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Abstract

Regulators must often allocate essential inputs, such as spectrum rights, trans-

mission capacity or airport landing slots, which can transform the structure of the

downstream market. These decisions involve a trade-off, as provisions aimed at

fostering competition and lowering prices for consumers also tend to limit the

proceeds from the sale of the inputs. We first characterize the optimal alloca-

tion, from the standpoints of consumer and total welfare. We then note that

standard auctions yield substantially different outcomes. Finally, we show how

various regulatory instruments can be used to implement the desired allocation.
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1 Introduction

Over the past two plus decades, regulators have increasingly turned to competition as an

alternative to direct price control. Regulators have done this by requiring, via auction,

divestiture or other means, the allocation of essential inputs to multiple parties. Many
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recent auctions for essential inputs have been for reallocation or for new tranches of

essential inputs, which affect downstream market concentration. When consumer wel-

fare is adversely affected when an auction for an essential input increases downstream

competition, an open auction cannot be relied on to allocate the input in a way that

maximizes total welfare. For this reason, caps, set-asides and other measures are im-

posed to limit risk of an auction resulting in consolidation. These restrictions can be on

spectrum bandwidth, transmission capacity or airport landing slots, which affect firms’

costs or the quality of their offerings and can transform market structure.

In imposing such restrictions in an auction, regulators face a trade-off. On the one

hand, they may seek to maximize consumer or social welfare. On the other hand, they

may face political pressures to maximize revenue from the sale or lease of such resources.

This tension can be particularly acute when the competing firms start with different

levels of inputs and market shares, as the more established firms are then likely to be

willing to outbid the weaker rivals in order to strengthen their market position. As a

result, regulators adopt auctions that include specific provisions such as caps, set-asides

and bidding credits, to balance these concerns.

In most spectrum auctions, the ex ante market structure includes three or four

asymmetric incumbents, as well as potential challengers;1 for airline slots between city

pairs or electric transmission rights connecting two nodes, there can be as few as one or

two incumbents. To capture these features, we consider a simplified and stylized model

in which a single incumbent initially enjoys a cost advantage over a potential entrant.

A regulator can allocate a divisible amount of newly released essential input, which can

either widen or narrow the cost differential. This two-firm model reflects the regulators’

trade-off mentioned above: awarding the newly released input to the incumbent tends

to generate higher revenue, whereas awarding it to the challenger promotes competition

in the market.

When the regulator’s only objective is maximizing consumer surplus, or puts only

a moderate weight on auction revenues or profits, the optimal policy is to allocate the

resource so as to equalize the costs of the two firms, as consumer prices are lowest in

that case. However, equalizing costs tends to minimize profits, and the willingness and

1In four-firm markets, there is usually a large gap (10% or more) between the market shares of the
second and third largest operators; in three-firm markets, the dominant firm’s market share can exceed
60%, as is the case in Switzerland.
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ability of the firms to pay for the resource are thus also the lowest. Hence, when the

regulator puts a large weight on profits or auction revenues, the optimal allocation limits

the cost advantage of the incumbent, but no longer tries to equalize the firms’ costs; it

instead leaves an advantage to one firm – either one, if the incumbent’s advantage can

be overcome, and the incumbent otherwise. The winner then pays an amount equal to

its operating profit.

Our baseline model is highly stylized; in particular, we assume that firms offer perfect

substitutes and only differ in their costs. We show however that these insights carry

over when the firms offer differentiated goods or services. Specifically, we consider an

extended model of Hotelling competition with horizontal product differentiation and

elastic individual demands, and show that the optimal allocation is close to that in the

baseline model of Bertrand competition when products are not too differentiated.2

We then characterize the optimal allocation for the case in which the challenger’s cost

is private information. We find that the objective of the regulator and of the challenger

are so conflicting that it is typically impossible to induce the challenger to reveal its

costs in a useful way. Instead, the optimal allocation is similar to the previous one,

except that the regulator must base its allocation decision on the expected value of its

objective.

Next, we contrast this optimal allocation with the outcome that would arise in

the types of auctions commonly used to allocate radio spectrum licenses. In particu-

lar, we compare the outcomes of sequential auctions, sealed-bid Vickrey-Clarke-Groves

(“VCG”) auctions, and simultaneous multi-round ascending (“SMRA”) or clock auc-

tions. In our framework, all these auctions exacerbate the incumbency advantage, as

the incumbent always ends up winning all the newly released input. Moreover, revenues

are the same in the VCG and clock auctions, and lower in a sequential auction.

Finally, we consider various measures that the regulator can adopt to promote com-

petition, such as caps and set-asides, and discuss how they can be used to implement

the optimal allocation.

The remainder of this section discusses the related literature. Section 2 presents the

2In a Cournot model with linear demand, the optimal allocation minimizes the sum of the two
firms’ costs; hence, it leads again to equalizing them when costs are a decreasing convex function of
bandwidth.
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model; Section 3 characterizes the optimal allocation in the case of perfect information,

and Section 4 extends the analysis to the case where the challenger’s cost is private

information. Section 5 examines the outcome of standard auction formats used in these

settings. Section 6 discusses the use of regulatory instruments to implement the optimal

allocation. Section 7 concludes.

Related Literature

Our insights are reminiscent of the literature on second-sourcing. Although the focus

there was mostly on competition “for the market” rather than “in the market”, it was

recognized that the awarding of a contract or a procurement decision could affect the

purchaser’s ability to switch to alternative suppliers later on, or the suppliers’ ability to

compete effectively for subsequent contracts.3 A few papers however consider the impact

of the chosen market structure (e.g., monopoly or duopoly) on prices and welfare.4 We

build on this literature and study how the allocation of a (divisible) essential input can

further affect the market structure and the outcome of competition.

Our paper relates to the large literature on optimal auction design, starting with

Myerson (1981), the classic paper for single-object auctions.5 Post-auction interaction

generates externalities not only between the firms and their customers in the downstream

market,6 but also among the bidders in the auction: each bidder’s payoff depends not

only on what it wins, but also on what its rivals win. A series of papers, most notably

by Jehiel and Moldovanu, have explored single-object auctions with such externalities.7

Among the most closely related works, Jehiel and Moldovanu (2003) consider several

examples of auctions of fixed-size spectrum licenses, and discuss the likely market out-

comes.8 Mayo and Sappington (2016) explore a Hotelling model in which a single block

3For instance, Anton and Yao (1987) show that second-sourcing can be used to reduce suppliers’
informational rents. Rob (1986), Laffont and Tirole (1988) and Riordan and Sappington (1989) consider
the trade-off between such ex post savings and suppliers’ ex ante R&D incentives.

4See, e.g., Dana and Spier (1994), McGuire and Riordan (1995) and Auriol and Laffont (1992).
5See also Maskin et al. (1989) and Armstrong (2000). Also, Milgrom (2004) provides sufficient

conditions for the simultaneous ascending auction to result in a Pareto-optimal equilibrium.
6Borenstein (1988) shows that the resulting discrepancy between private and social benefits can

lead to inefficient outcomes.
7See Jehiel and Moldovanu (2001), Jehiel and Moldovanu (2000), and Jehiel et al. (1996). Also,

Varma (2003) and Goeree (2003) consider auctions in which bids convey signals that affect rivals’
behavior after the auction. See Salant (2014) for a more extensive discussion

8See also Hoppe et al. (2006), who show that limiting the number of licenses to be auctioned may
foster entry, by exacerbating free-riding among incumbents’ preemption strategies.

4



of spectrum is available. They show that an auction is unlikely to result in an opti-

mal allocation and consider various corrective handicapping policies. Klemperer (2004)

warns regulators against the temptation of taking measures to increase auction revenues

at the cost of discouraging entry, and suggests instead the Anglo-Dutch hybrid auction

as a way to balance the trade-off between revenues and post-auction concentration.

Cramton et al. (2011) note that provisions favoring entrants need not always sacrifice

auction revenues; they provide one example, with one incumbent and several symmet-

ric potential entrants, in which setting a license aside for the entrants does not affect

auction revenues. Cramton et al. (2011) also argue that, absent provisions to handicap

large bidders, entrants and small participants are unlikely to win new spectrum; hence,

regulators should concentrate their efforts on achieving an efficient allocation rather

than revenue maximization. Finally, Janssen and Karamychev (2009, 2010) study the

impact of auctions on ex post prices.9 Their analysis, however, focuses on firms’ risk

preferences rather than on the impact on market structure.10

A couple of papers consider multi-object auctions. Levin and Skrzypacz (2016) ex-

amine bidder incentives in a Combinatorial Clock Auction (“CCA”). They show that

bidders may bid more aggressively on packages that they anticipate to lose, in order to

increase the price paid by rivals. More closely related to our paper is Kasberger (2017),

who examines auction designs that can achieve an optimal allocation, in a setting where

Cournot competitors bid on the entire allocation across firms.

There is also some empirical work that sheds light on the benefits of competition.

Landier and Thesmar (2012) evaluate the macroeconomic impact of the entry of the

fourth telecom operator in France, Free. They find that entry benefited the population

in several ways. First, it had an immediate effect on consumer prices, which increased

the purchasing power of the population. Second, the price shock induced by the enhance-

ment of competition created between 16,000 and 30,000 jobs in France. The authors

argue that far from distressing the financial position of incumbents, the increased com-

9See also Janssen and Karamychev (2007), who show that auctions do not always select the most
efficient firm.

10Other papers include Moldovanu and Sela (2001) in which a seller is conducting an all pay auction
so as to maximize the sum of the bidder payments (or efforts). Eső et al. (2010) examines efficient
capacity allocations when there is Cournot competition in the downstream market and Brocas (2013)
examines optimal auction design of a single, indivisible object when there are externalities.
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petition encouraged investments in the sector.11 Hazlett and Muñoz (2009) conducted

a large-scale cross-country analysis of spectrum awards and found a significant positive

relation between market concentration and consumer prices. This suggests that the

social benefits from encouraging entry can more than offset the loss of auction revenue

from spectrum withholding or concentration.

2 Model

For the sake of exposition, we consider the case of mobile communication services,

where spectrum constitutes an essential input, and study the optimal allocation of new

spectrum. It should be clear that the analysis can be readily transposed to the access

to key inputs in other industries.

Two firms, an incumbent I and a new entrant E, compete à la Bertrand for a

consumer demand D (p). The operators have constant returns to scale, but their costs

depend on how much bandwidth they have: the more spectrum a mobile operator has,

the more data it can carry at a given cell-site; it can thus maintain a given network

capacity with fewer cells, and thus at lower costs. The incumbent starts with more

spectrum, and thus enjoys a lower cost:

c̄I = c (BI) < c̄E = c (BE) ,

where Bi denotes the bandwidth initially available to firm i, c̄i denotes its initial unit

cost, and c (·) is a strictly decreasing function (i.e., c′ (·) < 0) that is common to both

firms. Thus, prior to the allocation of new spectrum, the entrant obtains no profit,

whereas the incumbent obtains a profit which, assuming that the entrant exerts effective

competitive pressure (see condition (4) below), is equal to:

Π (BI , BE) ≡ [c (BE)− c (BI)]D (c (BE)) , (1)

11Woroch (2018) using US regional data finds higher spectrum concentration is associated with
higher penetration. However, he admittedly cannot control for endogeneity of spectrum concentration.

6



which increases with the bandwidth advantage of the incumbent:12

∂1Π (BI , BE) = −D (c (BE)) c′ (BI) > 0, (2)

∂2Π (BI , BE) = {D (c (BE)) + [c (BE)− c (BI)]D
′ (c (BE))} c′ (BE) < 0. (3)

Let ∆ denote the amount of new spectrum available. Each firm i can thus obtain an

additional bandwidth bi ≥ 0, subject to bI + bE ≤ ∆. With this additional bandwidth,

the cost of firm i can lie anywhere in the range [ci, c̄i], where

ci = c (Bi + ∆)

denotes the lowest cost that firm i can achieve with all the additional spectrum. We

assume that cost differences are never so drastic that competition is ineffective; that is,

the incumbent cannot charge its monopoly price, even if it obtains all the additional

spectrum:

c̄E < pm (cI) , (4)

where pm (c) ≡ minp {p | p ∈ arg maxp̃ (p̃− c)D (p̃)}. This assumption ensures that the

competitive price is always equal to the higher of the two costs:13

• As long as BI + bI > BE + bE, I maintains a cost advantage (that is, cI =

c (BI + bI) < cE = c (BE + bE)) and thus wins the downstream market. The

profits are then πE = 0 and πI = Π (BI + bI , BE + bE), and consumer surplus is

equal to S (c (BE + bE)), where

S (p) ≡
∫ +∞

p

D (x) dx.

• If instead BI + bI < BE + bE, E obtains a lower cost; the profits of the two firms

are then πI = 0 and πE = Π (BE + bE, BI + bI), and consumer surplus is equal to

S (c (BI + bI)).

12In what follows, ∂if (·) denotes the partial derivative of f (·) with respect to its ith argument.
13It also ensures that demand is positive in the relevant range.
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3 Complete Information

As a benchmark, this section characterizes the optimal spectrum allocation when costs

are public information. We first consider the case where the regulator aims at maximizing

consumer surplus, before considering the case where it aims at maximizing social welfare,

accounting for a social cost of public funds.

3.1 Consumer Surplus

We first note that a regulator maximizing consumer surplus should seek to minimize

the cost asymmetry among the two firms:

Proposition 1 To maximize consumer surplus, it is optimal to allocate all the addi-

tional spectrum among the two firms so as minimize their cost difference. The associated

consumer price is

pS ≡ max {cE, ĉ}

where cE = c (BE + ∆) and

ĉ ≡ c

(
BI +BE + ∆

2

)
.

Proof. See Appendix A.

The intuition is straightforward. Maximizing consumer surplus amounts to minimiz-

ing the competitive price, which is equal to the lower of the two costs, cI = c (BI + bI)

and cE = c (BE + bE). Hence, it is always optimal to distribute all the additional spec-

trum, and if there is enough spectrum to offset the initial cost difference, it is optimal

to allocate this spectrum so as to equate the two costs (leading to p = ĉ). If instead it is

impossible to do so, then it is optimal to minimize the cost asymmetry by allocating all

the additional spectrum to the entrant (leading to p = cE). Interestingly, a former FCC

Chief Technology Office indeed argued that equalizing spectrum holdings is essential for

effective competition among carriers.14

14See Peha (2017).
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3.2 Social Welfare

In practice, industry regulators may need to pay attention to firms’ profitability and/or

to the revenues generated by the scarce resources that they manage. First, firms would

not operate at a loss absent socially costly subsidies. This concern does not affect the

findings of Proposition 1, however: the described allocation remains optimal even when

taking into account firms’ budget constraints, as the entrant always obtains zero profit

and the incumbent obtains a non-negative profit. Second, firms’ financial contributions

(e.g., in the form of – lump-sum – spectrum licensing fees) reduce the public budget

deficit and/or lower distortionary taxes. To account for this concern, we now suppose

that the regulator aims at maximizing social welfare, defined as the sum of consumer

surplus and, with a weight λ ≥ 0, the revenues generated from the allocation of the

resource ∆, subject to firms’ viability constraints; that is:

• Any transfer t obtained from the firms generates a social gain λt, representing the

social benefit from reducing budget deficit or distortionary taxes; social welfare is

thus given by

S + λ (tI + tE) ,

where ti denotes the transfer obtained from firm i = I, E and, as before, S = S (p)

denotes consumer surplus.

• The regulator must accommodate the firms’ profitability constraints: for i = I, E,

πi − ti ≥ 0.

It follows that it is optimal to choose ti = πi for i = I, E; social welfare can thus be

expressed as

S + λΠ,

where Π = πI + πE denotes total industry profit.

Obviously, it is again optimal to allocate all the additional bandwidth ∆:

Lemma 1 It is socially optimal to allocate all the additional spectrum.
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Proof. When λ > 0, giving any residual bandwidth to the firm with the lower

cost (or to either firm, if both have the same cost) would further reduce its cost and

increase industry profit, and thus the obtained revenues, without any adverse effect on

consumers. When λ = 0 (i.e., the regulatory objective focuses on consumer surplus),

giving any residual bandwidth to the firm with the higher cost (or sharing it equally

between the two firms, if both have the same cost) would reduce the price and enhance

consumer surplus.

Therefore, without loss of generality, we can restrict attention to spectrum allocations

of the form bI = ∆− bE, for some bE ∈ [0,∆]. Furthermore:

• If bE < (BI −BE + ∆) /2, this spectrum allocation yields a competitive equilib-

rium of the form

p = cE > ĉ > cI = γ (p) , (5)

where

γ (p) ≡ c
(
BI +BE + ∆− c−1 (p)

)
denotes the lower cost among the two firms, when the bandwidth is allocated so

as to set the higher cost to p. The resulting social welfare that can be expressed

as:

W (p;λ) ≡ S (p) + λ [p− γ (p)]D (p) . (6)

• If instead bE > (BI −BE + ∆) /2 (in which case the feasibility condition ∆ ≥ bE

requires ∆ > BI −BE), then

p = cI > ĉ > cE = γ (p) , (7)

which, keeping p constant, generates the same social welfare as the equilibrium

described by (5) (the roles of the two firms are simply swapped).

Hence, looking for the optimal spectrum allocation amounts to maximizing W (p;λ)

in the range

p ∈
[
pS, c̄E

]
,

where

pS ≡ max {cE, ĉ} ,
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with the caveat that, if pS = ĉ > cE, any price p ∈ [ĉ, c̄I ] can be achieved in two

equivalent ways, by conferring the same cost advantage to either firm.

We have:

∂W

∂p
(p;λ) = −D (p) + λ [1− γ′ (p)]D (p) + λ [p− γ (p)]D′ (p)

= λD (p)

[
ρ (p)− γ′ (p)− 1

λ

]
(8)

where

ρ (p) ≡ 1− p− γ (p)

µ (p)

and

µ (p) ≡ −D (p)

D′ (p)

denotes the market power function – see Weyl and Fabinger (2013); ρ (p) can be inter-

preted as a competition index: it is equal to 1 when p = γ (p) (= ĉ), that is, when both

firms face the same cost and thus exert perfect competition on each other, and would

be instead equal to 0 if p = pm (γ (c)), that is, if the firm with the higher cost were no

longer exerting any competitive pressure on the other firm – our working assumption

rules out this case, implying ρ (p) < 1).

To ensure that maximizing W (p;λ) yields a unique solution, we will maintain the

following regularity conditions:

Assumption A:

1. The unit cost function c (·) is (strictly decreasing and) weakly convex: c′′ (B) ≥

0 > c′ (B) for any B ≥ 0.

2. The market power function is weakly decreasing in the relevant range: µ′ (p) ≤ 0

for any p ∈
[
pS, c̄E

]
.

Assumption A.1 asserts that, while using more spectrum enables the firms to reduce

their costs (i.e., c′ (·) < 0), this is less and less so as more bandwidth becomes available;

as the next Lemma shows, it ensures that, while γ (p) strictly decreases as p increases,

it does so at a decreasing rate. Assumption A.2 amounts to assuming that the demand

function is log-concave; it also implies that the monopoly pass-through rate is lower

than one; together with Assumption A.1, it ensures that the competition index ρ (p)
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strictly decreases with p. We have:

Lemma 2 For any p ∈
[
pS, c̄E

]
:

(i) γ (p) ≤ ĉ ≤ p (with strict inequalities for p > ĉ) and, under Assumption A.1:

−1 ≤ γ′ (p) < 0 ≤ γ′′ (p) .

(ii) 0 < ρ (p) < 1 and, under Assumption A:

ρ′ (p) < 0.

Proof. See Appendix B.

The following Proposition characterizes the socially optimal allocation:

Proposition 2 Let

λ ≡ 1

ρ (pS)− γ′ (pS)
and λ̄ ≡ 1

ρ (c̄E)− γ′ (c̄E)
.

Under Assumption A, λ = 1/2 if pS = ĉ ≥ cE and λ > 1/2 otherwise, λ̄ > λ, and the

spectrum allocation that maximizes social welfare yields a unique equilibrium price, pW ,

which is as follows:

• if λ ≤ λ, then it is optimal to minimize the cost difference: pW = pS;

• if instead λ ≥ λ̄, then it is optimal to allocate all the additional bandwidth to the

incumbent: pW = c̄E;

• finally, if λ < λ < λ̄, then pW lies (strictly) between pS and c̄E, and is the unique

solution to

ρ (p)− γ′ (p) =
1

λ
. (9)

Furthermore:

– when pS = ĉ > cE, there exists λ̂ ∈
(
1/2, λ̄

)
such that, if λ ≤ λ̂, there are two

optimal spectrum allocations, giving the same cost advantage to either firm;
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– otherwise (i.e., either pS = cE ≥ ĉ, or pS = ĉ > cE and λ > λ̂), the

optimal spectrum allocation is unique and maintains a cost advantage to the

incumbent.

Proof. See Appendix C.

As long as the weight on profits remains small, maximizing social welfare still

amounts to minimizing cost differences, as is the case when focusing on consumer sur-

plus. This is no longer the case, however, when the weight placed on profit becomes

significant. In particular, even if cost equalization is feasible (i.e., the additional band-

width is large enough to offset the initial asymmetry: ∆ ≥ BI − BE, and so pS = ĉ),

it is no longer optimal whenever λ > 1/2, that is, whenever the weight on profits is

more than half of that on consumer surplus.15 Hence, in the particular case where the

regulatory objective is “total welfare”, measured by the sum of consumer surplus and

profits (i.e., λ = 1), it is optimal to maintain a cost advantage (for the incumbent when

pW > c̄I , for either firm otherwise). This insight is quite robust: in any setting in which

firms compete in prices, cost equalization is a local minimum of “total welfare”, mea-

sured by the sum of consumer surplus and profits. To see this, note that total welfare

can be expressed as

Π + S = S (p) + (p− c)D (p) ,

where c = γ (p). Starting from cost equalization, where p = c = ĉ, and using S ′ (p) =

−D (p), introducing a slight asymmetry (dp > 0 > dc = γ′ (ĉ) dp) increases total welfare:

d (Π + S) = (p− c)D′ (c) dp−D (c) dc|p=c=ĉ = −D (ĉ) dc > 0.

As the weight on profit further increases, the socially optimal price increases, up

to the point that it may become optimal to give all the additional spectrum to the

incumbent, so as to maximize industry profit. This, however, can occur only when

the entrant still maintains a significant competitive pressure on the incumbent and/or

the weight on profits exceeds that on consumer surplus.16 By contrast, an increase in

15Indeed, when pS = ĉ (> cE), ρ
(
pS
)

= −γ′
(
pS
)

= 1 and, thus, λ = 1/2.
16To see this, note that, in the limit case where c̄E = pm (cI), we have ρ (c̄E) = 0 and, thus,

λ̄ = −1/γ′ (c̄E) > 1.
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the bandwidth initially available to either firm, or in the additional bandwidth made

available, leads to a reduction in the socially optimal price. More precisely:

• If λ ≤ λ, then pW = c (BE + ∆); pW thus does not depend on BI , but strictly decreases

as BE or ∆ increases.

• If instead λ ≥ λ̄, then pW = c (BE); pW thus only depends on BE, and strictly

decreases as BE increases.

• Finally, it is optimal to divide the additional bandwidth, and we have:

Corollary 1 As long as λ < λ < λ̄, the socially optimal price strictly increases with λ,

but strictly decreases as the total bandwidth, BI +BE + ∆, increases.

Furthermore, as long as pS = cE ≥ ĉ, or pS = ĉ > cE and λ > λ̂, the unique optimal

spectrum allocation maintains a cost advantage to the incumbent and is such that:

• any increase in λ leads to a re-allocation of the additional bandwidth ∆ in favor

of the incumbent;

• any increase in the additional bandwidth ∆ is shared between the two firms;

• any increase in the bandwidth initially available to one firm, BE or BI , leads to

a re-allocation of the additional bandwidth ∆ in favor of the other firm, which is

however limited so as to ensure that both firms end-up with a larger total bandwidth.

Proof. See Appendix D.

3.3 Product Differentiation

Assuming the firms produce perfect substitutes allows for a simple analysis highlighting

key determinants and features of the optimal allocation of an essential input. In this

case, one firm wins all consumers, and can do so by offering only slightly more attractive

prices. In practice, firms often differentiate themselves, which enables them to share the

market. To check the robustness of the previous insights, we consider a standard model

of product differentiation, and show the main features of the optimal allocation remain

similar to that of our baseline model when firms offer close substitutes. Specifically, on

the supply side we assume, as before, that firms face constant unit costs that are a

decreasing function of bandwidth (i.e., ci = c(Bi) > 0, where c′(B) < 0), but on the
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demand side we now consider a classic Hotelling setting of horizontal differentiation,

with elastic individual demands:17

• a mass M of consumers are uniformly distributed over the segment [0, 1], and

transportation costs are linear in distance but independent of the quantity pur-

chased;

• there is a unit mass of consumers, who each have an identical elastic demand

d(p) > 0, where p is the price charged per unit, and d′(p) < 0;

• the two firms i = 1, 2 are located respectively at x = 0 and x = 1.

We show that the optimal allocation converges to that of our baseline model when

the differentiation parameter tends to vanish. We provide a full analysis in Appendix

E, and only sketch the main steps here.

Firms share the market as long as their prices, p1 and p2, do not differ too much;

consumers located at x < x̂ then purchase from firm 1 whereas those located at x > x̂

purchase from firm 2, where x̂ is determined by:

s (p1)− tx̂ = s (p2)− t (1− x̂) ,

where

s (p) ≡
∫ +∞

p

d (v) dv

denotes individual consumer surplus, and t denotes transportation costs per unit dis-

tance. Firm i’s profit is therefore Πi = Mx̂i (p1, p2) πi (pi), where

πi (pi) ≡ (pi − ci) d (pi)

denotes firm i’s per consumer profit and

x̂i (p1, p2) ≡ 1

2
+
s (pi)− s (pj)

2t

17We assume that individual demand is such that a price equilibrium exists for any given unit costs.
This is the case for inelastic demands and, by continuity, remains the case as long as demand is not
too elastic.
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denotes its market share. Intuitively, competition becomes tougher as t tends to vanish,

and costs must therefore be almost equal for the market to be shared. If instead a firm

faces a higher cost c, then the other firm (with cost γ (c) < c) corners the market and

charges a price p∗ (c) ∈ (γ (c) , c) such that:

s (p∗ (c)) = s (c) + t,

and satisfies

p∗′ (c) =
d (c)

d (p∗ (c))
> 0.

The more efficient firm thus obtains a profit equal to

Π∗ (c) ≡ [p∗ (c)− γ (c)]D (p∗ (c)) ,

where D (p) ≡Md (p) denotes total demand at price p.

When the regulator focuses on consumer surplus (i.e., λ > 0), as p∗′ (c) > 0 it is never

optimal to have a cost handicap larger than what is needed for one firm to “barely”

corner the market. It follows that, as t vanishes, the optimal allocation converges to

cost equalization. When instead λ > 0, total welfare can be expressed as

W ∗ (c;λ) ≡ S (p∗ (c)) + λ [p∗ (c)− γ (c)]D (p∗ (c)) ,

where S (p) ≡Ms (p) denotes total consumer surplus. As t tends to vanish, p = p∗ (c) '

c and thus W ∗ (c;λ) ' W (p;λ), the welfare function studied in the baseline model of

Bertrand competition (see (6)). If the regulator wants instead to maintain a shared-

market equilibrium outcome, then costs should be almost equalized (cI ' cE ' ĉ, and

thus p∗I ' p∗E ' ĉ), and total welfare thus converges to S (ĉ) = W (ĉ;λ). Hence, in

both types of equilibrium (shared-market or cornered-market), total welfare converges

to W (p;λ); it follows that the optimal allocation converges towards that of the Bertrand

baseline model (perfect substitutes).

Summarizing, we have:

Proposition 3 In the Hotelling model in which consumer demand is elastic and trans-

portation costs, t, are linear in distance, for t sufficiently small, the welfare maximizing
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spectrum allocation is arbitrarily close to that which maximizes welfare in the baseline

model with perfect substitutes and Bertrand competition, and the resulting market equi-

librium price is arbitrarily close to pW .

Proof. See Appendix E.

4 Incomplete information

This section studies how the above allocation must be adjusted when firms’ costs are

private information. As we will see, the usual techniques for eliciting this private infor-

mation rely on monotonicity conditions that do not hold here. In particular, the impact

of the initial cost handicap on firms’ willingness to pay for additional spectrum depends

critically on which firm eventually benefits from a lower cost.

To characterize the optimal allocation, we focus on the simple case where only one

firm, say the entrant, has private information; that is, BI is common knowledge, whereas

the initial handicap of the entrant,

θ = BI −BE (≥ 0) ,

is: (i) drawn from a cumulative distribution function F (θ), with continuous density

f (θ) on a support Θ =
[
θ, θ̄
]
, where θ̄ > θ ≥ 0; and: (ii) only observed by E.

This parameter θ should not be interpreted literally as the difference in spectrum

holdings (which is likely to be public information); rather, we use it as a proxy for

the initial cost asymmetry between the two firms. In practice, an incumbent benefits

from scale economies arising from its existing spectrum holdings and from its denser

network of cell sites; it may also benefit from a better bargaining position when dealing

with equipment suppliers, and possibly from superior know-how and expertise (due,

e.g., from learning-by-doing). Firm i’ cost can thus be expressed as C (Ai), where Ai

denotes firm i’s total asset and is of the form Ai = Ki + Bi, where Ki reflects firm i’s

accumulated capital other than spectrum, and KI > KE. In this setting, the relevant

cost handicap of the entrant is given by θ = KI − KE + BI − BE, and is likely to be

private information even if the spectrum holdings BI and BE are public knowledge. For

the sake of exposition, and in line with our previous analysis, we simply denote by BI
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and BE the two firms’ initial “total assets”.

As before, it is optimal to allocate all the additional bandwidth; thus, if E obtains

bE = b, I obtains ∆− b. The costs of the two firms are then respectively given by

cI = c (BI + ∆− b) and cE = c (BI − θ + b) ,

and they coincide when

b = b̂ (θ) ≡ θ + ∆

2
.

The market price is given by18

p (b, θ) ≡ max {c (BI − θ + b) , c (BI + ∆− b)} .

and the profit of the entrant is of the form πE (b, θ)− t, where t denotes the fee charged

by the regulator for the acquisition of bandwidth. Gross profit is given by:

πE (b, θ) ≡

π (b, θ) if b > b̂ (θ) ,

0 otherwise,

where

π (b, θ) ≡ Π (BI − θ + b, BI + ∆− b)

= [c (BI + ∆− b)− c (BI − θ + b)]D (c (BI + ∆− b)) .

To maximize expected social welfare, without loss of generality the regulator can

offer a direct mechanism, which determines the allocation of the additional spectrum,

b (θ), and monetary transfers from the entrant, t (θ), and the incumbent, tI (θ), as a

function of the cost handicap reported by the entrant. This direct mechanism must be

individually rational: for the incumbent, it is obviously optimal to set tI (θ) = πI (θ) =

Π (BI + ∆− b (θ) , BI − θ + b (θ)) whenever λ > 0 (in the particular case where the

regulator focuses on consumer surplus – i.e., λ = 0 – any arbitrary transfer is optimal);

18As before, we assume that cost differences are never so drastic that competition is ineffective.
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for the entrant the individual rationality constraint is given by:

∀θ ∈ Θ, πE (b (θ) , θ)− t (θ) ≥ 0. (IR)

In addition, the direct mechanism must be incentive compatible:

∀θ, θ̃ ∈ Θ, πE (b (θ) , θ)− t (θ) ≥ πE

(
b(θ̃), θ

)
− t(θ̃). (IC)

The optimal allocation under complete information remains optimal whenever it

is implementable, that is, whenever there exists transfers {t (θ)}θ∈Θ satisfying (IR)

and (IC). This would obviously be the case when the handicap of the entrant is too

large to be overcome (i.e., θ > ∆): the optimal allocation under complete information,{
bFB (θ)

}
θ∈Θ

(where the superscript “FB” refers to “first-best”), together with t (θ) = 0,

is then trivially implementable. This is also the case when the weight placed on revenues,

λ, is so large that the optimal allocation simply consists in giving all the additional

bandwidth to the incumbent.

From now on, we focus on the non-trivial case where, λ being not too large, it is

optimal to share the additional bandwidth ∆ between the two firms. From Corollary 1,

the regulator then wishes to allocate more spectrum to entrants with larger handicaps.

Unfortunately, this may no longer be feasible under incomplete information, because the

classic “single-crossing” property does not hold here; indeed, the following lemma shows

that the entrant’s willingness to pay for additional bandwidth varies non-monotonically

with its handicap:

Lemma 3 Fix b and b′ > b, and let

δ (θ) ≡ πE (b′, θ)− πE (b, θ) ≥ 0

denote the additional profit obtained by the entrant when increasing its share of bandwidth
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from b to b′, as a function of the entrant’s handicap. We have:

δ′ (θ)


> 0 if b̂ (θ) < b,

< 0 if b̂ (θ) ∈ (b, b′) ,

= 0 if b̂ (θ) > b′.

Proof. See Appendix F.

The intuition is as follows. When E’s initial handicap, θ, is small (namely, such

that b̂ (θ) < b), giving it a share b of the additional bandwidth enables it to win the

competition for the market, and increasing this share further to b′ thus increases its

profit from π (b, θ) to π (b′, θ). Hence, δ (θ) = π (b′, θ)− π (b, θ) and:

δ′ (θ) ≡
∫ b′

b

∂2π

∂b∂θ
(x, θ) dx,

where the integrand is positive. To see this, note first that an increase in the handicap

θ, which increases E’s cost, decreases its profit:

∂π

∂θ
(b, θ) = c′ (BI − θ + b)D (c (BI + ∆− b)) < 0.

However, an increase in b tends to limit this impact of a larger handicap: (i) the convex-

ity of the cost function c (·) implies that the cost increase is reduced (i.e., c′ (BI − θ + b)

becomes less negative as b increases); and (ii) transferring some of the additional band-

width from I to E increases the market price (driven by I’s cost), which, in turn,

reduces the quantity impacted by the cost increase (i.e., D (c (BI + ∆− b)) decreases as

b increases).

When E’s initial handicap θ is instead very large (namely, such that b̂ (θ) > b′),

E obtains zero profit anyway, and thus remains unaffected by a further increase in its

handicap. Finally, when the initial handicap is in the middle range (i.e., b < b̂ (θ) < b′),

increasing the bandwidth share from b to b′ enables E to win the competition. It follows

that δ (θ) = π (b′, θ), which, as noted above, is a decreasing function of the handicap, θ.

This non-monotonicity of E’s willingness to pay for additional bandwidth substan-

tially constrains the set of incentive-compatible allocations. In particular, the next
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Lemma shows that it can generate bunching as long as the weight placed on revenues is

not too large (namely, λ ≤ 1/2, which ensures that cost equalization would be optimal

under complete information):

Lemma 4 Suppose that the regulator puts a weight 0 ≤ λ ≤ 1/2 on revenues. If a direct

incentive-compatible mechanism {b (θ) , t (θ)}θ∈Θ satisfies b(θ̂) = b̂(θ̂) for some θ̂ ∈ Θ,

then b (θ) = b̂(θ̂) for any θ ∈ Θ (“full bunching”).

Proof. See Appendix G.

The intuition is as follows. As long as the weight on revenues does not exceed 1/2,

under complete information it is optimal to seek to minimize the cost difference, that

is, to choose b (θ) as close to b̂ (θ) as possible. However, if the handicap of the entrant

is exactly offset for some particular type θ̂ (i.e., b(θ̂) = bFB(θ̂)), then incentive compat-

ibility requires b (θ) to lie above b(θ̂) for θ < θ̂, and below b(θ̂) for θ > θ̂. The best such

schedule is therefore b (θ) = bFB(θ̂).

The following proposition shows that when demand is inelastic,19 the objectives of

the regulator and of the entrant are so conflicting that the same bandwidth must always

be allocated to the entrant, regardless of its handicap:

Proposition 4 If θ < ∆ and demand is inelastic, then the optimal allocation under

incomplete information consists of offering the same bandwidth bSB to the entrant, re-

gardless of its type, where

b̂SB (λ) ≡ arg max
b≤∆

Eθ [W (p (b, θ) ;λ, θ)] > bFB(θ).

Proof. See Appendix H.

The lessons from this analysis are two-fold. On the one hand, the qualitative insights

of the previous section for the case of complete information appear robust: as long as

the weight on revenues is not too large, it is socially desirable to allocate some of the

bandwidth to the entrant (even if the incumbent ends up serving the market), and to do

so in a way that limits the cost asymmetry between the two firms. On the other hand,

19That is, D (p) is constant in the relevant price range.
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accounting for firms’ private information leads to the adoption of somewhat coarser

mechanisms, because of the conflict of interests that arises between the regulator and

the firms. In particular, under incomplete information the optimal mechanism exhibits

full “bunching:” the allocation is the same, regardless of the magnitude of the handicap.

Hence, the previous insights carry over, but rely on the overall distribution of the cost

handicap, rather than on its actual realization.

We show in the Online Appendix that this insight extends to the case of an elastic

demand when the handicap is sufficiently diverse (namely, θ < ∆ < θ̄) and attention

is, moreover, restricted to bandwidth allocations that vary continuously, or monoton-

ically, with the handicap of the entrant (see Online Appendix A). However, incentive

compatibility does allow for discontinuous as well as non-monotonous allocations (see

Online Appendix B); we provide an example with elastic (namely, linear) demand and a

handicap taking two, not too diverse values (namely, θ < θ̄ < ∆), in which the optimal

allocation varies with the handicap (see Online Appendix C).

5 Standard Auctions

Regulators use different auction formats for allocating multiple blocks of spectrum

(which may be heterogenous): clock and combinatorial clock auctions (CCAs), simulta-

neous multi-round ascending auctions (SMRAs), and sequential auctions. To compare

these auction formats, we adopt a discretized version of our framework and assume that

the additional spectrum ∆ is divided into k equal blocks of size δ ≡ ∆/k; for the sake

of exposition, we moreover focus on the case of complete information among the two

bidders.

As regulators often allocate different tranches of spectrum at different times, we first

consider sequential auctions (Section 5.1). To approximate CCAs, we then turn to simul-

taneous Vickrey-Clarke-Groves (VCG) auctions (Section 5.2).20 Finally, to approximate

SMRAs, we discuss the case of simultaneous clock auctions (Section 5.3).21

20A CCA starts with multiple clock rounds, each involving single package bids, and ends with a
supplementary round with multipe package bids. VCG allocation rules then apply, except when the
VCG outcome would not be in the core.

21In SMRAs and clock auctions, prices increase across multiple rounds of bidding. The main dif-
ference is that prices are set by bidders in SMRAs, and by the auctioneer in clock auctions. With
homogenous blocks and symmetric information, the two auctions result in essentially the same out-
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We show below that, in our setting, the outcomes of these auction formats depart

drastically from the optimal allocations characterized above: while all the available

spectrum is allocated, it is likely to go to the incumbent, thus reinforcing its initial

advantage.

5.1 Sequential Auctions

We start with the case of sequential auctions. Specifically, we assume that k successive

auctions are organized, one for each of block, and that the outcome of each auction

is publicly announced before the next auction takes place. As bidders have perfect

information about each other, all classic auction formats (first-price or second-price

sealed-bid auctions, as well as ascending or descending auctions) yield the same outcome.

For the sake of exposition, we will refer to these auctions as “classic auctions”. It is well-

known that these auctions can generate multiple equilibria, as the losing bidder may

bid more than its value without incurring a loss; to address this issue, we focus on

coalition-proof Nash equilibria – see Bernheim et al. (1987); in our two-bidder setting,

this amounts to focusing on Pareto-undominated Nash equilibria.

The following proposition shows that the incumbent wins all the auctions, and may

even do so at zero price if the initial handicap of the entrant exceeds the size of the

individual blocks:

Proposition 5 Suppose that k blocks are sold sequentially using any classic auction

format. At any coalition-proof Nash equilibrium, the incumbent wins all k auctions;

furthermore, if BI −BE > ∆/k, then the incumbent acquires each block for free.

Proof. See Appendix I.

The intuition is simple, and reminiscent of the insight of Vickers (1986) for patent

races.22 When a monopolistic incumbent bids against a potential entrant for a better

technology, the incumbent’s gain from preserving its monopoly position (and enjoying

the better technology) exceeds the profit that the entrant would obtain in a duopoly

situation, even when the new technology would enable the entrant to win the competition

for the market. Likewise, here the incumbent, who by assumption is the initial leader,

come.
22Also see Gilbert and Newbery (1982) and Riordan and Salant (1994).
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gains more from maintaining its incumbency advantage than an entrant gains from

overtaking the incumbent.

Proposition 5 shows that, with sequential auctions, the incumbent can obtain all the

additional spectrum for free when this spectrum is divided into sufficiently many small

blocks. However, when the size of the blocks exceeds the initial handicap of the entrant,

the incumbent pays for the first block a price equal to:

pS (BI , BE) =


m−1∑
h=0

φkh (BE, BI)−
m∑
h=1

φkh (BI , BE) if k = 2m,

m∑
h=0

φkh (BE, BI)−
m∑
h=1

φkh (BI , BE) if k = 2m+ 1.

where

φkh (B1, B2) ≡ Π (B1 + (k − h) δ, B2 + hδ) .

In the particular case where BI = BE = B, both firms bid the full benefit generated by

the additional spectrum and the equilibrium price is thus equal to

pS (B,B) = Π (B + ∆, B) .

5.2 VCG Auctions

This section considers a single, simultaneous VCG auction for all k blocks, in which

each bidder submits a sealed bid demand schedule specifying how much it would offer

for every number of blocks it may wish to purchase. That is:

• Each firm i = I, E submits a bid of the form23

βi = {βi (nI , nE)}(nI ,nE)∈A ,

where ni ∈ K ≡{0, 1, 2, ..., k} denotes the number of blocks assigned to firm i ∈

{I, E}, and

A ≡{(nI , nE) ∈ K ×K | nI + nE ≤ k} .
23In theory, bids should be made for each entire allocation (nI , nE). In practice, firm i is often

asked to submit bids for the various combinations of slots assigned to it (that is, βi = {βi (ni)}ni∈K).
However, in our simple two-bidder setting, in which all k blocks are always allocated, the distinction is
moot.
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• The resulting spectrum allocation, nV (βI , βE) =
(
nVI (βI , βE) , nVE (βI , βE)

)
maxi-

mizes the sum of the offers over feasible allocations, i.e.,

nV (βI , βE) = arg max
n∈A
{βI (n) + βE (n)} .

• Finally, the price paid by each bidder i is the value that the other bidder would

offer for bidder i’s blocks, and is thus equal to (where the subscript “−i” refers to

firm i’s rival)

pVi (βI , βE) = max
n∈A
{β−i (n)} − β−i

(
nV (βI , βE)

)
.

It is well-known that it is a dominant strategy for each firm to bid its full value

for each package. The following proposition shows that, in this equilibrium, the incum-

bent again wins all the blocks. However, it always pays a positive price whenever the

additional spectrum is large enough to offset the handicap of the entrant:

Proposition 6 In a simultaneous VCG auction for the k blocks, the incumbent wins

all the blocks and pays a price equal to the entrant’s profits from winning all the blocks:

pV (BI , BE) =

Π (BE + ∆, BI) if ∆ > BI −BE,

0 otherwise.

Proof. See Appendix J.

The underlying logic is the same as for sequential auctions, and results again in

allocating all the additional spectrum to the incumbent. Furthermore, if the additional

bandwidth is not large enough to fully offset the initial handicap of the entrant, then

revenues are zero in both auctions. Otherwise, Proposition 6 shows that the incumbent

must now pay a positive price, independent of the block size. The following proposition

shows that this price is typically higher than in sequential auctions:

Proposition 7 Revenues are always at least as high in a VCG auction than in a se-

quential auction, and strictly higher in the case where ∆ > BI − BE; furthermore,

VCG revenues are independent of the block size, whereas a sequential auction brings no

revenue if the size of the blocks is sufficiently small.
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Proof. See Appendix K.

5.3 Clock Auctions

Now consider a two-bidder clock auction. The auctioneer posts a price per block, and

bidders announce how many blocks they want at that price. The posted price is initially

set to zero and increases by increments as long as there is excess demand; as price

increases, bidders can maintain or reduce the number of blocks they demand, but not

augment it. When the market clears, each bidder obtains its desired number of blocks

at the clearing price.24

In this auction, it is a dominant strategy for the entrant to bid for all k blocks as

long as the clock price p satisfies

p < pE ≡ Π (BE + ∆, BI)

k
,

and to drop out once the posted price tops pE. By contrast, the dominant strategy of

the incumbent is to bid for all k blocks as long as the clock price p satisfies

p < pI ≡ Π (BI + ∆, BE)

k
.

As pI > pE whenever BI > BE, the incumbent wins the clock auction at price pE,

which is the same outcome as with a VCG auction. Thus, we have:

Proposition 8 Auction outcomes are the same with a simultaneous VCG auction and

a clock auction.

6 Policy Implications

The above analysis characterizes the optimal allocation of essential inputs and compares

it with the outcomes of standard auctions, with and without measures (such as caps

and set-asides) designed to maintain ex post competition. We show that the outcome

of standard auctions typically differs drastically from the optimal allocation. With pure

24When demand abruptly drops below the clearing level, various tie-breaking rules apply, which
often involve a random element.
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Bertrand competition, the leading firm tends to win all the bandwidth, whereas the op-

timal allocation limit the cost differences of the firms whenever the weight on revenues

is not too large. With product differentiation, the optimal outcome is again to limit

the bandwidth asymmetries when products are not too differentiated.25 More gener-

ally, any auction which maximizes revenue is unlikely to maximize social welfare unless

maximizing industry profit happens to coincide with maximizing consumer welfare.

While we focus for simplicity on a setting in which a single incumbent faces a single

challenger, the insights can shed some light on regulators’ actual policy choices. In a

number of recent spectrum auctions, regulators have faced quite explicit choices be-

tween running a competitive auction and avoiding consolidation in the market. This

was the case in a 2019 auction in Switzerland, in which three competitors are vying for

the 30 MHz available in the 700 MHz band (a relevant band for 5G networks).26 The

smallest challenger, SALT, stated that “with less than 10 MHz [in that band] no com-

petitive and nationwide 5G network can be operated”, thus suggesting that, in order to

maintain competition, the regulator should allocate one third of the spectrum to each

incumbent.27

In practice, as shown in Table (1), the larger incumbents tend to win more spec-

trum, despite the fact that most European auctions have had caps or set-asides to favor

challengers.28 This suggests that increased concentration in spectrum holdings, and

in downstream market power is a risk that tends to increase over time. This section

discusses regulatory instruments and policy to address this issue.

25In a Cournot model with linear inverse demand P (Q) = a − bQ, total consumer and producer

surplus is W = (2a−c1−c2)2
18b ; it is therefore maximized when firms have equal bandwidth whenever unit

costs are weakly convex in bandwidth. There, as well, standard auctions will not achieve this result –
see Kasberger (2017).

26A similar situation arose in the US Incentive Auction, where the regulator (the FCC) had to
determine how much spectrum to reserve for Sprint and T-Mobile, the two firms with limited holdings;
the FCC reserved a spectrum adequate for one, but not both, of the two firms: the reserve was limited
to three blocks, and each laggard needed to win two blocks in order to become economically efficient.
In a 2013 auction, the Austrian regulator had to decide on caps in the allocation of 28 blocks among
three incumbents. The adopted cap of 14 blocks resulted in very high revenues and nearly forced market
consolidation.

27See https://www.handelszeitung.ch/unternehmen/telekommunikation-vertragswidrig-salt-pruft-
klage-gegen-upc.

28See the Appendix for a list of the auctions included in this measure and further details about these
auctions.
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Correlation of MS and total spectrum won 0.674
Correlation of MS and HF spectrum won 0.537
Correlation of MS and LF spectrum won 0.696

Table 1: Correlation of market shares (MS) and total, high and low band frequency
(HF,LF) winnings

6.1 Regulatory Instruments

Regulators can adopt different measures to promote competition – the most common

being spectrum caps, set-asides and bidding preferences or discounts. A spectrum cap is

a limit on the total amount of spectrum a firm can have. A set-aside reserves some spec-

trum for target groups such as “challengers” or entrants. A bidding preference provides

a discount off the final auction price to such challengers. Each of these provisions can

take different forms. For example, a cap can be on the amount available in the auction

or on overall spectrum holdings, including what bidders have prior to the auction. A

set-aside can also take the form of floors, i.e., minimum spectrum packages.29

Caps and set-asides impose similar restrictions on the set of feasible allocations.

To see this, let BE ≥ 0 and BI > BE denote, as before, the amount of spectrum

initially owned by the entrant and the incumbent, and by ∆ the additional amount

made available. Introducing an overall cap K limits the additional bandwidth bi that

firm i can obtain, that is:

Bi + bi ≤ K.

Obviously, a cap K has no effect if it exceeds BI + ∆ (> BE + ∆). Introducing instead

a “binding” cap K < BI + ∆ de facto reserves a bandwidth

S (K) ≡ ∆− (K −BI)

for the entrant. However, compared with the imposition of such a cap K, introducing

a set-aside S (K) further restricts the set of feasible allocations, as it also prevents the

entrant from having less than S (K) of additional bandwidth; that is, both instruments

can be used to put the same upper bound on I’s share of the additional spectrum, bI ,

29For instance, floors have been used in the UK – see https://www.ofcom.org.uk/about-
ofcom/latest/media/media-releases/2011/ofcom-prepares-for-4g-mobile-auction; for a discussion of this
case, see Myers (2013).
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but in addition a set-aside puts a lower bound on E’s share of this spectrum, bE. As a

result, as discussed below, caps and set-asides have different impacts on the outcome of

an auction.

Some auctions, such as the early US auctions, included spectrum caps on overall

spectrum holdings, of the form Bi + bi ≤ K, as discussed above.30 Other auctions have

used caps on the amount of spectrum each firm can acquire in the auction, of the form

bi ≤ k. However, these two variants can have very different effects on product market

competition. Indeed, whereas an overall cap can be effective in limiting the acquisition

of additional spectrum by the incumbent, an auction cap puts more stringent limitations

on the entrant, and may actually keep it from overtaking the incumbent.

Set-asides are often accompanied by reserve prices, which tend to discourage entry –

in our Bertrand setting, any positive reserve price would deter entry. Entry was indeed

discouraged in the 2013 4G auctions in Austria and limited in the UK, which relied on

various forms of set-asides accompanied by reserve prices. In the same vein, while our

analysis suggests that all spectrum should be allocated, this does not always occur in

practice, as reserve prices sometimes result in unsold blocks. For instance, this has been

the case in 4G auctions in Spain and Portugal, in which some of the most valuable (900

MHz) spectrum remained unsold.31

When the initial handicap of the entrant is very large, it is optimal to allocate all the

additional spectrum to the entrant. Overall caps, set-asides and bidding credits can all

be used to accomplish this.32 In what follows, we concentrate on the more interesting

case where the regulator finds it optimal to share the additional spectrum between the

two firms.

Consider first the case where the regulator focuses on consumer surplus. From Propo-

sition 1, it is optimal to equalize the costs of the two firms; that is, the optimal allocation

30See https://www.fcc.gov/node/189694 for a discussion of US spectrum caps.
31See http://www.minetad.gob.es/telecomunicaciones/es-ES/ResultadosSubasta/Informe Web

29072011 fin de subasta.pdf and http://www.anacom.pt/streaming/Final Report Auction.pdf?contentId
=1115304&field=ATTACHED FILE for results of the 2011 Spanish and Portuguese multi-band auc-
tions. Also, in France, the regulator took a number of years to reduce the reserve price before awarding
a fourth 3G license. See https://www.arcep.fr/?id=8562.

32Specifically, an overall cap K = BI , a set-aside S = ∆, or a bidding credit reflecting I’s profit
with the additional spectrum, would all result in E winning all the additional spectrum. When the
regulator cares about revenues as well, however, this would need to be complemented with a tax (e.g.,
an unconditional tax on I’s equilibrium profit).
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(
bSI , b

S
I

)
is such that:

cI
(
BI + bSI

)
= cE

(
BE + bSE

)
= ĉ = c

(
BI +BE + ∆

2

)
.

This could be achieved with an overall cap set to KS = (BI +BE + ∆) /2. By contrast,

a set-aside SS = S
(
KS
)

would not work, as it would put the entrant ahead of the

incumbent (as BE + SS
(
= KS

)
> BI), and thus result in the entrant winning all the

additional spectrum. A bidding credit would not be effective either, as it would result in

either firm winning all the additional spectrum (I if the bidding credit is too low, and

E otherwise).

When instead the regulator also cares about revenues, Proposition 2 applies, and

two cases arise.

• If the handicap of the entrant and/or the weight placed on revenues is not too large,

then there are two optimal allocations, which: (i) confer a competitive advantage to one

firm and lead to the same consumer price, pW – more specifically, one firm (the “loser”)

ends-up with an overall holding equal to BW
l ≡ c−1

(
pW
)
, whereas the other firm (the

“winner”) accumulates a total amount of spectrum equal to BW
w ≡ c−1

(
γ
(
pW
))
> BW

l ;

and: (ii) appropriate the winner’s equilibrium profit, πW ≡
(
pW − c

(
KW

))
D
(
pW
)
.

This optimal allocation could be achieved by setting aside an amount SW = BI − BE

for the entrant, and introducing an overall cap set to KW = BW
w . The set-aside is

designed to offset the initial handicap of the entrant; as a result, both firms are willing

to bid up to πW to reach the overall cap.33 Interestingly, neither instrument alone suffices

to achieve a desired outcome. Relying only on a set-aside would again result in one firm

(either one) winning all the additional spectrum (the same would be obtained with a

bidding credit). Relying only on a cap could achieve the desired spectrum allocation

(by setting the cap to KW ), but it would leave a positive rent to the incumbent;34 a

second instrument would be required to deal with this issue.35

33Consider, for instance, a simple clock auction with the set-aside SW and the overall cap KW (with
the rule that any unbid spectrum is allocated to the losing bidder). As E secures an amount BI −BE
for free, both firms are then willing to bid up to πW /

(
KW −BI

)
to obtain the additional amount

KW − BI . As a result, either firm wins and accumulates an overall holding of KW = BWw , and the
other firm obtains an overall holding of BWl , leading to the market price pW.

34For instance, in a simple clock auction I would be willing to bid up to πW /
(
KW −BI

)
, whereas

E is only willing to bid up to πW /
(
KW −BE

)
. The conclusion follows from BE < BI .

35This, for instance, could be an unconditional tax on I’s profit, as described in footnote 32. Alter-
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• If the handicap of the entrant and/or the weight placed on revenues is large enough,

the unique optimal allocation is such that cWE = c
(
BW
l

)
> max {c̄I , cE}, and thus

satisfies: BW
E = BW

l < BI – that is, it is no longer optimal to offset the initial handicap

of the entrant. In this case, setting aside an amount SW = BW
l − BE for the entrant,

or alternatively introducing a cap set to KW = BW
w , would both achieve the desired

spectrum allocation. However, either instrument would again need to be complemented

with another instrument designed to limit the rent left to the incumbent.36

6.2 Regulatory Experience and Policy

Most countries have adopted auctions and other spectrum assignment procedures, in-

cluding caps and set-asides, designed to promote ex post competition in the market for

mobile communications services. However, these provisions have tended to have limited

long-run impact, once the first set of spectrum allocations was completed.

The three initial waves of spectrum allocations resulted in 4 - 5 mobile operators in

most European countries and at least 4 operators in almost all of the US and Canada,37

and often as many as 5 or 6.38 Since the 3G auctions, however, consolidation has been

the rule in much of Europe, including in Austria, Germany, Italy, the Netherlands,

Switzerland and the UK, despite various measures employed to promote competition.39

The Netherlands set aside two prime, low frequency 4G blocks for entrants,40 which

did attract two new bidders; however, only one entrant won any blocks, and after the

natively, it could take the form of a reserve price – a non-linear or discriminatory reserve price may
however be needed.

36Combining a set-aside with a cap no longer suffices here to achieve the desired allocation and to
appropriate the profit πW ; that is, the additional instrument should again be a tax on the incumbent’s
equilibrium profit, and/or some form of a reserve price.

37For the first generation of analog cellular in the Americas and in Europe, regulators tended to
award one license to the incumbent local exchange carrier and one to an entrant. Additional operators
entered during the second and third waves of spectrum allocations, starting in the late 1980’s and
running through the early 2000’s (first for 2G, and then for 3G spectrum).

38The US and Canada, unlike European countries, awarded regional and not national licenses.
39The UK had 5 mobile network operators (“MNOs”), but even after set-asides in the recent 4G

auction, only 4 remain, and there is talk of further consolidation. Germany had 6 winners after their
3G auction, but two winners abandoned their licenses, and subsequent to a recent merger, there are
now only 3 MNOs left. The Netherlands had 5 MNOs, but mergers resulted in 3 players. The Austrian
3G auction had 6 winners. By the time the Austrians auctioned off 4G spectrum, a little over 10
years after the 3G auctions, there were only three MNOs remaining in the market. Finally, the 2013
re-auction of legacy spectrum in Austria nearly left Austria with two viable MNOs. See Salant (2014))
for a discussion.

40By contrast, Germany turned down requests of entrants for set-asides.
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auction it signed a network-sharing agreement with the one incumbent (T-Mobile) that

failed to win any low frequency blocks, and eventually merged with it. Austria failed

to attract any bidders for the two blocks provisionally set aside for entrants. The UK’s

provisions for a floor mentioned in footnote 29 also failed to induce meaningful changes

in the competitive structure.

The US, too, has seen continuing consolidation.41 Since the FCC abandoned overall

spectrum caps in 2003, the two largest MNOs have acquired most of the spectrum that

has been auctioned. The HHI has increased from 2151 in 2003 to 3027 at the end of

2013. In a very recent auction for AWS-3 spectrum, AT&T and Verizon spent 6 and 10

times as much as the third largest MNO in the auction (T-Mobile), and no other MNO

spent even 1% of what AT&T spent. In the most recent 600 MHz auction, the reserve

price of $1.25 per MHzPOP42 has deterred the weakest incumbent, Sprint, from even

participating.43

Finally, Canada at one time had 4 national operators, which was reduced to 3 via

merger. Despite having conducted a series of auctions with provisions including caps

and regulations on wholesale prices, in the hope of attracting more competitors, no

fourth national operator has emerged.

Regulatory agencies face a great deal of uncertainty. Experience in the past several

years suggests that set-asides are not very likely to attract new entrants when incum-

bents start with a large amount of spectrum, and significant sunk investments that an

entrant would need to duplicate. This suggests that caps that limit further consolidation

may be preferable to set-asides or other measures to favor entrants. That is, the goal

is limiting risk of excessive consolidation, as attracting entrants has proven difficult. A

few auctions, the UK 4G auction, the US Incentive Auction, and the Canadian 600 MHz

auction, have included what are effectively set-asides for smaller players.44

41Among the large regional and national carriers that at one time existed: (i) Cingular, BellSouth,
Ameritech, and Leapwireless have all been absorbed by AT&T; (ii) BellAtlantic, NYNEX, USWest,
Airtouch , GTE, Cincinnati Bell, and Alltel have been absorbed by Verizon; (iii) Western Wireless,
Voicestream, Omnipoint and Powertel formed T-Mobile, which subsequently acquired MetroPCS; (iv)
Sprint merged with Nextel; and (v) US Cellular is still independent, but has sold off most of its larger
markets.

42The term “per MHzPOP” is used to compare prices of different sized blocks in different countries
or regions. Literally, one MHzPOP is a license of one MHz covering an area with a population of one.

43In addition, the spectrum reserved for challengers sold eventually for essentially the same price
than the non-reserved spectrum - less than 1% overall difference, and, in nearly 20% of the PEAs the
reserved spectrum was more expensive than the non-reserved spectrum.

44The UK had spectrum “floors” for both entrants and smaller players. The US Incentive Auction
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7 Conclusion

This paper characterizes the optimal allocation of a scarce resource (e.g., spectrum

rights) between an incumbent and a challenger, for a regulator seeking to maximize the

social surplus. The main insight is that the regulator wants to limit the dominance of

the incumbent, and ensure that the challenger exerts an effective competitive pressure.

More specifically, when the regulator focuses on consumer surplus, and does not care

about auction revenues, it tries to equalize firms’ competitiveness. When instead the

regulator seeks to maximize social welfare, taking into account auction revenues, it

finds it optimal to maintain some asymmetry among the competitors.

Further, we find that there is a tension between the regulator’s objective and the

challenger’s incentives to report its handicap. More specifically, a regulator may want to

provide a weaker challenger more spectrum than a stronger challenger. However, doing

so gives the stronger challenger an incentive to try to act as if it is weak. As a result of

this tension, the optimal auction is likely to exhibit “bunching”, in that the challenger

ends up with the same allocation, regardless of its initial handicap.

The finding that the regulator wishes to limit dominance contrasts sharply with the

outcome of standard types of auctions, such as sequential, clock and VCG auctions,

which all result in increasing dominance: in the Bertrand competition setting that we

consider, the incumbent always obtains all the additional spectrum.45 Furthermore,

while the spectrum allocations are the same, revenues are lower in a sequential auction.

Finally, we examine some policy implications. When the regulator’s objective only

includes consumer surplus, a cap on firms’ overall spectrum holdings can suffice to

achieve the desired allocation. By contrast, neither a cap on the amount of spectrum

that any firm can win in the auction, nor a set-aside reserved for the challenger are

helpful – auction-specific caps could actually be counter-productive, as they may limit

the challenger’s ability to reduce its handicap. When the regulator also cares about

auction revenues, an overall cap needs to be complemented with a set-aside or with

included “reserved” and “non-reserved” spectrum. Interestingly, in that auction, Verizon never bid,
AT&T stopped bidding in the after the first of four stages, and there was on average a 1% difference in
the average price of set-aside and non-set-aside licenses. The 2019 Canadian auction includes set-asides
for “those bidders that are registered . . . as facilities-based providers .”

45This may not always hold when firms compete à la Cournot competition, in which case the pack-
aging of blocks can also affect the outcome.
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another instrument designed to limit the incumbent’s rent.

While this paper has focused on spectrum auctions, similar issues arise in many other

sectors. We discuss a few below.

Sports broadcasting rights.

Sports broadcasting rights, and, in particular, soccer rights are often regulated,

especially in Europe. The reason for competition authorities to intervene is the concern

that a concentration of broadcasting rights could create or reinforce the dominance of the

rights holder.46 Indeed, the fraction of rights owned by a provider affects the perceived

value of its offering relative to that of its rivals. Suppose, for example, that the value a

consumer derives from provider i’s offering is of the form:

u+ v(ri),

where ri denotes the fraction of rights own by firm i. Formally, the increase in firm i’s

perceived quality stemming from an increase in ri then has the same effect as the cost

reduction resulting from an increase in the bandwidth bi in our model.

Train scheduling.

Another application is the allocation of train slots. The frequency of service offered

on a given route will affect the average wait time, and thus the cost imposed on cus-

tomers. Many riders, e.g., because they purchased their tickets in advance or because

they benefit from loyalty programs, will therefore favor the carrier offering the most

frequent service. Suppose, for example, that the net value offered by firm i is of the

form:

u− c(si),

where si denotes the number of train slots allocated to firm i. The reduction in cus-

tomers’ costs stemming from an increase in si then has the same effect as the reduction

in firm i’s own operating cost in our model.

46See, e.g., http://ec.europa.eu/competition/elojade/isef/case_details.cfm?proc_code=

1_38173.
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Electric transmission.

Electricity transmission rights raises similar issues in regions in which energy supply

is limited and relatively costly.47 The particular details of electricity markets differ quite

a bit from spectrum,48 but the basic message that the allocation of transmission rights

can affect post-auction competition applies.

Similar issues arise with the allocation of many other scarce resources, such as landing

slots (and other airport facilities, such as gates, kerosene tanks, and so forth), gas

pipeline capacity, concessions to operate in given areas (e.g., highway service stations),

or when zoning regulations put constraints on commercial activities or on the number

(and/or the size) of supermarkets.49

47See Joskow and Tirole (2000) and Loxley and Salant (2004).
48See for example http://pjm.com/markets-and-operations/ftr.aspx, and also Salant (2005).
49In France, for instance, zoning regulations have prevented the entry of new retail chains.
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Appendix

A Proof of Proposition 1

It is obviously optimal to allocate all the additional spectrum: allocating any residual

bandwidth equally among the two firms reduces for sure the resulting competitive price

and thus benefits consumers.

Without loss of generality, we can thus restrict attention to spectrum allocations of

the form bE ∈ [0,∆], bI = ∆− bI , yielding a competitive price equal to

p = max {c (BE + bE) , c (BI + bI)}

= max {c (BE + bE) , c (BI + ∆− bE)} .

Maximizing consumer surplus amounts to minimizing this competitive price; therefore:

• If ∆ ≥ BI − BE, there is enough spectrum to offset the initial cost asymmetry;

the optimal spectrum allocation thus equates the costs of the two firms:

bE = b̂ ≡ BI −BE + ∆

2
and bI = ∆− b̂,

leading to an equilibrium price equal to (where the superscript S refers to consumer

surplus):

pS = cI = cE = ĉ.

• If instead ∆ < BI − BE, there is not enough spectrum to offset the initial cost

disadvantage of the entrant; to minimize this disadvantage, it it then optimal to

give all the additional spectrum to the entrant:

bE = ∆ and bI = 0,

leading to

pS = cE = c (BE + ∆) > c̄I = c (BI) .
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B Proof of Lemma 2

Part (i). Any p ∈
[
pS, c̄E

]
can be supported by an equilibrium by choosing bE ∈

[
0, b̂
]

and bI = ∆− bE such that cE = c (BE + bE) = p and cI = c (BI + bI) = γ (p). We have:

γ′ (p) = γ′ (cE) = −c
′ (BI +BE + ∆− c−1 (cE))

c′ (c−1 (cE))
= − c′ (BI + bI)

c′ (BE + bE)
,

and

γ′′ (p) = γ′′ (cE) =
c′′ (BI + bI) + c′(BI+bI)

c′(BE+bE)
c′′ (BE + bE)

[c′ (BE + bE)]2
.

Assumption A.1 then readily yields γ′ (p) < 0 < γ′′ (p); together with bE ≤ b̂ (which

implies BI + bI ≥ BE + bE), it yields γ′ (p) ≥ −1, with a strict inequality if bE < b̂ and

c′′ (·) > 0.

Part (ii). For any p ∈
[
pS, c̄E

]
, p ≥ γ (p) and thus ρ (p) ≤ 1 (with strict inequalities

for p > pS). Furthermore, for any c ≥ 0, the monopoly profit function

πm (p; c) ≡ (p− c)D (p)

satisfies:
∂πm

∂c
(p; c) = −D′ (p) [c+ µ (p)− p] ,

where, from Assumption A.2, the expression in brackets strictly decreases as p increases.

It follows that πm (p; c) is strictly quasi-concave and is maximal for p = pm (c), charac-

terized by the first-order condition:

pm = c+ µ (pm) .

As is well-known, the monopoly price pm (c) is moreover (weakly) increasing in c. As

γ (p) ≥ cI , the assumption c̄E < pm (cI) thus ensures that, for any p ∈
[
pS, c̄E

]
, we have:

p ≤ c̄E < pm (cI) ≤ pm (γ (p)) .
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The strict quasi-concavity of the profit function πm (p; c) then yields:

γ (p) + µ (p)− p > 0,

that is, ρ (p) > 0. Finally, we have:

ρ′ (p) =
µ′ (p) [p− γ (p)]− µ (p) [1− γ′ (p)]

µ2 (p)
< 0,

where the inequality stems from the part (i) of the Lemma and Assumption A.2.

C Proof of Proposition 2

The derivative of the welfare function W (p;λ) can be expressed as ∂W (p;λ) /∂p =

λD (p)φ (p;λ), where

φ (p;λ) ≡ ρ (p)− γ′ (p)− 1

λ
.

From Lemma 2, φ (p;λ) is strictly decreasing in p. Let

λ ≡ 1

ρ (pS)− γ′ (pS)
and λ̄ ≡ 1

ρ (p̄)− γ′ (p̄)
.

When the additional bandwidth is large enough to overcome the handicap, pS = ĉ (≥ cE)

and thus ρ
(
pS
)

= −γ′
(
pS
)

= 1; hence, λ = 1/2. Otherwise (i.e., when ∆ < BI − BE),

pS = cE > ĉ > γ (cE) = c̄I and thus:

ρ
(
pS
)

= 1− cE − c̄I
µ (cE)

< 1 and − γ′
(
pS
)

=
c′ (BI)

c′ (BE + ∆)
< 1;

hence, λ > 1/2.

Three cases can be distinguished:

• Case a: λ ≤ λ. We then have φ (p;λ) ≤ 0 in the relevant range p ∈
[
pS, c̄E

]
,

implying that the optimal price is pW = pS; that is, it is still optimal to allocate all the

additional bandwidth to the entrant, as when maximizing consumer surplus.

• Case b: λ ≥ λ̄. We then have φ (p;λ) ≥ 0 in the relevant range p ∈
[
pS, c̄E

]
,

implying that the optimal price is pW = c̄E; that is, it is instead optimal to allocate

all the additional bandwidth to the incumbent, as if the objective were to maximize
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industry profit.

• Case a: λ < λ < λ̄. The optimal price, pW , is then the unique solution in p to (9);

this optimal price lies strictly between pS and c̄E and it is therefore optimal to share

the additional bandwidth between the two firms. Furthermore:

• When pS = cE ≥ ĉ, there is not enough (or just enough, in case of equality)

additional bandwidth to offset the initial cost asymmetry; E’s cost thus remains

(weakly) higher than I’s cost, and so there is a unique optimal spectrum allocation,

which consists in giving bWE = c−1
(
pW
)
−BE to the entrant and bWI = ∆− bWE to

the incumbent.

• When instead pS = ĉ > cE, there is again a unique optimal spectrum allocation

whenever pW > c̄I ; when instead pW ≤ c̄I , there are two optimal bandwidth

allocations, which consist in sharing the additional bandwidth so as to give a cost

equal to pW to one operator and a cost equal to γ
(
pW
)

to the other operator. As

φ (p;λ) increases with λ and decreases in p, the solution to (9), pW , increases with

λ, from pS = ĉ < c̄I for λ = λ to c̄E > c̄I for λ = λ̄. Hence, there exists λ̂ ∈
(
λ, λ̄
)

such that pW > c̄I for λ > λ̂.

D Proof of Corollary 1

Building on the previous analysis, the optimal price, pW = pW (λ), is the unique solution

to φ (p;λ) = 0, where φ (p;λ) strictly increases with λ and, from Lemma 2, strictly de-

creases in p. It follows that pW (λ) strictly increases with λ. When the optimal spectrum

allocation maintains a cost advantage to the incumbent, this implies a re-allocation of

∆ which further favors the incumbent.

Turning to the impact of bandwidth, and using

γ (p;B) ≡ c
(
B − c−1 (p)

)
,

ρ (p;B) ≡ 1− p− γ (p;B)

µ (p)
,

and

φ (p;B) ≡ ρ (p;B)− ∂γ

∂p
(p;B)− 1

λ
,
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the optimal price can be expressed as pW = pW (B), where pφ (B) is the unique solution

to

φ (p;B) = 0. (10)

The optimal price thus only depends on total available bandwidth, B = BI + BE + ∆.

In addition,
∂pW

∂B
= −

∂φ
∂B
∂φ
∂p

(
pW , B

)
,

where

∂φ

∂B

(
pW , B

)
=

1

µ (pW )

∂γ

∂B

(
pW ;B

)
− ∂2γ

∂B∂p

(
pW ;B

)
=
c′
(
B − c−1

(
pW
))

µ (pW )
+
c′′
(
B − c−1

(
pW
))

c′ (c−1 (pW ))
µ
(
pW
)

=
c′ (SI)

µ (c (SE))
+
c′′ (SI)

c′ (SE)
,

where SI = BI + bI and SE = BE + bE, respectively, denote the overall amount of

spectrum eventually assigned to the incumbent and to the entrant, assuming that the

incumbent is favored when the optimal price pW can be achieved in two symmetric ways,

and

∂φ

∂p

(
pW , B

)
=
∂ρ

∂p
(p;B)− ∂2γ

∂p2
(p;B)

=
µ′ (p) [p− c (B − c−1 (p))]

µ2 (p)
−

1 +
c′(B−c−1(p))
c′(c−1(p))

µ (p)

− c′′ (B − c−1 (p))

[c′ (c−1 (p))]2
− c′ (B − c−1 (p)) c′′ (c−1 (p))

[c′ (c−1 (p))]3

=
µ′ (c (SE)) [c (SE)− c (SI)]

µ2 (c (SE))
−

1 + c′(SI)
c′(SE)

µ (c (SE))
− c′′ (SI)

[c′ (SE)]2
− c′ (SI) c

′′ (SE)

[c′ (SE)]3
,

where the last equality uses the fact that, by construction, pW = cE = c (SE) and

γ (cE) = cI = c (SI). It follows that the derivative of pW with respect to total bandwidth
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can be expressed as:

∂pW

∂B
= −

∂φ
∂B
∂φ
∂p

(
pW , B

)
=

c′(SI)
µ(c(SE))

+ c′′(SI)
c′(SE)

c′(SI)
µ(c(SE))c′(SE)

+ c′′(SI)

[c′(SE)]2
+ 1

µ(c(SE))
+ c′(SI)c′′(SE)

[c′(SE)]3
− µ′(c(SE))[c(SE)−c(SI)]

µ2(c(SE))

= c′ (SE)
A

A+B
,

with

A =
c′ (SI)

µ (c (SE)) c′ (SE)
+

c′′ (SI)

[c′ (SE)]2
> 0,

B =
1

µ (c (SE))
+
c′ (SI) c

′′ (SE)

[c′ (SE)]3
− µ′ (c (SE)) [c (SE)− c (SI)]

µ2 (c (SE))
> 0,

where the inequalities follows from c′ (·) > 0 > c′′ (·), µ (·) > 0 > µ′ (·) and c (SE) >

c (SI). Using

pW = c (SE) ,

we thus have:

0 <
∂SE
∂B

=
A

A+B
< 1.

Therefore:

• An increase in ∆ leads to an increase in both bE (as ∂SE/∂B > 0) and bI (as

∂SE/∂B < 1).

• An increase in BI leads to an increase in bE (as ∂SE/∂B > 0) and a reduction in

bI (as ∂SE/∂B < 1).

• An increase in BE leads to an increase in bI (as ∂SE/∂B < 1) and thus to a

reduction in bE (as bE + bI = ∆).
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E Proof of Proposition 3

E.1 Shared-market equilibria

We first study shared market equilibria, in which both firms attract some consumers.

The location x̂ of the customer who is indifferent between patronizing the two firms is

determined by:

s (p1)− tx̂ = s (p2)− t (1− x̂) ,

where p1 and p2 denote firms’ prices,

s (p) ≡
∫ +∞

p

d (v) dv

denotes individual consumer surplus, and t denotes transportation costs per unit dis-

tance. Consumers located at x < x̂ then purchase from firm 1 and those consumers

located at x > x̂ purchase from firm 2. Firm i’s market share is therefore

x̂i (pi, pj) ≡
1

2
+
s (pi)− s (pj)

2t
,

where i 6= j ∈ {1, 2}, and its profit is

Πi (pi, pj) ≡Mx̂i (pi, pj) πi (pi) ,

where

πi (pi) ≡ (pi − ci) d (pi)

denotes firm i’s per consumer profit. The equilibrium prices, p∗1 and p∗2, and the associ-

ated equilibrium variables satisfy the first-order conditions, which, using s (p) = −d (p),

can be written as:

d (p∗i ) πi (p
∗
i ) = 2tx̂i

(
p∗i , p

∗
j

)
π′i (p

∗
i ) ≤ 2tx̂i

(
p∗i , p

∗
j

)
d (p∗i ) ,

where the inequality follows from π′i (p
∗
i ) = d (p∗i ) + (p∗i − ci) d′ (p∗i ) ≤ d (p∗i ), as d′ (·) < 0

and active firms never sell below costs (i.e., p∗i ≥ ci). Dividing by d (p∗i ) and adding the

resulting inequalities for the two firms yields π1 (p∗1)+π2 (p∗2) < 2t. As active firms never
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make a loss (i.e., π∗ (p∗i ) ≥ 0), this condition in turn implies that each firm i obtains a

total profit lower than 2t:

Π∗i ≡ Πi

(
p∗i , p

∗
j

)
= Mx̂i(p

∗
i , p
∗
j)πi (p

∗
i ) ≤ 2tM.

It follows that, when firms face different costs, the market cannot remain shared as

t tends to vanish. To see this, suppose that ci < cj. From the above analysis, in any

shared-market equilibrium, Π∗i ≤ 2tM and p∗j ≥ cj. Hence, firm i’s profit tends to 0 as

t tends to vanish. But then, firm i could corner the market by charging pi (t) such that

s (pi) = s (cj) + t; as t goes to 0, pi (t) tends to cj and firm i could thus secure in this

way (close to) M (cj − ci) πi (cj), which is bounded away from 0, a contradiction.

E.2 Cornered-market equilibria

We now characterize cornered market equilibria, in which one firm, say firm i, attracts

all consumers; the other firm, j, thus makes zero profit. We first note that this requires

asymmetric costs. To see this, suppose instead that both firms face the same cost c.

Firm i cannot be pricing below c, otherwise it would make a loss and profitably deviate

by raising its price. But then, firm j could profitably deviate by pricing slightly above

cost, which, thanks to product differentiation, would enable it to gain a positive market

share and earn a small but positive margin.

The two firms must therefore be facing different costs. A standard Bertrand argument

ensures that the more efficient firm wins the market, and that the other firm does not

charge more than its cost; that is, firm j faces some cost c and firm i faces a lower cost,

of the form γ (c) < c, and p∗j ≤ c. As usual, we will focus on trembling-hand perfect

equilibria, and thus discard those equilibria in which the losing firm would price below

its own cost. It follows that the candidate equilibrium is:

p∗j = c and p∗i = p∗ (c) , (11)

where p∗ (c) is such that x̂i (p
∗ (c) , c) = 1, that is:

s (p∗ (c)) = s (c) + t.
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It thus satisfies p∗ (c) < c (as s(p∗(c)) > s(c)) and

0 < p∗′ (c) =
d (c)

d (p∗ (c))
< 1. (12)

In this candidate equilibrium, firm i obtains a profit equal to:

Π∗ (c) ≡ [p∗ (c)− γ (c)]D (p∗ (c)) ,

where D (p) ≡Md (p) denotes total demand at price p.

For this to be an equilibrium, firm i should not benefit from increasing its price (in

which case it would share the market with firm j); we have:

1

M

∂Πi

∂pi
(pi, pj)

∣∣∣∣
p∗j=c,p∗i =p∗(c)

= d (p∗ (c)) + [p∗ (c)− γ (c)] d′ (p∗ (c))− d (p∗ (c))

2t
π∗ (c)

≤ d (p∗ (c))

2t
[2t− π∗ (c)] .

Hence, whenever:

π∗ (c) ≥ 2t,

there exists indeed a cornered market equilibrium, in which the firm with cost c prices

at cost, and the other firm, with cost γ (c), charges p∗ (c) and obtains a profit equal to

π∗ (c).

E.3 Welfare analysis

In a cornered market equilibrium, social welfare is equal to:

W ∗ (c;λ) ≡ S (p∗ (c)) + λΠ∗ (c) ,

where S (p) ≡Ms (p) denotes total consumer surplus.

When the regulator focuses on consumer surplus, we thus have:

∂W ∗

∂c
(c;λ) = −D (p∗ (c)) p∗′ (c) < 0,

and so it is never optimal to have a cost handicap larger than what is needed for one
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firm to “barely” corner the market. It follows that, as t vanishes, the optimal allocation

converges to cost equalization.

When λ > 0, we have:

W ∗ (c;λ) ≡ S (p∗ (c)) + λ [p∗ (c)− γ (c)]D (p∗ (c)) .

As t tends to vanish, p∗ (c) ' c converges to c, and thus W ∗ (c;λ) ' W (c;λ), where

W (p;λ) is the welfare function studied in the baseline model of Bertrand competition,

given by (6). Furthermore, maintaining a shared-market equilibrium outcome as t tends

to vanish requires cost equalization (that is, cI = cE = ĉ); as the equilibrium price

converges to cost (i.e., p∗I ' p∗E ' ĉ), it follows that total welfare converges to S (ĉ) =

W (ĉ;λ). Hence, in both types of equilibrium (shared-market or cornered-market), the

equilibrium prices tend to cost and total welfare converges to W (c;λ); it follows that

the optimal allocation converges towards that of the Bertrand baseline model (perfect

substitutes).

F Proof of Lemma 3

We first derive some properties of the profit function

π (b, θ) = [c (BI + ∆− b)− c (BI − θ + b)]D (c (BI + ∆− b)) .

We have:

∂π

∂θ
(b, θ) = c′ (BI − θ + b)D (c (BI + ∆− b)) < 0,

∂2π

∂b∂θ
(b, θ) = c′′ (BI − θ + b)D (c (BI + ∆− b))− c′ (BI − θ + b)D′ (c (BI + ∆− b)) c′ (BI + ∆− b)

> 0,

45



and

∂π

∂b
(b, θ) =− [c′ (BI + ∆− b) + c′ (BI − θ + b)]D (c (BI + ∆− b))

− [c (BI + ∆− b)− c (BI − θ + b)]D′ (c (BI + ∆− b)) c′ (BI + ∆− b)

>− c′ (BI + ∆− b)D (c (BI + ∆− b))

− c′ (BI + ∆− b) [c (BI + ∆− b)− c (BI − θ + b)]D′ (c (BI + ∆− b))

>0,

where the last inequality stems from the fact that competition remains effective (and

thus E’s profit increases with the consumer price).

Fix b and b′ > b, and let δ (θ) ≡ πE (b′, θ)−πE (b, θ) ≥ 0 denote the additional profit

obtained by the entrant when increasing its share of bandwidth from b to b′. Using the

above properties, we have:

• if b̂ (θ) < b, then δ (θ) = π (b′, θ)− π (b, θ) and thus:

δ′ (θ) ≡
∫ b′

b

∂2π

∂b∂θ
(x, θ) dx > 0;

• if instead b < b̂ (θ) < b′, then δ (θ) = π (b′, θ) and thus:

δ′ (θ) ≡ ∂π

∂θ
(b′, θ) dx < 0;

• finally, if b̂ (θ) > b′, then δ (θ) = 0 and thus no longer varies with θ.

G Proof of Lemma 4

Suppose that the regulator seeks to maximize W = S + λ (tI + tE), with a weight

λ ∈ [0, 1/2] on revenues (the case where the regulator focuses on consumer surplus

corresponds to λ = 0). As only the entrant has private information, from the revelation

principle we can restrict attention to direct incentive-compatible mechanisms (DICMs

for short) of the form {(b (θ) , t (θ))}θ∈Θ for the entrant, together with a transfer tI (θ) =

πI (θ) = Π
(
BI + ∆− b̂ (θ) , BI − θ + b̂ (θ)

)
for the incumbent.
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We first show that if a DICM satisfies b(θ̂) ≤ b̂(θ̂) for some θ̂ ∈ Θ, then the profile

{b (θ)}θ∈Θ remains (weakly) below b̂(θ̂) for any θ higher than θ̂:

Lemma 5 If a DICM satisfies b(θ̂) ≤ b̂(θ̂) for some θ̂ ∈ Θ, then it satisfies b (θ) ≤ b̂(θ̂)

for any θ > θ̂.

Proof. Consider a DICM satisfying b(θ̂) ≤ b̂(θ̂) for some θ̂ ∈ Θ (implying that an

entrant of type θ̂ is expected to make zero profit in the market), and suppose that there

exists θ > θ̂ such that b (θ) > b̂(θ̂). As the entrant of type θ̂ would make a positive gross

profit if it were to pick the option designed for type θ, incentive compatibility requires:

−t(θ̂) ≥ π(b (θ) , θ̂)− t (θ) .

Conversely, an entrant of type θ should not benefit from picking the option designed for

the type θ̂, which requires:

max {π (b (θ) , θ) , 0} − t (θ) ≥ −t(θ̂).

Adding-up these two conditions yields:

max {π (b (θ) , θ) , 0} ≥ π(b (θ) , θ̂), (13)

a contradiction, as: (i) the assumption b (θ) > b̂(θ̂) ensures that π(b (θ) , θ̂) > 0; and: (ii)

the monotonicity of π (b, θ) with respect to θ, together with θ̂ < θ, implies π(b (θ) , θ̂) >

π (b (θ) , θ).

Next, we show that, if λ ≤ 1/2, then social welfare strictly decreases with the market

price p in the relevant range p ∈ [ĉ (θ) , c̄ (θ)], where c̄ (θ) ≡ c (BI − θ) and

ĉ (θ) ≡ c(BI + ∆− b̂ (θ)) = c(BI − θ + b̂ (θ)).

Indeed, in the range in which cI < cE, after the auction the incumbent wins the compe-

tition and, as its profit can be appropriated through appropriate transfers, social welfare

is given by:

W (p;λ, θ) ≡ S (p) + λ [p− γ (p; θ)]D (p) ,
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where

γ (p; θ) ≡ c
(
2BI + ∆− θ − c−1 (p)

)
.

We have:

Lemma 6 If λ ∈ [0, 1/2], then, for any θ ∈ Θ, W (p;λ, θ) strictly decreases as p in-

creases in the relevant range [ĉ (θ) , c̄ (θ)].

Proof. For p > ĉ (θ), we have:

∂W

∂p
(p;λ, θ) = −D (p) + λ

[
1− ∂γ

∂p
(p; θ)

]
D (p) + λ [p− γ (p; θ)]D′ (p)

≤ −D (p) + λ

[
1− ∂γ

∂p
(p; θ)

]
D (p)

≤ −D (p) +
1

2

[
1− ∂γ

∂p
(p; θ)

]
D (p)

= −
[
1 +

∂γ

∂p
(p; θ)

]
D (p)

2

< 0,

where the first inequality relies on λ ≥ 0, p > γ (p; θ) and D′ (·) ≤ 0, the second one

follows from λ ≤ 1/2 and ∂γ/∂p < 0, and the strict inequality follows from ∂γ/∂p > −1

for p > ĉ (θ). Furthermore, in the limit case p = ĉ (θ), where γ = p and ∂γ/∂p = −1,

we have:
∂W

∂p
(ĉ (θ) ;λ, θ) = − (1− 2λ)D (ĉ (θ)) ≤ 0,

where the inequality is moreover strict as long as λ < 1/2.

As the market price decreases as b becomes closer to b̂ (θ), we have:

Corollary 2 If λ ∈ [0, 1/2], then, for any θ ∈ Θ, social welfare strictly increases with

b in the range b ≤ b̂ (θ), and strictly decreases with b in the range b ≥ b̂ (θ).

Building on this, we now proceed to prove Lemma 4 and thus consider a DICM

{(b (θ) , t (θ))}θ∈Θ satisfying

b(θ̂) = b̂(θ̂) (14)

for some θ̂ ∈ Θ.
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Consider first the case θ̂ = θ. Lemma 5 implies that the profile {b (θ)}θ∈Θ then

lies everywhere below b̂ (θ) and thus, a fortiori, below b̂ (θ) for any θ ∈ Θ; that is,

the entrant never wins the competition. Replacing the DICM {(b (θ) , t (θ))}θ∈Θ with

the “full bunching” DICM
{
b̃ (θ) = b̂ (θ) , t̃ (θ) = 0

}
θ∈Θ

(together with tI (θ) = πI (θ) =

Π
(
BI + ∆− b̂ (θ) , BI − θ + b̂ (θ)

)
) then increases expected welfare:

• the alternative allocation is obviously incentive compatible and individually ratio-

nal, as it allocates the same option to every type of entrant (full bunching), and

this option gives a non-negative net profit to any type of entrant;

• the alternative allocation (weakly) increases social welfare: it coincides with the

original allocation for θ and, for θ > θ, it either remains equal to b (θ)
(
< b̂ (θ)

)
or

increases towards b̂ (θ), in which case, from Corollary 2, it increases social welfare.

Consider now the case where θ̂ > θ, and suppose that there exists θ < θ̂ such

that b (θ) < b̂(θ̂)(= b(θ̂)). It follows from Lemma 5 and the monotonicity of b̂ (·) that

b (θ) > b̂ (θ): as θ < θ̂, b (θ) ≤ b̂ (θ) would imply b(θ̂) ≤ b̂ (θ) < b̂(θ̂), contradicting the

working assumption (14). The monotonicity of b̂ (·) moreover implies b̂ (θ) < b̂(θ̂) = b(θ̂).

Incentive compatibility thus requires:

π (b (θ) , θ)− t (θ) ≥ π(b̂(θ̂), θ)− t(θ̂),

−t(θ̂) ≥ −t (θ) .

Re-arranging these two conditions yields:

π (b (θ) , θ)− π(b̂(θ̂), θ) ≥ t (θ)− t(θ̂) ≥ 0,

contradicting the assumption b (θ) < b̂(θ̂) (as ∂π/∂b > 0).

Therefore, in the range θ < θ̂, b (θ) must lie (weakly) above b̂(θ̂)(= b(θ̂)). That is,

we must have: b (θ) ≥ b(θ̂) = b̂(θ̂) > b̂ (θ); incentive compatibility then requires:

π (b (θ) , θ)− t (θ) ≥ π(b̂(θ̂), θ)− t(θ̂),

π(b̂(θ̂), θ̂)− t(θ̂) ≥ π(b (θ) , θ̂)− t (θ) ,
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and thus:

0 ≤
[
π (b (θ) , θ)− π

(
b̂(θ̂), θ

)]
−
[
π(b (θ) , θ̂)− π(b̂(θ̂), θ̂)

]
=

∫ b(θ)

b̂(θ̂)

[
∂π

∂b
(b, θ)− ∂π

∂b
(b, θ̂)

]
db

=

∫ b(θ)

b̂(θ̂)

∫ θ

θ̂

∂2π

∂b∂θ
(b, s) dsdb.

As ∂2π/∂b∂θ > 0 and θ < θ̂, this in turn implies b (θ) ≤ b̂(θ̂); combined with the initial

condition b (θ) ≥ b(θ̂) = b̂(θ̂), this implies b (θ) = b̂(θ̂).

It follows that we must have b (θ) = b̂(θ̂) in the range θ ≤ θ̂ and, from Lemma 5,

b (θ) ≤ b̂(θ̂) in the range θ ≥ θ̂. The same reasoning as above then establishes that the

best such profile corresponds to the bunching mechanism where b (θ) = b̂(θ̂) for every

θ ∈ Θ.

H Proof of Proposition 4

We thus assume here that demand is inelastic in the relevant price range, namely for

p ∈
[
c (BI + ∆) , c

(
BI − θ̄

)]
, and, without loss of generality, we normalize its size to 1.

Social welfare is thus given by:

W (p;λ, θ) = v − p+ λ [p− γ (p; θ)] = v − (1− λ) p− λγ (p; θ) , (15)

where v denotes consumers’ reservation price, and, when the entrant acquires enough

spectrum to win the market, its gross profit is equal to:

π (b, θ) = c (BI + ∆− b)− c (BI − θ + b) . (16)

Building on Lemma 5, the following lemma shows that “full bunching” is optimal:

Lemma 7 If θ < ∆, λ ∈ [0, 1/2], and demand is inelastic in the relevant price range[
c (BI + ∆) , c

(
BI − θ̄

)]
, then, without loss of generality, we can then restrict attention

to direct mechanisms {(b (θ) , t (θ))}θ∈Θ such that, for every θ ∈ Θ, t (θ) = 0 and b (θ) =

b̂, for some b̂ ∈ [0,∆].
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Proof. Consider a DICM {b (θ) , t (θ)}θ∈Θ. From Lemma 5, if the profile b (·) lies

below the profile b̂ (·) for some handicap, then b (·) remains below b̂ (·) for any larger

handicap. Let θ̂ denote the handicap threshold beyond which the profile b (·) lies below

the profile b̂ (·); that is:

θ̂ ≡

 θ̄ if b (θ) > b̂ (θ) for all θ ∈ Θ,

inf
{
θ | b (θ) ≤ b̂ (θ)

}
otherwise.

By construction, b (θ) ≤ b̂(θ̂) for any θ > θ̂.50 Therefore, any type θ > θ̂ would

obtain a net profit of −t(θ̃) by picking the option designed for any other type θ̃ > θ̂

(as b̂ (θ) > b̂(θ̂) ≥ b(θ̃)). Incentive compatibility then implies that the profile t (θ) is

constant in the range θ > θ̂; that is, there exists t̂ such that t (θ) = t̂ for θ > θ̂, and any

type θ > θ̂ obtains a net payoff equal to −t̂ by picking any option
(
b(θ̃), t(θ̃)

)
designed

for any type θ̃ > θ̂.

Consider first the case θ̂ = θ; that is, the profile {b (θ)}θ∈Θ lies everywhere be-

low b̂ (θ), except possibly for θ = θ). Replacing the DICM {(b (θ) , t (θ))}θ∈Θ with{
b̃ (θ) = b̂ (θ) , t̃ (θ) = 0

}
θ∈Θ

can only increase expected consumer surplus:

• the alternative mechanism is trivially incentive compatible, as it does not depend

on the handicap, and it is individually rational, as it gives zero profit to the entrant,

regardless of its handicap;

• the alternative allocation coincides with the optimal allocation under complete

information for θ = θ and, for θ > θ, it is (weakly) closer to that optimal allocation,

as it satisfies

b (θ) ≤ b̂ (θ) = b̃ (θ) < b̂ (θ) .

Thus, if θ̂ = θ then we can restrict attention to a DICM of the form described in the

statement of the Lemma.

We now focus on the case where θ̂ > θ, which implies:

b (θ) > b̂ (θ) , (17)

50Fix θ > θ̂. If b
(
θ̂
)
≤ b̂

(
θ̂
)

, Lemma 5 directly yields b (θ) ≤ b̂
(
θ̂
)

. If instead b
(
θ̂
)
> b̂

(
θ̂
)

,

Lemma 5 yields b (θ) ≤ b̂
(
θ̃
)

for any θ̃ ∈
(
θ̂, θ
)

; hence, b (θ) ≤ limθ̃→θ̂− b̂
(
θ̃
)

= b̂
(
θ̂
)

.
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and, for any θ > θ̂:

b (θ) ≤ b̂(θ̂) < b̂ (θ) . (18)

We first note that

b (θ) ≤ b (θ) (19)

for any θ > θ̂. To see this, suppose instead that there exists θ̃ > θ̂ for which b (θ) > b (θ).

Combined with (17) and (18), this yields:

b̂ (θ) < b (θ) < b (θ) < b̂ (θ) .

Incentive compatibility thus requires:

π (b (θ) , θ)− t (θ) ≥ π (b (θ) , θ)− t (θ) ,

−t (θ) ≥ −t (θ) .

Combining these conditions yields π (b (θ) , θ) ≥ π (b (θ) , θ), contradicting the working

assumption b (θ) > b (θ).

Consider now the range θ < θ̂, where b (·) > b̂ (·); in this range, the entrant obtains

a net profit equal to:

r (θ) ≡ π (b (θ) , θ)− t (θ) ,

where the gross profit π (b, θ) is here given by (16). A revealed preference argument

implies that the net profit r (θ) decreases with θ (as ∂π/∂θ < 0), and that limθ→θ̂− r (θ) =

−t̂. Therefore, individual rationality boils down to t̂ ≤ 0, and without loss of generality

we can set t̂ = 0.

Furthermore, by choosing the option designed for a type θ̃ “close enough” to its own

type θ (so that b(θ̃) not only exceeds b̂(θ̃), but also exceeds b̂ (θ)), an entrant of type θ

would obtain:

ϕ
(
θ, θ̃
)
≡ π

(
b(θ̃), θ

)
− t(θ̃).

The usual reasoning can then be used to show that incentive compatibility requires

the profiles {b (θ)}θ<θ̂ and {t (θ)}θ<θ̂ to be (weakly) increasing (as the profit function
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satisfies Mirrlees’ single-crossing property: ∂2π/∂θ∂b > 0) and to satisfy:

t (θ) = π (b (θ) , θ) +

∫ θ̂

θ

∂π

∂θ
(b (s) , s) ds.

Next, we show that without loss of generality we can restrict attention to DICMs

such that b (θ) ≤ b̂(θ̂). To see this, it suffices to note that if b (θ) > b̂(θ̂) (which implies

that the profile b (·) lies strictly above b̂(θ̂) for θ < θ̂, and below b̂(θ̂) for θ > θ̂),

then replacing the DICM {(b (θ) , t (θ))}θ∈Θ with {b̃ (θ) = b̂(θ̂), t̃ (θ) = 0}θ∈Θ increases

expected social welfare:

• the alternative mechanism is trivially incentive compatible (full bunching); it is

moreover individually rational, as the single option gives every type of entrant a

non-negative net profit (positive for θ < θ̂, and zero for θ ≥ θ̂);

• the alternative allocation, b̃ (θ), is closer (and strictly so for θ < θ̂) to the optimal

allocation under complete information, b̂ (·):

– for θ < θ̂, the alternative allocation is such that b̂ (θ) < b̂(θ̂) = b̃ (θ) < b (θ) ≤

b (θ);

– for θ > θ̂, the alternative allocation is such that b (θ) ≤ b̂(θ̂) = b̃ (θ) < b̂ (θ).

Finally, consider a DICM {(b (θ) , t (θ))}θ∈Θ such that b (θ) ≤ b̂(θ̂), and let

(
b−, t−

)
≡ lim

θ→θ̂−
(b (θ) , t (θ))

denote the left-sided limit of the profile {b (θ) , t (θ)}θ∈Θ at θ̂ (this limit exists, as

incentive-compatibility implies that b (θ) and t (θ) are both non-decreasing in this range).

Note that, by construction, b− ≥ b̂(θ̂) (as b (θ) > b̂ (θ) in the range θ < θ̂). We can dis-

tinguish two cases, according to whether or not b− lies strictly above b̂(θ̂).

Case a: b− = b̂(θ̂). The same revealed preference argument as in the proof of

Lemma 4 implies that the profile {b (θ)}θ∈Θ must then coincide with b̂(θ̂) for θ < θ̂;

furthermore, from Lemma 5 b (θ) lies below b̂(θ̂) for θ > θ̂. It follows that replacing

the DICM {(b (θ) , t (θ))}θ∈Θ with the alternative DICM {b̃ (θ) = b̂(θ̂), t̃ (θ) = 0}θ∈Θ
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can only increase expected consumer surplus, as the alternative mechanism is trivially

incentive compatible and individually rational, and is closer to the optimal allocation

under complete information.51

Case b: b− > b̂(θ̂). As by construction b̂ (θ) < b (θ) ≤ b̂(θ̂), there exists a (unique)

type θ̃ ∈ (θ, θ̂] such that

b̂(θ̃) = b (θ) ,

and the profile b̂ (·) lies strictly below b (θ) for θ < θ̃, whereas it lies strictly above

b (θ) for θ > θ̃. Consider replacing the DICM {(b (θ) , t (θ))}θ∈Θ with the alternative

mechanism {b̃ (θ) = b (θ) , t̃ (θ) = 0}θ∈Θ. This alternative mechanism is again trivially

incentive compatible and individually rational, and outside the range θ ∈ [θ̃, θ̂], it is

closer to the optimal allocation under complete information and thus increases social

welfare:

• for θ < θ < θ̃, the alternative allocation is such that b̂ (θ) < b (θ) = b̃ (θ) ≤ b (θ);

• for θ > θ̂, using (19), the alternative allocation is such that b (θ) ≤ b (θ) = b̃ (θ) =

b̂(θ̃) < b̂ (θ).

Therefore, if θ̃ = θ̂, the alternative mechanism exhibits full bunching and outperforms

the original DICM.52

We now show that, if instead θ̃ < θ̂, then the alternative mechanism also increases

social welfare in the range θ ∈ [θ̃, θ̂]. From Lemma 6, it suffices to show that replacing

b (θ) with b̃ (θ) lowers the market price for any θ ∈ [θ̃, θ̂].

As b̂ (θ) < b (θ) = b̃ (θ) = b̂(θ̃) < b̂ (θ) < b (θ), incentive-compatibility requires:

π (b (θ) , θ)− t (θ) ≥ −t (θ) ,

π (b (θ) , θ)− t (θ) ≥ π (b (θ) , θ)− t (θ) .

51If the distribution of the handicap θ is atomless at θ̂, a quicker argument consists in noting that

the DICM is then equivalent to a DICM where b (θ) = b− = b̂
(
θ̂
)

; Lemma 4 then applies.
52While the above inequalities only establish that b̃ (θ) ≤ b (θ) for θ < θ̂, in the particular case where

θ̃ = θ̂ (which can arise only when b (θ) = b(θ̂) (< b−)), we have b̃ (θ) < b (θ) for θ close enough to θ̂ (as

limθ→θ̂− b (θ) = b− > b̂(θ̂)). Hence, the alternative mechanism does strictly better than the original
DICM.
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Combining these two conditions yields

φ (b (θ) , θ) ≤ π (b (θ) , θ) , (20)

where

φ (b, θ) ≡ π (b, θ)− π (b, θ)

satisfies, for θ > θ̃ (using the fact that c′ (·) is negative but increasing):

∂φ

∂b
(b, θ) =

∂π

∂b
(b, θ)− ∂π

∂b
(b, θ) = c′ (BI − θ + b)− c′ (BI − θ + b) < 0, (21)

and:
∂φ

∂θ
(b, θ) = −∂π

∂θ
(b, θ) = −c′ (BI − θ + b) > 0.

From (21), the incentive compatibility condition (20) amounts to b (θ) ≥ β (θ), where,

for any θ > θ, the function β (θ) is the implicit solution to φ (β, θ) = 0. Note that, by

construction:

• β(θ̃) = b (θ), as

φ(b (θ) , θ̃) = π(b (θ) , θ)− π(b (θ) , θ̃) = π (b (θ) , θ) ,

where the second equality stems from π(b (θ) , θ̃) = π(b̂(θ̃), θ̃) = 0.

• For θ ∈ [θ̃, θ̂], as c′ (·) < 0:

β′ (θ) = −
∂φ
∂θ

(b, θ)
∂φ
∂b

(b, θ)
=

−c′ (BI − θ + β (θ))

−c′ (BI − θ + β (θ)) + c′ (BI − θ + β (θ))
> 1.

Therefore, for θ ∈ (θ̃, θ̂) (using respectively b (θ) = β(θ̃), b (θ) ≥ β (θ), β′ (·) > 1,

and b (θ) = b̂(θ̃) = (∆ + θ̃)/2):

b (θ)− b (θ) = b (θ)− β(θ̃) ≥ β (θ)− β(θ̃) > θ − θ̃ = θ + ∆− 2b̂(θ̃),

which in turn implies:

b̂(θ̃)− θ > ∆− b (θ) .
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It follows that in the range θ ∈ (θ̃, θ̂), replacing b (θ) > b̂ (θ) with b̃ (θ) =

b (θ) < b̂(θ) increases social welfare, as it reduces the price from cI |b=b(θ) =

c (BI + ∆− b (θ)) to cE|b=b(θ) = c(BI − θ + b (θ)).

We can therefore restrict attention to “bunching” mechanisms which allocate the

same bandwidth b̂ to the entrant, regardless of its type. The resulting price is equal to

p(b̂, θ) =

c(BI + ∆− b̂) if θ ≤ θ̂,

c(BI − θ + b̂) otherwise,

where

θ̂ = b̂−1(b̂) = 2b̂−∆.

Therefore, the optimal bandwidth lies between b̂ (θ) (which is lower than ∆ by assump-

tion) and min{b̂
(
θ̄
)
,∆} and aims at maximizing expected social welfare:

Ŵ (b̂, λ) ≡ Eθ

[
W (p(b̂, θ);λ, θ)

]
,

where, using (16), Ŵ (b, λ) can be expressed as

Ŵ (b, λ) ≡
∫ θ̄

θ

[v − (1− λ) p (θ, b)− λγ (θ, b)] f (θ) dθ

=

∫ 2b−∆

θ

[v − (1− λ) c (BI + ∆− b)− λc (BI − θ + b)] f (θ) dθ

+

∫ θ̄

2b−∆

[v − (1− λ) c (BI − θ + b)− λc (BI + ∆− b)] f (θ) dθ.

We have:

∂2Ŵ

∂b2
(b, λ) =−

∫ 2b−∆

θ

[(1− λ) c′′ (BI + ∆− b) + λc′′ (BI − θ + b)] f (θ) dθ

−
∫ θ̄

2b−∆

[(1− λ) c′′ (BI − θ + b) + λc′′ (BI + ∆− b)] f (θ) dθ

+ 4 (1− 2λ) c′ (BI + ∆− b) f (2b−∆)

<0,
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and:

∂Ŵ

∂b
(b̂(θ), λ) =

∫ θ̄

θ

[
− (1− λ) c′(BI − θ + b̂(θ)) + λc′(BI + ∆− b̂(θ))

]
f (θ) dθ

≥ − (1− 2λ) c′(BI + ∆− b̂(θ))

> 0.

Therefore, the socially optimal threshold is uniquely defined and strictly larger than

b̂ (θ) = bFB (θ).

I Proof of Proposition 5

As is well-known, in each (classic) auction, the higher-valuation bidder wins and pays

a price equal to the lower-valuation bidder, where all valuations take into account the

expected equilibrium outcome of subsequent auctions.

The proof proceeds by induction. We will label “auction h”, for h = 1, ..., k, the

auction taking place when h blocks remain to be allocated (hence, auction “k” is the

first auction, and auction “1” is the auction for the last block). Let p0 (BL, Bl) ≡ 0 and

Π0 (BL, Bl) ≡ Π (BL, Bl), where Π (·, ·) is given by (1), and for every h = 1, ..., k, let

Lh and lh respectively denote the leader and the laggard (i.e., the firm with the larger

and with the smaller bandwidth) at the beginning of auction h – if both firms have the

same bandwidth at the beginning of auction h, then select either firm as leader with

probability 1/2.

We will use the following induction hypothesis Hh:

1. If BLh
> Blh , then Lh wins auction h and obtains an expected net profit equal to

Πh (BLh
, Blh) = Π (BLh

+ hδ,Blh)− ph (BLh
, Blh), where

ph (BLh
, Blh) =

Πh−1 (Blh + δ, BLh
) if BLh

−Blh < δ,

0 otherwise.

whereas lh obtains zero expected net profit.
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2. If BLh
= Blh , then either firm wins auction h and pays a price

ph (BLh
, BLh

) = Π (BLh
+ hδ,BLh

) .

Both firms obtain zero expected net profit.

We first check that H1 holds:

• If BL1 ≥ Bl1 + δ, then the laggard cannot obtain any profit in the product market,

regardless of whether it wins the auction; hence, the leader obtains the last block

for free.

• If instead BL1 < Bl1 +δ, then winning the auction gives the laggard a profit (gross

of the price paid in the last auction) equal to Π0 (Bl1 + δ, BL1) = Π (Bl1 + δ, BL1),

and gives the leader a (gross) profit equal to Π0 (BL1 + δ, Bl1) = Π (BL1 + δ, Bl1).

Therefore:

– If BL1 > Bl1 , then the leader has a greater willingness to pay, as

Π (BL1 + δ, Bl1) > Π (Bl1 + δ, Bl1) > Π (Bl1 + δ, BL1) ,

where the first and second inequalities respectively stem from (2) and (3).

Hence, the leader obtains the last block for a price equal to p1 (BL1 , Bl1) =

Π (Bl1 + δ, BL1).

– If instead BL1 = Bl1 , then both firms obtains the same (gross) profit from

winning the auction, and thus bid the same amount, equal to this profit.

Hence, p1 (BL1 , BL1) = Π (BL1 + δ, BL1), either firm wins at that price, and

both firms obtain zero net profit.

Suppose now that Ht holds for t = 1, ..., h, and consider auction h+ 1. If the leading

firm Lh+1 wins, then it will be again the leader in the next round, and will enjoy a

bandwidth advantage of at least δ; therefore, according to the induction hypothesis, its

profit from winning (gross of the price paid in auction h + 1) is given by (taking into
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account that ph
(
BLh+1

+ δ, Blh+1

)
= 0, as

(
BLh+1

+ δ
)
−Blh+1

≥ δ):

Π̂L = Π
(
BLh+1

+ (h+ 1) δ, Blh+1

)
.

If instead the laggard firm lh+1 wins auction h + 1, it then becomes the leader in the

next round if BLh+1
−B`h+1

< δ, and otherwise remains the laggard (or becomes equally

efficient as its rival, in which case it also obtains zero profit in the product market);

therefore, according to the induction hypothesis, it obtains a profit (gross of the price

paid in auction h+ 1) equal to:

Π̂l =

Π
(
Blh+1

+ (h+ 1) δ, BLh+1

)
− ph

(
Blh+1

+ δ, BLh+1

)
if BLh+1

−Blh+1
< δ,

0 otherwise.

Therefore:

• If BLh+1
= Blh+1

,

Π
(
Blh+1

+ (h+ 1) δ, BLh+1

)
= Π

(
BLh+1

+ (h+ 1) δ, Blh+1

)
= Π

(
BLh+1

+ (h+ 1) δ, BLh+1

)
and

ph
(
Blh+1

+ δ, BLh+1

)
= ph

(
BLh+1

+ δ, BLh+1

)
= 0,

and thus Π̂L = Π̂l. Hence, both firms bid

ph+1 = Π
(
BLh+1

+ (h+ 1) δ, BLh+1

)
,

either firm wins, and both firms obtain zero net profit.

• If instead BLh+1
> Blh+1

, then Π̂L > Π̂l, as ph (·) ≥ 0 and

Π
(
BLh+1

+ (h+ 1) δ, Blh+1

)
> Π

(
Blh+1

+ (h+ 1) δ, Blh+1

)
> Π

(
Blh+1

+ (h+ 1) δ, BLh+1

)
,

where the first and second inequalities respectively stem again from (2) and (3),

and so the leading firm Lh+1 wins auction h+ 1. Furthermore:

– When BLh+1
−Blh+1

> δ, the lagging firm lh+1 would remain behind and thus
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obtain zero profit even if it were to win; hence, it bids zero, that is, ph+1 = 0.

– When instead BLh+1
−Blh+1

< δ, the lagging firm lh+1 is willing to bid up to

Π
(
Blh+1

+ (h+ 1) δ, BLh+1

)
− ph

(
Blh+1

+ δ, BLh+1

)
= Πh

(
Blh+1

+ δ, BLh+1

)
.

The equilibrium price is thus equal to ph+1 = Πh

(
Blh+1

+ δ, BLh+1

)
, as in the

induction hypothesis. It follows that the equilibrium payoffs are also as in

the induction hypothesis.

Therefore, Hh+1 holds when Ht holds for t = 1, ..., h. It follows that the incumbent

firm I wins all successive rounds. Furthermore, if BI − BE ≥ δ, then it obtains all the

bandwidth at zero price. If instead BI − BE < δ, then using the induction hypothesis

we have:

pk (BI , BE) =


m−1∑
h=0

φkh (BE, BI)−
m∑
h=1

φkh (BI , BE) if k = 2m,

m∑
h=0

φkh (BE, BI)−
m∑
h=1

φkh (BI , BE) if k = 2m+ 1.

where

φkh (B1, B2) ≡ Π (B1 + (k − h) δ, B2 + hδ) .

Note that when BI = BE = B,

φ2m
m (B,B) = Π (B +mδ,B +mδ) = 0

and thus the equilibrium price is equal to

pk (B,B) = φk0 (B,B) = Π (B + ∆, B) .

60



J Proof of Proposition 6

We now show that, for each firm i = I, E, it is a dominant strategy to bid β∗i (n) = πi (n),

where (using the subscript “−i” to refer to firm i’s rival):

πi (n) ≡

Π (Bi + niδ, B−i + n−iδ) if Bi + niδ > B−i + n−iδ,

0 otherwise.

with Π (·, ·) given by (1).

To see this, consider an alternative strategy β̂i, and suppose that, for some bidding

strategy of the other firm, β−i, the bidding strategies β∗i and β̂i lead to different out-

comes. As the payments only depend on the bids through the spectrum allocation, this

implies that β∗i and β̂i lead to different spectrum allocations, which we will respectively

denote by n∗ and n̂. Likewise, let Π∗i and Π̂i denote the net payoffs of firm i associated

with the bidding strategies β∗i and β̂i. We have:

Π∗i − Π̂i =
{
πi (n

∗)− pVi (β∗i , β−i)
}
−
{
πi (n̂)− pVi

(
β̂i, β−i

)}
=

{
πi (n

∗)−
[
max
n∈A
{β−i (n)} − β−i (n∗)

]}
−
{
πi (n̂)−

[
max
n∈A
{β−i (n)} − β−i (n̂)

]}
= πi (n

∗)− πi (n̂)− [β−i (n̂)− β−i (n∗)]

= β∗i (n∗)− β∗i (n̂)− [β−i (n̂)− β−i (n∗)] .

But, by construction, as the bidding strategy β∗i leads to n∗, it must be the case that

β∗i (n∗) + β−i (n
∗) ≥ β∗i (n̂) + β−i (n̂) .

It follows that Π∗i ≥ Π̂i, establishing that bidding β∗i (n) = πi (n) is a dominant strategy

for firm i.

Given these bidding strategies, the outcome maximizes

max
n∈A

Π (BI + nIδ, BE + nEδ) ,

which is achieved for nI = k and nE = 0. That is, the incumbent firm I obtains all k
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blocks, and pays a price equal to:

max
n∈A
{βE (n)} − βE (k, 0) =

Π (BE + ∆, BI) if ∆ > BI −BE,

0 otherwise.

K Proof of Proposition 7

When the handicap of the entrant is too large to be offset by the additional spectrum

(i.e., when BI −BE ≥ ∆), the equilibrium prices are zero in both types of auctions. We

now focus on the more interesting case where BI −BE < ∆. In the case of a multi-unit

VCG auction, the price is then always positive and equal to

pV = Π (BE + ∆, BI) > 0.

By contrast, in the case of a sequential auction, the price remains zero when the lagging

firm cannot catch-up with a single block of size δ = ∆/k. Hence, for any given ∆ > 0,

the price remains zero when the spectrum is divided in sufficiently many blocks, namely,

when

k ≥ k̄ =
∆

BI −BE

.

Finally, when instead the lagging firm could catch up with a single block (i.e., BI−BE <

δ = ∆/k), the price is of the form (using the induction hypothesis):

pk (BI , BE) = Πk−1 (BE + δ, BI) = Π (BE + ∆, BI)− pk−1 (BE + δ, BI) ,

where pk−1 (BE + δ, BI) > 0. Hence, the revenue is again lower with sequential auctions.
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Online Appendix
(Not for Publication)

This online Appendix first extends the bunching result of Proposition 4 (Section

A). It then provides a partial characterization of socially optimal incentive-compatible

mechanisms (Section B), before studying a counter-example in which bunching is not

optimal (Section C).

A Optimal bunching

To extend the result of Proposition 4, we now suppose that the handicap is sufficiently

diverse, namely: (θ <) ∆ < θ̄.53 Under this assumption, under complete information

the optimal allocation gives some additional bandwidth to the incumbent when the

handicap is low (θ close enough to θ), but gives instead the entire additional bandwidth

to the entrant when its handicap is large (θ close enough to θ̄).

We now show that, under this assumption, the optimal mechanism exhibits again

“full bunching” when attention is restricted to continuous or monotonic allocations:

Proposition 9 If θ < ∆ < θ̄, then within the set of direct incentive-compatible mecha-

nisms (DICMs) {(b (θ) , t (θ))}θ∈Θ such that the profile {b (θ)}θ∈Θ varies either continu-

ously or monotonically with θ, the optimal mechanism exhibits full bunching; that is, it

is optimal to offer the same bandwidth to the entrant, regardless of its type.

Proof. Consider a direct mechanism {(b (θ) , t (θ))}θ∈Θ satisfying feasibility (i.e.,

b (θ) ∈ [0,∆]), individual rationality and incentive compatibility. We first note that

θ̄ > ∆ implies b (θ) (≤ ∆) < b̂ (θ) whenever θ is sufficiently close to θ̄. Let

θ̂ ≡ inf
{
θ | b (θ) ≤ b̂ (θ)

}
denote the threshold beyond which the schedule b (·) remains below the schedule b̂ (·). If

θ̂ = θ then, as in Lemma 7, replacing the DICM {(b (θ) , t (θ))}θ∈Θ with
{
b̃ (θ) = b̂ (θ) , t̃ (θ) = 0

}
θ∈Θ

can only increase expected consumer surplus, as the alternative mechanism is trivially

53Recall that when θ > ∆, it is always optimal to allocate the entire additional bandwidth, ∆, to
the entrant, and this remains implementable (with zero transfers) under incomplete information.
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incentive-compatible (full bunching) as well as individually rational (it gives zero profit

to the entrant, regardless of its handicap), and it is (weakly) closer to the optimal allo-

cation under complete information (it actually coincides with that allocation for θ = θ).

In what follows, we therefore focus on the case where θ̂ > θ.

By construction, b (θ) > b̂ (θ) for θ < θ̂. Also, from Lemma 5, b (θ) ≤ b̂(θ̂) for θ > θ̂.

Hence, when the schedule b (·) is continuous, we must have b(θ̂) = b̂(θ̂), and Lemma 4

establishes that full bunching is optimal.

Consider now the case where the schedule b (·) is monotonic. If b(θ̂) = b̂(θ̂), then

Lemma 4 establishes again that full bunching is optimal. If instead b(θ̂) 6= b̂(θ̂), then

monotonicity implies that the profile {b (θ)}θ∈Θ must be (weakly) decreasing:

• If b(θ̂) < b̂(θ̂) then, for θ smaller than but close enough to θ̂ (and thus, b̂ (θ) close

enough to b̂(θ̂)), we have:

b (θ) > b̂ (θ) > b(θ̂).

• If instead b(θ̂) > b̂(θ̂), then, for θ larger than θ̂ we have:

b(θ̂) > b̂(θ̂) > b (θ) .

It follows that the profile {b (θ)}θ∈Θ (i) lies strictly above b̂(θ̂) for θ < θ̂, and

below b̂(θ̂) for θ > θ̂, and (ii) it does strictly so in at least one of the ranges (for

θ > θ̂ when b(θ̂) < b̂(θ̂), and for θ < θ̂ when b(θ̂) > b̂(θ̂)). But then, replacing the

DICM {(b (θ) , t (θ))}θ∈Θ lies with the bunching mechanism {b̃ (θ) = b̂(θ̂), t̃ (θ) = 0}θ∈Θ

strictly increases expected consumer surplus, as b̃ (θ) is weakly closer to b̂ (θ) for every

θ ∈ Θ, and strictly so in one of the ranges.

B Incentive-compatible mechanisms

The following proposition provides a complete characterization of direct incentive-compatible

mechanisms; it shows in particular that:

• The entrant overtakes the incumbent when the handicap is sufficiently small, and

the incumbent wins the market otherwise;
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• Incentive compatibility allows for discontinuous and non-monotonic bandwidth

allocations.

The proposition also provides a partial characterization of the optimal mechanism.

Proposition 10 (i) Any direct incentive-compatible mechanism (DICM) {(b (θ) , t (θ))}θ∈Θ

is such that, for some θ̂ ∈ Θ and some t̂ ∈ R:

• For θ < θ̂, b (θ) > b̂ (θ), b (θ) (weakly) increases with θ, and

t (θ) = t̂+ π (b (θ) , θ) +

∫ θ̂

θ

∂π

∂θ
(b (s) , s) ds. (22)

• For θ > θ̂, b (θ) ≤ b̂(θ̂) and t (θ) = t̂.

(ii) Without loss of generality, we can further restrict attention to DICMs {(b (θ) , t (θ))}θ∈Θ

such that:

• For θ > θ̂, b (θ) = b (θ) (≤ b̂(θ̂)) and t (θ) = 0; and

• For θ = θ̂, b(θ̂) is the closest to b̂(θ̂) between limθ→θ̂− b (θ) and b (θ).

Conversely, any direct mechanism satisfying the above conditions is individually ra-

tional, and it is incentive-compatible if and only:

π (b (θ) , θ) = −
∫ θ̂

θ

∂π

∂θ
(b (θ) , θ) dθ. (23)

Proof. To establish part (i) of the proposition, consider a DICM {b (θ) , t (θ)}θ∈Θ

and let

θ̂ ≡

 θ̄ if b (θ) > b̂ (θ) for any θ ∈ Θ,

inf
{
θ | b (θ) ≤ b̂ (θ)

}
otherwise,

denote the threshold beyond which the profile {b (θ)}θ∈Θ remains below the profile{
b̂ (θ)

}
θ∈Θ

.

From Lemma 5, we know that b (θ) remains below b̂(θ̂) in the range θ > θ̂. Therefore,

any type θ > θ̂ would obtain a net profit of −t(θ̃) by picking the option designed for

another type θ̃ > θ̂ (as b̂ (θ) > b̂(θ̂) ≥ b(θ̃)). Incentive compatibility then implies that
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the profile t (θ) is constant in the range θ > θ̂; that is, there exists t̂ such that t (θ) = t̂

for θ > θ̂, and any type θ > θ̂ obtains a net payoff equal to −t̂ by picking any option(
b(θ̃), t(θ̃)

)
designed for any type θ̃ > θ̂.

We now turn to the range θ < θ̂, where b (θ) > b̂ (θ). By choosing the option designed

for a type θ̃ “close enough” to its own type θ (so that b(θ̃) not only exceeds b̂(θ̃), but

also exceeds b̂ (θ)), an entrant of type θ would obtain:

ϕ
(
θ, θ̃
)
≡ π

(
b(θ̃), θ

)
− t(θ̃),

where:

π (b, θ) = [c (BI + ∆− b)− c (BI − θ + b)]D (c (BI + ∆− b)) .

The usual reasoning can then be used to show that incentive compatibility requires

the profiles {b (θ)}θ<θ̂ and {t (θ)}θ<θ̂ to be (weakly) increasing (as the profit function

satisfies Mirrlees’ single-crossing property: ∂2π/∂θ∂b > 0) and such that, by opting for

the option (b (θ) , t (θ)), a type θ < θ̂ obtains a net profit equal to

r (θ) ≡ π (b (θ) , θ)− t (θ) = r(θ̂)−
∫ θ̂

θ

∂π

∂θ
(b (s) , s) ds, (24)

which is decreasing in the range
[
θ, θ̂
]
, and such that limθ→θ̂− r (θ) = r(θ̂).

To complete the proof of part (i), we now show that r(θ̂) = −t̂. Indeed, if r(θ̂) < −t̂,

then an entrant of type θ̂ would strictly prefer any option designed for θ > θ̂ to the

option (b(θ̂), t(θ̂)). If instead r(θ̂) > −t̂, two cases can be distinguished:

• If b(θ̂) > b̂(θ̂), then a type θ slightly above θ̂ would strictly prefer the option

(b(θ̂), t(θ̂)) to the option (b (θ) ≤ b̂(θ̂), t (θ) = t̂).

• If b(θ̂) ≤ b̂(θ̂), then r(θ̂) = −t(θ̂), and incentive compatibility implies t(θ̂) = t̂.

Replacing r(θ̂) by its value −t̂ in (24) yields (22).

To establish part (ii) of the proposition, we first show that without loss of generality,

we can restrict attention to profiles {b (θ)}θ∈Θ that remain constant in the range θ > θ̂.

To see this, it suffices to note that replacing the profile {b (θ)}θ>θ̂ with the constant
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profile {b̃ (θ)) = b}θ>θ̂, where

b ≡ sup{b (θ) | θ > θ̂},

weakly improves expected consumer surplus:

• This does not affect incentive compatibility in the range θ > θ̂, as any such type

obtains −t̂ anyway.

• This does not affect incentive compatibility in the range θ ≤ θ̂ either, as by

construction we have, for any θ ≤ θ̂:

π (b (θ) , θ)− t (θ) ≥ sup
θ̃>θ

{
π
(
b(θ̃), θ

)
− t(θ̃)

}
= π (b, θ)− t̂.

• Finally, this can only reduce the consumer price in the range θ > θ̂; indeed, for

any θ > θ̂, the consumer price is initially given by

cE = c (BI − θ + b (θ)) ,

and thus can only decrease when b (θ) is replaced with b ≥ b (θ).

When b(θ̂) ≤ b̂(θ̂), the same reasoning applies to the entire range θ ≥ θ̂ (that is,

including the type θ̂), and thus b(θ̂) = b. When instead b(θ̂) > b̂(θ̂), incentive compati-

bility implies that b(θ̂) cannot lie below limθ→θ̂− b (θ). Furthermore, as b (θ) > b̂ (θ) for

θ < θ̂, it must be case that limθ→θ̂− b (θ) ≥ b̂(θ̂); therefore, setting b(θ̂) = limθ→θ̂− b (θ)

is better than any higher value for b(θ̂).

So far we have shown that any type θ ∈ Θ obtains a net profit that is continuous in

θ and weakly decreases as θ increases: it coincides with r (θ) given by (24) for θ ≤ θ̂,

and with r(θ̂) = −t̂ for θ ≥ θ̂. Therefore, individual rationality boils down to t̂ ≤ 0, and

without loss of generality we can set t̂ = 0.

To conclude the proof of part (ii), it remains to show that without loss of generality,

we can further restrict attention to DICMs such that b = b (θ) ≤ b̂(θ̂) and (23) holds.

We do through a sequence of claims.

We first note that incentive compatibility requires b ≤ b (θ):
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Claim 1 b ≤ b (θ).

Proof. By construction, b ≤ b̂(θ̂) (as b (θ) lies below b̂(θ̂) in the range θ > θ̂).

Suppose now that b > b (θ)
(
> b̂ (θ)

)
. As type θ should prefer (b (θ) , t (θ)) to

(
b, t̂ = 0

)
,

we have:

π (b (θ) , θ)− t (θ) ≥ π (b, θ) .

Conversely, any type θ > θ̂ should prefer (b, 0) to (b (θ) , t (θ)), and thus (using b ≤

b̂(θ̂) < b̂ (θ)):

0 ≥ −t (θ) .

Combining these two incentive compatibility conditions yields, π (b (θ) , θ) ≥ π (b, θ),

implying b ≤ b (θ), a contradiction. Hence, we must have b ≤ b (θ).

Next, we show that we can restrict attention to DICMs such that b (θ) ≤ b̂(θ̂):

Claim 2 b (θ) ≤ b̂(θ̂).

Proof. To see this, note that incentive compatibility requires b (θ) to be non-decreasing

in the range θ < θ̂. Hence, if b (θ) > b̂(θ̂), then the alternative mechanism where

(b (θ) , t (θ)) is replaced with (b̃ (θ) , t̃ (θ)) = (b̂(θ̂), t̂ = 0) in the range θ ∈ [θ, θ̂], is

trivially incentive-compatible and individually rational, and would dominate the original

DICM, as it gets closer to the optimal allocation under complete information in the

range θ ∈ [θ, θ̂].

The next step is to show that incentive compatibility imposes some bounds on b (θ)

and b:

Claim 3 Incentive compatibility requires the profile {b (θ)}θ∈Θ to satisfy:

π (b, θ) ≤ −
∫ θ̂

θ

∂π

∂θ
(b (θ) , θ) dθ ≤ π (b (θ) , θ) . (25)

Proof. To ensure that the type θ does not prefer the option designed for a type

θ > θ̂, we must have:

π (b, θ) ≤ r (θ) = −
∫ θ̂

θ

∂π

∂θ
(b (θ) , θ) dθ,
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which establishes the first condition in (25).

Conversely, to ensure that a type θ > θ̂ does not prefer the option designed for θ, we

must have (using b (θ) ≤ b̂(θ̂)):

0 ≥ −t (θ) = −π (b (θ) , θ)−
∫ θ̂

θ

∂π

∂θ
(b (s) , s) ds,

and thus:

π (b (θ) , θ) ≥ −
∫ θ̂

θ

∂π

∂θ
(b (s) , s) ds,

which establishes the second condition in (25).

Conversely, we now show that a mechanism {(b (θ) , t (θ))}θ∈Θ is incentive-compatible

and individually rational if it satisfies the above properties:

Claim 4 A mechanism {(b (θ) , t (θ))}θ∈Θ is incentive-compatible and individually ra-

tional whenever, for some θ̂ ∈ Θ and some b ≤ b̂(θ̂):

(a) for θ < θ̂, b (θ) > b̂ (θ), b (θ) increases with θ, and t (θ) satisfies (22); and

(b) for θ ≥ θ̂, b (θ) = b and t (θ) = 0; and

(c) the profile {b (θ)}θ∈Θ satisfies b (θ) ≤ b̂(θ̂) and (25).

Proof. We first note that, from the above analysis, such a DICM is individually

rational:

• For θ ≥ θ̂, opting for the option (b, 0) guarantees a net profit of zero.

• For θ < θ̂, opting for the option (b (θ) , t (θ)) gives a net profit equal to

r (θ) = π (b (θ) , θ)− t (θ) = −
∫ θ̂

θ

∂π

∂θ
(b (s) , s) ds,

which is decreasing in the range [θ, θ̂] and satisfies r(θ̂) = 0.

We now turn to incentive compatibility. Consider first a type θ < θ̂. Condition (22)

ensures that such a type (weakly) prefers the option designed for it to any option designed
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for another θ̃ < θ̂. Therefore, incentive compatibility holds if, in addition, it does not

prefer the option (b, 0) designed for θ > θ̂, that is, if:

r (θ) ≥ π (b, θ) .

We have:

d

dθ
[r (θ)− π (b, θ)] =

∂π

∂θ
(b (θ) , θ)− ∂π

∂θ
(b, θ)

=

∫ b(θ)

b

∂2π

∂b∂θ
(b (s) , s) ds

≥ 0,

where the inequality stems from b ≤ b (θ) ≤ b (θ) and ∂2π/∂b∂θ > 0. Therefore, incentive

compatibility holds for any type θ < θ̂ if it holds for θ, that is, if

π (b, θ) ≤ r (θ) = −
∫ θ̂

θ

∂π

∂θ
(b (s) , s) ds,

which amounts to the first inequality in (25).

Next, consider a type θ > θ̂:

• By selecting an option designed for θ̃ < θ̂ such that b(θ̃) > b̂ (θ) (which is feasible

if limθ→θ̂− b (θ) > b̂ (θ)), it obtains

ϕ
(
θ, θ̃
)

= π
(
b(θ̃), θ

)
− t(θ̃) = r(θ̃) + π

(
b(θ̃), θ

)
− π

(
b(θ̃), θ̃

)
,

where:

∂ϕ

∂θ̃

(
θ, θ̃
)

=

[
∂π

∂b

(
b(θ̃), θ

)
− ∂π

∂b

(
b(θ̃), θ̃

)] db
dθ

(θ̃) =

∫ θ

θ̃

∂2π

∂θ∂b

(
b(θ̃), s

)
ds
db

dθ
(θ̃) ≥ 0,

∂ϕ

∂θ

(
θ, θ̃
)

=
∂π

∂θ

(
b(θ̃), θ

)
< 0.

Therefore, incentive compatibility holds, as ϕ
(
θ, θ̃
)
≤ ϕ(θ, θ̂) < ϕ(θ̂, θ̂) = 0.

• By selecting instead an option designed for θ̃ < θ̂ such that b(θ̃) ≤ b̂ (θ), an entrant

of type θ obtains a net profit of −t(θ̃); as t(θ̃) increases with θ̃, this net profit is
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maximal for θ̃ = θ. It follows that incentive compatibility holds if:

0 ≥ −t (θ) = −π (b (θ) , θ)−
∫ θ̂

θ

∂π

∂θ
(b (s) , s) ds,

which amounts to the second inequality in (25).

Note that (25) implies b ≤ b (θ). Thus, so far we have shown that attention could

be restricted to DICMs such as described in the Proposition, except that we allow for

b ≤ b (θ) and the bounds on transfers are given by (25).

We now show that we can further restrict the relevant class of DICMs:

Claim 5 Without loss of generality, we can restrict attention to DICMs such as de-

scribed by Claim 4 that moreover satisfy

π (b (θ) , θ) = −
∫ θ̂

θ

∂π

∂θ
(b (s) , s) ds.

Proof. Suppose that the DICM {(b (θ) , t (θ))}θ∈Θ is instead such that

π (b (θ) , θ) > r (θ) = −
∫ θ̂

θ

∂π

∂θ
(b (s) , s) ds,

and consider now the following alternative mechanism, where for every θ < θ̂, b (θ) is

replaced with54

b (θ, α) ≡ αb̂ (θ) + (1− α) b (θ) .

In this alternative mechanism, a type θ obtains a net profit equal to

r (θ, α) ≡ −
∫ θ̂

θ

∂π

∂θ
(b (θ, α) , θ) dθ,

where:
∂r

∂α
(θ, α) =

[
b (θ)− b̂ (θ)

] ∫ θ̂

θ

∂2π

∂b∂θ
(b (θ, α) , θ) dθ > 0.

54In the alternative mechanism, the bandwidth allocated to a type θ̂ can be taken equal to b
(
θ̂, α

)
when b

(
θ̂
)

= limθ→θ̂− b (θ), and to b otherwise.
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It follows that starting from α = 0, an increase in α:

• Reduces the consumer price when the entrant is of type θ < θ̂, from cI |b=b(θ) =

c (BI + ∆− b (θ)) to cI |b=b(θ,α) = c (BI + ∆− b (θ, α)).

• Relaxes the second constraint in (25), which becomes:

π (b, θ) ≤ r (θ, α) ,

where r (θ, α) > r (θ, 0) = r (θ).

• Keeps satisfying the first constraint in (25), for α small enough.

Therefore, without loss of generality, we can set restrict attention to DICMs satisfy-

ing

π (b (θ) , θ) = −
∫ θ̂

θ

∂π

∂θ
(b (s) , s) ds.

Note that the equality stated in Claim 5 implies t (θ) = 0
(
= t̂
)
. This, in turn, yields:

Claim 6 Without loss of generality, we can restrict attention to DICMs such as de-

scribed by Claim 4 that moreover satisfy

π (b, θ) = −
∫ θ̂

θ

∂π

∂θ
(b (s) , s) ds.

Proof. Suppose that the DICM {(b (θ) , t (θ))}θ∈Θ satisfies is such that

π (b (θ) , θ) = −
∫ θ̂

θ

∂π

∂θ
(b (s) , s) ds > π (b, θ) ,

implying b < b (θ) (≤ b̂(θ̂)), and consider the alternative direct mechanism where, for

θ > θ̂, b (θ) = b is replaced with b̃ (θ) = b (θ) – transfers being unchanged: t̃ (θ) =

t (θ) = t (θ) = t̂ = 0. The alternative mechanism is remains individually rational and

incentive-compatible and it increases consumers’ expected surplus (as the price decreases

from cE|b=b = c (BI − θ + b) to cE|b=b(θ) = c (BI − θ + b (θ))). Therefore, without loss

10



of generality, we can set b = b (θ), implying

π (b (θ) , θ) = −
∫ θ̂

θ

∂π

∂θ
(b (s) , s) ds = π (b, θ) .

This concludes the proof of part (ii).

C An Example Where Bunching Is Not Optimal

We provide here an example where bunching is no longer optimal.

C.1 Setup

C.1.1 Demand and Supply Conditions

We will adopt the following specifications:

• Linear demand: Letting p denote the market price (i.e., the lowest of the firms’

prices), consumer demand is given by:

D (p) = 1− p.

It follows that consumer surplus is equal to:

S (p) =
(1− p)2

2
,

and the industry monopoly profit, based on a constant marginal cost γ, is equal

to:

pm (γ) =
1 + γ

2
.

• Linear unit cost: If a firm benefits from a bandwidth B̃, its unit cost is given by:

c
(
B̃
)

= C − B̃.
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C.1.2 Two types of entrant

We denote the bandwidth initially available to the incumbent by

BI = B

and that initially available to the entrant by

BE = B − θ̃.

Thus, as before, the parameter θ̃ reflects the handicap of the entrant. We assume that

this handicap can take two values:

• With probability ρ ∈ (0, 1), the handicap is given by θ̃ = 0; that is, the entrant is

initially as efficient as the incumbent.

• With probability ρ′ = 1− ρ, the handicap is given by θ̃ = B; that is, the entrant

has initially no bandwidth.

C.1.3 Calibration

For the sake of exposition, we further assume that:

• The additional bandwidth is large enough to enable both types of entrant to win

the market competition; that is:

∆ = B + 2ε,

where ε > 0. With this notation, the relevant values of the critical bandwidth

threshold,

b̂ (θ) =
∆ + θ

2
,

are equal to:

b̂ = b̂ (0) =
∆

2
=
B

2
+ ε,

b̂′ = b̂ (B) =
B + ∆

2
= B + ε.
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• The cost function is normalized such that

C = B + ∆ = 2 (B + ε) .

This ensures that all unit costs remain non-negative (the incumbent benefits from

a zero unit cost if it obtains all the additional bandwidth, and both unit costs are

positive otherwise), and also simplifies some of the exposition.55

C.1.4 Prices

When an entrant of type θ̃ obtains an additional bandwidth b̃ ≥ b̂(θ̃), the market price

pθ̃

(
b̃
)

is equal to the cost of the incumbent:

c
(
BI + ∆− b̃

)
= C −

(
B + ∆− b̃

)
.

Using C = B + ∆, this simplifies to

pθ̃

(
b̃
)

= b̃.

When instead the incumbent wins the competition (i.e., when b̃ < b̂ (θ)), the market

price is determined by the cost of the entrant, and is thus equal to:

pθ̃

(
b̃
)
≡

B + 2ε− b̃ if θ̃ = θ = 0,

2 (B + ε)− b̃ if θ̃ = θ′ = B.

C.1.5 Profit

When an entrant of type θ̃ obtains an additional bandwidth b̃ ∈ [b̂(θ̃), 1], it wins the

product-market competition and obtains a profit equal to:

π(b̃, θ̃) ≡ [c(B + ∆− b̃)− c(B − θ̃ + b̃)]D(c(B + ∆− b̃))

= 2[b̃− b̂(θ̃)](1− b̃).

55See for instance below the derivation of the market price pθ̃

(
b̃
)

for b̃ ≥ b̂
(
θ̃
)

.
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We have:
∂π

∂θ̃
(b̃, θ̃) = −(1− b̃) ≤ 0,

with a strict inequality for b̃ < 1, and:

∂2π

∂θ̃∂b̃
π(b̃, θ̃) = 1 > 0.

Finally,

∂b̃π(b̃, θ̃) = 2(1− b̃)− 2(b̃− b̂(θ̃)) = 4

[
1 + b̂(θ̃)

2
− b̃

]
= 4

[
p̂m(b̂(θ̃))− b̃

]
,

where

p̂m (γ) =
1 + γ

2

denotes the monopoly price based on a unit cost γ. Hence, ∂b̃π(b̃, θ̃) is positive as long

as:

pθ̃(b̃) = b̃ < p̂m(b̂(θ̃)) =
1 + b̂(θ̃)

2
=

1 + ∆+θ̃
2

2
=

1

2

(
1 +B + ε+

θ̃

2

)
.

In particular, when the entrant has no handicap (θ = 0), in order to ensure that the price

(pθ (b) = b) remains below the monopoly level (p̂m(b̂)) in the relevant range (b ∈ [b̂, b̂′]),

we need:

b̂′ = B + ε < p̂m(b̂) =
1 + B

2
+ ε

2

⇐⇒ B <
2

3
(1− ε) . (26)

C.2 Bunching Mechanisms

When considering bunching mechanisms, which allocate the same additional bandwidth

b to both types of entrant, without loss of generality we can restrict attention to b ∈ [b̂, b̂′],

as any lower value (b < b̂) is dominated by b = b̂, and any higher value (b > b̂′) is

dominated by b = b̂′. For any value b in that range:

• when the entrant has no handicap, the market price is equal to the cost of the

incumbent; and
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• otherwise, the market price is equal to the cost of the entrant.

Hence, expected consumer surplus is equal to:

SB (b) = ρS (c (B + ∆− b)) + ρ′S (c (B − θ′ + b))

= ρS (b) + ρ′S (2B + 2ε− b) .

This expected surplus is convex in b:

S ′B (b) = −ρD (b) + ρ′D (2B + 2ε− b) ,

S ′′B (b) = ρ+ ρ′ > 0.

It follows that the best bunching mechanism consists of allocating either b̂ or b̂′ to the

entrant; both options are moreover equivalent when:

SB(b̂′) = SB(b̂)

⇐⇒ρS(C − s(B + ∆− b̂′)) + ρ′S(C − s(B − θ′ + b̂′))

= ρS(C − s(B + ∆− b̂)) + ρ′S(C − s(B − θ′ + b̂)) (27)

⇐⇒ ρ

ρ′
=
S(C − (B − θ′ + b̂′))− S(C − (B − θ′ + b̂))

S(C − (B + ∆− b̂))− S(C − (B + ∆− b̂′))

⇐⇒ ρ

ρ′
=

1− ε− 5B
4

1− ε− 3B
4

. (28)

C.3 Discriminating mechanisms

We will consider a candidate discriminating mechanism which gives the non-handicapped

entrant a bandwidth b ∈ [b̂, b̂′] (in exchange for a transfer t), and the handicapped entrant

a higher bandwidth b′ > b̂′ (in exchange for a transfer t′).56 To be incentive-compatible,

the mechanism must satisfy:

π (b, θ)− t ≥ π (b′, θ)− t′,

π (b′, θ′)− t′ ≥ −t.

56By inspecting the incentive constraints for all possible cases (where b ≷ b̂ and b′ ≷ b̂′), it can be
checked that the best discriminating mechanism has indeed these features.
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Combining these conditions imposes:

π (b, θ) ≥ π (b′, θ)− π (b′, θ′) . (29)

The right-hand side of this inequality decreases as b′ increases:

d

db′
(π (b′, θ)− π (b′, θ′)) =

∂π

∂b̃
(b′, θ)− ∂π

∂b̃
(b′, θ′)

= −
∫ θ′

θ

∂2π

∂θ̃∂b̃
(b′, x) dx

< 0.

Hence, for any given bandwidth, b ∈
[
b̂, b̂′
]
, that an entrant with no handicap would

receive, the best value for the bandwidth, b′, that a handicapped entrant should receive

is the lowest one that is compatible with (29); that is, b′ should be chosen such that:

π (b, θ) = π (b′, θ)− π (b′, θ′)

⇐⇒2
(
b− b̂

)
(1− b) = 2

(
b′ − b̂

)
(1− b′)− 2

(
b′ − b̂′

)
(1− b′)

⇐⇒b′ = β (b) ≡

[
1− b− b̂

b̂′ − b̂
(1− b)

]
= 2− b− 2

B
(b− ε) (1− b) =

B (2− b)− 2 (b− ε) (1− b)
B

.

This optimal value is such that:

β
(
b̂′
)

=
b̂′
(
b̂′ − b̂

)
b̂′ − b̂

= b̂′,

and, for b ∈
[
b̂, b̂′
]
:

β′ (b) =
d

db

(
B (2− b)− 2 (b− ε) (1− b)

B

)
= −2 +B + 2ε− 4b

B

= −1 + b̂− 2b

b̂′ − b̂
= −2

p̂m
(
b̂
)
− b

b̂′ − b̂
,
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which is negative as long as

b < p̂m
(
b̂
)

=
1 + b̂

2
=

1

2

(
1 +

B

2
+ ε

)
.

In particular:

β′
(
b̂′
)

= −2
p̂m
(
b̂
)
− b̂′

b̂′ − b̂
=

[
−2

1
2

+ ∆
4
− ∆+B

2
B
2

]
∆=B+2ε

= −2 (1− ε)− 3B

B
,

which is thus negative as long as B satisfies (26). Hence, as long as B satisfies this

condition, β (b) is indeed higher than b̂′ for b lower than but close to b̂′.

Expected consumer surplus is then equal to:

SD (b) = ρS (c (B + ∆− b)) + ρ′S (c (B + ∆− β (b)))

= ρ
(1− b)2

2
+ ρ′

(1− β (b))2

2
.

Therefore:

S ′D (b) = −ρ (1− b)− ρ′ (1− β (b)) β′ (b) ,

Bunching will for instance not be optimal if:

• the probabilities of the two types are such that expected consumer surplus is the

same in the situation where both types receive b̂ and in the situation where they

both receive b̂′; and,

• starting from the latter situation, where both types receive b̂′, a small reduction in

the bandwidth b allocated to the entrant in case of no handicap, together with an

increase in the bandwidth b′ allocated to the entrant in case of a large handicap,

up to b′ = β (b), increases expected consumer surplus.

Hence, to exhibit an example where bunching is not optimal, it suffices to find

parameters B and ε such that S ′D

(
b̂′
)
< 0 for the probabilities ρ and ρ′ that satisfy

17



(28). As:

S ′D

(
b̂′
)

= −ρ
(

1− b̂′
)
− ρ′

(
1− b̂′

)
β′
(
b̂′
)

= −ρ
(

1− b̂′
)[

1 +
ρ′

ρ
β′
(
b̂′
)]

,

this amounts to finding parameters B and ε such that the terms within square brackets

is positive, that is:

−β′
(
b̂′
)

=
2− 3B − 2ε

B
<
ρ

ρ′
=

1− ε− 5B
4

1− ε− 3B
4

.

This requires:

2− 3B − 2ε

B
<

1− 5B
4
− ε

1− 3B
4
− ε

⇐⇒ (2− 3B − 2ε)

(
1− 3B

4
− ε
)
< B

(
1− 5B

4
− ε
)

⇐⇒0 < B

(
1− 5B

4
− ε
)
− (2− 3B − 2ε)

(
1− 3B

4
− ε
)

= −2

(
1− ε− 7B

4

)
(1− ε−B) ,

which amounts to:
4

7
(1− ε) < B < 1− ε.

Combining these conditions with (26), it suffices to choose B and ε such that:

4

7
(1− ε) < B <

2

3
(1− ε) .

C.4 Numerical example

C.4.1 Parameter values

For ε = 0, the above conditions boil down to:

4

7
=

12

21
< B <

2

3
=

14

21
.

We will thus consider the case

B =
13

21
,
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and choose ε “small enough” to satisfy (26), namely, such that:

B <
2

3
(1− ε)⇐⇒ ε < 1− 3B

2
=

1

14
' 0.07.

We will thus take ε = 0.05 (= 1/20). We then have:

b̂ =
13

42
+

1

20
=

151

420
' 0.36,

b̂′ =
13

21
+

1

20
=

281

420
' 0.67,

∆ =
13

21
+

1

10
=

151

210
' 0.72,

β (b) =

[
B (2− b)− 2 (b− ε) (1− b)

B

]
B= 13

21
,ε= 1

20

=
281

130
− 571

130
b+

42

13
b2,

pm
(
b̂
)

=

[
1 + b̂

2

]
b̂=13/42+1/20

=
571

840
' 0.68,

pm
(
b̂′
)

=

[
1 + b̂′

2

]
b̂′=13/21+1/20

=
701

840
' 0.83,

ρ =
37

139
' 0.27,

ρ′ =
102

139
' 0.73,

and:

−β′
(
b̂′
)

=
9

130
' 0.06 <

ρ

ρ′
=

37

102
' 0.36.
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The function β (b) is depicted by the following figure (for b ∈
[
b̂, b̂′
]
' [0.36, 0.67]):

In particular, we have:

β (b) ≤ ∆⇐⇒281

130
− 571

130
b+

42

13
b2 ≤ 151

210

⇐⇒b ≥ b̄ =
571

840
−
√

3
√

3667

840
' 0.55.

It can be checked that the above conditions are satisfied in this example; in particular:

• Demand is positive (i.e., b < 1) in the relevant ranges b ≤ b̂′ (as b̂′ ' 0.67 < 1)

and b′ ≤ ∆ (as ∆ ' 0.72 < 1). It follows that ∂θπ (b, θ) < 0 in the relevant ranges.
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• We also have ∂bπ (b, θ) > 0 (i.e., b < p̂m
(
b̂ (θ)

)
) in these ranges:

b ≤ b̂′ =
281

420
' 0.67 < pm

(
b̂
)

=
571

840
' 0.68,

b′ ≤ ∆ =
151

210
' 0.72 ≤ pm

(
b̂′
)

=
701

840
' 0.83.

C.4.2 Prices

In case of bunching, for b = b′ ∈
[
b̂, b̂′
]
' [0.36, 0.67], the price is equal to b if the entrant

faces no handicap, and it is otherwise equal to:

pθ′ (b
′) = [C − (B − θ′ + b)]θ′=B,∆=B+2ε,C=2(B+ε)

=
281

210
− b.

In case of discrimination, for b ∈
[
b̄, b̂′
]
' [0.55, 0.67] and b′ = β (b) = 281

130
− 571

130
b+ 42

13
b2,

the price is the same as in the previous scenario (i.e., it is equal to b) if the entrant faces

no handicap, and it is otherwise equal to:

pθ′ (b
′) = β (b) =

281

130
− 571

130
b+

42

13
b2.

The following figure depicts the price in case of handicap, in the two scenarios: bunching

(thin line, for b ∈
[
b̂, b̂′
]
' [0.36, 0.67]) and discrimination (bold curve, for b ∈

[
b̄, b̂′
]
'
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[0.55, 0.67]):

The figure confirms that the price pθ′ (b) is lower in the discriminating scenario than

in the bunching scenario.

C.4.3 Consumer surplus

pθ′ (b
′) =

 281
210
− b if b′ = b,

281
130
− 571

130
b+ 42

13
b2 if b′ = β (b) .

Building on the above analysis, and using

ρ =
37

139
' 0.27 and ρ′ =

102

139
' 0.73,

consumers’ expected surplus is given by:
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• If b′ = b (“Bunching”), then for b = b′ ∈
[
b̂, b̂′
]
' [0.36, 0.67]:

SB (b) = ρ
(1− b)2

2
+ ρ′

(1− pθ′ (b))2

2

=
37

139

(1− b)2

2
+

102

139

(
1−

(
281
210
− b
))2

2

=
1

2
b2 − 18

35
b+

2573

14 700
.

From the above analysis, this expected consumer is maximal for b = b̂ and b = b̂′,

where it is equal to:

SB

(
b̂
)

= SB

(
b̂′
)

=
19321

352800
' 0.05.

• If b′ = β (b) (“Discriminating”), then for b ∈
[
b̄, b̂′
]
' [0.55, 0.67] and b′ ∈

[
b̂′,∆

]
'

[0.67, 0.72]):

SD (b) = ρ
(1− b)2

2
+ ρ′

(1− β (b))2

2

=
37

139

(1− b)2

2
+

102

139

(
1−

(
281
130
− 571

130
b+ 42

13
b2
))2

2

=
8996400b2 − 6468840b+ 1475501

2349100
(1− b)2 .

The following figure depicts expected consumer surplus in the bunching scenario

(thin curve, for b ∈
[
b̂, b̂′
]
' [0.36, 0.67]) and the discriminating scenario (bold curve,
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for b ∈
[
b̄, b̂′
]
' [0.55, 0.67]); it shows that discriminating is indeed optimal:

To determine the socially optimal mechanism, it suffices to maximize SD (b), which

yields:

S ′S (b) =
359856

23491
b3 − 3669246

117455
b2 +

1800737

90350
b− 4709921

1174550
= 0,

leading to

b∗ =
291

560
+

√
51
√

1189 211

85 680
' 0.610 54.
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