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This paper considers how ARCH effects may be handled in time series models formulated in 
terms of unobserved components. A general model is formulated, but this includes as special 
cases a random walk plus noise model with both disturbances subject to ARCH effects, an 
ARCH-M model with a time-varying parameter, and a latent factor model with ARCH effects in 
the factors. Although the model is not conditionally Gaussian, an approximate filter can be 
obtained and used as the basis for estimation. The performance of this method is examined on 
real data sets and Monte Carlo experiments are carried out. The method is extended to handle 
GARCH and a latent factor model based on the I-distribution. 

1. Introduction 

The autoregressive conditional heteroscedasticity (ARCH) model was in­
troduced by Engle (1982) and developed further by Bollerslev (1986), who 
proposed the generalized ARCH, or GARCH, model. This article examines 
ways in which ARCH and GARCH disturbances may be incorporated in time 
series models with unobserved components, and the implications this has for 
estimation. A general model is first set up, and the main issues discussed. 
Three special cases are then studied in some detail. The first is a simple 
univariate time series model, consisting of a random walk observed with a 
white noise error, in which ARCH effects are present in both disturbances. 

* This article is based on two earlier papers, one by the first two authors, the other by the 
third. The Harvey /Ruiz paper was presented at the ARCH conference held at INSEE in Paris 
in June 1990 and at the World Congress of the Econometric Society held in Barcelona in August 
1990. We would like to thank several of the participants for helpful comments. We are also 
grateful to Neil Shephard, Mervyn King, Sushil Wadhwani, Manuel Arellano, Herman van Dijk, 
Rob Engle, and several anonymous referees for their comments. In addition we would like to 
thank Ray Chou. Frank Diebold, and Charles Goodhart for supplying us with the data used in 
the applications. The second author acknowledges financial support from the Basque Govern­
ment; the third author acknowledges support from the LSE Financial Markets Group and the 
Spanish Ministry of Education and Science. 
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The second is the ARCH-M model with a time-varying parameter, studied by 
Chou et al. (1992). The third is the latent factor model with ARCH effects in 
the factors of Diebold and Nerlove (1989). It is also shown how this last 
model can be handled if it is generalised so as to have disturbances generated 
by a multivariate Student's t-distribution. 

2. The general model 

We consider the following model for the N X 1 vector of observations Yt : 

t=l, ... ,T, (1) 

where €X t is an m X 1 state vector which evolves according to 

(2) 

The matrices Zt (N X m) and Tt (m X m) may be nonstochastic, but may, 
more generally, depend on information available at time t - 1. The matrix X t 

(N X k) is a matrix of observable exogenous variables, while {3 (k X 1) is a 
vector of corresponding parameters. The disturbances vectors Ei (N X 1) and 
YJi (m X 1) are normally distributed with mean zero and are serially indepen­
dent, that is Ei - NID(O, Ht) and YJi - NID(O, Qi>. The ARCH effects are 
introduced via the scalar disturbances, Et and YJI' and 

where E; - NID(O, 1), YJ; - NID(O, 1), and 

(3) 

(4) 

Finally, all the disturbances EI' Ei, YJI' and YJi are mutually independent. 
If the terms involving E t and YJ t were dropped, we would have a standard 

linear state space model. Autoregressive, ARIMA, and structural time series 
models can all be cast in this form. Regression models are also included by 
virtue of the term X t {3. 

In eqs. (3) and (4) we have first-order ARCH models. The extensions to 
higher-order ARCH and GARCH models are discussed in subsection 2.4. 
Another generalization is to have several factors, and the different state 
variables in (2) driven by different ARCH effects so that E t and YJt are vectors 
and A and 1Jf are corresponding matrices. This raises no new issues as 
regards the statistical handling of the model and so we stick to the single 
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disturbance formulation for simplicity. The identifiability of such models is 
discussed in Sentana (1991). It is also possible to generalize the model by 
letting the individual elements of ci and 7]i follow ARCH processes. 

2.1. A quasi-optimal filter 

We now consider a filter for the above model which provides the basis for 
(a) the estimation of unknown parameters, such as an, a!, 'Yo, and 'Y!, and (b) 
the prediction of future observations. The filter is based on an augmented 
state space formulation in which the disturbances Ct and 7]t are treated as 
state variables. The measurement equation is 

while the transition equation is 

o 
o 
o 

o][a t

-

1
] [I o 7]t-l + 0 

o c t -l 0 

P 
1 
o 

(5) 

(6) 

Having Ct and 7]t playing the role of both disturbances and state variables is 
somewhat unusual. Diebold and Nerlove (1989) use the same device in their 
latent factor model. 

If past values of the disturbances Ct and 7]t were directly observable, the 
model would be a conditionally Gaussian one. The distribution of Yl' 
conditional on the information available at time t - 1 would be normal, and 
as a result, the Kalman filter would yield minimum mean square estimates 
(MMSEs) of the state; see, for example, Harvey (1989," ch. 3). As it is, the 
model is not conditionally Gaussian, since knowledge of past observations 
does not, in general, imply knowledge of past disturbances. Nevertheless we 
may proceed on the basis that the model can be treated as though it were 
conditionally Gaussian, and we will refer to the Kalman filter as being 
quasi-optimal. Of course, if no ARCH effects are present, the model is linear 
and the filter is optimal. 

The distribution of 7]t conditional on 7]t-! is assumed to be normal with 
mean zero and variance, ql' given by (4). The optimal filter requires the 
distribution of 7]t conditional on past observations. Since 7]t-1 is not ob­
served, the distribution of 7]1' conditional on past observations cannot be 
determined, but given the conditional mean and variance of the state vector 
at time t - 1, we can evaluate its first two moments. The mean of 7]t is easily 
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seen to be zero. As regards its variance, we have 

(7) 

where the t - 1 under the expectation operator indicates that it is conditional 
on the observations up to and including Y 1- \. Now 

and so 

7]1-\ = 7]1-\ + (7]1-\ -7]1-\)' 

E ( 2 ) - A2 + 7J 
7]1-\ -7]1-\ PI-\' 

1-1 
(8) 

where the last term: is the variance of 7]1-\ conditional on the information at 
time t - 1. Note th!lt 7]1- l' the estimate from the Kalman filter, is fixed and 
known at time t - 1 and so the cross-product is zero. Substituting in (7) gives 

(9) 

It is straightforward to show that the distribution of 7]1 conditional on past 
observations is symmetric. However, it is not, in general, normal. The same is 
true for the distribution of 10 1 conditional on past observations. Again this has 
a mean of zero and a conditional variance given by an expression analogous 
to (9). This expression involves P: _\' which is the conditional variance of 
101-\, We will refer to these conditional variance terms as correction factors. 
When the Kalman filter is applied, the last two diagonal elements in the 
conditional covariance matrix of the augmented state vector provide values 
for these factors. 

When all the observations have been processed, the filter delivers esti­
mates of the mean, aT' and the covariance matrix, PT, of the conditional 
distribution of a p If the model really were conditionally Gaussian, so that 
the filter was exact, the MMSE's of future a/s would be given by the 
recursion 

1= 1,2, ... , 

and so 

(10) 

As regards the MSE, this can be built up recursively, since 

1= 1,2, ... , 
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and 

with the conditional expectation of 77} at time T given by (8), and so 

1= 1,2, .... 

The conditional expectation of C}+l can be built up recursively or evalu­
ated directly as 

2.2. Quasi-maximum likelihood estimation 

An approximate likelihood function can be constructed from the filter of 
subsection 2.1 by regarding the distribution of YP conditional on previous 
observations, as being Gaussian with mean Z/F/xt_1 + Xtf3 and variance 

+ A A' var ( C t) + Ht* . 
t-I 

(12) 

The likelihood function is then formed as the product of the conditional 
distributions of the y/s as in the usual prediction error decomposition. It 
must be maximized numerically with respect to the ~nknown parameters; 
these consist of the ARCH parameters ao, aI' 'Yo, and 'YI' together with any 
parameters appearing in Zp Ht*, TI' Q7, (3, A, and P. 

2.3. Properties of the model and alternative formulations 

Although the c/s are not independent of each other, it follows from 
standard ARCH theory that they are serially uncorrelated with zero mean 
and variance ao/O - al) provided that a o> 0 and 0 ~ a l < 1. Thus the 
composite disturbance term ACt + c7 is multivariate white noise with covari­
ance matrix {ao/O - al)}AA' + Ht. In a similar way the 77/S are serially 
uncorrelated with zero mean and variance 'YolO - 'YI) provided 'Yo> 0 and 
o ~ 'YI < 1, and P77t + 777 is multivariate white noise. If the ARCH effects 
were ignored, and the Kalman filter were based on the unconditional 
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covariance matrices of the composite disturbances, it would, in the absence 
of any unknown parameters, yield minimum mean square linear estimators 
and predictors. Furthermore we would expect any unknown parameters in 
ZI' TI' and (3, together with the unconditional covariance matrices of the 
composite disturbances, to be estimated consistently. This is merely a gener­
alization of a result in Weiss (1984) which shows that the parameters in an 
ARMA model are estimated consistently, but not efficiently, when ARCH 
effects in the disturbance term are ignored and the implied ML estimator is 
computed. 

Returning to the fully specified model, we have seen that the Kalman filter 
is not, in general, optimal and the proposed quasi-ML estimation procedure 
is only an approximation. However, suppose we were to modify the model by 
replacing the squared lagged disturbances in (3) and (4) by their conditional 
expectations. Thus, . 

(l3) 

(14) 

Since the conditional expectations of the squared disturbances are given 
directly by the Kalman filter, as in (8), h t and qt are observable from the 
information at time t - 1 and the model is conditionally Gaussian. The filter 
and the resulting likelihood function are therefore exact. This is a much 
happier state of affairs, although one could never distinguish between the two 
models since they are estimated in exactly the same way. 

The disadvantage of (l3) and (14) is that standard ARCH theory cannot be 
used to determine the properties of St and 7)t. Nevertheless, it can be shown 
that St and 7)t are serially uncorrelated with zero means and the same 
variances as for (3) and (4); see appendix. However, the unconditional 
distribution, although leptokurtic, has fourth moments smaller than the 
fourth moments of (3) and (4) and the autocorrelations of their squares are 
not easily derived; see subsection 3.4 for the relevance of these statistics. 

A final variation is to assume that estimates of St and 7)t based on the 
information at time t - 1 appear in place of the true disturbances in (3) and 
(4). Thus, 

(15) 

and similarly for qt. The usual assumption would be that Et - 1 is the 
conditional expectation of St-l obtained from the Kalman filter, although it 
is not necessary for it to be defined in this way. In any case the model is 
conditionally Gaussian by construction, and the Kalman filter yields the exact 
likelihood. 
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Once more, the problem with (15) is that standard ARCH results cannot 
be used. However, it is shown in the appendix that SI is still uncorrelated 
with zero mean but with a smaller unconditional variance, and that its 
unconditional distribution is leptokurtic, although even less than in the 
previous case. The squares of the s/s are serially correlated, but the autocor­
relation function is now bounded from above by the autocorrelation function 
of the process generated by (13). The intuition again is that (15) implies an 
even smoother process for s; than does (13). The same obviously applies 
to 1)t. 

There are arguments for adopting a specification like that in (5). How­
ever, if the true model is (3), then assuming (5), that is not including the 
correction factor from the state covariance matrix, may yield unsatisfactory 
results. This matter is investigated in some detail in section 3. 

2.4. Higher-order ARCH and GARCH 

The ARCH(p) generalisation of (3) is simply 

(16) 

and similarly for (4). The generalized ARCH (GARCH) model of Bollerslev 
(1986),or at least the GARCHO, 1) case, has 

( 17) 

and 

(18) 

We will assume that 0'1 + 0'2 < 1 and 'YI + 'Y2 < 1. The integrated GARCH 
model has the sum of these parameters equal to one; see, Jor example, Engle 
and Bollerslev (1986) and Nelson (1990). 

The filter requires the variance of the disturbances conditional on previous 
observations. If St and 1)t follow ARCH(p) processes, then p lagged values 
of each must be included in the state vector. Then analogously to (8), 

E (S2 ) - g2 +pe(j) 
t-j - t-jll-I I-I' 

I-I 
j = 1, ... ,p, ( 19) 

where gt-jlt-I appears in the estimated state at time t - 1, and the last term 
in (19) is its variance. A similar expression holds for the lagged values of 1)t. 

In the GARCH model, 

(20) 

In order to evaluate the last term on the right-hand side we need to 
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substitute for h t - I from (17). Doing this repeatedly gives, for J 2:: 1, 

var ( e t) = E (e n 
t-I t-I 

= a o(1 + a2 + ... +a~-I) 

J 

+al L: a~-I E (e;_j) +a~ E (h t - f ). 
j=1 t-I t-I 

(21) 

If we are prepared to assume that a~ is negligible for a particular value of 
J, an approximation to (21) may be computed by augmenting the state vector 
by lagged values of e f' and replacing the conditional expectations of the 
squared et_/S by quantities computed from the right-hand side of (19). We 
can, in a similar way, compute an approximation to the conditional variance 
of YJt. 

The drawback to the above method is that a~ may not be negligible for 
moderate values of J. An amendment is made by setting J = 00 in (21), 
mUltiplying both sides of the expression for t - 1 by a2 and subtracting from 
the expression for t. This yields 

(22) 

Again we can truncate this expression, but we are now neglecting 

This is likely to be much smaller than a~Et_t<ht-J)' firstly because ala~ < a~, 
and secondly because the term in square brackets is likely to be very small. 
The extra computation, as compared with (21), simply involves storing the 
quantities in (19) and carrying them over to the next period. 

The above filter may be rather cumbersome to implement if J is set to a 
moderately large value. An alternative approach is therefore to amend the 
formulation of the structural GARCH model to something which is easier to 
handle. A natural amendment is to define h t as 

(23) 

Then 

(24) 
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Since 

E (sn = E (h t ), 
t-l t-1 

expression (24) can be evaluated recursively. A similar formulation may be 
adopted for 1] t· 

When the model only contains a single disturbance term, (23) is the same 
as (17) since h t - 1 is known at time t - 2. However, when this is not the case, 
substituting repeatedly for the expectation of lagged h t on the right-hand 
side of (24) points to the contrast between the two formulations. In the 
analogous expression to (21), the expectation of each S;_j is taken at time 
t - j, not at time t - 1. Note that in terms of (22) expression (24) ignores the 
summation term within the square brackets. 

One disadvantage of (23) is that it is difficult to obtain the autocorrelation 
function of s;, although it can be shown that St is white noise. A more 
fundamental drawback to the model is that s; appears to display a smaller 
degree of serial dependence than is shown by (17) with the same parameter 
values. Based on simulation evidence, it appears that although the first-order 
autocorrelation in (23) is usually only slightly below the one for (17), the 
higher-order autocorrelations tend to be much smaller. A similar situation 
arises with the partial autocorrelation function. 

3. STARCH models 

Unobserved components models are normally set up in such a way that 
they have a direct interpretation. As a result they are often known as 
structural time series models; see Harvey (1989). The components may have a 
purely statistical rationale insofar as their role is to pickup trend, seasonal, 
and cyclical movements which evolve over time. Alternatively there may be 
economic reasons behind the model formulation. An example is the 'fads' 
model in financial markets, where different types of traders give rise to 
different unobserved components; see, for example, Poterba and Summers 
(1988). The statistical treatment of linear unobserved component models is 
relatively straightforward, with the Kalman filter playing a central role. 
However, the presence of ARCH effects gives rise to the kind of issues 
discussed in the previous section. 

The simplest structural time series model is the local level, or random walk 
plus noise, model 

Yt = J.L t + St' (25) 

J.Lt = J.Lt-l + 1](> (26) 

9



where YI' t = 1, ... , T, is the observed series and E( and 1)( are mutually 
uncorrelated white noise disturbances. That is they are serially uncorrelated 
with zero means and variances cre

2 and cr;, respectively. The reduced form of 
(25) and (26) is the ARIMA (0,1,1) model. Following Weiss (1984), it is 
possible to set up ARIMA models with ARCH disturbances. However, it is 
quite possible to envisage situations where it makes sense to consider the 
transitory disturbance term, EI' as being subject to an ARCH mechanism 
which is independent of the ARCH mechanism for the disturbance, 1)1' 

driving the permanent component. For example, in the context of stock 
prices Black (1986) has argued that different components in a model, arising 
from market fundamentals and noisy traders, may be subject to different 
degrees of volatility. In some situations it may be argued that one of the 
disturbances does not exhibit ARCH at all. For example if E( is interpreted 
as being a measurement error, there may be no reason for it to be subject to 
ARCH effects. 

Models in which one or more of the disturbances displays ARCH effects 
will be said to exhibit structural ARCH, or 'STARCH'. In general such 
models do not have a reduced form which is an ARIMA model with a 
(time-invariant) ARCH representation for the disturbance, although, of 
course, they may be reasonably well approximated by such models. 

As discussed in subsection 2.3, there are a number of ways of introducing 
ARCH effects into models with unobserved components. We will concentrate 
on the direct formulation in which the variance of a disturbance is related to 
its own past values as in (3) and (4). This has the attraction that the 
properties of the disturbances can be obtained from known results on ARCH 
models, and these properties are briefly set out below. In subsection 3.3 we 
examine the performance of the quasi-optimal filter in a series of Monte 
Carlo experiments. We also suggest ways of testing for ARCH effects in one 
or both of the disturbances. The discussion throughout is in terms of the local 
level model, (25) and (26), but extensions to more complicated structural time 
series models, and models with explanatory variables, are relatively straight­
forward. 

3.1. Properties of the local level with ARCH 

Even with ARCH disturbances, (3) and (4), model (25) and (26) still has 
white noise disturbances. The first differences of the observations, that is the 
L1y/s, are stationary with mean zero and first-order autocorrelation 

-cr/ -ao/(l - at) 

p(l) = cr; + 2cr,} = {1'o/(l- 1't) + 2ao/(1-at)} ' 
(27) 

and pCr) = 0 for 'T ~ 2. 
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From standard ARCH theory, the fourth moments of the Et and Y/t 
disturbances exist if aI' 1'1 < 0.578. The autocorrelation functions (a.c.f.'s) of 
E; and Y/; then behave like the a.c.f.'s of first-order autoregressive processes, 
with a l and 1'1 playing the roles of the autoregressive parameters. The 
autocovariance function of C1yt )2 is 

(28) 

(29) 

and, for T> 1, 

COV[(L1Yt)2,(L1yt_T)2] =a l cov[(L1Yt)2,(L1Yt_T+I)2] 

+ (I'I - ad cov[ y/;, Y/;-T+I]' (30) 

When 1'1 = a l = 0, all the autocorrelations at lags greater than one are zero, 
while the autocorrelation at lag one is 

a o 2 

)

2 

( 1'0 + 2a
o 

= [p(l)] , (31 ) 

where p(1) is the lag one autocorrelation of the L1y/s defined in (27). This is 
just a special case of the result in Maravall (1983), which states that, for a 
linear process, the autocorrelation function of the squared observations is 
equal to the square of the autocorrelation function of the observations 
themselves. 

The autocorrelation functions of the squared L1y/s for higher-order ARCH 
models and GARCH models can be obtained by using the results of Milhoj 
(1985) and Bollerslev (1986), respectively. 

3.2. The filter 

We now consider some special features of the quasi-optimal filter for the 
local level STARCH model. The state space model of section 2 can be 
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specialised to 

(32) 

+ [ILl] [1 O][ILI-I] [1] a l = 7]1 = 0 0 7]1-1 + 1 7]1· (33) 

Notice that in terms of eq. (6) we have set P equal to one. 
The conditional variance of 7]1 is given by expression (9). However, there is 

no need to include CI in the state vector. From (3), 

but 

C = Y ,:. /I. = (8 ) + ( /). - /I. ) /-1 I-I '-1-1 I-I '-1-1 '-1-1' 

where fl I -I is the estimate of the mean of the conditional distribution of 
ILI-I at time t - 1, and 

81 - 1 = YI-I - fll-I· 
Thus 

where PI_I is the estimated conditional variance of ILl-I. Hence 

(34) 

As regards initialization of the filter, set fll = YI' with MSE(fll) = ao/(l - a l ), 

that is, the unconditional variance of CI . If the conditional variance of 7]1 at 
time t = 1 is also set equal to its unconditional variance, the Kalman filter 
may be applied with 

(35) 

and 

(36) 

A switch to the augmented filter is then made for t ~ 3. 
The general method of handling higher-order ARCH and GARCH models 

is to augment the state vector by past values of CI and 7]1. However, for our 
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univariate STARCH model, it is more efficient to augment by J..Lt-I'···, J..Lt-j, 

where f depends on the order of the ARCH model, or the approximation 
employed in GARCH. Estimates of both sets of disturbances and their 
associated correction factors may then be made since 

Et-jlt-I = Yt-j - flt-jlt-I (37) 

and 

77t-jlt-1 = flt-j1t-1 - flt-j-Ilt-t, j= 1, . .. ,f. (38) 

3.3. Small sample simulation of the quasi-maximum likelihood estimator 

An approximate likelihood function can be constructed from the filter in 
the way described in subsection 3.2. This quasi-likelihood function must be 
maximized numerically with respect to the unknown parameters ao, ai' 1'0' 
and 1'1' However, one of the parameters, say ao, can be concentrated out of 
the likelihood function by reparameterizing (3) and (4) as 

(39) 

and 

(40) 

Table 1 shows the RMSE's of the quasi-maximum likelihood estimators of 
the parameters of a random walk plus noise model with ARCH(1) distur­
bances based on the results of a set of Monte Carlo experiments each with 

Table 1 

RMSE's of quasi-maximum likelihood estimation of parameters in random walk plus noise 
model with ARCH(I) disturbances, based on Monte Carlo experiments with 1000 replications. 

Sample size (T) 
Naive 

estimation 
Parameter 150 500 1000 3000 for T= 3000 

ao = 1 0.488 0.335 0.257 0.169 0.288 
a l = 0.3 0.279 0.226 0.184 0.123 0.192 
Yo = 1 0.614 0.373 0.287 0.199 0.372 
YI = 0.5 0.330 0.218 0.165 0.103 0.191 

ao = 1 0.526 0.369 0.301 0.204 0.279 
a l = 0.3 0.304 0.258 0.219 0.157 0.302 
Yo = 1 0.785 0.423 0.313 0.222 0.741 
YI = 0.8 0.348 0.175 0.121 0.074 0.127 

ao= 1 0.567 0.348 0.252 0.149 0.473 
a l = 0.5 0.316 0.211 0.151 0.088 0.142 
Yo = 1 0.516 0.372 0.315 0.240 0.218 
YI = 0.3 0.308 0.257 0.218 0.163 0.290 
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1000 replications. The numerical optimization was carried out using the 
NAG subroutine E04JBF with at and 'Yt restricted to be between 0 and 1, 
and au and 'Yo restricted to be nonnegative. As one would hope, the RMSE's 
tend to get smaller as the sample size increases. For small sample sizes, the 
variation in the estimates can be quite considerable, with the distributions 
being far from normality. This can be seen quite clearly in fig. la, which 
shows histograms for T = 150. Fig. 1b shows the corresponding distributions 
for T = 3000, and it can be seen that they are not too far from normality. The 
conclusion would therefore seem to be that the proposed estimation proce­
dure has reasonable statistical properties, not unlike those of maximum 
likelihood. However, it is also clear that fairly large sample sizes are needed 
to estimate the parameters in STARCH models with a reasonable degree of 
precision. 

The last column .in table 1 shows the results from the 'naive' estimation 
procedure in which' the correction terms are omitted from expressions such 
as (34). As can be seen the resulting estimations are markedly inferior to 
those produced by quasi-maximum likelihood. 

3.4. Testing 

We now consider the question of testing for structural ARCH and GARCH 
effects when a linear time series model has been fitted. A test for ARCH in 
the innovations of the model, that is the reduced form disturbances, can be 
carried out using the Box-Ljung statistic formed from the autocorrelations of 
the squares of residuals. If the first P autocorrelations are used, the 
Box-Ljung statistic will have a chi-square distribution with P degrees of 
freedom under the null hypothesis of no ARCH; see McLeod and Li (1983). 
Such a test would be the Lagrange multiplier (LM) test against an ARCH(P) 
process in the reduced form disturbance. It may well have good power 
against ARCH in both the measurement and transition equations, (25) and 
(26). 

An alternative approach is to specifically construct tests against STARCH 
effects by setting up tests based on the LM principle, treating the quasi-likeli­
hood as if it were exact. A test of the hypothesis Ho: at = 'Yt = 0 may be 
constructed as may tests that either of these parameters is zero. The test 
statistics can be set up in terms of the uncentred coefficient of determination, 
R2, of a regression involving the innovation, its variance, and their respective 
derivatives, all of them evaluated under the null hypothesis; see Harvey 
(1989, pp. 240-241), Although the tests cannot be expressed in a particularly 
simple way, it turns out that the regressions are trying to link movements in 
the squared innovations to movements in either or both of 8; and r,;, as 
appropriate. 
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Fig. 1. Empirical distributions for the estimated parameters in a random walk plus noise with 
ARCH disturbances: 0'0 = 'Yo = 1, 0'1 = 0.3, and 'YI = 0.5. 
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Table 2 

Estimated size and power of tests against ARCH(1) disturbances in random walk plus noise 
model, with T = 1000, based on Monte Carlo experiments with 1000 replications. 

(a) No ARCH in random walk (y I = 0) 

(Xl 

Yl = 0 0.0 0.2 0.4 0.6 0.8 
-~---.- .-.~~ 

Q2(1) 0.03 0.21 0.59 0.86 0.93 
LM* 0.06 0.26 0.70 0.92 0.97 
LM(E) 0.06 0.31 0.74 0.91 0.95 
LM(7j) 0.06 0.11 0.36 0.69 0.88 

(b) No ARCH in measurement noise «(Xl = 0) 

Yl 

(Xl = 0 0.0 0.2 0.4 0.6 0.8 

Q2(1) 0.03 0.25 0.67 0.91 0.95 
LM* 0.06 0.26 0.71 0.92 0.97 
LM(E) 0.06 0.09 0.29 0.55 0.70 
LM(7j) 0.06 0.29 0.74 0.93 0.97 

Table 3 

Estimated power of tests against ARCH(l) distribution in random walk plus noise model based 
on Monte Carlo experiments with 1000 replications. 

(Xl = 0.3 Yl = 0.5 

T= 150 T= 500 T= 1000 

Q2(1) 0.30 0.75 0.95 
LM* 0.29 0.76 0.95 
LM(c) 0.18 0.54 0.84 
LM(7j) 0.25 0.71 0.92 

A test can also be set up against GARCH disturbances. The null hypothe­
sis is then Ho: a 1 = a 2 = 'Yl = 'Y2 = 0, but a straightforward application of the 
LM principle fails because of multicollinearity amongst the regressors formed 
from the derivatives. This is exactly what happens when testing the null 
hypothesis of white noise against an ARMA(1, 1) alternative; see Poskitt and 
Tremayne (1980). Obviously the solution is similar and just as the LM test 
against an ARMA(1, 1) alternative reduces to an LM test against AR(1), so 
the test against GARCH(1, 1) disturbances reduces to a test against ARCH(1) 
disturbances. 

Tables 2 and 3 show the results of some Monte Carlo experiments based 
on 1000 replications each. The test statistics are the McLeod-Li test, Q2(p), 
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based on the first P squared residuals, the quasi-LM test of the hypothesis 
that a 1 = 'Y 1 = 0, denoted LM* and based on a chi-square with two degrees 
of freedom, and two one degree of freedom quasi-LM tests against ARCH(1) 
in the measurement equation disturbance only and the transition equation 
disturbance only; these are denoted LM(e) and LM( 1)) respectively. All the 
tests are set up at the 5% level of significance. 

When there is only ARCH in one disturbance term, the appropriate one 
degree of freedom quasi-LM test has the highest power. The other one 
degree of freedom test has a relatively low power, but not so low as to enable 
the tests to reliably distinguish cases where only one of the disturbances is 
subject to ARCH. The LM* test always has a relatively high power, though 
in many cases the power of Q2(1) is similar. 

3.5. Application 

A number of studies have found evidence of ARCH effects in exchange 
rates. The data set we consider consists of 3195 observations on hourly 
exchange rates for various currencies recorded from 0.00 a.m., January 2, 
1987 to 11.00 a.m., July 15, 1987. Baillie and Bollerslev (1991) fitted 
ARIMA(O, 1, 1) models with GARCH disturbances to the logarithms ofthese 
exchange rates. The fact that the ARIMA(O, 1, 1) model is the reduced form 
of the random walk plus noise model suggests that it might be fruitful to fit 
the random walk plus noise with GARCH in either or both of the distur­
bances. Baillie and Bollerslev also included time of day dummies in their 
GARCH models, but we have not, as yet, attempted to incorporate such 
variables in our model, though there is no difficulty, in principle, in doing so. 

For the Deutschmark/dollar exchange rate, fitting the basic random walk 
plus noise model gives 

6} = 6.65 X 10- 8
, 0-; = 333.0 X 10- 8

, 

log L = 18,484.3, Q( 10) = 8.81, 

BIC = -36,950.46. 

There is no evidence of serial correlation in the residuals, but for the squared 
residuals the Box-Ljung statistic, Q2(p) with P = 10, is 54.4, indicating a 
clear rejection of the underlying model specification. The LM* test for 
ARCH is also significant having a value of 34.34. 

The preferred STARCH model is one in which there is GARCH(1, 1) in 
the transition equation disturbance, but no ARCH in the measurement 
equation disturbance. For the modified GARCH specification, (23), the 
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results are 

au = 4.69 x 10- 8
, 

Yo = 100.8 X 10- 8
, YI = 0.163, Y2 = 0.553, 

log L = 18,564.5, Q(lO) = 8.25, Q2(1O) = 8.10, 

BIC = -37,096.73. 

The unconditional variance of 71/ is 355.5 X 10-8
. Thus the variances implied 

by the STARCH model are roughly consistent with those estimated for the 
linear model. The Box-Ljung diagnostics are satisfactory, and there is a clear 
increase in the log-likelihood. The only unsatisfactory feature of the model is 
that the residuals still show some evidence of heavy tails, the kurtosis being 
11.22. Baillie and Bollerslev also found excess kurtosis in their estimated 
models. 

The results for the yen/dollar exchange rate are very similar, with 

Yo = 201.2 X 10-8
, YI = 0.240, Y2 = 0.314. 

However, in the case of the dollar/pound, the variance of the measurement 
equation disturbance was estimated to be zero. 

4. Time-varying parameter ARCH-M model 

In the ARCH-M model of Engle et al. (1987), the conditional variance of 
the disturbance term affects the conditional mean of the observations. In 
Chou et a1. (1992) this model is extended to allow the coefficient of the 
conditional variance to change over time according to a random walk. Thus 
consider the model: 

lO; '" NID(O, 1), 

( 41) 

( 42) 

( 43) 

( 44) 

where, more generally, (43) may be a higher-order ARCH or GARCH 
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process. Chou et al. propose replacing 10;-1 in (43) by the squared innovation 
obtained from the Kalman filter. The model is then conditionally Gaussian, 
just as in the original ARCH-M model where J..Lt is time-invariant. However, 
this may not be satisfactory if we regard the ARCH effect as stemming from 
lOt-I' To handle this problem we may proceed as with the local level model of 
the previous section and evaluate the conditional expectation of 10;-1 at time 
t - 1 when the conditional variance of lOt is required for the Kalman filter. 
The appearance of h t as the coefficient of J..LI' however, introduces a new 
complication since h t is now unobservable at time t - 1. A solution is to 
replace h t by the conditional variance of 10; at time t - 1. Thus (41) becomes 

(45) 

with 

(46) 

Proceeding as in subsection 3.2, with (45) as the measurement equation and 
(44) as the transition equation, we have 

and so 

Thus 

(47) 

In the application presented in Chou et al. (1992), the variance of Y'ft is 
relatively small, and for this reason the results obtained from our proposed 
estimation procedure turned out to be very close to those reported by Chou 
et al. 

S. Latent factor models 

With Ht and Qi specified to be diagonal, the model in (5) and (6) is a 
generalisation of the latent factor model of Diebold and NerIove (1989), 
which allows for general dynamics in the mean. In their formulation such 
dynamics are not included directly. Thus at does not appear, the state vector 
contains only lOt and the state space form reduces to 

(48) 

and 

(49) 
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where St now represents the common factor and si the specific factors. This 
implies that the conditional covariance matrix of Yt will have the typical 
factor analytic form Ft =J1Ptlt- l J1' + Ht*, where Ptlt-l now denotes the 
conditional variance of St. 

Diebold and Nerlove (1989) propose this model as a natural way of 
capturing the co-movements in the variances of seven dollar exchange rates 
with a more parsimonious representation than the multivariate ARCH model 
of Kraft and Engle (1983). But it can also be given a direct economic 
interpretation in the context of the Arbitrage Pricing Theory of Ross (1976); 
see King, Sentana, and Wadhwani (1990) for an application along these lines 
to 16 world stock markets. 

When the conditional variance of S t is generated by a higher-order ARCH 
process, the augm~ntation of the state vector by lagged values of St is 
unnecessary. The reason is that the degenerate nature of the transition 
equation means that the smoothed estimates of these disturbances are the 
same as the filtered estimates. This fact also implies that GARCH-type 
effects can be handled without much effort and in the manner of subsection 
2.4, as eqs. (20) and (24) coincide in this case. 

5.1. Application to exchange rates 

Diebold and Nerlove (1989, p. 19) do not estimate their model using the 
method of section 2, but simply replace the expectation of past square values 
of S t by the squares of the estimates obtained from the Kalman filter. That is, 
they do not apply the correction factor involving Pt-l' They remark: 'while 
we modify the model associated with our simultaneous estimation procedure 
to accommodate the fact that Ft is never observed, it would be preferable 
(but much harder) to preserve the original model and instead appropriately 
modify the Kalman filter recursions'. (Note that their Ft is our St.) 

We re-estimated the Diebold-Nerlove model with and without the correc­
tion term. The two sets of parameter estimates are presented in table 4 
together with their asymptotic standard errors. As it can be seen, both sets of 
estimates are remarkably close, especially those corresponding to the stan­
dard deviations of the specific terms.l In fact, the likelihood functions are 
almost identical: -15,576.79 without the correction versus -15,575.72 with 

lThe parameter estimates presented here differ slightly from the ones reported in Diebold 
and Nerlove (1989). The standard deviations of the specific factors are almost identical, but the 
common factor loadings are higher by a factor of approximately 1.69. At the same time the 
persistence parameter is estimated to be slightly lower than their 0.975, whereas the log-likeli­
hood function (excluding the constant) is -11,614.33 vs. -11,604.29 in their paper. These 
differences are due to the different treatment of the initial conditions. However, for our 
purposes what matters is the difference between the estimates with and without the correction. 
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Table 4 

Parameter estimates for the latent factor model. 
-... -----.-".----~." "-------.. -----~- .. 

CD FF DM LIR YEN SF BP 
------ " ..... ---_.- _._---_._---_._---_. ------

(a) Without correction term 

A 2.62 20.38 22.21 15.60 13.09 24.16 -15.83 
(0.77) (5.81) (6.30) (4.46) (3.74) (6.88) (4.52) 

h*1/2 5.05 6.78 4.57 8.84 10.33 8.42 10.24 
(0.14) (0.25) (0.25) (0.26) (0.30) (0.29) (0.29) 

Persistence: 0.9535 Log-likelihood: -15576.79 
-_._------ -------- ---- ----""._----- ---

(b) With the correction term 

A 2.41 18.80 20.48 14.40 12.09 22.30 -14.61 
(0.78) (5.87) (6.38) (4.53) (3.82) (6.93) (4.58) 

h*1/2 5.05 6.78 4.61 8.83 10.33 8.42 10.23 
(0.14) (0.24) (0.25) (0.26) (0.31) (0.29) (0.31) 

Persistence: 0.9703 Log-likelihood: - 15575.72 
-------- ---- ---

correction. The main difference is that the factor loadings obtained without 
the correction are somewhat higher than those which use it, whereas the 
corresponding persistence parameter changes from 0.9535 to 0.9703. This 
similarity is not surprising as the latent factor has no dynamics in the mean, 
only in the variance. Hence, the correction term has a one-off effect on the 
variance of the current observation and does not carry over to further 
observations. 

When the estimates of the time-varying standard deviation of the common 
factor obtained by both methods are plotted, it is found, as expected, that the 
conditional variances obtained using the correction term are larger than 
those obtained without it. However, the correlation between the two sets of 
figures is very high. Therefore it seems that because of the special structure 
of this particular model, ignoring the correction does not substantially alter 
the results, especially if one is mainly interested in decomposing the observed 
series into common and idiosyncratic components. 

5.2. Fat-tailed disturbances 

The special structure of the transition equation allows us to generalize the 
model to allow for disturbances with fat tails. This is important because 
Gaussian ARCH models do not seem to capture completely the degree of 
leptokurtosis often observed in practice, particularly in financial data. 
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As in Bollerslev (1987) and Baillie and Bollerslev (1989) our approach is 
based on the t-distribution, which includes the normal as a limiting case, but 
has generally fatter tails. Let 

(50) 

(51) 

where sit is a univariate standard normal variate, s1'* a multivariate one, gt 
a x2 variable with v degrees of freedom, and all three variates are mutually 
independent. Thus, conditional on the information at time t - 1 both the 
common and specific factors are proportional to a standardized t-distribution 
with v degrees of freedom. Note, however, that although St and s1' are 
conditionally orthogonal, they are not independent because of the common 
denominator. 

The above assumptions imply that each element of Yt has a conditional 
distribution which is proportional to a Student's t. Therefore, by allowing 
v < 00 we can have not only a leptokurtic unconditional distribution due to 
ARCH effects, but also a fat-tail conditional distribution. 

Using the properties of the multivariate t-distribution, as given, for exam­
ple, in Zellner (1971, pp. 383-389), the updating equations, which give the 
mean and variance of St conditional on Yt are 

A P A'F- 1 
St = tit-I t Yt (52) 

and 

(53) 

Notice that no real extra complications arise in this case as eq. (52) is the 
standard state updating equation under normality [see Harvey (1989, ch. 3)], 
while (53) is basically the standard covariance matrix updating equation, the 
term outside the curly brackets being simply a scalar correction factor. 

The log-likelihood function now becomes 

log L = - (TN/2) In[ 7T(V - 2)] + T{ln r[(v + N)/2] -In r(v/2)} 
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Table 5 

Parameter estimates for the latent factor model with t-distributed factors. 
----------

CD FF DM LIR YEN SF BP 
-----.----~-.------- ----- --- - ------------------ ----

A 3.26 22.72 24.62 17.56 14.45 26.54 -16.76 
(0.95) (6.02) (6.50 (4.67) (3.90) (7.02) (4.50) 

,,*1/2 5.70 5.36 4.40 7.09 11.13 8.43 11.15 
(0.25) (0.30) (0.29) (0.35) (0.49) (0.41) (0.50) 

Persistence: 0.9305 Log-likelihood: -15070.54 Degrees of freedom: 3.89567 
--------- ------ ------- ---------- ----- ---- ------

We re-estimated the Diebold and Nerlove (1989) data with this new distribu­
tional assumption, and the results are presented in table 5. The most 
distinctive feature is that conditional normality is strongly rejected (the LR 
ratio is 1010.36). In fact, jJ is estimated to be just below 4, which implies that 
not even the conditional fourth moments exist. Nevertheless the other 
parameter values do not change substantially, and the new estimates of the 
common factor and its variance are very highly correlated with those ob­
tained under normality. The persistence parameter, however, is now 0.930 
compared to 0.97 under normality. 

The fact that the estimate' of jJ is so low is mainlY due to the high excess 
kurtosis of the E;*'S. It is possible to remove some of this excess kurtosis by 
letting the E;*'S follow ARCH processes. However, the main source of the 
problem appears to be a small number of observations which are around ten 
standard deviations from the mean. If these were treated as outliers and 
removed from the data set, the estimate of jJ would be much higher. 

6. Conclusion 

The proposed estimation procedure for unobserved components models 
with ARCH disturbances can be carried out using the Kalman filter. It 
involves an approximation, but the Monte Carlo results for a simple random 
walk plus noise model indicate that it works well for reasonably large 
samples. Monte Carlo results also show that the naive procedure in which the 
required correction factors are not employed can be quite inefficient. For the 
two applications examined, the potential inefficiency of the naive procedure 
is not particularly apparent insofar as the results obtained are similar to 
those with the proposed procedure. However, other applications could easily 
show a significant difference, and the fact that the proposed procedure 
proved to be viable in the cases examined makes us feel confident in 
recommending that it be adopted. 
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Appendix 

Properties of conditionally Gaussian ARCH disturbances in unobserved 
component time series models 

Consider the following ARCH process, where the lagged disturbances have 
been replaced by their conditional expectations: 

(A.l) 

where c; is a standard normal variable and the t - 1 under the expectation 
operator indicates that it is conditional on observations up to and including 
time t - 1. Notice that, because we are dealing with unobserved component 
models, Ct-I may not be included in the information set. If Ct-I were 
included in the information set, then C t would be a standard ARCH(1) 
process, as defined by Engle (1982). For simplicity, we are considering the 
ARCH(1) case, but the results could be easily extended to higher-order 
processes. 

Taking expectations in (A.1), we get 

The unconditional variance of C t is given by 

and, therefore, if ir l < 1, 

Because of the normality of c;, all the odd unconditional moments of ct are 
zero, that is, 

The fourth moment of C t is given by 
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Using Jensen's inequality, 

E( sn s 3a~(1- an/(l- a l)2 + 3a~Es:_I' 

Then, if 3a~ < 1, 

(A.2) 

Therefore, the kurtosis of St in (A.I) is bounded from above by the kurtosis 
of the standard ARCH(I) process; see Engle (1982). 

It is easy to see that St is a serially uncorrelated process, since 

E(StSt_T) =E(s;)E[(ao+al E S;_I)s;_T(ao+al E St2_T_I)] t-I t-T-I 
=0. 

On the other hand, s; is autocorrelated, but its autocorrelation function is 
bounded from above by the autocorrelation function of the standard ARCH(1) 
process. To see this, define the variables 

Then, 

Zt=al E Zt_1 +vt· t-I 

The order 7 autocorrelation coefficient of s; is given by 

PT = E( Ztzt-T)/E( z;) = E[ (al t~/t-I + vt )Zt-T ]/E( z;) 

= [aIE(Zt-Tt~/t-l) + EVtZt_T]/E(Z;), . 7= 1,2, .... 

The second term in the numerator of the expression above is zero, 

Evtzt_T = E[ (s; - t~1 s;)( S;-T - ES;_T)] 

= E[s;_T{ao + a l E S;_I - E s;)] = o. t-I t-I 
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Therefore, P
T 

is given by 

PT = a1E[ Zt-T t~l Zt-l] /E( z;). 

Using the fact that 

= a 1 E Zt-l + EVt = al E Zt-1 
/-1 / t-1 

= al E.z t - r , 
/-r, 

r = 1,2, ... 

we can express P
T 

as 

= aJE[ (/~T Zt-T )2]/ E( z;). 

Using again Jensen's inequality, 

and so 

(A.3) 

The inequality in (A.3) shows that the autocorrelation function of e; is 
bounded from above by the autocorrelation function of the ARCH(I) pro­
cess; see Milhoj (1985). 

Another possible way of introducing ARCH-type behaviour in the distur­
bances of unobserved component time series models is to replace the lagged 
disturbances by the square of their conditional expectation as follows: 
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The unconditional variance of £i is still easily shown to be zero, but the 
unconditional variance is smaller than in the previous case: 

and, therefore, 

As in the previous case, £i is serially uncorrelated, 

The fourth moment of £; is bounded from above by the fourth moment of £ ( 
in (A.l), 

Similarly, the autocorrelation function of £i 2 is bounded from above by the 
autocorrelation function of £;. If p; is the order T autocorrelation coefficient 
of £i, then 

where 

and 

v( = £; - E £;-1. 
(-I 
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As before, EVtZ t -
T 

= 0, and therefore, 
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