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A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM
USING AN INCOMPLETE SOLUTION OF THE SUBPROBLEM*

WALTER MURRAY' AND FRANCISCO J. PRIETO#

Abstract. We analyze sequential quadratic programming (SQP) methods to solve nonlinear
constrained optimization problems that are more flexible in their definition than standard SQP
methods. The type of flexibility introduced is motivated by the necessity to deviate from the standard
approach when solving large problems. Specifically we no longer require a minimizer of the QP
subproblem to be determined or particular Lagrange multiplier estimates to be used. Our main focus
is on an SQP algorithm that uses a particular augmented Lagrangian merit function. New results
are derived for this algorithm under weaker conditions than previously assumed; in particular, it is
not assumed that the iterates lie on a compact set.
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1. Introduction. The problem of interest is the following:

NP mineiglnize F(z)
s.t. c(z) >0,

where F' : R* — R and ¢ : R® — R™. Since we shall not assume that second
derivatives are known, computing ¥, a point satisfying the first-order Karush—Kuhn—
Tucker (KKT) conditions for NP is the best that can be achieved. Such points are
feasible and satisfy the following conditions:

(1.1) VF(@*) = V@), Xe@*)=0 j=1,....,m

for some nonnegative multiplier vector X* € ®™. Whenever the term “KKT point”
is used in the following sections, it will mean a point satisfying the first-order KKT
conditions for NP. Despite this theoretical limitation, we prefer some KKT points to
others to try and satisfy our real purpose of finding a minimizer. For example, if the
initial estimate is feasible we do not wish to converge to a nearby KKT point if at
that point the objective function is higher.

We use the term stationary point to denote a point that is feasible and satisfies
(1.1) for some multiplier vector A € R™ that is not necessarily nonnegative.

Typically SQP algorithms generate a sequence of points {z;} converging to a
solution, by solving at each point, x, a quadratic program (QP) of the form
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QP mineiglize VF(zk)Tp+ pTHip
p n
s.t. c(zx) + Ve(zr)p > 0,

for some positive definite matrix Hy. Let pg (referred to as the search direction)
denote the unique solution to QP. We define xx1 = xx + axpk, where the steplength
ay, is chosen to achieve a reduction in a merit function.

SQP algorithms are viewed by many as the best approach to the solution of NP
when 7 is small ( < 200 ). As the size of the problem grows, usually so does the relative
importance of the effort to solve QP when compared to the total effort. Indeed, for
many large problems the effort to solve QP dominates the total effort.

When the minimizer of QP is used to define the search direction, it is not necessary
in any theoretical discussion of an SQP algorithm to define how the QP subproblem
is solved. Most implementations of SQP methods currently available use an active-
set method to solve the QP subproblem. For a comprehensive survey of active-set
methods see [18], [13], and [17]. The potential number of iterations to solve a QP using
an active-set method grows exponentially with n. In practice the number of iterations
grows much more slowly than exponential (if this was not the case active-set methods
would be hopelessly inefficient). Nonetheless, the number of iterations required to
solve a large QP is usually large. In any implementation of an SQP method it is
necessary to limit the number of iterations allowed to solve a given QP subproblem.
If the QP solution process is terminated prematurely the SQP algorithm may break
down. It is in part for this reason that the development of SQP methods for large-
scale problems has been inhibited. Even for small problems there are occasions when
the number of QP iterations is excessive. Since the definition of “small” continues to
increase as computers become more powerful we can expect the cost of solving the
subproblems to grow in importance.

In the algorithms presented here we have endeavored to improve the efficiency
of SQP methods by circumventing the need to determine the minimizer of QP. We
show that a suitable search direction may be computed from information available at
any stationary point of QP. Stationary points occur as iterates within most active-set
methods to solve QP and for such methods the number of iterations to determine a
stationary point increases only linearly with the size of the problem. Consequently,
the search direction may be found by applying an active-set method to QP and ter-
minating the procedure early.

It may be thought that by expending much less effort to compute the search
direction, the number of iterations for the outer algorithm may increase. However,
it has been observed that large numbers of QP iterations are required only when x
is a poor approximation to z*, that is, when the QP subproblem does not model
the nonlinear problem well. We hypothesize that a search direction based on the
minimizer of such subproblems is little better than using information at a stationary
point. Our preliminary results reported in §6 support this hypothesis.

Not solving the QP subproblem also implies that we do not know the QP mul-
tipliers, which are often used to estimate the multipliers of NP. In general, SQP
methods usually use some specific estimate of the NP multipliers in the definition
of the method and hence in the proof of convergence. When solving large problems
specific definitions of multiplier estimates are not always computationally attractive.
In our analysis we allow for flexibility in how multipliers are defined by requiring only
that the multiplier estimates satisfy certain conditions.
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1.1. Incomplete solutions for QP subproblems. There have been other pro-
posals to define the search direction for an SQP algorithm other than as the minimizer
of the QP subproblem. In Dembo and Tulowitzki [9] an algorithm is analyzed for
which the search direction p; has the property that

ik — will = o(llpell),

where p’,"c denotes the minimizer for the kth QP subproblem, (unless stated otherwise
all norms in the paper are £3-norms).

We follow a different approach and define a search direction for which the effort
to compute it has a guaranteed bound. A different algorithm, but using the same ap-
proach, was suggested by Gurwitz and Overton [20]. However, no global convergence
results were given for their algorithm.

In the course of solving a QP an active-set method generates iterates that are sta-
tionary points. We show that such points may be used to construct a suitable search
direction. The step to the stationary point is not generally an adequate search direc-
tion. However, if the stationary point is not a minimizer then there exist nonoptimal
multipliers. We show how an auxiliary direction may be constructed using informa-
tion about the nonoptimal multipliers. This auxiliary direction, when combined with
the step to the stationary point, gives a suitable search direction.

Terminating the QP algorithm prior to obtaining a solution impacts the SQP
algorithm in a number of critical ways. Not only is the search direction different,
but also the QP multipliers will not be available. The merit function of principal
interest requires the definition of a search direction in the space of the multipliers. In
the past, this search direction has been defined using the QP multipliers. The fact
that such multipliers are positive was crucial in the analysis of these algorithms. The
consequences of terminating the QP solution process early are therefore far reaching.

The remainder of this paper is organized as follows. Section 2 describes the form
of the general algorithm, and the definition of the search direction. Section 3 studies
the convergence properties of the algorithm; it is shown that such an algorithm is
globally convergent. In §4 we show that the algorithm converges superlinearly. We
also show that the penalty parameter used in the merit function is bounded. Section 5
considers the use of alternative merit functions. Finally, §6 presents numerical results
obtained from an implementation that uses the merit function of principal interest.

2. Description of the algorithm. The search direction we propose could be
used with most of the merit functions analyzed in the literature. However, our primary
interest is the following merit function:

(2.1) La(z, X 8,p) = F(z) = M(c(z) — 8) + 30(c(2) — 8) (e(2) ~ ),

where s > 0 are slack variables, and the scalar p is known as the penalty parameter.

This merit function was suggested by Gill et al. {16] and is used in the SQP code
NPSOL. It is similar to merit functions proposed by Wright [34] and Schittkowski
[32]. Although our primary interest is this specific merit function, we also show (§5)
how the ideas discussed can be extended to the use of other merit functions. The
reason for our focus on this merit function is due to the success in practice of NPSOL.
The merit function is also used in a new SQP code, LSSQP [10], designed to solve
large problems.
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The search is performed on an expanded space, including the Lagrange multiplier
estimates A, and the slack variables s. The symbols p, £, and q will be used to denote
the components of the search direction on the corresponding subspaces. In this case,
the value of the merit function as a function of the steplength will be denoted by

(22) ¢(a’ m?p7)‘7€, 57 Qa p) = LA(m + apa A + a§7 8 + aqv p)

The explicit reference to the parameters will be omitted in what follows. The deriva-
tive of ¢ with respect to a is denoted by ¢'. Also, ¢x(a) and ¢} (a) will be used to
indicate the values of ¢ and ¢’ evaluated at (@, Dk, Mk; Ek, Sky Tics Pk)-

The following conventions will be used in the rest of the paper:
gk = VF (), Ay = Ve(zy), e = o),

and the symbols Ay and & will be used with the same meaning as Ay and ck, but
restricted to the set of active constraints at the given point. The term active constraint
will be used to designate a constraint that is satisfied exactly at the current point
(¢j(z) = 0in NP, or afp = —¢; in QP), and the set of all constraints active at a given
point will be referred to as the active set at the point.

The objective function for the QP subproblem will be denoted by ¥ (p),
(2:3) ¥ (p) = gip + 30 Hip.

Sometimes, 1 will denote the function of one variable ¥ () = ¥ (p + vd).

For any vector v, the notation v~ will be used to denote the vector whose jth
element is defined as

v; = —min(0,v;).

Also, the symbol e denotes the vector (1,...,1)T, and symbols of the form Bgp.
denote fixed scalars related to properties of the problem, or the implementation of
the algorithm, where “abc” identifies the specific scalar represented.

Finally, throughout the paper we will use the symbol ||u|| to denote the £3-norm
of the vector u, unless we explicitly indicate that a different norm is being considered.

2.1. The algorithm. We first present an outline of the algorithm. Given Hj
positive definite, o and Ag, select p_; > 0,0 < o < 71 < 1, B > |lc™(20)]| oo,
Bu = | Aol and 8, > 0.
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ALGORITHM ETSQP

k<20
repeat
Obtain the search direction py from the QP subproblem

min, Yr(p) = g{p+ 30T Hip

s.t. Ap+ce >0

Compute g, an estimate of X* such that ||ux|| < 8,
&k — bk — M
if pp—1 =0

Compute si from (sx); = max(0, (ck);)
else

Compute s from (sx); = max(0, (ck); — (Ak)j/Pr—1)
end if

qr «— Arpr + cx — Sk
if ¢(0) < —3P¥Hpx

Pr < Pk—1

clse Be(pe) + (X — )T (i — 1)
+ (2Ak — i) (ck — sk
2 k\Dk

P — max( Pk—1> llcx — s2 ’ﬂp)
end if
if ¢ (1) < ¢k (0) + 04} (0)

a1
else

Select & € (0,1) to satisfy
¢ (@) < ¢ (0) + 04 (0),  [44(4)] < —n¢y(0)
end if

while c(zx + api) Z —Bce or ¢r(G) > ¢i(0) + 0é¢) (0) do
& — &2

end do

ap — &

Tk+1 Tk Pk
(5 )= () ()
Compute gx41, Ax41 and cpqy
Update Hy to form Hyyq
k—k+1
until convergence

The following are some comments on the steps of the algorithm.
(i) At each point xj, we form the QP subproblem

(2.4a) minimize gip + ipTHip
p n
(2.4b) subject to Agp > —cy,
and determine a stationary point for QP, that is, a point 7y satisfying

(2.5a) 9k + Hepr = AL 7,
(2.5b) Awpr+ex 20, mg (Akbr + ) =0,

for some vector 7 € ™ (the QP multipliers at ).
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From information available at the stationary point we construct a search direction
pi and pi an estimate of X*. The precise conditions that py and px need to satisfy
are given later in this section. If py = 0, we set Ay = ux and terminate. Otherwise,
we compute the search direction in the space of the multiplier estimates & as

(2.6) €k = Uk — )\k.
(ii) The slack variables sy are computed from

max (0, (cx);) if pr-1=0,
(2.7) (sk); = ma.x(O, (k) — Qﬂl) otherwise.
Pk—1

These values minimize the merit function (2.1) at (2, Ag, px—1) with respect to the
slack variables. The slack variables s; appear in the merit function (2.1) as part of
the term c; — sg. From (2.7), this term takes the value

min (0, (cx);) if pg—1 =0,
(Mk);

(2.8) (ck); = (sx); = min((Ck)j,
p

) otherwise.

The following inequality will be useful in the analysis of the algorithm:
(2.9) llei Il < llex — skl

To simplify the notation in the justification of this result, we drop the subscript k.

If ¢; — 5; = ¢; then clearly |c; — s;| = |¢j| > [¢f|.

If cj — 85 # ¢j and ¢; > 0, then ¢; = 0 < |¢; — s;|. Otherwise, ¢; — s; # ¢; and
¢; < 0. From (2.8) we get ¢; —s; < ¢; < 0, and hence |c; —s;| > |¢;| > [¢j |. We have
shown |c; | < [¢; — s;| under all circumstances, implying (2.9).

(iii) The search direction in the space of the slack variables gy is set to the vector
of slack variables for the QP subproblem, i.e.,

(2.10) Qk = AxDr + Ck — Sk-
For a linear constraint this choice keeps the corresponding slack variable at its opti-

mum value.
(iv) The penalty parameter will not be modified if the condition

(2.11) ¢4 (0) < — 3Pk Hxipr,

is satisfied, where ¢y (cx) is defined in (2.2). Otherwise, we define the penalty param-
eter as

(212) Pk = m&X(2Pk—-1, ﬁk, ﬁp) s

where 3, is some positive constant,
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~ _ Y(pe) + (2M - 1) (ck — sx)
Pr =

(2.13) oo = s8]

’

and 1 was defined in (2.3). It will be shown that the definition (2.12) ensures that
(P, &k, qx) 1s a sufficient descent direction for the merit function, in the sense that
condition (2.11) holds for this value of the penalty parameter.

(v) The steplength ai > 0 is computed to reduce ¢x(a) while keeping the con-
straint violation bounded. The termination conditions for the linesearch are as follows:
If

(2.14) ¢k (1) — ¢x(0) < 0 (0),

set & = 1. Otherwise, find an & € (0, 1) such that

(2.15a) $i(6) ~ ¢x(0) < 064, (0),
(2.15b) 9 (a) > n¢i(0),
where 0 < o < < 1.

If the condition
(2.16) c(xk + apr) = —fce

holds, we define ax = &; otherwise we compute ay by performing a backtracking
linesearch from & until (2.15aa) and (2.16) are both satisfied. It will be shown later
that such a steplength always exists, and that Algorithm ETSQP is well defined. This
definition of the steplength ensures that ¢(xy) > —f.e for all k. A more sophisticated
algorithm could be used to determine a when (2.16) does not hold. However, we
anticipate such events will be rare.

(vi) Finally, x4 and A are updated from

(217) (R )= (5 ) v ()

2.2. The definition of the search direction. At each iteration of Algorithm
ETSQP an inner iteration is performed to determine the search direction by solving
the QP subproblem (2.4a) using an active-set method. The following is an outline of
a suitable algorithm to determine the search direction. The outer iteration subscript
has been omitted, and the subscript ¢ refers to the inner iterations.

We assume that positive constants Gy, 8s, va have been defined (G, < 1).
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ALGORITHM SD
Compute pg satisfying:
Apo +c¢ 20, [Ipoll < Bplic™ |l 97 p0 < Bylle||

Form /10, the active-set matrix at pg, as the set of all rows in A corresponding
to

active QP constraints at pg

i+ 0

repeat

Compute p; from ( A 0 ) ( i ) = ( 0

T
i — min(l,infj{—city | alp; < 0})
a; pi
Pit1 & Pi + Vb
Set A;11 to be the active-set matrix at p;4y
t—1+1
until p; is a stationary point. p — p;
if#>0
pe—p
else
Set v, « 1 if 7, < By min; 7, otherwise set v, « 0

Compute d by solving: min{d?d | A;d = v}

d — d/|d]| ] i
. (g+ Hp)'d . . Cj'*'ajﬁ T

7 o min (g inf{ “5;7—'%“0}%)
if || + vd|| > |13l

p+p+d
else

PP
end if

end if

Some comments on this procedure are presented below.

(i) An initial feasible point pg of the QP subproblem is obtained. When the
minimizer of the QP is used as the search direction, then, given the uniqueness of p,
the choice of py is irrelevant. If we determine the search direction from a stationary
point that is not a minimizer, the sequence of stationary points that we compute
depends directly on the value of py. We wish to define the initial point in such a
manner that all stationary points are satisfactory points at which to terminate the
solution process. It will be seen that the following conditions on pg are sufficient to
ensure our objective.

For some constant 8, > 0,
(2.18) lIpoll < Bolle™ll  and  gTpo < Byl -

(ii) A sequence of feasible descent steps are taken, for example, by first computing
the unique step p; to the minimizer of the QP on the current working set as the least-
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length solution of the system of equations

019 (f f})?)(f;>=<~g—0flpi),

where p; is the current estimate. A step +; is taken, where +; is obtained as either
one or the step to the nearest constraint,

(2.20) v = min(l,ir];f{ it (;_p' aTp; < 0})

The QP algorithm may be terminated at any stationary point p. (Algorithm SD
is terminated at the first stationary point.) It will be seen in the proofs that to always
use p as the search direction will not in general ensure convergence.

(iii) If p is the minimizer of the QP subproblem the search direction p is defined
as p = p, else

_J p+Ad it fipll < |p+Adl,
(2.21) pP= { D otherwise,

where the vector d and the scalar 4 are computed with the following properties:
d satisfies A;d > 0, and ||d||cc = 1.
The rate of descent along d is “sufficiently” large. By this we mean d satisfies

(2.22) §7d < Bagtd*,

where 0 < 83 < 1, § = Hp + g and d* solves

ming dTg
(2.23) st Ad>0,
lldlloo < 1.

There are many procedures for computing a suitable vector d. For example, if the
singular values of A; are bounded above and below and A; has full row rank then a
suitable d may be computed as follows. Define a vector v to satisfy

v = 1 if ﬁ'j <0,
771 0 otherwise.

We then compute d as the least-length solution of /L-y = v and define d as
d = d/||dco-
For this direction d we have

(2.24) §%d = #TA;d = #Tv < —— min4#;.

Under the assumptions made on A; it follows ||d]|o is bounded. We shall now show
d is a “sufficient” descent direction. Let w* denote the solution of the problem

min, 7Ty

st. u>0, Julle <1
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since @ > 0. If || A;|| is bounded it follows ||| is bounded. From (2.24) and the above
inequality we get
r 1 1

Ty ~Thg T e T
FA=TAA=TY S i1 0 = i), ¢

Lemma 2.1 presents some properties of the solutions of (2.23). These properties
are based on the observation that the cost vector and the coefficients of each constraint
can be normalized without affecting the feasible region or the solutions of the problem.
Since we are concerned with sequences we reintroduce the outer subscript. Define
gr = Gr/|lgx]l and a matrix By, whose jth row is the normalized jth row of A;. The
problem

ming _lj{d
(2.25) st.  Bpd >0,
ldllo <1,

has the same feasible region and the same solutions as (2.23). We tacitly assume
no row of A; is a zero vector, otherwise it could be omitted from both problems.
Likewise, if ||gx|| = O it implies p is the minimizer of the QP.

LEMMA 2.1. Given a subsequence of iterates {zy}, generated by Algorithm ET-
SQP and such that for all of them Py # p’;, the directions d,’: obtained as solutions of
(2.23) at each point satisfy §7dy < 0 and ||d}|lcc = 1. Furthermore, if Gtdyx — 0 along
the subsequence, then either gy — 0 or for any limit (§, B) of the sequence {(§x, Bx)},
defined as in (2.25), it holds that § = BTv, with v > 0.

Proof. Since pj, — fx is a feasible descent direction of (2.23) at d = 0 it follows
that d = 0 is not optimal, and the solutions of (2.23) satisfy §idy < 0 and ||d}]leo = 1.

Consider now the sequence of problems of the form (2.25) and the problem ob-
tained from a limit of the sequence {(gx, Bx)}. The feasible regions of all problems are
compact convex polytopes; if we denote the vertices of the polytope corresponding to
problem k by {d}}, where the index ! takes a finite number of different values, it holds
that for each [, di, — d', a vertex for the polytope corresponding to the feasible region
of the limit problem (assume without loss of generality that the convergent subse-
quence has been chosen so that the number of vertices is the same for all problems in
the subsequence).

Any feasible point of the limit problem, d, can be written as a convex combination
of the vertices d', d = > ¢id'. We can then construct for any feasible d a sequence
{d*}, where each point d* is defined as d* = 3", (;d}, having the properties that d*
is feasible for the kth problem (2.25), and d* — d.

If Gr # 0 then §7d; — 0 implies §¥df — 0 and it must hold that d = 0 is
an optimal solution of the limit problem, implying that there exists a vector v > 0
satisfying § = BT v. O

Note that §Td; — 0, if and only if Gidy — 0, where di is a sufficient descent
direction.

The scalar 4 is given by

(2.26) ¥ = min(¥,4, Yu),
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where 7y, is a specified upper bound on the steplength,

s Cj + aJTﬁ T
(2.27) 7_H}f{__;1f—d— | ajd<0},
is the largest feasible step from p along d, and
. (g+Hp)Td
(2.28) A= g

is the step to the minimizer of ¥(p + ~vd).

2.3. The multiplier estimates. Equation (2.6) defining the search direction on
the multiplier space & requires the computation of an estimate yj for the Lagrange
multipliers. The estimates {u} are then used to update { A}, the Lagrange multiplier
estimate used in the merit function. To allow flexibility in algorithm design we have
chosen to specify conditions on the multipliers estimates pg rather than give explicit
definitions.

It will be shown that the following conditions on uj are sufficient to ensure that
the algorithm is globally convergent.

MCI1. The estimates p are uniformly bounded in norm, that is ||ux|| < 8, < .

MC2. The complementarity condition ul(Axpx + cx) = 0 is satisfied at all itera-
tions.

We may satisfy these conditions by choosing ux = 0. Condition MC2 is made
for convenience; condition MC1 and the form in which the multiplier estimates are
updated imply that {A\;} are uniformly bounded.

LEMMA 2.2. If condition MC1 holds, then ||| < B, for all k.

Proof. The proof is by induction. We select 3, to satisfy || Ao|| < 8,. From (2.17),

(2.29) Ak+1 = A + ak(uk — )\k), k>0.
Using norm inequalities and 0 < ax < 1, we have

M1l < arllpell + (1 = ar) IAell < arBy + (1 — ar)Bu = By,

as required. ]

2.4. Second-order information. We choose the matrices {Hy} to be positive
definite and bounded, with bounded condition number. In practice, such matrices
may be generated (see [15]) by updating a quasi-Newton approximation to the Hessian
of the Lagrangian function or the Hessian of the augmented Lagrangian function in
each iteration together with certain safeguards (for example, if the factors of Hy are
updated, by enforcing bounds on the size of the elements, and ensuring sufficiently
positive diagonal elements). These conditions can be written as follows:

HC1. By < o is the largest eigenvalue of {Hy}.

HC2. Bsyrr > 0 is the smallest eigenvalue of {Hy}.

3. Global convergence results. The results in this section establish global
convergence properties for Algorithm ETSQP, under certain assumptions on the prob-
lem NP. We first introduce these assumptions, and then, under the condition that they
hold, we prove the following results:

(i) The iterates {z\} lie on a compact set.
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— In Lemma 3.1 we show that the quantities associated with the algorithm
are well defined at all points.
In Lemma 3.2 it is shown that if ||zx| is large then ||px|] cannot be
arbitrarily small.

- In Lemma 3.3 we show that p computed using Algorithm SD satisfies

Y(p) = gTp+ LpTHp < ~BipT Hp + Ballc — |,

where 5, and (3; are positive constants.
— Lemma 3.4 proves that the sequence {z,} lies on a compact set.
— Lemma 3.5 shows that the sequence {px} also remains bounded.

(ii) The sequence {||px||} dominates the sequence {||zx —z*||}, where z* denotes a
KKT point closest to z. The main implication of this result is that ||px|| — 0
is sufficient to ensure that z — 2, a KKT point of NP.

— It is shown in Lemma 3.6 that the KKT points for problem NP are
isolated.

~ Lemma 3.7 shows that if |23, — 2*|| — 0 along a subsequence then along
the same subsequence |7 — X*|| — 0.

— Lemma 3.8 introduces another preliminary result, proving that if pp — 0
along a subsequence then along this subsequence |zz — =*{ — 0, where
Z* is a KKT point for NP nearest to x;. Moreover, for large enough k,
Pr is the minimizer of the QP subproblem, and the correct active set at
«* is identified.

— The proof that ||px|| dominates ||z — 2*|| is given in Lemma 3.9.

(iii) Bounds on the growth of the penalty parameter py. We cannot prove that py
will remain bounded in the algorithm without stronger conditions on the mul-
tiplier estimate pg, but we can show that its growth is bounded by certain
quantities related with the algorithm, and that is enough to prove conver-
gence.

- We show in Lemma 3.10 that at all the iterations where the penalty
parameter is modified the following bounds hold,

pellek —sell SN and  pillpell® < V.

— In Lemmas 3.11 and 3.12 we show that similar inequalities hold at all
iterations.

(iv) The steplength oy is bounded away from zero if we are not close to a solution.

— We first need a bound on the second derivatives of ¢(c). In Lemma 3.13
we prove that ¢x(ax) < N for some positive constant N.

— In Lemma 3.14 we show that, if ||pk|| is large enough, there exists a value
a > 0 independent of the iteration such that o > a.

(v) In Theorem 3.15 we show that zj — z*.
(vi) Finally, we prove that Ay — A*.

— This result requires stronger conditions on the multiplier estimate pg
than just MC1 and MC2. We start by introducing a third condition
MCs.

— Lemma 3.16 strengthens the result in Lemma 3.14 showing that, under
the new conditions on the multipliers, ay is uniformly bounded away
from zero.

— In Theorem 3.17 we show that A\; — \*.
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3.1. Assumptions. Some of the following assumptions make use of the concepts
of stationary points and KKT points at infinity. We will say that NP has a stationary
point at infinity if there exist sequences {zx} and {n} such that ||zx]| — oo and/or
I/l — oo, and

C; - 07 A{ﬂk — Gk Oa nl{ck — 0.

As before let By, denote a matrix whose rows are the normalized rows of A and g,
denote the normalized gradient vector. Define vy so that AL ni—gi = (BF vic—g) || gx])-
If in addition to the preceding conditions we have v > 0, where v indicates the limit
of some subsequence {vy}, we then say there is a KKT point at infinity.

Finally, we will say that strict complementarity does not hold at some stationary
point at infinity if for the preceding sequences and some constraint j we have

(ck); — 0 and (nk); — 0.

We make the following assumptions.
Al. For some constant 3. > 0, the global minimum of the problem

minimize F(z)
zER"
s.t. c(z) = —PBee,

is bounded below.

A2. There exist no KKT points at infinity for problem NP.

A3. F, cj;, and their first and second derivatives are continuous and uniformly
bounded in norm on a compact set.

A4. The Jacobian corresponding to the active constraints at all KKT points has
full rank.

A5. A feasible point py, exists to all the QP subproblems, satisfying

Pkl < Bollei | and  gipry < Bplici

for some constant G, > 0.

A6. Strict complementarity holds at all stationary points of NP, including sta-
tionary points at infinity, if they exist.

A7. The reduced Hessian of the Lagrangian function is nonsingular at all KKT
points. The larger the value of 3., the stronger is assumption Al. There will be
problems, for example F(z) = f(z)T f(z), where it is known a priori that Assumption
A1 holds with 8, = oo. Also, if Al does not hold with 3, = 0 then it is possible for
any reasonable algorithm to diverge.

Assumption A5 imposes conditions on the initial point for the QP. It is possible
that no point satisfies these conditions; this would be the case for example if one
of the QP subproblems generated by the algorithm is not feasible. Nevertheless, by
introducing an additional variable it is possible to construct a modified problem for
which satisfying the conditions on py, is trivial. Consider the problem

minimize F(z,%Z) = (1 — w)F(z) + wZ
(3.1) (z,&)eRn+!
s.t. c{z)+Ze>0 and E >0,

where Z € R and w € [0,1]. The KKT points for this problem are also KKT points
for NP if NP is feasible and w is sufficiently close to one. The modified problem is
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always feasible, and the corresponding QP subproblem takes the form

minimize (1 —w)glp+wp+ L T 5 )H (IZ)

minimize (1 - w)gep +wp s( 0" P )Hx 5

s.t. ¢k + Arp + Tre + pe > 0,
Ir+p > 0.

For this QP subproblem the point

Po = ( g ) = < ||(ck+-’§k@)—“0° )

is feasible since we can ensure that Zp > 0. Therefore there always exists a feasible
point that satisfies A5 with 8, = 1 since ||pol| = ||(cx + Zxe) ||oo and

VFpo=( 1-w)gf w) ( g ) = wl|(ck + Zre) " loo < ll(ck + Zx€) {00,

implying that the conditions on pg, in Assumption A5 are trivial to satisfy for (3.1).

3.2. Existence of the iterates. We start by showing that all the quantities
associated with the algorithm are well defined. In particular, we show that the choice
of penalty parameter ensures (2.11) is satisfied and that the steplength exists.

LEMMA 3.1. Under Assumptions A3, A5 and conditions HC1, HC2, the proce-
dures given in the algorithm to compute the values of the penalty parameter pyx and
the steplength oy are well defined.

Proof. We drop the subscript &£ denoting the iteration number, to simplify the
notation.

Consider the gradient of the merit function L,, defined in (2.1), with respect to
xz, A, and s,

9(z) = A(@)™A + pA(z) (c(z) — 5)
(3.2) VLi(z, )\ 8)= —(e(z) — 8)
A= ple(z) - s)

It follows from (2.6), (2.10), and (2.2) that ¢'(0) is given by

¢'(0) = pTg —pTATA + ppTAT(c — 8) — (¢~ )€ + Mg — pg’(c ~ 9)
(3.3) =pTg+ (@A~ w)c—s) = plle—sl?,

where g, A, and ¢ are evaluated at «.
If |lc — s|| = 0, from (2.9) and (2.18) we have py = 0, and since ¥(p) = p’g +
1pTHp < 9(po) = 0 it follows that

¢'(0) = pTg < —~1pTHp,

implying that p does not need to be modified.
If |lc — s|| > 0, we obtain from (3.3) that for p = p (defined in (2.13))

¢'(0) = g"p+ (2A = )T (c—s) = plic ~ s|> = —~3p" Hp,

which implies the desired descent condition (2.11) is satisfied for all p > p.
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An immediate consequence of (2.11) and the properties of Hy is the following
bound on the directional derivative:

(34) ¢;c(0) < _%ﬂsvH“pkHQ'

It follows from the procedure to increase the value of the penalty parameter (see
(2.12)) that py — oo if and only if the parameter is increased an infinite number of
times.

We also need to prove that the value of oy introduced in the algorithm is well
defined. We show that if condition {2.14) is not satisfied, a steplength & € (0, 1) that
satisfies conditions (2.15) always exists (see, for example, Moré and Sorensen [23]).

Define the functions

x(a) = ¢(@) — ¢(0) — oag’(0),

((e) = ¢'() = n¢'(0),
and note that from ¢ < n and ¢’(0) < 0, implied by (2.11), we have
(3.5) X'(a) = ¢'(a) — 0¢(0) < ¢'(a) —n¢'(0) = {(a)

for any a.
If (2.14) does not hold,

6(1) = 4(0) > 0¢'(0) = x(1) >0,

and we also have x(0) = 0. From these two results and the mean-value theorem, there
will be a point & € {0,1] such that x'(&) > 0, and from (3.5), ¢(&) > 0.

From ¢'(0) < 0 we have ((0) < 0, and the continuity of { (Assumption A3) will
imply the existence of a zero of ¢ in (0,&). Let & denote the smallest point in (0, &)
such that {(&) = 0, that is,

(3.6) ¢'(&) = n¢'(0),
and condition (2.15b) is satisfied at &.
From ¢(0) < 0 we must have

(3.7) () <0 Ya€e[0,8) & ¢'(a)<nd’(0) VYael0

implying that condition (2.15b) is not satisfied for any point in [0, &
Finally, from (3.5) and (3.7), we have

X(a) <0 VYace€l0,a),
and this together with x(0) = 0 implies x(&) < 0, that is,
(38) #(a) — 6(0) < aag'(0),

showing that & satisfies both conditions (2.15) simultaneously.
We still need to consider condition (2.16). For the function hA{a) = c(z+ap)+B.e
we have from (2.4b)

@),
)-

R'(0) = Ap > —c.

If —18. > ¢; > —f., we have h;(0) > 0 and h}(0) > $8. > 0; if ¢; > —30. then
hj(0) > 18. > 0 and in any case there exists a value & > 0 such that h;(a) > 0
(implying cj(z + ap) > —f.) for all j and all @ € [0,&], implying that for a €
[0, min(é&, &)] both conditions (2.15a) and (2.16) hold simultaneously. a

This lemma implies that all the quantities associated with the algorithm are well
defined.
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3.3. Boundedness of the iterates. To prove global convergence we show first
that if Assumptions Al and A2 hold, all points in the sequence {zy} generated by
the algorithm lie on a compact set. We start by showing that for ||z|| large enough
we cannot have ||pg|| arbitrary small.

LEMMA 3.2. Under Assumptions A2 and A6 and condition HC1, there exist
positive constants M and € such that ||z)l > M = |pi| > e

Proof. Assume this result does not hold. Then, for any positive constants M and
€ we can find iterates such that |zx]| > M and |lpk]] < €, and we could construct
a sequence {zr}, and its associated sequence {py}, along which [|zx]| — oc and
lpk|l — 0. For this sequence, from [|px|| — 0 and (2.4b), we must have |lc || — 0.
Also, from the definition of pg, (2.21), it must hold that ||px]] — 0, and from (2.5a)
and MC1, we must have

| AR 7k — gill = | Hipe| — 0.

Since ||px|| — 0 and ||px| — 0, using (2.21) and ||dx|| = 1, we also have either 7, —
0 or 4, = 0 for k large enough. It then follows from (2.26) that either min (¥, %) — 0
or 4 = 4, = 0 for k large enough. If 4; — 0 along a subsequence, then (2.27) implies
for some constraint j that (m); — 0 and c;(zx) — 0, but this would contradict
Assumption A6. If 4, — O along a subsequence, then from (2.28) and Lemma 2.1
we get v > 0 in the limit, where v is now defined as a limit point of {v}, where
B;crl/k = gAk

The properties of this sequence,

lzxll =00, Mgl =0, [ AZTe — gull = 0,

together with pr — 0 and v > 0, imply that there exists a KKT point at infinity,
which violates Assumption A2, so the lemma must hold. 0O

Another result we need for the compactness proof is a bound on the value of the
QP objective function at the incomplete solution for the QP.

LEMMA 3.3. Under Assumption A5 and conditions HC1, HC2, for p computed
by Algorithm SD there exist constants 3; > 0 and B2 > 0 such that

(p) = gTp+ ipTHp < ~Bip” Hp + Baflc — 3|

Proof. The result will be shown by considering first the initial point for the QP,
pg, and then the descent achieved in each QP iteration.
By definition

Y(po) = — 5t Hpo + g7 po + pt Hpo.

Since |lpo]l < Bpolle™|| and gTpo < Bpllc”|| (Assumption A5), condition HC1 on H
implies

(3.9) ¥(po) < ~3Pg Hpo + Byllc™ || + BrumBallc™ |12

Consider the quadratic function by + %c'y2, where b < 0 and ¢ > 0; then for all
v € [0, —b/c} (between 0 and the minimizer), we have

b
(3.10) yS—o @ Yb+cy) <0 = by+iey’ <—ley?
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The change in the QP objective function at any intermediate QP iteration ¢ can
be represented as

(3.11) Y(pip1) — ¥(p) = 373 d] Hd; + vi(g + Hp:)"d;,

where d; is used to denote the QP step obtained from (2.19) or the final step d defined

n (2.22), and -y, is a feasible steplength bounded by the steplength to the minimizer
along v;, as defined in (2.20) or (2.26). We have d7 Hd; > 0 (from condition HC2)
and (g + Hp;)Td; < 0 (from (2.22)), implying that we can apply the bound (3.10) to
(3.11) to obtain

(3.12) Y(piy1) — (pi) < —377d] Hd.

If we have taken N iterations to compute p (the search direction), by adding the
inequalities (3.12) for i = 0,..., N and using (3.9) we obtain

N

¥(p) = Y(po) + Y _(¥(p:) — $(pi-1))

i=1

N
(3.13) <-1 (P(q;Hpo + Z’de’z‘THdi> + Bplle™ || + BouBallc™|I°.

i=1

We can use the convexity of the function p” Hp (implied by property HC2) to
write

T
2 4T T
pOHpo-f-Z’)’d Hdz_'ﬁ_ <p0+271 z> ( 0+271 1,) N+1 Hp

=1

This result together with (3.13) implies

(3.14) P(p) < — pTHp + Bllc™ || + BwrBallc™ |1

1
ESY
Since ¢~ > f.e the desired result follows from this inequality and (2.9). ]

We can now prove the main result of this section.

LEMMA 3.4. Under Assumptions Al, A2, A3, A5, and A6, and conditions MC1,
HC1 and HC2, the sequence {xy} generated by the algorithm lies on a compact set.

Proof. First we show the set of points at which the penalty parameter is modified
lies on a compact set. If p;, remains bounded it follows from the manner the penalty
parameter is modified, (2.12), that there is only a finite set of such points. Therefore
we need only study the case when pr — oo. Consider the iterations k& where the
penalty parameter is modified. From condition MC1 and the boundedness of the
multiplier estimates A (Lemma 2.2), we have

(3.15) 122 — sl < 20Xkl + el < 3B

This result, together with Lemma 3.3 and the definition of the penalty parameter
(2.13), gives

prllek — skll? < gF P + 308 Hipre + (20 — )T (ck — sk)
(3.16) < (81 + 3By)llek — skl — Brpy Hepe-
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As we have assumed px — oo, (3.16) implies |jcx — sg)l — 0, and from (2.9) also
llex Il — 0.
From Lemma 3.3 and (3.15) we have

(3.17&) W = ggpk + (2)\k — uk)T(Ck - sk)
(3.17b) < —1pf Hipr — BipE Hipr + (B1 + 38u) ek — sk])-

If ||px|| > € > 0 along an infinite subsequence, then it follows from ||cx — si|| — 0
and MC2 that there exists an index K such that for all k¥ > K in the subsequence,

(Bp + 38u)llck — skl < B1 pE Hipr.-
From (3.17b) we obtain the following bound on wy,
(3.18) wi < — 5Pk Hipr,

for k > K. From (3.17a) and the bounds (3.18) and (3.3), we have for sufficiently
large k

$%(0) = wi — pllek — skll* < wk < 3Pk Hipr.

This last inequality implies that pg is not modified for all £ > K, which contradicts
our assumption that the penalty parameter was modified an infinite number of times.

We have shown that ||pg]] — 0 along the subsequence at which the penalty pa-
rameter is modified. The boundedness of ||zi| along this subsequence follows from
Lemma 3.2.

We now consider those points corresponding to iterations where the penalty pa-
rameter is not modified. From condition (2.16) on the linesearch and Assumption
Al, we have F(z,) > fr > —oo for all k. Also, from Lemma 2.2 ||A|| is bounded,
implying that

2

(319) LA(xkv)‘hskypk) D BF - (;; mﬁuﬁc)
o

Since ||zk|| is bounded when py # px—1 and L, (zk, Ak, sk, px) is reduced when py =
pr—1 it follows that L,(zk, Ak, sk, px) is bounded. Moreover, for a sequence of itera-
tions for which pg is not changed the reduction in L, (zk, Ak, sk, o) is bounded. Let
I denote the index at which pg is modified and let I < k& < K denote the iterates for
which p; remains fixed. It follows from the above reasoning that there exists N such
that

K

(3.20) br— b= (r—dpr1) <N

k=1

where to simplify the notation we have used ¢ = ¢1(0).
From the termination condition for the linesearch (2.15a), (3.4) and (3.20), we
also have

K K
(3:21) L0Bewr Y onllPel® <D (¢ — bit1) <
Py

k=1
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This result implies that ag||pel] is bounded. Hence if |lzx| is not bounded there
must exist sets of iterates with indices, say s; < k < r; for | = 1,2,..., such that
lzs, | < M, ||zk|| > M for M large enough, lim;_, o, r; = 00, and lim;_,o ||zr || — .
It follows that if M is chosen so that M > max{|lz|} then p; is constant in the
interval s; < k < 7. The existence of an index such that ||z, | < M is assured since
we have ||z,|| < M and at least one index in the interval for which {|zx|| > M. From
these assumptions and definitions it follows that

7‘[—1

(3.22) > allpell 2 llor, — 24| — 0.

k=s,

It follows from Lemma 3.2 that ||px]] > € for sy +1 < k < r;. From (3.22) we get

7‘1—1 'r‘l—l
Y ajllpil? > € > agllpsll + asllps I — oo,
j=sy j=si+1

but this contradicts (3.21), implying that the points generated by the algorithm must
lie on a compact set. O

To complete this section, we show that the search direction computed from the
QP subproblem is bounded.

LEMMA 3.5. Under the assumptions of Lemma 3.4, the sequence {py} is bounded.

Proof. We drop the subscript k in the proof.

As all the steps taken in the solution of the QP subproblem are descent steps, we
have from (2.3),

$(po) 2 $(p) = g"p+ 3p" Hp = 5| Hip+ H 3g|* — 34" H g,

implying from HC2 and ||a|| < ||a + | + {|bl,

VBevrIpll < [ HEp|| < | H gl + [HEp+ H gl < |H 4g]+1/20(00) + T H1g.

The boundedness of ||p}| follows from this result, Lemma 3.4, conditions HC1 and
HC2 and the bound (3.9). O

It is tacitly assumed in the remaining proofs that the Assumptions A1-A7 and
conditions MC1, MC2, HC1, and HC2 hold.

3.4. The sequence of search directions {p;}. In this section we relate the
behavior of the sequence {zy — 2*}, where z* denotes a KKT point closest to zx, to
that of the sequence {p;}. In particular, we show that ||px|| — O implies =} — 2,
and so it is enough to prove that {{pix|| — 0 to establish global convergence.

Although the KK T point «* introduced above may not be unique, the assumptions
made on the problem, and more specifically Assumption A7, imply that if ||zz —2*|| is
sufficiently small then z* is unique, as the following lemma shows. This result allows
us to work with a well-defined sequence {zy — ¥}, at least close to a KKT point;
it will also imply that the limit point of the sequence generated by the algorithm is
unique.

LEMMA 3.6. The KKT points for problem NP are isolated.

Proof. Assume that the result does not hold, and let 2* denote a KKT point
for NP that is not isolated, that is, for any € > 0 there exists a KKT point y. # z*
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satisfying ||* — y.|| < e. Consequently, there exists a sequence {yx} such that yj is a
KKT point for all k, yx # z* and yp — .

For sufficiently small ||2* — yi|| the active sets at v, and z* must be the same;
otherwise we would have for some constraint j that c¢;(z*) = 0 with both ¢;(yx) > 0
and (Ax); = 0 along some subsequence, where i is the multiplier vector at yx. From
Assumptions A3 and A4 and (1.1) we have Ay, — X*, the multiplier vector at z*, but
this would imply c; () = X; = 0, contradicting Assumption A6.

Let Zi denote a basis for the null-space of Vé(yx), the Jacobian of the active
constraints at y, and Z* denote the corresponding basis at #*. Among all possible
bases, Zj, is selected to have continuous first derivatives in a ball around z*. It follows
from Assumption A4 and the fact the active set is constant that such bases exist.

For any element of the sequence y; and for £ we have from (1.1)

ZIVF(y) =0 and Z* VF() =0.
The Taylor series expansion of Z} VF(y;) around z* gives

0=ZIVF(y) = ZF (VF(yx) — Ve(ye)TX")
= Z*T(VF(x*) — V(TN + (VZ(*)(VF (") — Ve(@™®)TA)
(3.23) + 2T V2L, X)) (ke — 7¥) + o[y — 7)),

where L{z, ) is the Lagrangian function of NP. Using (1.1) in (3.23), and dividing
by lyx — &*| gives

yk—w*

(3.24) Z*TV2L(x*,A*)§k = o(1), where Oy = -
lly — 2|l

Let ¢ denote the subset of constraints active at 2* and y. If € is sufficiently small
then §;, satisfies

(3.25) (k) = 0= V&) gk — ") +o(lye = ') = VéE")b = o(1).

Finally, for any convergent subsequence of the bounded sequence {6}, with limit
6, we have from (3.24) and (3.25),

ZTVRL(* )6 =0, V@ )s =0,

contradicting Assumption A7. o

This result, together with Assumption A2, implies that the number of KKT points
lying on any compact region is finite. The distinctness and finiteness of the KKT
points implies the existence of € > 0 such that for any two KKT points, say w"{ and
x5, we have |77 — 25| > 2€*. Tt follows that if ||zx — 2*|| < €, where z* is a KKT
point nearest to zx, then 2™ is unique.

The next result presents some properties of the QP multipliers that will be useful
for the analysis of the convergence and rate of convergence of the algorithm.

LEMMA 3.7. Given a sequence of iterates {xx} and the associated sequence of
search directions {py} such that xy — 2*, a KKT point for NP with multiplier vector
X and pr — 0, then

ik~ Xl — 0,
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where y, are the QP multipliers at the stationary point py. Furthermore,
* ~
e = A7 = Ol 7ll),

if ||z — *|| < K||px|| for some constant K.

Proof. We first show that for any constraint j such that c;(z*) = 6, > 0 we
must have (mg); = 0 for large enough k. If py — 0 it follows from (2.21) that
Pr — 0. Consequently, it follows from Assumption A3 that for k sufficiently large
lDx]] < 81/(462), where 62 = Ha’;ll > 0. For k large enough we have

(ak)?ﬁk + (ck)j = 361 >0,

implying that the multiplier for this constraint is zero.

Let A* and Ay denote the corresponding Jacobian matrices restricted to the active
set at 2* and let A* and 7 denote their respective multipliers. From (1.1) and (2.5a)
we have

AT3* = g*,
AL #y, = g + Hypr,
implying
(3.26) A*T(j\* - ﬁk) = g* — gk — Hkﬁk - (fi* - Ak)Tﬁk.

From Assumption A4 that A* has full rank and Assumption A3 it follows that Ay
will also have full rank for large enough k, implying that 7 is bounded in norm, and
these results together with (2.21), pr — 0 and HC1 yield 7, — X*.

Using Taylor series expansions in (3.26), we obtain

(3.27)  AT(Rp — X) = V2L(a*, &) (@k — 2¥) + Hibr + o ||z — =¥,

where L(z, ) denotes the Lagrangian function for NP. The required result follows
from (3.27), the condition we have imposed on the sequences {fx} and {zy —z*}, the
boundedness of ||#«|l, Assumptions A3 and A4 and condition HCI. O

We now analyze the sequence of search directions {px}. The following result shows
that as pr — 0 we get close to KKT points of NP and we only need to consider values
pi obtained as the minimizers for the corresponding subproblems. We complete this
result by showing that a small value of ||pg|| also implies that the correct active set at
#* is identified, in the sense that the active QP constraints at p; correspond to the
active NP constraints at z*.

LeEMMA 3.8. If along a subsequence p, — 0 then along this subsequence ||xx —
©*|| — 0, where 2 is a KKT point nearest to xx. For k large enough, =* is unique,
pi is the QP minimizer and the correct active set at z* is identified.

Proof. A subsequence such that p;y — 0 exists if and only if a subsequence exists
such that pr — 0 and the active set at pj, is constant. Let {r} denote the sequence of
indices for such a subsequence.

From the definition (2.21) of p, it follows immediately that A.p, + ¢, > 0. From
pr — 0 and Assumption A3 it must hold that ¢, — 0 and 5, — 0.

From (2.5) we have

(3.28) Alr, — g, —Hp, =0 and 7X(Aqpr+c)=0.
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Since p, — 0 it follows that
(3.29) ATr, —g. —0, 7wle, -0 and ¢ — 0.

We now show that for large enough r that p, must have been computed as the
minimizer for the QP. It follows from p, — 0 and ||d.|| = 1 that either there exists
K such that for all r > K we have vy, = 0 or v, — 0 (see (2.26)). If we assume the
latter it follows that

min (¥, %) — 0.

(i) If 4. — O along a subsequence, then from (2.27) along this subsequence we
will have for some constraint j

ch(xr)T(ﬁT +%rdy) +cj(z,) =0 and (m,); =0,

where (m,.); = 0 follows from the fact that the QP constraint j is limiting the step,
and so it cannot be active at p,.. These equations imply

cj(zr) -0 and (m); =0,

contradicting Assumption A6.
(ii) If 4. — 0 along a subsequence, then from (2.28),

¥;.(0)
dTH,d,

— 0,

which implies from condition HC1 and ||d, || = 1 that 9..(0) = (H,pr + g,)Td, — 0. If
the condition number of A; along the subsequence is bounded, condition (2.24) will
hold and for some constraint j we have (r,.); <0, (m,); — 0 and Ve;(z,) T prtcj(z,) =
0, giving

¢j(zr) -0 and (m); — 0,

again contradicting Assumption A6. Otherwise, from Lemma 2.1 in the limit we have
that Ve(#*)T X = VF(a*) with X* > 0, implying that z* is a KKT point with a
rank-deficient Jacobian matrix for the active constraints, violating Assumption A4.

We conclude therefore that v, = 0 for r > K and this together with (3.28) implies
pr is the minimizer of the QP subproblem. For r large enough 7. > 0, which together
with (3.29) and Assumption A3 implies ||z, — 2*|| — 0, where z* is the nearest KKT
point to z,. For r large enough z* is unique.

Finally, we prove that for r large enough the active set of the QP coincides with
the active set of NP at 2. First note that for r large enough the active set of the
QP must be a subset of the constraints active at z*, otherwise p, is a step to a
nonactive constraint implying ||p,|| > € > 0. Assume that for the subsequence we
have Ve¢;(z,)pr + ¢;(z,) > 0 and ¢;(2*) = 0. From (2.5b) we must have (7,); = 0,
implying from Lemma 3.7 that X; = 0, but this violates Assumption A6, and for r
large enough the correct active set is known. |

This result shows that there is an € > 0 such that if ||px|| < €, then p is the
solution of the QP subproblem, and the correct active set is known.

We have just shown that if p, — 0 along a subsequence, then z;, — z*. To
show pp — 0, we need a stronger result, giving a relationship between the rates of
convergence of the sequences {xx — "} and {px}.
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LEMMA 3.9. If 2* denotes a KKT point closest to x,, then there exists a constant
M such that

ok — 1| < M-

Proof. If ||ps]| > € for all k then the result holds trivially since ||z|| and ||z*|| are
both bounded. Again let {r} denote the indices of a subsequence such that p, — 0
and the active set at p, is constant. From Lemma 3.8, for this subsequence we have
llz, — 2*|| — 0. We assume for the rest of this proof that r is large enough so that z*
is unique, p, is the minimizer of the QP and the correct active set has been identified.

Let ¢, fl, and 7 denote the corresponding quantities restricted to the constraints
in the active set. From Assumption A4 we know that A* has full row rank, and we
assume that r is large enough so that fir also has full rank.

Let Z, denote a basis for the null space of A,, with uniformly bounded norm and
continuous first derivatives. From the optimality conditions for p.., (2.5), we get

_( ZH, Z7 gr ZF(gr — ATX)
030wy (A Yoo () ((Hlae ),
Since h(x*) = 0, we have from the Taylor series expansion that
hj(ze) = S;((6:);)(zr — 2°),
where S;((6,);) = Vhj(z" + (8,);(z — 7)) and 0 < (6,); < 1. We have therefore
T
(3.31) ( Zg gr ) = —5(6,)(z, — ).

From (3.23) we get

*T * vk
S(O)=<Z V;(IQLC%,A)>’

and Assumptions A4 and A7 imply that S(0) is nonsingular. It follows that for
sufficiently large values of r, S(f,) is also nonsingular. It then follows from (3.31)
that for some positive constant M,

(3.32) lzr — 2| < Mi(1 2] g, 1| + lle-1))-
From Assumption A3, property HC1 and (3.30) it-follows that
(3.33) Molip: |l 2 127 g+l + 1l

for some positive constant M.

Since the subsequence {px} such that py — 0 is composed of a finite number of
subsequences for which p,, — 0 and the active set at p, is constant, the required result
follows from (3.32) and (3.33). a

3.5. Bounds on the penalty parameter. The conditions we have imposed on
the algorithm (and more specifically on the multiplier estimate) are not sufficient to
ensure that the penalty parameter is bounded. However, bounds on py, are related to
the behavior of different quantities in the algorithm, and in particular to |lpg|| and
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llek — skl|- The following lemmas introduce bounds on the size of pi in terms of these
quantities. We start by presenting the results for those iterations where the penalty
parameter is modified, and then we extend the results to general iterations.

The notation &; is used in all that follows to indicate iterations at which the value
of the penalty parameter needs to be modified.

LEMMA 3.10. For any iteration k; in which the value of p is modified,

Py ”ckt — Sk ” <N and Pk, ||pkz “2 <N,

for some constant N.

Proof. All quantities in the proof refer to iteration k;, and so this subscript is
dropped.
From the definition of g, (2.13), and Lemma 3.3 we get

pllc—s|? =g"p+ 2pTHp+ (2X — )T (c — s)
< =B Hp+ Balle — s|| + (22 — )T (c — 5) < (B2 +[|2X — ) l|e ~ s},

where 3; and [, are positive constants. From (3.15) and the above result we obtain
the first bound in the Lemma,

(3.34) plic — sl <38, + B2

If the penalty parameter needs to be modified, condition (2.11) cannot hold for
P = pr;—1, and (3.3) implies

#(0) = gTp+ (27 — )T (e — ) — e — 5| > — 37 Hp.
It follows that
(3.35) g p+ ipTHp+ (22X — )T (c—5) > 0.
Replacing in (3.35) the bound for g7p + $p” Hp given in Lemma 3.3 we obtain

@2\ = )T (c— ) + Bellc — s|| > Bip” Hp,
which together with Lemma 2.2 implies

(3.36) 38y + B2 [;1' Pa

From condition HC2 we have ||p||? < (1/Bsvxr) pY Hp. If we multiply both sides
of this inequality by 5 and use (3.36) to bound p” Hp, we obtain

< Sﬁu +182 pA”c_ S” < (3ﬁu +ﬂ2)2

- /BlﬂsvH - ﬂlﬂsvH ’
where the last inequality follows from (3.34). The second desired bound then follows
from 25 > p. a

We now extend these results to all iterations. To simplify notation, we shall use
I and K to denote k; and k4 respectively. Thus, the penalty parameter is increased

at z,; and z, in order to satisfy condition (2.11), and remains fixed at p, for iterations
I,...,K—1.

lle = sl > p" Hp.

p Hp

A 2 ~
plipll” <
Ipl? < 55—
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LEMMA 3.11. There exists a constant M such that for all l,

kip1—-1

(3.37) pe. D llewprl® < M.
k=k

Proof. For I < k < K —1, property (2.15a) imposed by the choice of ay, and the
fact that the penalty parameter is not increased, imply that

bk = Pry1 = —00, Py
Summing these inequalities for k = I to K — 1, 0 < oy < 1 together with (3.4) gives

K-1

(3.38) 108swn Y flokpell® < 1 — .

k=I
Consider the term p,(¢; — ¢« ). From (2.1) and (2.2),
pp = pF — pAT(c — 8) + 3p°llc — s|%.

This equation, together with the boundedness of p;|c, — s,|| and p;||cx — s« || (implied
by px > p: and Lemma 3.10), and that of the multiplier estimates (Lemma 2.2),
implies that for some M; > 0,

(3'39) pi(dr — dx) < My + p (Fy ~ F).

Consider now iterations for which ||p;|| < ¢, so that Lemma 3.8 applies and
p; has been obtained as the minimizer for the subproblem (for all other iterations
Lemma 3.10 implies that p; is bounded, and the result follows from Assumption A3,
(3.39), and (3.38)).

Expanding Fx and ¢, about x;, we get

(3.40a) Fy—Fr=(zx —z.)Tg: + O(||z, — z«|?),
(3.40b) Cx — C; :AI(mK —.'L‘,)+O(||.’L‘I —mKHQ)'

From Lemma 3.9 we have
(3.41) lz, —a*|| < Mp|lp:|| and |zx — ¥ < Mpllpsll.

As p, was obtained as the solution of the QP, condition (2.5a) must hold with mul-
tiplier vector w; > 0. This condition together with (3.40aa), (3.40ab), and (3.41)
implies

(3.42) Fy — o = (¢ = e) T + O (max(lpal?, Ipx %))
Using again (2.5),
CITTTI = —plTAxTﬂ'I = —g:sz —PJTHIPI-

Since p is increased at iteration I, we must have that condition (2.11) cannot hold at
that iteration, implying

¢,I(O) = gITPI +(2A; — NI)T(CI —8;) = proafler — 31”2 > —%pzTHIPI-
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The previous two results imply
PI'“'ITCI < _PI%PITHIPI + p:(2X; — NI)T(CI —81) — prpr-iller — 51”2,

and this, together with the positive-definiteness of H, (condition HC2), the bound-
edness of the multipliers (condition MC1 and Lemma 2.2) and Lemma 3.10, gives

(3.43) pre Ty < pr(2A; — #I)T(Cz ~51) < My,

for some My > 0.

Consider now the term ¢ T

7y in (3.42). From #; > 0 we must have
‘PIC£ w < PIC;TWI

and from (2.9) we have |lcg|| < |lex — sk||. Using p; < px and Lemma 3.10, we
conclude that there exists a constant M3 such that

(3.44) — pick Ty < Ms.

Finally, consider the third term on the right-hand side of (3.42). It follows from
Lemma 3.10 and the relation p; < pg that there exists My and Mg such that

pllp:l? < My and  pllp|® < Ms,

and hence for some constant Mg

(3.45) p:0(max(|lp. 1%, Ipx1%)) < Me.
Combining (3.43), (3.44), and (3.45), we obtain the bound
PI(FI“FK) < My + M3 + M,

which, together with (3.39) and (3.38) implies the desired result. a
LEMMA 3.12. There exists a constant M such that, for all k,

(3.46) Plc”ck: - Sk” < M.

Proof. As in the preceding Lemma, let I = k; and K = kj+;. From Lemma 3.10,
(3.46) is immediate for k = I and k = K.

To verify a bound for k = I+1,..., K —1 we analyze some intermediate iterations
k and k + 1. We drop the iteration subscript; also let quantities evaluated at xxy1 be
denoted with a tilde. _

From (2.8), p;(¢; — §;) = min(p,¢;, A;). Consider the following two cases:
(i) If piCj > -—'/\jl, then

(3.47) pile; — 851 < 11,

(ii) Assume now that p,&; < —|5\j|. Expanding the jth constraint function around
Tk gives

¢ =c;+ aajrp + O(||ap||?).
Rewriting the previous expression, we obtain:

(3.48) & = (1 - a)e; + alajp +¢;) + O(llep))?).
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Adding and subtracting (1 — &)s; on the right-hand side of (3.48) gives
(3.49) & = (1-a)(¢; — 85) + (1~ a)s; + alajp +¢;) + O(l|apl|?).
Since s;, a;‘-rp +c¢j, @ and 1 — a are all nonnegative, we get

1—a)s; + a(aJTp +¢;) >0,
and using this bound in (3.49) we obtain
(3.50) & 2 (1= a)(c; — s5) + O([lapll*).
Since we assume p,& < —|)\;| we have & = & — §; < 0. Using this bound and

1—a <1in (3.50) we get the following inequality:

—& =] = [&; — 8;] < —(1 = a)(¢j — 55) + O([lap||?) < le; — s + O(llewp]?).
Multiplying both sides by p, gives
(3.51) pi|&; = 83| < prlej — 551+ pO(llap]®).

For a given iteration k < K — 1 and constraint j we have one of the following two
situations.

(i) For some iteration I, I < | < k, p{e)); = —|(M\);]. If we add (3.51) for
iterations 7 = 1,...,k — 1, and use (3.47), we get

prler); — (sk);l < pil(er); — (s1)1+ 01O (Z oerpr|| )

< (M)l + PO (Z llarpr | )

The boundedness of p,;|(ck); — (sk);| then follows from Lemmas 2.2 and 3.11.
(ii) For all iterations [, I < [ < k we have p,(¢;); < —|(A1);|. We add (3.51) for
=TI to k— 1, to obtain

pirl(cr)s = (sk)5] < pul(er)s — (s1)] + 2O <Z lorpr || )

and now the desired result follows from Lemmas 3.10 and 3.11. (]

3.6. Boundedness of aj. Given the result of Lemma 3.11, all that is left to
establish the global convergence of the algorithm is to show that the steplength is
bounded away from zero. As a consequence of the weak assumptions imposed on the
multiplier estimate ug, it is not possible to show that such a bound exists. However,
it can be proved that the bound does exist if there is no subsequence along which
llp|| — 0. This is enough to prove convergence.

We first derive a bound on the norm of the second derivative along the linesearch.

LEMMA 3.13. For 0 <60 < oy, there exists a positive constant N such that

x(0) < N.
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Proof. We again drop the subscript k. From (3.2),

VEF -3 ,(Aj — olc — 55))V3¢; + pATA  —AT  —pAT
V3L, = —-A 0 I
—pA I ol
From the definition of ¢, given in (2.2), we get
¢"(0) = p"Wp+ 3 ,0(c;i(0) — 5;(8))p"V?c;(8)p
(3:52) + p(40)p — 0) (A(6)p - q) — 26T(A(O)P — a),

where the argument @ denotes quantities evaluated at z + 6p, except for s(6) = s+0q
and

W = V2F(0) = X,(Aj + 0&;) V3¢5 (6).

We now derive bounds on the terms on the right-hand side of (3.52). For the first
term we can write

(3.53) pTWp < Ni||p?|| < My,

for some constant M;, using Assumption A3, the boundedness of {|A]| and [|£]| (con-
dition MC1 and Lemma 2.2), and the boundedness of ||p|| (Lemma 3.5).
Expanding c; in a Taylor series about = gives

¢;(0) = ¢; () + 8a;(2) p + 36°p™V7¢;(6;)p,
where 0 < 0; < 0. Using (2.10) and multiplying both sides by p gives
p(ci(6) = (55(8)) = p (1 = 8)(c;(x) — 55) + p 36°PTV?c;(6))p-

Lemma 3.12 implies that p|c;(x) — s;| is bounded, Lemma 3.11 implies that p||6p||*
is bounded for § < o, and Assumption A3 implies that |[VZc;(6;)|| is also bounded.
Consequently,

p|(c;i(6) = 5;(8)| < N,

where N is a constant. This result and Lemma 3.5 imply the second term in (3.52)
is also bounded, that is,

(3.59) 3 le(es(6) = 5,(6))p™%; (B)p| < Nallpll® < Mz,

where Ny and M, are constants.
Consider now p||A(f)p — q||?, the third term on the right-hand side of (3.52).
Using Taylor series, we have

(3.55) a;j(z +6p)’p = a;frp + 0p™V%¢c;(8;)p,
where 0 < 6; < 6. From (2.10) and Lemmas 3.11 and 3.12, we obtain

(3.56) pllA©O)p — all* < Ms,
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where M3 is a constant.
From (3.55), (2.10), Assumption A3, and the boundedness of ||£|| (Lemma 2.2},
the final term on the right-hand side of (3.52) is also bounded,

—26T(A(O)p — q) = —26T(Ap—q) + ) &;00"V2¢;(6;)p
J
(3.57) < 2¢T(c — 8) + Nallp||® € My,

where Ny and My are constants.

The desired bound follows from (3.52), (3.53), (3.54), (3.56), and (3.57). O

LEMMA 3.14. For any € > 0, if |pkll > € there exists a value G(€) such that
oy > a(e) > 0, where ay is the steplength computed by the algorithm.

Proof. We drop the subscript k corresponding to the iteration number. We start
by proving that & (as defined in (2.14) and (2.15)) is bounded away from zero if
lpll > €. If condition (2.14) is satisfied at a given iteration, then & = 1, trivially
bounded away from zero. We assume therefore that & is chosen to satisfy (2.15).

In the proof of Lemma 3.1 it was shown that the linesearch procedure was well
defined, and in particular, that there exists a value & € (0,1] satisfying (2.15) and
such that condition (2.15b) is not satisfied for any value of @ € [0, &); see (3.6), (3.8),
and (3.7).

From the Taylor series expansion of ¢’ at & we have

¢'() = ¢'(0) + a¢"(6),

where 0 < 8 < &. Therefore, using (3.6) and noting that n < 1 and ¢’(0) < 0, we
obtain

[¢'(0)]
¢//(9) :

¢'(a) — ¢'(0)
¢"(6)
(Since & > 0, @ must be such that ¢”(#) > 0.)

If ||p|| > ¢, then from (3.4) we have that |¢/(0)| > 18,,x€?, and from Lemma 3.13
we also have ¢ () < N, implying

(3.58) & = =(1-mn

~ ﬂsvH 2
> g4,
=N ¢

If condition (2.16) is satisfied for &, then the previous bound holds for a. Oth-
erwise, for some constraint j we must have h;(G) = c¢j(z + ap) + 8. < 0 (using the
notation introduced in Lemma 3.1). If h;(0) > 3. > 0, from the continuity of h
there exists a value & < & such that h;(&) = 0 and h;(a) > 0 for all « € [0,&]. From
the mean-value theorem

hj(a) — h;(0) _ h;(0)
A AGI

for some 6 € [0,a]. But as |Rj(8)] = |aj(x + p)Tp| < K for some K > 0 (from
Assumption A3 and the boundedness of ||p||, Lemma 3.5), we have

.
2K’

a =

(3.59) a>
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If h;(0) < %ﬁc, we must have from (2.4b),
k3 (0) = aJTp > —¢j = f.— h;(0) > %ﬂc.
From h;(0) > 0 and h;(d) < O there must exist a value & < & such that h’(&) <0,

implying the existence of & < & such that h};(&) = 0 and h}(a) > 0 for all « € [0, 4]
(also, hj(a) > 0 for all a € [0,4}). From the mean-value theorem,

L@ -kO _ K
e )

for some 6 € [0,&]. But h}(0) > 1B, and K (8)] = [p"VZc;(z + 0p)p| < K for some
K > 0, from Assumption A3 and the boundedness of ||p||, Lemma 3.5, implying again

Be
oK

(3.60) a>

N.

The procedure to construct o will ensure that o >
in the lemma will hold. O

We can now prove the global convergence theorem for the algorithm.

THEOREM 3.15. The sequence {xy} generated by the algorithm converges to a
unique KKT point for NP.

Proof. It follows from Lemma 3.9 that to prove ||z — 2*|| — 0, it is sufficient to
show

%&, and so the result presented

(3.61) lim [|py]| = 0.

If (3.61) is true then there exists K such that ||z — 2*|| < €/2 and ||px| < €* for
all k > K, where 2€" is the minimum distance between two KKT points. It follows
that z* is unique for k¥ > K (the sequence converges to the unique KKT point nearest
to &), otherwise it implies that for some k > K that either ||z — || > €“/2 or
llpxl| > €. Consequently, to prove the theorem it is sufficient to show (3.61) is true.

If |lpxl| = O for any k, the algorithm terminates and the theorem is true. Hence
we assume that ||pg]| # 0 for any k. If p; /4 0, there must exist a subsequence {p;},
and a positive constant €, such that ||p;|| > € for all I. In this case, from Lemma 3.14
there will exist a uniform lower bound on ¢y, a; > @ > 0, but then

pilloupi|| > aepy — oo,

contradicting the fact that pgllckpk| is bounded (Lemma 3.11).

In the bounded case, we know that there exists a value p and an iteration index
K such that p =  for all £ > K. Again, the proof is by contradiction. Consider only
indices ! such that [ > K. Every such iteration after K must yield a strict decrease
in the merit function because the termination condition for the linesearch (2.15a),
together with the boundedness of the steplength (from Lemma 3.14 and [p|| > ¢)
and (3.4) imply

$i(cr) — 1(0) < o} (0) < —LoaBsum|mi|)® < 0.

The adjustment of the slack variables s in (2.7) can only lead to a further reduction
in the merit function, as L, is quadratic in s and the minimizer with respect to s;
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is given by ¢; — Aj/p. From the fact that the penalty parameter is not modified, for
iterations from the subsequence we have

H(141) — d(m1) < —30GBsume’.

Therefore, since the merit function with p = § decreases by at least a fixed quantity
at every step in the subsequence, it must be unbounded below, contradicting (3.19).
It follows that (3.61) must hold. O

Having established the global convergence of the algorithm, the next step is to
show that the multiplier estimate Ay — X*. In order to prove this result, we need to
strengthen our conditions on the multiplier estimate g (if ux does not converge then
Ar will not converge either). Following is the additional condition.

MC3. ||pe—X*|| = O(||lzx—2*||), where X* denotes any multiplier vector associated
with a KKT point closest to xg.

This condition requires that 8, in condition MC1 be chosen so that

(3.62) Bu = |IX*|.

Estimates satisfying MC1, MC2, and MC3 may be obtained by computing a mul-
tiplier for the “active” constraints (say, least-squares estimates of least length), and
expanding to the full multiplier space by augmenting this vector with zeros corre-
sponding to the inactive constraints. If such an estimate does not satisfy MC1, then
a suitable estimate may be determined by appropriate scaling. The multipliers at the
stationary point of the QP also satisfy the three conditions. Note that if £* is not
unique then from Lemma, 3.6, ||z — 2*|| > € for some € > 0, and MC3 holds for any
vector py that is bounded.

We first show that under the stronger conditions on p the steplength ay is
uniformly bounded away from zero.

LEMMA 3.16. Under MC3 and all earlier assumptions and conditions, oy > & >
0.

Proof. We again drop the subscript k. We first tighten the bound on ¢"(6) given
in Lemma 3.13. From (3.53) and (3.54), we have that the first two terms on the
right-hand side of (3.52) are bounded by a multiple of ||p||2. For the remaining terms,
from (3.55) and (2.10) we obtain

(p(A(0)p—q)—26)T(A(O)p—q) = D (60T Vie;(8;)p—c;+s;—2;)(0p" Ve; (0;)p—cj+s;)-

7

Expanding this expression, and using Lemmas 3.11 and 3.12 to bound the terms
plcj — 5;)0pTVe;(8;)p and p6%(pT Ve;(8;)p)?, we obtain

(3.63) pllAO)p —al® - 26T(A(O)p — q) < pllc— s +267(c — ) + M|,

for some constant M.
Observe that from (3.3) and MC2,

plc—9)T(c—35)+26T(c—s)=~¢'(0) +p'g + u'(c—s)
(3.64) = —¢'(0) +p (g — ATp) — uTs.

Using Taylor expansions and Lemma 3.9 it follows that

p7(g — ATu) = pT(d* — A*" 1) + O(Ipl?) = (X = w)TA*p + O(llp]|?).
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From this result and MC3 there exists a constant M such that
(3.65) pT(g— ATu) < M|p||*.

From uy — XY, strict complementarity at a KKT point (Assumption A6), and
the fact that the correct active set is identified for ||p|| small enough (Lemma 3.8),
we eventually have > 0 and u%s > 0. Consequently, it follows from (3.52), (3.53),
(3.54), (3.63), (3.64), and (3.65) that

1(6) < —¢4(0) + N|pel?

for some constant N > 0. This result and (3.4) can be used with (3.58) to imply that
there exists a value & satisfying (2.15) such that
/stH

ﬂsvHHp2H 1
G 1200~ " VG v 2wy

The desired result then follows from an argument identical to that given in the final
part of Lemma 3.14. O

This lemma also implies that the effort needed to compute the value for the
steplength is uniformly bounded in the algorithm. We now establish the convergence
of the multiplier estimate.

THEOREM 3.17. Under MC3 and all other assumptions and conditions,

G > (1-n)

. vk
lerr;oAk—A.

Proof. From (2.29),

k
(3.66) Met1 = Y Vikls,
j=0
where
k
(3.67) me=ak, =0 [[ A-0}), 1<k
r=Il+1

with o, = 1 and o] = «;, [ > 1. (This convention is used because of the special initial
condition that Ao = po.) From Lemma 3.16 and (3.67), we observe that

(3.68a) 0<a<a;<1 foralll,
k
(3.68b) > ome=1,
=0
(3.68c) e < (1—a)k "t 1<k

From condition MC3 we have
(3.69) pe = X+ Mycbits,

with My < M, 8 = ||zx — 2*|| and ||tx]| = 1. From Theorem 3.15, for any € > 0 we
can choose a value K; so that, for k > K,

(3.70) ‘Mk6k| < %6.
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Given any € > 0, we can also define an iteration index K with the following
property:

(3.71) = ®" < sy T2y

for k > Ky + 1. Let K = max(K1, K2). Then, from (3.66) and (3.69), we have for
k> 2K,

A1 = Z’)’lkﬂl+ Z Vik (X + Miity).
I=K+1

Hence it follows from (3.68b) that

K k
Moyt = X = el = X)+ D Myt
1=0 I=K+1

From the bounds on ||y (condition MC1), ||t:]], and (3.62), we obtain

K k
(3.72) Msr = XN <28, v+ D ikl Miéil.
=0 I=K+1

Since we assume k > 2K, it follows from (3.68a) and (3.68c) that

Zm<z a)k~ l<z — @)X < (K +1)(1 - @)X,

Using (3.71), we thus obtain the following bound for the first term on the right-hand
side of (3.72):

K

(3.73) 28, ik < ke

=0
To bound the second term in (3.72), we use (3.68b) and (3.70):

(3.74) Z ik Mi6i| < Ge Z Yk < 3€.
I=K+1 I=K+1

Combining (3.72)—(3.74), we obtain the following result: given any € > 0, we can find
K such that

IAe — X <e for k>2K+1,
which implies the desired result. 0O

4. Rate of convergence. In this section we shall show under additional as-
sumptions on the multiplier estimate that the algorithm converges at a superlinear
rate, independently of the asymptotic behavior of the penalty parameter.

Since py — 0, we may assume without loss of generality that py has been obtained
as the minimizer for the QP subproblem, and that the correct active set has been
identified.

We again start by presenting an outline of the steps taken.

(i) Bounds on the rate of growth of the penalty parameter introduced in

Lemmas 3.10, 3.11, and 3.12 are tightened.
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— In Lemma 4.1 we prove that at all iterations at which py is increased (if we
have an infinite sequence of such iterations)

prllce — skll — 0 and  pglpx]|* — 0.

— In Lemmas 4.2 and 4.3 these results are extended to all iterations.

(ii) In Lemma 4.4 it is shown that uf sy = 0 for sufficiently large k.

(iii) Lemma 4.5 proves the superlinear convergence of the sequence {zy,+px — "},
under certain assumptions on Hy.

(iv) For k sufficiently large, ay = 1.

~ Lemma 4.6 gives the relationship between the descent in one iteration ¢ (1) —
¢1(0) and the initial derivative in the linesearch ¢ (0).

— Theorem 4.7 shows that ay = 1 for all sufficiently large k, implying superlin-
ear convergence.

(v) Finally, Theorem 4.8 shows that under an additional condition on the multi-
pliers, the penalty parameter remains bounded.

The first two lemmas introduce refinements on the results presented in Lem-
mas 3.10, 3.11, and 3.12, and their proofs are based on the corresponding proofs for
these lemmas.

LEMMA 4.1. If k; — oo, where k; denotes an iteration at which the penalty
parameter is increased, then

lim py, |lck, — sk, |l =0  and lim pg, ”pkl ”2 = 0.
| N l—o0

Proof. We drop the subscript k; in what follows.

Since p is the minimizer of QP, condition (2.5a) holds for a nonnegative vector .
From (2.4b) and (2.5a) we have g"p + ;pT” Hp = —7Tc and using this result in the
definition of p, (2.13),

pllc— s> = —3p"Hp+ (2A —p—7m)T(c—8) =775 <[22 — pu = 7l[[c — s]].
From (2.12) we have p < 2p, and using Theorem 3.17, MC3, and Lemma 3.7 we obtain

(4.1) Jim o flek, — si |l < 2 lm 220, — g, — e || = 0.

From (3.36) and (4.1) we have lim;_, o px, ||k, [|2 = 0, completing the proof. O
LEMMA 4.2. For general iterations k, limy_, pxllpxl? = 0.
Proof. Define I =k, and K = kj41.
If p is bounded, the result follows from Theorem 3.15. If p is increased in an
infinite number of iterations, from (3.38) and Lemma 3.14 we only need to show that

¢1 — ¢dx — 0.
From the boundedness of ||Agx| (Lemma 2.2), Lemma 4.1 and the fact that p, <
Px, we have

le)\xT(Cx —81)| < 2o M|l ez = s:]| = 0,
P1|)\KT(CK = s1)l < 20Xkl llex — sk} — 0.

We also have from Lemma 4.1,

priller = sil* = 0, prllex — sxl* — 0.
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These results and the definition of ¢, (2.2), imply

(4-2) PI(¢1 —¢K)_P1(FI —'FK) - 0.

We now analyze the asymptotic behavior of the term p,(F; — Fg). We have
Fy = Fic = (e = c)"m; + O (max(|lp, I, |pxc|?)).

Using the same arguments as in the proof of Lemma 3.11, inequality (3.43) also holds
in this case, and from (3.15),

(4.3) pimi e < palier = si|l|12A; — | < 3Bup:ller — sl
A second bound for this term can be obtained from 7, > 0 and s, > 0, implying

(4.4) i le > p,mT(c, —81) Z —pill7ellller = sq]|-

Since ||7,|| is bounded, it follows from applying Lemma 4.1 to (4.3) and (4.4) that
(4.5) p,vr,TCI — 0.

From (2.9), the boundedness of ||r;|| and Lemma 4.1,
(4.6) — prex"mr < prex T < pllmillllex — skl — 0.

We can again use Lemma 4.1 to obtain

4.7) p:0 (max([lp: 1% Ip« %)) 0.

From (3.42), (4.5), (4.6), and (4.7) we have that the sequence {p,(F; — Fy)} is
bounded above by a sequence that converges to zero. It then follows from ¢; — ¢ >

0 and (4.2) that p,(¢; — ¢x) — 0 and the desired result follows from (3.38) and
Lemma 3.16. a

LEMMA 4.3. For general iterations k, limg_,o. px|lck — skl = 0.

Proof. If p is bounded the result follows from ¢ > 0, X* > 0, T = 0, Theo-
rems 3.15 and 3.17 and (2.8).

We assume therefore that p is increased an infinite number of times. Consider
two cases.

Case 1. If constraint j is such that cj > 0, then )\*;- =0 and from (2.8),

ple; = 85| = |min(pc;, Aj)l,
but from Theorem 3.17 and Assumptions A3 and A6, eventually A; < pc;, implying
plej — si| = [Aj]| — 0.

Case 2. For those j such that c’; = 0, implying X;» > 0, consider iteration indices
large enough that the correct active set is identified (Lemma 3.8), implying afp+cj =
0. From the Taylor series expansion for ¢; and the boundedness of the steplength,

ci(@k + arpr) = cj(zx) + ar(ar)jpr + O(llawpr)|®) = (1 — ar)e; (zx) + O(llpxl?).
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Recurring this relationship for k, I < k < K, we get

k—1
pr(cr); = prler); = o [ (1 — e)(er); + 01 O (Z ||pt||2)

=1

but as 0 < oy < 1 we must have

(4.8) prl(ck)s] < pil(ed)s] + £:O (Z sz||2>

From c’; = 0, Assumptions A3 and A6, and (2.8), eventually it must hold that
prl(cr); — (s1);] = prle(s);], and using Lemma 4.1, (4.8), and Lemma 4.2,

pl(ck)i| = 0.

From this result, definition (2.8), Assumptions A3 and A6, and Theorem 3.17, for k
large enough

pkl(ck)j — (sk);l = | min(pk(er)j, (Me)i)| = |prlck);| — 0.
This completes the proof. O

LEMMA 4.4. For k large enough ulsi = 0.

Proof. If constraint j is such that c’; > 0, then for k large enough (ck); > € > 0,
and (ax)] pr + (ck)j = 5€ > 0. It therefore follows from MC2 that (uz); = 0.

If § is such that c’; = 0, then from Assumption A6, X; > 0. Also, from Lemma 4.3,
pre((ck); — (8x);) = min(pr(ck)j, (Ax);) — 0, and for large enough k Theorem 3.17
will imply pg(ck); < (Ax);; these two results and definition (2.7) imply

(s%); = max (0, (ck); — %) o,

completing the result. 0

To prove that the algorithm converges superlinearly it is necessary to assume
that H}, converges to an approximation of V2, L(z*, \*) in some sense, where L(z, \)
denotes the Lagrangian function for problem NP.

Define Wy, as

(4.9) Wi = V2, L(zk, M) = V2, F(ze) — > (M) VZpei (k).
J
We impose the following additional condition on H.
HC3. Following Boggs, Tolle, and Wang [3], we assume

I1ZE(Hi — Wi)pell = o(llpell),

where Z is a basis for the null space of Ay, the Jacobian of z of those constraints
active at 2, that is bounded in norm and has its smallest singular value bounded
away from 0.

The proof proceeds by first showing that the sequence {zy + px — z*} converges
superlinearly, and then proving that a steplength of one is eventually attained.
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The following lemma corresponds to Theorem 3.1 in [3].
LEMMA 4.5. Under Assumptions A1-A7, and conditions MC1-MC3, HC1-HC3,

(4.10) lzk + o1 — 2*[| = o(llzx — &*|I)-

The results presented on bounds for the growth rate of the penalty parameter
allow us to obtain an asymptotic expansion for the quantities involved in the line-
search termination criterion. We want to prove that condition (2.14) is satisfied for &
sufficiently large. It is shown in the following lemma that the satisfaction of (2.14) is
directly related to the asymptotic properties of Ty = pX(gx — AZux) + pIWipk.

LEMMA 4.6. The following relationship holds:

o (1) — ¢ (0) = 364(0) + 3Tk + o([lp& ).

Proof. In the proof we drop the subscript k, and we denote quantities associated
with z, + pi by a tilde, that is, F = F(zy + px) while F = F(xy).
From the definition of the merit function (2.2) and (2.1) we have

¢(1) = ¢(0) = F ~ F — pT(E— s — ) + NT(c — 5)
(4.11) +g(&—s—q)T(6——s—q)— g(c——s)T(c—s).
From the Taylor series expansion of ¢ around « and (2.10) we have
& —s;— a4 =& —cj—a;p=3p"Voep+ o([lpll?),
and using this result with the Taylor expansions for ¢ and F' in (4.11) we obtain

$(1) — #(0) = g"p+ 3p"V?Fp — $3 "1 p"V2eip + AT(c — s)

(412) +03,07V2ep)? — £ (e — 8)(e — 5) +olllpl).
From (2.6), condition MC3 and Theorem 3.17 we have
(4.13) p=A+&=A+0(1).

Also, from Lemma 4.2 and Assumption A3 we have
ppTVicip=o0(1) and p(p¥V2¢c;p)? = of|lp|?).
Replacing these results in (4.12) and reordering the terms we obtain
$(1) — $(0) = g'p + 3p"V?Fp— 33,0 p"Vieip+ 522 — 1) T(c — 3)
+347T(c = 8) = £(e = 8)T(e — 5) + ollp*).
Using (4.9) and (3.3) to simplify this expression,
(419 9(1) = ¢(0) = 3¢/ ©) + 3 (6% + P"Wp + uT(c — )) + ol IpIl").
Finally, from condition MC2 we have u%c = —uTAp, and from Lemma 4.4 we know

that eventually u”s = 0, implying in particular that u”s = o(||p||?), and replacing
these bounds in (4.14) we have

9(1) = $(0) = 3¢'(0) + § (P"Wp + (g — ATw)) + o(lp2),
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completing the result. n|

The main result of this section is given in the next theorem. It is shown that,
if condition MC3 is replaced by a stronger condition, then after a finite number of
iterations a steplength of one is taken for all iterations thereafter, implying that the
algorithm achieves superlinear convergence. The new condition is

MO3. [lux — X*|| = o(flzx — *|).

It is possible to prove superlinear convergence without the need to strengthen the
conditions on the multipliers. It is shown in [29] that there exists a constant M such
that if pr, > M, condition MC3 is sufficient.

THEOREM 4.7. If MC3’ and all other assumptions and conditions hold then
eventually a unit step is always taken and the algorithm converges superlinearly.

Proof. As in Powell and Yuan [28], observe that the continuity of second deriva-
tives gives the following relationships:

T
(4.15) F(zk + pr) = F(zx) + %(g(wk) + g(wx +Pk)) e + o[l 11),
oz + k) = clar) + 3 (Alor) + Az + 1) )2 + o(llpw ).
From the Taylor series expansions we have

(4.16) F(xk + pr) = F(zk) + 9(@r) or + 3pEV2F (2i)pi + o(|Ip&||?),
cj(k + pr) = cj(@k) + aj(zi) or + 20EV2¢;(@r)pPe + o(|Ipx ),

and since (4.10) and Lemma 3.9 imply g(zx + px) = g* + o(|lpell), aj(zk + px) =
a’; + o(||pkll), we get from (4.15) and (4.16) that (we drop the subscript k&)

(4.17a) p"V?Fp = (¢* — 9)p + o(|lp[I*),
(4.17b) p"V2¢;p = (a} — a;)"p + o(||p|1?)-
Condition MC3, Theorem 3.17, and (4.13) give 3=, Xjp™V2¢;p = 3, p; p"V2esp +

o(||p||?), and if we apply this bound to the result of adding (4.17a) to (4.17b) multiplied
by A;, we have

T
(4.18) pPWp =p"(g" — A" 1) — p"(g — ATh) + o(lIp||?).
Condition MC3’, (1.1), and Lemma 3.9 imply
T T
pTlg" — A p) = p"AY (X" — ) = o(|IpII),
and from (4.18),
T
(419) T =pWp+pT(g— AT =p"(g" — A" w) + o(llplI*) = o(lIpll*)-
From Lemma 4.6 and (4.19) we get
¢(1) — (0) = 3¢'(0) + o([Ipl1*).

Since ¢'(0) < 0, the above relationship and Theorem 3.15 imply that condition (2.14)
is eventually satisfied for & sufficiently large.
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Regarding condition (2.16), we can use Taylor series expansions for ¢; to write

(4.20) cj(@k +pr) = cj(zx) + aj(zk + 0;p) "pr
for some 6; € [0,1], and
(4.21) a;(zk + 0;pk) "ok = aj(zk) ok + P Vici(zk + 0;0k) Pk,

for 5j € [O,Hj]. ~
Using Theorem 3.15 and the boundedness of || V2¢;(zx +8;pk)|| (from Assumption
A3 and Lemma 3.4) in (4.21), for k large enough

aj(zk + 0;06) " Pr = aj(zk) Toe — 18,
and from (2.4b),
aj(zk + 0;pk) ok 2> a;(xk) ok — 8. > —cj(zk) — 3Be.

Replacing this bound in (4.20), we obtain for all k large enough c(zx + px) > —3Sce,
and condition (2.16) will also be satisfied, giving zx4+1 = 2 + px. The required result
then follows from Lemma 4.5. 0

4.1. Boundedness of the penalty parameter. The last result in this section
shows that, if condition MC3’ is replaced by a slightly stronger condition, the penalty
parameter needs to be modified in at most a finite number of iterations (and conse-
quently it remains bounded). The criterion presented will be satisfied, for example,
by the least-squares multipliers computed at zjx + pg.

THEOREM 4.8. If the multiplier estimates uy in the algorithm satisfy

(4.22) Ik = Xl = Oz + pi — 2*1)),

and all other assumptions and conditions hold then there exists a constant M such
that pr < M for all k.

Proof. We may assume k large enough so that ay = 1. From (2.5), (2.4b), and
misg > 0, we have

(4.23) 9ipk + PEHkprx = PEARTE = —cimk < —(ck — 55) Tk,

where 7, denotes the QP multipliers at iteration k. From (3.3), (4.23), and the fact
that a unit steplength is accepted, it follows that

(4.24)  ¢4(0) < —piHipk + 12061 — p — mellllex — sill - prller — skl
From (4.22), HC2, and Lemmas 3.9, 3.8, and 3.7 we must have

261 — e — 7kl < My |lpill < Moo/ pfHip

for some positive constants M;, M. It then follows using a® + 5% > 2ab that

120k-1 — sk — mellllck — sll < May/pEHeprllcr — skl < 2piHipr + 3 M3 |lck — sill?,
implying from (4.24) that
¢%(0) < — 3Pk Hepk + (M5 — pr)llok — skl

From this inequality it follows that if pr > 1 M2, condition (2.11) will be satisfied,
and the penalty parameter will not be increased. Given that we are using the rule
(2.12) for updating pg, it must hold that p, < M3. 0
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5. Other merit functions. Several merit functions have been proposed and
analyzed in the literature (a review can be found in Powell [27]). The question arises
if the convergence results using early termination in the solution of the QP subproblem
depend on our specific merit function, or if they are fairly independent of this choice.
We shall show in this section that the choice of merit function is not critical. What we
present is how to adapt our SQP algorithm to the use of other merit functions rather
than examine other methods explicitly to see if the particular QP subproblem posed
and the manner the search is performed can be adapted to the use of an incomplete
solution. For example, we still perform a search in the z and A spaces. Slack variables
do not appear in the merit functions we shall consider, consequently the search in the
space of the slack variables is no longer required.

We have selected as examples the study of two particular merit functions. The
first one corresponds to a class of merit functions that includes among others the £,
merit function analyzed in Han [21], Byrd and Nocedal [5], and Burke and Han [4].
This general merit function takes the form:

(5.1) $(z,X) = F(z) + Me (2) + plle™ (@),

where an £,-norm (1 < p < 00) is used, and ¢; (z) = max(0, —c;(z)). Again, we
will omit the subscript if we refer to the #3-norm, and we will explicitly include it
whenever we refer to a general £,-norm.

The second merit function we consider is

(5.2) $(z,\) = F(z) + Ne™(2) + 3olle™ (@)%,

where we use the f3-norm. This merit function has been studied among others by
Powell and Yuan [28] (applied to the equality-constrained problems only) and Schit-
tkowski [32]. Unlike either of these algorithms, where the multiplier estimate A was
treated as a function of the iterate A(z), we do not explicitly define the form of the
multiplier estimates although the ones used in both methods satisfy the criteria MC1,
MC2, and MC3. Indeed the one used in [28] also satisfies MC3'.

We still assume A1-A7 hold for the problem. However, when the merit function
(5.1) is used, the multiplier estimate uy is only required to satisfy MC1. This condition
is trivial to satisfy. For example, we may choose Ag = 0 and px = 0 making the search
in the multiplier space void. Such a choice reduces (5.1) to the well-known £; merit
function and our algorithm becomes very similar to that analyzed in [21]. When (5.2)
is used, we assume conditions MC1 and MC2 hold. We have also assumed in the
proofs that Ag > 0 and pr > 0. We omit the proofs that the iterates lie on a compact
set. For the first merit function (5.1) this proof is relatively straightforward, since it
will be shown that the penalty parameter is bounded. The proof for the second merit
function (5.2) is very similar to that for the Augmented Lagrangian merit function.

The criteria (2.15) for the choice of steplength c; assume the merit function has
continuous first derivatives. This property does not necessarily hold for the merit
functions under consideration. Therefore we use the following criteria for determining
a value ay.

Define

(5.3) Ar = gipr + (& — M) e (k) = pille™ (@r)llp-

We start by selecting a value &y satisfying

(5.4) b (Gr) = d(xk + GrPr, Mk + ki) < dr(0) + népAx,
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and either

(5.5) ak =7 >0

or

(5.6) O > Yubix and or(ar) > or(0) + oar Ay,

where 0 < v < v, < 1,0< <0 <1 and a > 0. For a discussion of these criteria
and the existence of &j, see Calamai and Moré [6)].

In addition to these conditions, we also also want to limit the size of the infeasi-
bilities. If &y satisfies condition (2.16), then we let oy = é&g. Otherwise, we compute
ay by performing a backtracking linesearch from &y until conditions (5.4) and (2.16)
are both satisfied.

Our preference for the criteria given in §2 is based on our belief that in practice
they lead to a better choice of a. In the definition of our algorithm we could have
used other steplength criteria without impacting the convergence properties.

The following basic relationships will be used to establish the convergence results,

(5.72)  ¢;(z+ap) < lej(z + ap) - cj(z) - aaij| — min(0, ¢; (z) + aa?p)
(5.7b) —min(0, ¢;(z) + aafp) < (1 =a)ej (z),

(5.7¢) —wThp < —[|” (@)l

(5.7d) —~QAp < —c™ (z).

In these inequalities 4 = Ve(x). Also, Q is a diagonal matrix such that —QAp is
an element of the subdifferential of ¢~ (z + ap) at @ = 0. The diagonal entries of 2
take values in [0, 1], are zero whenever ¢;(z) > 0 and take the value one whenever
¢j(x) < 0. Finally, wT Ap represents an element of 8¢ (0), the subdifferential of p(a) =
lc™(z + ap)|l, at 0. The elements of w are given by

wj = () (W) ,

and have the property that w”ec(z) = —|lc™(z)|l,-
Consider now the case when ¢ has been defined from (5.1). From our assumption
that Ay > 0 and (2.4b),

MeQu(Arpr +c) 2 0
for all k. It follows from this inequality and the relationships given in (5.7) that
$(0) = gipk + i (k) — M Arpr — prwifArpr < Ay
We select pi such that
(5.8) Ak < —3piHips.-

This rule is analogous to the ones used in Byrd and Nocedal [5], and Burke and Han

14].
The first step is to establish that such a value of p exists. From (3.14) and (5.3)
we have

(5.9) Ak < —(3 + BUPEHkpk + B2l || = (& — M) e — pllck llp-
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If we now use (2.6), property MC1, and Lemma 2.2 to bound the multiplier term

(& = Ae) e < e = 2Xllllei Il < 3vmBalics I,

where we have used ||lulla < y/mljul|p, we obtain in (5.9)

Ar < —(3 + B1)PiHipr + (VmBa2 + 3vmBy — p)lici |lp-

Defining p, = vVm(B2 + 30,), for any value p > p,, condition (5.8) is satisfied for any
k. This result also shows that the value of p will remain bounded in the algorithm.

THEOREM 5.1. The algorithm modified to use the merit function (5.1) converges
globally.

Proof. Given the bound in Lemma 3.9, it suffices to show that ||px| — 0.

As p cannot grow without bound, any strategy for increasing p by a finite quantity
whenever it is required to increase p implies that there exists an iteration value K
such that py = pg for all £ > K. We consider only iterations of this form. For &k > K,
from (5.4), (5.8) and condition MC2,

Plon) — ¢lak-1) < axnAi < —nBsurakl|pel®.
From the boundedness of ¢ (Assumption A3), it follows that
(5.10) akllpe]|* — 0.

If ||pk|l — O, convergence follows from Lemma 3.9. Otherwise, if for a subsequence
lpell > €, from (5.10) we must have ay — 0 along the subsequence, and from the
termination conditions for the linesearch (5.4), (5.5), and (5.6), &, — 0, as the step
required to satisfy condition (2.16) is uniformly bounded away from zero (see (3.59)
and (3.60)). Finally, from (5.6) we must also have &, — 0.

In the following relationships we drop the subscript & corresponding to the itera-
tion number, and we denote by a tilde the value of functions evaluated at = + ap (i.e.,
é = c(z + ap)).

From the definition of the merit function (5.1),

$(@) - ¢(0) = ag'p+ A&~ —c7) +ag’e™ ~aplle” |,
+(F—F —ag™p) + p(ll” llp — (1 = @)lle” [lp)-
For the last term, from (5.7a) and (5.7b), it follows that
e llp — @ = a)llc™ llp < € c— adpllp,

and

$(@) — ¢(0) < ag'p + AT(E —c7) +ag’e —apllc|l,
+ (F — F — ag'p) + p||é — c — aAp||,.
If we use again (5.7a) and (5.7b) on the terms associated with the multiplier estimates

(given that by assumption A + @€ > 0), and the Taylor series expansions for F' and ¢,
we obtain

$(@) — ¢(0) < ag'p+ 3;(N; + 6&;)|& — ¢; — aajpl + (1 — @A Te™
=A™ +a(l - a)¢"e™ —apllc |l + O(llap?).
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After simplifying this expression we have
¢(@) - ¢(0) < algp+ (€ = Ve~ pllcIIp) + vma|élllic™ll» + Ollapll?).
Replacing this bound in (5.6) implies
0<(1-0)aA +vma*[€llle [, + O(llap|?).

Since from (5.8) and condition HC2, A < —f,ullp||?, and we have assumed that
IIp|| > €, it follows by taking limits along the subsequence that

0< —(1-0)Bwne.
However, this is not possible, implying ||pk]| — 0 for the whole sequence. |

Consider now the second merit function (5.2). The subgradient along the search
direction at (zg, Ax) is given by

81, (0) = gfpr + &8c™ (zk) — MEQUAkpr — prc™ (zi) TArpr < Ay,

where
Ak = gipe + (& — M) e (2x) = pelle™ (zx) |12
Note that Ax > 0 implies
(QUAk + prci; ) (Arpr + cx) > 0.

In this case it is not immediately evident that py remains bounded. The conver-
gence proof we give is similar to the one introduced in §3. The definition of p given
in that section will be preserved, except ¢ — s is replaced by c™.

THEOREM 5.2. The algorithm modified to use the merit function (5.2) converges
globally.

Proof. Again, from Lemma 3.9 it is enough to show that ||px|] — 0.

First assume that p is bounded. The argument used is similar to the one in
Theorem 5.1. From (5.4), (5.8), condition MC2 and the boundedness of ¢, (5.10)
must hold also for this case.

If ||px || — 0O, convergence follows from Lemma 3.9. Otherwise, if for a subsequence
lpell > €, from (5.10) we must have ay — 0, and from condition (5.6) and the
boundedness of the step to satisfy (2.16), &z — 0.

From (5.2), (5.7a) and (5.7b), we also have (we again drop the index k in the
following relationships, and use a tilde to indicate values at = + ap)

8(@) — 9(0) < agTp + NT(E ~ ) +a€Te™ — p(a — $a) e |
+ plle — e — aApl (16 - ¢ — aAp| + (¢ + adp) "))
+ (F - F - ag"p),

and again using (5.7a) and (5.7b) on the terms associated with the multiplier esti-
mates, we obtain

#(@) - 9(0) < &(g7p + (€ - Ve~ — plleI?)
+ae I (el + Selle™ 1)) + Olap?).
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Replacing this bound in (5.6) implies
0.< (1 - )an +ale | (Il + 2ollel)) + OClap?).

Since from (5.8) and condition HC2, A < —B4,xllpl|?, and we have assumed that
llp|l > € and p is bounded, it follows by taking limits along the subsequence that

0<—(1- U)ﬂlvHEZ.

However, this is not possible, which implies ||px|} — 0 for the whole sequence.
Assume now that pg grows without bound. In this case we have that for all
iterations where the value of the penalty parameter is increased

prllcpl K1 and  pgllpk|I® < K.

The proof of this result is basically that of Lemma 3.10. From these bounds it is
possible to show that we must also have

pelpel?® < K

for all k (the proof is similar to the one for Lemma 3.11), implying pr — 0 and the
convergence of the algorithm. O

6. Numerical results. In this section we present numerical results obtained
from an implementation of our algorithm. As a first step we have modified the code
NPSOL. We have called the modified routine INPSOL. Apart from the definition of
the search direction all other aspects of INPSOL are identical to those of NPSOL. A
detailed description of NPSOL is given in Gill et al. [15]. It should be noted that
NPSOL does not incorporate linear constraints into the merit function. An initial
point is obtained that is feasible with respect to the linear constraints and thereafter
feasibility is retained (by incorporating the linear constraints in the QP subproblem).
On many practical problems the feasible region with respect to the linear constraints
is compact. On such problems this approach ensures Assumption A2 is satisfied, and
Assumption Al is implied by Assumption A3.

The purpose of the testing reported is to demonstrate that the efficiency and
robustness of the modified algorithm are comparable to those of NPSOL. Naturally,
we can only test the hypothesis on the domain of problems NPSOL is designed to
solve, namely, problems having a small number of variables and constraints, although
on these problems the opportunities for improvement are limited, as we discuss later.
What this implementation really tests is whether the introduction of flexibility in the
determination of the search direction has a significant cost. The parameter 3. was
set to infinity to avoid differences with NPSOL arising due entirely to the linesearch.

6.1. The search direction. The algorithm described in §2 allows for consider-
able flexibility of design. We describe here the specific choices made in our implemen-
tation. The search direction p; is computed according to the following steps. (The
subscript k is dropped from now on.)

1. An initial feasible point for each QP subproblem, pg, is obtained following the
same procedure as NPSOL. No special effort was made to satisfy conditions (2.18)
since on the problems tested no failure was detected that could be attributed to the
size of ||poll-
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2. The active-set method used in NPSOL was terminated at p, the first stationary
point. The multipliers = at  are then computed. Define 7 as #; = m;||a;}}.
3. Let €,, denote machine precision. If

(61) VJ: 7?] 2 ~VE€nr;

then p is taken as the search direction.

4. If (6.1) does not hold a step that moves off a subset of the active constraints
is computed. To identify the set of active constraints to be deleted, define mmi, =
min; 7;, and introduce a vector e, as

L= ”a'J” if 7Arj < 10_—37rmim
(6.2) (e); = { 0  otherwise.

5. There is also a limit of 50 on the maximum number of constraints to be
deleted. If (6.2) is satisfied by more than 50 active constraints, only the ones having
the smallest multipliers are deleted. For most problems this limit has no effect, since
the total number of constraints is less than 50. This limit was introduced to limit the
cost of refactorization for the Jacobian matrix.

6. The direction d that moves off the selected constraints is obtained as the
least-length solution of the system Au = e, ; that is, we define

d=Y(AY) e,

where Y denotes a basis for the range-space of AT.
7. We obtain the search direction p from (2.21), as

_ [ p+yd i ||Bl < Bapllp + A4l
p= P otherwise,

where 4 was defined as in (2.26) with v, = 100 and B4, = 100 (with this value the
step p + 7d is accepted in nearly all cases).

8. Finally, the multiplier estimate used to define the linesearch is taken to be «
if p = p. Otherwise, it is taken to be the least-squares estimate y, obtained from

AATL, = Aqg.

6.2. Test problems. The two algorithms, NPSOL and INPSOL, have been
compared by solving a collection of 114 problems from the literature. The problems
have been obtained from the following sources.

(i) Problem 1 is the example problem distributed with NPSOL; its description
can be found in [15]. Problems 3 and 4 are slight reformulations of the same problem,
where the bounds —1 < z3 < 1 have been replaced by the constraint 2 < 1. Problem
3 uses the starting point

(12112112 1 1)
373710°3°373'3' 37 3/°

(ii) Descriptions for problems 6 and 12-15 can be found in [25]. The version of
problem 6 considered is the one corresponding to a value 7" = 10. Problems 12 and
13 start from point (d) for Wright No. 4 as indicated in the reference, while problems
14 and 15 start from points (a) and (b) for Wright No. 9, respectively.

(iii} A description of the SQUARE ROOT problems (17-20) and of EXP6 (9) can
be found in Fraley [14].
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(iv) Problems 21-30 were obtained from Boggs and Tolle [2].

(v) All problems having names starting with HS are from Hock and Schittkowski
[22].

(vi) Problems 85-95 can be found in Dembo [§].

All the above problems have been used in the past to test NPSOL. It should be
noted that the problems in this group are small; the average number of variables is
10, and the average number of constraints is 6. Nevertheless, many of these problems
are considered hard to solve. Moreover, for some of these problems the assumptions
made to establish the convergence results fail to hold; for example, in some cases the
Jacobian of the active NP constraints at «* is singular, or no feasible points exist for
some QP subproblems. In problem 42 no feasible point exists for NP.

The algorithms have also been tested on another group of problems.

(vil) The structural optimization problems 99-114 are from Ringertz [30]. The
letters I and E in the problem name indicate if the formulation used included explicitly
the displacement variables (E) or eliminated them in advance. Also, the following
number (10, 25, 36, or 63) denotes the number of bars in the truss considered. Finally,
whenever a number is included at the end of the name (006, 040, or 060), the initial
point taken has been modified to be z; = 6, 40, or 60, respectively.

These problems have been introduced due to the atypical behavior of quasi-
Newton SQP algorithms on them. For this group, the ratio of QP to nonlinear
iterations is large when compared to the size of the problem; on the first test set
(problems 1-98) the average ratio for NPSOL is 2 QP iterations per nonlinear itera-
tion, while on problems 99-114 the average ratio is 30.

The normal behavior of NPSOL on the first set of test problems is to require a
relatively large number of QP iterations in the first few nonlinear iterations. Typically,
the number of QP iterations declines exponentially until near a KKT point, when
only one iteration is required. The STRUC problems depart from this “standard”
behavior, in the sense that the number of QP iterations declines much more gradually.
(Although only one QP iteration is required in the end, most nonlinear iterations
require more.) This offers the possibility of observing the reductions that can be
achieved by using the early-termination criterion, with limited distortion from the
asymptotic behavior of NPSOL.

Finally, the problems in this second group are larger than the ones presented
above; the average number of variables is now 55, and the average number of con-
straints is 100. For all the reasons mentioned, this set of problems provides a better
environment in which to test the ability of the proposed early-termination criterion
to reduce the number of QP iterations.

6.3. Computing environment. Version 4.02 of NPSOL was used in these com-
parisons. For this test set, all parameters used in the code have been fixed at their
default values (see [15]). No attempt was made to improve the results by selecting
a different set of parameters. It would be difficult to compare the relative effort to
adjust input parameters for the two algorithms. The runs were performed as batch
jobs on a DEC VAXstation II with 5 Mb main memory. The operating system was
VAX/VMS version 4.5, and the compiler used was VAX FORTRAN version 4.6 with
default options.

6.4. Results. The results obtained from running both algorithms on the test set
are presented in Tables 4 and 2.

The parameters chosen to characterize the relative performance of both algo-
rithms have been: the number of outer (nonlinear) iterations for each problem; the
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TABLE 1

Average behavior: NPSOL vs. INPSOL.

Problems

All 1-98 99-114

Nonlinear iterations 988 979 1.044

Function evaluations 994 999 .963

QP iterations 1.190 | 1.112 1.884

CPU time 1.043 | 1.022 1.200

number of calls to the routine computing the values of the objective function, the
constraint functions and their derivatives (function evaluations); the total number of
inner (QP) iterations for the problem (this includes the number of iterations nec-
essary to compute a feasible point); and the running (CPU) time needed to solve
the problem. The results corresponding to both algorithms are given as a single en-
try in the tables, with the figures separated by a slash ( / ) symbol, in the form
NPSOL result/INPSOL result.

Given that most of the problems are not convex, the algorithms may converge
to different KKT points. Three such events occurred. Another possible cutcome
is failure—that is, the algorithm terminates without finding a solution, because the
iteration limit has been exceeded, because no significant progress can be made at the
current point with respect to the merit function, or because the objective or constraint
functions need to be evaluated at a point for which they are not defined in the code.
Such failures are indicated by a long dash (—).

For the set of 114 problems, NPSOL was able to find a KKT point in 107 cases,
while INPSOL was able to solve 105 problems. We should emphasize that only the
default value of the input parameters were used. Undoubtedly adjustment of the
input parameters on the problems that failed would have led to more successes. The
figures illustrate the reliability of INPSOL.

Table 1 presents a summary of the results for the four quantities monitored in
Table 2. The average values have been computed as the geometric means for the ratios
of the values for NPSOL and for INPSOL; that is, averages larger than one indicate
that the corresponding value for NPSOL is larger than the value for INPSOL. Also, the
averages exclude those problems where one of the algorithms failed. Separate entries
have been provided for problems 1-98 (the smaller problems), and for problems 99-114
(the structural optimization problems).

We now comment briefly on the implications of these results.

(i) The early-termination rule seems to behave very well regarding the numbers
of nonlinear iterations and function evaluations; even if we are now using a search
direction of “worse quality” than in NPSOL, the numbers are very close for both
algorithms.
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(ii) The number of QP iterations is reduced by 20% for the complete set. When
judging this figure we must take into account that the problems are small, implying
that the number of QP iterations required per nonlinear iteration is also small. (In
fact, the average value for the test set is 5.6 QP iterations per nonlinear iteration.)
The opportunity for improvement is correspondingly limited. Moreover, both codes
use the active set at the solution of the previous QP subproblem as a prediction
for the correct active set in the current subproblem, resulting in a small number
of QP iterations close to a KKT point. As a result, significant savings achieved
by incomplete solution of QP subproblems in the early iterations are masked by a
large number of subproblems requiring only a few QP iterations. As an example, for
problem 98 the largest number of QP iterations needed in any nonlinear iteration is
reduced from 57 for NPSOL to 15 for INPSOL. This effect is much less clear when we
look at total numbers of QP iterations (244 for NPSOL vs. 170 for INPSOL). Recall
that it is necessary in any implementation to limit the number of iterations taken to
solve the subproblem. This large reduction in the maximum number of iterations is
encouraging. Moreover, it indicates that INPSOL and NPSOL took quite different
paths to obtain a solution on many of the problems. In the light of this fact the
similarity of performance is quite remarkable. Finally, the early-termination rule still
requires a feasible point, and the feasibility phase is the same as in NPSOL. When
this phase accounts for most of the total number of iterations, as with the STRUC
problems, the possibility of improvement is further diminished.

Nonetheless, it should be noted that for problems 99-114 the improvement ob-
tained is significantly greater than 20%, as the mean ratio is now 1.88; in fact, when
we look only at the larger problems, the relative performance of INPSOL improves
markedly. This offers the promise that for even larger problems the results obtained
may be substantially better than the values shown above.

(iii) The CPU time required by INPSOL is lower than the time for NPSOL, but
by a factor that is much smaller than for the number of QP iterations. This is due
not only to the fact that function evaluations can be expensive when compared to the
effort to solve each QP subproblem, but also to some details in the implementation
that have been chosen to affect the number of QP iterations, even at the expense
of running time. For example, the multiplier estimate used for the linesearch (the
least-squares multiplier) is expensive to compute when many constraints are deleted
in the last step, as the factorization for the Jacobian of the active constraints must
be updated. There are still options to be explored that might reduce the CPU time
for the modified algorithm.

7. Acknowledgments. We are grateful to the referees for their effort at ref-
ereeing a long and difficult paper. Their care and attention to detail resulted in a
substantial improvement over the first version of this paper. The prodding of one
referee in particular led to our weakening our assumptions and including considerable
new material in the paper.
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TABLE 2
Numerical results.

Nonlinear Function QP CPU
No Problem name iterations  evaluations  iterations time (s)
1 NPSOL SAMPLE PROBLEM 12/13 16/18 45/34 3.69/3.61
2 SINGULAR 15/15 16/16 4/4 1.03/1.05
3 HEXAGON 15/16 21/23 32/29 4.41/4.41
4 HEXAGON (ALT. START) 11/11 16/14 35/26 3.56/3.26
5 LC7 7/9 9/11 13/16 .76/.95
6 ALAN MANNE’'S PROBLEM 17/17 18/18 40/37 21.13/21.92
7 ROSEN-SUZUKI 8/8 11/11 9/9 .81/.81
8 QP PROBLEM 8/10 9/11 23715 1.10/1.04
9 EXP6 33/53 35/57 38/57 1.96/3.08
10 STEINKE2 —*75 —/6 /14 -/ .87
11  NORWAY 4/61 5/7 34/13 1.23/.65
12 MHW4 10/10 18/15 14/12 1.31/1.25
13  MHW9 30/191 56/28 42/24 3.71/2.31
14 MHW9 INEQUALITY 1 28/23 38/28 59/40 3.41/2.73
15 MHW9 INEQUALITY 2 41/14f 58/27 80/24 4.83/1.77
16 WOPLANT 25/29 29/33 44/35 6.85/7.17
17  SQUARE ROOT 1 ) o —/— —f—
18 SQUARE ROOT 2 23/23 36/36 0/0 5.01/5.32
19 SQUARE ROOT 3 6/6 9/9 7/7 .95/.94
20 SQUARE ROOT 4 el el )= —f —)—
21 BT1 11/11 19/19 11/11 .81/.83
22  BT2 9/9 14/14 9/9 71/.70
23 BT3 2/2 5/5 2/2 .19/.19
24 BT4 12/12 18/18 13/13 .92/.92
25 BT5-HS63 6/6 9/9 8/8 .58/.58
26 BT6-HS77 15/15 21/21 16/16 1.52/1.54
27 BT7 31/31 56/56 32/32 3.36/3.43
28 BTS8 17/17 19/19 17/17 1.25/1.44
29 BT9-HS39 13/13 16/16 14/14 .95/1.19
30 BTI10 8/8 11/11 0/0 .48/.52
31 BT11-HS79 9/9 12/12 10/10 1.05/1.06
32 BT12 27/27 57/57 28728 3.04/3.04
33 BT13 32/32 44/44 34/34 2.61/2.62
34 POWELL TRIANGLES 23/15 37/16 36/23 3.27/2.28
35 POWELL BADLY SCALED 12/12 15/15 13/13 .85/.85
36 POWELL WRIGGLE 34/32 69/55 60/40 2.77/2.39
37 POWELL-MARATOS 6/6 /T 6/6 44/.44
38 HST2 7/7 8/8 8/8 69/.67
39 HS73 (CATTLE FEED) 4/4 5/5 4/4 .38/.36
40 HS107 11/11 18/18 27/18 2.77/2.56
41 MUKAI-POLAK 10/10 16/16 13/13 1.08/1.11
42 INFEASIBLE SUBPROBLEM — )= — ) ) ] e
43  HS26 47/47 64/64 48/48 3.39/3.41
44  HS32 2/4 3/5 3/5 .25/.38
45 HS46 55/55 58/58 56/56 5.26/4.98
46  HS51 2/2 5/5 2/2 .18/.14
47  HS52 2/2 5/5 2/2 .19/.16
48 HS53 2/2 5/5 2/2 .19/.16
49 PENALTY1 A 16/16 18/19 77/41 20.01/16.49
50 PENALTY1 B 6/7 14/19 67/32 14.77/11.77
51 PENALTY1 C 29/15 85/40 152/65 24.35/11.65
52 HS13 22/19 23/20 13/10 1.29/1.22
53  HS64 29/43 39/62 47/60 2.34/3.33
54  HS65 8/9 10/11 16/16 .70/.78
55  HS70 36/ 39/~ 39/- ~ 3.33/—
56  HS71 5/7 6/9 9/9 .53/.67
57 HST74 10/26 15/48 14/28 1.17/2.68
58 HS75 6/8 10/11 7/9 .72/.90
59 HS78 10/10 14/14 11/11 1.15/1.15
60  HS80 8/8 10/10 8/8 .92/.92
61 HS8l1 14/14 20/20 15/15 1.57/1.60
62 HS84 —*/4 —/5 —/9 —/.51
63 HS85 17/14 18/15 33/20 4.00/3.12
64 HS86 (COLVILLE 1 6/7 8/8 11/11 .62/.64
65 HS87 (COLVILLE 6 11/8 18/9 18/14 1.63/1.23
66  HS93 12/12 15/15 14/14 1.36/1.38
67  HS95 1/1 2/2 1/1 .15/.15
68 HS96 1/1 2/2 1/1 .17/.15
69  HS97 3/3 6/6 3/3 .40/.41
70  HS98 3/3 6/6 8/8 .43/.44
71  HS99 23/—* 44/ — 74/— 3.99/—
72 HS100 14/14 29/29 18/18 2.07/2.02
73  HS104 18/18 20/20 23/23 3.36/3.37
74  HS105 43/ —* 61/— 97/—  27.14/—
75 HS108 (HEXAGON) 24/32 45/49 57/87 6.78/9.36
76  HS109 11/10 13/11 25/29 3.23/3.26
77  HS110 6/6 9/9 24/15 .78/.69
78 HS111 41/49 64/75 44/52 8.08/9.05

* Failed to solve the problem.
T Converged to a different minimizer.
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TABLE 2 (cont.)
Numerical results.

Nonlinear Function QP CPU
No. Problem name iterations evaluations iterations time (s)
79 HS112 (CHEMICAL EQ.) 19/—* 39/— 54/— 2.78/—
80 HS113 14/16 19/23 38/36 3.12/3.41
81 HS114 18/16 19/24 36/33 3.81/3.60
82 HS117 (COLVILLE 2) 17/18 21/27 96/39 6.75/5.34
83 HS118 (LC PROBLEM) 4/4 6/6 20/20 1.35/1.40
84 HS119 (COLVILLE 7) 12/17 16/19 41/47 4.25/5.60
85 DEMBO 1B 281/—*  437/— 296 /— 75.46/-—
86 DEMBO 2-HS83 4/4 6/6 4/4 .54/.54
87 DEMBO 3 9/8 11/9 37/20 2.01/1.78
88 DEMBO 4A 19/19 23/23 24/24 3.53/3.31
89 DEMBO 4C 13/13 15/15 20/23 3.10/3.20
90 DEMBO 5-HS106 17/18 21/24 30/31 2.90/3.04
91 DEMBO 6-HS116 36/43 96/69 144/248 21.84/29.65
92 DEMBO 7 19/12 24/15 126/68 15.54/9.82
93 DEMBO 8A 33/42 85/118 105/99 7.52/9.17
94 DEMBO 8B 29/29 69/71 88/73 6.51/6.45
95 DEMBO 8C 25/27 60/68 89/65 6.19/6.06
96 OPF 18/17 19/18 53/51 468.12/456.10
97 GBD EQUILIBRIUM MOD. 5/6 6/7 37/26 6.22/6.10
98 WEAPON ASSIGNMENT 96/73 98/76 244/170 120.78/114.93
99 STRUCI10KON 18/17 34/30 65/42 13.67/11.73
100 STRUCE10KON 26/29 49/67 87/84 17.68/20.75
101 STRUCI10VAN 23/19 41/34 54/51 16.30/13.85
102 STRUCE10VAN —*/24 —/48 —/91 —/19.44
103 STRUCI25006 42/37 68/62 147/85 92.44/80.99
104 STRUCE25006 20/28 32/36 178/95 357.83/260.79
105 STRUCI25DAT 11/12 19/21 24/22 24.75/27.11
106 STRUCE25DAT 52/21 106/37 687/65 647.13/191.44
107 STRUCI36DAT 23/20 38/34 59/46 120.79/108.02
108 STRUCE36DAT 29/30 53/62 87/90 971.16/1021.9
109 STRUCI63040 117/112  211/202 6116/3091 8182.1/7159.0
110 STRUCE®63040 375/—" 794/ — 3545/-— 77286.6/—
111 STRUCI63060 -—*/98 —/244 — /3899 —/8281.0
112 STRUCE63060 63/115  150/316 6675/3407 25090.2/33228.4
113 STRUCI6G3DAT 246/136  354/412 9043/2060 12591.6/11424.5
114 STRUCEG63DAT 52/72 86/145 8049/2858 41793.8/22740.7

* Failed to solve the problem.
T Converged to a different minimizer.
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