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Abstract

In markets where sellers are able to price discriminate, individuals pay different prices that
may be unobserved by the econometrician. This paper considers the structural estimation
of a demand and supply model à la Berry et al. (1995) with such price discrimination and
limited information on prices taking the form of, e.g., observing list prices from catalogues
or average prices. Within this framework, identification is achieved by using supply-side
conditions, provided that the marginal costs of producing and selling the goods do not
depend on the characteristics of the buyers. The model can be estimated by GMM using
a nested fixed point algorithm that extends BLP’s algorithm to our setting. We apply
our methodology to estimate the demand and supply in the French new automobile mar-
ket. Our results suggest that discounting arising from price discrimination is important.
The average discount is estimated to be 9.6%, with large variation depending on buyers’
characteristics and cars’ specifications. Our results are consistent with other evidence on
transaction prices in France.
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1 Introduction

The standard aggregate-level estimation of demand and supply models of differentiated prod-

ucts relies on the observation of market shares and products characteristics, in particular

prices (see Berry, 1994). Yet, prices for an identical product can differ significantly across

transactions. Temporary promotions, coupons, local prices and negotiation between buyers

and sellers are examples of factors that lead to such price dispersion. Precise data on trans-

action prices may be hard to obtain. One typically observes posted prices from catalogues, or

average prices over the different transactions. In the two cases, the common practice is simply

to ignore price variation across transactions, and consider the observed prices to be the prices

paid by all consumers.

One may argue that the instrumental variables approach developed by Berry et al. (1995,

henceforth, BLP) to control for price endogeneity also solves this measurement error problem

on prices. However, to the extent that prices are not randomly assigned to consumers, the

difference between observed prices and transaction prices are generally correlated with the

instruments. Hence, ignoring this issue generally results in inconsistent estimators of the

structural parameters and biases in policy simulation exercises.

This paper proposes a method to estimate structural demand and supply models with un-

observed transaction prices. Our rationale for the existence of price dispersion is that firms

price discriminate between heterogeneous consumers in order to extract more surplus than

they would with a uniform pricing strategy, as long as other firms also price discriminate. We

suppose that sellers use observable characteristics of the buyers to price discriminate and set

optimal prices. Of course, it is unlikely that sellers observe perfectly the consumers’ prefer-

ences, and we allow for individual heterogeneity in consumers’ preferences that is unobserved

by both the sellers and the econometrician. This model applies to several of the cases men-

tioned above: temporary discounts if the population of consumers differs along the time of

purchase, local prices if individuals in different geographical areas have different willingness to

pay (e.g., poor versus rich neighborhoods), coupons when they are used by the most price sen-

sitive consumers. Price negotiation may also be seen as a special case of price discrimination,

provided that there is no informational friction and sellers make take-it or leave-it offers to

consumers. This set-up seems in particular appropriate to model business to business markets

with small buyers and large sellers.

We therefore extend the random coefficient discrete choice model of demand popularized by

BLP to allow for third-degree price discrimination that is unobserved by the econometrician.

We rely for that purpose not only on the demand model but also on the supply model, and

two identifying assumptions. First, the marginal cost of a product is supposed to be identical

for all the buyers. This amounts to neglecting differences in the cost of selling to different

consumers in the total cost of a product. This assumption is credible when the major part
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of the marginal cost is production, not sale, or when the cost of selling has no reason to

differ from one consumer to another. The second condition for identification is that there is

a known relationship between observed and transaction prices. This assumption is satisfied if

the econometrician observes average prices, or at least one transaction price for each product.

It also holds if list prices are observed, as these prices correspond to the maximal transaction

prices whenever some consumers do pay these prices.

Under these two assumptions, we show that we can estimate the model with the general

method of moments (henceforth, GMM) in a similar spirit as BLP, but with a modified

algorithm to account for unobserved prices. In addition to obtaining the average utilities

through the numerical inversion of the market share equations, we recover transaction prices

by using the first-order conditions of profit maximization. We consider a fixed-point algorithm

to compute both these average utilities and transaction prices. We show that this algorithm

converges under, basically, some conditions on the amount of heterogeneity among consumers.

We establish for that purpose that the corresponding function is a contraction, similarly to

BLP’s celebrated contraction mapping. Simulations confirm that this method works well,

both computationally and statistically. Finally, we develop a formal test of our model versus

the uniform pricing model, for which there is no unobserved price discrimination between

consumers.

In our baseline model, we assume that the econometrician observes the market shares of prod-

ucts for each group of consumers used for price discrimination. This requires in particular to

observe the characteristics of the consumers used by sellers to price discriminate. Nevertheless,

we show that our method extends, under some conditions, to the case where only aggregate

market shares are observed. We also show that the assumption of identical marginal costs

can be relaxed, as long as we observe the underlying cost shifters, and that they vary across

products. Next, we discuss how information on transaction prices for a subsample of products

can be included in the estimation through the construction of additional micro-moments, as in

Berry et al. (2004). Finally, while we focus in our baseline model on the standard utility spec-

ification and supply-side model, we show that our methodology extends to other functional

forms and supply models.

We apply our method to estimate the primitives of the French new car market. Up to now, the

demand for automobiles has always been estimated with posted or average prices, whenever

transaction prices were unobserved. There is however much evidence of price dispersion and

price discrimination in this market (see below for references on this precise issue). We estimate

our model using an exhaustive dataset recording all the registrations of new cars bought by

households in France between 2003 and 2008. Apart from detailed car attributes, including

list prices, we observe the age of the buyers and their expected income given their age class

and municipality of residence. As these characteristics are easily observed by sellers and

presumably strong determinants of car purchases, we suppose that they are used by sellers to
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price discriminate.

Our results suggest that price discrimination is significant in France. First, our statistical

test clearly favors price discrimination over the uniform pricing model. Second, the average

discount is estimated to be 9.6% of the posted price. The distribution of estimated discounts

spreads mostly between 0 and 25% depending on the car model purchased and demographic

characteristics. As expected, age and income are negatively correlated to the value of discount.

We show that price discrimination has a significant effect on consumers’ surplus and firms’

profits, and that accounting for it may be important in ex ante policy analysis. Finally,

we compare our estimated transaction prices with a sample of observed transaction prices

from the French consumer expenditure survey. These data suggest that our method provides

reasonable estimates of transaction prices, and that third-degree price discrimination accounts

for one third of the unexplained price dispersion in transaction prices. Other survey data and

anecdotal evidence are also consistent with our findings.

Related literature. Our paper is related to three strands of the literature. First, on a

methodological side, it is close to empirical papers estimating demand and supply with im-

perfect information on prices. Miller and Osborne (2014) develops a method to estimate the

demand for cement when only average prices and total quantities are observed, allowing for

price discrimination. While they compute optimal prices using equilibrium conditions, as we

do here, their model and estimation strategy are very different from ours. First, they do not

account for differences in preferences across groups, which is usually the rationale for price

discrimination. Second, they rule out any systematic unobserved preference term, implying

in particular that prices are exogeneous. These restrictions may hold in homogeneous good

markets such as cement but are less realistic for differentiated product markets, in which

preference heterogeneity and unobserved components such as quality play a crucial role.

Our paper is also related to Dubois and Lasio (2014), which estimates marginal costs when

observed prices are regulated, so that marginal costs can no longer be identified from these

prices. They use the first-order conditions of the firms in countries that do not regulate prices

to identify these costs, under a similar assumption as us on the marginal costs. Contrary to

us, however, they do not use the first-order conditions of the firms to identify the demand

model, as they observe the prices paid by consumers.

Our paper also builds on the recent literature that considers hybrid models of bargaining in

which sellers post a sticker price and offer the possibility to bargain for discounts. This pricing

strategy might be profitable for sellers when consumers have heterogeneous bargaining costs

or are imperfectly informed on their ability to bargain (see Gill and Thanassoulis, 2009, 2016).

Jindal and Newberry (2014) develop a structural model of demand in which all the buyers

are able to negotiate but have heterogeneous bargaining cost. The authors estimate both the

bargaining power and the distribution of bargaining costs. However, their framework is very
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different from ours since they omit competition and they observe the transaction prices at

the individual level. Structural models in which prices are set by a bargaining process have

also been recently developed and estimated, but for the case of business to business markets

where there are few identifiable actors (see, e.g. Crawford and Yurukoglu, 2012; Grennan,

2013; Gowrisankaran et al., 2015). In such models, bargaining modifies the supply side but

contrary to our case, the demand can be estimated in a standard way.

Finally, our application quantifies the importance of price discrimination on the automobile

market. Several papers investigate this issue using either detailed data on observed transaction

prices or directly dealers margins, see, e.g., Ayres and Siegelman (1995), Goldberg (1996),

Harless and Hoffer (2002), Scott Morton et al. (2003), Langer (2016) and Chandra et al.

(2017). Even with data on prices paid by each consumer our method is still useful to estimate

demand because for a given consumer the prices of products that are not chosen remain

unobserved. Huang (2016) is closest to our paper. He develops a structural model of demand

for cars when some dealers make second-degree price discrimination by proposing the list

price immediately or a discounted price later. He estimates both demand parameters and

the discounts using market shares and list prices. Rather than relying on the supply-side

conditions, as here, identification is achieved by leveraging the existence of non-negotiating

car dealers.

Structure of the paper. The second section presents the theoretical model and identifying

assumptions. Section 3 explains how to estimate the model with unobserved transaction prices.

In Section 4, we present several extensions of the model and in particular the extension to

the case of unobserved consumer groups. Section 5 describes our estimation algorithm and

presents the results of Monte Carlo simulations. The application on the French new car market

is developed in the sixth part of the paper. We conclude in Section 7. The appendix gathers all

proofs. In the supplementary material, we consider additional simulation results and provide

more details on the application.

2 Theoretical model and identifying assumptions

2.1 The unobserved price discrimination model

We first present our theoretical model. The approach is identical to the BLP model, except

that the demand arises from a finite number of heterogeneous groups of consumers. Firms

are supposed to observe the group of each consumer, as well as their corresponding prefer-

ences, such as the distributions of price sensitivities and preferences for car attributes. They

price discriminate among these groups, in order to take advantage of the heterogeneity in

preferences.
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Specifically, heterogeneous consumers are supposed to be segmented into nD groups of con-

sumers, and we denote by Di the group of consumer i. As in the standard BLP model, we

allow consumers to be heterogeneous within a group, but assume sellers are not able to dis-

criminate based on this unobserved heterogeneity. Each consumer chooses either to purchase

one of the J products or not to buy any, which corresponds to the outside option denoted by

0. As usual, each product is assimilated to the bundle of its characteristics. Consumers max-

imize their utility, and the utility of choosing j is assumed to be a linear function of product

characteristics:

Udij = X ′jβ
d
i + αdi p

d
j + ξdj + εdij ,

where Xj corresponds to the vector of observed characteristics and ξdj represents the valuation

of unobserved characteristics.1 pdj is the price set by the seller for the category d and is not

observed by the econometrician. Consumers with characteristics d are supposed to face the

same transaction price pdj . This is crucial, but not more restrictive than the assumption that

ξdj is common to all individuals from group d. This was shown by Berry and Haile (2014)

to be necessary for identifying demand models nonparametrically from aggregated data. As

typical in the literature, the idiosyncratic error terms εdij are extreme-value distributed.

We make the usual parametric assumption about the intra-group heterogeneity. Specfiically,

the individual parameters can be decomposed linearly into a mean, an individual deviation

from the mean and a deviation related to individual characteristics:{
βdi = βd0 + πX,d0 Ei + ΣX,d

0 ζXi

αdi = αd0 + πp,d0 Ei + Σp,d
0 ζpi ,

where Ei denotes demographic characteristics that are unobserved by the firm for each pur-

chaser, but whose distribution is common knowledge. ζi = (ζXi , ζ
p
i ) is a random vector with a

specified distribution, such as the standard multivariate normal distribution.

The utility function can be expressed as a mean utility and an individual deviation from this

mean:

Udij = δdj (pdj ) + µdj (Ei, ζi, p
d
j ) + εdij ,

with the mean utility and the individual deviation satisfying

δdj (pdj ) = X ′jβ
d
0 + αd0p

d
j + ξdj ,

µdj (Ei, ζi, p
d
j ) = X ′j

(
πX,d0 Ei + ΣX,d

0 ζXi

)
+ pdj

(
πp,d0 Ei + Σp,d

0 ζpi

)
. (1)

1 Following the literature, we focus for simplicity on a single market. The different groups cannot be seen as
different markets because the (ξdj )d=1,...,nD are allowed to be correlated. In case of multiple markets, product
characteristics, including prices and costs, vary with markets. Also, provided that the distribution of random
coefficients is constant across markets, we could include product and market fixed effects in the Xj .
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We let the dependence in pdj explicit for reasons that will become clear below. Because of

the logistic assumption on the εdij , the aggregate market share sdj (p
d) of good j for group d

satisfies, when prices are set to pd = (pd1, ..., p
d
J),

sdj (p
d) =

∫
sdj (e, u, p

d)dP dE,ζ(e, u), (2)

where P dE,ζ is the distribution of (E, ζ) for group d and

sdj (e, u, p
d) =

exp
(
δdj (pdj ) + µdj (e, u, p

d
j )
)

∑J
k=0 exp

(
δdk(pdk) + µdk(e, u, p

d
k)
) .

Now, we consider a Bertrand competition model where firms are able to price discriminate by

setting different prices to each of the nD groups of consumers. Letting J denote the set of

products sold by a firm, the profit of this firm when the vector of all prices for group d is pd

satisfies

Π = M

nD∑
d=1

P (D = d)
∑
j∈J

sdj (p
d)×

(
pdj − cdj

)
,

where P (D = d) is the fraction of the group d in the population, sdj (p
d) is the market share

of product j for group d when prices are equal to pd and M is the total number of potential

consumers. cdj is the marginal cost of the product j for group d.

The first-order condition stemming from the profit maximization for group d yields

pdj = cdj +
[
(Ωd)−1sd

]
j
, (3)

where [.]j indicates that we consider the j-th line of the vector only. Ωd is the matrix of typical

(j, k) term equal to −∂sdk/∂pj when j and k belong to the same firm, 0 otherwise. Prices are

optimally set by the firms making the traditional arbitrage between increasing prices and

lowering sales. When a monopoly seller is able to price discriminate, it is less constrained

than with a uniform pricing strategy since this arbitrage is made for each group separately. If

a group is particularly price sensitive, the monopoly seller offers a low price and is still able

to extract a large surplus from the less price sensitive group by setting a higher price for this

group. In a competitive setting, this effect is mitigated by the fact that, for a given group of

consumers, the competition among sellers is reinforced.

2.2 Identifying assumptions

To identify the model, we crucially rely on the following two conditions.

Assumption 1. (Constant marginal costs across consumers) For all d and j, cdj = cj.
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Assumption 2. (Partial observation of prices) For all j ∈ {1, ..., J}, we observe p̃j such that

p̃j = fj(p
1
j , ..., p

nD
j ),

where fj is known and satisfies fj(0, ..., 0) = 0 and for all (c, u1, ..., unD) ∈ RnD+1,

fj(c+ u1, ..., c+ unD) = c+ fj(u
1, ..., unD). (4)

Assumption 1 amounts to neglecting differences in the costs of selling to different consumers in

the total cost of a product. This assumption is likely to be satisfied in many settings, such as

the automobile market, where most costs stem from producing, not selling the goods. However

in some markets, this assumption might be more problematic. This is the case for insurance

providers that offer different prices to consumers based on their observable characteristics (e.g.,

age, gender, driving experience), because those characteristics imply different risk classes and

different costs for insurers. Note that our method can still be applied if the econometrician

observes the risk classes. We show in Section 4.4 that we can introduce cost differences when

they are due to observables and vary across products.

Let us turn to Assumption 2. First, note that fj(0, ..., 0) = 0 is a mere normalization. If it does

not hold, one can simply replace p̃j by p̃j − fj(0, ..., 0). The corresponding modified function

fj then satisfies this requirement. Condition (4), on the other hand, is not a normalization, it

is nonetheless satisfied in several settings. First, suppose that we only observe the maximum

of all transaction prices, so that

p̃j = max
(
p1
j , ..., p

nD
j

)
. (5)

Then fj satisfies Equation (4). Such a case arises when firms post their highest discriminatory

price p̃j and then offer some discounts according to observable characteristics of buyers in order

to reach optimal discriminatory prices. This assumption is in line with empirical evidence on

the automobile market (for France and the UK, see, e.g., the reports of L’Observatoire Cetelem

in 2013 and the UK Competition Commission in 2000). Furniture, kitchens, mobile phone

contracts are other examples for which there is either documented or anecdotal evidence that

some consumers receive some discounts over the posted prices. More generally, Shelegia and

Sherman (2015) provide evidence, through a field experiment in Austria, that discounting is

common in varied retail shops. Moreover, even if observed, these discounts may not correspond

directly to price reductions, but rather to non-pecuniary benefits that are difficult to value in

monetary terms (e.g. more flexibility, extended warranty, free shipping, coupon for a future

purchase). In such cases, our method below is well-suited to identify the monetary equivalent

of these advantages for consumers. We refer to, e.g., Grubb and Osborne (2015, pp.240-241)

for an example of such advantages on mobile phone contracts for college students.
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While Equation (5) imposes that the maximal transaction price corresponds to the list price,

the group that pays this maximal price (the pivot group hereafter) is neither supposed to be

known ex ante, nor constant across different products. In the case where the minimal rebate

rj is not zero, Assumption 2 still holds provided that the econometrician observes rj . The

price p̃j then simply corresponds to the list price minus rj . On the other hand, rj cannot be

identified with the method we propose below.

Another case where Assumption 2 holds is when we observe, through survey data for instance,

the price paid by at least one consumer group for each product. This is typically the case

with survey data where, for a given consumer, only the price paid for the chosen product is

observed and not for the entire choice set faced by the consumer. If this is not an issue when

the numbers of products and consumer groups are small, this is more complicated when the

number of groups and products are large. If we consider for instance panel data on grocery

items for which there is spatial price discrimination, the number of geographical areas (nD) is

potentially very large. It is then virtually impossible to observe the transaction prices for all

products within each location. A similar problem is likely to arise if there are many products

available, as, again, in the automobile market (see, e.g., Langer, 2016; Allcott and Wozny,

2014; Murry, 2017, for papers relying on such data in this market). If we do not observe all

the transaction prices (pdj )d=1,...,nD corresponding to product j, but at least one price pdjj for

each j, then we can use p̃j = p
dj
j and apply our methodology since Assumption 2 holds.

A third case for which Assumption 2 holds is when we only observe the average price paid

over all consumers for each product. This is the case if we only have access to sales revenue

and units sold for each product within the market. Such data are typically available from

marketing companies or company tax declarations. Then we observe p̃j =
∑nD

d=1 s
d
jp
d
j , which,

again, satisfies Assumption 2.

As a side, since it can be costly to gather transaction prices for all the consumer groups and

products, our method below constitutes a way to reduce the collection of such transaction

data, while still being able to use them for demand estimation. This can be particularly

relevant for quantitative analysis in antitrust cases such as merger analysis and evaluation of

damages due to anti-competitive practices.

3 Inference

In this section, we assume that the econometrician observes the market shares sdj corresponding

to each consumer group while the prices pdj are only partially observed. This is the case when

some characteristics of the purchasers and the product characteristics are observed, but not

the individual transaction prices. In our application for instance, we use data coming from the

registration of new cars in France. While many characteristics of the cars and some individual

characteristics (age and zip code of the municipality) are recorded in this dataset, neither
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transaction prices nor list prices are included. One then needs to merge these data with prices

from another source. Here we use prices from catalogues, arguing that they correspond to

maximal prices. In other settings, it may be easier to obtain data from surveys (see e.g.

Langer, 2016), in which case we would observe transaction prices pdj for every product and at

least one group of consumers.

3.1 Bias from ignoring price discrimination

First, let us recall the standard case where the true prices are observed. Let

θd0 = (βd0 , α
d
0, π

X,d
0 ,ΣX,d

0 , πp,d0 ,Σp,d
0 )

denote the true vector of parameters for group d. The standard approach for identification

and estimation of θd0 , initiated by BLP, is to use the exogeneity of Zj , which includes the char-

acteristics Xj and other instruments (typically, function of characteristics of other products

or cost shifters) to derive moment conditions involving θd0 . The exogeneity condition takes the

form

E
[
Zjξ

d
j

]
= 0. (6)

The idea is then to use the link between ξdj and the true parameters θd0 through Equation

(2). Specifically, we know from Berry (1994) that for any given vector θd, Equation (2),

where θd0 is replaced by θd, defines a bijection between market shares and mean utilities of

products δdj . Hence, we can define δdj (sd, pd; θd), where sd = (sd1, ..., s
d
J) denotes the vector of

observed market shares. Once δdj (sd, pd; θd) is obtained, the vector ξdj (pd; θd) of unobserved

characteristics corresponding to θd and rationalizing the market shares follows easily since

ξdj (pd; θd) = δdj (sd, pd; θd)−Xjβ
d − αdpdj .

The moment conditions used to identify and estimate θd0 are then

E
[
Zjξ

d
j (pd; θd0)

]
= 0. (7)

Now, when the observed prices are different from the true prices paid by consumers, for

example when posted prices are used instead of transaction prices, the former approach is not

valid in general. To see this, consider the simple logit model, where πX,d0 ,ΣX,d
0 , πX,d0 and ΣX,d

0

are known to be zero. In this case δdj (sd, pd; θd) takes the simple form

δdj (sd, pd; θd) = ln sdj − ln sd0

and does not depend on pd. In this context, using posted prices p̃ instead of the true prices
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amounts to relying on

ξdj (p̃; θd) = ln sdj − ln sd0 −Xjβ
d − αdp̃j ,

instead of relying on ξdj (pd; θd). A problem arises because p̃j−pdj is not a classical measurement

error. The true price depends on the characteristics of the good and of the cost shifters. If, for

instance, a group of consumers values particularly the horsepower of automobiles, powerful cars

will be priced higher for this group, and p̃j−pdj will be negatively correlated with horsepower.

Because horsepower is one of the instruments, we have E[Zj(p̃j−pdj )] 6= 0, and E
[
Zjξ

d
j (p̃; θd0)

]
is no longer equal to zero. In the general random coefficient model, this problem is still present

but in addition to it, δdj (sd, pd; θd) generally depends on pd. Thus, Zj is also correlated with

δdj (sd, p̃; θd)− δdj (sd, pd; θd).

To illustrate this issue, we estimated the usual BLP model on the DGP considered in our

simulations (see Section 5.2 below). The detailed results, presented in Section 1.1 of our

supplementary material, show that the biases on key parameters are not only large but also

unpredictable. The errors on average mark-ups are up to 78% and vary a lot, depending on

the group of consumers and the function fj we consider. A similar conclusion holds on the

preference parameters, with average errors up to 70% of the true values. Errors on average

price elasticities are lower, but can still reach around 8%.

3.2 Consistent GMM estimation

Instead of simply replacing pd by p̃, we use the supply model together with Assumptions 1-2

to obtain consistent estimators. The idea is first to compute, for a given value of the vector

of parameters θ = (θ1, ..., θnD), the transaction prices pdj (θ) that rationalize the market shares

and the supply-side model. Precisely, Equation (3) and Assumptions 1-2 imply that

p̃j = cj + fj

([
(Ω1)−1s1

]
j
, ...,

[
(ΩnD)−1snD

]
j

)
. (8)

Then, the discriminatory prices satisfy

pdj = p̃j − fj
([

(Ω1)−1s1
]
j
, ...,

[
(ΩnD)−1snD

]
j

)
+
[
(Ωd)−1sd

]
j
, (9)

which shows that for a given vector of parameters θ, the discriminatory prices are identified

up to the matrices Ωd. Now, taking the derivative of the market share function (Equation (2))

with respect to the price pdj , we obtain

∂sdj

∂pdj
(pd) =

∫ (
αd0 + πp,d0 e+ Σp,d

0 u
)
sdj (e, u, p

d)(1− sdj (e, u, pd))dP dE,ζ(e, u) (10)

We obtain a similar expression for ∂sdj/∂p
d
l (p

d). These expressions show that Ωd only depends

on the parameters θd0 , the vector of prices pd and δd = (δd1 , ..., δ
d
J), through sdj (e, u, p

d). We
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emphasize this dependence by writing Ωd(θd0 , p
d, δd).

Besides, the observed vector of market shares s = (s1
1, ..., s

1
J , ..., s

nD
1 , ..., snDJ ) satisfies

sdj =

∫ exp
(
δdj + µdj (e, u, p

d
j )
)

∑J
k=0 exp

(
δdk + µdk(e, u, p

d
k)
)dP dE,ζ(e, u). (11)

By Berry (1994), for any vector pd of transaction prices, there exists a unique δdθ such that

Equation (11) holds. We denote by δdθ (pd) this solution. Let

gdθ,j(p) = p̃j − fj
([

Ω1(θ1, p1, δ1
θ(p

1))−1s1
]
j
, ...,

[
ΩnD(θnD , pnD , δnDθ (pnD))−1snD

]
j

)
+
[
Ωd(θd, pd, δdθ (pd))−1sd

]
j

and gθ(p) = (g1
θ,1(p), ..., g1

θ,J(p), ..., gnDθ,1 (p), ..., gnDθ,J (p)). Then Equation (9) implies that the

true vector of transaction prices p(θ) = (p1
1(θ), ..., p1

J(θ), ..., pnD1 (θ), ..., pnDJ (θ)) satisfies

gθ(p(θ)) = p(θ).

This suggests that we can obtain p(θ) as the fixed point of gθ. However, it is unclear at

this stage whether p(θ) is the sole fixed point of gθ. Even if this is the case, finding this

fixed point may be difficult in practice, given the potentially large dimension of the problem.

In our application, for instance, p ∈ R571×6. To solve both problems, we prove that if the

heterogeneity on price sensitivity is not too large, gθ is a contraction.2 This result is similar

to that of BLP, who exhibit a contraction mapping for Equation (11) in δ when transaction

prices are known.

Theorem 1. Suppose that fj is 1-Lipschitz for all j. Then, for any p > 0 there exists Σ
p
> 0

and πp > 0 such that for all Σp = (Σp,1, ...,Σp,nD) ∈ [0,Σ]nD and πp = (πp,1, ..., πp,nD) ∈
[−πp, πp]nD , gθ is a contraction on [0, p]JnD .

This theorem ensures not only that there is a unique fixed point to gθ, but also that the

sequence (pn)n∈N defined by a given p0 and pn+1 = gθ(pn), for all n ∈ N, always converges

to p(θ), irrespective of p0. The result relies on two conditions. The Lipschitz condition

on fj , first, holds in the first three examples we mentioned above, namely fj(p1, ..., pnD) =

max(p1, ..., pnD), fj(p1, ..., pnD) =
∑nD

d=1 s
d
jp
d/
∑nD

d=1 s
d
j and fj(p1, ..., pnD) = pdj . The second

condition is that pdj ≤ p for all (j, d). Note however that we place no restriction on p.

Though the proof of Theorem 1 is technical (see Appendix A.1), the intuition behind is

simple. Without heterogeneity on price sensitivity (Σp,d = πp,d = 0 for all d), the function

gθ is constant, since both δθ and Ωd(θ, ·, δd) are constant. Then gθ is obviously a contraction
2We recall that a function g is K-Lipschitz if for all p, p′, ‖g(p) − g(p′)‖ ≤ K‖p − p′‖. A contraction is a

K-Lipschitz function with K < 1. The norm we consider here is the supremum norm.
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with a Lipschitz coefficient of 0. The contraction result then holds because we can prove that

this coefficient moves continuously with all the (Σp,d, πp,d). Another interesting consequence

of the observation that gθ is constant when Σp,d = πp,d = 0 is that the convergence of

the aforementioned sequence (pn)n∈N is immediate in this case. We can then expect quick

convergence with moderate values of Σp,d and πp,d. This is also what we find in the simulations

in Section 5.4 below.

We can apply the GMM to identify and estimate θ0 = (θ1
0, ..., θ

nD
0 ). Let δdj (s, θ) and pdj (s, θ)

denote the mean utility and price of product j for group d when market shares and the vector

of parameters are respectively equal to s and θ. Let also

GdJ(θ) =
1

J

J∑
j=1

Zj

(
δdj (s, θ)−Xjβ

d − αdpdj (s, θ)
)

denote the empirical counterpart of the moment conditions corresponding to Equation (7).3

Let GJ(θ) = (G1
J(θ)′, ..., GnDJ (θ)′)′ and define

QJ(θ) = GJ(θ)′WJGJ(θ),

where WJ is a positive definite matrix. Our GMM estimator of θ0 is then

θ̂ = arg min
θ
QJ(θ). (12)

Compared to the estimation of the standard BLP model, estimating our model in practice

raises two challenges. First, we have to optimize over a larger space than in the BLP setting. In

the standard BLP model where we observe the market share of product j for each group d and

true prices are observed or supposed to be equal to posted prices, we could optimize only on

θd (abstracting from supply-side conditions), for each group separately. We even only need to

optimize over (πX,d,ΣX,d, πp,d,Σp,d), because we can easily concentrate the objective function

with respect to (αd, βd), by running two-stage least squares of δdj on (pdj , Xj) instrumented by

Zj . In our case, we cannot estimate θd separately from θd
′ , for d′ 6= d, because θd′ matters

for determining pdj (s, θ), as Equation (9) shows. Also, while we can concentrate the objective

function with respect to βd, we cannot do this with αd, as it appears in Equation (9). Second,

for each θ, we need to solve not only Equation (11), but also simultaneously Equation (9), in

order to obtain both the mean utilities and the transaction prices. Therefore, estimating the

model is computationally more costly than estimating the standard random coefficient model.

We describe in details our algorithm based on Theorem 1 in Section 5 below. We also show

that this optimization problem remains feasible in a reasonable amount of time.

We can also reduce the computational cost by considering restricted versions of the model. In
3 In case of multiple markets, we consider averages not only on products but also on markets.
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particular, the computation of the GMM estimator is much simpler if we assume no hetero-

geneity on price sensitivity within a group of consumers Σp
0 = 0 and πp,d0 = 0, so that αdi = αd0.

This assumption may be reasonable in particular if we have a fine segmentation of consumers.

In this case, we still have to optimize over θ = (θ1, ..., θnD). On the other hand, solving

the system defined by Equations (9)-(11) is easy. Equation (11) reduces to the standard in-

version of market shares, while Equation (9) provides an explicit expression for transaction

prices, since Ωd does not depend on pd. Thus, the computational cost is significantly reduced

compared to the general model.

Another restricted version of our model is when utility parameters do not vary with d. Then

θ = θ1 is of much lower dimension, making again the optimization much easier. This assump-

tion is realistic if consumers preferences vary with individual characteristics E, but sellers

only observe a proxy of E trough the discrete variable D. Then individual preferences are

independent of D conditional on E. Note that price discrimination with respect to D is still

relevant for sellers because the distribution of E conditional on D = d varies with d, i.e. the

distribution of preferences differs in the nD groups.

Finally, another alternative is to rely on the logit or nested logit models. In the simple logit

model, we have seen above that the matrix Ωd only depends on (α1, ..., αnD). In the nested

logit, it also depends on the parameters (σ1, ..., σnD) that drive substitutions within nests.

But at the end, we also obtain a quite simple nonlinear optimization over (α1, σ1, ..., αnD , σnD)

only. We refer to Section 1.2 of the supplementary material for a detailed discussion on the

computational and statistical performances of the GMM estimator with the logit and nested

logit models.

3.3 Supply-side conditions

As in the standard BLP model, it is possible to include moments corresponding to the supply

side by imposing some additional structure on marginal costs. Let Xs
j be the vector of cost

shifters for product j. Xs
j may be different from Xj but typically share some common compo-

nents. We may suppose for instance that the marginal costs are log-linear, ln(cj) = Xs
j γ+ωj ,

where ωj denotes the unobserved cost shock. This shock is supposed to satisfy E[Zsjωj ] = 0,

where Zsj denotes a vector of instruments for the supply side. As for the demand, we construct

the moment conditions by first recovering the marginal cost cj(s, θ) associated to s and a given

vector of parameters θ. Specifically, by Equation (8),

cj(s, θ) = p̃j − fj
([

(Ω1)−1s1
]
j
, ...,

[
(ΩnD)−1snD

]
j

)
.

We then obtain ωj(s, θ, γ) by

ωj(s, θ, γ) = ln (cj(s, θ))−Xs
j γ.

14



The supply-side moment conditions are

GsJ(θ, γ) =
1

J

J∑
j=1

Zsj
[
ln (cj(s, θ))−Xs

j γ
]
.

We can proceed as previously, simply replacing GJ(θ) by

GJ(θ, γ) = (G1
J(θ)′, ..., GnDJ (θ)′, GsJ(θ, γ))′.

Whether or not we add moments from the supply side, it is important to note that our GMM

estimator relies fundamentally on the supply side, contrary to the demand estimator of BLP.

First-order conditions of the firms’ program are key to recover the transaction prices p(θ),

and in turn the residuals ξdj (p(θ), θ). Because the unobserved transaction prices depend on

the nature of the competition between firms, it is impossible to estimate the demand without

making an assumption on the supply side. We do not see this as a strong limitation, however,

because the supply side is usually modeled in addition to the demand, since it is crucial to

perform counterfactual analysis.

Related to this, we have considered here the standard set-up where firms and retailers are

integrated and prices are fixed through a Bertrand competition. Our methodology generalizes

straightforwardly to different supply-side models and competitive settings. In particular, it

applies directly to models with collusion or vertical relations. In the latter case, our method

constitutes the first step of the analysis, where the margins of the retailers are recovered. The

second step corresponds to the modeling of vertical relations, and can incorporate any kind of

vertical arrangement (bargaining, non-linear pricing...). Third-degree price discrimination on

the downstream market only matters for the value of margins and the profits of the retailers.

3.4 Test of the model

The assumption that firms practice price discriminate may be debatable for some markets,

especially when direct evidence based on transaction prices is not available. We now develop

a formal test of the model of price discrimination against the model of uniform pricing, where

prices are supposed to satisfy p1
j = ... = pnDj = p̃j . The idea is to consider a demand model

nesting both. Specifically, let us define

rdj = fj

([
(Ω1)−1s1

]
j
, ...,

[
(ΩnD)−1snD

]
j

)
−
[
(Ωd)−1sd

]
j
.

Under the price discrimination model, rdj = p̃j − pdj . We then consider the following demand

model:

Udij = Xjβ
d
i +

[
p̃j − rdjκ

]
αdi + ξdj + εdij . (13)
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This model nests both models since under the discrimination model, κ = 1, while under the

uniform pricing model, κ = 0. We therefore consider the test of H0: κ = 0 versus H1: κ = 1.

Note that we wish to treat H0 and H1 symmetrically, so that the errors of first and second

types should be (approximately) identical.

To construct such a test, we first estimate rdj using our unobserved price discrimination model.

Then we estimate κ by the standard BLP demand model corresponding to utilities defined by

(13), replacing rdj by its estimates. In a third step, we compute consistent estimators σ̂2
k of the

asymptotic variance of κ̂ under Hk (k = 0, 1). σ̂2
0 is simple to obtain because one can show

that the estimation of the discount in the first stage does not have any effect on the standard

error of κ̂ under H0. It does have an effect, however, under H1. In such a case, κ̂ may be seen

as a two-step GMM estimator, and we can then apply the corresponding standard formula

(see, e.g., Newey and McFadden, 1994). Finally, we compute the test statistic T defined by

T = J

[(
κ̂

σ̂0

)2

−
(
κ̂− 1

σ̂1

)2
]
.

T would simply be the likelihood ratio test of H0 versus H1 if κ̂ ∼ N (κ, σ2
κ/J). We consider

tests where we accept H0 if T < s and accept H1 otherwise. Instead of finding the threshold

s∗ such that the errors of first and second types are (asymptotically) identical, it is simpler to

compare the p-values p0 and p1 under both hypotheses. The following proposition formalizes

this idea.

Proposition 1. Suppose that
√
Jκ̂/σ̂0 ∼ N (0, 1) under H0 and

√
J(κ̂ − 1)/σ̂1 ∼ N (0, 1)

under the alternative, with σ̂0 6= σ̂1. Then the test where we accept H0 if p0 > p1 and H1

otherwise is symmetric in both hypotheses. Moreover,

p0 = 1{σ̂1 > σ̂0}+ sgn(σ̂1 − σ̂0) (Φ(r1)− Φ(r2)) ,

p1 = 1{σ̂1 < σ̂0}+ sgn(σ̂1 − σ̂0) (Φ(r4)− Φ(r3)) ,

where r1 ≤ r2 (resp. r3 ≤ r4) are the two roots of x 7→ (σ̂2
1 − σ̂2

0)x2 + 2
√
Jσ̂0x − (J + σ̂2

1T )

(resp. x 7→ (σ̂2
1 − σ̂2

0)x2 + 2
√
Jσ̂1x+ (J − σ̂2

0T )).

The test of Rivers and Vuong (2002) has often been used in the literature to discriminate

between alternative supply-side models, given a consistent demand estimation, by comparing

the corresponding R2 of the cost equations (see, e.g., Jaumandreu and Moral, 2006; Bonnet

and Dubois, 2010; Ferrari and Verboven, 2012). The advantage of this latter test is that it

can be applied even if both models are misspecified. In our context, the test statistic would

consist in taking the standardized difference between the GMM objective functions of the

two models. The main problem in applying such a test is to obtain a consistent estimator

of the standard error of this difference, i.e. check that Assumption 8 in Rivers and Vuong
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(2002) is satisfied. Specifically, when both models are wrong, the estimated error terms of

the two models depend in general on all the (sdj )j=1,...,J and are therefore not independent

from each other, even asymptotically. Moreover, the dependence between these error terms

has an unknown form. Thus, neither the standard GMM formula based on independence,

nor the standard bootstrap, would deliver consistent estimators of the standard error of the

aforementioned difference.

4 Extensions

4.1 Inference with unobserved groups and no proxy variables

We now extend the baseline model further by supposing that market shares (sdj )d=1,...,nD are

unobserved. We propose a methodology relying only on aggregate level market shares of

products, as in the standard BLP model. As before, we observe only partially the prices paid

by the different groups of consumers, and assume that Assumptions 1 and 2 hold.

This setting is relevant for combining aggregate data on sales with survey data where both

consumers’ characteristics and transaction prices are observed. In many cases, and in partic-

ular when J is large, the sample size is not large enough to construct accurate estimates of

market shares. It is then preferable to rely on aggregate level data to estimate the demand.

On the other hand, the survey data allow one to observe some transaction prices, so that

Assumption 2 holds in this setting, with p̃j = p
dj
j .

A canonical example is when the econometrician has data from consumer surveys (e.g. Kan-

tar Worldpanel for data on grocery items from supermarkets) in markets with spatial price

discrimination. The sample is never large enough to observe transaction prices for all the

products and the geographical areas and to estimate precisely the market shares (sdj )d=1,...,nD

for all j. The common practice consists in aggregating demand at the national level and using

the average price by item/supermarket brand. Instead, we suggest to rely on the same data

but to apply our methodology to account for unobserved spatial price discrimination. We also

refer to Miller and Osborne (2014), who estimate a different model from ours in the case of

spatial price discrimination in the U.S. cement industry.

This methodology also constitutes an alternative strategy to model the airline industry, which

shares common features with the previous example. Specifically, price dispersion for a given

flight is important, and the prices of the alternative flights available at the moment of the

purchase are not observable.4 One may be reluctant to define ex ante consumer groups in this

example, contrary to the one above where groups naturally correspond to geographical areas,

but we can avoid this issue by simply using maximal prices or average prices for p̃j , instead

of pdjj .
4To deal with these issues Berry and Jia (2010) consider all tickets with different prices to be different

products, while Ciliberto and Williams (2014) aggregate tickets at the route level and use the average prices.
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Another example where our methodology below applies is when only data on total revenue

and total quantities are available. To consider a very popular example in empirical industrial

organization, supermarket scanner data typically report weekly revenues and units sold for

all grocery items. The corresponding average prices then hide temporary promotions. Einav

et al. (2010) document these discrepancies by comparing such prices obtained from retailers

to those from a panel of consumers. In this set-up, the groups of consumers are defined by the

day of the week when they make their purchase. The weekly sales and revenues for product

j allow one to construct sj and the sales-weighted average price p̃j over the week. Because

the demand is heterogeneous across the different days of the week, supermarkets may have

an incentive to use temporary sales in order to price discriminate. Warner and Barsky (1995)

analyze daily prices for a broad subset of consumer goods and find significantly lower prices

during the weekend.

Another class of examples where we could use total revenues and quantities is the enter-

tainment industry. Different prices are generally set for the same movie, concert or show,

depending on some specified characteristics of the purchaser (age, professional activity, family

size...). Considering for instance the demand for movies, available data typically consist in

weekly revenues and the number of seats sold for a given movie (see, e.g. Einav, 2007; de Roos

and McKenzie, 2014).

In all these cases where only the aggregate market shares sj are observed, we can extend the

approach developed in Section 3.2 under additional assumptions. As before, the demand is

segmented into a finite number of groups of consumers. Preferences are heterogeneous across

groups, but we now assume they are homogeneous inside each group. Consumers inside a

group only differ in their product-specific terms, which, as usual, are supposed to be i.i.d.

and extreme-value distributed. We also suppose that the unobserved preference terms are the

same across groups of consumers. This assumption was previously unnecessary because the

(sdj )d=1,...,nD were observed. It is also key for identification in Berry et al. (1995), as discussed

in Berry and Haile (2014).

Assumption 3. Σp = 0, πp = 0 and ξ1
j = ... = ξnDj for all j ∈ {1, ..., J}.

The demand model features a discrete unobserved heterogeneity, with nD points of support

on the random coefficients. Such a model has also been used by Berry and Jia (2010) and

Kalouptsidi (2012). Under Assumption 3, the market share of product j for consumer group d

given the vector of prices p = (p1
1, ..., p

1
J , ..., p

nD
1 , ..., pnDJ ), the vector of unobserved preferences

ξ = (ξ1, ..., ξJ) and θ = (α1, β1, ..., αnD , βnD) satisfies

sdj (p, ξ, θ) =
exp(X ′jβ

d + αdpdj + ξj)∑J
k=0 exp(X ′kβ

d + αdpdk + ξk)
.
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As a result, the aggregate market share of product j is:

sj(p, ξ, θ) =

nD∑
d=1

φdsdj (p, ξ, θ), (14)

where φd = Pr(D = d). φd can be assumed to be known or added to the vector of parameters

θ. Now, for a given θ and vector of transaction prices p, the system of nonlinear equations

in (ξ1, .., ξJ) given by (14) can be seen as a particular case of the system studied by Berry

(1994), with the (ξ1, .., ξJ) playing the role of the (δ1, ..., δJ) in his setting. By his result,

the market share function is invertible and there is a unique solution to this system. Hence,

we can define the vector ξ(p, s, θ) of the (ξ1, ..., ξJ) corresponding to transaction prices p, the

vector of observed market shares s = (s1, ..., sJ) and θ. Note that the condition ξ1
j = ... = ξnDj

is key here to invert the market share equations and obtain ξ(p, s, θ).

Now, we do not observe transaction prices, so we cannot compute directly ξ(p, s, θ) to form

the moment conditions. As in the previous section, we then solve both for ξ and p, using not

only the market share equations but also the first-order conditions on prices. Because there is

no unobserved individual heterogeneity inside groups, these first-order conditions are simply:

pdj = cj −
1

αd(1−
∑

k∈Jj s
d
k(p, ξ, θ))

, (15)

where Jj denotes the set of products sold by the same firm as the one selling j. These

first-order conditions imply:

pdj =p̃j + fj

(
1

α1(1−
∑

k∈Jj s
1
k(p, ξ, θ))

, ...,
1

αnD(1−
∑

k∈Jj s
nD
k (p, ξ, θ))

)
− 1

αd(1−
∑

k∈Jj s
d
k(p, ξ.θ))

. (16)

Replacing ξ by ξ(p, s, θ) in this equation, it follows that the vector of prices p is the fixed point

of the function Ms,θ = (M1
s,θ,1, ...,M

1
s,θ,J , ...,M

nD
s,θ,1, ...,M

nD
s,θ,J) defined by

Md
s,θ,j(p) =p̃j −

1

αd(1−
∑

k∈Jj s
d
k(p, ξ(p, s, θ), θ))

+ fj

(
1

α1(1−
∑

k∈Jj s
1
k(p, ξ(p, s, θ), θ))

, ...,

1

αnD(1−
∑

k∈Jj s
nD
k (p, ξ(p, s, θ), θ))

)
.

For any ξ ∈ RJ , let p(ξ, θ) denote the vector of equilibrium prices, provided that there is a

unique solution of the system generated by Equations (14)-(15). Then let

s(ξ, θ) = (s1(p(ξ, θ), ξ, θ), ..., sJ(p(ξ, θ), ξ, θ))
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denote the market shares corresponding to ξ and p(ξ, θ). In a similar way as Theorem 1

above, Theorem 2 below shows that for at least some θ, the sequence (pn)n∈N defined by

p0 = p̃j and pn+1 = Ms(ξ,θ),θ(pn) converges towards p(ξ, θ). This conclusion holds when each

firm sells only one product and when, roughly speaking, there is not too much heterogeneity

between groups.5 This condition is related to the one we impose in Theorem 1, namely that

the heterogeneity on price sensitivity is small. Here, we impose that θ lies in a neighborhood of

Θ0, where Θ0 = {(α0, ..., α0, β0, ..., β0), α0 ∈ A, β0 ∈ B}, A and B being compact sets included

in (0,∞) and Rk respectively. We also impose that ξ ∈ K = [ξ, ξ]J , with ξ > −∞ and

ξ ≤ − ln(2)− inf
(x,c̃,α,β)∈Supp(X,c)×A×B

[x′β + c̃α].

We show in the proof of Theorem 2 that this last restriction implies that market shares are

always smaller than 1/3, a restriction that is assumed by Aksoy-Pierson et al. (2013) when

studying the related question of the uniqueness of price equilibria.

Theorem 2. Suppose that Assumptions 1-3 hold, fj is 1-Lipschitz for all j and firms sell only

one product. Then there exists a neighborhood Θ1 of Θ0 such that for all (θ, ξ) ∈ Θ1 ×K, the

sequence (pn)n∈N defined by p0 = p̃j and pn+1 = Ms(ξ,θ),θ(pn) converges towards p(ξ, θ), the

unique solution of Equation (15).

Note that once p(ξ, θ) is obtained, we can compute the corresponding ξ by the standard BLP

inversion, and then compute the GMM objective function in the same way as in Section 3.

We provide details on the estimation algorithm and the results of Monte Carlo simulations in

Section 1.3 of the supplementary material.

In principle, the model above can be extended to the case of a continuum of consumer groups.

Groups are then indexed by (α, β) and we impose that the distribution of (α, β) is parametric

(so that θ remains finite-dimensional), with a compact support on α. Then the idea is to

replace vectors by functions. Instead of considering (p1
j , ..., p

nD
j ), we have (α, β) 7→ pj(α, β),

where pj(α, β) denotes the price paid by consumers with parameters (α, β) for product j.

Similarly, Mθ now takes functions as arguments, rather than vectors. Theorem 2 may then

extend to this context, but computing ξ may be challenging. Instead, we suggest to use a

discrete approximation of the distribution of heterogeneity, in the spirit of quadratures.

Finally, Theorem 2 does not directly apply to the case where observed prices are sales-weighted

average prices, p̃j =
∑

d(s
d
j/sj)p

d
j . This is because the s

d
j are unobserved here, so fj is unknown

by the econometrician. However, we can still apply the algorithm developed above. In this
5The case of multiproduct firms is left for future research. It may be dealt with the approach proposed by

Nocke and Schutz (2016).
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context,

Md
s,θ,j(p) = p̃j −

1

αd(1−
∑

k∈Jj s
d
k(p, ξ(p, s, θ), θ))

+
1

sj

nD∑
d′=1

sdj (p, ξ(p, s, θ)

αd′(1−
∑

k∈Jj s
d′
k (p, ξ(p, s, θ), θ))

,

which is known by the econometrician. Hence, we can define the sequence (pn)n∈N as above.

Even though the proof of Theorem 2 does not easily extend to this case, simulations suggest

that a similar result should hold in this case. For a similar DGP as the one presented in

Section 5.2 below, we consider 100 values of θ and for each, 50 starting points p0. For all the

values of θ, the algorithm converged to the same vector of prices. We refer to Section 1.3 of

the supplementary material for more details.

4.2 Discrimination based on unobserved individual characteristics, with
proxy variables

We now consider an alternative to the previous extension, still in the case where the market

shares sdj are unknown. Specifically, we show that It is possible to apply the methodology in

Section 3.2 as long as a proxy for the variable D used by the seller to price discriminate is

available. Let us suppose that we observe a discrete variable D̃ such that (i) (ζi, ε
d
ij) ⊥⊥ D̃ and

(ii) the matrix P, which typical (d, d̃) term is P (D = d|D̃ = d̃), has rank nD. Condition (i)

is an exclusion restriction which imposes that consumers do not differ systematically in their

taste across categories of D̃, once we control for D. Condition (ii) is similar to the standard

relevance condition in instrumental variable models and imposes that the proxy variable D̃

is, basically, related to D. Let Yi denote the product choice of consumer i. Under the first

condition, we have

P (Yi = j|D̃i = d̃) =

nD∑
d=1

P
(
Di = d|D̃i = d̃

)
P (Yi = j|Di = d, D̃i = d)

=

nD∑
d=1

P
(
Di = d|D̃i = d̃

)
sdj .

Then, letting sj = (s1
j , ..., s

nD
j )′, s̃j = (P (Yi = j|D̃i = 1), ..., P (Yi = j|D̃i = n

D̃
))′, we have,

for all j = 1...J ,

s̃j = Psj

Because P has rank nD, this equation in sj admits a unique solution. This implies that sj is

identified. We can then apply the methodology above, using these market shares.

As an example of this proxy variable approach, consider a scenario where the econometrician

observes the buyers’ professions while sellers price discriminate based on buyers’ income. In

this context, we observe market shares of products by professional activity. The rank condi-

tion means that we know the probability of belonging to an income class conditional on the
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professional activity. From this probability matrix, we are able to compute market shares of

products by income class. The exclusion restriction imposes that the differences in preferences

across professional activities only reflect the differences across income classes.

4.3 Combination of micro and macro data

In addition to market shares and product characteristics, we may observe, through survey

data, additional information on purchasers. Berry et al. (2004) explain how such data can be

used to improve the estimators, by including additional moments based on these data in the

GMM program. This idea extends naturally to our context.

An interesting special case is when transaction prices are observed. Note that observing

transaction prices is not sufficient to apply the usual BLP model, because we still do not

observe counterfactual prices, i.e. the prices of the products that the consumers did not

purchase. On the other hand, transaction prices can be helpful in our model for at least

two purposes. First, they can help defining the demographic group variable D. Our model

implies that the transaction prices of product j are identical among each group d. Hence, some

candidates for D can be rejected on this ground. Similarly, in our extension to unobserved

groups, our model implies that there are no more than nD different transaction prices for each

product. Transaction prices can therefore be useful to provide a lower bound on nD. Second,

observed transaction prices can be used to construct moment conditions aiming at improving

estimation, in the same spirit as Berry et al. (2004). We may consider for instance covariances

between transaction prices and the characteristics of the products or the purchasers. The

idea is then to match the model-based covariances with their empirical counterpart. Another

possibility is to use additional information on the overall distribution of transaction prices or

discounts. Additional conditions would then take the form of differences between model-based

moments of the price distribution and their empirical counterparts.

4.4 Allowing for cost differences

Our methodology relies on Assumption 1 which supposes constant marginal costs across groups

of consumers. This assumption might not be valid in some settings. Specifically, when the de-

mand segmentation is based on geographic variables, the costs can vary across groups because

of local prices of production factors. In some cases, the cost of transporting the products from

the factory to the retailers can be significant and vary within the territory. We can relax this

assumption by considering a model in which the cost of product j for group d satisfies:

cdj = cj +W d
j
′λ,
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where W d
j are cost shifters that vary across products. In this case, Equation (9) becomes:

p̃j = cj + fj

([
(Ω1)−1s1

]
j

+W 1
j
′λ, ...,

[
(ΩnD)−1snD

]
j

+WnD
j
′λ
)
.

Then the optimal price for group d is:

pdj = p̃j − fj
([

(Ω1)−1s1
]
j

+W 1
j
′λ, ...,

[
(ΩnD)−1snD

]
j

+WnD
j
′λ
)

+
[
(Ωd)−1sd

]
j

+W d
j
′λ.

Our method then applies as previously, with λ one of the component of θ. When W d
j does not

vary with j, on the other hand, we may not be able to separately identify λ from the intercept

of the utility function. Intuitively, we can rationalize any price gap between groups, constant

across j, by a marginal cost difference or a corresponding difference in the intercepts of the

utility function.

4.5 Other functional forms on price effects

We have implicitly assumed up to now, following the common practice, that indirect utilities

depend linearly on disposable income, namely on αi(yi − pj), where yi denotes the income

before making one’s choice. αiyi can then be removed, as it is constant across alternatives. To

incorporate, for example, credit constraints as in BLP, the indirect utility may rather depend

on αi ln(yi − pj). With such a specification, consumers cannot choose to buy products with

prices above their annual income. Let us suppose, more generally, that the utility depends

on disposable income through q(yi − pj , αi) where q is known by the econometrician while

αi|Di = d ∼ N (αd, σ2d
α ) with (αd, σ2d

α ) unknown. Our methodology also applies to this

setting. In such a case, one has to include entirely q(yi − pj , αi) into µdj (Ei, ζi, p
d
j ), with yi as

one component of Ei. Then Equations (9) and (11) remain unchanged. The only difference is

that the terms entering into Ωd are now different from Equation (10). But other than that,

the construction of the moment conditions follows exactly the same methodology.

5 Estimation algorithm and Monte Carlo simulations

5.1 Implementation

We first provide additional details on how to compute our GMM estimator in practice. As

in BLP, we rely on a nested fixed point (NFP) algorithm to solve the system of non-linear

equations given by (9) and (11) for each value of θ,. Specifically, the algorithm involves the

following steps:

1. Start from initial values for pd, for each group d. We can use the observed prices p̃ or

previous transaction prices obtained for another θ.
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2. Given the current vector of transaction prices pdn, compute δdn = δ(sd, pdn; θd) by invert-

ing Equation (11). Here, we recommend to follow Lee and Seo (2016), who suggest a

Newton’s method improving upon the contraction mapping of BLP.

3. Given δdn and pdn, compute the corresponding matrix Ωd and update the transaction

prices, using Equation (9).

4. Iterate 2 and 3 until convergence of prices.

The construction of the moment conditions therefore involves two nested inner loops. The

price-loop searches over the vector of prices for all the consumer groups. Inside the price-loop,

the delta-loop searches over the mean utilities δd. For each value of transaction prices, we have

to invert the market share equation to solve for the mean utility vectors δd. We use for that

purpose the contraction mapping proposed by Lee and Seo (2016) which relies on Newton’s

method and converges more rapidly than BLPs contraction mapping.

If the computational cost of our algorithm is greater than for the BLP estimator, it is possible

to parallelize the market share inversion as well as the computation of the mark-up terms

((Ωd)−1sd), as they are independent across markets and demographic groups. We also save

time by updating the initial values for the mean utilities after each iteration of the inner price-

loop and by updating initial values of prices across iterations of the outer loop that involves

the parameters θ. Finally, in the absence of random coefficient on prices, the delta-loop does

not involve transaction prices. We can then compute the mark-up terms using the correct δd,

and the price-loop converges immediately to the true vector of prices.

We also use the following specifications for computing the GMM estimator. First, to approx-

imate the aggregate market shares, we use in the simulations below 300 symmetric normal

draws for each demographic group and market. We rely on Knitro derivative-based algorithm

for minimization. Our initial values for the price sensitivity parameters are the estimates

obtained with the simple logit model, while we use random draws from a uniform distribution

U [−1/2, 1/2] for the value of the random coefficient σp. As suggested by Dubé et al. (2012)

and Knittel and Metaxoglou (2014), we set a tight tolerance (10−12) to solve numerically for

the mean utilities and prices, while the tolerance levels are 10−6 for the parameters and 10−4

for the objective function. In the application where J is much larger, we use 1,000 Halton

draws rather than 300 and rely on a tolerance of 10−6 for both the parameters and the objec-

tive function. Finally, we follow Nevo (2000) by setting the value of the objective function to

a high value when the parameters imply non-defined values for δ or p.

We do not rely on the minimization program with equilibrium constraints (MPEC) approach

suggested by Dubé et al. (2012) here. Simulations suggest that in our set-up, this approach

is much slower than our NFP algorithm. This result is consistent with the findings of Dubé

et al. (2012), who report that with markets of size 500 or more, MPEC was less efficient than
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NFP for the standard BLP model. Here, we can easily reach problems of size 500, since the

optimization problem has a size larger than 2JnD.

5.2 Data Generating Process

To investigate the performance of our estimator and whether the algorithm produces reliable

results, we perform Monte Carlo simulations. We construct 200 different datasets for T = 25

markets, J = 24 products and nD = 4 demographic groups. For each market and product, we

construct the vectors of observed characteristics Xjt = (1, X1jt), unobserved characteristics

ξdjt, observed cost shifters Wjt = (W1jt,W2jt,W3jt) and unobserved cost shifters ωjt. The

marginal cost of product j in market t then satisfies

cjt = 0.7 + 0.7X1jt +W1jt +W2jt +W3jt + ωjt. (17)

We suppose that X1jt,W1jt,W2jt,W3jt, ωjt and ξdjt are mutually independent. X1jt ∼ U [1, 2],

Wkjt ∼ U [0, 1](k = 1, 2, 3) while ξdjt and ωjt are two normal variables N (0, 0.1). The param-

eters of preferences are summarized in Table 1. Groups of consumers are heterogeneous in

their price sensitivity. Group 1 is the less price sensitive group, but does not have the highest

utility of holding a car nor the highest valuation for the exogenous characteristics (the valua-

tion is set to 1.5, versus 2 for the three other groups). As in our application, the unobserved

heterogeneity parameter σp is identical for the four demographic groups. Finally, we assume

that the market includes 4 firms, each of them producing 6 products. Once we solve for prices

and market shares (sdjt, p
d
jt)d=1,2,3,4, we define for each product the posted price p̃jt as the

maximal price across demographic groups. We use product characteristics, cost shifters and

functions of other product characteristics as instruments for the estimation.

Proportion Intercept X1 Price
Group 1 0.3 -1 1.5 -1.5
Group 2 0.3 -0.5 2 -2
Group 3 0.2 -0.1 2 -2.5
Group 4 0.2 -0.5 2 -3
σp 0.4

Table 1: Parameters of preferences in the Monte Carlo. simulations

5.3 Numerical Aspects

We first investigate the convergence of our algorithm for one synthetic dataset generated

using the DGP described before. For that purpose, we compute the Lipschitz coefficient of

the function gθ for θ at its true value, except σp that we make vary in {0, 0.1, ..., 1}. As

discussed above, the value of the Lipschitz coefficient is 0 when σp is set to 0. Then, for

all values equal or below 0.9, we obtain Lipschitz coefficients that are increasing but remain
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lower than 0.798. Conversely, when σp = 1 the Lipschitz coefficient becomes greater than 1,

indicating that the algorithm may have problems to converge. This is consistent with Theorem

1: for σp close enough to zero, the algorithm is k-Lipschitz, with k < 1, but it may not be

when σp is large. Note however that the system of equations may still be invertible in (δ, p).

Given the values of the price sensitivities, a value of 1 for σp means that for some groups,

more than 6% of the population have a positive price parameter, which implies that optimal

prices may go to infinity.

We then evaluate the performances of our algorithm at the true parameter θ0, by starting from

50 different initial values of prices equal to R × p̃j , where R ∼ U [0.25, 1]. As expected, the

algorithm always converges to the true value of the transaction prices. Besides, convergence

occurs very quickly, in 13 or 14 iterations. We compute, at each iteration of the price-loop, the

average and maximal absolute differences between the true prices and those obtained by the

algorithm, across all products. We then take the average of these mean and maximal absolute

differences over the 50 initial draws. The results, displayed in Table 2, show that the sequence

of vectors of prices converges very quickly to the true vector.

Iteration 1 2 3 4 5 6 7
Mean 0.7313 0.0144 0.0004 1.38×10−5 5.18×10−7 2.65×10−8 1.77×10−9

Maximum 2.7729 0.0631 0.0029 1.9×10−4 1.62×10−5 1.48×10−6 1.41×10−7

Reading notes: “mean” (resp. “maximum”) is the mean (resp. maximal) absolute difference between the
true prices and those obtained by the algorithm across all products. The figures are averages over the 50
simulations. The average true price here is 3.91, with a range of [2.24; 5.99].

Table 2: Mean and maximum price difference across iterations.

We further check that the algorithm converges for values of the parameters different from θ0,

starting this time from the same initial price vectors, pd = p̃. We draw 50 different vectors

of parameters from U [θ0/2, 3θ0/2) and investigate potential convergence issues. On the 50

different values of θ, 7 values do not lead to convergence as they imply a failure in the price-

loop, with some prices tending to infinity. These cases of convergence failure do not cause

any trouble for the estimation since the objective function is set to a high value whenever the

price-loop does not converge. In practice, our algorithm always came back to regions of the

parameter space where the price-loop converges. Over the 43 draws of θ for which convergence

occurs, the price-loop converges in 28 iterations on average, with a minimum of 8 iterations

and a maximum of 312 iterations. Our algorithm converges in 2.3 seconds on average.

Finally, following Knittel and Metaxoglou (2014), we carefully check the sensitivity of the

estimation method to the initial values and the minimization algorithm. Regarding the effect

of initial values, we draw 50 different initial values of θ = (σp, (αd)d=1,...,4). Specifically,

σp is drawn from a U [0, 1/2] and αd is drawn from U [αd/2, 3αd/2]. The estimation always

converged to the same parameter values in these 50 cases. This indicates that even if the

26



algorithm fails to converge for some values of the parameters, as indicated above, the global

minimization algorithm does not display any problem of convergence. Roughly speaking,

during the optimization, the parameter values for which the price-loop does not converge

are discarded since they are associated to high values of the objective function. Regarding

the choice of the minimization algorithm, we try a derivative-free minimization algorithm

(namely the Neader-Mealde simplex) instead of Knitro. This algorithm does not perform as

well as Knitro both in terms of convergence and in terms of the time spent in optimization.

Specifically, we estimated the model using 50 different initial values and find that in 26% of

the simulations, the objective function at the minimum obtained with the simplex is more

than 1% higher than when using Knitro. Moreover, in the 74% remaining cases, the objective

function with the simplex is never lower than with Knitro. Finally, the simplex is on average

7% slower than Knitro.

5.4 Simulation results

The Monte Carlo simulation results are displayed in Table 3. As in the application, we estimate

separately the demand and supply parameters, using moment conditions from the demand-

and supply-side, respectively. The estimation algorithm converges for every replication, and

the GMM accurately estimates both demand and supply parameters. The pivot groups are

exactly guessed and the estimated discounts are very close to the true underlying discounts.

To get a sense of the computational burden of our estimation method, we also estimate the

standard BLP model on the same simulated data. The standard BLP estimator is around 70

times quicker than the discriminatory model, with an average number of iterations 6 times

smaller. This is partly due to the fact that for the standard BLP we optimize over σp only,

while for our model, we optimize over (α1, ..., α4, σp). Nevertheless, the computation time

of our estimator remains decent because (i) it is possible to parallelize the computationally

intensive part of the estimation algorithm and (ii) the contraction based on Newton’s method

converges more quickly than BLP’s contraction.
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True Estimators
Mean Std. dev.

Price sensitivity
Group 1 -1.5 -1.5 0.032
Group 2 -2 -2 0.04
Group 3 -2.5 -2.5 0.057
Group 4 -3 -3 0.067
sigma (σp) 0.4 0.4 0.021
Intercept
Group 1 -1 -1 0.083
Group 2 -0.5 -0.51 0.098
Group 3 -1 -1.01 0.118
Group 4 -0.5 -0.51 0.139
Exogenous characteristic
Group 1 1.5 1.5 0.016
Group 2 2 2 0.015
Group 3 2 2 0.017
Group 4 2 2 0.016
Marginal cost equation
Intercept 0.7 0.7 0.03
X1 0.7 0.7 0.015
W1 1 1 0.017
W2 1 1 0.017
W3 1 1 0.016
Average discount (in %)
Group 1 0 0 0
Group 2 7.28 7.26 0.26
Group 3 11.13 11.12 0.251
Group 4 13.69 13.66 0.236
% pivot well predicted 100
% simulations converging 100
Average number of iterations 30
Time (sec) 214
Test
Average κ̂ 1
Standard deviation of κ̂ 0.16
% accept discrimination model 99.5
Reading notes: the results were obtained over 200 simulations. “Time” is the
optimization time in seconds using our preferred starting point and on our desktop
computer using 6 parallel workers (Intelr CoreTM, 6-Core Xeon E5, 3.5 GHz, 16Gb
RAM). “% simulations converging” is the percentage of simulations for which our
algorithm converged.

Table 3: Simulation results.

We also implement the test of the model and accept the discrimination model 99.5% of the

time. Finally, we also investigated the performance of the test under uniform pricing. We ran

200 Monte Carlo simulations generated using the same DGP as above except that firms set

uniform prices. Under this model, the right uniform pricing model was accepted 99.5% of the

time.
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6 Application to the French new car market

6.1 Data and methodology

We apply our methodology to estimate demand and supply together with unobserved discounts

in the new automobile industry, using a dataset from the association of French automobile

manufacturers (CCFA, Comité des Constructeurs Français d’Automobiles) that records all the

registrations of new cars purchased by households in France between 2003 and 2008. Each

year, we observe about one million vehicles registered and their main attributes: brand, model,

fuel energy, car-body style, number of doors, horsepower, CO2 emissions, cylinder capacity

and weight. These characteristics have been complemented with fuel prices to compute the

cost of driving (in euros for 100 kilometres).

Automobile sellers are well known to price discriminate, negotiate or to offer discounts over

the sticker price to close the deal. But as in our theoretical model, we only observe here

posted prices that come from manufacturers catalogues. As often, we do not observe the

automobile options such as air conditioning, audio systems or metallic paint that are chosen

by the purchasers. If the cost of the options is included in the marginal cost of the cars, our

assumption that the marginal costs are constant across demographic groups could be violated.

Rich purchasers may indeed purchase more of these options, for instance. Options choice can

however be considered independent of car choices, as long as the same options are available

to all products. We can then safely ignore option costs and option choices in our analysis.

We now turn to the construction of the consumer groups that are used by firms to price

discriminate. Apart from car attributes, the date of the registration and some characteristics

of the owner are provided in the CCFA database: municipality of residence and age. The age

(or the age class) is presumably a strong determinant of purchase, and is easily observed by

a seller even if he does not know the buyer before the transaction. We therefore assume that

these characteristics are used by the automobile sellers to price discriminate. The income is

also likely to affect preferences for different car attributes and price sensitivity. The income

is, however, likely to be unobserved by the seller but instead inferred from the municipality

the buyer lives in and the age class. We compute a predictor of buyer’s income, namely the

median household income in his age class and in his municipality using data from the French

national institute of statistics (Insee).6

It seems reasonable to assume that the seller does not have a far better prediction of the

buyer’s income in such anonymous market, where buyers and sellers do not know each other

before the transaction. It is crucial for our approach that buyers cannot lie about their indi-

vidual characteristics, which implies in our application that buyers do not make geographical
6There are over 36,000 municipalities in France. Note also that Paris, Lyon and Marseille, the three

largest cities, are split into smaller units (“arrondissement”). The heterogeneity in the median income across
municipalities is therefore quite large.
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arbitrage, i.e. buy the car in another municipality where discounts are higher. We believe that

this assumption is reasonable since buyers have incentives to buy a new car at a close dealer

to minimize transportation costs and take advantage of the after-sale services and guarantees.

We thus define groups of buyers by interacting three age classes and two income classes. We

choose the commonly used thresholds of 40 and 60 for the age classes, and 27,000 euros per

year as the threshold for income. This income threshold corresponds roughly to the median

yearly income in France in 2008. Note that we do not observe the owner’s gender in our

database. Even if this information was available, it would be hard to use it since the owner

and the buyer can be different persons. Furthermore, many couples are likely to buy their car

together. Nevertheless, we check in Section 6.5 below the sensitivity of our estimates to price

discrimination with respect to gender.

As usual, when defining the groups of consumers, we face a trade-off between realism (it is likely

that firms discriminate along several dimensions) and accuracy of the observed proportion of

sales ŝdj as estimators of the true market shares sdj . The six groups that we consider are large

enough to avoid in most cases the problem of too many zero sales (see Table 4 in Section 2.1 of

the supplementary material for the fraction of products with null market shares). Moreover,

rather than discarding those products, we replace the proportion of sales by a predictor of sdj
that minimizes the asymptotic bias, namely ŝdj =

ndj+0.5

Nd , ndj denoting the number of sales of

product j in group d and Nd the number of potential buyers with characteristics d. Note that

another simple correction of the basic market shares estimator has been proposed by Gandhi

et al. (2013). We provide more details about our correction and show in Section 2.1 of our

supplementary material that our results are robust to the choice of a correction for the market

shares.

We define a product as a brand, model, segment, car-body style and fuel type. This results in

a total of 3,205 products for the six years. Following BLP, we assume that each of these years

corresponds to a different market. Table 4 presents the proportion of each consumer group in

the population and the average characteristics of new cars purchased corresponding. We find

significant heterogeneity across these groups. On average, the medium age, high income class

purchases more expensive vehicles. They also choose larger and more powerful cars. Young

purchasers are more interested in smaller cars (lighter and with three doors) whereas station

wagons are more popular among the medium age class. The highest age group purchases

lighter vehicles than medium age classes, but these vehicles are on average less fuel efficient.
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Group Freq. Price Fuel HP Weight Three Station
cost doors wagon

A < 40, I < 27,000 15.7% 19,803 6.2 5.7 1182 19.0% 9.7%
A < 40, I ≥ 27, 000 11.5% 20,911 6.5 6 1221 16.8% 12.9%
A ∈ [40,59], I < 27,000 16.3% 21,521 6.5 6.1 1231 14.3% 12.7%
A ∈ [40,59], I ≥ 27, 000 22.3% 21,739 6.8 6.2 1236 14.8% 13.1%
A ≥ 60, I < 27,000 20.8% 20,117 6.9 5.9 1194 11.4% 8.9%
A ≥ 60, I ≥ 27, 000 13.2% 20,831 7 6 1219 10.9% 10.5%
Reading notes: “A” represents the age and “I” the income. Prices are in constant
(2008) euros, fuel cost is the cost of driving 100 kilometers, in constant (2008) euros,
“HP” stands for horsepower, weight is in kilograms.

Table 4: Average characteristics of new cars purchased across groups of consumers.

The dataset does not contain any information on the distribution network, and thus the

distribution part is not modeled in this application. We make the traditional assumption that

manufacturers have only exclusive dealers and are perfectly integrated. As detailed in Nurski

and Verboven (2016), exclusive dealing is still prevalent in most European countries, with

70% of car dealers being exclusive to one brand in Europe. As discussed in Section 3.3 above,

adding vertical relations between manufacturers and dealers would be possible, provided that

dealers compete à la Bertrand in the downstream market.

Hereafter, we estimate the random coefficient model with uniform pricing and with unobserved

price discrimination. We also estimate nested logit models as robustness check. In all specifi-

cations, we control for the main characteristics of the cars such as horsepower, weight and the

cost of driving 100 kilometers in the demand function. We also introduce dummies for station

wagon body-style and three doors. Finally, we introduce year and brand dummies that are

constrained to be identical for all demographic groups. For the two random coefficient models,

we allow for unobserved heterogeneity of preferences inside groups of consumers in terms of

price sensitivity.7 Finally, to obtain more accurate results, we constrain the heterogeneity

parameter to be identical for all demographic groups.

We estimate both models relying only on the moment conditions stemming from the demand.8

The implementation of the estimation follows the method described in Section 5. In particular,

we check that we reach the minimum by trying multiple initial values for the parameters and

several minimization algorithms. We also verify that the system of equations defined by (9)

and (11) has a unique solution at the estimated value of parameters by applying the tests

performed in the simulation analysis and find that after drawing several initial values of

transaction prices and mean utilities, the algorithm always converges to the same value of
7We estimated a specification with heterogeneity on the fuel cost and for the utility of buying a new car.

Those coefficients turned out to be imprecisely estimated, so we preferred to drop them.
8 We also estimated the models using the moment conditions from the supply side. We supposed that the

marginal cost depends on horsepower, fuel consumption (in liters for 100 kilometers) and car weight multiplied
by a composite price index that aims at approximating the average input price. We also introduce brand
dummies to control for manufacturer’s specific unobserved quality of cars. We considered both linear and
log-linear specifications for the marginal cost equation. Results on the demand side were very similar.
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estimated transaction prices. We also compute the values of the Lipschitz coefficient for the

price contraction, starting from the posted prices until the convergence to transaction prices.

The price-loop converges in 8 iterations and the Lipschitz coefficient is always below 0.043.

In addition to exogenous characteristics we include the following instruments. The first is the

car weight multiplied by a composite price index that aims at approximating the average input

price. Specifically, we use a weighted average of steel, aluminum and plastic prices taken in

January 2015. The weights we use are equal to 0.77, 0.11 and 0.12, respectively, reflecting the

relative importance of each of these inputs in car manufacturing. The other instruments are

close to those suggested by BLP. We include the sum of continuous exogenous characteristics

(namely weight, horsepower and fuel cost) of other brands’ products. We also consider the

sums of these characteristics over other brands’ products of the same segment, supposed to be

closer substitutes. Finally, we include the sums of these characteristics of the other products

of the brand belonging to the same segment. Armstrong (2016) has recently shown that

such instruments could be weak when the number of products is large. Note however that

identification is secured here by the inclusion of the cost shifter. Nonetheless, we checked that

the instruments are indeed relevant for prices. We use for that purpose the F-statistic of the

joint nullity of the coefficients of these instruments in the linear regression of prices on the

characteristics and these instruments. We obtain F ' 24.1, which is far above the threshold of

10 suggested by Staiger and Stock (1997) and usually used to detect weak instruments. This

is therefore reassuring on the identification of the model and the validity of inference here.

6.2 Parameter estimates and comparison with the standard model

The results for the models with uniform pricing and unobserved price discrimination are

presented in Table 5. Results for the nested logit specification are displayed in Section 2.3.1

of the supplementary material. They are globally in line with the results we obtain for the

models with random coefficients.
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Uniform Price discrimination
Parameter Std-err Parameter Std-err

Price sensitivity
Age < 40, I = L -4.57∗∗ 0.149 -4.83∗∗ 0.12
Age < 40, I = H -4.33∗∗ 0.145 -4.52∗∗ 0.119
Age ∈ [40,59], I = L -3.98∗∗ 0.137 -4.32∗∗ 0.118
Age ∈ [40,59], I = H -3.73∗∗ 0.133 -3.96∗∗ 0.116
Age ≥ 60, I = L -3.85∗∗ 0.149 -4.21∗∗ 0.133
Age ≥ 60, I = H -3.61∗∗ 0.15 -3.05∗∗ 0.134
Std. dev. (σp) 1.15∗∗ 0.058 0.98∗∗ 0.086
Intercept
Age < 40, I = L -5.4∗∗ 0.211 -6.24∗∗ 0.208
Age < 40, I = H -6.25∗∗ 0.209 -6.92∗∗ 0.207
Age ∈ [40,59], I = L -6.12∗∗ 0.212 -6.85∗∗ 0.208
Age ∈ [40,59], I = H -6.36∗∗ 0.21 -6.9∗∗ 0.207
Age ≥ 60, I = L -5.73∗∗ 0.228 -6.48∗∗ 0.226
Age ≥ 60, I = H -6.25∗∗ 0.236 -6.31∗∗ 0.282
Horsepower
Age < 40, I = L 3.88∗∗ 0.214 2.68∗∗ 0.179
Age < 40, I = H 3.13∗∗ 0.191 2.09∗∗ 0.166
Age ∈ [40,59], I = L 2.27∗∗ 0.195 1.87∗∗ 0.161
Age ∈ [40,59], I = H 1.65∗∗ 0.17 1.37∗∗ 0.162
Age ≥ 60, I = L 1.11∗∗ 0.202 1.12∗∗ 0.178
Age ≥ 60, I = H 0.64∗∗ 0.225 0.28 0.251
Fuel cost
Age < 40, I = L -6.08∗∗ 0.179 -5.5∗∗ 0.181
Age < 40, I = H -5.1∗∗ 0.171 -4.63∗∗ 0.176
Age ∈ [40,59], I = L -5.24∗∗ 0.173 -4.97∗∗ 0.17
Age ∈ [40,59], I = H -4.18∗∗ 0.164 -4.03∗∗ 0.17
Age ≥ 60, I = L -3.51∗∗ 0.171 -3.46∗∗ 0.17
Age ≥ 60, I = H -2.73∗∗ 0.174 -2.59∗∗ 0.177
Weight
Age < 40, I = L 5.67∗∗ 0.218 6.63∗∗ 0.221
Age < 40, I = H 5.83∗∗ 0.213 6.61∗∗ 0.22
Age ∈ [40,59], I = L 5.7∗∗ 0.218 6.69∗∗ 0.22
Age ∈ [40,59], I = H 5.55∗∗ 0.211 6.28∗∗ 0.215
Age ≥ 60, I = L 4.55∗∗ 0.23 5.59∗∗ 0.243
Age ≥ 60, I = H 4.64∗∗ 0.24 4.13∗∗ 0.289
Three doors
Age < 40, I = L 0.09 0.199 0.16 0.209
Age < 40, I = H -0.05 0.197 0.02 0.208
Age ∈ [40,59], I = L -0.05 0.196 -0.04 0.206
Age ∈ [40,59], I = H -0.2 0.199 -0.18 0.209
Age ≥ 60, I = L -0.52∗∗ 0.194 -0.53∗∗ 0.205
Age ≥ 60, I = H -0.59∗∗ 0.194 -0.51∗ 0.203
Station wagon
Age < 40, I = L -0.74∗∗ 0.131 -0.75∗∗ 0.144
Age < 40, I = H -0.61∗∗ 0.13 -0.61∗∗ 0.143
Age ∈ [40,59], I = L -0.64∗∗ 0.13 -0.66∗∗ 0.142
Age ∈ [40,59], I = H -0.71∗∗ 0.132 -0.72∗∗ 0.143
Age ≥ 60, I = L -0.73∗∗ 0.128 -0.76∗∗ 0.14
Age ≥ 60, I = H -0.72∗∗ 0.128 -0.65∗∗ 0.132
Value of objective function 2,343 1,739

Notes: Significance levels: †: 10% ∗: 5% ∗∗: 1%. Standard
errors are computed using the standard GMM formula. “Horse-
power” is the fiscal horsepower, “Fuel cost” is in euros/10 kilometres
and “Weight” is in tons. Year and brand fixed effects are constrained
to be identical across groups of consumers.

Table 5: Parameter estimates for the standard uniform BLP model and our model with
unobserved price discrimination.

The two random coefficients models produce different price sensitivities. They are always

smaller for the price discrimination model, except for the group of old with high income for

which we obtain a higher price sensitivity under the uniform pricing model. This group is
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the least price sensitive group and turns out to be always pivot in the model with unobserved

price discrimination. The price sensitivity decreases with both age and income, leaving the

young with low income the more price sensitive group.

The parameters of the intercept are negative, reflecting the fact that the major part of con-

sumers choose the outside option, namely not to buy a car or buy one on the second-hand

market. The heterogeneity of this parameter across demographic groups does not follow a

clear pattern. As expected, consumers display a preference for horsepower, but the groups

differ in how much they value it. Young consumers have a high valuation for the engine power

while the eldest care less about this attribute. As expected, all groups of consumers dislike

large fuel expenses. The parameters of sensitivity to the fuel cost are consistent with the

parameters of sensitivity to the car price. The old purchasers with high income appear to be

also less sensitive to the cost of driving while the most sensitive consumers are also the young

and middle-age groups with a low income. As weight is a proxy for the size and the space of

the car, it is positively valued by all the consumers. Three doors and station wagon vehicles

are negatively valuated, reflecting that most of the consumers buy sedan or hatchback cars

with five doors (four doors plus the trunk).

If qualitatively similar, the results we obtain with the two models exhibit some quantitative

differences, as also illustrated below. It is therefore important to test between the two models.

Recall that in the test developed in Section 3.4, κ = 0 corresponds to uniform pricing, while

κ = 1 corresponds to the price discrimination model. We estimate κ̂ = 1.08 and obtain p0 = 0

and p1 = 0.52. Hence, this test clearly points towards the discrimination model over the

uniform pricing model.

To understand what the differences of the estimates between the two models imply, we compare

the corresponding price elasticities and mark-up rates. We provide the same analysis for the

nested logit models in Section 2.3.1 of the supplementary material. As Table 6 shows, price

elasticities are, in absolute terms, lower for the model with uniform pricing for all groups,

except for the pivot group. Hencen the overestimation of prices in the uniform pricing model

is more than compensated by the underestimation of price sensitivity parameters.

In the discriminatory pricing model, we find average price elasticities varying from -3.9 to -6.4.

Such elasticities are in line with those obtained by BLP (between -3.5 and -6.5) but below

those of Langer (2016) who finds, using transaction prices, a range between -6.4 to -17.8. Our

price elasticities imply an average mark-up of 20.6% under the price discrimination model and

21.6% under the uniform pricing model, with, as we could expect, sizable heterogeneity across

groups in the price discrimination model. As in the simulations (see Table 1 of the supplement),

the uniform pricing model underestimates the mark-up firms obtain on the pivot group but

overestimates the mark-ups of the other groups. The average mark-up for the group of young,

low-income consumers is around 17.6%, contrasting with the 28.5% the firms obtain for the old
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and high-income group. Similarly, the costs are always overestimated in the uniform pricing

model, with an average difference of 9.5%. The relative cost differences even exceed 18% for

2.9% of the products. We refer to Section 2.2 of the supplementary material for more details.

Group of Price elasticity Average mark-up Average surplus
consumers Disc. Unif. Disc. Unif. Disc. Unif.
Age < 40, I = L -6.4 -6.15 17.5 21.4 13,220 16,552
Age < 40, I = H -6.18 -5.89 18.2 21.1 14,473 18,261
Age ∈ [40,59], I = L -5.99 -5.28 18.9 21.2 15,465 21,018
Age ∈ [40,59], I = H -5.53 -4.92 20.4 21.3 18,480 25,411
Age ≤ 60, I = L -5.52 -4.75 20.7 22.2 15,574 20,774
Age ≤ 60, I = H -3.94 -4.5 28.5 22 32,442 26,590
Average -5.61 -5.2 20.6 21.6 17916 21651
Reading notes: Mark-ups are in percentage.

Table 6: Comparison of average price elasticities, mark-ups and consumer surplus under the
uniform pricing and unobserved price discrimination models.

We investigate further the differences between the two models by looking at the results of

two hypothetical counterfactual simulation exercises. First we measure the welfare effects of

a purchase subsidy for young households that are below 40. We consider three policy designs:

(i) a uniform subsidy of e1,000, (ii) a subsidy of e1,000 for cars that are more fuel efficient

than the average (148 cars out of 571) and (iii) a feebate system that provides a rebate of

e1,000 for cars that are more fuel efficient than the average and a tax of e1,000 for the other

cars.

Results are display in Table 7. All the scenarios imply welfare effects qualitatively similar

but quantitatively very different. Under the uniform pricing we always obtain lower effects on

profits, consumers and policy cost. The differences are the most striking for the variation in

consumer surplus: 30%, 44% and 92% for respectively scenario (i), (ii) and (iii).

Subsidy for young buyers Merger
scenario (i) scenario (ii) scenario (iii) PSA/GM
Disc Unif Disc Unif Disc Unif Disc Unif

∆Consumer surplus 959.59 674.32 588.23 327.49 284.92 21.56 -9.56 -8.56
∆Profits 161.05 151.64 107.48 102.87 69.89 67.88 0.99 1.56
# firms better off 20 19 15 15 9 8 19 19
Policy cost 269.09 255.88 17.02 16.2 13.25 12.18 0 0
∆Welfare 851.55 570.08 678.69 414.16 341.56 77.26 -8.57 -7
∆Profits for PSA/GM 0.34 0.53
Reading notes: All monetary values are in million euros. The differences in consumer surplus and profits
are summed over all consumers and firms, respectively. The average surplus CSd for group d is computed
in euros, using the standard formula CSd =

∫
log
(
1 +

∑J
j=1 exp(δ

d
j + µj(u, p

d
j ))
)
dFζ(u). We thus take into

account the substitution from the outside good.T he welfare is computed as the sum of manufacturers’ profits
and all consumers’ surplus, minus the cost of the policy.

Table 7: Welfare analysis of the hypothetical purchase subsidy for young households and a
hypothetical merger between PSA and Opel.
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Secondly, we measure the welfare implications of a potential merger between manufacturers.

We investigate the unilateral effects of a merger between Peugeot group (PSA) and the Eu-

ropean branch of General Motor (Opel and Vauxhall).9 Results displayed in the last two

columns of Table 7 reveal that the two alternative models imply welfare effects that differ

by 1.5 million euros. We estimate the total welfare loss to be 18% lower under the uniform

pricing model than under the model with price discrimination. The effects on profits differ by

57%, the uniform pricing model implying larger impacts on the profitability of the industry.

6.3 Analysis of the discounts and the effect of price discrimination

Table 8 presents the average discount for each demographic group estimated using the model

with unobserved price discrimination. We compute average discounts weighted by actual sales

in each group but also using the same weighting scheme for all groups of consumers, namely,

the overall product market shares (“basket-weighted” method). This allows us to eliminate the

potential group-specific demand composition effect. The results with both weighting methods

are nevertheless very similar. As expected, the pattern on average discounts across groups is

similar to the one on price elasticity. The estimated pivot group (the group assumed to be

paying the posted price) is identical for all the products and corresponds to the group with

the lowest price elasticity. These are the 13.2% of the population over 60 years of age with

income over 27,000 euros.

On average, the sales-weighted discount is 9.6%, with a large heterogeneity across consumers.

Around 25% of transactions occurred with a discount greater than or equal to 12.2%. Clearly,

income and age are both important determinants of the discount obtained. On average, young

purchasers with a low income pay 13.4% less than the posted price, while young, high income

buyers get an average discount of 12.0%. These percentages represent a gross gain of around

2,500 euros. Middle age consumers get smaller discounts (11% for the low income group and

9.6% for the high income group). Finally, while old, low income individuals receive an average

discount of 10.4%, the old, high income buyers receive no discount since they constitute the

pivot group for all the products. Note that these figures average vehicle specific discounts.

Our methodology allows us to analyze further the heterogeneity across car models, since we

estimate a discount value for each model and demographic group. Further results are displayed

in Section 2.2 of the supplement.
9This merger analysis is inspired by acquisition of Opel by PSA in the beginning of March 2017. Note that

we do not pretend that our results are credible to evaluate this merger as our results use market conditions
from 2007 and are no longer relevant.

36



Average discount Average gross discount
(in % of posted price) (in euros)

Group of consumers Sales-weighted Basket-weighted Sales-weighted Basket-weighted
Age < 40, I = L 13.3 13.53 2,594 2,813
Age < 40, I = H 12.01 12.27 2,523 2,568
Age ∈ [40,59], I = L 11.36 11.33 2,482 2,385
Age ∈ [40,59], I = H 9.56 9.53 2,156 2,032
Age ≥ 60, I = L 10.37 10.28 2,084 2,174
Age ≥ 60, I = H 0 0 0 0
Average 9.64 9.68 2,023 2,038
Reading notes: the “basket-weighted” discounts are obtained by using the same artificial basket of
cars for all groups.

Table 8: Average discounts by group of consumers

To put these discounts into perspective, we provide a rough assessment of the importance

of third- versus second-degree price discrimination. We define the latter as the variations in

prices of the different versions of a given car model, fuel type, body style and year. These

different versions of a car model are associated to different characteristics such as cylinder

capacity or horsepower for instance. We first compare the sales-weighted variance of list

prices without such a discrimination, considering only baseline models, with the variance of

list prices that includes second-degree price discrimination. We find that second-degree price

discrimination increases the variance of log list prices by 2.7%. We then turn to third-degree

price discrimination. Using our estimated prices, we observe a further increase in the variance

of 2.3%.10 We can make a similar assessment on relative price ranges, defined for a given car

model name, fuel type and body style as the ratio between the maximal and minimal prices

minus one. While the average relative price range with second-degree price discrimination

only is equal to 38%, this average relative price range reaches 56% when introducing third-

degree price discrimination. Hence, at the end of the day, third-degree price discrimination

appears to be a determinant of price dispersion nearly as important as second-degree price

discrimination.

If third degree price discrimination is always profitable for a monopoly seller, this may not

be the case in an oligopoly, because price discrimination may reinforce competition among

firms. Under certain conditions, all firms may actually be worse off than if they could commit

to a uniform pricing strategy (Holmes, 1989; Corts, 1998). The effect on consumers is also

ambiguous since for some groups of consumers, some products may turn out to be cheaper

without price discrimination. We investigate here the effect of price discrimination on firms

and consumers by simulating, using our estimates of the model with price discrimination, the

counterfactual prices and profits that would occur in equilibrium if firms could commit to set

a single price for all the consumer groups.
10Because we do not define products at the finest possible level in our model in order to measure markets

shares with enough precision, we do not have a specific estimate of discounts for each version of the different
car models. To compute such an estimate, we assume that the discounts represent the same percentage of the
list prices for all the different versions of a car model.

37



Profits with price Profits without price Gains from
Manufacturer discrimination discrimination discrimination
PSA 1036.42 998.76 3.77%
RENAULT 691.42 665.92 3.83%
VOLKSWAGEN 340.13 341.11 -0.29%
FORD 170.24 165.27 3.01%
TOYOTA 162.78 158.3 2.83%
DAIMLER 156.53 144.76 8.13%
B.M.W. 137.31 132.87 3.34%
GM 113.08 112.25 0.74%
FIAT 86.27 85.3 1.14%
SUZUKI 52 51.77 0.43%
NISSAN 48.77 47.86 1.91%
HYUNDAI 46.38 45.68 1.53%
HONDA 29.62 28.62 3.48%
MAZDA 18.94 18.8 0.76%
CHRYSLER 16.1 15.94 0.99%
MITSUBISHI 9.89 9.67 2.28%
PORSCHE 8.82 9.32 -5.35%
SUBARU 1.85 1.88 -1.5%
SSANGYONG 1.79 1.83 -1.91%
ROVER 0.05 0.05 1.9%
Total industry 3128.39 3035.95 3.05%
Reading notes: Profits are annual profits, for the year 2007, in millions of euros.
The gains from price discrimination represent the profits gains or losses of switching
from the uniform pricing equilibrium to the price discrimination equilibrium.

Table 9: Gains and losses from price discrimination by brand.

Results on firms’ profits are displayed in Table 9. Gains from price discrimination are rather

small but heterogeneous. We observe that if price discrimination is profitable for most of

the manufacturers, it makes 4 out of the 20 manufacturers worse off. The gains associated

to price discrimination are particularly high for brands that commercialize powerful vehicles,

such as Daimler group (that sells Mercedes, Dodge and Smart), with an increase of its profits

by 8.1%. This makes sense, given that higher prices and horsepowers are associated to higher

discounts or, put it another way, more price discrimination. Price discrimination appears

to be also more profitable than average for the two French manufacturers (+3.77%, +3.83%

for respectively PSA group (Peugeot and Citroen) and Renault group (Renault and Dacia).

Conversely, Porsche is the manufacturer that is the most hurt by price discrimination since its

profits are reduced by 5.4%. The total gains from price discrimination are rather small but

significant, the industry profits increasing by 3.05% with price discrimination.

We also investigate the impact of price discrimination on consumers. In Table 10, we compute

the average price differences between the uniform and the discriminatory prices for each group

of consumers and report the number of products for which the discriminatory price is lower

than the uniform one (see Column 2). We also compute average surplus for each group of

consumers under the two pricing equilibria (see Columns 5-7). For the young groups, all

products are more expensive under uniform pricing, and price discrimination makes them

save around 700 euros. The situation is more contrasted for the 40-59 and 60+ groups. In
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particular, all prices are lower under uniform pricing for the 60+ group, in which consumers

would save on average the substantial amount of 1,900 euros. Overall, price discrimination is

hardly beneficial for consumers as it increases the global average individual surplus by only

0.31%. Again, this average impact hides heterogeneous effects. The group experiencing the

highest welfare gain is the group of young consumers with low income (+3.9%), while the pivot

group is, not surprisingly, the one that suffers the most from price discrimination (-2.8%).

Group of consumers #{j : pdj < Average gain in purchases Average surplus ∆ surplus
puniform
j } S-weights B-weights Disc. Unif. (in %)

Age < 40, I = L 571 679 825 12,760 12,279 3.92
Age < 40, I = H 569 501 593 14,439 14,098 2.42
Age ∈ [40,59], I = L 553 350 371 14,714 14,477 1.64
Age ∈ [40,59], I = H 292 54 63 18,650 18,599 0.28
Age ≥ 60, I = L 483 240 190 15,367 15,200 1.1
Age ≥ 60, I = H 0 -1,857 -1,912 33,753 34,734 -2.82
Average 412 41 63 18,140 18,085 0.31
Reading notes: the second column indicates how many products (among the 571) have lower prices with
the price discrimination regime. “S-weights” denotes the sales-weighted average while “B-weights” are
those obtained by using the same artificial basket of cars for all groups. Average surplus are in euros.
The last column measures the variation of average consumers’ surplus due to price discrimination.

Table 10: Gains of price discrimination for groups of consumers.

For the total welfare, computed by simply summing manufacturers profits and consumers

surplus, we find a net benefit of price discrimination of 301 million euros. Consumers gain 209

million euros, while the manufacturers make extra profits of 92 million euros.

6.4 Plausibility of the results

6.4.1 Comparison with French transaction prices

Note first that a direct comparison with data on discounts for each product and consumer

group is not possible since, to the best of our knowledge, such data are not available. Never-

theless, we confirm indirectly the plausibility of our results using data from the 2006 French

consumer expenditure survey of Insee (BdF survey hereafter, for “Budget des Familles”). Sim-

ilar data was used by Goldberg (1996) in her study on price discrimination against women

and minorities. Each household in this survey must indicate whether they bought a new car

in the three years before the survey (2004, 2005 or 2006). If so, they indicate how much they

paid for it, the brand and model’s names (e.g., Volkswagen Golf) and the type of fuel. We

also observe the age of the head of the household, the administrative region and the type of

urban area of their residence.11

Let X̃ denote the characteristics of the car and its owner that are available both in the BdF

survey and in the CCFA. X̃ includes the brand name and model, the type of fuel, the owner’s
11There were 22 administrative regions at this period and there are five types of urban area defined by the

size of the population: less than 5,000 inhabitants, between 5,000 and 20,000, between 20,000 and 100,000,
more than 100,000 without Paris and Paris agglomeration.

39



age, region and urban area. Because the BdF survey is representative, the average prices we

estimate with our demand and supply model and those observed in the survey (conditional

on X̃) should match, if the model is correct. Formally, under the hypothesis that the price

discrimination model holds, we have

E(pBdF |X̃) = E(pCCFA|X̃). (18)

To test the equality described by (18), we first compute p(X̃) ≡ E(pCCFA|X̃) using the

CCFA data and our estimates of the transaction prices. Then (18) may be seen as a standard

nonparametric specification test E(pBdF |p(X̃)) = p(X̃). We rely on Yatchew’s differencing

test (see Yatchew, 1998, Section 4.2.1), which has the advantage of not relying on any tuning

parameter. Note that we ignore that p(.) itself is estimated here. This means that the test

is overrejecting, and thus plays against our model. Given that the CCFA database is much

larger than the BdF sample, this is most likely not a first-order concern here.

Equality (18) also has two simple implications. First, prices should be equal on average, i.e.

E(pBdF ) = E(pCCFA). Second, we should have E(pBdF − p(X̃)|X̃) = 0. We can test the

latter by considering the linear regression of pCCFA − p(X̃) on X̃, or components of X̃, and

testing whether all the coefficients are equal to zero.

The results are displayed in Table 11. We obtain for the non-parametric test a t−statistic of

0.52 when using our estimated transaction prices, meaning that we accept the null hypoth-

esis that (18) holds at all standard levels. Conversely, the t−statistic is equal to 3.50 when

considering list prices instead of our discounted prices. We also observe that the average of

our estimated transaction prices is very close to the average price obtained in BdF, while the

average list price is clearly higher. Finally, the parametric test using owner characteristics

also indicates that our estimated transaction prices are not significantly different from BdF

prices while the test of equality with list prices is rejected. When controlling for both car and

owner characteristics, the tests of equality are both rejected at standard levels. But again,

the test statistic of equality between list prices and BdF prices is much larger than that in-

volving discounted prices. Thus, at the end of the day, these tests suggest that our estimated

transaction prices are indeed reasonable approximations of the true transaction prices.
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pCCFA = pCCFA =
discounted prices list prices

Nonparametric test (T-stat) 0.52 3.50∗∗

E(pBdF − pCCFA) (in euros) 112 -1,899∗∗

Linear reg. on owner characteristics (F-test) 1.46 8.82∗∗

Linear reg. on owner & car characteristics (F-test) 2.85∗∗ 8.48∗∗

Reading notes: owner characteristics include the age, the type of urban area of residence and the
year of purchase. Car characteristics include the brand, the list price and type of fuel. Significance
levels: †: 10%, ∗: 5%, ∗∗: 1%. Data source: Budget des familles survey - 2005-2006, INSEE, Centre
Maurice Halbwachs (CMH).

Table 11: Comparison with BdF data.

6.4.2 Other evidence

Another confirmation of our results comes from a survey conducted by the French credit

company, Cetelem (L’Observatoire Cetelem, 2013). First, it reveals that in 2012, 87% of the

purchasers benefited from a discount from their car dealers, which is exactly what we estimate

with our model (86.8%). Interestingly, a quarter of them also indicate that they did not even

need to negotiate to obtain a rebate, which may be seen as evidence of price discrimination

rather than a true bargaining process. Furthermore, for 68% of individuals who indicated that

they negotiated the car price, the average discount was around 11%. This result is comparable

to our average on the whole population, and also very close to the average discount we obtain

on individuals below 60 years old (11.3%), who also represent around two third of the whole

population. We were unable to find precise statistics on the dispersion of discounts, but we

can report some anecdotal evidence. For example, when searching online using the keywords

“how much discount for new car ” (in French), the first website listed states that “discounts are

generally between 5% and 20%”.12 The fourth website associated to the same key words search

is a forum asking the question of how much discount one can expect to obtain on the purchase

of a new car. One reply states that discounts do not exceed 20%, while another mentions an

average discount of 6%.13 Our estimations are overall consistent with these figures.

A recent study by Kaul et al. (2016) investigates the effect of the scrapping policy on the

magnitude of discounts in Germany, using data collected from a sample of dealers. The study

first reveals that some consumers do not obtain any discounts (see their Table 2 with summary

statistics on discounts). When excluding demonstration cars and sales to employees, which

are typically much more discounted, they obtain an average discount of 14%. This magnitude

is broadly consistent with our estimate, though somewhat higher. Their study focuses on
12See http://www.choisir-sa-voiture.com/concessionnaire/meilleur-prix-voiture.php. We per-

formed this search in November 2014 using Google search engine.
13See http://forum.hardware.fr/hfr/Discussions/Auto-Moto/negocier-voiture-concession-sujet_

15899_1.htm.
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the period 2007-2010, which corresponds to the beginning of the economic crisis. If posted

prices did not adjust immediately, it is likely that car dealers reacted to this adverse economic

climate by reducing their margins and increasing the discounts. In their regression analysis,

they also find a positive link between discounts and posted prices, which is in line with the

results displayed in Table 6 of the supplementary material.

In 2000, the UK Competition Commission investigated the competitiveness of the UK new

car market and gathered data on average discounts by brand and segment (UK Competition

Commission, 2000). The dataset is very reliable since it was collected directly from dealers.

The report reveals that the average discount lies between 7.5% and 8%, also broadly in line

with our estimated average discount. Once more, the difference may stem from differences

between the two markets and the periods under consideration. This report also refers to a

consumer survey conducted in 1995 asking automobile purchasers whether or not they obtained

a discount over the posted price. This survey reveals that 17% of purchasers paid the posted

price whereas 37% bargained and obtained a discount and 29% were automatically offered a

discount. This figure of 17% is close to our estimation of 13%. Furthermore, the fact that

some purchasers were “automatically offered a discount” corroborates our assumption that

discounts are used as a tool to price discriminate because the posted price is not optimal for

some consumers.

A direct comparison of the distribution of discounts we estimate and evidence on the U.S.

market is more complicated. The two countries differ in particular in the characteristics of the

retailing sector. In the U.S., dealers are all independent from the manufacturers, as opposed

to France where only 10% of dealers are independent. Therefore, the pricing model we rely

on seems less credible for the U.S. car market and we can then expect more spatial dispersion

and price negotiation in the U.S. Despite these differences, Busse et al. (2012) report that

the rebates represent on average 9.6% of the transaction prices, which is once more consistent

with our estimated discounts.

Finally, few papers correlate the magnitude of discounts to age and income. Harless and Hoffer

(2002) and Chandra et al. (2017) analyze price discrimination with respect to age and gender

on the U.S. car market using dealers margins (see also Langer, 2016, focusing on discrimination

by gender and marital status using transaction prices from survey data). They both report

a positive correlation between the margins and purchasers’ age. In the web appendix of the

2012 version of her paper, Langer documents significant price discrimination with respect to

income, the high income groups of consumers (for both men and women) are associated with

higher margins. These two results are in line with our findings on the estimated discounts and

mark-up rates.
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6.5 Other sources of price dispersion

There are other sources of price dispersion, apart from third-degree price discrimination, that

we have not taken into account because of data limitation. While we discuss in detail below

these other sources, we first provide a rough assessment of the importance of third-degree price

discrimination in the overall dispersion of new car prices. For that purpose, we compute the

variance of log transaction prices observed in the BdF survey. We then compare it with the

variance of log posted prices observed in the CCFA database, restricting ourselves to the same

subset of cars as in BdF (defined by brand, model and fuel type). Finally, we also compute

the variance of log transaction prices estimated with our model, still for the same subset of

cars. If third-degree price discrimination was the only reason for price dispersion, we would

expect this latter variance to be equal to the variance obtained in BdF, and larger than the

variance of list prices. The results are displayed in Table 12. While posted prices account for

80% of the variance of log transaction prices observed in BdF, our transaction prices account

for 86.6% of this variance. In other words, third-degree price discrimination is able to capture

around one third (33.4%) of the unexplained variance of observed log transaction prices in

BdF.

V
(
ln(pBdF )

)
V (ln(p̃Y )) V

(
ln(pDY )

)
0.121 0.097 0.105

Notes: p̃Y (resp. pDY ) corresponds to the list price (resp.
transaction price estimated with our model) associated
to the consumer’s choice of car Y .

Table 12: Variance of observed log transaction prices (ln(pBdF ), log posted prices (ln(p̃Y ))
and log estimated transaction prices ln(pDY ).

Temporary promotions

Temporary promotions such as manufacturer rebates constitute another source of price disper-

sion. With exhaustive data on such promotions, we could take them into account in our model

by modifying accordingly the list prices. While we we are not aware of any such exhaustive

data, we obtained monthly data on rebates for a subset of cars from the consumer price index

department of Insee. We document in Section 2.3.5 of the supplementary material the effect

of accounting for such rebates. We find in particular that these rebates are on average around

3 times lower than our estimated average discount. Thus, while not negligible, they do not

appear as important as discounts coming from third-degree price discrimination.

Price discrimination with respect to unobserved characteristics

An additional source of price dispersion is coming from other demographic characteristics that

we do not observe but might be used to better price discriminate within the groups we consider.
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Gender, race but also education (as a proxy of negotiation skills) are omitted from our analysis

because we do not have those data. If there has been evidence of price discrimination against

women in the U.S. (i.e. they pay more for the same car), recent results point towards a

reduction of those differences over time (see, e.g. Chandra et al., 2017). Nevertheless, we

performed a robustness check where we assess the effect of neglecting discrimination against

women. We suppose that men receive on average a discount of the same amount as the one

reported by Langer (2016). The effects on parameter estimates are small (see Section 2.3.3 of

the supplementary material for details).

Price negotiation

Price negotiation could be another cause of price dispersion, as shown by, e.g., Scott Morton

et al. (2011). However, to the extent that there is no search cost, price negotiation can

be modeled similarly as price discrimination with respect to unobserved characteristics (see

Huang, 2016, for such an approach). These characteristics would include, e.g., patience or

bargaining disutility. Sellers would then discriminate between, say, patient and impatient

consumers, offering lower prices to patient consumers. In such a set-up, our model would

capture the benefit of negotiation net of the negotiation cost (in monetary terms). Now,

search costs may matter as well. Scott Morton et al. (2011) report that in the U.S. consumers

in the lowest search cost quartile pay on average 1.3% less than those in the highest quartile.

This is significant but smaller than the magnitude of our discounts. Search costs may also

be lower in France than in the U.S., since dealers are more spatially concentrated, with one

dealer every 110 square kilometer versus one every 580 square kilometer in the U.S.

Spatial price dispersion

While we allow for price variation between different municipalities through the segmentation

in 6 consumer groups, we neglect price variation that could occur because of differences in com-

petition intensity between local markets (see Albuquerque and Bronnenberg, 2012; Murry and

Zhou, 2016, for papers using local prices). Moreover, even under perfect integration between

manufacturers and dealers, price variation may arise because of variations in marginal costs

across dealers. These variations, which would violate Assumption 1, could be the consequence

of heterogeneity in real estate prices. Using 2017 French notary data and a U.S. estimate

of the average estate cost per car, we find that the marginal costs would be between e455

lower and e35 higher than the cost of the pivot group. The average cost difference represents

on average 1.2% of the posted price of cars. To evaluate the sensitivity of our estimates to

such heterogeneous costs, we simulate our model with our estimated parameters of demand

but supposing that marginal costs exhibit such systematic differences across groups. We then

estimate the model under the wrong assumption of equal marginal costs. The results suggest

that the effect of neglecting cost heterogeneity are small and affect mainly the estimated co-

efficients of the intercept. We refer to Section 2.3.2 of the supplementary material for more
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details.

Trade-in and financing

The purchase of a new car often involves the trade-in of an old car or the purchase of a

financing plan. The characteristics of these ancillary transactions are rarely recorded but

the purchase price of a trade-in car and the loan rate can be used by car sellers to do price

discrimination. Therefore, even if we observed no price dispersion in transaction prices, sellers

could still price discriminate through the trade-in value and the financing loan rate.

In the supplementary material, we investigate the effect of neglecting the trade-in by simulating

the market equilibrium when a fraction of consumers use their old car as trade-in in each group

of consumers we consider. We assume, in line with the results of Busse and Silva-Risso (2010),

that sellers perfectly substitute the profits from new and used car sales and that they are able

to sell used cars e500 higher than individuals. For simplicity, we also assume that the price

at which buyers resell their car is constant and equal to e3,000. We then estimate the model

neglecting that some consumers have a trade-in component in their transaction. We find that

mark-ups and price elasticities are barely affected by the omission of the trade-in component

in the model.

7 Conclusion

This paper investigates the pervasive issue of partial observation of prices in structural models

of demand and supply in markets with differentiated products. We propose an approach that

incorporates unobserved price discrimination by firms based on observable individual charac-

teristics. We use this model to estimate demand and supply on the French new car market

where price discrimination may occur through discounts. Our results suggest significant dis-

counting by manufacturers, in line with other evidence on this market.

While we have considered several extensions of our baseline model, we have maintained the

assumption that consumer groups are fixed ex ante. Yet, in several cases, relevant charac-

teristics of the consumers are unobserved by the sellers, who then offer menus of contracts

to consumers to price discriminate. Adapting our methodology to such second-degree price

discrimination does not seem obvious, and is left for future research.
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A Proofs

A.1 Proof of Theorem 1

In the sequel, the components of θ other than Σp = (Σp,1, ...,Σp,nD) and πp = (πp,1, ..., πp,nD)

are held fixed. Hence, we identify θ (resp. θd) with (Σp, πp) (resp. (Σp,d, πp,d)). We also let

Kr = [0, p]r for any r ∈ N and introduce the function

qd,d
′

θ,j (p) =
[
Ωd′(θd

′
, pd

′
, δd
′

θd′
(pd
′
))−1sd

′
]
j
−
[
Ωd(θd, pd, δdθd(p

d))−1sd
]
j
.

The proof is divided in three steps. First, we show that it suffices to prove that gθ is a

contraction if qd,d
′

θ,j (.) is a contraction, for all (j, d, d′). Second, we show that (θ, p) 7→ qd,d
′

θ,j (p)

is continuously differentiable (C1). Third, we prove that qd,d
′

θ,j (.) is a contraction for all θ =

(Σp, πp) in a neighborhood of 0.

1. gθ is a contraction if qd,d
′

θ,j is a contraction, for all (j, d, d′).

First, because we consider the supremum norm here, gθ is a contraction if for all j, d, and θ

in a neighborhood of 0, gdθ,j is a contraction. By Assumption 2, we have

gdθ,j(p)− gdθ,j(p′) = fj(q
d,1
θ,j (p), ..., qd,nDθ,j (p′)− fj(qd,1θ,j (p′), ..., qd,nDθ,j (p)).

By assumption, fj is 1-Lipschitz for the supremum norm. As a result,

‖gdθ,j(p′)− gdθ,j(p)‖ ≤ max
d′

∣∣∣qd,d′θ,j (p′)− qd,d
′

θ,j (p)
∣∣∣ .

The first step follows.

2. (θd, p) 7→ qd,d
′

θ,j (p) is C1.

First, we show that (θd, pd) 7→ δd
θd

(pd) is C1. Let µdθ,j(e, u, p
d
j ) be defined as in Equation (1),

except that we let the dependence on θ explicit. Then let

sθd(e, u, p
d, δd) = (sθd,1(e, u, pd, δd), ..., sθd,J(e, u, pd, δd)),

with

sθd,j(e, u, p
d, δd) =

exp
(
δdj + µdj (e, u, p

d
j )
)

∑J
k=0 exp

(
δdk + µdk(e, u, p

d
k)
) .

Finally, let Qθd(pd, δd) = (Qθd,1(pd, δd), ..., Qθd,J(pd, δd)), with

Qθd,j(p
d, δd) =

∫
sθd(e, u, p

d, δd)dP dE,ζ(e, u)− sdj .

Then δd
θd

(pd) is defined by Qθd(p
d, δd

θd
(pd)) = 0. By the dominated convergence theorem,
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(θd, pd, δd) 7→ Qθd(p
d, δd) is C1. Moreover,

∂Qθd,j

∂δdk
=

∫
sθd,j(e, u, p

d, δdδd)
(
1{j = k} − sθd,k(e, u, pd, δdδd)

)
dP dE,ζ(e, u).

Thus,

∑
k 6=j

∣∣∣∣∂Qθd,j∂δdk

∣∣∣∣ ≤ ∫ sθ,j(δ
d, pd, u, e)

(
1− sθ,0(δd, pd, u, e)− sθ,j(δd, pd, u, e)

)
dP dE,ζ(e, u)

<
∂Qθd,j

∂δdj
.

In other words, the jacobian matrix of δd 7→ Qθd(p
d, δd) is diagonally dominant, and thus

invertible. Hence, the conditions of the implicit function theorem hold, and (θd, pd) 7→ δd
θd

(pd)

is C1.

Second, for any products (i, j) produced by the same firm, the (i, j)-th term of the matrix

Ωd(θd, pd, δd) satisfies

Ωd
i,j(θ

d, pd, δd)

=

∫ (
αd + πp,de+ Σp,dup

)
sdθd,i(e, u, δ

d, pd)(1{i = j} − sdθd,j(e, u, δ
d, pd))dP dE,ζ(e, u).

Then, by the dominated convergence theorem, (θd, pd, δd) 7→ Ωd
i,j(θ

d, pd, δd) is C1 on R×KJ×
RJ . This is also the case if i and j are not produced by the same firm, since in this case

Ωd
i,j(θ

d, pd, δd) is simply equal to 0.

Third, the inverse mapping for matrices, A 7→ A−1, is C1 on any subset of A+ = {A : det(A) >

0} or A− = {A : det(A) < 0}. Let us show that{
Ωd(θd, pd, δd), (θd, pd) ∈ R×KJ

}
⊂ A+ or

{
Ωd(θd, pd, δd), (θd, pd) ∈ R×KJ

}
⊂ A−.

(19)

Suppose this is not the case. Then, by the intermediate value theorem, det(Ωd(θd, pd, δd)) = 0

for some (θd, pd). But a same reasoning as above shows that Ωd(θd, pd, δd) is diagonally

dominant. Thus, it is invertible, a contradiction. Hence, (19) holds.

Finally, by the chain rule, (θ, p) 7→ qd,d
′

θ,j (p) is C1.

3. For all (j, d, d′) and (θd, θd
′
) in a neighborhood of 0, qd,d

′

θ,j is a contraction.

By the maximum theorem (see e.g. Carter, 2001, Theorem 2.3) and Step 2, the function

Rd,d
′

j : (θd, θd
′
) 7→ max

p∈KJ

JnD∑
k=1

∣∣∣∂qd,d′θ,j /∂pk(p)
∣∣∣

is continuous. Let θ0 = (θ1
0, ..., θ

nD
0 ) be such that θd0 = θd

′
0 = 0. qd,d

′

θ0,j
is a constant function,
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since neither δθ0(p) nor Ωd(θd0 , p
d, δd) depend on pd. Hence, Rd,d

′

j (θd0 , θ
d′
0 ) = 0. By continuity

of Rd,d
′

j , there exists Σ
d such that for all θd ∈ [0,Σ

d
] × {0}, Rd,d

′

j (θd, θd
′

0 ) < 1. πp,d 7→
max

Σp,d∈[0,Σ
d
]
Rd,d

′

j (Σp,d, πp,d) is also continuous and smaller than 1 at πp,d = 0. Then there

exists πd such that for all (Σp,d, πp,d) ∈ [0,Σ
d
]× [−πd, πd], Rd,d

′

j (Σp,d, πp,d, θd
′

0 ) < 1.

Repeating this argument for θd′ instead of θd, we see finally that there exists Σ
d,d′

> 0 and

πd,d
′ such that for all (θd, θd

′
) ∈ ([0,Σ

d,d′
] × [−πd,d′ , πd,d′ ])2, Rd,d

′

j (θd, θd
′
) < 1. In turn, this

implies that qd,d
′

θ,j is a contraction for all Σp ∈
[
0,Σ

d,d′
]nD

and all πp ∈
[
−πd,d′ , πd,d′

]nD
. The

result follows.

A.2 Proof of Proposition 1

A symmetric test is to accept H0 if T < s∗ and accept H1 otherwise, with PH0(T > s∗) =

PH1(T ≤ s∗). The first probability is strictly decreasing in s∗ while the second is increasing in

s∗. Hence, t < s∗ if and only if PH0(T > t) > PH1(T ≤ t). In other words, T < s∗ if and only

if p0 > p1, and the test where we accept H0 if p0 > p1 and accept H1 otherwise is symmetric

in both hypotheses. Now, to compute p0 and p1, note that under H0,

PH0(T > t) = P (aZ2 + bZ + c > 0),

where Z ∼ N (0, 1) and with a = σ̂2
1 − σ̂2

0, b = 2
√
Jσ̂0 and c = −J − σ̂2

1t. The result follows

using standard arguments on quadratic inequalities. The same reasoning applies for p1.

A.3 Proof of Theorem 2

In the following, we let Θ = {(α1, ..., αnD , β1, ..., βnD) ∈ AnD ×BnD} and Π =
∏J
j=1[cj ,+∞).

The proof is divided in five steps. We first bound market shares under our assumption on ξ.

Then we show that the solution p(ξ, θ) of the first-order conditions defined by Equation (15)

are indeed well-defined (i.e., the system admits a unique solution) and regular. Existence and

uniqueness are well-known in such a context (e.g. Caplin and Nalebuff, 1991) but we prove

them for completeness. Third, we show that for any θ0 ∈ Θ0, p(ξ, θ0) is an attractive fixed

point of Ms(ξ,θ0),θ0 . Fourth, we prove that Ms(ξ,θ),θ is a contraction on a neighborhood of

p(ξ, θ0), for well chosen (ξ, θ). Finally, we prove the convergence of (pn)n∈N towards p(ξ, θ).

1. maxj s
d
j (p, ξ, θ)/s

d
0(p, ξ, θ) ≤ 1/2 and maxj s

d
j (p, ξ, θ) < 1/3 for all (p, ξ, θ) ∈ Π×K ×Θ.

First, for all (d, j, ξ, p, θ), we have

ln(sdj (p, ξ, θ)/s
d
0(p, ξ, θ)) = pαd +X ′jβ

d + ξj .

The restriction ξ ∈ K then implies

ln(sdj (p, ξ, θ)/s
d
0(p, ξ, θ)) ≤ − ln 2.
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Hence, sdj (p, ξ, θ)/s
d
0(p, ξ, θ) ≤ 1/2, which implies that maxj sj(p, ξ, θ) < 1/3 for all (p, ξ, θ) ∈

Π×K ×Θ.

2. p(ξ, θ) is well defined, C1 and is a fixed point of Ms(ξ,θ),θ.

First, consider the function R = (R1, ..., RJ) defined on Π by Rj(p) = cj − 1/(αd(1 −
sdj (p, ξ, θ))). For simplicity, we first let the dependence of R in d and θ ∈ Θ implicit here.

Let us consider the convex compact set C =
∏J
j=1[cj , pj ], with pj > cj − 3/[2αd]. By Step 1,

sdj (p, ξ, θ) < 1/3 for all j = 1, ..., J . Therefore, for all p ∈ C, Rj(p) ≤ cj − 3/[2αd] and thus,

R(p) ∈ C. Then, by Brouwer’s theorem, R admits at least one fixed point on C ⊂ Π, implying

that (15) has at least one solution on Π.

To prove that this solution is unique, let Q(p) = p−R(p) be defined on Π. We have

∂Qj
∂pk

(p) = 1{j = k} −
sdj (p, ξ, θ)(1{j = k} − sdk(p, ξ, θ))

(1− sdj (p, ξ, θ))2
.

By Step 1, sdj (p, ξ, θ) < 1/2. Therefore, ∂Qj/∂pj > 0. Also,

∑
k 6=j

∣∣∣∣∂Qj∂pk
(p)

∣∣∣∣ =
sdj (p, ξ, θ)(1− s0(p, ξ, θ)− sdj (p, ξ, θ))

(1− sdj (p, ξ, θ))2

<
(1− 2sdj (p, ξ, θ))(1− sdj (p, ξ, θ))

(1− sdj (p, ξ, θ))2

<
∂Qj
∂pj

(p),

where we have used in the last inequality sdj (p, ξ, θ) < 1− 2sdj (p, ξ, θ), again by Step 1. Thus,

the Jacobian matrix of Q is diagonally dominant with positive diagonal elements. Hence, it

is a P -matrix (see Example 2.3 in Gale and Nikaido, 1965). By Gale and Nikaido’s Theorem

4, Q is injective on Π. Hence, there is a unique solution to Q(p) = 0, implying that p(ξ, θ) is

well-defined.

Now, letting the dependence in (ξ, θ) explicit in Q, we have Q(p(ξ, θ), ξ, θ) = 0. Moreover,

Q(., ., .) is C1 and the matrix of (i, j) term [∂Qi/∂pj(p, ξ, θ)] is invertible by what precedes.

Hence, by the implicit function theorem, p(., .) is also C1.

Finally, p(ξ, θ) satisfies Equation (15). Therefore, by Assumption 2,

p̃j(ξ, θ) = fj(p
1
j (ξ, θ), ..., p

nD
j (ξ, θ))

= cj + fj

(
1

α1(1− s1
j (p, ξ, θ))

, ...,
1

αnD(1− snDj (p, ξ, θ))

)

= pdj (ξ, θ)−
1

αd(1− sdj (p, ξ, θ))
+ fj

(
1

α1(1− s1
j (p, ξ, θ))

, ...,
1

αnD(1− snDj (p, ξ, θ))

)
.
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Moreover, ξ(p(ξ, θ), s(ξ, θ), θ) = ξ. Thus, by definition of Ms,θ, p(ξ, θ) is a fixed point of

Ms(ξ,θ),θ.

3. p(ξ, θ0) = p0 is a fixed point of Ms(ξ,θ0),θ0.

First, for all θ0 ∈ Θ0, Equation (15) is the same for all d and admits a unique solution.

Therefore, pdj (ξ, θ0) does not depend on d. Then, by Assumption 2, we have, for all ξ,

fj

(
1

α1(1− s1
j (p, ξ, θ))

, ...,
1

αnD(1− snDj (p, ξ, θ))

)
=

1

αd(1−
∑

k∈Jfj
sdk(p, ξ.θ))

. (20)

This implies that pdj (ξ, θ0) = p̃dj . Hence, by definition of p0, p(ξ, θ0) = p0.

4. For all well-chosen θ, ξ, Ms(ξ,θ),θ is a contraction on a neighborhood of p(ξ, θ0).

Let us define

qd,d
′

j,θ (p) =
1

αd′(1− sd′j (p, ξ(p, s(ξ, θ), θ), θ))
− 1

αd(1− sdj (p, ξ(p, s(ξ, θ), θ), θ))
.

By the same argument as in Step 1 of the proof of Theorem 1, it suffices to show that for all

θ in the neighborhood of θ0 ∈ Θ0 and for all j, d, d′, the function qd,d
′

j,θ (.) is a contraction on a

neighborhood of p(ξ, θ0). The result holds if we show that for appropriate θ, p,

∑
`,d′′

∣∣∣∣∣∂q
d,d′

j,θ

∂pd
′′
`

(p)

∣∣∣∣∣ < 1. (21)

We first show the inequality for θ = θ0 and p = p̃. Here, we crucially rely on the fact that for

all j, d, d′,

sdj (p̃, ξ, θ0) = sd
′
j (p̃, ξ, θ0) = sj(ξ, θ0),

where sj(ξ, θ0) is the j-th coordinate of s(ξ, θ0). This implies in particular that for all j, k, d, d′,

∂sdj
∂ξk

(p̃, s(ξ, θ0), θ0) =
∂sd

′
j

∂ξk
(p̃, s(ξ, θ0), θ0).

This also implies that ξ(., s(ξ, θ0), θ0) is symmetric in pdk and pd′k , so that

∂ξj

∂pdk
(p̃, s(ξ, θ0), θ0) =

∂ξj

∂pd
′
k

(p̃, s(ξ, θ0), θ0).
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Therefore, all derivative terms related to ξ(p, s(ξ, θ), θ) in ∂qd,d
′

j,θ0
/∂pd

′
` simplify, and we get

∂qd,d
′

j,θ0

∂pd
′
`

(p̃) =
sdj (p̃, ξ, θ0)(1{j = `} − s`(ξ, θ0))

(1− sdj (p̃, ξ, θ0))2
,

and similarly, ∂qd,d
′

j,θ0
/∂pd

′
` (p̃) = −∂qd,d

′

j,θ0
/∂pd

′
` (p̃). Thus,

∑
`,d′′

∣∣∣∣∣∂q
d,d′

j,θ0

∂pd
′′
`

(p̃)

∣∣∣∣∣ =
2sdj (p̃, ξ, θ0)

(1− sdj (p̃, ξ, θ0))2
[2(1− sdj (p̃, ξ, θ0))− sd0(p̃, ξ, θ0)].

The right-hand side is strictly smaller than 1 if and only if

sdj (p̃, ξ, θ0)(6− 2sd0(p̃, ξ, θ0)− 5sdj (p̃, ξ, θ0)) < 1. (22)

By Step 1, −2sd0(p̃, ξ, θ0) ≤ −4sdj (p̃, ξ, θ0). Moreover, x 7→ x(6 − 9x) reaches its maximum 1

at x = 1/3. Because sdj (p̃, ξ, θ0) < 1/3 by Step 1 again, (22) holds.

Now, given the definition of qd,d
′

j,θ (.), it suffices to show that (p, θ) 7→ ξ(p, s, θ) is C1. The

function (p, ξ, θ) 7→ s(p, ξ, θ) is smooth, s(p, ., θ) is injective (Berry, 1994) and the Jacobian

matrix ∂s/∂ξ(p, ξ, θ) is diagonally dominant and therefore invertible. Thus, by the inverse

function theorem, (p, θ) 7→ ξ(p, s, θ) is C1.

5. There exists Θ1 neighborhood of Θ0 such that for all (ξ, θ) ∈ K × Θ1, (pn)n∈N

converges towards p(ξ, θ).

First, by what precedes, there exists a neighborhood V1 ⊂ Θ of θ0 and r > 0 such that for all

(p, p′) ∈ B(p0, r)
2,

‖Ms(ξ,θ),θ(p)−Ms(ξ,θ),θ(p
′)‖ ≤ C‖p− p′‖. (23)

with C < 1.

Second, p(., .) is C1 by Step 2. Moreover, for all ξ ∈ K, p(ξ, θ0) = p0. Hence,

‖p(ξ, θ)− p0‖ = ‖p(ξ, θ)− p(ξ, θ0)‖ ≤
[

max
(ξ′,θ′)∈K×Θ

‖∂p/∂θ(ξ′, θ′)‖
]
‖θ − θ0‖.

Hence, there exists a neighborhood V2 ⊂ Θ of θ0 such that for all (ξ, θ) ∈ K × V2, ‖p(ξ, θ)−
p0‖ ≤ r/2.

Then, for all (ξ, θ) ∈ K×V1∩V2, we prove by induction that pn ∈ B(p0, r) and ‖pn−p(ξ, θ)‖ ≤
(r/2)Cn. The result holds for n = 0 by what precedes. Suppose that it holds for n. Then,
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because pn ∈ B(p0, r), by Equation (23),

‖pn+1 − p(ξ, θ)‖ = ‖Ms(ξ,θ),θ(pn)−Ms(ξ,θ),θ(p(ξ, θ))‖

≤ C‖pn − p(ξ, θ)‖

≤ (r/2)Cn+1.

Moreover, by the triangular inequality,

‖pn+1 − p0‖ ≤ (r/2)Cn+1 + r/2 ≤ r.

Hence, pn+1 ∈ B(p0, r) and the result holds for n + 1. Therefore, it holds for all n, which

shows that (pn)n∈N converges towards p(ξ, θ).
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