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Abstract

We study a credit market in which multiple lenders sequentially offer financing to a single borrower

under moral hazard. We show that restricting lenders to post single offers involves a loss of generality:

none of the equilibrium outcomes arising in this scenario survives if lenders offer menus of contracts.

This result challenges the approach followed in standard models of multiple lending. From a theoretical

perspective, we offer new insights on equilibrium robustness in sequential common agency games.
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1 Introduction

When firms negotiate with a bank, they commonly have access to a wide range of financial offers: loans

of different size, maturity, interest rate and repayment schedule, with or without guarantees, or associated

credit lines. The same applies to consumer credit: individuals have in general access to multiple sources

of credit (personal loans, revolving credit facilities, overdraft, credit card...) from a given bank. Starting

with the seminal work of Bester (1985), theoretical models of bank competition have rationalised the is-

suance of multiple financial contracts by a given bank as a device to screen different privately informed

borrowers.1 In this paper, we argue that allowing banks to post menus of financial contracts, instead of
∗Università di Roma Tor Vergata, and Toulouse School of Economics (TSM-R-CNRS)
†Toulouse School of Economics, University of Toulouse Capitole (TSM-R)
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1See chapter 5 of Freixas and Rochet (2008) for an overview.
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single offers, crucially affects equilibrium allocations even when there is complete information about the

borrowers’ characteristics.

Our starting point is that firms do not always have fixed-size investment needs, that they fulfil by bor-

rowing from a single bank at a single time. In practice, a firm can choose variable investment amounts,

at different periods, and borrow from several creditors.2 This in turn can affect competition among banks.

Indeed, when firms can borrow from different lenders who do not perfectly coordinate their offers, a creditor

can be affected by his borrower’s future debt issuances. If the borrower subsequently issues additional debt,

defaulting on the initial debt becomes more likely, potentially inducing welfare losses.3 In this paper, we

explore how posting menus including several financial contracts can help creditors to protect themselves

from this risk of debt dilution.

We consider a sequential version of the capital market described by Holmstrom and Tirole (1998), in

which lenders sequentially make offers to a borrower, who then chooses an unobservable effort. We assume

that contracts can be written on all observable variables: in particular, final repayments are a function of

aggregate loans chosen by the entrepreneur. Restricting attention to a two-lender case, we consider two

scenarios: first, lenders can only make single offers; then, they can post menus of financial contracts. We

start by showing that, if the first lender is restricted to single offers, he cannot prevent being undercut by

the second one. Thus, the first lender earns zero profit in any pure strategy equilibrium. We next show that

the opportunity to choose menus of contracts crucially affects market equilibria. Indeed, by posting a menu

of two non degenerate contracts, the first lender is able to prevent any profitable entry from the subsequent

lender, therefore earning a monopolistic profit. As a consequence, none of the equilibrium outcomes arising

when lenders are restricted to single offers survives the introduction of menus.

The literature on multiple lending has traditionally investigated two sets of issues. A first branch aims at

understanding when it can be optimal for a firm to have several rather than a single lender. In these contexts,

multiple lending can be an optimal response to the provision of monitoring activities (Winton (1995) and

Park (2000)), firms’ willingness to default (Bolton and Scharfstein (1996)), or informed lenders’ ability to

extract rents (Rajan (1992) and Berglof and von Thadden (1994)). Closer to our perspective, a second branch
2Multiple banking relationships are pervasive in credit markets: Ongena and Smith (2000) document that the average number of

bank relationships is between 5 and 6 in their sample of 1129 European firms. This is also true for small firms: Guiso and Minetti
(2010) report that among small and medium sized US firms, half of those that borrow at all have more than one lender. (See also
Detragiache et al. (2000)). On consumer credit, Rysman (2007) reports that US households have on average 6.7 payment cards,
and the 2013 Federal Reserve Bank of Boston Survey of Consumer Payment Choice finds that about 60% of US consumers have at
least 2 credit cards.

3As an illustration of this effect, Asquith and Wizman (1990) and Warga and Welch (1993) report that bond value decreases
following LBO announcements. Adams et al. (2009) and de Giorgi et al. (2017) document a large increase in the probability to
default on existing loans after an (exogenous) approval of a new consumer credit.
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considers that multiple lending can arise from lenders’ impossibility to fully control borrowers’ trades, as

in Bizer and DeMarzo (1992), Parlour and Rajan (2001), Bennardo et al. (2015), Kahn and Mookherjee

(1998), Bisin and Guaitoli (2004), Brunnermeier and Oehmke (2013), Castiglionesi and Wagner (2012),

Castiglionesi et al. (2015), and Donaldson et al. (2017). The above multiple lending models typically as-

sume complete information over the borrower’s characteristics, and restrict lenders to post single offers.

Our analysis suggests that lenders have instead an incentive to use menus of contracts to discipline their

competitors.

From a theoretical standpoint, our findings can be interpreted in the light of the common agency liter-

ature, which analyses games in which principals compete through mechanisms in the presence of a single

agent. Under complete information about the agent’s characteristics, it is an established finding that restrict-

ing to single offers involves a loss of generality, i.e. there may exist additional equilibria supported by more

sophisticated mechanisms.4 A second, and possibly more relevant issue is to determine the robustness of

equilibria in single offers, that is, whether they survive to unilateral deviations towards arbitrary mecha-

nisms. In our model, none of such equilibria survives if a principal deviates to a menu of contracts. This is

to be contrasted with the analysis of Peters (2003) for simultaneous games. In his Theorem 1, Peters (2003)

shows that in simultaneous common agency games of complete information, every pure strategy equilibrium

outcome of the single offer game is also an equilibrium outcome of the menu game. This result is often put

forward to justify restricting attention to single offers in economic applications. Our analysis highlights

that this does not extend naturally to sequential settings. Indeed, considering the game in which menus are

allowed, there exists a best response of the first investor to the equilibrium strategy of his opponent that

cannot be characterised through single offers. This suggests that further work is needed to identify robust

equilibria in sequential common agency games.5

Overall, our results indicate that the financial instruments available to lenders are a key element to take

into account when modelling competition in banking.
4The result, acknowledged as a failure of the revelation principle in common agency games, has been established by Martimort

and Stole (2002), and Peters (2001) for games of simultaneous offers, and by Pavan and Calzolari (2009) for games of sequential
offers. These theoretical works have constructed examples of equilibrium outcomes that can be supported by indirect mechanisms,
but not by direct ones. Yet little intuition is provided to document the relevance of such equilibria in standard economic settings. We
are among the first to show the key role of menus (which are indirect mechanisms) to support monopolistic rents in credit markets
subject to moral hazard.

5The role of menus in sequential common agency is also considered by Calzolari and Pavan (2008) who show the existence of
equilibrium outcomes supported by indirect mechanisms that cannot be reproduced by menus. That is, they provide instances in
which indirect mechanisms allow to construct additional threats with respect to those made available by menus. In our context,
menus are sufficiently powerful to secure a monopolistic profit to investor 1 who therefore does not need to rely on more sophisti-
cated devices. Furthermore, Calzolari and Pavan (2008) do not investigate whether “simple” equilibrium outcomes survive in the
menu game, which is the central issue of our paper.
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The paper is organised as follows. Section 2 presents the model, section 3 analyses the game in which

banks are restricted to single offers and Section 4 that in which banks post menus of contracts. Proofs are in

the Appendix.

2 The model

We refer to the standard capital market model of Holmstrom and Tirole (1998), as reformulated by Attar et

al. (2017). A risk-neutral entrepreneur has an endowment A > 0 and a variable size project: an investment

of I ∈ R+ yields a verifiable cash flow GI if the project succeeds, and 0 if it fails. The probability of

success πe depends on the entrepreneur’s binary unobservable effort e = {L,H}, with πH > πL. If the

entrepreneur selects e = L, she receives a private benefit B ∈ R+ per unit invested. The project has a

positive net present value if and only if the entrepreneur selects e = H , that is:

πHG > 1 > πLG+B. (1)

As in Holmstrom and Tirole (1998), to ensure that the optimal (second-best) investment is finite, we assume

that

0 < πHG−
πHB

∆π
< 1, (2)

where ∆π = πH − πL.

The entrepreneur is protected by limited liability and can raise funds from two competing investors. If

she raises I and invests I + A, pays back R in case of success, and 0 in case of failure,6 her net payoff is

U(I,R,H) = πH
(
G(I +A)−R

)
−A if e = H , and U(I,R, L) = πL

(
G(I +A)−R

)
+B(I +A)−A

if e = L. Her reservation utility, U(0) = (πHG− 1)A, is strictly positive given (1). The expected profit of

investor i when he provides Ii and obtains Ri in case of success, is Vi = πeRi − Ii with e ∈ {L,H}.7

Lenders offer menus, that is, sets of financial contracts. Formally, a financial contract for lender i is

Ci = (Ii, Ri(.)), where Ii is his investment, and Ri(.) : R+ → R is the repayment he asks for when the

project succeeds, as a function of the total cash flow.8 The competition game unfolds as follows:

a) Investor 1 offers a menu of contracts M1. Investor 2 observes M1 and offers M2.
6Given the entrepreneur’s limited liability, repayment is always zero if the project fails.
7Note that Vi includes investor i’s actual payment Ri in case of success. This does not preclude default in case of success. For

instance, if the entrepreneur borrows an amount I , promises Ri(I) to investor i, but is only able to repay Ri < Ri(I) in case of
success, say, because the entrepreneur must also repay Rj(I) to investor j and Ri(I) +Rj(I) > G(I +A), then there is default.

8Equivalently, the repayment can be contingent on the aggregate investment.

4



b) Having observedM1 andM2, the entrepreneur chooses one contract in each menu and an effort level.9

c) The cash flow is realised and payments are made.

There is perfect information over investors’ offers. A pure strategy for investor 1 is a menu M1, and a

pure strategy for investor 2 is a mapping that associates a menu M2 to every M1. A pure strategy for the

entrepreneur associates to each array of menus the choice of one contract in each menu and an effort level.

We assume that each menu only contains a finite number of elements, and we further require each Ri(.)

function to be lower semicontinuous on a compact set. These assumptions guarantee that every subgame

admits an equilibrium. Throughout the paper we focus on pure strategy subgame perfect equilibria (SPE).

Given limited liability, the entrepreneur can trade contracts which involve conflicting prescriptions, and

induce strategic default. This is the case if I = I1 +I2 is such thatR = R1(I)+R2(I) > G(I+A). Under

strategic default, the entrepreneur chooses e = L, and obtains B(I1 + I2 +A)−A. Investors do not receive

the contracted-upon repayment (R) but receive a share of the final cash flow proportional to their investment.

Because of (1), investors collectively make negative profit. We denote Ψ the set of aggregate investment-

repayment pairs (I,R) ∈ R2
+ such that the entrepreneur is indifferent between e = H and e = L, and call it

the incentive frontier. On Ψ, we denote (Im, Rm) the monopolistic allocation that maximises the investors’

profit subject to the entrepreneur’s participation.10 Last, in this model, we assume that

πH < 2πL, (3a)

B > (πHG− 1). (3b)

3 The single offers game

We first consider the scenario in which investors can at most post one non-degenerate contract. In this

single offers game, investor 2 successfully undercuts any profitable offer of investor 1, as illustrated by the

following:

Proposition 1 Investor 1 earns zero profit in any SPE. In addition, each profit level between zero and the

monopolistic one for investor 2 can be supported at equilibrium.

Intuitively, if investor 1 proposes a contract that grants him a strictly positive payoff, investor 2 can

always select an investment I2 and a repayment functionR2(.) to undercut investor 1’s offer. The repayment
9Menus always include the null contract C0 = (0, 0) to incorporate the entrepreneur’s participation decisions in a simple way.

10Formally, (Im, Rm) ∈ arg max(I,R)πHR − I s.t. U(I, R,H) ≥ U(I,R, L) and U(I,R,H) ≥ U(0). In the solution, both
constraints are binding and (Im, Rm) ∈ Ψ.
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is designed to discourage the entrepreneur from overborrowing by accepting both loans at a time. Investor

2 then appropriates all available rents providing exclusive financing to the entrepreneur, who optimally

chooses e = H .

At equilibrium, investor 1 can therefore only be active by trading a zero-profit loan contract. We show

that market equilibria can be constructed by letting the entrepreneur accept any zero-profit contract posted

by investor 1, and complementing it with an additional offer of investor 2. The corresponding allocations

are constrained (second-best) efficient and typically yield a strictly positive profit to investor 2.

4 Menus and sequential contracting

We then consider the general framework described in Section 2. In this menu game, the undercutting of

investor 2 may be successfully prevented by the threat that investor 1 includes in his equilibrium menu. This

threat takes the form of an additional, large investment contract, designed to be traded by the entrepreneur

together with any deviating offer of investor 2. In case the entrepreneur overborrows, she is induced to

choose e = L, which deters entry and supports a positive profit for investor 1 at equilibrium. Specifically,

we have the following:

Proposition 2 In any SPE, investor 1 earns the monopolistic profit V ∗1 = πHR
m−Im, and investor 2 earns

zero profit.

To understand how menus help investor 1 secure a monopolistic profit, suppose first that he only offers

the monopolistic contract Cm = (Im, Rm) (along with C0). If the entrepreneur accepts Cm and does not

borrow from investor 2, she obtains by definitionU(0). As Proposition 1 shows, investor 2 can then undercut

Cm. Suppose that he offers C ′2 = (Im, R′2(Im) = Rm − ε), with ε > 0 small, with the additional extreme

penalty R′2(I) = G(I + A) if I 6= Im. C ′2 undercuts Cm because it allows the entrepreneur to borrow

the same amount Im at a lower rate Rm − ε. The issue is that the entrepreneur may choose to accept both

contracts and overborrow. But if she accepts both Cm and C ′2, the entrepreneur defaults because of the

penalty included in C ′2: she then obtains B(2Im + A) − A, which is lower than U(0) by (3a).11 So the

entrepreneur prefers to accept C ′2 only, and investor 1 cannot obtain the monopolistic profit with this single

offer.

Suppose next that investor 1 includes a second contract in his menu: Ĉm = (Îm, R̂m(.)), which is

designed, if accepted, to be traded together with C ′2. This additional contract specifies a larger loan Îm >

11To see this point, note that Im = A(G∆π
B
− 1). The general argument is developed in the proof of Lemma 1 in the appendix.
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Im, and a larger repayment R̂m(I ′2 + Îm) > Rm. To fix ideas, Cm and Ĉm can be thought of as a loan offer

coupled with a credit line. The loan amounts to Im, and the credit line amounts to Îm − Im. Accepting

Cm means that the entrepreneur borrows Im and does not use the credit line; accepting Ĉm means that the

entrepreneur draws on her credit line on top of borrowing Im. We show that it is possible to construct an

additional contract (Îm, R̂m(.)) that prevents investor 2 from profitably undercutting with C ′2: offering C ′2

then induces the entrepreneur to overborrow and default. The use of menus therefore allows investor 1 to

create a threat of overborrowing, which deters competition.12

Precisely, we show in the proof of Proposition 2 that setting the total available credit Îm such that

U(Im, Rm, H) = B(Îm +A)−A, (4)

is sufficient to prevent all unilateral deviations of investor 2. Equation (4) requires the entrepreneur to be

indifferent between her equilibrium payoff U(Im, Rm, H), and the maximal available payoff if she chooses

e = L. In this nonexclusive context, (4) represents an aggregate incentive compatibility constraint for the

entrepreneur. This constraint must be binding at equilibrium. Indeed, if U(Im, Rm, H) > B(Îm +A)−A,

then investor 2 can earn a strictly positive profit by providing a “small” loan to the entrepreneur, without

threatening strategic default.

Proposition 2 shows that only one allocation can be supported at equilibrium, with the first investor

appropriating the whole surplus. Yet, equilibrium strategies are typically indeterminate. Indeed, there is

a wide range of contracts (Îm, R̂m(.)) that can be included in the equilibrium menu of investor 1 that

successfully prevent investor 2’s undercutting. The reason is that Îm is pinned down by (4), but almost any

schedule R̂m(.) such that R̂m(Îm) = G(Îm + A) provides a credible threat. In this respect, an “extreme”

choice could be to set R̂m(I) = G(I+A) for each I ≥ 0. As shown in the proof of Proposition 2, however,

the result also obtains if R̂m(.) is a constant equal to G(Îm + A): in this case, any deviation of investor 2

induces overborrowing and e = L, which makes the deviation not profitable.

While we highlight the importance for lenders to offer more than one contract, our analysis does not

derive general predictions on the number of contracts to be issued at equilibrium. However, we show that

investor 1 can secure the monopolistic profit by posting only one contract on top of Cm. In this case, our

equilibrium menus have a natural interpretation. The menu posted by the first investor includes a contract,

not traded at equilibrium, which offers a higher amount of investment than the one chosen at equilibrium.
12Note that the threat of overborrowing is of the same nature as the one used by investor 2 with the penalty included in C′2 above.
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In practice, the option to obtain a larger loan is embedded in many loan contracts. For instance, when banks

initiate a relationship with a customer, they do not set a priori how much they will lend to that customer

over the course of their commercial relationship. Instead, their credit committees define an internal credit

limit, e.g. a maximum credit exposure, with each client.13 In our interpretation, Îm can be thought of as

an internal credit limit, to the extent that it is announced to the borrower. Banks also grant lines of credit to

their clients,14 which secure additional funding at a predetermined rate: the borrower can draw on a credit

line without asking for further approval from the bank. Drawing on a credit line is equivalent to accepting

the contract Ĉm in our context. There is a large literature explaining why such optional additional loans can

efficiently cope with future liquidity needs. Several empirical studies report however that firms more likely

to face liquidity needs are less likely to rely on lines of credit, suggesting that liquidity provision might not

be the only motivation for the supply of credit lines.15

One implication of our model is that one should observe more credit lines that are not drawn upon in

situations in which nonexclusivity is a prevalent friction of credit markets. Such a friction is more likely

to bind in sectors in which assets are more scalable, or in periods when investment opportunities are more

numerous. Going back to the interpretation in terms of menus, another way to illustrate the results of the

model would be to see if banks tend to offer a larger variety of credit facilities when they are more likely to

face nonexclusivity frictions: to do so, one would need to observe the entire supply of loan offers, and not

only those loans that are accepted by firms. This underlines the need for databases on the entire supply of

bank loans, similar to those available in the insurance industry.16

5 Conclusion

In this paper, we highlight that whether lenders can offer multiple or single contracts affects their ability to

control firms’ borrowing policy, and the resulting competition outcome. In addition, the equilibrium menus

offered by lenders feature similarities with actual lending practices, which sheds light on the strategic role

of credit lines: lenders offer loans with credit lines to discourage future debt issuance and protect lenders’

rents. This provides new insights on the role of credit lines in capital markets.

13See Degryse et al. (2016) for an empirical analysis of the impact of multiple lending on banks’ internal credit limit.
14Sufi (2009) finds that more than 80% of firm-year observations in his 1996− 2003 sample had a credit line, while Acharya et

al. (2014) find that 68% of firm-year observations had one for the period 2002− 2011.
15See Sufi (2009) or Acharya et al. (2014). We complement that literature by providing another reason why banks offer lines of

credit, namely to increase their market power.
16See for instance Cawley and Philipson (1999) who exploit offered price schedules for life insurance from the CompuLife Quote

Software.
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Appendix

PROOF OF PROPOSITION 1

The proof establishes the following two Lemmas.

Lemma 1 Investor 1 earns zero profit in any SPE.

Proof. Suppose, by contradiction, that there is a SPE in which investor 1 earns a positive profit. Denote

(I∗i , R
∗
i (.)) the contract that the entrepreneur trades with investor i = 1, 2 at equilibrium, with I∗1 > 0,

I∗2 ≥ 0, and I∗ = I∗1 + I∗2 . The entrepreneur’s equilibrium payoff U∗ = U
(
I∗1 + I∗2 , R

∗
1(I∗) +R∗2(I∗), H

)
must be such that

U∗ ≥ U(I∗1 , R
∗
1(I∗1 ), H), (5)

where U(I∗1 , R
∗
1(I∗1 ), H) = max{U(0), U

(
I∗1 , R

∗
1(I∗1 ), H

)
, U(I∗1 , (G−

B

∆π
)(I∗1 +A), H)

)
}. Indeed, U∗ is

necessarily larger than the reservation payoff U(0), and than U
(
I∗1 , R

∗
1(I∗1 ), H

)
, the payoff corresponding to

investing I∗1 +A and choosing e = H . Also, given that I∗1 ≤ I∗, and since e = H is chosen at equilibrium,

we have

U(I∗1 , (G−
B

∆π
)(I∗1 +A), H) ≤ U(I∗, (G− B

∆π
)(I∗ +A), H) ≤ U∗, (6)

which implies (5).17 For a given (I∗1 , R
∗
1(I∗1 )), denote (Ī2, R̄2) ∈ Ψ the investment-repayment such that

U
(
Ī2, R̄2, H

)
= U(I∗1 , R

∗
1(I∗1 ), H). Existence and uniqueness of (Ī2, R̄2) are guaranteed by the continuity

and linearity of U(I,R,H). It also follows from the definition of U(I∗1 , R
∗
1(I∗1 ), H) that Ī2 ≥ I∗1 .

We then turn to investors’ equilibrium profit. By assumption, V ∗1 = πHR
∗
1(I∗) − I∗1 > 0, and V ∗2 =

πHR
∗
2(I∗) − I∗2 ≥ 0. Thus, we have V ∗2 < V ∗1 + V ∗2 ≤ min{(πHG − 1)Im, πHR̄2 − Ī2}, where the first

inequality follows from V ∗1 > 0, and the second one from U∗ ≥ U(I∗1 , R
∗
1(I∗1 )) = U(Ī2, R̄2, H).

We next show that there exists a pure strategy for investor 2 yielding him a profit V ′2 > V ∗2 . For

each offer (I1, R1(.)) of investor 1, let investor 2 post the single offer (I2, R
ε
2(.)) where I2 is such that

πH
∆π

B(I2 + A) − A = U(I1, R1(I1), H), and where Rε2(I) = G(I + A) for I 6= I2, and Rε2(I2) =

(G − B

∆π
)(I2 + A) − ε, with ε > 0.18 Observe that, if investor 1 posts (I∗1 , R

∗
1(.)), the strategy above

17If a investment-repayment pair (I, R) belongs to the incentive frontier Ψ, it must be that R = (G − B

∆π
)(I + A), that is,

U(I, (G− B

∆π
)(I +A), H) = U(I, (G− B

∆π
)(I +A), L). It follows that, since e = H in any SPE, the equilibrium repayment

R∗1(I∗) + R∗2(I∗) = R∗(I∗) must be smaller than (G − B

∆π
)(I∗ + A), otherwise the borrower would choose e = L. This

guarantees that the second inequality in (6) is satisfied.
18U(I1, R1(I1), H) and I2 are defined in the same way as U(I∗1 , R

∗
1(I∗1 ), H) and Ī2.
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prescribes investor 2 to set I2 = Ī2. We now show that, following this strategy, investor 2 successfully

undercuts (I∗1 , R
∗
1(.)) by inducing the entrepreneur to invest only I2 +A and to select e = H , which yields

investor 2 a profit strictly above the equilibrium one.

Indeed, if the entrepreneur selects e = H , her (unique) optimal choice is to raise I2 only: Rε2(.) is such

that if the entrepreneur raises I2 + I1, she optimally chooses e = L. Furthermore, since U(Ī2, R̄2−ε,H) =

U(Ī2, R̄2, H) + πHε > U(I∗1 , R
∗
1(I∗1 ), H), the entrepreneur strictly prefers to raise I2 only, rather than to

raise I∗1 only, or to raise nothing.19 It remains to show that the entrepreneur optimally chooses e = H at

the deviation stage. Since U(Ī2, R̄2 − ε,H) > U(Ī2, R̄2 − ε, L) by construction, we only have to consider

the alternative situation in which she chooses e = L and raises I∗1 + Ī2. In this case, given Rε2(.), the

entrepreneur strategically defaults and gets

B(I∗1 + Ī2 +A)−A < B
( πL

∆π
+ 1

)
(Ī2 +A)−A = U(I∗1 , R

∗
1(I∗1 )) < U(I2, R

ε
2(I2), H), (7)

where the first inequality follows from (3a) and from Ī2 +A ≥ Ī2 ≥ I∗1 . Thus, given (I∗1 , R
∗
1(.)), there is a

strategy for investor 2 inducing a unique continuation equilibrium in which the entrepreneur chooses e = H

and only raises funds from him. Investor 2’s corresponding profit is V ′2 = min{(πHG−1)Im, πHR̄2−Ī2}−

πHε > V ∗2 . This contradicts the assumption that ((I∗1 , R
∗
1(I∗), (I∗2 , R

∗
2(I∗)) is an equilibrium allocation.

We next show that any profit between zero and the monopolistic one for investor 2 can be supported at

equilibrium.

Lemma 2 For any V ∗2 ∈ [0, πHI
m −Rm], there exists a SPE in which investor 2’s profit is exactly V ∗2 .

Proof. Take any V ∗2 ∈ [0, πHI
m − Rm]. Let (I∗, R∗) ∈ Ψ be the investment-repayment pair such that

πHR
∗− I∗ = V ∗2 . Let also I∗1 be the investment level such that U(I∗1 , I

∗
1/πH , H) = (πHG− 1)(I∗1 +A) =

U(I∗, R∗, H) ≥ U(0). Consider the following strategies for investors:

1. Investor 1 posts {(0, 0), (I∗1 , R
∗
1)}, with R∗1 = I∗1/πH .

2(i). If investor 1 posts {(0, 0), (I∗1 , R
∗
1)}, investor 2 posts {(0, 0), (I∗2 , R

∗
2(·))} with

I∗2 = I∗ − I∗1 R∗2(I∗1 + I∗2 ) = R∗ −R∗1 ≡ R∗2 R∗2(I) = G(I +A) ∀I 6= I∗1 + I∗2 . (8)
19The result obtains since, by construction, U(I∗1 , R

∗
1(I∗1 ), H) = max

(
U(I1, R1(·), H), U(0)

)
.
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2(ii). If investor 1 does not post {(0, 0), (I∗1 , R
∗
1 = I∗1/πH)}, then investor 2 posts {(0, 0), (I∗, R∗)} where

R∗ is a constant.

Observe that U(I∗, R∗, H) = U(I∗1 , R
∗
1(I∗1 ), H) ≥ U(I∗1 , (G −

B

∆π
)(I∗1 + A)), where the last inequality

follows from (2), which guarantees that (I∗, R∗) coincides with the pair (Ī2, R̄2) defined in the proof of

Lemma 1.

We show that these strategies are part of a SPE in which the entrepreneur invests I∗ = I∗1 + I∗2 and earns

U∗ = U(I∗, R∗, H), with R∗ = R∗1 + R∗2(I∗). Investor 2 earns V ∗2 , which is the maximal profit available

to investors when the entrepreneur’s payoff is fixed to be U∗, given that she chooses e = H .

See first that, given the offers above, if the entrepreneur selects e = H , then she optimally invests I∗1 +I∗2 .

Indeed, given R∗2(.), she optimally chooses e = L whenever she trades with investor 2 only. In addition,

since U∗ = U(I∗1 , R
∗
1(I∗1 ), H), the entrepreneur does not strictly prefer to trade with investor 1 only. We

next show that e = H is an optimal effort choice on the equilibrium path. Three cases must be considered.

If the entrepreneur raises I∗1 only, choosing e = L yields U(I∗1 , I
∗
1/πH , L) < U(I∗1 , I

∗
1/πH , H) = U∗. If

the entrepreneur raises I∗1 + I∗2 , choosing e = L yields U(I∗, R∗, L) = U(I∗, R∗, H). If she raises I∗2 only,

she necessarily defaults and obtains B(I∗ − I∗1 +A)−A. One therefore has

B(I∗ − I∗1 +A)−A < B(I∗ +A)−A <
πH
∆π

B(I∗ +A)−A = U(I∗, R∗, H),

where the second inequality follows from πL < πH , and the equality is implied by (I∗, R∗) ∈ Ψ. This

guarantees the optimality of e = H on the equilibrium path.

We next show that none of the investors can profitably deviate. Consider first investor 2. Given

(I∗1 , R
∗
1(·)), he can profitably deviate only by granting the entrepreneur a payoff strictly aboveU(I∗1 , R

∗
1(I∗1 ), H).

However, given that (I∗, R∗) belongs to the incentive frontier Ψ, any such deviation necessarily yields a

profit smaller than V ∗2 to investor 2.

Finally, suppose that investor 1 posts a contract (I1, R1(·)) 6= (I∗1 , R
∗
1(·)); then, recalling that (I∗, R∗) =

(Ī2, R̄2), the arguments developed in Lemma 1 can be used to show that investor 2 undercuts investor 1

granting the entrepreneur a payoff of U(I1, R1(I1), H). The equilibrium strategy of the entrepreneur can

be constructed by letting her trade with investor 2 only, whenever she is indifferent between several options.

This in turn blocks any profitable deviation of investor 1. �
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PROOF OF PROPOSITION 2

Consider the menus (M∗1 ,M
∗
2 ), with M∗1 = {(0, 0), (Im, Rm(.)), (Îm, R̂m(.))}, and M∗2 = {(0, 0)}.

Let Rm(I) = Rm for each I ≥ 0, and recall that Im = A(G∆π
B − 1), Rm = GIm and U(Im, Rm, H) =

U(0). In addition, let Îm be such such that U(Im, Rm, H) = B(Îm + A)− A, and R̂m(I) = G(Îm + A)

for each I ≥ 0. That is, Îm is such that the entrepreneur obtains the same utility if she borrows Im, selects

e = H , and obtains G(Im + A)− Rm in case of success, as if she borrows Îm, selects e = L, and obtains

only his private benefit B(Îm + A). Observe that both schedules Rm(.) and R̂m(.) are constant over the

aggregate investment I .

We now show that (M∗1 ,M
∗
2 ) are part of a SPE in which the entrepreneur raises Im from investor 1 who

therefore earns a monopolistic profit. Given (M∗1 ,M
∗
2 ), it is a best reply for the entrepreneur to select the

contract (Im, Rm) in M∗1 and to choose e = H . That is, she trades the monopolistic allocation (Im, Rm).

Since investor 1 earns a monopolistic profit, he has no incentive to deviate. It is then sufficient to show

that there is no profitable deviation for investor 2 either. Any such deviation can, without loss of generality,

be represented by a simple menu M ′2 = {(I ′2, R′2(.)), (0, 0)}, with I ′2 > 0, which includes only one non

degenerate contract.20 Following the deviation, two situations must be considered:

1. The deviation is designed so that the entrepreneur borrows from both investors: she chooses (I ′2, R
′
2(.)) in

M ′2, and (Im, Rm) in M∗1 , and obtains the allocation
(
Im+ I ′2, R

m+R′2(Im+ I ′2)
)
. A necessary condition

for this deviation to be profitable, is that
R′2(Im + I ′2)

I ′2
> 1

πH
which, given (2) and since Rm = GIm =(

G− B

∆π

)
(Im +A), implies that

Rm +R′2(Im + I ′2) >

(
G− B

∆π

)
(Im +A+ I ′2) (9)

That is, when choosing
(
Im + I ′2, R

m + R′2(Im + I ′2)
)
, the entrepreneur selects e = L. See that this

makes the deviation non profitable. Indeed, for the deviation to be profitable given e = L, one should have
R′2(Im + I ′2)

I ′2
> 1

πL
. Then, given (1), we get

R′2(Im + I ′2)

I ′2
> G+

B

πL
, which implies that

U
(
Im + I ′2, R

m +R′2(Im + I ′2), L
)
< U (Im, Rm, L) = U∗.

This in turn guarantees that the deviating contract would not be chosen at the deviation stage. Similarly,
20This is a direct implication of the robustness result derived in Theorem 1 of Peters (2003). Indeed, given M∗1 , any deviation

to a more sophisticated menu of contracts M
′′
2 can be reproduced by directly offering only one non degenerate contract which

corresponds to the optimal choice of the entrepreneur in M
′′
2 .
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since R̂m = G(Îm + A), the entrepreneur selects e = L if she accepts (Îm, R̂m) together with (I ′2, R
′
2(.)),

rendering the original deviation non profitable.

2. The deviation is designed so that the entrepreneur borrows from investor 2 only. The borrower chooses

(I ′2, R
′
2(.)) in M ′2, and (0, 0) in M∗1 . In this case, she earns U(I ′2, R

′
2(I ′2), H) by choosing e = H . Yet, by

choosing e = L, she obtains B(Îm + I ′2 +A)−A. We can hence write

U(I ′2, R
′
2(I ′2), H)− (B(Îm + I ′2 +A)−A) < U(0) + (πHG− 1)I ′2 − (B(Îm + I ′2 +A)−A)

= (πHG− 1−B)I ′2 < 0. (10)

The first inequality follows from the fact that, for the deviation to be profitable, it must be that πHR′2(I ′2)−

I ′2 > 0, which implies that U(I ′2, R
′
2(I ′2), H) < U(I ′2,

1
πH
I ′2, H) = U(0) + (πHG − 1)I ′2. The equality

comes from the fact that U(0) = U(Im, Rm, H) = B(Îm+A)−A. This highlights the role of Îm: the sec-

ond contract offered by investor 1 prevents investor 2 from successfully undercutting investor 1’s monopoly

offer. The last inequality follows from (3b) and from I ′2 > 0, and shows that e = H is not an optimal

effort choice which implies that investor 2’s profit is negative. This finally establishes that the monopolistic

allocation for investor 1 is supported at equilibrium, and concludes the proof. �
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