently than they do when meeting another Homo oeconomicus. Under

uniform random matching (as we here assume), an altruistic mutant in a population of
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resident Homo oeconomicus has virtually no chance of being matched with another altruistic

mutant.

Third, if c < 0, spite obtains; λ∗ > 1. This is because when strategies are strategic

substitutes, an individual with spiteful preferences contributes less than Homo oeconomicus

would, and this in turn makes a Homo oeconomicus contribute more when matched with a

spiteful individual than with another Homo oeconomicus.

The astute reader will have noticed that Bester and Güth (1998) in fact reported the

value λ∗ = 1 for the evolutionarily stable value of λ in the case c < 0. This is because

they restricted the set of potential values of λ to the interval [1/2, 1]. Bolle (2000) and

Possajennikov (2000) contributed by pointing this out, and Possajennikov (2000) derived

the evolutionarily stable preferences for the case c < 0. Using preferences of the slightly

different parametric form

fα (x, y) = π (x, y) + α · π (y, x) , (19)

for α ∈ R, he reports a stable value α∗ = c/2 which is equivalent to the result reported above

(since λ∗/ (1− λ∗) = c/2). He further lifts the restriction c ∈ (−1, 1) imposed by Bester and

and Güth (1998), and shows that there exists an evolutionarily stable value of α, namely,

α∗ = c/2, if and only if c ∈ [−2, 1] ∪ (2,+∞).

Remark 1 If for each possible matched pair there exists a unique Nash equilibrium, the

average equilibrium material payoff to a resident and to a mutant is linear in the share

of mutants ε (recall (16)). Hence, it is possible to recast the model as a standard two-

player evolutionary game, in which the preference traits are strategies, the set Λ of potential

preference traits λ is the set of strategies, and the payoff function is π̂ : Λ2 → R, where for
each pair (λ, τ) ∈ Λ2, π̂ (λ, τ) is defined as π [x̂ (λ, τ) , x̂ (τ , λ)]. In this evolutionary game, a

“strategy”λ ∈ Λ is evolutionarily stable against “strategy”τ ∈ Λ if either π̂ (λ, λ) > π̂ (τ , λ),

or π̂ (λ, λ) = π̂ (τ , λ) and π̂ (λ, τ) > π̂ (τ , τ), just as in Maynard Smith and Price (1973).

Indeed, this is the approach adopted by Bester and Güth (1998), with Λ = [1/2, 1]

A more general model, which encompasses the ones discussed above as special cases, was

analyzed by Heifetz, Shannon, and Spiegel (2007a,b). They consider a general class of two-

player strategic interactions that need not be symmetric. In order to facilitate comparison

with other models in this survey, we focus on the symmetric special case of their model, and

when the strategy set X is a subset of R. The material payoff function π : X2 → R is taken
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to be thrice continuously differentiable. They consider utility functions of the form

fδ (x, y) = π (x, y) + v (x, y, δ) , (20)

where the function v (also taken to be trice differentiable) represents what the authors call

the individual’s disposition. The parameter δ is taken to be a real number that belongs to

some interval D ⊂ R containing a neighborhood of 0, and v (x, y, 0) = 0 for all strategy pairs

(x, y). Hence, δ represents the intensity of the disposition, with δ = 0 corresponding to Homo

oeconomicus. Bester and Güth’s (1998) model (for π is thrice continuously differentiable)

is the special case when v (x, y, δ) = δ · π (y, x) for δ = (1− λ) /λ (and Possajennikov

(2000) corresponds to v (x, y, δ) = δ · π (y, x) for δ = α). Heifetz, Shannon, and Spiegel

(2007a,b) proceed by analyzing evolutionary drift in the intensity parameter δ for any given

disposition function v. Such an evolutionary analysis thus takes the type space Θ to be the

unidimensional manifold Fv ⊂ F consisting of all functions fδ of the form (20) for some

δ ∈ D, where Homo oeconomicus is represented by f0.

Using the same notation as above, for any disposition v, and any type pair fδ, fτ ∈ Fv,
let (x̂ (δ, τ) , x̂ (τ , δ)) denote a Nash equilibrium strategy in a pair in which the types are δ

and τ . Equilibrium uniqueness and differentiability is imposed as an assumption in Heifetz,

Shannon, and Spiegel (2007a).9

Given their assumptions, the (total) derivative dπ [x̂ (τ , δ) , x̂ (δ, τ)] /dτ , evaluated at τ =

δ measures the net effect on a individual’s (equilibrium) material payoff from a marginal

change of his type, away from the resident type δ. Recall from the description of Bester

and Güth (1998) that, in a model where the population is a continuum, this derivative also

measures the net payoff effect of mutating, at the margin, away from the resident type,

evaluated in the limit as the population share of mutants tends to zero. If this marginal

effect is strictly positive (negative), it would thus pay off to mutate towards a higher (lower)

value in the type space. Hence, a necessary condition for a type δ to be evolutionarily stable

is that dπ [x̂ (τ , δ) , x̂ (δ, τ)] /dτ = 0 when evaluated at τ = δ. In a population consisting of

Homo oeconomicus, i.e., with residents of type δ = 0, this total derivative equals

π1 [x̂ (0, 0) , x̂ (0, 0)] · x̂1 (0, 0) + π2 [x̂ (0, 0) , x̂ (0, 0)] · x̂2 (0, 0) . (21)

The first term is the effect that the marginal mutation has on the mutant’s equilibrium

material payoff due to the ensuing change in own strategy. The second term is the effect

9In their companion paper (2007b), they instead assume a selection from the Nash equilibrium correspon-

dence that is continuously differentiable at the origin in their type space.
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that the marginal mutation has on the mutant’s equilibrium material payoff due to the

ensuing change in the opponent’s strategy. The first term must be nil, because in this

setting the first-order condition π1 (x̂, x̂) = 0 must hold for any x̂ ∈ Xπ. Hence, whenever

there is a strategic commitment effect of preferences, in the sense that x̂2 (0, 0) 6= 0, and the

individual’s material payoff is affected by this (i.e., π2 (x̂, x̂) > 0), then Homo oeconomicus

is evolutionarily unstable.10 In sum:

Observation 6: Under complete information, for almost all two-player material-

payoff games and for almost any disposition (such as altruism or spite), Homo

oeconomicus is unstable, and instead some non-zero intensity of the disposition

will be stable.

Analyzing the stability of preferences within the class of altruistic preferences of the form

(19), in Alger and Weibull (2012) we further derived a result which establishes a link between

the strategic nature of the material payoff game and the nature of stable preferences. We

considered any continuously differentiable material payoff function π : X2 → R such that
π2 6= 0 and such that for any degrees of altruism α, β ∈ (−1, 1) there exists a unique interior

and differentiable pair of Nash equilibrium strategies, (x̂ (α, β) , x̂ (β, α)). Using the first-

order condition for (x̂ (α, β) , x̂ (β, α)) to be an interior Nash equilibrium strategy, namely,

π1 [x̂ (β, α) , x̂ (α, β)] = α · π2 [x̂ (α, β) , x̂ (β, α)] , (22)

the necessary condition for a degree of altruism α ∈ (−1, 1) to be evolutionarily stable (see

(21)) can be written

α · x̂1 (α, α) = −x̂2 (α, α) . (23)

Call the strategies strategically neutral if π12 (x, y) = 0 for all strategies x and y, strategic

substitutes if π12 (x, y) < 0 for all strategies x and y, and strategic complements if π12 (x, y) >

0 for all strategies x and y. Then (Alger and Weibull, 2012):

Observation 7: Under uniform random matching in a continuum population

with observable preference types, Homo oeconomicus is evolutionarily stable if

strategies are strategically neutral (in terms of material payoffs), and unstable if

strategies are either strategic complements or strategic substitutes. In the case of

10For evolutionary stability, they use asymptotic stability in payoff-positive selection dynamics.
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strategic complements, altruism emerges, while spite emerges in the case strategic

substitutes.

The key point here is that under complete information the specifics of the material game

matter for stable preferences. In our evolutionary past, especially in pre-industrial times,

the material game may in turn have depended on the environment. To see this, suppose that

the material game represents food production in a community. Compare two populations,

one in which hunted big game constitutes the main food source, and one in which gathered

insects, roots and berries are the main food source. Now, hunting big game typically requires

teamwork in which efforts are strategic complements, while efforts in food gathering are

strategically neutral or strategic substitutes (they are strategic substitutes, for instance, if

food is scarce and the distance an individual has to cover to find food to gather depends

on the efforts spent by others in the community on food gathering). The results reported

above suggest that evolution by natural selection can sustain a higher degree of altruism in

the first population than in the second.

4.1.3 A parallel with contract theory

While models in the literature on preference evolution are typically not cast as descriptions

of market interactions, it is clear that strategic commitment may be valuable in markets. For

instance, in duopolistic markets under Cournot competition, it can pay off to be aggressive

by somehow committing to producing a quantity exceeding the Cournot-Nash equilibrium

quantity. This is the point made by Fershtman and Judd (1987). We describe their model

here in order to highlight the differences and similarities with preference evolution models.

Consider a duopolistic market in which a firm who produces the quantity x when the

competitor produces the quantity y garners profit

π (x, y) = (b− x− y)x− cx, (24)

for some b > c ≥ 0. If the goal of each firm is to maximize its profit, the unique Nash

equilibrium quantity is x̂ = (b− c) /3, and each firm’s profit is π (x̂, x̂) = (b− c)2 /9. Suppose
now instead that one firm still seeks to maximize its profit (say, its manager has a contract

with a profit bonus), while the other seeks to maximize a weighted sum of profit and sales

(say, its manager has a bonus scheme based on both profit and sales)

fγ (x, y) = γ · [(b− x− y)x− cx] + (1− γ) · (b− x− y)x. (25)
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If the weight γ is smaller than one, it is as if the firm’s cost was below c. As a result, the

firm will then produce more than if it simply sought to maximize profit. In response to this,

the competitor, who is assumed to know the goal function fγ, will produce less. It is easy

to verify that the firm whose (manager’s) goal function is fγ obtains a higher equilibrium

profit than the firm whose (manager’s) goal function is its profit, π.

Based on this observation, Fershtman and Judd (1987) study a two-stage interaction

between the two firms to determine which goal function should be expected to emerge as the

result of competition between them. In the first stage, the owners of the firms simultaneously

choose a weight each in R, a weight to be attached to the profit in the convex combination
described in (25). Let γ and µ denote the chosen values. In the second stage, the firm

managers simultaneously choose a quantity each to be produced, based on the goal functions

chosen by their respective owners in the first stage. Anticipating the equilibrium quantities

x̂ (γ, µ) and x̂ (µ, γ), where

x̂ (γ, µ) =
b− c

3
+
c (1 + µ− 2γ)

3
, (26)

the owner who picks γ anticipates the profit Π (γ, µ) ≡ π (x̂ (γ, µ) , x̂ (µ, γ)), while the owner

who picks µ anticipates the profit Π (µ, γ) ≡ π (x̂ (µ, γ) , x̂ (γ, µ)). Hence, it is as if the two

owners played a simultaneous-move symmetric game in which the strategies are γ and µ, the

common strategy set is R, and the payoff function is Π : R2 → R. The unique symmetric
equilibrium of this game is

γ∗ = 1− b− c
5c

. (27)

In sum, in a duopolistic market in which each firm manager chooses the quantity to be

produced, a firm owner should not be expected to request his manager to maximize profit.

Instead, if each owner chooses to provide incentives to his managers so that she maximizes

a function of the form given in (25), then the firm owners best respond to each other by

setting γ = γ∗. In other words, a positive weight is given to sales, and a weight below 1 is

given to profit (note that the weight given to profit can even be negative!). This apparently

counter-intuitive result apparently hinges on the assumption of complete information about

contracts, enabling contracts to act as commitments.

While Fershtman and Judd (1987) do not explicitly model the process by which firms

initially appear and perhaps eventually go bankrupt, their result shows that it is necessary to

interpret with care Milton Friedman’s (1953) claim that “unless the behavior of businessmen

in some way or other approximated behavior consistent with the maximization of returns,

22



it seems unlikely that they would remain in business for long”: managers of successful firms

may not necessarily seek to maximize profits.

4.2 Assortative random matching

Until now we have only examined settings with uniform random matching, i.e., in which

the type distribution that an individual faces in the matching process is independent of his

own type. It is hard to think of real societies where uniform random matching would occur.

Indeed, natural populations are typically structured into (geographic, cultural, linguistic or

socioeconomic) groups, and interactions tend to occur preferentially, though not exclusively,

within these groups, for reasons including transportation costs and homophily. This in turn

implies that carriers of a rare mutant trait tend to relatively often interact with each other,

perhaps even unbeknownst to them. For example, suppose that preferences are genetically

transmitted, and suppose that in an initially homogenous population suddenly a new pref-

erence type appears in one individual. In the second generation some interactions between

carriers of the new trait may occur between siblings and in the third among cousins.

A strand of the evolutionary literature investigates the consequences of such assortative

matching on the stability of preference types. The evolution of genetically transmitted traits

in structured populations, giving rise to assortativity, was initially formalized in the island

model (Wright, 1931). And although some work on preference evolution uses the island

model (Rogers, 1994, Akçay and van Cleve, 2012, Alger, Weibull, and Lehmann, 2018), in

economics assortativity has mostly been modeled as an abstract function that maps the

distribution of traits in the population to probabilities governing the matching of interacting

individuals. This formalization of assortativity, pioneered by Bergstrom (1995, 2003), is

outlined below for n-player interactions (following Alger and Weibull, 2016).11

In any population state s = (f, g, ε) ∈ Θ2× (0, 1), the number of mutants– individuals of

type g– in a group that is about to play the material-payoff game, is a random variable, T .

For any resident drawn at random from the population let pm(ε) be the probability that the

number of mutants in the resident’s group is m, for m = 0, 1, .., n − 1.12 Likewise, for any

mutant, also drawn at random from the population, let qm(ε) be the conditional probability

11For a more general formalization of assortative matching rules, with results for strategy evolution, see

Jensen and Rigos (2018).

12In the special case of uniform random matching, pm (ε) is as defined in (3).
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that the number of other mutants in his or her group is m = 0, .., n − 1. Let p(ε) =

(p0(ε), ..., pn−1(ε)) and q(ε) = (q0(ε), ..., qn−1(ε)) be the so defined probability distributions.

We will say that the random matching is uniform if p(ε) = q(ε), and assortative if p(ε) 6=
q(ε).

The literature has examined models in which both p(ε) and q(ε) are continuous in the

mutant population share, ε ∈ (0, 1), and converge to some limit points p∗ and q∗, respectively,

as ε→ 0. These limit points turn out to play a key role in the analysis of stable preferences in

a continuum population. In a continuum population, residents virtually never meet mutants

when the latter are vanishingly rare, so p∗ = (1, 0, 0, ..., 0). Turning now to the limit vector

q∗, which we call the assortativity profile of the matching process, note first that in the

special case of uniform random matching, the matching probabilities for mutants are the

same as for residents, so then q∗ = p∗. Under assortative matching, it is useful to study

the difference between the probability Pr[f |f, ε] for an individual of the resident type f that
another, uniformly randomly sampled member of his group also has the resident type, and

the probability Pr[f |g, ε] of this event for an individual of the mutant type g:

φ(ε) = Pr[f |f, ε]− Pr[f |g, ε].

This defines the assortment function φ : (0, 1) → [−1, 1] (the same for all type pairs).

Suppose that this function is continuous and that it has a limit value, σ, as the mutant share

tends to zero, to be called the index of assortativity of the matching process (Bergstrom,

2003). Since limε→0 Pr[f |f, ε] = 1, it is immediate that q∗ = (1− σ, σ) in the special

case of pairwise interactions (n = 2). For interactions in larger groups there remains a

statistical issue, namely whether or not the types of other members of a mutant’s group are

statistically dependent of each other or not. An important special case is when a mutant’s

other group members’types are conditionally independent of each other. This case arises,

for example, in groups of siblings when each child’s type is an independent random draw

from the parents’types, or in groups of students from the same school, when each student’s

type is independently drawn from the teachers’types. Then q∗ is binomial:

q∗m =

(
n− 1

m

)
σm (1− σ)n−1−m for m = 0, 1, ..., n− 1. (28)

We now ask whether assortativity affects the stability of preferences, and if so, how.
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4.2.1 Incomplete information

In our studies of preference evolution under incomplete information and assortative matching

(Alger and Weibull, 2013, 2016), we let the type space be the full set F of continuous and

aggregative utility functions. We found that a specific kind of utility function, hitherto

unstudied in economics, stands out. We called this class of utility functions Homo moralis.

An individual is a Homo moralis with morality profile κ ∈ ∆ if his or her goal function

f ∈ F is of the form
fκ (x,y) = E [π (x,Y )] ∀ (x,y) ∈ Xn, (29)

where Y is a random strategy vector in Xn−1 such that with probability κm exactly m ∈
{0, ..., n− 1} of the n−1 components of the vector y are replaced by x, with equal probability

for each subset of size m, while the remaining components of y keep their original values.

Homo moralis preferences have a Kantian flavor: for any given strategy profile, an in-

dividual with such preferences evaluates her or his strategy choice in the light of what the

material payoff would be, should some or all other individuals also choose that strategy. At

one extreme of the spectrum of Homo moralis we find Homo kantientis, the variety that has

morality profile κ = (0, ..., 0, 1), in which case E [π (x,Y )] = π (x, x, ..., x). Individuals of this

“pure Kantian”type always choose a strategy that, if hypothetically adopted by everyone

in the group, would maximize all group members’material payoffs. At the opposite extreme

we find Homo oeconomicus, a Homo moralis with morality profile κ = (1, 0, ..., 0), in which

case E [π (x,Y )] = π (x,y). The behavior of all other varieties of Homo moralis lies between

these two extremes. Homo moralis with morality profile κ ∈ ∆ behaves as if she followed a

probabilistic version of Kant’s categorical imperative (Kant, 1785); she evaluates the strate-

gies at her disposal in the light of what would happen in the hypothetical scenario in which

others would probabilistically use her strategy, according to the probability distribution κ.13

While the function in (29) may be mathematically fairly involved, it is particularly simple

if one assumes κ = Bin (n− 1, κ), for some κ ∈ [0, 1]. The utility is then the individual’s ex-

pected material payoff if, hypothetically, each other player would statistically independently

switch to his strategy with probability κ. In this one-dimensional case, κ can be referred

to as the individual’s degree of morality. This is particularly clear for pairwise interactions

13It should be noted that, for finite games, the utility of an individual with Homo moralis preferences

is typically non-linear in own mixed strategy. Such preferences do not belong to the set of preferences G

considered by Dekel, Ely, and Yilankaya (2007).
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(Alger and Weibull, 2013):

fκ (x, y) = (1− κ) · π (x, y) + κ · π (x, x) . (30)

Alger and Weibull (2013, 2016) establish:

Observation 8: Under assortative random matching in a continuum population,

and unobservable preference types, Homo moralis with the assortativity profile

of the matching process as its morality profile is evolutionarily stable against all

behaviorally distinct types, and the latter are evolutionarily unstable.

In other words, evolutionary stability favors Homo moralis preferences of a morality

profile that precisely reflects the assortativity of the matching process, i.e., κ = q∗. In

particular, under conditional independence (see (28)), Homo moralis with degree of morality

κ = σ is evolutionarily stable.

The intuition for the result is that in a population that consists almost solely of Homo

moralis with the “right”morality profile, these individuals preempt entry by rare mutants by

using some strategy that would maximize the average material payoff to a vanishingly rare

mutant who would enter this population.14 To see this, note that by the same (topological)

arguments as those used for the special case of uniform random matching (see Observation 3

and the discussion preceding it), it is suffi cient to evaluate the average equilibrium material

payoffs π̄R and π̄M for each (x̂, ŷ) satisfying{
x̂ ∈ arg maxx∈X f

(
x, x̂(n−1)

)
ŷ ∈ arg maxy∈X

∑n−1
m=0 q

∗
m · g

(
y, x̂(n−1−m), ŷ(m)

)
,

(31)

i.e., the system of equations defining (Bayesian) Nash equilibrium in the limit case when

ε → 0 (note that (7) holds for any p(ε), q(ε)). Importantly, the result does not rely on

individuals seeking to behave in a way which materially benefits the group to which they

belong; instead, it is driven by individual utility maximizing behavior, and the material

payoff benefit that such utility maximization bestows on the individual.

We note that in the special case of two-player constant-sum games, the preferences of

Homo moralis with any degree of morality κ < 1 are identical with those of Homo oe-

conomicus; the first utility function is but a positive affi ne transformation of the second

14See also Alger and Weibull (2013) and Robson and Szentes (2014) for a similar observation.
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(uκ (x, y) = aπ (x, y) + b for a > 0 and b ∈ R). Such Homo moralis are thus behaviorally
identical to Homo oeconomicus. Not surprisingly, Homo oeconomicus prevails in all decision

problems, just as under uniform random matching (see Section 3). Indeed, in decision prob-

lems material payoffs are unaffected of what others do, and hence, Homo moralis preferences

are represented by E [π (x,Y )] = E [v (x)] = v (x), for all strategies x and random strategy

profiles Y , irrespective of the morality profile. In sum:

Observation 9: Under assortative random matching in a continuum population,

with unobservable preference types, Homo oeconomicus is behaviorally identical

with every Homo moralis except for Homo kantientis, in all decision problems,

and in all two-player constant-sum games.

Prior to turning to preference evolution under complete information, we briefly discuss a

seminal contribution for strategy evolution.

4.2.2 Strategy evolution

In his paper, Bergstrom (1995) focuses on pairwise interactions, and he studies the stability

of genetically determined strategies in interactions between siblings. He shows how the nec-

essary condition for a strategy to be evolutionarily stable depends on whether reproduction

is asexual or sexual, and in the latter case, on whether the preference trait is autosomal dom-

inant or recessive. Under asexual reproduction, individuals are clones of their single parent,

and hence, siblings always have the same preferences. Hence, σ = 1, any evolutionarily

stable strategy must also be a Nash equilibrium in a game where the payoff to each player is

fκ for κ = σ = 1. Under sexual reproduction and an autosomal dominant preference trait, in

the limit as the mutant share ε tends to zero, the probability that a sibling of an individual

with a mutant strategy is 1/2, while that probability equals zero for an individual with the

resident strategy. Hence, σ = 1/2, and any evolutionarily stable strategy is what Bergstrom

(1995) calls semi-Kantian, i.e., it must be a Nash equilibrium in a game where the payoff to

each player is fκ for κ = σ = 1/2. By contrast, under sexual reproduction and an autosomal

recessive preference trait, an evolutionarily stable strategy must be a Nash equilibrium in

a game where the payoff to each player involves a mix of selfish, Kantian, and altruistic

motives, as follows:

w (x, y) =
3

5
· π (x, y) +

1

5
· π (x, x) +

1

5
· π (y, x) . (32)
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A key insight generated by these results is that the transmission process itself matters for

which strategies may be evolutionarily stable.15 This is related to the huge literature in

evolutionary biology on the evolution of traits when genetically related individuals interact

(Hamilton, 1964, Grafen, 1979, Hines and Maynard Smith, 1979, Rousset, 2004).

4.2.3 Complete information

Returning to preference evolution under assortative matching, models with pairwise interac-

tions under complete information were examined by Alger and Weibull (2010, 2012). Both

models focused on the class of altruistic preferences, see (19), and on interactions with a

unique and differentiable Nash equilibrium for each pair of preference types (α, β) ∈ (−1, 1)2.

Hence, the degree of altruism α is evolutionarily stable if for all β 6= α, there exists ε̄β such

that for all ε ∈ (0, ε̄β), the average equilibrium material payoff to a resident exceeds that to

a mutant:

Pr [α|α, ε] · π [x̂ (α, α) , x̂ (α, α)] + Pr [β|α, ε] · π [x̂ (α, β) , x̂ (β, α)] (33)

> Pr [α|β, ε] · π [x̂ (β, α) , x̂ (α, β)] + Pr [β|β, ε] · π [x̂ (β, β) , x̂ (β, β)] .

Given that the conditional probability functions are continuous (by assumption), it is suffi -

cient to examine this inequality in the limit as ε tends to zero, i.e.:

π [x̂ (α, β) , x̂ (β, α)] > (1− σ) · π [x̂ (β, α) , x̂ (α, β)] + σ · π [x̂ (β, β) , x̂ (β, β)] . (34)

Noting that the two sides of this inequality are equal when β = α, the following first-order

condition is necessary for α ∈ (−1, 1) to be evolutionarily stable:

(1− σ) · ∂π [x̂ (β, α) , x̂ (α, β)]

∂β
+ σ · dπ [x̂ (β, β) , x̂ (β, β)]

dβ

∣∣∣∣
β=α

= 0. (35)

Using the first-order condition for (x̂ (α, β) , x̂ (β, α)) to be an interior Nash equilibrium

strategy pair (recall (22)), this equation is equivalent to

(σ − α) · x̂1 (α, α) + (1− σα) · x̂2 (α, α) = 0. (36)

This generalizes the equation (23) from uniform random matching to assortative matching,

and it is then straightforward to show:

15For an early analysis by economists of evolutionarily stable strategies in the prisoner’s dilemma in the

presence of assortative matching, see also Bowles and Gintis (1998).
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Observation 10: In a continuum population, under assortative matching and

observable preferences, evolutionary stability within the class of altruistic prefer-

ences requires the degree of altruism to equal the index of assortativity if strate-

gies are strategically neutral (in terms of material payoffs), to exceed the index of

assortativity if strategies are strategic complements, and be lower than the index

of assortativity if strategies are strategic substitutes.

By contrast to settings with uniform random matching (see Observation 7), then, here

a positive degree of altruism may be stable even when strategies are strategic substitutes.

Like under uniform random matching, however, the stable degree of altruism depends on the

nature of the material game.

Arguably, such dependence on the material game can be explored to investigate how

preferences depend on the environment in which the population evolves, in so far as this

environment affects material payoffs. In Alger and Weibull (2010) we examine in detail

a material game which may well have been relevant in our evolutionary past: grown-up

siblings exert effort towards production, whose outcome is uncertain, and, upon observing

each other’s output each sibling may choose to share some of its output with the other.

Properties of the associated evolutionarily stable degree of sibling altruism are derived, and

numerical simulations show how it depends on the harshness of the environment, such as the

costs of and probabilistic returns to effort. We found that the stable degree of altruism is lower

in harsher environments. This result may appear counter-intuitive since risk-sharing has a

larger survival value in harsh environments. The result is explained by the fact that altruists

are more vulnerable to exploitation by less altruistic siblings in harsher environments. In

harsh environments, individuals work harder, so a rare mutant who is slightly less altruistic

than the residents is almost certain to be helped by his sibling if his output is low.16

4.3 Finite populations

Until now we have focused on infinitely large populations, which, admittedly, is an unrealistic

assumption. Accordingly, a strand of the literature has modeled preference evolution in finite

populations. The key implication is that, even absent any assortativity in the matching

process, the distribution of types that an individual faces in its matches depends on his own

16See Alger and Weibull (2008) for a discussion of these results in light of evidence on the strength of

family ties in different parts of Europe in pre-industrial times.
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type. We begin by illustrating this point with a mini ultimatum bargaining game, analyzed

by Huck and Oechssler (1996), and then turn to the main contribution by Ok and Vega-

Redondo (2001). Prior to doing this, however, we note that the definition of evolutionary

stability can still be applied, by letting the share ε of mutants be the number of mutants

divided by total population size.

Individuals in a finite population of finite sizeN (whereN is even), are randomly matched

into pairs to play two rounds of the mini ultimatum bargaining game, once in the proposer

role and once in the responder role; individuals cannot observe each other’s type, and the

authors further assume that individuals do not condition play in the second round on the

play in the first round. When in the responder role, an individual either accepts or rejects

the proposer’s offer. If she accepts, the proposer’s offer is implemented; otherwise, they both

get material payoff of 0. When in the proposer role, a player can choose between the fair

split of the endowment, which is set to 2, or an egoistic split, which, if accepted, would give

2− δ to him and δ ∈ (0, 1) to the responder. Huck and Oechssler (1996) assume that there

are two types of players. Type A is Homo oeconomicus, while Type B gets subjective utility

ρ ∈ (δ, 1) from rejecting an unfair offer. Interactions occur under incomplete information.

Anticipating that Type A individuals accept all offers, while Type B individuals accept only

fair offers, it is optimal for an individual to offer the egoistic split only if he expects to meet

a Type B with a suffi ciently low probability. Suppose that Type A is the resident type, and

that one mutant of Type B appears in the population. For some parameter values, both the

residents and the mutant then offer the egoistic split. This results in π̄B > π̄A if the benefit

of always getting 2 − δ in the proposer role net of the material cost of turning down the

egoistic offer, is greater than the benefit of getting 2−δ in the proposer role with probability
(N − 2) / (N − 1) only, which is the case for residents.17

Ok and Vega-Redondo (2001) propose a more general model of preference evolution in

n-player interactions in finite populations, both under complete and incomplete information.

Their goal is to establish results on the stability properties of Homo oeconomicus preferences,

and they confine their analysis to population states in which there is at least one individual

of the mutant type present. Under complete information they generalize the argument illus-

trated by the hawk-dove game above by showing that in any game where it would pay off

materially to be a Stackelberg leader, Homo oeconomicus is materially outperformed by a

type who is committed to playing the strategy that a Stackelberg leader would play against a

17A similar effect was noted by Schaffer (1988) in a model of strategy evolution.
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follower with Homo oeconomicus preferences. In a match between a Homo oeconomicus and

this committed type, the latter materially outperforms the former. Hence, if the committed

type is a rare mutant in a population with Homo oeconomicus as residents, the mutants

materially outperform residents (even if they perform worse than residents when matched

with each other).18 Under incomplete information, for settings in which the material payoff

function is continuous and strictly concave, and utility functions are in the set F , they show

that while Homo oeconomicus may be unstable when the population is small, there exists a

population size above which Homo oeconomicus is evolutionarily stable against behaviorally

distinct types. This shows that the corresponding result derived under incomplete informa-

tion uniform random matching in a continuum population (see Observation 3) is robust with

respect to population size.

In sum:

Observation 11: In finite populations, in a large class of settings under incom-

plete information Homo oeconomicus is evolutionarily stable if and only if the

population is large enough.

5 Discussion

We conclude by discussing a number of issues that we feel should receive more attention by

researchers in this field.

5.1 The preference type space

The results reported above indicate that predictions regarding the evolutionary viability

of preferences evidently depend on assumptions regarding the set of potential preferences.

In this respect the literature has so far focused on two main approaches. One consists in

minimally restricting the set of potential preferences, while the other one restricts attention

to a certain parametric class of preferences. In both cases, the domain of preferences is the

18Koçkesen, Ok and Sethi (2000a,b) make a similar point with a mutant utility function which consists

in maximizing own material payoff relative to that of the opponent(s). They do not, however, conduct an

evolutionary analysis.
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set of strategy profiles in the material game. Going forward, we see several avenues for future

research on this issue.

First, while the literature which restricts attention to a certain parametric class of prefer-

ences has tended to focus on altruistic preferences (Becker, 1976), the behavioral economics

literature has proposed a menu of parametric classes of preferences. Thus, the evolutionary

foundations of warm glow (Andreoni, 1990), inequity aversion (Fehr and Schmidt, 1999),

social responsibility (Brekke, Kverndokk, and Nyborg, 2003), or lying costs (Kartik, 2009),

among others, remain to be examined.

Second, there is no particular reason for why the domain of preferences should be re-

stricted to the set of strategy profiles in the material game. In view of the behavioral

economics literature, two alternative hypotheses seem promising. First, an individual’s pref-

erences may depend on the preferences of his opponent. An example of such preferences is

reciprocal altruism (Levine, 1998), whereby the weight that an individual attaches to his op-

ponent’s material payoffdepends on some underlying altruism parameter and the underlying

altruism parameter of his opponent. Sethi and Somanathan (2001) adopt a similar prefer-

ence specification and identify the evolutionary viability of reciprocal altruists compared to

Homo oeconomicus. But one can imagine many other such preferences. Second, people may

have a desire to conform (Bernheim, 1994), a sense of identity (Akerlof and Kranton, 2000),

or image concerns (Bénabou and Tirole, 2006). Although some work has been conducted

on the evolutionary foundations of social mindedness (Fershtman and Weiss, 1998), more

general analyses are called for.

Third, the commonly adopted approach in the economics literature on preference evo-

lution is to interpret the material payoff as fitness.19 This assumption merits closer exam-

ination. Indeed, although it is not outlandish to assume that fitness (loosely speaking, the

number of surviving offspring if the preference trait is genetically determined, and the num-

ber of cultural “offspring”if the preference trait is acquired through cultural transmission)

is monotonic in some material payoff (calories, wealth, physical or mental achievements, cool

factor, etc.), it is not clear whether the preferences predicted in models where the mater-

ial payoff is interpreted as fitness in fact apply at the material-payoff or at the fitness level.

This question is key for researchers who want to test the theoretical predictions. Since fitness

19A notable exception is Robson (1996), who analyzes the evolutionary foundations of von Neumann-

Morgenstern utility functions over material payoffs, when these payoffs determine the number of children.

Attention is restricted to decision problems, however.
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is a complex notion, which evolutionary biologists have modeled for decades, collaboration

between economists and evolutionary biologists on this issue may be fruitful. Some such

interdisciplinary efforts have been made in recent years; see Day and Taylor (1998), Akçay

et al. (2009), Akçay and van Cleve (2012), Lehmann, Alger, and Weibull (2015), and Alger,

Weibull, and Lehmann (2018).

5.2 Observability of preferences

The theory summarized above indicates that the observability of preferences matters signif-

icantly for the qualitative nature of stable preferences. First, observability enables mutants

to benefit materially either by coordinating on effi cient play, or by making residents adopt

a different behavior towards them than towards other residents. Second, under complete

information evolutionarily stable preferences typically depend on the material game, i.e.,

on the environment in which the population evolves. While the literature has delivered a

rich set of results in the two extreme scenarios of complete and incomplete information, less

is known about intermediate scenarios. Heifetz, Shannon, and Spiegel (2007a) consider a

scenario in which an exogenously given share of matches interact under complete informa-

tion, while the remaining share interact under incomplete information. Heifetz, Shannon,

and Spiegel (2007b), as well as Frank (1987), analyze a model in which matched individuals

each receives a noisy signal of the opponent’s preference parameter. Dekel, Ely, and Yi-

lankaya (2007) study the robustness of their results to the assumption that each individual

observes his opponent’s preferences with some probability p ∈ (0, 1) (independent of what

the opponent observes). Many other intermediate scenarios can be imagined.

The ability of individuals to correctly perceive the preferences of those with whom they

interact cannot be dissociated from the issue of mimicry, however. If it pays off materially

to be perceived as being of a certain type, would it then not pay off even more to appear

to be of this type and in fact maximize own material payoff? Deception is commonplace in

the animal and the vegetal kingdom (and other kingdoms of life). There is thus reason to

believe that it should also be present in our species. On the other hand, it has often been

argued that emotions, such as irrepressible anger, or physical states, such as blushing, are

honest signals of preferences (Frank, 1987, 1988, Hirshleifer, 2001). In view of the results

reported above, that in some settings the flexible Homo oeconomicus, who materially best

responds to (its perception of) the social environment can coexist with committed types, it

would be interesting to examine heterogeneous population states, with both mimickers and
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non-mimickers. Such theoretical investigations should seek to determine, in general settings,

conditions which enable such heterogeneous population states to be stable, or prevent them

from being so. For recent contributions in this direction, see Mohlin (2012) and Hopkins

(2014).

Relatedly, in almost all models individuals do not select their interaction partners. Lift-

ing this assumption is certainly important; for some contributions in this direction, see

McNamara et al. (2008) and Izquierdo, Izquierdo, and Vega-Redondo (2010).

5.3 Individuals’environment

The literature on preference evolution in strategic interactions focuses almost exclusively

on populations which evolve in a given and fixed environment, represented in the models

by the material payoff function, the strategy set, the population size, and the matching

process. Hence, no assumptions are needed regarding the ability of individuals to perceive

changes in the environment, and a fortiori regarding their ability to respond to such changes.

Intuitively, a changing environment should favor flexible utility maximizers over committed

types. However, intuition alone cannot guide our understanding of whether a changing

environment should tilt the balance in favor of Homo oeconomicus or other preferences.

This is an important agenda for future research.

Another important issue is that the environment itself may partly be a product of prefer-

ences. For instance, in a hunter-gather population the marginal cost of gathering food may

depend on gathering behaviors of past generations, which in turn may have depended on the

time preferences of individuals in these past generations. In spite of the importance of such

interdependence between humans and the environment in which they evolve, this topic has

hitherto not been received much attention (see, however, Sethi and Somanathan, 1996).

Relatedly, institutions– the “humanly devised constraints that structure political, eco-

nomic and social interactions”(North, 1991)– are also endogenous. Through their impact

on the set of available actions and the associated material payoffs, institutions may be ex-

pected to affect preferences. Hence, it is likely that preferences and institutions coevolve, a

phenomenon which is not well understood (for recent contributions, see Belloc and Bowles,

2017, and Wu, 2017). In particular, economists are in a good position to develop models

that analyze whether and how the market economy has affected the prevalence of certain

preferences and traits in humans (Saint-Paul, 2007).
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More generally, in view of the importance of markets in the modern world, and of the

literature on preference evolution, we would like to highlight the possibility that the tra-

ditional stance in economics which consists in treating preferences as primitives may give

rise to policy recommendations which fail to achieve long-term goals. Indeed, this would

be the case if the implementation of such recommendations led to changes in preference

distributions which would deteriorate the situation in the long run.
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